
Kenneth L. McMillan
Xavier Rival (Eds.)

 123

15th International Conference, VMCAI 2014
San Diego, CA, USA, January 2014
Proceedings

Verification, Model Checking,
and Abstract InterpretationLN

CS
 8

31
8

AR
Co

SS

Lecture Notes in Computer Science 8318
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Kenneth L. McMillan Xavier Rival (Eds.)

Verification, Model Checking,
and Abstract Interpretation

15th International Conference, VMCAI 2014
San Diego, CA, USA, January 19-21, 2014
Proceedings

13

Volume Editors

Kenneth L. McMillan
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
E-mail: kenmcmil@microsoft.com

Xavier Rival
DI - Ecole Normale Supérieure
45, rue d’Ulm
75230 Paris Cedex 05, France
E-mail: rival@di.ens.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-54012-7 e-ISBN 978-3-642-54013-4
DOI 10.1007/978-3-642-54013-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013957367

CR Subject Classification (1998): F.3.1-2, D.2.4, C.2.4, F.4.1, F.1.1, I.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at VMCAI 2014, the 15th Inter-
national Conference on Verification, Model Checking, and Abstract Interpreta-
tion, held during January 19–21, 2013, in San Diego, co-located with POPL
2014 (the 41st ACM SIGPLAN/SIGACT Symposium on Principles of Program-
ming languages). Previous meetings were held in Port Jefferson (1997), Pisa
(1998), Venice (2002), New York (2003), Venice (2004), Paris (2005), Charleston
(2006), Nice (2007), San Francisco (2008), Savannah (2009), Madrid (2010),
Austin (2011), Philadelphia (2012), and Rome (2013).

VMCAI is a major conference dealing with state-of-the art research in anal-
ysis and verification of programs and systems, with particular emphasis on the
cross-fertilization among communities that have developed different methods
and models for code and system verification and analysis. VMCAI topics in-
clude: program verification, model checking, abstract interpretation and abstract
domains, program synthesis, static analysis, type systems, deductive methods,
program certification, debugging techniques, program transformation, optimiza-
tion, hybrid and cyber-physical systems.

This year, we received 64 submissions. Each submission was assessed by at
least three Program Committee members. The committee decided to accept
25 papers. We are glad to include in the proceedings the contributions of four
invited keynote speakers: Bor-Yuh Evan Chang (University of Colorado, Boulder,
USA), Cynthia Dwork (Microsoft Research, USA), Prakash Panangaden (McGill
University, Canada) and Thomas Wies (New York University, USA).

We would like to thank all the members of the Program Committee and all
the external reviewers for their dedicated effort in evaluating and selecting the
papers to be featured in these proceedings. We are also grateful to the Steering
Committee for their helpful advice and support. A special thanks goes to Dave
Schmidt, who managed the budget of the conference. We would also like to
thank Ruzica Piskac who acted as a publicity chair. We would like to thank
Suresh Jagannathan, who managed the organization of POPL 2014 as well as
David Van Horn, who coordinated the co-located events of POPL.

Finally, we are also grateful to Andrei Voronkov for having set up the Easy-
Chair system that was used to handle the submissions, the reviews, the PC
discussions and the production workflow.

November 2013 Xavier Rival
Ken McMillan

Organization

Program Committee

Christel Baier Technische Universität Dresden, Germany
Agostino Cortesi Università Ca Foscari of Venezia, Italy
Jerome Feret CNRS and ENS and Inria, France
Alexey Gotsman IMDEA Software Institute, Spain
Aarti Gupta NEC Labs, USA
Alan J. Hu University of British Columbia, Canada
Laura Kovacs Chalmers University of Technology, Sweden
Daniel Kroening University of Oxford, UK
Mark Marron Microsoft Research, USA
Isabella Mastroeni Università di Verona, Italy
Kenneth L. McMillan Microsoft Research, USA
Matthew Might University of Utah, USA
David Monniaux CNRS and University of Grenoble, France
Kedar Namjoshi Bell Labs, USA
Peter O’Hearn Facebook, UK
Ruzica Piskac Yale University, USA
Sylvie Putot CEA-LIST, France
Xavier Rival CNRS and ENS and Inria, France
Philipp Rümmer Uppsala University, Sweden
Sriram Sankaranarayanan University of Colorado at Boulder, USA
Tachio Terauchi Nagoya University, Japan
Tayssir Touili CNRS and University of Paris Diderot-Paris7,

France
Eran Yahav Technion, Israel

Additional Reviewers

Ahrendt, Wolfgang
Blackshear, Sam
Blieberger, Johann
Bouissou, Olivier
Bucheli, Samuel
Bundala, Daniel
Cachera, David
Cerone, Andrea
D’Osualdo, Emanuele
Dan, Andrei

Dang, Thao
Delzanno, Giorgio
Dimitrov, Dimitar
Dimitrova, Rayna
Doko, Marko
Dragan, Ioan
Fahndrich, Manuel
Ferns, Norman
Garoche, Pierre-Löıc
Gerke, Michael

VIII Organization

Gilray, Thomas
Goubault, Eric
Graf, Susanne
Guan, Nan
Gupta, Ashutosh
Horn, Alexander
Katz, Omer
Khyzha, Artem
Klebanov, Vladimir
Kloos, Johannes
Lammich, Peter
Lampka, Kai
Lauter, Christoph
Lewis, Matt
Liang, Lihao
Liang, Shuying
Lozes, Etienne
Macedo, Hugo
Midtgaard, Jan
Navarro Perez, Juan Antonio
Navas, Jorge A
Paganelli, Gabriele

Peleg, Hila
Poetzl, Daniel
Potet, Marie-Laure
Rinetzky, Noam
Schmitz, Sylvain
Schrammel, Peter
Seghir, Mohamed Nassim
Sharma, Subodh
Song, Fu
Sousa, Marcelo
Sproston, Jeremy
Subotic, Pavle
Suenaga, Kohei
Sutre, Grégoire
Tate, Ross
Tautschnig, Michael
Van Horn, David
Vedrine, Franck
Weissenbacher, Georg
Wies, Thomas
Zwirchmayr, Jakob

Keynote Talks

Minimization of Automata by Duality

Prakash Panangaden

School of Computer Science
McGill University
Montréal, Québec

Canada

prakash@cs.mcgill.ca

A remarkable algorithm — discovered by Jan Brzozowski in the early 1960s —
is based on the notion of duality. In recent work by Bonchi et al. [1, 2], Bezhan-
ishvili et al. [3] and Dinculescu et al. [4], we have shown how to understand this
algorithm as a manifestation of duality. Duality is, strictly speaking, a categori-
cal concept but is widely used and understood much more broadly. In this talk I
will explain how duality can be used for the minimization of automata. It turns
out to be not just applicable to ordinary automata but also to variations like
weighted automata and probabilistic automata of various kinds.

References

1. Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M., Silva, A.: Brzozowski’s algorithm
(Co)Algebraically. In: Constable, R.L., Silva, A. (eds.) Kozen Festschrift. LNCS,
vol. 7230, pp. 12–23. Springer, Heidelberg (2012)

2. Bonchi, F., Bonsangue, M.M., Hansen, H.H., Panangaden, P., Rutten, J., Silva, A.:
Algebra-coalgebra duality in Brzozowski’s minimization algorithm. ACM Transac-
tions on Computational Logic (2013)

3. Bezhanishvili, N., Kupke, C., Panangaden, P.: Minimization via duality. In: Ong,
L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 191–205. Springer,
Heidelberg (2012)

4. Dinculescu, M., Hundt, C., Panangaden, P., Pineau, J., Precup, D.: The duality
of state and observation in probabilistic transition systems. In: Bezhanishvili, G.,
Löbner, S., Marra, V., Richter, F. (eds.) TbiLLC. LNCS, vol. 7758, pp. 206–230.
Springer, Heidelberg (2013)

From Separation Logic to First-Order Logic

The Complete Journey�

Thomas Wies

New York University

Abstract. Separation logic (SL) has gained widespread popularity as
a formal foundation of tools that analyze and verify heap-manipulating
programs. Its great asset lies in its assertion language, which can suc-
cinctly express how data structures are laid out in memory, and its dis-
cipline of local reasoning, which mimics human intuition about how to
prove heap programs correct.

While the succinctness of separation logic makes it attractive for de-
velopers of program analysis tools, it also poses a challenge to automa-
tion: separation logic is a nonclassical logic that requires specialized the-
orem provers for discharging the generated proof obligations. SL-based
tools therefore implement their own tailor-made theorem provers for this
task. However, this brings its own challenges.

The analysis of real-world programs involves more than just reason-
ing about heap structures. The combination of linked data structures and
pointer arithmetic, in particular, is pervasive in low-level system code.
Other examples include the dynamic reinterpretation of memory (e.g.,
treating a memory region both as a linked structure and as an array)
and dependencies on data stored in linked structures (e.g., sortedness
constraints). To deal with such programs, existing SL tools make sim-
plifying and (deliberately) unsound assumptions about the underlying
memory model, rely on interactive help from the user, or implement in-
complete extensions to allow some limited support for reasoning about
other theories.

The integration of a separation logic prover into an SMT solver can
address these challenges. Modern SMT solvers already implement de-
cision procedures for many theories that are relevant in program ver-
ification, e.g., linear arithmetic, arrays, and bit-vectors. They also im-
plement generic mechanisms for combining these theories, treating the
theory solvers as independent components. These mechanisms provide
guarantees about completeness and decidability.

I will present an approach that enables complete combinations of
decidable separation logic fragments with other theories in an elegant
way. The approach works by reducing SL assertions to first-order logic.
The target of this reduction is a decidable fragment of first-order logic
that fits well into the SMT framework. That is, reasoning in separation

� This work was supported in part by NSF grant CCS-1320583.

From Separation Logic to First-Order Logic XIII

logic is handled entirely by an SMT solver. The approach enables lo-
cal reasoning about heap programs via a logical encoding of the frame
rule and supports complex linked data structures with list and tree-like
backbones. The reduction also opens up new possibilities for invariant
generation in SL-based static analysis tools (e.g., via the integration of
interpolation procedures for first-order logic).

This talk is based on joint work with Ruzica Piskac, Damien Zufferey,
and Nishant Totla.

Refuting Heap Reachability

Bor-Yuh Evan Chang

University of Colorado Boulder

bec@cs.colorado.edu

Abstract. Precise heap reachability information is a prerequisite for
many static verification clients. However, the typical scenario is that the
available heap information, computed by say an up-front points-to anal-
ysis, is not precise enough for the client of interest. This imprecise heap
information in turn leads to a deluge of false alarms for the tool user
to triage. Our position is to approach the false alarm problem not just
by improving the up-front analysis but by also employing after-the-fact,
goal-directed refutation analyses that yield targeted precision improve-
ments. We have investigated refutation analysis in the context of detect-
ing statically a class of Android memory leaks. For this client, we have
found the necessity for an overall analysis capable of path-sensitive rea-
soning interprocedurally and with strong updates—a level of precision
difficult to achieve globally in an up-front manner. Instead, our approach
uses a refutation analysis that mixes highly precise, goal-directed reason-
ing with facts derived from the up-front analysis to prove alarms false and
thus enabling effective and sound filtering of the overall list of alarms.

Table of Contents

SAT-Based Synthesis Methods for Safety Specs . 1
Roderick Bloem, Robert Könighofer, and Martina Seidl

Precise Analysis of Value-Dependent Synchronization in Priority
Scheduled Programs . 21

Martin D. Schwarz, Helmut Seidl, Vesal Vojdani, and Kalmer Apinis

Relational Thread-Modular Static Value Analysis by Abstract
Interpretation . 39

Antoine Miné

Timing Analysis of Parallel Software Using Abstract Execution 59
Andreas Gustavsson, Jan Gustafsson, and Björn Lisper

Doomsday Equilibria for Omega-Regular Games . 78
Krishnendu Chatterjee, Laurent Doyen, Emmanuel Filiot, and
Jean-François Raskin

Bisimulations and Logical Characterizations on Continuous-Time
Markov Decision Processes . 98

Lei Song, Lijun Zhang, and Jens Chr. Godskesen

Probabilistic Automata for Safety LTL Specifications 118
Dileep Kini and Mahesh Viswanathan

Refuting Heap Reachability . 137
Bor-Yuh Evan Chang

Cascade 2.0 . 142
Wei Wang, Clark Barrett, and Thomas Wies

A Logic-Based Framework for Verifying Consensus Algorithms 161
Cezara Drăgoi, Thomas A. Henzinger, Helmut Veith,
Josef Widder, and Damien Zufferey

Verifying Array Programs by Transforming Verification Conditions 182
Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and
Maurizio Proietti

Weakest Precondition Synthesis for Compiler Optimizations 203
Nuno P. Lopes and José Monteiro

XVI Table of Contents

Message-Passing Algorithms for the Verification of Distributed
Protocols . 222

Löıg Jezequel and Javier Esparza

Safety Problems Are NP-complete for Flat Integer Programs with
Octagonal Loops . 242

Marius Bozga, Radu Iosif, and Filip Konečný

Parameterized Model Checking of Token-Passing Systems 262
Benjamin Aminof, Swen Jacobs, Ayrat Khalimov, and Sasha Rubin

Modularly Combining Numeric Abstract Domains with Points-to
Analysis, and a Scalable Static Numeric Analyzer for Java 282

Zhoulai Fu

Generic Combination of Heap and Value Analyses in Abstract
Interpretation . 302

Pietro Ferrara

Modeling Parsimonious Putative Regulatory Networks: Complexity
and Heuristic Approach . 322

Vicente Acuña, Andrés Aravena, Alejandro Maass, and Anne Siegel

Practical Floating-Point Tests with Integer Code . 337
Anthony Romano

Monitoring Parametric Temporal Logic . 357
Peter Faymonville, Bernd Finkbeiner, and Doron Peled

Precisely Deciding Control State Reachability in Concurrent Traces
with Limited Observability . 376

Chao Wang and Kevin Hoang

Modular Synthesis of Sketches Using Models . 395
Rohit Singh, Rishabh Singh, Zhilei Xu, Rebecca Krosnick, and
Armando Solar-Lezama

Synthesis with Identifiers . 415
Rüdiger Ehlers, Sanjit A. Seshia, and Hadas Kress-Gazit

Synthesis for Polynomial Lasso Programs . 434
Jan Leike and Ashish Tiwari

Table of Contents XVII

Policy Iteration-Based Conditional Termination and Ranking
Functions . 453

Damien Massé

Widening for Control-Flow . 472
Ben Hardekopf, Ben Wiedermann, Berkeley Churchill, and
Vineeth Kashyap

Author Index . 493

SAT-Based Synthesis Methods for Safety Specs�

Roderick Bloem1, Robert Könighofer1, and Martina Seidl2

1 Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Austria

2 Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract. Automatic synthesis of hardware components from declara-
tive specifications is an ambitious endeavor in computer aided design.
Existing synthesis algorithms are often implemented with Binary Deci-
sion Diagrams (BDDs), inheriting their scalability limitations. Instead of
BDDs, we propose several new methods to synthesize finite-state systems
from safety specifications using decision procedures for the satisfiability
of quantified and unquantified Boolean formulas (SAT-, QBF- and EPR-
solvers). The presented approaches are based on computational learning,
templates, or reduction to first-order logic. We also present an efficient
parallelization, and optimizations to utilize reachability information and
incremental solving. Finally, we compare all methods in an extensive case
study. Our new methods outperform BDDs and other existing work on
some classes of benchmarks, and our parallelization achieves a super-
linear speedup.

Keywords: Reactive Synthesis, SAT-Solving, Quantified Boolean For-
mulas, Effectively Propositional Logic.

1 Introduction

Automatic synthesis is an appealing approach to construct correct reactive sys-
tems: Instead of manually developing a system and verifying it later against
a formal specification, reactive synthesis algorithms can compute a correct-by-
construction implementation of a formal specification fully automatically. Be-
sides the construction of full systems [4], synthesis algorithms are also used in
automatic debugging to compute corrections of erroneous parts of a design [29],
or in program sketching, where “holes” (parts that are left blank by the designer)
are filled automatically [28].

This work deals with synthesis of hardware systems from safety specifications.
Safety specifications express that certain “bad things” never happen. This is
an important class of specifications for two reasons. First, bounded synthesis
approaches [8] can reduce synthesis from richer specifications to safety synthesis

� This work was supported in part by the Austrian Science Fund (FWF) through
projects RiSE (S11406-N23 and S11408-N23) and QUAINT (I774-N23), and by the
European Commission through project STANCE (317753).

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 1–20, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 R. Bloem, R. Könighofer, and M. Seidl

problems. Second, safety properties often make up the bulk of a specification,
and they can be handled in a compositional manner: the safety synthesis problem
can be solved before the other properties are handled [27].

One challenge for reactive synthesis is scalability. To address it, synthesis
algorithms are usually symbolic, i.e., they represent states and transitions using
formulas. The symbolic representations are, in turn, often implemented using
Binary Decision Diagrams (BDDs), because they provide both existential and
universal quantification. However, it is well known that BDDs explode in size
for certain structures [2]. At the same time, algorithms and tools to decide the
satisfiability of formulas became very efficient over the last decade.

In this paper, we thus propose several new approaches to use satisfiability-
based methods for the synthesis of reactive systems from safety specifications.
We focus on the computation of the so-called winning region, i.e., the states from
which the specification can be fulfilled, because extracting an implementation
from this winning region is then conceptually easy (but can be computationally
hard). More specifically, our contributions are as follows.

1. We present a learning-based approach to compute a winning region as a
Conjunctive Normal Form (CNF) formula over the state variables using a
solver for Quantified Boolean Formulas (QBFs) [19].

2. We show how this method can be implemented efficiently using two incre-
mental SAT-solvers instead of a QBF-solver, and how approximate reacha-
bility information can be used to increase the performance. We also present
a parallelization that combines different variants of these learning-based ap-
proaches to achieve a super-linear speedup.

3. We present a template-based approach to compute a winning region that
follows a given structure with one single QBF-solver call.

4. We also show that fixing a structure can be avoided when using a solver for
Effectively Propositional Logic (EPR) [18].

5. We present extensive experimental results to compare all these methods, to
each other and to previous work.

Our experiments do not reveal the new all-purpose synthesis algorithm. We
rather conclude that different methods perform well on different benchmarks,
and that our new approaches outperform existing ones significantly on some
classes of benchmarks.

Related Work. A QBF-based synthesis method for safety specifications was
presented in [29]. Its QBF-encoding can have deep quantifier nestings and many
copies of the transition relation. In contrast, our approach uses more but poten-
tially cheaper QBF-queries. Becker et al. [1] show how to compute all solutions to
a QBF-problem with computational learning, and how to use such an ALLQBF
engine for synthesis. In order to compute all losing states (from which the spec-
ification cannot be enforced) their algorithm analyzes all one-step predecessors
of the unsafe states before turning to the two-step predecessors, an so on. Our
learning-based synthesis method is similar, but applies learning directly to the
synthesis problem. As a result, our synthesis algorithm is more “greedy”. Dis-
covered losing states are utilized immediately in the computation of new losing

SAT-Based Synthesis Methods for Safety Specs 3

states, independent of the distance to the unsafe states. Besides the computation
of a winning region, computational learning has also been used for extracting
small circuits from a strategy [9]. The basic idea of substituting a QBF-solver
with two competing SAT-solvers has already been presented in [13] and [21].
We apply this idea to our learning-based synthesis algorithm, and adapt it to
make optimal use of incremental SAT-solving in our setting. Our optimizations
to utilize reachability information in synthesis are based on the concept of in-
cremental induction, as presented by Bradley for the model-checking algorithm
IC3 [6]. These reachability optimizations are completely new in synthesis, to the
best of our knowledge. Recently, Morgenstern et al. [21] proposed a property-
directed synthesis method which is also inspired by IC3 [6]. Roughly speaking,
it computes the rank (the number of steps in which the environment can enforce
to reach an unsafe state) of the initial state in a lazy manner. It maintains over-
approximations of states having (no more than) a certain rank. If the algorithm
cannot decide the rank of a state using this information, it decides the rank
of successors first. This approach is complementary to our learning-based algo-
rithms. One fundamental difference is that [21] explores the state space starting
from the initial state, while our algorithms start at the unsafe states. The main
similarity is that one of our methods also uses two competing SAT-solvers instead
of a QBF-solver. Templates have already been used to synthesize combinational
circuits [15], loop invariants [10], repairs [16], and missing parts in programs [28].
We use this idea for synthesizing a winning region. Reducing the safety synthesis
problem to EPR is also new, to the best of our knowledge.

Outline. The rest of this paper is organized as follows. Section 2 introduces basic
concepts and notation, and Section 3 discusses synthesis from safety specifica-
tions in general. Our new synthesis methods are presented in Sections 4 and 5.
Section 6 contains our experimental evaluation, and Section 7 concludes. An
extended version [5] of this paper contains an appendix with additional proofs
and experimental results.

2 Preliminaries

We assume familiarity with propositional logic, but repeat the notions important
for this paper. Refer to [3] for a more gentle introduction.

Basic Notation. In propositional logic, a literal is a Boolean variable or its
negation. A cube is a conjunction of literals, and a clause is a disjunction of
literals. A formula in propositional logic is in Conjunctive Normal Form (CNF) if
it is a conjunction of clauses. A cube describes a (potentially partial) assignment
to Boolean variables: unnegated variables are true, negated ones are false. We
denote vectors of variables with overlines, and corresponding cubes in bold. E.g.,
x is a cube over the variable vector x = (x1, . . . , xn). We treat vectors of variables
like sets if the order does not matter. An x-minterm is a cube that contains all
variables of x. Cube x1 is a sub-cube of x2, written x1 ⊆ x2, if the literals of x1

form a subset of the literals in x2. We use the same notation for sub-clauses. Let

4 R. Bloem, R. Könighofer, and M. Seidl

F (x) be a propositional formula over the variables x, and let x be an x-minterm.
We write x |= F (x) to denote that the assignment x satisfies F (x). We will omit
the brackets listing variable dependencies if they are irrelevant or clear from the
context (i.e., we often write F instead of F (x)).

Decision Procedures. A SAT-solver is a tool that takes a propositional for-
mula (usually in CNF) and decides its satisfiability. Let F (x, y, . . .) be a propo-
sitional formula over several vectors x, y, . . . of Boolean variables. We write
sat := PropSat(F) for a SAT-solver call. The variable sat is assigned true if and
only if F is satisfiable. We write (sat,x,y, . . .) := PropSatModel(F (x, y, . . .))
to obtain a satisfying assignment in the form of cubes x,y, . . . over the different
variable vectors. Let a be a cube. We write b := PropUnsatCore(a, F) to
denote the extraction of an unsatisfiable core: Given that a∧ F is unsatisfiable,
b ⊆ a will be a sub-cube of a such that b ∧ F is still unsatisfiable. Quanti-
fied Boolean Formulas (QBFs) extend propositional logic with universal (∀) and
existential (∃) quantifiers. A QBF (in Prenex Conjunctive Normal Form) is a
formula Q1x .Q2y F (x, y, . . .), where Qi ∈ {∀, ∃} and F is a propositional
formula in CNF. Here, Qix is a shorthand for Qix1 . . .Qixn with x = (x1 . . . xn).
The quantifiers have their expected semantics. A QBF-solver takes a QBF and
decides its satisfiability. We write sat := QbfSat(Q1x .Q2y F (x, y, . . .)) or
(sat, a,b . . .) := QbfSatModel(∃a . ∃b . . . Q1x .Q2y . . . F (a, b, . . . , x, y, . . .)) to
denote calls to a QBF-solver. Note that QbfSatModel only extracts assign-
ments for variables that are quantified existentially on the outermost level.

Transition Systems. A controllable finite-state transition system is a tuple
S = (x, i, c, I, T), where x is a vector of Boolean state variables, i is a vector of
uncontrollable input variables, c is a vector of controllable input variables, I(x)
is an initial condition, and T (x, i, c, x′) is a transition relation with x′ denot-
ing the next-state copy of x. A state of S is an assignment to the x-variables,
usually represented as x-minterm x. A formula F (x) represents the set of all
states x for which x |= F (x). Priming a formula F to obtain F ′ means that
all variables in the formula are primed, i.e., replaced by their next-state copy.
An execution of S is an infinite sequence x0,x1 . . . of states such that x0 |= I
and for all pairs (xj ,xj+1) there exist some input assignment ij , cj such that
xj ∧ ij ∧ cj ∧ x′

j+1 |= T . A state x is reachable in S if there exists an execution
x0,x1 . . . and an index j such that x = xj . The execution of S is controlled by
two players : the protagonist and the antagonist. In every step j, the antagonist
first chooses an assignment ij to the uncontrollable inputs i. Next, the protago-
nist picks an assignment cj to the controllable inputs c. The transition relation T
then computes the next state xj+1. This is repeated indefinitely. We assume that
T is complete and deterministic, i.e., for every state and input assignment, there
exists exactly one successor state. More formally, we have that ∀x, i, c . ∃x′ . T
and ∀x, i, c, x1′, x2′ .(T (x, i, c, x1′) ∧ T (x, i, c, x2′)) ⇒ (x1

′ = x2
′). Let F (x) be a

formula representing a certain set of states. The mixed pre-image Forcep1(F) =
∀i . ∃c, x′ . T ∧F ′ represents all states from which the protagonist can enforce to
reach a state of F in exactly one step. Analogously, Forcea1(F) = ∃i . ∀c . ∃x′ . T ∧

SAT-Based Synthesis Methods for Safety Specs 5

F ′ gives all states from which the antagonist can enforce to visit F in one
step.

Synthesis Problem. A (memoryless) controller for S is a function f : 2x×2i →
2c to define the control signals c based on the current state of S and the un-
controllable inputs i. Let P (x) be a formula characterizing the set of safe states
in a transition system S. An execution x0,x1 . . . is safe if it visits only safe
states, i.e., xj |= P for all j. A controller f for S is safe if all executions of S
are safe, given that the control signals are computed by f . Formally, f is safe
if there exists no sequence of pairs (x0, i0), (x1, i1), . . . such that (a) x0 |= I,
(b) xj ∧ ij ∧ f(xj , ij) ∧ x′

j+1 |= T for all j ≥ 0, and (c) xj
|= P for some
j. The problem addressed in this paper is to synthesize such a safe controller.
We call a pair (S, P) a specification of a safety synthesis problem. A speci-
fication is realizable if a safe controller exists. A safe implementation I of a
specification (S, P) with S = (x, i, c, I(x), T (x, i, c, x′)) is a transition system
I = (x, i, ∅, I(x), T (x, i, f(x, i), x′)), where f is a safe controller for S.

3 Synthesis from Safety Specifications

This paper presents several approaches for synthesizing a safe controller for a
fine-state transition system S. The synthesis problem can be seen as a game
between the protagonist controlling the c-variables and the antagonist controlling
the i-variables during an execution [21]. The protagonist wins the game if the
execution never visits an unsafe state x
|= P . Otherwise, the antagonist wins. A
safe controller for S is now simply a strategy for the protagonist to win the game.
Standard game-based synthesis methods can be used to compute such a winning
strategy [30]. These game-based methods usually work in two steps. First, a so-
called winning region is computed. A winning region is a set of statesW (x) from
which a winning strategy for the protagonist exists. Second, a winning strategy
is derived from (intermediate results in the computation of) the winning region.
Most of the synthesis approaches presented in the following implement this two-
step procedure. For safety synthesis problems, the following three conditions are
sufficient for a winning region W (x) to be turned into a winning strategy.

I) Every initial state is in the winning region: I ⇒W .

II) The winning region contains only safe states: W ⇒ P .

III) The protagonist can enforce to stay in the winning region:W ⇒ Forcep1(W).

A specification is realizable if and only if such a winning region exists. Hence, it
suffices to search for a formula that satisfies these three constraints. Deriving a
winning strategy f : 2x×2i → 2c from such a winning region is then conceptually
easy: f must always pick control signal values such that the successor state is
in W again. This is always possible due to (I) and (III). We therefore focus on
approaches to efficiently compute a winning region that satisfies (I)-(III), and
leave an investigation of methods for the extraction of a concrete controller to

6 R. Bloem, R. Könighofer, and M. Seidl

future work1. First, we will briefly discuss an attractor-based approach which
is often implemented with BDDs [30]. Then, we will present several new ideas
which are more suitable for an implementation using SAT- and QBF-solvers.

3.1 Standard Attractor-Based Synthesis Approach

The synthesis method presented in this section can be seen as the standard
textbook method for solving safety games [30]. Starting with all safe states P ,

1: procedure SafeSynth(S, P),
returns: W or false

2: F := P
3: while F changes do
4: F := F ∧ Forcep1(F)
5: if I
⇒ F then
6: return false
7: return F

the SafeSynth algorithm reduces F to
states from which the protagonist can en-
force to go back to F until F does not
change anymore. If an initial state is re-
moved from F , false is returned to signal
unrealizability. Otherwise, F will finally
converge to a fixpoint, which is a proper
winning regionW (W = νF.P ∧Forcep1(F)
in μ-calculus notation). SafeSynth is
well suited for an implementation using BDDs because the set of all states sat-
isfying Forcep1(F) can be computed with just a few BDD operations, and the
comparison to decide if F changed can be done in constant time. A straightfor-
ward implementation using a QBF-solver maintains a growing quantified formula
to represent F (i.e, F0 = P , F1 = ∃x . ∀i . ∃c, x′ . P ∧T ∧P ′, and so on), and calls
a QBF-solver to decide if F changed semantically from one iteration to the next
one. This approach is explained in [29]. In iteration n, F contains n copies of
the transition relation and 2n quantifier alternations. This means that the dif-
ficulty of the QBF queries increases significantly with the number of iterations,
which may be prohibitive for large specification. The resulting winning region
W is a quantified formula as well. An alternative QBF-based implementation [1]
eliminates the quantifiers from F in every iteration by computing all satisfying
assignments of F . The next section explains how this idea can be improved.

4 Learning-Based Synthesis Approaches

Becker et al. [1] show how SafeSynth can be implemented with a QBF-solver
by eliminating the quantifiers in F with computational learning. This gives a
CNF representation of every F -iterate. However, we are only interested in the
final value W of F . This allows for a tighter and more efficient integration of the
learning approach with the SafeSynth algorithm.

4.1 Learning-Based Synthesis Using a QBF-Solver

The following algorithm uses computational learning to compute a winning re-
gion in CNF using a QBF-solver. It returns false in case of unrealizability.

1 In our implementation, we currently extract circuits by computing Skolem functions
for the c signals in ∀x, i .∃c, x′ .(¬W)∨ (T ∧W ′) using the QBFCert [22] framework.
However, there are other options like learning [9], interpolation [14], or templates [15].

SAT-Based Synthesis Methods for Safety Specs 7

Fig. 1. LearnQbf: work-
ing principle

Fig. 2. LearnSat: work-
ing principle

Fig. 3. LearnSat: Using
F̂ for incremental solving

1: procedure LearnQbf((x, i, c, I, T), P), returns: W or false
2: F := P
3: // Check if there exists an x |= F ∧ Forcea1(¬F):
4: while sat with (sat,x):=QbfSatModel(∃x, i . ∀c . ∃x′ . F ∧ T ∧ ¬F ′) do
5: // Find a sub-cube xg ⊆ x such that (xg ∧ F)⇒ Forcea1(¬F):
6: xg := x
7: for l ∈ literals(x) do
8: xt := xg \ {l}, if optimize then G := F ∧ ¬xg else G := F
9: if ¬QbfSat(∃x . ∀i . ∃c, x′ .xt ∧G ∧ T ∧G′) then

10: xg := xt

11: if PropSat(xg ∧ I) then return false
12: F := F ∧ ¬xg

13: return F
14: end procedure

The working principle of LearnQbf is illustrated in Figure 1. It starts with the
initial guess F that the winning region contains all safe states P . Line 4 then
checks for a counterexample to the correctness of this guess in form of a state
x |= F ∧ Forcea1(¬F) from which the antagonist can enforce to leave F . Assume
that optimize = false in line 8 for now, i.e., G is always just F . The inner loop
now generalizes the state-cube x to xg ⊆ x by dropping literals as long as xg

does not contain a single state from which the protagonist can enforce to stay in
F . During and after the execution of the inner loop, xg contains only states that
must be removed from F , or have already been removed from F before. Hence,
as an optimization, we can treat the states of xg as if they were removed from
F already during the cube minimization. This is done with optimize = true in
line 8 by setting G = F ∧ ¬xg instead of G = F . This optimization can lead to
smaller cubes and less iterations. If the final cube xg contains an initial state,
the algorithm signals unrealizability by returning false. Otherwise, it removes the
states of xg from F by adding the clause ¬xg , and continues by checking for other
counterexamples. If P is in CNF, then the final result in F will also be in CNF. If
T is also in CNF, then the query of line 9 can be constructed by merging clause
sets. Only for the query in line 4, a CNF encoding of ¬F ′ is necessary. This can
be achieved, e.g., using a Plaisted-Greenbaum transformation [23], which causes
only a linear blow-up of the formula.

Heuristics. We observed that the generalization (the inner loop of LearnQbf)
is often fast compared to the computation of counterexamples in Line 4. As a

8 R. Bloem, R. Könighofer, and M. Seidl

heuristic, we therefore propose to compute not only one but all (or several)
minimal generalizations xg ⊆ x to every counterexample-state x, e.g., using
a hitting set tree algorithm [24]. Another observation is that newly discovered
clauses can render earlier clauses redundant in F . In every iteration, we therefore
“compress” F by removing clauses that are implied by others. This can be done
cheaply with incremental SAT-solving, and simplifies the CNF for ¬F ′ in line 4.
Iterating over existing clauses and trying to minimize them further at a later
point in time did not lead to significant improvements in our experiments.

4.2 Learning-Based Synthesis Using SAT-Solvers

LearnQbf can also be implemented with SAT-solving instead of QBF-solving.
The basic idea is to use two competing SAT-solvers for the two different quantifier
types, as done in [13]. However, we interweave this concept with the synthesis al-
gorithm to better utilize incremental solving capabilities of modern SAT-solvers.

1: procedure LearnSat((x, i, c, I, T), P), returns: W or false
2: F := P , F̂ := P , U := true, precise := true
3: while true do
4: (sat,x, i) := PropSatModel(F ∧ U ∧ T ∧ ¬F̂ ′)
5: if ¬sat then
6: if precise then return F
7: U := true, F̂ := F , precise := true
8: else
9: (sat, c) := PropSatModel(F ∧ x ∧ i ∧ T ∧ F ′)

10: if ¬sat then
11: xg := PropUnsatCore(x, F ∧ i ∧ T ∧ F ′)
12: if PropSat(xg ∧ I) then return false
13: F := F ∧ ¬xg

14: if optimize then precise := false else F̂ := F , U := true
15: else
16: U := U ∧ ¬PropUnsatCore(x ∧ i, c ∧ F ∧ U ∧ T ∧ ¬F̂ ′)

17: end procedure

Data Structures. Besides the current guess F of the winning regionW , Learn-
Sat also maintains a copy F̂ of F that is updated only lazily. This allows for
better utilization of incremental SAT-solving, and will be explained below. The
flag precise indicates if F̂ = F . The variable U stores a CNF formula over the x
and i variables. Intuitively, U contains state-input combinations which are not
useful for the antagonist when trying to break out of F .

Working Principle. The working principle of LearnSat is illustrated in Fig-
ure 2. For the moment, let optimize be false, i.e., F̂ is always F . To deal with
the mixed quantification inherent in synthesis, LearnSat uses two competing
SAT-solvers, s∃ and s∀. In line 4, s∃ tries to find a possibility for the antagonist
to leave F . It is computed as a state-input pair (x, i) for which some c-value leads
to a ¬F successor. Next, in line 9, s∀ searches for a response c of the protagonist

SAT-Based Synthesis Methods for Safety Specs 9

to avoid leaving F . If no such response exists, then x must be excluded from F .
However, instead of excluding this one state only, we generalize the state-cube
x by dropping literals to obtain xg, representing a larger region of states for
which input i can be used by the antagonist to enforce leaving F . This is done
by computing the unsatisfiable core with respect to the literals of x in line 11.
Otherwise, if s∀ finds a response c, then the state-input pair (x, i) is not helpful
for the antagonist to break out of F . It must be removed from U to avoid that
the same pair is tried again. Instead of removing just (x, i), we generalize it again
by dropping literals as long as the control value c prevents leaving F . This is
done by computing an unsatisfiable core over the literals in x ∧ i in line 16.

As soon as F changes, U must be reset to true (line 14): even if a state-input
pair is not helpful for breaking out of F , it may be helpful for breaking out of
a smaller F . If line 4 reports unsatisfiability, then the antagonist cannot enforce
to leave F , i.e., F is a winning region (precise = true if optimize = false). If an
initial state is removed from F , then the specification is unrealizable (line 12).

Using F̂ to Support Incremental Solving. Now consider the case where
optimize is true. In line 13, new clauses are added only to F but not to F̂ .
This ensures that F ⇒ F̂ , but F can be strictly stronger. See Figure 3 for
an illustration. Line 4 now searches for a transition (respecting U) from F to
¬F̂ . If such a transition is found, then it also leads from F to ¬F . However,
if no such transition from F to ¬F̂ exists, then this does not mean that there
is no transition from F to ¬F . Hence, in case of unsatisfiability, we update
F̂ to F and store the fact that F̂ is now accurate by setting precise = true.
If the call in line 4 reports unsatisfiability with precise = true, then there is
definitely no way for the antagonist to leave F and the computation of F is
done. The reason for not updating F̂ immediately is that solver s∃ can be used
incrementally until the next update, because new clauses are only added to F
and U . Only when reaching line 7, a new incremental session has to be started.
This optimization proved to be very beneficial in our experiments. Solver s∀ can
be used incrementally throughout the entire algorithm anyway, because F gets
updated with new clauses only.

4.3 Utilizing Unreachable States

This section presents an optimization of LearnQbf to utilize (un)reachability
information. It works analogously for LearnSat, though. Recall that the vari-
able G in LearnQbf stores the current over-approximation of the winning re-
gion W (cf. Section. 4.1). LearnQbf generalizes a counterexample-state x to a
region xg such that G∧xg ⇒ Forcea1(¬G), i.e., G∧xg contains only states from
which the antagonist can enforce to leave G. Let R(x) be an over-approximation
of the states reachable in S. That is, R contains at least all states that could
appear in an execution of S. It is sufficient to ensure G ∧ xg ∧R⇒ Forcea1(¬G)
because unreachable states can be excluded from G even if they are winning for
the protagonist. This can lead to smaller cubes and faster convergence.

10 R. Bloem, R. Könighofer, and M. Seidl

There exist various methods to compute reachable states, both precisely and
as over-approximation [20]. The current over-approximation G of the winning
regionW can also be used: Given that the specification is realizable (we will dis-
cuss the unrealizable case below), the protagonist will enforce that W is never
left. Hence, at any point in time, G is itself an over-approximation of the reach-
able states, not necessarily in S, but definitely in the final implementation I
(given that I is derived from W and W ⇒ G). Hence, stronger reachability
information can be obtained by considering only transitions that remain in G.

In our optimization, we do not explicitly compute an over-approximation of
the reachable states, but rather exploit ideas from the property directed reach-
ability algorithm IC3 [6]: By induction, we know that a state x is definitely
unreachable in I if x
|= I and ¬x ∧G ∧ T ⇒ ¬x′. Otherwise, x could be reach-
able. The same holds for sets of states. By adding these two constraints, we
modify the generalization check in line 9 of LearnQbf to

QbfSat(∃x∗, i∗, c∗ . ∃x . ∀i . ∃c, x′ .
(I(x) ∨G(x∗) ∧ ¬xg(x

∗) ∧ T (x∗, i∗, c∗, x))∧ (1)

xg(x) ∧G(x) ∧ T (x, i, c, x′) ∧G(x′)).

We will refer to this modification as optimization RG (which is short for “reach-
ability during generalization”). Only the second line is new. Here, x∗, i

∗
, and c∗

are the previous-state copies of x, i, and c, respectively. Originally, the formula
was true if the region xg ∧G contained a state from which the protagonist could
enforce to stay in G. In this case, the generalization failed, because we cannot
safely remove states that are potentially winning for the protagonist. The new
formula is true only if xg ∧G contains a state xa from which the protagonist can
enforce to stay in G, and this state xa is either initial, or has a predecessor xb in
G ∧ ¬xg . This situation is illustrated in Figure 4. States that are neither initial
nor have a predecessor in G ∧ ¬xg are unreachable and, hence, can safely be
removed. Note that we require xb to be in G∧¬xg , and not just in G and differ-
ent from xa. The intuitive reason is that a predecessor in G∧xg does not count
because this region is going to be removed from G. A more formal argument is
given by the following theorem.

Theorem 1. For a realizable specification, if Eq. 1 is unsatisfiable, then G∧xg

cannot contain a state xa from which (a) the protagonist can enforce to visit G
in one step, and (b) which is reachable in any implementation I derived from a
winning region W ⇒ G with W ⇒ Forcep1(W).

A proof can be found in [5]. Theorem 1 ensures that the states removed with
optimization RG cannot be necessary for the protagonist to win the game, i.e.,
that the optimization does not remove “too much”. So far, we assumed realiz-
ability. However, optimization RG also cannot make an unrealizable specification
be identified as realizable. It can only remove more states, which means that un-
realizability is detected only earlier.

Similar to improving the generalization of counterexamples using unreachabil-
ity information, we can also restrict their computation to potentially reachable

SAT-Based Synthesis Methods for Safety Specs 11

Fig. 4. Optimization RG:
A counterexample to gen-
eralization

Fig. 5. A CNF template for the winning region

states. This is explained as optimization RC in [5]. However, while optimization
RG resulted in significant performance gains (more than an order of magnitude
for some benchmarks; see the columns SM and SGM in Table 3 of [5]), we could
not achieve solid improvements with optimization RC. Sometimes the computa-
tion became slightly faster, sometimes slower.

4.4 Parallelization

The algorithms LearnQbf and LearnSat compute clauses that refine the cur-
rent over-approximation F of the winning region. This can also be done with
multiple threads in parallel using a global clause database F . Different threads
can implement different methods to compute new clauses, or generalize existing
ones. They notify each other whenever they add a (new or smaller) clause to F
so that all other threads can continue to work with the refined F .

In our implementation, we experimented with different thread combinations.
If two threads are available, we let them both execute LearnSat with optimiza-
tion RG but without RC. We keep the LearnSat-threads synchronized in the
sense that they all use the same F̂ . If one thread restarts solver s∃ with a new F̂ ,
then all other LearnSat-threads restart their s∃-solver with the same F̂ as well.
This way, the LearnSat-threads can not only exchange new F -clauses, but also
new U -clauses. We use different SAT-solvers in the different threads (currently
our implementation supports Lingeling, Minisat, and PicoSat). This reduces the
chances that the threads find the same (or similar) counterexamples and gen-
eralizations. Also, the solvers may complement each other: if one gets stuck for
a while on a hard problem, the other one may still achieve significant progress
in the meantime. The stuck solver then benefits from this progress in the next
step. We also let the LearnSat-threads store the computed counterexample-
cubes in a global counterexample-database. If three threads are available, we use
one thread to take counterexample-cubes from this database, and compute all
possible generalizations using a SAT-solver and a hitting set tree algorithm [24].

12 R. Bloem, R. Könighofer, and M. Seidl

We also experimentally added threads that minimize existing clauses further us-
ing a QBF-solver, and threads implementing LearnQbf. However, we observed
that threads using QBF-solvers can not quite keep up with the pace of threads
using SAT-solvers. Consequently, they only yield minor speedups.

Our parallelization approach does not only exploit hardware parallelism, it is
also a playground for combining different methods and solvers. We only tried a
few options; a thorough investigation of beneficial combinations remains to be
done.

5 Direct Synthesis Methods

This section presents completely different approaches for computing a winning
region. Instead of refining an initial guess in many iterations, we simply assert
the constraints for a proper winning region and compute a solution in one go.

5.1 Template-Based Synthesis Approach

We define a generic template W (x, k) for the winning region W (x), where k is a
vector of Boolean variables acting as template parameters. Concrete values k for
the parameters k instantiate a concrete formula W (x) over the state variables x.
This reduces the search for a Boolean formula (the winning region) to a search
for Boolean parameter values. We can now find a winning region that satisfies
the three desired properties (I)-(III) with a single QBF-solver call:

(sat,k) = QbfSatModel(∃k . ∀x, i .∃c, x′ . (I ⇒W (x, k)) ∧
(W (x, k)⇒ P) ∧ (2)

(W (x, k)⇒ (T ∧W (x′, k)))

The challenge in this approach is to define a generic template W (x, k) for the
winning region. Figure 5 illustrates how a CNF template could look like. Here,
W (x) is a conjunction of clauses over the state variables x. Template parameters
k define the shape of the clauses. First, we fix a maximum number N of clauses
in the CNF. Then, we introduce three vectors of template parameters: kc, kv,
and kn. We denote their union by k. If parameter kci with 1 ≤ i ≤ N is true, then
clause i is used in W (x), otherwise not. If parameter kvi,j with 1 ≤ i ≤ N and
1 ≤ j ≤ |x| is true, then the state variable xj ∈ x appears in clause i of W (x),
otherwise not. Finally, if parameter kni,j is true, then xj can appear in clause i
only negated, otherwise only unnegated. If kvi,j is false, then kni,j is irrelevant.

This gives |k| = 2 · N · |x| + N template parameters. Figure 5 illustrates this
definition of W (x, k) as a circuit. A CNF encoding of this circuit to be used in
the QBF query shown in Eq. 2 is straightforward. Choosing N is delicate. If N
is too low, we will not find a solution, even if one exists. If it is too high, we
waste computational resources and may find an unnecessarily complex winning
region. In our implementation, we solve this dilemma by starting with N = 1
and doubling it upon failure. We stop if we get a negative answer for N ≥ 2|x|

SAT-Based Synthesis Methods for Safety Specs 13

(because any Boolean formula over x can be represented in a CNF with < 2|x|

clauses). The CNF template explained in this paragraph is just an example.
Other ideas include And-Inverter Graphs with parameterized interconnects, or
other parameterized circuits [15].

The template-based approach can be good at finding simple winning regions
quickly. There may be many different winning regions that satisfy the conditions
(I)-(III). The algorithms SafeSynth, LearnQbf and LearnSat will always
find the largest of these sets (modulo unreachable states, if used with optimiza-
tion RG or RC). The template-based approach is more flexible. As an extreme
example, suppose that there is only one initial state, it is safe, and the protag-
onist can enforce to stay in this state. Suppose further that the largest winning
region is complicated. The template-based approach may find W = I quickly,
while the other approaches may take ages to compute the largest winning re-
gion. On the other hand, the template-based approach can be expected to scale
poorly if no simple winning region exists, or if the synthesis problem is even
unrealizable. The issue of detecting unrealizability can be tackled just like in
bounded synthesis [11]: in parallel to searching for a winning region for the pro-
tagonist, one can also try to find a winning region for the antagonist (a set of
states from which the antagonist can enforce to leave the safe states in some
number of steps). If a winning region for the antagonist contains an initial state,
unrealizability is detected.

5.2 EPR Reduction Approach

The EPR approach is based on the observation that a winning region W (x)
satisfying the three requirements (I)-(III) can also be computed as a Skolem
function, without a need to fix a template. However, the requirement (III) con-
cerns not only W but also its next-state copy W ′. Hence, we need a Skolem
function for the winning region and its next-state copy, and the two functions
must be consistent. This cannot be formulated as a QBF problem with a linear
quantifier structure, but only using so-called Henkin Quantifiers2 [12], or in the
Effectively Propositional Logic (EPR) [18] fragment of first-order logic. Deciding
the satisfiability of formulas with Henkin Quantifiers is NEXPTIME-complete,
and only a few tools exist to tackle the problem [12]. Hence, we focus on reduc-
tions to EPR. EPR is a subset of first-order logic that contains formulas of the
form ∃A . ∀B .ϕ, where A and B are disjoint vectors of variables ranging over
some domain D, and ϕ is a function-free first-order formula in CNF. The formula
ϕ can contain predicates, which are (implicitly) existentially quantified.

Recall that we need to find a formula W (x) such that ∀x, i . ∃c, x′ .(I ⇒W)∧
(W ⇒ P) ∧ (W ⇒ T ∧W ′). In order to get a corresponding EPR formula, we
must (a) encode the Boolean variables using first-order domain variables, (b)
eliminate the existential quantification inside the universal one, and (c) encode

2 A winning region is a Skolem function for the Boolean variable w in the formula
∀x .∃w .∀i .∃c .
∀x′ .∃w′ .

(I ⇒ w) ∧ (w ⇒ P) ∧ ((x = x′) ⇒ (w = w′)) ∧ (w ∧ T ⇒ w′) .

14 R. Bloem, R. Könighofer, and M. Seidl

the body of the formula in CNF. Just like [26], we can address (a) by introducing
a new domain variable Y for every Boolean variable y, a unary predicate p
to encode the truth value of variables, constants � and ⊥ to encode true and
false, and the axioms p(�) and ¬p(⊥). The existential quantification of the x′

variables can be turned into a universal one by turning the conjunction with T
into an implication, i.e., re-write ∀x, i . ∃c, x′ .W (x) ⇒ T (x, i, c, x′) ∧W (x′) to
∀x, i . ∃c .∀x′ .W (x)∧T (x, i, c, x′)⇒ W (x′). This works because we assume that
T is both deterministic and complete. We Skolemize the c-variables c1, . . . , cn by
introducing new predicates C1(X, I), . . . , Cn(X, I). For W , we also introduce a
new predicate W (X). This gives

∀X, I,X ′
. (I(X)⇒W (X)) ∧ (W (X)⇒ P (X)) ∧
(W (X) ∧ T (X, I, C(X, I), X

′
)⇒W (X ′))

The body of this formula has to be encoded in CNF, but many first-order the-
orem provers and EPR solvers can do this internally. If temporary variables are
introduced in the course of a CNF encoding, then they have to be Skolemized
with corresponding predicates. Instantiation-based EPR-solvers like iProver [17]
can not only decide the satisfiability of EPR formulas, but also compute models
in form of concrete formulas for the predicates. For our problem, this means that
we cannot only directly extract a winning region but also implementations for
the control signals from the Cj(X, I)-predicates. iProver also won the EPR track
of the Automated Theorem Proving System Competition in the last years.

6 Experimental Results

This section presents our implementation, benchmarks and experimental results.

6.1 Implementation

We implemented the synthesis methods presented in this paper in a prototype
tool. The source code (written in C++), more extensive experimental results,
and the scripts to reproduce them are available for download3. Our tool takes
as input an AIGER4 file, defined as for the safety track of the hardware synthesis
competition, but with the inputs separated into controllable and uncontrollable
ones. It outputs the synthesized implementation in AIGER format as well. Sev-
eral back-ends implement different methods to compute a winning region. At
the moment, they all use QBFCert [22] to extract the final implementation. How-
ever, in this paper, we evaluate the winning region computation only. Table 1
describes some of our implementations. Results for more configurations (with
different optimizations, solvers, etc.) can be found in the downloadable archive.
The BDD-based method is actually implemented in a separate tool5. It uses

3 www.iaik.tugraz.at/content/research/design_verification/demiurge/ .
4 See http://fmv.jku.at/aiger/.

www.iaik.tugraz.at/content/research/design_verification/demiurge/
http://fmv.jku.at/aiger/

SAT-Based Synthesis Methods for Safety Specs 15

Table 1. Overview of our Implementations

Name Techn. Solver Description

BDD BDDs CuDD SafeSynth (Sect. 3.1)
PDM SAT Minisat Property directed method [21]
QAGB QBF BloqqerM + DepQBF LearnQbf + opt. RG + comp. of all

counterexample generalizations (Sect. 4.1)
SM SAT Minisat LearnSat (Sect. 4.2)
SGM SAT Minisat Like SM but with optimization RG
Pi SAT various Multi-threaded with i threads (Sect. 4.4)
TB QBF BloqqerM + DepQBF CNF-template-based (Sect. 3.1)
EPR EPR iProver EPR-based (Sect. 5.2)

dynamic variable reordering, forced re-orderings at certain points, and a cache to
speedup the construction of the transition relation. PDM is a re-implementation
of [21]. These two implementations serve as baseline for our comparison. The
other methods are implemented as described above. BloqqerM refers to an ex-
tension of the QBF-preprocessor Bloqqer to preserve satisfying assignments. This
extension is presented in [25].

6.2 Benchmarks

We evaluate the methods on several parametrized specifications. The first one
defines an arbiter for ARM’s AMBA AHB bus [4]. It is parametrized with the
number of masters it can handle. These specifications are denoted as ambaij,
where i is the number of masters, and j ∈ {c, b} indicates how the fairness prop-
erties in the original formulation of the specification were transformed into safety
properties (see [5] for details). The second specification is denoted by genbufij,
with j ∈ {c, b}, and defines a generalized buffer [4] connecting i senders to two
receivers. Also here, liveness properties have been reduced to safety properties.
Both of these specifications can be considered as “control-intensive”, i.e., con-
tain complicated constraints on few signals. In contrast to that, the following
specifications are more “data-intensive”, and do not contain transformed liveness
properties. The specification addio with o ∈ {y, n} denotes a combinational i-bit
adder. Here o=y indicates that the AIGER file was optimized with ABC [7], and
o=n means that this optimization was skipped. Next, multi denotes a combina-
tional i-bit multiplier. The benchmark cntio denotes an i-bit counter that must
not reach its maximum value, which can be prevented by setting the control sig-
nals correctly at some other counter value. Finally, bsio denotes an i-bit barrel
shifter that is controlled by some signals. The tables 2 and 3 in the extended
version of this paper [5] list the size of these benchmarks.

6.3 Results

Figure 6 summarizes the performance results of our synthesis methods on the
different parameterized specifications with cactus plots. The vertical axis shows

5 Is was created by students and won a competition in a lecture on synthesis.

16 R. Bloem, R. Könighofer, and M. Seidl

(a) Results for amba (b) Results for genbuf

(c) Results for add (d) Results for mult

(e) Results for cnt (f) Results for bs

Fig. 6. Cactus plots summarizing our performance evaluation

the execution time for computing a winning region using a logarithmic scale.
The horizontal axis gives the number of benchmark instances that can be solved
within this time limit (per instance). Roughly speaking this means that the
steeper a line rises, the worse is the scalability of this method. In order to make
the charts more legible, we sometimes “zoomed” in on the interesting parts. That
is, in some charts we omitted the leftmost part were all methods terminate within
fractions of a second, as well as the rightmost part where (almost) all methods
timeout. We set a timeout of 10 000 seconds, and a memory limit of 4GB. The

SAT-Based Synthesis Methods for Safety Specs 17

memory limit was only exceeded by the EPR approach. The EPR approach
did so for quite small instances already, so we did not include it in Figure 6.
The detailed execution times can be found in the tables 2 and 3 of [5]. All
experiments were performed on an Intel Xeon E5430 CPU with 4 cores running
at 2.66GHz, and a 64 bit Linux. Figure 7 illustrates the speedup achieved by
our parallelization (see Section 4.4) on the amba and genbuf benchmarks in a
scatter plot. The x-axis carries the computation time with one thread. The y-
axis shows the corresponding execution time with two and three threads. Note
that the scale on both axes is logarithmic.

6.4 Discussion

Fig. 7. Parallelization speedup

Figure 7 illustrates a parallelization
speedup mostly between a factor of
2 and 37, with a tendency to greater
improvements for larger benchmarks.
Only part of the speedup is due to the
exploitation of hardware parallelism.
Most of the speedup actually stems
from the fact that the threads in our
parallelization execute different meth-
ods and use different solvers that com-
plement each other. Even if executed
on a single CPU core in a pseudo-
parallel manner, a significant speedup
can be observed. In our paralleliza-
tion, we experimented with only a
few combinations of solvers and algo-
rithms. We think that there is still a lot of room for improvements, requiring a
more extensive investigation of beneficial algorithm and solver combinations.

For the amba benchmarks, our parallelization P3 slightly outperforms BDDs
(Figure 6(a)). For genbuf, BDDs are significantly faster (Figure 6(b)). The
template-based approach does not scale at all for these benchmarks. The reason
is that, most likely, no simple CNF representation of a winning region exists for
these benchmarks. For instance, for the smallest genbuf instance, P3 computes
a winning region as a CNF formula with 124 clauses and 995 literal occurrences.
By dropping literals and clauses as long as this does not change the shape of
the winning region, we can simplify this CNF to 111 clauses and 849 literal
occurrences. These numbers indicates that no winning region for these bench-
marks can be described with only a few clauses. Instantiating a CNF template
with more than 100 clauses is far beyond the capabilities of the solver, because
the number of template parameters grows so large (e.g., 4300 template param-
eters for the smallest genbuf instance with a template of 100 clauses for the
winning region). The situation is different for add and mult. These designs are
mostly combinational (with a few states to track if an error occurred). A simple

18 R. Bloem, R. Könighofer, and M. Seidl

CNF-representation of the winning region (with no more than 2 clauses) exists,
and the template-based approach finds it quickly (Figure 6(c) and 6(d)).

In Figure 6(b), we observe a great improvement due to the reachability opti-
mization RG (SM vs. SGM). In some plots, this improvement is not so significant,
but optimization RG never slows down the computation significantly. Similar ob-
servations can be made for QAGB (but this is not shown in the plots to keep
them simple).

The SAT-based back-end SGM outperforms the QBF-based back-end QAGB
on most benchmark classes (all except for add and mult). It has already been
observed before that solving QBF-problems with plain SAT-solvers can be ben-
eficial [13, 21]. Our experiments confirm these observations. One possible reason
is that SAT-solvers can be used incrementally, and they can compute unsatis-
fiable cores. These features are missing in modern QBF-solvers. However, this
situation may change in the future.

The barrel shifters bs are intractable for BDDs, even for rather small sizes.
Already when building the BDD for the transition relation, the approach times
out because of many and long reordering phases, or runs out of memory if re-
ordering is disabled. In contrast, almost all our SAT- and QBF-based approaches
are done within fractions of a second on these examples. We can consider the bs-
benchmark as an example of a design with complex data-path elements. BDDs
often fail to represent such elements efficiently. In contrast, the SAT- and QBF-
based methods can represent them easily in CNF. At the same time, the SAT-
and QBF-solvers seem to be smart enough to consider the complex data-path
elements only as far as they are relevant for the synthesis problem.

On most of the benchmarks, especially amba and genbuf, our new synthesis
methods outperform our re-implementation of [21] (PDM in Figure 6) by orders
of magnitude. Yet, [21] reports impressive results for these benchmarks: the
synthesis time is below 10 seconds even for amba16 and genbuf16. We believe
that this is due to a different formulation of the benchmarks. We translated the
benchmarks, exactly as used in [21], into our input language manually, at least
for amba16 and genbuf16. Our PDM back-end, as well as most of the other back-
ends, solve them in a second. This suggests that the enormous runtime differences
stem from differences in the benchmarks, and not in the implementation. An
investigation of the exact differences in the benchmarks remains to be done.

In summary, none of the approaches is consistently superior. Instead, the dif-
ferent benchmark classes favor different methods. BDDs perform well on many
benchmarks, but are outperformed by our new methods on some classes. The
template-based approach and the parallelization of the SAT-based approach
seem particularly promising. The reduction to EPR turned out to scale poorly.

7 Summary and Conclusion

In this paper, we presented various novel SAT- and QBF-based methods to syn-
thesize finite-state systems from safety specifications. We started with a learning-
based method that can be implemented with a QBF-solver. Next, we proposed

SAT-Based Synthesis Methods for Safety Specs 19

an efficient implementation using a SAT-solver, an optimization using reacha-
bility information, and an efficient parallelization that achieves a super-linear
speedup by combining different methods and solvers. Complementary to that,
we also presented synthesis methods based on templates or reduction to EPR.
From our extensive case study, we conclude that these new methods can comple-
ment BDD-based approaches, and outperform other existing work [21] by orders
of magnitude.

In the future, we plan to fine-tune our optimizations and heuristics using
larger benchmark sets. We also plan to research and compare different methods
for the extraction of circuits from the winning region.

Acknowledgments. We thank Aaron R. Bradley for fruitful discussions about
using IC3-concepts in synthesis, Andreas Morgenstern for his support in re-
implementing [21] and translating benchmarks, Bettina Könighofer also for pro-
viding benchmarks, and Fabian Tschiatschek and Mario Werner for their
BDD-based synthesis tool.

References

1. Becker, B., Ehlers, R., Lewis, M., Marin, P.: ALLQBF solving by computational
learning. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 370–384. Springer, Heidelberg (2012)

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
FAIA, vol. 185. IOS Press (2009)

4. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware from PSL. Electronic Notes in Theoretical Com-
puter Science 190(4), 3–16 (2007)

5. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.
CoRR, abs/1311.3530 (2013), http://arxiv.org/abs/1311.3530

6. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

7. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010)

8. Ehlers, R.: Symbolic bounded synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 365–379. Springer, Heidelberg (2010)

9. Ehlers, R., Könighofer, R., Hofferek, G.: Symbolically synthesizing small circuits.
In: FMCAD 2012, pp. 91–100. IEEE (2012)

10. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3), 35–45 (2007)

11. Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009)

http://arxiv.org/abs/1311.3530

20 R. Bloem, R. Könighofer, and M. Seidl

12. Fröhlich, A., Kovasznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In:
Pragmatics of SAT (PoS 2012, aff. to SAT 2012) (2012)

13. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah,
K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer, Heidel-
berg (2011)

14. Jiang, J.-H.R., Lin, H.-P., Hung, W.-L.: Interpolating functions from large boolean
relations. In: International Conference on Computer-Aided Design (ICCAD 2009),
pp. 779–784. IEEE (2009)

15. Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: Finding efficient circuits using
SAT-solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 32–44.
Springer, Heidelberg (2009)

16. Könighofer, R., Bloem, R.: Automated error localization and correction for imper-
ative programs. In: FMCAD 2011, pp. 91–100. IEEE (2011)

17. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

18. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980)

19. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT 7(2-3),
71–76 (2010)

20. Moon, I., Kukula, J.H., Shiple, T.R., Somenzi, F.: Least fixpoint approximations
for reachability analysis. In: ICCAD 1999, pp. 41–44. IEEE (1999)

21. Morgenstern, A., Gesell, M., Schneider, K.: Solving games using incremental induc-
tion. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 177–191.
Springer, Heidelberg (2013)

22. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certifi-
cate extraction for QBF (tool presentation). In: Cimatti, A., Sebastiani, R. (eds.)
SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)

23. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293–304 (1986)

24. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

25. Seidl, M., Könighofer, R.: Partial witnesses from preprocessed quantified Boolean
formulas. In: DATE 2014 (to appear, 2014)

26. Seidl, M., Lonsing, F., Biere, A.: qbf2epr: A tool for generating EPR formulas from
QBF. In: Workshop on Practical Aspects of Automated Reasoning (2012)

27. Sohail, S., Somenzi, F.: Safety first: A two-stage algorithm for LTL games. In:
FMCAD 2009, pp. 77–84. IEEE (2009)

28. Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 4–13. Springer, Heidelberg (2009)

29. Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer,
Heidelberg (2007)

30. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg
(1995)

Precise Analysis of Value-Dependent

Synchronization in Priority Scheduled Programs

Martin D. Schwarz1, Helmut Seidl1, Vesal Vojdani2, and Kalmer Apinis1

1 Lehrstuhl für Informatik II, Technische Universität München
Boltzmannstraße 3, D-85748 Garching b. München, Germany

{schwmart,seidl,apinis}@in.tum.de
2 Deptartment of Computer Science, University of Tartu,

J. Liivi 2, EE-50409 Tartu, Estonia
vesal@cs.ut.ee

Abstract. Although priority scheduling in concurrent programs pro-
vides a clean way of synchronization, developers still additionally rely
on hand-crafted schemes based on integer variables to protect critical
sections. We identify a set of sufficient conditions for variables to serve
this purpose. We provide efficient methods to verify these conditions,
which enable us to construct an enhanced analysis of mutual exclusion
in interrupt-driven concurrent programs. All our algorithms are build
upon off-the-shelf inter-procedural analyses alone. We have implemented
this approach for the analysis of automotive controllers, and demonstrate
that it results in a major improvement in the precision of data race de-
tection compared to purely priority-based techniques.

1 Introduction

Embedded computing is omnipresent in the automotive industry. Dedicated op-
erating systems and standards, such as Autosar/OSEK[1, 11], have been created
and are used by many car manufacturers. These operating systems provide so-
phisticated synchronization primitives, such as priority-driven scheduling and re-
source acquisition. Still, developers sometimes rely on hand-crafted mechanisms
for ensuring safe concurrent execution, e.g., for synchronizing two cooperating
interrupts that do not affect any further interrupts. One such mechanism is to
use global program variables as flags whose values control the access to critical
sections. Accordingly, any analysis of OSEK programs, such as [15], which only
takes resources and priorities into account, will produce a large number of false
alarms on real-world automotive code.

An example of a typical flag-based synchronization pattern used by developers
is shown in Fig. 1. This program consists of two interrupt service routines that
are executed by a priority driven scheduler. The low-priority interrupt I sets
a flag f to 1 before entering its critical section and resets it to 0 afterwards,
whereas the higher-priority interrupt Q first checks whether the flag f has been
set and only enters its critical section if f equals 0. This ensures, in a priority-
driven single-core concurrency setting, that the accesses to x will always be

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 21–38, 2014.
© Springer-Verlag Berlin Heidelberg 2014

22 M.D. Schwarz et al.

int f = 0;
int x = 0;
/∗ Priority 3 ∗/
isr Q() {

if (f == 0)
x−−; /∗ Qx ∗/

}

/∗ Priority 1 ∗/
isr I () {
f = 1;
x++; /∗ Ix ∗/
f = 0;

}

Fig. 1. Example code of program with a flag f

exclusive. Note that priorities are crucial for such non-symmetric idioms: The
higher-priority interrupt Q may safely assume that it cannot itself be preempted
by the lower-priority interrupt I between checking the flag and accessing the
data. Conversely, having checked the flag, it would be redundant for the high
priority interrupt to set and reset the flag. Idioms like this, when properly used
and implemented, can indeed protect critical sections. Still, being hand-crafted,
they are error-prone and may be rendered insufficient if further priority levels
are introduced. If, for example, another interrupt R is introduced whose priority
exceeds that of Q, but uses the same pattern to access the variable x, a potential
race condition arises between interrupts Q and R.

Our goal in this paper therefore is to provide practical methods for identifying
and analyzing a wide range of synchronization patterns based on global variables,
in order to provide a more accurate data-race analysis.

In principle, interrupt-driven programs with priority-based scheduling on a
single-core can be analyzed by interpreting interrupts as function calls possibly
occurring at every program point [4, 15]. Practically, though, context- and flow-
sensitive handling of the global program state is prohibitively expensive. The
approach outlined in [15] is to arrive at a practical analysis of mutual exclusion
for interrupt-driven programs by analyzing local data such as dynamic priorities
and resources context-sensitively, while summarizing the global state into a single
flow- and context-insensitive invariant. However, when global variables are used
as flags, that approach is insufficient in precision.

The key contributions of this paper are, first, to identify general properties
of global variables used as flags in a wide range of hand-crafted synchronization
patterns, and second, using these properties to construct efficient dedicated anal-
ysis methods based on off-the-shelf inter-procedural analysis. In particular, the
resulting analysis turns out to be interrupt-modular, meaning that each interrupt
can be analyzed independently. In a second stage, the resulting summaries are
combined to precisely and efficiently compute the set of values that a flag vari-
able may take at any given program point. Finally, this information is exploited
to ensure that two program points are not part of a data race.

In this paper we first consider a class of primitive flag-based synchroniza-
tion patterns which allow a low-priority interrupt to protect its critical sections
against cooperating interrupts from higher priority levels. For example, the syn-
chronization pattern used in Fig. 1 falls into this class. For this restricted class
of flags, it suffices to only consider the intra-interrupt value-sets of the flag

Precise Analysis of Value-Dependent Synchronization 23

variable. For that, we verify that program points can only be part of a data
race if the protecting flag variable has overlapping value sets. In a second step
we generalize the conditions on flag variables in order to handle a richer class
of synchronization patterns, while keeping interrupt-modularity. An example for
such a pattern is provided in Fig. 2 (Section 5.1).

A critical feature of both techniques is that they are sound on all programs;
that is, they do not merely assume that the flags are well-behaved. Instead, they
also verify the assumptions on the flag variables themselves. Thus, the techniques
can be applied one after the other on-demand to ensure race freedom when
purely resource-based analyses fail. We have implemented the core technique in
the Goblint analyzer [18]. This not only lead to a decrease in the number of
warnings on a suite of toy examples, but also resulted in a drastic reduction of
alarms in our key industrial benchmarks.

2 OSEK Model

An OSEK program consists of tasks and interrupts. Tasks are activated by direct
calls or timers. Interrupts can occur at any time. The priority ceiling protocol
[16] is used for scheduling. Tasks and interrupts have a static initial priority,
which may be dynamically increased during execution by acquiring resources
and possibly decreased again by releasing resources. The dynamic priority never
drops below the static initial priority. An interrupt will preempt the running
execution if its static priority exceeds both the static and dynamic priority of
the running task or interrupt.

Since we do not have timing information, we treat time-triggered tasks as
interrupts. For the purpose of this paper, we therefore consider a programming
model which consists of a finite set of procedures Proc, a finite collection of
interrupt routines Irpt, and a starting node T that serves as an initial task for
interrupts to preempt. A procedure or interrupt g is given by a control flow graph
(Ng, Eg). Let N denote the union of all sets Ng of program points, extended with
T . Likewise, let E denote the union of all sets Eg of control flow edges. Entry and
return nodes of g are denoted as sg and rg, respectively. Additionally we have a
finite set of priorities P = {0, . . . , pmax}. In this paper, we assume that each node
u ∈ N is always reached with the same priority P(u) ∈ P, where the static initial
priority of an interrupt q ∈ Irpt is attained at program point sg and T is the
only node with minimal priority, i.e., P(T) = 0. Edges in E are triples (u, cmd, v)
leading from program point u to program point v by means of the command cmd.
The command cmd either is a basic statement s like an assignment x = 42; or a
guard (x != y)?, or a procedure call h() otherwise. For the purpose of this paper
we restrict ourselves to global variables only. Therefore, procedures neither need
parameters nor return values. The execution of basic statements is assumed to
be atomic. How to deal with local variables and parameters is an orthogonal
matter and discussed in [6].

In general, the assumption that the dynamic priority is a function of the
program point only need not be met by arbitrary OSEK programs. The issue

24 M.D. Schwarz et al.

of computing and tracking dynamic priorities, however, is orthogonal to the
problem of dealing with flag variables. Therefore, we restrict ourselves to this
simple setting, in particular, since it always can be achieved by introducing
distinct copies of program points for distinct priorities. For a detailed discussion
on computing context and resource aware priorities, see [15].

In order to define data races in a single-core concurrency setting, it is not
enough to know that two accesses are both reachable. Whether two access are
safe or not is decided by the path the program takes from one access to the
other. Therefore, we have chosen a path-based concrete semantics for our model.
A similar formalization can be found, e.g., in [8]. Here, a path is a sequence of
edges where the empty path is denoted by ε. For two sets of paths M1, M2 the
concatenation operator @ appends every path in M2 to every path in M1:

M1@M2 = {π1π2|π1 ∈M1, π2 ∈M2}

In a first step we characterize the sets of same-level paths, i.e., paths leading
from the entry node to the return node of the same procedure or interrupt as
the least solution of the following constraint system:

[S0] S[sg] ⊇ {ε} g ∈ Irpt ∪ Proc

[S1] S[v] ⊇ S[u]@{(u, s, v)} (u, s, v) ∈ E
[S2] S[v] ⊇ S[u]@S[rh] (u, h(), v) ∈ E
[S3] S[u] ⊇ S[u]@S[rq] q ∈ Irpt, P(u) < P(sq)

Given these sets of same-level paths, the sets of paths reaching program points
from the initial node T are characterized by the following constraint system:

[R0] R[T] ⊇ {ε}
[R1] R[v] ⊇ R[u]@{(u, s, v)} (u, s, v) ∈ E
[R2] R[v] ⊇ R[u]@S[rh] (u, h(), v) ∈ E

R[sh] ⊇ R[u] (u, h(), v) ∈ E
[R3] R[sq] ⊇ R[u] q ∈ Irpt, P(u) < P(sq)

R[u] ⊇ R[u]@S[rq] q ∈ Irpt, P(u) < P(sq)

In the next step, we introduce a value semantics that allows to check whether a
path is executable for a given initial state or not. Let D denote the set of program
states σ which assign a value to every variable x, e.g. σ x = 0 The concrete value
semantics �·�V : E → D ��� D defines for every basic s a partial transformer
�s� : D ��� D, which we lift to control flow edges (u, s, v) by �(u, s, v)� = �s�.
The partial state transformer �π� for a path π = e1 . . . en then is obtained as the
composition of the state transformers �ei� of the edges contained in π, i.e.,

�π� = �en� ◦ · · · ◦ �e1�
A path π is executable for an initial state σ if �π� σ is defined. Let M denote
any set of paths. Then the set of paths in M which are executable for σ is given
by Π(M,σ) = {π ∈M | π is executable for σ}.

Precise Analysis of Value-Dependent Synchronization 25

Intuitively, a data race occurs at variable x if a low-priority interrupt q1 ac-
cesses x in an edge reaching a program point v1, at which point it is immediately
interrupted by a higher-priority interrupt q and before returning to v1 the ex-
ecution reaches another access to x at a program point v2. Note that, while q1
is not allowed to continue, q still may itself be interrupted. Therefore v2 does
not necessarily belong to q. Instead, it could belong to another interrupt of even
higher priority. This notion is formalized by the following definition.

Definition 1. There is a data race at variable x with initial state σ if there
exists an executable path π ∈ Π(R[v2], σ) reaching some program point v2 where

π = π1(, s1, v1)(sq , ,)π2(, s2, v2)

such that the following holds:

(a) s1 and s2 are accesses to x;

(b) P(v1) < P(sq), P(v1) < P(v2) and also P(v1) < P(v) for every program
point v occurring in π2.

3 Inter-procedural Analysis of Flags

Consider the program in Fig. 1. Race freedom of this program can only be verified
by taking the values of the global variable f into account. This variable is set to
1 to flag the critical section of the lower-priority interrupt, and reset to 0 again
to signal that the critical section has been left. The information provided by f
is respected by the higher-priority interrupt Q in that its value is tested against
0 before Q enters its own critical section. A first practical property of variables
f used in such pattern therefore is:

Property 1. f is assigned constants only, f is checked against constants only,
and the address of f is never taken.

Also, such synchronization patterns assume an application wide consent about
the role of such a variable f and its values. This means that higher-priority
interrupts will respect the value of f . This leads to our second property:

Property 2. Let pf denote the least static priority of an interrupt where f is
accessed. Then all interrupts of priority exceeding pf leave f intact.

Property 2 means that the value of f before any interrupt q at priority P(sq) >
pf equals the value of f after termination of q. Note that we do not rule out
that the interrupt q may change the value of f , e.g., in order to protect its own
critical section against even higher-priority interrupts as in Fig. 2. In this case,
however, q must restore the old value before termination. Subsequently, variables
f satisfying Properties 1 and 2 are called flags.

26 M.D. Schwarz et al.

3.1 Intra-interrupt Flag Analysis

Let F denote the set of candidate flag variables, i.e., all variables which satisfy
Property 1. For each f ∈ F let Vf denote the set of possible values of f at
run-time. Note that F together with all sets Vf can be easily constructed from
the program text. For simplicity assume that for all f ∈ F , Vf ⊆ Z. Our goal
is to compute for each program point u the set of all possible values of all flag
variables f when reaching this program point. For this we compute for each
flag f and each interrupt or procedure g a summary which maps the value of f
before entering g to the set of possible values of f at a program point u in g.
This analysis is not new. It is the enhancement of simple constants with simple
guards [5, 20]. We first require summaries of basic edges. The abstract semantics

�·�� : E → Vf → 2Vf for flag f is given by:

�(u, f = c; , v)�� c′ = {c}

�(u, f � c?, v)�� c′ =
{
{c′} if c′ � c

∅ otherwise

�(u, , v)�� c′ = {c′} otherwise

Here � represents any of the comparison operators ==, !=, <,>. Due to Prop-
erty 1, no other assignments or guards involving variable f may occur in the
program. First, the effect of a procedure is given by the following constraint
system where composition is lifted by (f ◦ g) c =

⋃
{f c′ | c′ ∈ g c}.

[F′0] S�[sh] � (c �→ {c}) h ∈ Proc

[F′1] S�[v] � �(u, s, v)�� ◦ S�[u] (u, s, v) ∈ E
[F′2] S�[v] � S�[rh] ◦ S�[u] (u, h(), v) ∈ E

Note that this is the characterization of the flag summary defined according to
inter-procedural analysis only, i.e., as if no interrupts may occur. This is made
possible due to Property 2 which implies that interrupts, at least when flag
variables are concerned, have no impact. Using the inter-procedural summaries,
the transformation of flag values from the beginning of the execution of an
interrupt to any given program point is characterized by:

[F0] R�[sq] � (c �→ {c}) q ∈ Irpt

[F1] R�[v] � �(u, s, v)�� ◦R�[u] (u, s, v) ∈ E
[F2] R�[v] � S�[rh] ◦R�[u] (u, h(), v) ∈ E
[F3] R�[sh] � R�[u] (u, h(), v) ∈ E

In practice all flags would be analyzed simultaneously. This analysis is linear in
the size of the program and the number of flags. For each flag f it is quadratic in
the number of possible values of f . Formally, we show that the analysis is sound
— given Property 2 holds.

Precise Analysis of Value-Dependent Synchronization 27

Lemma 1. For a program point u, interrupt q, flag f and initial state σ we
have for all paths π from sq to u:

(�π� σ) f ∈ R�[u] (σ f)

Proof. The proof is by induction on the lengths of paths obtained as solutions
of the system [R]. For the initialization constraints [S0], [R0] and [F’0], [F0] we
use that ε ∈ Π(R[T], σ) ⊆ Π(R[sq], σ) and with �ε� σ = σ we obtain:

(�ε� σ) f = σ f ∈ {σ f} = R�[sq] (σ f)

Assuming the condition holds for a given path π, we consider how adding an
edge (or summary path) and applying the corresponding constraint in the [F/F’]
system may change the result. Due to Property 2 interrupts do not contribute to
the values of f . Therefore we need not consider constraints [S3] and [R3]. For the

extension of π with a basic edge the result follows as a direct consequence of �·��
soundly abstracting �·�. This works for both procedure summaries constructed
by [S1] and [F’1] or reaching information constructed by [R1] and [F1]. For same-
level paths Constructed by [S2] and [F’2] the result then follows by induction.
Consequently we also obtain the result for [R2] and [F2]. Since we know by
induction that every program point u that influences a procedure entry node sh
is a sound approximation the result for sh follows by monotonicity. ��

In order to show which programs the analysis can handle precisely we in-
troduce an abstraction of �·� which only evaluates guards on flag f and de-
note it by �·�f . E.g., �(u, x == y, v)�f σ = σ for any σ, as the expression
x == y does not use the flag f , however �(u, f == 5, v)�f σ = σ only in
the case where σ f equals 5 — otherwise it is undefined. A path π is f -
executable for an initial state σ if �π�f σ is defined. Let M denote any set
of paths. Then the set of paths in M which are f -executable for σ is given by
Πf (M,σ) = {π ∈M | π is f -executable for σ}.

Lemma 2. For a program point u, priority i, flag f and initial state σ we have

Πf (R[u], σ)
= ∅ =⇒ R�[u] (σ f) ⊆
⋃

π∈Πf (R[u],σ)

{(�π� σ) f}

Proof. In case R�[u](σ f) = ∅ the subset relation holds trivially. Otherwise we
do induction on Kleene-iteration steps solving the constraint system [F/F’]. First
consider the initialization constraints [F0] and [F’0]. For entry nodes sg we know
that ε ∈ Πf (R[sg], σ). Since �ε� is the identity function we obtain:

R�[sg] (σ f) = {σ f} ⊆ (�ε� σ) f ⊆ ⋃
π∈Πf (R[sg],σ)

{(�π� σ) f}

For the application of constraints [F1] and [F’1] the result follows since for a flag

�·�� is complete with respect to �·�. For constraint [F’2] the result then follows

28 M.D. Schwarz et al.

by induction and consequently for [F2]. Regarding [F3] we know by induction,
that the condition holds for all program points on the right hand side of the
constraint. We have:

R�[sh] (σ f) =
⋃

(u,h(),v)∈E

(R�[u] (σ f)) ⊆

⋃
(u,h(),v)∈E

⋃
π∈Πf (R[u],σ)

{(�π� σ) f} ⊆ ⋃
π∈Πf (R[sh],σ)

{(�π� σ) f}

��

Together Lemmas 1 and 2 show, that if Property 2 holds we lose precision with
respect to the concrete semantics only when guards on other variables influence
the value of f . Making use of the general properties of OSEK programs we can
bootstrap a check of Property 2 from the results of system [F/F’].

Theorem 1. For a flag f Property 2 holds if for all interrupts q and initial
states σ the following holds:

R�[rq] (σ f) = {σ f}

Proof. Consider an interrupt q of maximal priority, i.e. P(sq) = pmax. For a
program point u occurring in a path π ∈ Π(R[rq], σ) the condition of constraint
[S3] is never satisfied since P(u) ≥ P(sq). Thus constraint [S3] does not con-
tribute to R[rq]. Consequently Lemma 1 holds for rq even when Property 2 is
not generally satisfied. Therefore for π ∈ Π(S[rq], σ) and S�[rq] (σ f) = {σ f}
we have:

{(�π� σ) f} = S�[rq] (σ f) = {σ f}
I.e. Property 2 holds for q. If Property 2 holds for all interrupts of maximal
priority we can repeat this argument for the next lower priority and so on. ��

4 Simple Analysis of Flags

In this Section we provide a first analysis of flag based synchronization patterns
where no value of f is excluded before an interrupt occurs. Accordingly, we start
the analysis of each interrupt with Vf . Then by Lemma 1, the set of possible
values of f at any program point u is given by

R�[u] =
⋃
{R�[u] c | c ∈ Vf}

Now consider a global variable x. Simple protection mechanisms for x by means
of the flag f assume that the value of f after the protected access to x is reliable.
Here, we call f reliable at a program point u, if its value may not be changed by
any higher priority interrupts occurring at u. More formally f is reliable at u if
for all interrupts q that may occur at u, i.e. P(sq) > P(u), and every program
point v reachable from sq without entering another interrupt we have:

R�[v] c ⊆ {c} for all c ∈ R�[u]

Precise Analysis of Value-Dependent Synchronization 29

This test can be done in time linear in the size of the program and the number
of values of f . The following Theorem shows how reliable values of a flag f can
be used to verify the absence of data races.

Theorem 2. Assume that u and v are end points of accesses to x where v is
reached without entering another interrupt by an interrupt q with P(u) < P(sq)
and flag f is reliable at program point u. Then no data race between u and v
occurs, if R�[u] ∩R�[v] = ∅.

Proof. Assume there is a race path going through u and v. Since the flag f is
reliable at u, the sub-path π from u to v may not contain assignments changing
f . Let σ be a state reaching u where π is executable for σ and σ f = c ∈ R�[u].
Let π = π1(sq, ,)π2 where π2 contains no interrupt entry edges. Then the
program state σ1 = �π1� σ after execution of π1 as well as �π2� σ1 will map
f to c. Therefore by Lemma 1, c also must be included in R�[v]. Accordingly,
R�[u] ∩R�[v]
= ∅ — in contradiction to the assumption. ��

In the program in Fig. 1, the flag f is reliable at Ix where R�[Ix] = {1} and
R�[Qx] = {0}. Accordingly due to Theorem 2, the program does not contain a
data race. However for the pattern in Fig. 2, the flag is not reliable in the sense
of our definition here. Therefore, Theorem 2 cannot excluded a data race for
variable x.

5 Precise Analysis of Flags

The flag analysis from the last section is imprecise regarding two main points.
First, all flag values are assumed to possibly occur at all entry points of inter-
rupts. Second, only reliable flag values could be exploited for discarding potential
races. In this section we therefore refine our approach by precisely tracking how
flag values may change along inter -interrupt paths. Due to Property 2 the value
analysis from Section 3 still provides valid intra-interrupt results for a given set
of flag values at the beginning of the corresponding interrupt. In order to use
these results to determine whether a value c is possible for a flag f at the start
of an interrupt they are refined by additionally recording the minimal priorities
at which f equals c. The minimal priority at which a flag f obtains a certain
value is crucial since this is when the value is propagated to the largest number
of other interrupts.

Accordingly, we now consider abstract values of the form Vf → P∞, where
P∞ = P∪ {∞} and ∞ denotes, that a value is not obtained at all. The ordering
is point-wise and reversed, i.e., ⊥ maps all values to ∞ (no values are obtained)
whereas � maps all values to 0 (all values can occur at all interrupt entry nodes).
The following constraint system [C] accumulates for every interrupt and proce-
dure the occurring values of flag f and the corresponding minimal priorities. In
that constraint system, priorities are added to value summaries R[u]� of type
Vf → 2Vf by means of the functions pryi which returns a function of type
Vf → Vf → P∞ and is defined by:

30 M.D. Schwarz et al.

pryi φ c c
′ =

{
i if c′ ∈ φ c
∞ otherwise

First we characterize functions S∗[rh] (h a procedure) where S∗[rh] c c
′ denotes

the minimal priority at which the flag f could take the value c′ along any f -
executable path in h when the initial value of f is c. For this, we accumulate the
values computed by S�[·].

[C0] S∗[sh] � pryP(sh)
S�[sh] h ∈ Proc

[C1] S∗[v] � (pryP(v) S
�[v]) � S∗[u] (u, , v) ∈ E

[C2] S∗[v] � S∗[rh] � S∗[u] (u, h(), v) ∈ E

By means of these procedure summaries, we characterize mappings R∗[u], where
R∗[u] c c′ indicates the minimal priority at which flag f may have value c′ along
paths reaching u when the value of f equals c at the program point where the
last interrupt before reaching u occurs. These are given by the least solution to
the following constraint system:

[C3] R∗[sq] � pryP(sq) R
�[sq] q ∈ Irpt

[C4] R∗[v] � (pryP(v) R
�[v]) �R∗[u] (u, s, v) ∈ E

[C5] R∗[v] � S∗[rh] �R∗[u] (u, h(), v) ∈ E

Since the constraint system [C] is a pure join system (the only operator in right-
hand sides is �), the least solution can be computed in time linear in the size of
the program and polynomial in the number of flag values. The formal correctness
of our construction is given by the following lemma.

Lemma 3. For a program point u, flag f and initial state σ with σ f = c the
following holds:

(1) For all paths π ∈ Πf (R[u], σ) that do not contain any interrupt edges (sq, ,)
and program points v such that π = π1(, , v)π2 and (�π1(, , v)� σ) f = c′

we have R∗[u] c c′ ≤ P(v).
(2) If R∗[u] c c′ = p then there exists a path π ∈ Πf (R[u], σ) that does not

contain any interrupt edges (sq, ,) and there exists a program point v such
that π = π1(, , v)π2 and (�π1(, , v)� σ) f = c′ and P(v) = p.

Proof. The proof is done by induction on the Kleene-iteration steps used to
compute the fix-point. Since we use the same priority information in the systems
[C] and [R] Lemmas 1 and 2 imply the result for the initialization constraints
[C0] and [C3]. Again by Lemmas 1 and 2 and induction we know the result holds
for both operands of a join. Soundness then follows directly. For the completeness
statement (2) we note, that P∞ is totally ordered. Therefore the join operator
element-wise selects the result of one of its operands. ��

Consider, e.g., the program in Fig. 1. For the return nodes of rI and rQ we have
R∗[rI] 0 = {0 �→ 1, 1 �→ 1} and R∗[rQ] 0 = {0 �→ 3, 1 �→ ∞}, respectively.

Precise Analysis of Value-Dependent Synchronization 31

The results of the intra-interrupt accumulation of flag values and priorities are
now combined to summarize the effects of all interrupts of a given priority. For
each priority i, let Ii denote the least upper bound ofR∗[rq] for all interrupts q of
priority i. Thus, Ii c c

′ returns the least priority for which the flag f may obtain
value c′ inside an interrupt of priority i if the value of f is c before execution is
interrupted (by an interrupt of priority i). Formally, we have:

Lemma 4. For a program point u, flag f , initial state σ with σ f = c and a
path π ∈ Πf (R[u], σ) with π = (sq, ,)π′ where π′ contains no interrupt edges
(sq′ , ,) and (�π� σ) f = c′, we have IP(sq) c c

′ ≤ P(u).

Proof. By definition of Ii we have Ii c c
′ ≤ R∗[rq] c c

′ and from Lemma 3 we
obtain R∗[rq] c c

′ ≤ P(u). ��

Conversely we can show, that the functions Ii are complete with respect to
f -executable paths.

Lemma 5. For a flag f and initial state σ with σ f = c if Ii c c′ = j
then there exists an interrupt q with P(sq) = i and an path π ∈ Πf (R[rq], σ)
such that π = (sq, ,)π1(, , v)π2, π1 contains no interrupt edges (sq′ , ,),
(�(sq, ,)π1(, , v)� σ) f =′ c and P(v) = j.

Proof. Since P∞ is totally ordered, the join on Vf → Vf → P∞ can always
select one of the joined values. Therefore we do not introduce finite priorities for
values, which are not actually obtained during some interrupt. Let q denote the
interrupt, such that R∗[rq] c c

′ = j. Lemma 3 then yields a path realizing the
value c. ��

In order to account for inter -interrupt effects, we first lift the mappings Ii :
Vf → Vf → P∞ to mappings (Vf → P∞)→ (Vf → P∞) by

(lift Ii) δ = δ �
⊔
{Ii c | c ∈ Vf , δ c < i}

Thus, the transformation (lift Ii) takes a mapping of flag values to priorities and
returns the mapping, which maps each value c to the minimal priority at which
flag f can attain value c if additionally interrupts at priority i are taken into ac-
count. Note that the application of (lift Ii) to a mapping δ can be represented as
matrix operations and therefore computed in time polynomial in the number of
possible values. In the final step, the inter-interrupt summaries I(i,j) comprising
the effects of interrupt at priority levels between i and j are obtained from the
lifted intra-interrupt summaries by composition:

I(i,j) = (lift Ij) ◦ . . . ◦ (lift Ii)

where for i > j, we assume I(i,j) to equal the identity transformation. The level
summaries do not need to be composed in every possible order, since a higher
priority interrupt must terminate before another interrupt of lower priority can
execute. But on termination the higher priority interrupt must have restored

32 M.D. Schwarz et al.

the values of flags, i.e. for the lower priority interrupt it might as well not have
occurred. Therefore only chains of consecutive interruptions add new entries to
the set of possible values of a flag f . Such chains, however, must have strictly
increasing priorities. Let initi : 2Vf → (Vf → P∞) denote the functions that
given a set of values C returns the mapping which maps each value in C to i, i.e
initi C c = i for c ∈ C and∞ otherwise. Applying init0 to the set of initial values
of flag f reflects the fact, that initial values can occur at all interrupt entry
nodes. Moreover, let filterj : (Vf → P∞)→ 2Vf denote the function which takes
a mapping of flag values to priorities and returns the set of values of priorities
less than j, i.e., filterj δ = {c | δ c < j}. Applying filterj returns the set of flag
values possible at entry nodes of interrupts of priority j according to the given
mapping. With these definitions, we obtain the set of all possible values of flag
f at entry nodes of interrupts with priority j by:

Cj = (filterj ◦ I(1,j−1) ◦ init0) C0

where C0 is the set of possible values of f at program start. Accordingly, the
set of all values of f possibly occurring at program point u when reached by an
interrupt with priority j, is given by:

R�[u, j] =
⋃
{R�[u] c | c ∈ Cj}

The complexity of applying I(i,j) to some initial mapping of values to priorities,
requires to apply (j − i) times a lifted transformation (lift Ik). Therefore, this
can be done in time polynomial in the number of possible flag values where the
exponent linearly depends on j − i.

Theorem 3. For a program point u reached by an interrupt with priority j, flag
f and initial state σ with σ f ∈ C0, we have:

R�[u, j] ⊇
⋃

π∈Πf (R[u],σ)

{(�π� σ) f}

Proof. For a path π ∈ Πf (R[u], σ) with (�π� σ) f = c′′ we show that c′′ ∈
R�[u, j]. In case that j = 1, we have the following:

R�[u, j] =
⋃
{R�[u] c | c ∈ C1} =

⋃
{R�[u] c | c ∈ (filter1 ◦ init0) C0} =⋃

{R�[u] c | c ∈ C0} ⊇ R�[u] (σ f)

With Lemma 1 the result follows. For higher context priorities we decompose π
into the two parts. The part inside the final interrupt q and the part before q. Let
π = π′(, , v)(sq , ,)π′′ where P(sq) = j and π′′ does not contain any interrupt
edges (sq′ , ,). Since Lemma 1 applies (sq′ , ,)π′′ again what’s left to show is,
that the values observable by sq′ are contained in Cj . Let (�π′(, , v)� σ) f = c′.
Then Lemma 4 yields, that there exists a priority i ≤ P(v) such that Ii (σ f) c

′ =
i. Since j = P(sq) > P(v) we obtain c′ ∈ Cj concluding the proof. ��

Precise Analysis of Value-Dependent Synchronization 33

Note, that Property 2 ensures, that the interrupt-free tails exist. Otherwise
higher priority interrupts changing f might be necessary to reach u with c′′. For
f -executable paths the sets of reaching values are also complete.

Theorem 4. For a program point u reached by an interrupt with priority j, flag
f and initial set C0 we have:

R�[u, j] ⊆
⋃

σ f∈C0

⋃
π∈Πf (R[u],σ)

{(�π� σ) f}

Proof. In case R�[u, j] = ∅ the result follows immediately. Otherwise Lemma 2
yields, that for every c′ ∈ R�[u, j] there exists a c′′ ∈ Cj such that for a state σ2
with σ2 f = c′′ there exists a path π2 ∈ Πf (R[u], σ2) with (�π2� σ2) f = c′ and
π2 = (sq, ,)π′

2 with P(sq) = j. If there exists a program point v with P(v) < j
such that there exists state σ with σ f ∈ C0 and a path π1inΠf (R[v], σ) with
(�π1� σ) f = c′′ then π1π2 ∈ Πf (R[u], σ) concluding the proof. If however there
is no such state or program point then by Lemma 5 we have ((lift Ii−1) ◦ · · · ◦
(lift I1) ◦ (init0C0)) c

′′ ≥ j. Therefore filterj would remove c′′ in contradiction
with Lemma 2. ��

Combining Theorems 3 and 4 shows, that if R�[u, j] = ∅ then there is no path
which is f -executable for σ0 and reaches u by an interrupt with priority j.

Corollary 1. For a program point u, a priority j and a flag f with initial value
set C0 = {σ0 f} we have:

R�[u, j] = ∅ ⇐⇒ Πf (R[u], σ0) = ∅

Consider again the program in Fig. 1. For (program points in) the critical
sections Ix and Qx we have R�[Ix, 1] {0} = {1} and R�[Qx, 3] {0} = {0}.

5.1 Data Race Analysis

In the previous section we have shown, that the values of a flag f can be tracked
precisely along all f -executable paths reaching a given program point. A data
race, however, consists of two program points u and v at which shared data is
accessed and a path from one to the other. Therefore we extend the results for
reaching values to start from any given priority level (instead of 1). The set of
possible values of flag f at entry nodes of interrupts with priority j from a set
of values C at priority i, is given by:

Ci,j = (filterj ◦ I(i+1,j−1) ◦ initi) C

Accordingly, the set of all values of f possibly occurring at program point u
when reached by an interrupt with priority j, is given by:

R�[u, i, j] =
⋃
{R�[u] c | c ∈ C(i,j)}

34 M.D. Schwarz et al.

Consider a flag f with initial value set C0 and program points u and v which
are reached by interrupts with priorities j and k, respectively. To decide if there
is a race at accesses to a variable x occurring at u and v we first compute by
R�[u, j] = C the values of f reaching u. Then starting with C and the priority
P(u) of u we compute R�[v,P(u), k] the set of values of f reaching v is execution
is interrupted immediately after the access at u. If this set is non-empty, there
exists a path satisfying the conditions for a data race.

In contrast to Theorem 2 the construction and use of interrupt summaries
allows us to determine the set of possible values reaching the start of a potentially
racing interrupt and avoid the imprecision incurred by starting the analysis with
Vf . Furthermore since intermediate changes of flags are tracked it is no longer
necessary for flags to be reliable. Formally we have:

Theorem 5. For accesses to a variable x at program points u and v where v is
reached by an interrupt with priority j > P(u) and the set of values of flag f
reaching u given by C
= ∅ we have:

(1) There is no race between the two accesses, if R�[v,P(u), j] = ∅.
(2) If R�[v,P(u), j]
= ∅ there is a race path connecting u and v which is f -

executable for some σ0 with σ0 f ∈ C0.

Proof (Theorem 5). IfR�[v,P(u), j] = ∅ we haveR�[v] c = ∅ for all c ∈ C(P(u),j).

This corresponds to R�[v, j] = ∅ in the (sub-)program consisting only of inter-
rupts with priority greater than P(u). Therefore Corollary 1 yields, that there is
no f -executable path reaching v from u with the given value sets. Consequently,
there can be no race path.

If however, R�[v,P(u), j]
= ∅ there exists a path π from u to v which contains
only interrupts of priority greater than P(u) and which is f -executable for initial
states σ1 with σ1 f ∈ C. Therefore every program point v1 occurring in π1 has
a higher priority than u, i.e. P(v) > P(u). Since C
= ∅ there also exists an
initial states σ2 and a path π2 reaching u that is f -executable for σ2. With
Corollary 1 we can assume, that (�π2� σ2 f = σ1 f . Then π2π1 is a f -executable
race path since the lowest priority obtained in π1 is greater than P(u) and the
states match. ��

For our running example from Fig. 1 we have the initial value set {0} and
R�[Ix, 1] = {1} as well as R�[Qx, 1, 3] = ∅ since the only value that can pass
through the guard edge to Qx is 0. The analysis presented in this section is able
to handle more complex patterns as well. For example consider the extension
in Fig. 2. The assignment f=2; in the interrupt R adds 2 to the set of values
Q can observe at Ix. We have R�[I1, 1] = {1, 2}. But still R�[Qx, 1, 3] = ∅
certifying, that there is no race between Ix and Qx. If however Q checked for
f != 1 instead, which yields the same result for the program without R, we
would obtain R�[Qx, 1, 3] = {2}. The corresponding race path is given by first
interrupting Ix with R and then after f has been set to 2 interrupting R with
Q.

Precise Analysis of Value-Dependent Synchronization 35

int f = 0;
int x = 0;
/∗ Priority 3 ∗/
isr Q() {

if (f==0)
x−−; /∗ Qx ∗/

}

/∗ Priority 2 ∗/
isr R() {

if (f==1){
f = 2;
f = 1;

}
}

/∗ Priority 1 ∗/
isr I () {
f = 1;
x++; /∗ Ix ∗/
f = 0;

}

Fig. 2. Extended example code of program with a flag f

Table 1. Benchmark results

program loc time (s) warnings w/o flags warnings w flags

example flag 18 0,012 1 0
resource flag 26 0,020 1 0
inverse flag 21 0,012 1 1
weak flag 21 0,016 1 1
arbiter flag 26 0,018 1 0

linecar 2586 0,072 5 0
bipedrobot 2684 0,028 1 1
ballsort 2786 0,424 7 0

controller ∼400k 3171 929 265

6 Experimental Results

The analysis from Section 4 has been implemented in the Goblint tool [18]. For
that, we extended the analysis with tracking of priorities and acquired resources
as described in [15], as well as an inter-procedural treatment of local variables
and parameters and global invariants to deal approximately with global data
different from flag variables. We have tested our implementation on a number of
valid and invalid uses of flags. The results are summarized in Table 1. Execution
time (in seconds) on an Intel(R) Core(TM) i5 650 running Ubuntu is listed in
column 3. The last two columns indicate the numbers of warnings by the analyzer
without and with taking flag information into account.

Benchmark example flag is the programs of Fig. 1 and the accesses to x are
proven safe. Benchmark inverse flag is benchmark example flag with flipped
priorities. While syntactically the flag pattern is intact the associated priorities
render it moot. The analysis captures this and issues a data race warning for x.
Benchmark resource flag has an additional task of intermediate priority which
temporarily (re)sets the flag to 0, but employs resources to increase the priority of
I to the intermediate priority before using the flag. Due to the raised priority the
value of f is reliable and the analysis verifies the accesses to x as safe. Benchmark
weak flags employs the flag pattern correctly, but not thoroughly. There is an
additional high priority interrupt, which also accesses x. The analysis recognizes
the flag pattern where it is used, but issue a data race warning due to the
unprotected access. Benchmark arbiter flag uses an extended synchronization
scheme where the lowest priority interrupt uses the value of the flag variable to
signal which higher-priority interrupt is allowed to enter its critical section.

36 M.D. Schwarz et al.

Additionally, the analysis has been evaluated on four larger programs Bench-
marks linecar, bipedrobot, and ballsort consist of about 300 to 500 lines
of application code plus about 2300 lines of headers taken from the NxtOSEK
framework [17]. While benchmark bipedrobot is taken from the NxtOSEK sam-
ples [17], benchmarks linecar and ballsort have been produced in students’
projects. Interestingly, the students made use of flag variables without having
been told to do so. Benchmark linecar is the control program for a line fol-
lowing car which picks up items placed on the track. Two variables are used to
synchronize between scanning for the line and forward movement. Benchmark
bipedrobot is a two-wheel self balancing robot which uses a resource, i.e. dy-
namic priorities, to synchronize between balancing and movement. The warning
is due to an initialization task, which omits acquiring the resource. It assumes
that the timers have not yet triggered the remaining parts of the program. The
code of benchmark ballsort resembles a state machine controlling a manipula-
tor arm which first locates colored balls in reach and then sorts them by placing
red balls to the left and blue balls to the right. Additionally it has a pause but-
ton, which stops all movement until it is pressed again. A race-analysis based
on priorities alone would warn on all shared variables. On the contrary, treating
the state variable as a flag, allows to verify all accesses as safe.

Finally, controller is an industrial benchmark. It consists of about 400,000
lines of code including headers. During the analysis 7232 global variables are
found. The flag analysis reduces the number of race warnings from 929 to 265.
This corresponds to a reduction by over 60%. The analysis on this real-world
example takes about 3171s.

Overall, the analysis times, in particular for the larger programs, are accept-
able. Also the number of spurious data race warnings is dramatically reduced in
the industrial benchmark controller. The remaining data race warnings could
possibly be reduced further, if additional information such as, e.g., worst-case
execution time and cycle duration of time-triggered tasks is taken into account.

7 Related Work

In general terms, we are attempting to exclude invalid paths from diluting the
analysis result. Taking into account the control flow of procedure call and re-
turn, makes the analysis context-sensitive. Static analysis of concurrency errors
requires context-sensitive alias analysis, and there are various solutions to obtain
context-sensitive alias analysis for race detection, including approaches based on
procedure summaries of relative locksets [19], bootstrapping of alias analyses [3],
type based label-flow [12], and conditional must-not aliasing [10].

Distinguishing valid paths w.r.t. the sequential semantics of program execution
is known as path-sensitivity. Path-sensitivity is required to deal, e.g., with con-
ditional locking schemes. Voung et al. [19] identify this as one important source
of false alarms in their analyzer. A generic approach to path-sensitivity is prop-
erty simulation [2]. We have previously applied this technique to achieve path-
sensitive data race analysis [18].What we require here, however, is path-sensitivity
w.r.t. the interleaving semantics of the program.We need to exclude semantically

Precise Analysis of Value-Dependent Synchronization 37

invalid interleavings, notmerely invalid paths in the flow-graphs.None of the static
race detection tools we are aware of [3, 9, 13, 19] attempt to exclude semantically
invalid interleavings based on boolean guards. Also, our tests with state-of-the-
art dynamic race detection tool, Intel Inspector XE 2013 (formerly Intel Thread
Checker [14]), revealed that boolean flags confuse the analysis such that no warn-
ings are generated at all even when negating the flag to make it invalid.

We realized the seriousness of this issue when attempted to adapt conventional
race detection techniques to priority-driven single-processor concurrency systems
[15]. In this setting, locking can be avoided by higher priority threads because
lower-priority threads cannot preempt them. We have explored how boolean pro-
gram variables can be used instead of explicit locking. Another way to avoid ac-
quiring a resources by higher priority threads is to merely check if the lock is free. If
no other thread holds the lock, the highest priority thread can simply execute the
critical section.Miné [7] presents a scheduled interference semantics of ARINC 653
systems that takes this into account by tracking a separate set of resources known
to be free. A mutex is only known to be free when it has been explicitly probed by
the highest priority thread that uses it and there has been no blocking operations
(e.g., attempting to lock another mutex) since the mutex was last probed.

8 Conclusion

Application developers tend to rely not only on the synchronization mechanisms
provided by embedded operating systems such as Autosar/OSEK to secure their
programs. Therefore, we provided analysis methods for programs executed by
Autosar/OSEK which can deal with hand-crafted synchronization mechanisms
based on flag variables.

The analysis is based on an off-the-shelf constant propagation analysis,
together with post-processing to take care of the intricate inter-interrupt de-
pendencies arising from the priority based scheduling of OSEK programs. Our
characterization of flags allowed us to precisely determine whether two accesses
comprise a data race or not. The required fix-point computations are all linear
in the size of the program and polynomial in the number of possible flag values,
which in our experience is small.

The construction can be enhanced by using more sophisticated value analyses
of flag variables, e.g., by allowing to store and restore flag values or by track-
ing dependences between different flags. Our preliminary experiments, however,
showed that already the simple version of our analysis presented in Section 4
drastically reduces the number of false alarms in real-world programs. It remains
for future work to evaluate in how far stronger analyses will have a significant
impact on the practical precision of the analysis.

Acknowledgements. The research leading to these results has received fund-
ing from the ARTEMIS Joint Undertaking under grant agreement № 269335
(MBAT) and from the German Research Foundation (DFG). The third author
was supported by the research theme IUT2-1 and ERDF funded Estonian ICT
national programme project “Coinduction”.

38 M.D. Schwarz et al.

References

[1] Autosar consortium: Autosar Architecture Specification, Release 4.0 (2009),
http://www.autosar.org/

[2] Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-
nomial time. In: PLDI 2002, pp. 57–68. ACM Press (2002)

[3] Kahlon, V., Yang, Y., Sankaranarayanan, S., Gupta, A.: Fast and accurate static
data-race detection for concurrent programs. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 226–239. Springer, Heidelberg (2007)

[4] Kidd, N., Jagannathan, S., Vitek, J.: One stack to run them all — reducing con-
current analysis to sequential analysis under priority scheduling. In: van de Pol, J.,
Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 245–261. Springer, Heidelberg
(2010)

[5] Kildall, G.A.: A unified approach to global program optimization. In: POPL 1973,
pp. 194–206. ACM Press (1973)

[6] Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: Pfahler, P.,
Kastens, U. (eds.) CC 1992. LNCS, vol. 641, pp. 125–140. Springer, Heidelberg
(1992)

[7] Miné, A.: Static analysis of run-time errors in embedded critical parallel C pro-
grams. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 398–418. Springer,
Heidelberg (2011)

[8] Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: POPL 2004, pp. 330–341. ACM Press (2004)

[9] Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: PLDI
2006, pp. 308–319. ACM Press (2006)

[10] Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
POPL 2007, pp. 327–338. ACM Press (2007)

[11] OSEK/VDX Group: OSEK/VDX Operating System Specification, Version 2.2.3
(2005), http://www.osek-vdx.org

[12] Pratikakis, P., Foster, J.S., Hicks, M.W.: Existential label flow inference via CFL
reachability. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 88–106. Springer,
Heidelberg (2006)

[13] Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith: Context-sensitive correlation
analysis for detecting races. In: PLDI 2006, pp. 320–331. ACM Press (2006)

[14] Sack, P., Bliss, B.E., Ma, Z., Petersen, P., Torrellas, J.: Accurate and efficient
filtering for the intel thread checker race detector. In: ASID 2006, pp. 34–41.
ACM Press (2006)

[15] Schwarz, M.D., Seidl, H., Vojdani, V., Lammich, P., Müller-Olm, M.: Static anal-
ysis of interrupt-driven programs synchronized via the priority ceiling protocol.
In: POPL 2011. ACM Press (2011)

[16] Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: an approach
to real-time synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)

[17] Chikamasa, T., et al.: OSEK platform for lego® mindstorms® (2010),
http://lejos-osek.sourceforge.net/

[18] Vojdani, V., Vene, V.: Goblint: Path-sensitive data race analysis. Annales Univ.
Sci. Budapest., Sect. Comp. 30, 141–155 (2009)

[19] Voung, J.W., Jhala, R., Lerner, S.: RELAY: static race detection on millions of
lines of code. In: ESEC/FSE 2007, pp. 205–214. ACM Press (2007)

[20] Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. 13, 181–210 (1991)

http://www.autosar.org/
http://www.osek-vdx.org
http://lejos-osek.sourceforge.net/

Relational Thread-Modular Static Value

Analysis by Abstract Interpretation�

Antoine Miné

CNRS & École Normale Supérieure
45, rue d’Ulm

75005 Paris, France
mine@di.ens.fr

Abstract. We study thread-modular static analysis by abstract inter-
pretation to infer the values of variables in concurrent programs. We
show how to go beyond the state of the art and increase an analysis pre-
cision by adding the ability to infer some relational and history-sensitive
properties of thread interferences. The fundamental basis of this work is
the formalization by abstract interpretation of a rely-guarantee concrete
semantics which is thread-modular, constructive, and complete for safety
properties. We then show that previous analyses based on non-relational
interferences can be retrieved as coarse computable abstractions of this
semantics; additionally, we present novel abstraction examples exploit-
ing our ability to reason more precisely about interferences, including
domains to infer relational lock invariants and the monotonicity of coun-
ters. Our method and domains have been implemented in the AstréeA
static analyzer that checks for run-time errors in embedded concurrent
C programs, where they enabled a significant reduction of the number
of false alarms.

Keywords: static analysis, abstract interpretation, verification, safety,
concurrency, embedded programs, rely-guarantee methods.

1 Introduction

Programming is an error-prove activity and software errors are frequent; it is thus
useful to design tools that help ensuring program correctness. In this article, we
focus on static analyzers, which enjoy several benefits: they are fully automatic
(always terminating and requiring minimal annotations, making them easy to
deploy and cost-effective in industrial contexts), sound (no program behavior,
and so, no bug is overlooked), and they offer a wide range of cost versus precision
choices; however they can exhibit false positives (spurious alarms reported by the
tool, that need to be checked manually), which we naturally wish to minimize.
Abstract interpretation [6] makes it possible to design sound static analyzers in

� This work is supported by the INRIA project “Abstraction” common to CNRS
and ENS in France and by the project ANR-11-INSE-014 from the French Agence
nationale de la recherche.

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 39–58, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

40 A. Miné

a principled way, by abstraction of a concrete semantics expressing the proper-
ties of interest. Prior results on Astrée [3] showed that abstract interpretation
could effectively drive the construction of an analyzer that is both efficient and
extremely precise (no or few false alarms), by specializing the abstractions to a
class of properties and a class of programs, in that case: the absence of run-time
error in embedded synchronous control/command avionic C programs. We are
now bent on achieving a similar result for concurrent programs : we are devel-
oping AstréeA [19], a static analyzer to prove the absence of run-time error in
embedded concurrent C programs where several threads are scheduled by a real-
time operating system, communicate through a shared memory, and synchronize
through concurrency primitives (such as mutual exclusion locks).

Although concurrent programming is not new, its use has intensified recently
with the rise of consumer multi-core systems. Concurrent programming is also
increasingly used to improve cost-effectiveness in the critical embedded domain
(e.g., Integrated Modular Avionics [23]), where the need for verification is impor-
tant. Concurrent programs are more challenging to verify than sequential ones:
as a concurrent execution is an interleaving of executions of individual threads
often scheduled with a high level of non-determinism (e.g., driven by inputs from
the environment), the number of possible executions is generally very high. The
verification problem is further complicated by the advent of weakly consistent
memories taking hardware and software optimization into account [2].

A solution to avoid considering interleavings explicitly and the associated com-
binatorial exposition of executions is to use thread-modular methods. Ideally,
analyzing a concurrent program should be performed by analyzing individually
each thread. Analyzing threads in isolation is not sound as it ignores their po-
tential interactions, but previous work by Carré and Hymans [4] and ourself [19]
showed that sequential analyses can be easily modified to take interactions and
weakly memory models into account. Unfortunately, these methods are based
on a simplistic, non-relational and flow-insensitive concrete semantics of thread
interactions, which severely limits the precision of any analysis built by abstract-
ing this semantics. In this article, we propose another, more precise semantics,
from which former analyses can be recovered by abstraction, but that also allows
more precise, relational abstractions of thread interferences. It is based on Jones’
popular rely-guarantee proof method for concurrent programs [13], formulated
as a constructive fixpoint semantics in abstract interpretation style.

The rest of this introduction presents our former non-relational interference
analysis, exemplifies its shortcommings to motivate our work, and recalls the
rely-guarantee reasoning proof technique.

Analysis Based on Non-relational Interferences. We illustrate our former
analysis [19] and its limits on the example of Fig. 1. This simple program is
composed of two threads: Thread t2 increments Y by a random value in [1, 3]
while it is smaller than 100, and Thread t1 concurrently increments X while it
is smaller than Y . Both variables are initialized to 0 before the program starts.

Consider first the simpler problem of analyzing t2 in isolation, viewed as
a sequential program. We wish to infer the set of reachable memory states

Relational Thread-Modular Static Value Analysis by Abstract Interpretation 41

t1
(1a) while random do

(2a) if X < Y then
(3a) X ← X + 1

(4a) endif
(5a) done

t2
(1b) while random do

(2b) if Y < 100 then
(3b) Y ← Y + [1, 3]

(4b) endif
(5b) done

Fig. 1. Concurrent program example

X1b = {[X 	→ 0, Y 	→ 0]} (initialization)
X2b = X1b ∪ X5b (control-flow join at loop head)
X3b = �Y < 100 �X2b (filtering by test condition on Y)
X4b = �Y ← Y + [1, 3] �X3b (assignment into Y)
X5b = X4b ∪ �Y ≥ 100 �X2b (control-flow join after test)

Fig. 2. Concrete equation system for Thread t2 from Fig. 1

(i.e., the values of X and Y) at each program point. This can be expressed
classically [7] as the least solution of the invariance equation system in Fig. 2,
where each variable Xi is the memory invariant at program point i, with value

in D def
= P({X,Y } → Z), and � · � is the effect of an atomic program opera-

tion (assignment or test) on a set of memory states, e.g.: �Y < 100 �X def
= { ρ ∈

X | ρ(Y) < 100 } models a test by filtering states while � Y ← Y + [1, 3] �X def
=

{ ρ[Y �→ ρ(Y) + v] | ρ ∈ X , v ∈ [1, 3] } models an incrementation by a non-
deterministic value. We get, for instance, that the loop invariant at point 2b is:
X = 0 ∧ Y ∈ [0, 102]. An effective analysis is obtained by replacing concrete

variables Xi ∈ D with abstract ones X �
i ∈ D� living in an abstract domain D�,

concrete operations ∪ and � · � with abstract ones ∪� and � · ��, and employ-
ing convergence acceleration techniques � to compute, by iteration, an abstract
solution of the system where ⊇ replaces =. We get an inductive (but not neces-
sarily minimal) invariant. For Fig. 1, a simple interval analysis using widenings
with thresholds can infer that Y ∈ [0, 102]. A similar analysis of t1 would infer
that X and Y stay at 0 as it would ignore, for now, the effect of t2.

We now turn to the analysis of the full program under the simplest concurrent
execution model, sequential consistency [14]: a program execution is an interleav-
ing of tests and assignments from the threads, each operation being considered
as atomic. A straightforward approach is to associate a variable Xi,j to each pair
of control points, i for t1 and j for t2, and construct the product equation system
from that of both threads. For instance, we would have:

X3a,3b = �X < Y �X2a,3b ∪ �Y < 100 �X3a,2b (1)

as the point 3a, 3b can be reached either with a step by t1 from 2a, 3b, or a
step by t2 from 3a, 2b. However, this quickly results in large equation systems,
and we discard this method as impractical. The methods proposed in [4,19] con-
sist instead in analyzing each thread independently as a sequential program,

42 A. Miné

extracting from the analysis (an abstraction of) the set of values each thread
stores into each variable, so-called interferences, and then reanalyzing each thread
taking into account these interferences; more behaviors of the threads may be
exposed in the second run, resulting in more interferences, hence, the thread
analyses are iterated until the set of interferences becomes stable. On our exam-
ple, in the concrete, after the first analysis of t1 and t2 reported above, we extract
the fact that t2 can store any value in [1, 102] into Y . In the second analysis of t1,
this information is incorporated by replacing the equation X3a = �X < Y �X2a

with:
X3a = �X < (Y | [1, 102]) �X2a (2)

and similarly for X5a, where Y | [a, b] denotes a non-deterministic choice between
the current value of Y and an integer between a and b. The test thus reduces
to X < 102, i.e., t1 increments X to at most 102. Accordingly, it generates new
interferences, on X . As X is not used in t2, the third analysis round is identical
to the second one, and the analysis finishes. By replacing concrete variables,
interferences, and operations with abstract ones, and using extrapolation � to
stabilize abstract interferences, we obtain an effective analysis method.

This method is attractive because it is simple and efficient: it is constructed by
slightly modifying existing sequential analyses and reuses their abstract domains,
it does not require much more memory (only the cost of abstract interferences)
nor time (few thread analyses are required in practice, even for large programs,
as shown in Fig. 6 in Sec. 5). Unfortunately, modeling interferences as a set of
variable values that effect threads in a non-deterministic way severely limits the
analysis precision. Even when solving exactly the sequence of concrete equation
systems, we can only deduce that X ∈ [0, 102]∧ Y ∈ [0, 102] at the end of Fig. 1
while, in fact, X ≤ Y also holds. Naturally, no derived abstract analysis can
infer X ≤ Y , even if it employs a relational domain able to express it (such as
octagons [17]).

Relational Rely-Guarantee Reasoning. Rely-guarantee is a proof method
introduced by Jones [13] that extends Hoare’s logic to concurrent programs. It
is powerful enough to prove complex properties, such as X ≤ Y in our exam-
ple. Rely-guarantee replaces Hoare’s triples {P} s {Q} with quintuples R,G �
{P} s {Q}, requiring us to annotate program points with invariants P and Q,
but also relations R and G on whole thread executions; it states that, if the
pre-condition P holds before s is executed and all the changes by other threads
are included in R, then, after s, Q holds and all the thread’s changes are in-
cluded in G. The annotations required for the program in Fig. 1 are presented in
Fig. 3, including the invariants holding at each program point 1a to 5b, and rely
assertions R1, R2. In particular, to prove that X ≤ Y holds in t1, it is necessary
to rely on the fact that t2 can only increment Y , and so, does not invalidate
invariants of the form X ≤ Y . In Fig. 3, our assertions are very tight, so that
each thread exactly guarantees what the other relies on (R1 = G2 and R2 = G1).
Rely-guarantee is modular: each thread can be checked without looking at the
other threads, but only at the rely assertions. This is in contrast to Owicki and

Relational Thread-Modular Static Value Analysis by Abstract Interpretation 43

checking t1 :
t1
(1a) while random do

(2a) if X < Y then
(3a) X ← X + 1

(4a) endif
(5a) done

R1 = G2

X is unchanged

Y is incremented
0 ≤ Y ≤ 102

checking t2 :
R2 = G1

Y is unchanged

0 ≤ X ≤ Y

t2
(1b) while random do

(2b) if Y < 100 then
(3b) Y ← Y + [1, 3]

(4b) endif
(5b) done

1a : X = 0 ∧ Y ∈ [0, 102]
2a : X ≤ Y ∧X,Y ∈ [0, 102]
3a : X < Y ∧X ∈ [0, 101] ∧ Y ∈ [1, 102]
4a : X ≤ Y ∧X,Y ∈ [1, 102]
5a : X ≤ Y ∧X,Y ∈ [0, 102]

1b : X = 0 ∧ Y = 0
2b : X ≤ Y ∧X,Y ∈ [0, 102]
3b : X ≤ Y ∧X,Y ∈ [0, 99]
4b : X ≤ Y ∧X ∈ [0, 102] ∧ Y ∈ [1, 102]
5b : X ≤ Y ∧X ∈ [0, 102] ∧ Y ∈ [1, 102]

Fig. 3. Rely-guarantee assertions proving that X ≤ Y holds in the program in Fig. 1

Gries’ earlier method [21], where checking a Hoare triple required delving into
the full code of all other threads to check for non-interference. Intuitively, the
rely assertions form an abstraction of the semantics of the threads. While attrac-
tive for its expressive power, classic rely-guarantee relies on user annotations. In
the following, we use abstract interpretation to infer them automatically.

Overview. The article is organized as follows: Sec. 2 presents the formalization
of rely-guarantee in constructive form; Sec. 3 shows how to retrieve our coarse
analysis by abstraction while Sec. 4 presents novel abstractions that convey a
degree of relationality and history-sensitivity; we also discuss there the analysis
in the presence of locks and some uses of trace abstractions. Experimental results
are presented in Sec. 5 and Sec. 6 concludes.

Related Work. There is a large body of work on the analysis of concurrent
programs; we discuss here only the ones most related to our work and refer the
reader to Rinard’s survey [22] for general information. We already mentioned
previous work on thread-modular static analyses [4,19] which only support non-
relational interferences and are limited in precision. Jeannet proposed a precise
relational static analysis [12]; it is not thread-modular and may not scale up.
Works such as [11] bring thread-modular reasoning to model checking. They in-
herit the limitations of the underlying model checking method; in the case of [11],
the system must be finite-state. Moreover, Malkis et al. observed in [15] that it
performs implicitly a non-relational (so-called Cartesian) abstraction; we make
here the same observation concerning our previous work [19], but we go further
by providing non-trivial relational abstractions. Recent works [10,1] seek to alle-
viate the burden of providing user annotations in rely-guarantee proof methods,
but do not achieve complete automation. Our approach is fundamentally similar
to Cousot and Cousot’s formulation of the Owicki, Gries, and Lamport proof
methods in abstract interpretation form [8], but applied to Jones’ method in-
stead. The results in Sec. 2 and Sec. 3 have been partially described before in a
research report [20] and course notes [18]; Sec. 4 and Sec. 5 are novel.

44 A. Miné

2 Rely-Guarantee in Abstract Interpretation Form

The first step in any abstract interpretation is the formalization of the concrete
semantics in a constructive form, using fixpoints. We show how, in a very general
setting, the concrete semantics of a concurrent program can be presented in a
thread-modular way.

2.1 Programs and Transition Systems

Programs. Our programs are composed of a finite set T of threads (the un-
bounded case is discussed in Sec. 3.3). We denote by L the set of program points.
A thread t ∈ T is specified as a control-flow graph by: an entry point et ∈ L, and
a set of instructions inst t ⊆ L × Inst × L. For now, Inst contains assignments
X ← e and comparisons e � e′ (it will be enriched with synchronization prim-
itives in Sec. 4.4). We denote by V the (possibly unbounded) set of variables;
they are global and shared by all the threads. We denote by V the domain of
variable values. To stay general, we deliberately refrain from specifying the set
V, the syntax of expressions e, e′ and of comparison operators �.

Transition Systems. Following Cousot and Cousot [7], we model program
semantics as labelled transition systems, a form of small-step semantics which is
very general and allows reasoning independently from the chosen programming
language. A transition system (Σ,A, I, τ) is given by: a set Σ of program states; a
set A of actions; a set I ⊆ Σ of initial states; a transition relation τ ⊆ Σ×A×Σ;
we will note 〈σ, a, σ′〉 ∈ τ as σ

a→τ σ
′. We instantiate transition systems on our

programs as follows:

– Σ
def
= C ×M: states 〈L, ρ〉 ∈ Σ consist of a control state L ∈ C def

= T → L
associating a current location L(t) ∈ L to each thread t ∈ T and a memory

state ρ ∈ M def
= V → V associating a value ρ(V) ∈ V to each variable V ∈ V ;

– I
def
= { 〈λt. et, λV . 0〉 }: we start with all the threads at their entry point and

variables at zero;

– A def
= T : actions record which thread generates each transition;

– transitions model atomic execution steps of the program:

{ 〈L, ρ〉 t→τ 〈L′, ρ′〉 | 〈L(t), ρ〉 →t 〈L′(t), ρ′〉 ∧ ∀t′
= t : L(t′) = L′(t′) }
where 〈�, ρ〉 →t 〈�′, ρ′〉 def⇐⇒ ∃i ∈ Inst : 〈�, i, �′〉 ∈ inst t ∧ ρ′ ∈ � i �ρ

i.e.: we choose a thread t to run and an instruction i from thread t; we let
it update t’s control state L(t) and the global memory state ρ (the thread
transition being denoted as 〈L(t), ρ〉 →t 〈L′(t), ρ′〉), while the other threads
t′
= t stay at their control location L(t′).

Relational Thread-Modular Static Value Analysis by Abstract Interpretation 45

2.2 Monolithic Concrete Semantics

We first recall the standard, non-modular definition of the semantics of transition
systems. An execution trace is a (finite or infinite) sequence of states interspersed

with actions, which we denote as: σ0
a1→ σ1

a2→ · · · . As we are interested solely in
safety properties, our concrete semantics will ultimately compute the so-called
state semantics, i.e., the set R of states reachable in any program trace. It is
defined classically as the following least fixpoint:1

R def
= lfpR, where R

def
= λS. I ∪ { σ | ∃σ′ ∈ S, a ∈ A : σ′ a→τ σ } . (3)

We also recall [5] that R is actually an abstraction of a more precise semantics:
the trace semantics F , that gathers the finite partial traces (i.e., the finite prefixes
of the execution traces). The semantics F can also be defined as a fixpoint:

F def
= lfpF , where

F
def
= λX. I ∪ { σ0

a1→ · · ·σi
ai+1→ σi+1 | σ0

a1→ · · ·σi ∈ X ∧ σi
ai+1→ τ σi+1 } .

Indeed, R = αreach(F), where αreach(T)
def
= { σ | ∃σ0

a1→ · · ·σn ∈ T : ∃i ≤ n :
σ = σi } forgets the order of states in traces. The extra precision provided by
the trace semantics will prove useful shortly in our thread-modular semantics,
and later for history-sensitive abstractions (Sec. 4.3).

The connection with equation systems is well-known: R is the least solution
of the equation R = R(R). By associating a variable Xc with value in P(M) to
each c ∈ C, we can rewrite the equation to the form ∀c ∈ C : Xc = Fc(X1, . . . ,Xn)
for some functions Fc. The solution satisfies R = { 〈c, ρ〉 | c ∈ C, ρ ∈ Xc }, i.e.,
Xc partitions R by control location. We retrieve standard equation systems for
sequential programs (as in Fig. 2) and derive effective abstract static analyses
but, when applied to concurrent programs, C is large and we get unattractively
large systems, as exemplified by (1) in the introduction.

2.3 Thread-Modular Concrete Semantics

We can now state our first contribution: a thread-modular expression of R.

Local States. We define the reachable local states Rl(t) of a thread t as the
state abstraction R where the control part is reduced to that of t only. The
control part of other threads t′
= t is not lost, but instead stored in auxiliary
variables pct′ (we assume here that L ⊆ V). Thread local states thus live in

Σt
def
= L ×Mt where Mt

def
= Vt → V and Vt def

= V ∪ { pct′ | t′
= t }. We get:

Rl(t) def
= πt(R) where

πt(〈L, ρ〉) def
= 〈L(t), ρ [∀t′
= t : pct′ �→ L(t′)]〉

extended element-wise as πt(X)
def
= { πt(x) | x ∈ X } .

(4)

1 Our functions are monotonic in complete powerset lattices. By Tarski’s theorem, all
the least fixpoints we use in this article are well defined.

46 A. Miné

πt is one-to-one: thanks to the auxiliary variables, no information is lost, which
is important for completeness (this will be exemplified in Ex. 3).

Interferences. For each thread t ∈ T , the interferences it causes I(t) ∈ P(Σ×
Σ) is the set of transitions produced by t in the partial trace semantics F :

I(t) def
= αitf (F)(t), where

αitf (X)(t)
def
= { 〈σi, σi+1〉 | ∃σ0

a1→ σ1 · · ·
an→ σn ∈ X : ai+1 = t } .

(5)

Hence, it is a subset of the transition relation τ of the program, reduced to the
transitions that appear in actual executions only.

Fixpoint Characterization. Rl and I can be directly expressed as fixpoints
of operators on the transition system, without prior knowledge of R nor F . We
first express Rl in fixpoint form as a function of I:

Rl(t) = lfpRt(I), where
Rt(Y)(X)

def
= πt(I) ∪ { πt(σ′) | ∃πt(σ) ∈ X : σ

t→
τ
σ′ } ∪

{ πt(σ′) | ∃πt(σ) ∈ X : ∃t′
= t : 〈σ, σ′〉 ∈ Y (t′) }
Rt has type: (T → P(Σ ×Σ))→ P(Σt)→ P(Σt) .

(6)

The function Rt(Y) is similar to R used to compute the classic reachability
semantics R in (3) of a thread t, but it explores the reachable states by inter-
leaving two kinds of steps: steps from the transition relation of the thread t, and
interference steps from other threads (provided in the argument Y).

Secondly, we express I in fixpoint form as a function of Rl :

I(t) = B(Rl)(t), where
B(Z)(t)

def
= { 〈σ, σ′〉 | πt(σ) ∈ Z(t) ∧ σ t→

τ
σ′ }

B has type: (
∏

t∈T {t} → P(Σt))→ T → P(Σ ×Σ) .

(7)

The function B(Z)(t) collects all the transitions in the transition relation of the
thread t starting from a local state in Z(t).

There is a mutual dependency between equations (6) and (7), which we solve
using a fixpoint. The following theorem, which characterizes reachable local
states Rl in a nested fixpoint form, is proved in [18]:

Theorem 1. Rl = lfpH, where H
def
= λZ. λt. lfpRt(B(Z)) .

We have the following connection with rely-guarantee proofs R,G � {P} s {Q}:

– the reachable local states Rl(t) correspond to state assertions P and Q;
– the interferences I(t) correspond to rely and guarantee assertions R and G;
– proving that a given quintuple is valid amounts to checking that ∀t ∈ T :
Rt(I)(Rl(t)) ⊆ Rl(t) and B(Rl)(t) ⊆ I(t), i.e., a post-fixpoint check.

Relational Thread-Modular Static Value Analysis by Abstract Interpretation 47

Our fixpoints are, however, constructive and can infer the optimal assertions
instead of only checking user-provided ones. Computing lfpRt(I) corresponds
to inferring the state assertions P and Q of a thread t given the interferences I,
while computing lfpH infers both the interferences and the state assertions.

Thread-modularity is achieved as each function Rt(Y) only explores the tran-
sitions 〈σ, t, σ′〉 generated by the thread t in isolation, while relying on its argu-
ment Y to know the transitions of the other threads without having to explore
them. Note that Rt(Y) has the same control space, L, as the reachability op-
erator R for t considered in isolation. Given an equation system characterizing
lfpR after control partitioning: ∀� ∈ L : X� = F�(X1, . . . ,Xn), lfpRt(Y) can be
characterized very similarly, as ∀� ∈ L : X� = F ′

�(X1, . . . ,Xn) ∪ apply �(Y)(X�),
where each F ′

� extends F� to pass auxiliary variables unchanged, but is still de-
fined only from the instructions in inst t, while apply � applies interferences from
Y at �. Hence, Y being fixed, Rt(Y) is similar to an analysis in isolation of t.
Finally, computing lfpH by iteration corresponds to reanalyzing threads with
Rt(Y) until Y stabilizes. Although the semantics is concrete and uncomputable,
we already retrieve the structure of the thread-modular static analysis from pre-
vious work [19] recalled in Sec. 1.

Completeness. Given any Rl(t), we can easily recover R as R = π−1
t (Rl(t))

because πt is one-to-one. We deduce that Thm. 1 gives a complete method to
infer all safety properties of programs.

Example 1. Consider our example from Fig. 1. We do not presentRl and I in full
as these are quite large; we focus on the interferences generated by t2 at point 3b.
They have the form 〈〈(�, 3b), (x, y)〉, 〈(�, 4b), (x, y′)〉〉 where y ∈ [0, 99], y′ ∈ [y+
1, y+3], and x = 0 if � = 1a, x ∈ [0, y] if � = 2a or � = 5a, x ∈ [0, y−1] if � = 3a,
and x ∈ [1, y] if � = 4a. Note that, in the full transition relation τ , Y ← Y +[1, 3]
generates a much larger set of transitions: 〈〈(�, 3b), (x, y)〉, t2, 〈(�, 4b), (x, y′)〉〉
where y′ ∈ [y + 1, y + 3], with no constraint on x nor y.

3 Retrieving Existing Analyses

We now express our former analysis based on non-relational and flow-insensitive
interferences as an abstraction of the thread-modular concrete semantics.

3.1 Flow-Insensitive Abstraction

A first abstraction consists in reducing the domains by forgetting as much control
information as possible. In order to avoid losing too much precision, individual
thread analyses should remain flow-sensitive with respect to their own control
location. Thus, on local states, we remove the auxiliary variables using an ab-
straction αnf

R from P(L ×Mt) to P(L ×M) and, on interferences, we remove

the control part entirely using an abstraction αnf
I from P(Σ×Σ) to P(M×M):

αnf
R (X)

def
= { 〈�, ρ|V 〉 | 〈�, ρ〉 ∈ X }

αnf
I (Y)

def
= { 〈ρ, ρ′〉 | ∃L,L′ ∈ C : 〈〈L, ρ〉, 〈L′, ρ′〉〉 ∈ Y } .

48 A. Miné

Applying these abstractions to Rt and B gives rise to the following coarser
version of (6)–(7), from which we derive an approximate fixpoint semantics Rlnf :

Rlnf def
= lfpλZ. λt. lfpRnf

t (Bnf (Z)), where

Bnf (Z)(t)
def
= { 〈ρ, ρ′〉 | ∃�, �′ ∈ L : 〈�, ρ〉 ∈ Z(t) ∧ 〈�, ρ〉 →t 〈�′, ρ′〉 }

Rnf
t (Y)(X)

def
= Rloc

t (X) ∪ Anf
t (Y)(X)

Rloc
t (X)

def
= {〈et, λV . 0〉} ∪ { 〈�′, ρ′〉 | ∃〈�, ρ〉 ∈ X : 〈�, ρ〉 →t 〈�′, ρ′〉 }

Anf
t (Y)(X)

def
= { 〈�, ρ′〉 | ∃ρ, t′
= t : 〈�, ρ〉 ∈ X ∧ 〈ρ, ρ′〉 ∈ Y (t′) } .

(8)

We retrieve in Rnf
t the interleaving of local transitions Rloc

t and interferences

Anf
t (Y) from Y . Interferences are handled in a flow-insensitive way: if a thread

t′ can generate a transition between two memory states at some point, we assume
that it can happen at any point in the execution of t.Rlnf could be turned into an
effective static analysis by reusing stock abstractions for memory states P(M)
and relations P(M×M); however, abstracting relations can be inefficient in the
large and we will abstract interferences further in the next section.

Example 2. When computing Rlnf in Fig. 1, we obtain the assertions in Fig. 2.
For instance, the interferences from t2 are { 〈(x, y), (x′, y′)〉 | x = x′, y ≤ y′ ≤
y+3, x, y ∈ [0, 99], x ≤ y }. This shows that auxiliary variables and flow-sensitive
interferences are not always necessary to infer interesting properties.

Example 3. Consider a program composed of two identical threads reduced to
an incrementation: t1 is (1a)X ← X + 1(2a) and t2 is (1b)X ← X + 1(2b). At 2a,
the state with auxiliary variables is (pc2 = 1b∧X = 1) ∨ (pc2 = 2b∧X = 2). It
implies X ∈ [1, 2], but also the fact that t2 can only increment X when pc2 = 1b,
i.e., when X = 1. If we forget the auxiliary variables, we also forget the relation
between pc2 and X , and no upper bound on X is stable by the effect of t2;
we get the coarser invariant: X ≥ 1. We retrieve here a classic result: modular
reasoning on concurrent programs is not complete without auxiliary variables.

3.2 Non-relational Interference Abstraction

After removing control information, interferences live in P(M×M). Such re-
lations provide two flavors of relationality: input-output relationality and rela-
tionships between variable values. To recover the analysis described in Sec. 1,
we only remember which variables are modified by interferences and their new
value, using the following abstraction αnr

I from P(M×M) to V → P(V):

αnr
I (Y)

def
= λV . { x ∈ V | ∃〈ρ, ρ′〉 ∈ Y : ρ(V)
= x ∧ ρ′(V) = x } (9)

which forgets variable relationships as it abstracts each variable separately, and
all but the simplest input sensitivity. Applying this abstraction to the flow-
insensitive interference semantics (8), we derive the following, further approxi-
mated fixpoint semantics:

Relational Thread-Modular Static Value Analysis by Abstract Interpretation 49

Rlnr def
= lfpλZ. λt. lfpRnr

t (Bnr (Z)), where

Bnr (Z)(t)
def
= αnr

I (Bnf (Z)(t))

Rnr
t (Y)(X)

def
= Rloc

t (X) ∪ Anr
t (Y)(X)

Anr
t (Y)(X)

def
= { 〈�, ρ[V �→ v]〉 | 〈�, ρ〉 ∈ X, V ∈ V , ∃t′
= t : v ∈ Y (t′)(V) } .

(10)

Example 4. When computing Rlnr in Fig. 1, we obtain the abstract interferences
[X �→ [1, 102], Y �→ ∅] for t1 and [X �→ ∅, Y �→ [1, 102]] for t2, which is sufficient
to infer precise bounds for X and Y , but not to infer the relation X ≤ Y :
when t1 is analyzed, we allow t2 to store any value from [1, 102] into Y , possibly
decrementing Y and invalidating the relation X ≤ Y .

Soundness. The soundness of (8) and (10) is stated respectively as ∀t ∈ T :

Rlnf (t) ⊇ αnf
R (Rl(t)) and Rlnr (t) ⊇ αnr

R (αnf
R (Rl(t))). It is a consequence of the

general property: α(lfpF) ⊆ lfpF � when α ◦ F ⊆ F � ◦ α [5, Thm. 1]. This
soundness proof is far simpler than the ad-hoc proof from [19], and we find it
more satisfying to construct systematically a sound analysis by abstraction of
a concrete semantics rather than presenting an analysis first and proving its
soundness a posteriori.

Static Analysis. We can construct a static analysis based on (10): state sets
X are abstracted by associating to each program point an element of a (possibly
relational) domain abstracting P(M); interferences Y associate to each thread
and variable in V an abstract value abstracting P(V) (for instance, an interval).

Actually, partitioning Rnr
t does not give the equations in Sec. 1 and [19], but

an alternate form where interferences are applied on all variables at all equations.
For instance, instead of X3a = �X < (Y | [1, 102]) �X2a (2), we would get:

X ′
3a = �X < Y �X ′

2a ∪ �Y ← [1, 102] �X ′
3a .

The first form (2) is more efficient as it takes interferences into account lazily,
when reading variables, and it avoids creating extra dependencies in equations.
The correctness of this important optimization is justified by the fact that the
variables X� in (2) actually represent local states up to pending interferences.
Given the non-relational interferences Y ∈ T → V → P(V), we have: X ′

� =
{ ρ | ∃ρ′ ∈ X� : ∀V : ρ(V) = ρ′(V) ∨ ∃t′
= t : ρ(V) ∈ Y (t′)(V) }. The operators
� · � are modified accordingly to operate on pairs 〈X�, Y 〉 instead of X ′

� , as shown
in (2) and, more systematically, in [19].

3.3 Unbounded Thread Instances

Up to now, we have assumed that the set T of threads is finite. Allowing an
infinite T is useful, however, to analyze programs with an unbounded number of
threads. We consider, in this section only, the useful case where T is composed
of a finite set Ts of syntactic threads, a subset of which T∞ ⊆ Ts can appear
more than once (and possibly infinitely often) in T .

50 A. Miné

The fixpoint formulations of Thm. 1, as well as (8), (10), (11) do not require
a finite T ; an infinite T still results in a well defined, if uncomputable, con-
crete semantics. Finiteness is required to construct an effective static analysis,
for three reasons: (i) iterating over the threads in Thm. 1 should terminate, (ii)
control states must be finitely representable, and (iii) maps from threads to ab-
stract interferences must be finitely representable. Applying the flow-insensitive
abstraction from Sec. 3.1 removes infinite control states, solving (ii). As the
local states and interferences of two instances of a syntactic thread are then
isomorphic, we abstract threads from T to Ts by storing information for and
iterating over only one instance of each thread in T∞, solving (i) and (iii). This
abstraction changes slightly the interpretation of the test t′
= t when applying
interferences. For instance, Anr

t from (10) is changed into:

Anr
t (Y)(X)

def
= { 〈�, ρ[V �→ v]〉 | 〈�, ρ〉 ∈ X∧∃t′ : (t
= t′∨t ∈ T∞)∧v ∈ Y (t′)(V) }

i.e., we consider self-interferences for threads with several instances. This ab-
straction makes the analysis of programs with an unbounded number of threads
possible, but with some limit on the precision. The resulting analysis is uniform:
it cannot distinguish between different instances of the same thread nor express
properties that depend on the actual number of running threads.

4 Relational Interferences

We now construct novel interference abstractions that enjoy a level of relation-
ality and flow-sensitivity. We apply them on some examples, including Fig. 1.

4.1 Invariant Interferences

The non-relational abstraction of Sec. 3.2 applies interferences independently to
each variable, destroying any relationship. To improve the precision, we infer
relationships maintained by interferences, i.e., holding both before and after the
interference. We use the following abstraction αinv

I from P(M×M) to P(M),
which joins the domain and the codomain of a relation on states:

αinv
I (Y)

def
= { ρ | ∃ρ′ : 〈ρ, ρ′〉 ∈ Y ∨ 〈ρ′, ρ〉 ∈ Y } .

Note that this abstraction is able to express relations between variables modified
by a thread and variables not modified, such as X ≤ Y for t2 in Fig. 1. However,
unlike our former abstraction αnr

I (10), αinv
I forgets which variables have been

modified. To construct our analysis, we thus combine them in a reduced product :

Rl rel def
= lfpλZ. λt. lfpRrel

t (Brel(Z)), where

Brel(Z)
def
= 〈λt. αnr

I (Bnf (Z)(t)), λt. αinv
I (Bnf (Z)(t))〉

Rrel
t (〈Y nr , Y inv 〉)(X)

def
= Rloc

t (X) ∪ (Anr
t (Y nr)(X) ∩ Ainv

t (Y inv))

Ainv
t (Y inv)

def
= { 〈�, ρ〉 | � ∈ L, ρ ∈ Y inv (t) } .

(11)

Relational Thread-Modular Static Value Analysis by Abstract Interpretation 51

Designing a static analysis derived on this abstraction is straightforward. Inter-
ference invariants Y inv (t) ∈ P(M) are abstracted in any classic domain (e.g.,
octagons [17] to expressX ≤ Y). Computing abstract invariants αinv

I (Bnf (Z)(t))
reduces to computing the abstract join ∪� of the abstract environments of all the
program points of t. Applying abstract interferences in Rrel

t reduces to standard
abstract set operators ∪� and ∩�. A drawback is that the optimization used in
(2) to apply interferences lazily, only at variable reads, can no longer be per-
formed here, resulting in a much slower analysis. We will alleviate the problem
in Sec. 4.4 by using relational invariant interferences only at a few key locations.

4.2 Monotonicity Interference

We now give an example abstraction providing input-output relationality on
interferences. In order to complete the analysis of Fig. 1, we propose a simple
domain that infers the monotonicity of variables. Interferences are abstracted

from P(M×M) to maps V → D, where D
def
= {�,�} indicates whether each

variable is monotonic (�) or not (�), hence the following abstraction:

αmon
I (Y)

def
= λV . if ∀〈ρ, ρ′〉 ∈ Y : ρ(V) ≤ ρ′(V) then � else � .

We would, as before, apply αmon
I to (8) and combine it with (10) or (11) to get a

new reduced product fixpoint semantics. We do not present these formulas, but
rather focus on the key operations in a static analysis. Firstly, we infer approx-
imate monotonicity information for interferences αmon

I (Bnf (Z)(t)): during the
analysis of t, we gather, for each variable V , the set of all the assignments into V ,
and set V to � if they all have the form V ← V + e where e evaluates to positive
values, and set V to � otherwise. Secondly, we use monotonicity information
when applying interferences after an affine comparison operator e1 ≤ e2: if all
the variables in e1 and e2 have monotonic interferences and appear in e2 (resp.
e1) with positive (resp. negative) coefficient, then � e1 ≤ e2 � can be applied after
applying the non-relational interferences. In Fig. 1, for instance, we would get:
X3a = �X < Y �(�X < (Y |[1, 102]) �X2a) instead of (2). Using these abstrac-
tions, we can prove that, at the end of the program, X ≤ Y holds. The domain
is inexpensive as it associates a single binary information to each variable.

4.3 Trace Abstractions

Although state semantics are complete for safety properties, it is often useful
to start from a more expressive, trace concrete semantics to embed some infor-
mation about the history of computations in subsequent abstractions. A classic
example is trace partitioning [16] where, in order to avoid or delay abstract joins
(which often cause imprecision), a disjunction of abstract elements is maintained,
each one keyed to an abstraction of sequences of control locations leading to the
current location (such as, which branch was followed in the previous test).

We can construct a trace version of the thread-modular concrete semantics
from Sec. 2.3 and its abstractions from Sec. 3 and Sec. 4 by upgrading Rt to

52 A. Miné

t1

while random do

if H < 10, 000 then
H ← H + 1

endif
done

t2

while random do

C ← H
done

t3

while random do

if random then T ← 0
else T ← T + (C − L) endif
L ← C

done

Fig. 4. Clock example motivating history-sensitive invariants

append states to partial executions. Applying this idea, for instance, to the flow-
insensitive semantics of Sec. 3.1 which is the basis of our abstractions, we get:

Rnf
t (Y)(X)

def
= {〈et, λV . 0〉} ∪

{ 〈〈�0, ρ0〉, . . . , 〈�, ρ〉, 〈�′, ρ′〉〉 | 〈〈�0, ρ0〉, . . . , 〈�, ρ〉〉 ∈ X, 〈�, ρ〉 →t
〈�′, ρ′〉 } ∪

{ 〈〈�0, ρ0〉, . . . , 〈�, ρ〉, 〈�, ρ′〉〉 | 〈〈�0, ρ0〉, . . . , 〈�, ρ〉〉 ∈ X, ∃t′
= t : 〈ρ, ρ′〉 ∈ Y (t′) }
Rnf

t has type: (T → P(M×M))→ P((L×M)∗)→ P((L ×M)∗)

From the point of view of thread t, an execution is composed of a sequence of
local states (without auxiliary variables) in L ×M; it starts at its entry point
et and is extended by either an execution step 〈�, ρ〉 →

t
〈�′, ρ′〉 of thread t

or an interference form Y that leaves its local control location unchanged. The
semantics can be translated, as before, into an equation system resembling that
of the sequential analysis of the thread t in isolation (Fig. 2) by associating
to each control location � ∈ L a variable X� that stores (an abstraction of) the
partial traces that end in the control state �. A natural consequence is the ability
to use classic trace partitioning techniques intended for sequential programs [16]
when analyzing each thread, independently from interferences.

We illustrate the use for concurrency-specific trace abstractions on the ex-
ample in Fig. 4. This program, inspired from an actual software, contains three
threads: t1 increments a clock H , t2 samples the clock in a latch C, and t3 ac-
cumulates elapsed durations with respect to C into T . We wish to infer that
T ≤ L ≤ C ≤ H , i.e., the accumulated time does not exceed the total elapsed
time. This information can be inferred from the monotonicity of L, C, and H ;
for instance, the assignment L ← C where C is monotonic implies that L ≤ C
holds despite interferences. However, the monotonicity domain of Sec. 4.2 can
only infer the monotonicity of H , not that of C. In particular, in that domain, it
would be unsound for the semantics �C ← H ��X � to deduce the monotonicity
of C from that of H . Otherwise, in the following example, if both H and H ′

were monotonic, we would deduce wrongly that C is also monotonic:

if random then C ← H else C ← H ′ endif . (12)

We need to infer a stronger property, namely that the sequence of values stored
into C is a subsequence of the values stored into H . This is implied by the
assignment C ← H but not by (12), and it implies the monotonicity of C. The
subsequence abstraction αsub

R is an abstraction from sequences of states local to
a thread, i.e., in P((L ×M)∗), to V → P(V), which is defined as:

Relational Thread-Modular Static Value Analysis by Abstract Interpretation 53

αsub
R (X)(V)

def
= {W | ∀〈〈�0, ρ0〉, . . . , 〈�n, ρn〉〉 ∈ X : ∃i0, . . . , in :

∀k : ik ≤ k ∧ ik ≤ ik+1 ∧ ∀j : ρj(V) = ρij (W) } .

It associates to each variable V the set of variables W it can be considered
a subsequence of. Some meaningful subsequence information can be inferred
by only looking at simple assignments of the form V ← W . The domain is
inexpensive; yet, in a reduced product with the monotonicity domain, it allows
inferring all the properties required to precisely analyze Fig. 4.

4.4 Lock Invariants

We now enrich our programs with mutual exclusion locks, so-called mutexes,
to provide thread synchronization. We assume a finite set M of mutexes and
two instructions: lock(m) and unlock(m), to respectively acquire and release a
mutex m ∈M. The semantics is that, at any time, each mutex can be held by at
most one thread. To reflect this, our transition systems are enriched as follows:

– Σ
def
= C ×M× S: states 〈L, ρ, s〉 ∈ Σ include a new scheduler component

s ∈ S def
= M → (T ∪ {⊥}) which remembers, for each mutex, which thread

holds it, if any, or ⊥ if the mutex is unlocked;

– I
def
= {〈λt. et, λV . 0, λm.⊥〉}: all mutexes are initially unlocked;

– instructions 〈�, lock(m), �′〉 ∈ inst t and 〈�, unlock(m), �′〉 ∈ inst t generate
respectively the following transition sets:

{ 〈L[t �→ �], ρ, s〉 t→τ 〈L[t �→ �′], ρ, s[m �→ t]〉 | 〈L, ρ, s〉 ∈ Σ, s(m) = ⊥}
{ 〈L[t �→ �], ρ, s〉 t→τ 〈L[t �→ �′], ρ, s[m �→ ⊥]〉 | 〈L, ρ, s〉 ∈ Σ, s(m) = t } .

Consider the example in Fig. 5.(a), where two identical threads increment a
counter X up to 100. The use of a mutex m ensures that X is not modified
between the test X < 100 and the subsequent incrementation. Ignoring the
mutex in the concrete would give a range of [0, 101] instead of [0, 100] and, with
flow-insensitive interferences, we would not find any upper bound on X (the case
is similar to Ex. 3). We now show that partitioning with respect to the scheduler
state (a technique introduced in [19]) can make the analysis more precise.

Returning to our most concrete, thread-modular semantics of Sec. 2.3, we
enrich the local states Rl of a thread t with information on the set of locks it
holds: Rl(t) ∈ Σt

def
= L × Mt × P(M). We define Rl(t) def

= πt(R) where the
projection πt to local states from (4) is extended to handle s ∈ S as follows:

πt(〈L, ρ, s〉) def
= 〈L(t), ρ [∀t′
= t : pct′ �→ L(t′)] , s−1(t)〉 . (13)

Moreover, we distinguish two kinds of interferences in (C ×M)× (C ×M):
– interferences from t that do not change the set M of mutexes held by t:

Iu(t)(M)
def
=

{ 〈〈Li, ρi〉, 〈Li+1, ρi+1〉〉 |
∃〈L0, ρ0, s0〉

a1→ · · · 〈Ln, ρn, sn〉 ∈ F : ai = t, s−1
i−1(t) = s−1

i (t) = M }

54 A. Miné

t1

while random do

lock(m)
if X < 100 then

X ← X + 1
endif
unlock(m)

done

t2

while random do

lock(m)
if X < 100 then

X ← X + 1
endif
unlock(m)

done

t1

while random do

lock(m)
if X > 0 then

X ← X − 1
Y ← Y − 1

endif
unlock(m)

done

t2

while random do

lock(m)
if X < 10 then

X ← X + 1
Y ← Y + 1

endif
unlock(m)

done

(a) (b)

Fig. 5. (a) Two identical threads concurrently incrementing a counter X protected by
a lock m; and (b) an abstract producer/consumer with resources X and Y

– critical sections that summarize a sequence of transitions beginning with
lock(m) by t, ending with unlock(m) by t, and containing transitions from
any threads in-between:

Is(t)(m)
def
=

{ 〈〈Li, ρi〉, 〈Lj , ρj〉〉 | ∃〈L0, ρ0, s0〉
a1→ · · · 〈Ln, ρn, sn〉 ∈ F :

i < j, si(m) = sj(m) = ⊥, ∀k : i < k < j =⇒ sk(m) = t } .

As in (6), the semantics of a thread t is computed by interleaving execution
steps from the thread and from interferences. However, due to mutual exclusion,
interferences in Iu(t′)(M ′) cannot fire from a local state 〈�, ρ, M〉 of a thread
t
= t′ when M ∩M ′
= ∅. For instance, in Fig. 5.(a), no interference generated
by X ← X + 1 in t2 can run in t1 between lock(m) and unlock(m). Moreover,
mutual exclusion ensures that, if some interference in Iu(t′)(M ′) such that m ∈
M ′ fires from a local state 〈�, ρ, M〉 before t locks m, then t′ must finish its
critical section protected by m before t can lock m; hence, the interference is
subsumed by a transition from Is(t′)(m). If the program is well-synchronized,
i.e., every access to a variable V is protected by a mutex associated to the
variable, then all the interferences are included in Is(t′)(m). Hence, it makes
sense to abstract Iu(t′)(M ′) in a coarse way, and use these interferences only
in case (hopefully rare) of an unsynchronized access (i.e., a data race), while a
more precise abstraction of Is(t′)(m) is used for well-synchronized accesses.

Following Sec. 3.2, we use a flow-insensitive and non-relational abstraction

of Iu, i.e.: Inr ,u(t′)(M ′)
def
= αnr

I (αnf
I (Iu(t′)(M ′))). By partitioning local thread

states with respect to the program location � ∈ L and the mutexes held M ∈
P(M), and applying the optimization technique that an equation variable X�,M

represents a set of local states up to the pending interferences in Inr ,u(t′)(M ′),
assignments V ← e give rise to equations of the form X�,M = �V ← e �X�′,M ,
where e is modified to incorporate all the interferences in Inr ,u(t′)(M ′) such
that t′
= t and M ∩M ′ = ∅ on variables appearing in e, and similarly for tests.
An abstraction of the interferences in Is(t′)(m) is incorporated when t locks m.
When 〈�, lock(m), �′〉 ∈ instt, we generate, for each M ∈ P(M), an equation:

Relational Thread-Modular Static Value Analysis by Abstract Interpretation 55

X�′,M∪{m} = X�,M\{m} ∪
⋃
{ apply(Is(t′)(m))(X�,M\{m}) | t′
= t }

where the exact definition of apply depends on the abstraction chosen to ap-
proximate Is and is discussed below. An unlock(m) instruction generates the
simple equation: X�′,M\{m} = X�,M∪{m}.

Example 5. As Fig. 5.(a) is well synchronized, the interference from Inr ,u on the
assignment X < 100 and the test X ← X + 1 are empty. When choosing the
flow-insensitive non-relational abstraction from Sec. 3.2 for Is as well as Iu, the
interference caused by the critical section on both threads is [X �→ [1, 100]], i.e.,
any value in [1, 100] can be stored intoX . The apply function is given byAnr

t from
(10). The resulting equation for lock(m) is thus: X�′,{m} = �X ← [1, 100] �X�,∅∪
X�,∅. This is sufficient to infer that X is always in [0, 100]. Recall that an analysis
with the same non-relational abstraction but without interference partitioning
would not find any bound on X .

To gain more precision, the invariance abstraction from Sec. 4.1 can be used
for Is. The resulting analysis will infer relational properties of variables that are
guaranteed to hold outside critical sections, but are possibly broken inside. We
call them lock invariants by analogy with class invariants: in a well synchronized
program, threads cannot observe program states where the invariant is broken
by the action of another thread. Unlike the method of Sec. 4.1, we do not need
to apply complex relational operations at all program points: the interferences
are inferred by joining the environments only at lock and unlock instructions,
while the apply function that incorporates interferences, given by Rrel

t (11), is
only applied at lock instructions, which ensures an efficient analysis.

Example 6. Consider the program in Fig. 5.(b) that models an abstract pro-
ducer/consumer, where X and Y denote the amount of resources. The non-
relational interference analysis is sufficient to prove that X is bounded thanks
to the explicit tests on X , but it cannot find any bound on Y . Using the invari-
ant interference abstraction parameterized with the octagon domain [17], it is
possible to infer that X = Y is a lock invariant. This information automatically
infers a bound on Y from the bound on X .

4.5 Weakly Consistent Memories

In the previous sections, we have assumed a sequentially consist model of execu-
tion [14]. Actually, computers may execute programs under more relaxed models,
where different threads may hold inconsistent views of the memory [2], hence
creating behaviors outside the sequentially consistent ones.

We justify informally the soundness of our interference analysis with respect to
weakly consistent memories as follows: firstly, as proved in [19], flow-insensitive
non-relational interference abstractions are naturally sound in a wide variety
of memory models, hence our abstraction Inr ,u is sound; secondly, lock and
unlock instructions provide memory synchronization points, so that any sound

56 A. Miné

monotonicity relational lock analysis time memory iterations alarms
domain invariants

× × 25h 26mn 22 GB 6 4616

� × 30h 30mn 24 GB 7 1100
� � 110h 38mn 90 GB 7 1009

Fig. 6. Experimental results for AstréeA on our 1.7 Mlines 15 threads code target

abstraction of Is is also sound in relaxed models. Finally, the monotonicity ab-
stractions proposed in Sec. 4.2 and Sec. 4.3 only rely on the ordering of sequences
of assignments to each variable independently, and so, are sound in any memory
model that guarantees it (such as the widespread Total Store Ordering).

5 Experimental Results

We have implemented our method in AstréeA, a static analyzer prototype [19]
that extends Astrée. The Astrée analyzer [3] checks for run-time errors in em-
bedded synchronous C programs. A specificity of Astrée is its specialization and
design by refinement: starting from an efficient and coarse interval analyzer, we
added new abstract domains until we reached the zero false alarm goal (i.e., a
proof of absence of run-time error) on a pre-defined selection of target industrial
codes, namely avionic control-command fly-by-wire software. The new abstrac-
tions are made tunable by end-users, to adapt the analysis to different codes in
the same family. The result is an efficient and precise (few alarms) analyzer on
general embedded C code, which is extremely precise (no alarm) on a restricted
family of avionic embedded codes, and which is usable in industrial context [9].

The AstréeA prototype extends Astrée to analyze concurrent C programs. As
Astrée, it does not support dynamic memory allocation nor recursivity (function
calls are inlined for maximum precision) by design, as these are forbidden in
most embedded platforms. It is also a specialized analyzer. Our main target is
a large avionic code composed of 15 threads (without dynamic thread creation)
totaling 1.7 Mlines of C and running under a real-time operating system based
on the ARINC 653 specification; it performs a mix of numeric computations,
reactive computations, network communications, and string formatting. More
information on Astrée, AstréeA, ARINC 653, and our target application can be
found in [3,20,19].

Using the design by refinement that made the success of Astrée, we started
[19] with a simple analysis that reuses Astrée’s sequential analysis and domains
(including domains for machine integers, floats, pointers, relational domains,
etc.), on top of which we added the simple non-relational abstraction of thread
interferences from Sec. 3.2. The analysis time, peak memory consumption, as well
as the number of iterations to stabilize interferences and the number of alarms
are reported in the first line of Fig. 6. The framework presented in this article
was developed when it became clear that non-relational interferences were too
coarse to infer the properties needed to remove some false alarms (an example of

Relational Thread-Modular Static Value Analysis by Abstract Interpretation 57

which was given in Fig. 4). The second line of Fig. 6 presents experimental results
after adding the monotonicity and subsequence domains of Sec. 4.2 and Sec. 4.3,
while the last line also includes the relational lock invariants from Sec. 4.4. The
monotonicity domain provides a huge improvement in precision for a reasonable
cost; this is natural as it is a specialized domain designed to handle very specific
uses of clocks and counters in our target application. The relational lock invariant
domain can remove a few extra alarms, but it is not as well tuned and efficient
yet: for now, it inherits without modification Astrée’s relational domains and
packing strategies (i.e., choosing a priori which variables to track in a relational
way). Nonetheless, relational lock invariants are versatile and general purpose by
nature; we believe that, by parameterizing them in future work with adequate
relational domains and packing strategies, they have the potential to further
improve the precision at a more reasonable cost.

Implementation-wise, adding these new domains did not require a large effort;
in particular, the overall architecture of AstréeA and existing domains required
only marginal changes. We benefited from casting the former analysis as an ab-
straction of a more concrete semantics, from which alternate abstractions could
be derived and combined under a unified thread-modular analysis framework.

6 Conclusion

We have proposed a framework to design thread-modular static analyses that
are able to infer and use relational and history-sensitive properties of thread
interferences. This was achieved by a reinterpretation of Jones’ rely-guarantee
proof method as a constructive fixpoint semantics, which is complete for safety
properties and can be abstracted into static analyses in a systematic way, thus
following the abstract interpretation methodology. We then proposed several
example abstractions tailored to solve specific problems out of the reach of pre-
vious, non-relational interference abstractions, and motivated by actual analysis
problems. We presented encouraging results on the analysis of an embedded
industrial C code using the AstréeA prototype analyzer.

AstréeA is very much a work in progress, and further work is required in or-
der to improve its precision (towards the zero false alarm goal) and widen its
application scope (to analyze more classes of embedded concurrent C software
and hopefully enable a deployment in industry). This will require the design of
new abstractions, in particular to improve our relational lock invariant inference.
Another interesting promising area is the development of trace-related abstrac-
tions, with potential generalization to inferring maximal trace properties, which
includes liveness properties, in a thread-modular way.

References

1. Amjad, H., Bornat, R.: Towards automatic stability analysis for rely-guarantee
proofs. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp.
14–28. Springer, Heidelberg (2009)

2. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification prob-
lem for weak memory models. In: POPL 2010, pp. 7–18. ACM (January 2010)

58 A. Miné

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI 2003,
pp. 196–207. ACM (June 2003)

4. Carré, J.-L., Hymans, C.: From single-thread to multithreaded: An efficient static
analysis algorithm. Technical Report arXiv:0910.5833v1, EADS (October 2009)

5. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Computer Science 277(1-2), 47–103 (2002)

6. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: ISP 1976, pp. 106–130, Dunod, Paris (1976)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252. ACM (January 1977)

8. Cousot, P., Cousot, R.: Invariance proof methods and analysis techniques for paral-
lel programs. In: Automatic Program Construction Techniques, ch. 2, pp. 243–271.
Macmillan, New York (1984)

9. Delmas, D., Souyris, J.: Astrée: From research to industry. In: Riis Nielson, H., Filé,
G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 437–451. Springer, Heidelberg (2007)

10. Flanagan, C., Freund, S.N., Qadeer, S., Seshia, S.A.: Modular verification of mul-
tithreaded programs. Theoretical Computer Science 338(1-3), 153–183 (2005)

11. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

12. Jeannet, B.: Relational interprocedural verification of concurrent programs. Soft-
ware & Systems Modeling 12(2), 285–306 (2013)

13. Jones, C.B.: Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University (June 1981)

14. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. on Computers 28, 690–691 (1979)

15. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-modular verification is cartesian
abstract interpretation. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC
2006. LNCS, vol. 4281, pp. 183–197. Springer, Heidelberg (2006)

16. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer,
Heidelberg (2005)

17. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

18. Miné, A.: Static analysis by abstract interpretation of sequential and multi-thread
programs. In: MOVEP 2012, pp. 35–48 (December 2012)

19. Miné, A.: Static analysis of run-time errors in embedded real-time parallel C pro-
grams. Logical Methods in Computer Science 8(26), 63 (2012)

20. Miné, A.: Static analysis by abstract interpretation of concurrent programs. Ha-
bilitation report, École normale supérieure (May 2013)

21. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Informatica 6(4), 319–340 (1976)

22. Rinard, M.: Analysis of multithreaded programs. In: Cousot, P. (ed.) SAS 2001.
LNCS, vol. 2126, pp. 1–19. Springer, Heidelberg (2001)

23. Watkins, C.B., Walter, R.: Transitioning from federated avionics architectures to
integrated modular avionics. In: DASC 2007, vol. 2.A.1, pp. 1–10. IEEE (October
2007)

Timing Analysis of Parallel Software

Using Abstract Execution

Andreas Gustavsson, Jan Gustafsson, and Björn Lisper

Mälardalen University, Väster̊as, Sweden
{andreas.sg.gustavsson,jan.gustafsson,bjorn.lisper}@mdh.se

Abstract. A major trend in computer architecture is multi-core pro-
cessors. To fully exploit this type of parallel processor chip, programs
running on it will have to be parallel as well. This means that even hard
real-time embedded systems will be parallel. Therefore, it is of utmost
importance that methods to analyze the timing properties of parallel
real-time systems are developed.

This paper presents an algorithm that is founded on abstract interpre-
tation and derives safe approximations of the execution times of parallel
programs. The algorithm is formulated and proven correct for a simple
parallel language with parallel threads, shared memory and synchroniza-
tion via locks.

Keywords: WCET, Parallelism, Multi-core, Abstract interpretation,
Abstract execution.

1 Introduction

A real-time system is a system for which the timing behavior is of great impor-
tance. Hard real-time systems are such that failure to produce the computational
result within certain timing bounds could have catastrophic consequences. One
example of a hard real-time system is the airbag system in automotive vehicles,
another is the control system in airplanes.

A major trend in computer hardware design is multi-core processors. The
processor cores on such a chip typically share some resources, such as some level
of on-chip cache memory, which introduces dependencies and conflicts between
the cores. Processor chips of this kind are already (and will, in the future, be
even more extensively) incorporated in real-time systems.

To fully utilize the multi-core architecture, algorithms will have to be paral-
lelized over multiple tasks (e.g. threads). This means that the tasks will have
to share resources and communicate and synchronize with each other. There
already exist software libraries for explicitly parallelizing sequential code auto-
matically. One example of such a library available for C/C++ and Fortran code
running on shared-memory machines is OpenMP [1]. The conclusion is that par-
allel software running on parallel hardware is already available today and will
probably be the standard way of computing in the future, also for real-time sys-
tems. Thus, it is of crucial importance that methods to derive safe estimations

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 59–77, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

60 A. Gustavsson, J. Gustafsson, and B. Lisper

on the lower and upper bounds of the execution times (also referred to as the
Best-Case and Worst-Case Execution Times – BCET and WCET– respectively:
see [2]) of parallel systems are derived.

This paper presents a novel method that derives safe estimations on the timing
bounds for parallel software. The method mainly targets hard real-time systems
but can be applied to any computer system that can be modeled using the
presented method. More specifically, the main contributions of this paper are
the following.

1. A formally defined parallel programming language (PPL) with shared mem-
ory, locks, and a timing model.

2. An algorithm that derives safe approximations of the BCET and WCET of
PPL programs.

The rest of the paper is organized as follows. Section 2 describes the ideas
behind abstract execution for sequential programs. Section 3 presents some re-
search related to the method presented in this paper. Section 4 presents PPL, a
parallel programming language. Section 5 abstractly interprets the semantics of
PPL. Section 6 presents an algorithm that abstractly executes PPL programs to
find safe approximations of their timing behaviors. Section 7 uses the presented
algorithm to derive safe bounds on the BCET and WCET for an example PPL
program given a simple timing model. Section 8 concludes the paper and presents
directions for future research.

2 Abstract Execution for Sequential Programs

Abstract execution (AE) [3,4] was originally designed as a method to derive
program flow constraints on imperative sequential programs, like bounds on
the number of iterations in loops and infeasible program path constraints. This
information can be used by a subsequent WCET analysis [2] to compute a safe
WCET bound. AE is based on abstract interpretation, and is basically a very
context sensitive value analysis which can be seen as a form of symbolic execution
[3]. The program is hence executed in the abstract domain; i.e. abstract versions
of the program operators are executed and the program variables have abstract
values (which thus correspond to sets of concrete values).

The main difference between AE and a traditional value analysis is that in the
former, an abstract state is not calculated for each program point. Instead, the
abstract state is propagated on transitions in a way similar to the concrete state
for concrete executions of the program. Note that since values are abstracted, a
state can propagate to several new states on a single transition (e.g. when both
branches of a conditional statement could be taken given the abstract values
of the program variables in the current abstract state). Therefore, a worklist
algorithm that collects all possible transitions is needed to safely approximate
all concrete executions. There is a risk that AE does not terminate (e.g. due to
an infinite loop in the analyzed program): however, if it terminates then all final
states of the concrete executions have been safely approximated [3]. Furthermore,

Timing Analysis of Parallel Software Using Abstract Execution 61

nontermination can be completely dealt with by setting a timeout, e.g. as an
upper limit on the number of abstract transitions.

If timing bounds on the statements of the program are known, then AE is
easily extended to calculate BCET and WCET bounds by treating time as a
regular program variable that is updated on each state transition – as with all
other variables, its set of possible final values is then safely approximated when
the algorithm terminates [5].

The approach used in this paper is to calculate safe BCET and WCET esti-
mations by abstract execution of the analyzed program. The timing bounds are
derived based on a safe timing model of the underlying architecture.

3 Related Work

WCET-related research started with the introduction of timing-schemas by Shaw
in 1989 [6]. Shaw presents rules to collapse the CFG (Control Flow Graph) of a
program until a final single value represents the WCET. An excellent overview
of the field of WCET research was presented by Wilhelm et al. in 2008 [2]. The
field of WCET analysis for parallel software is quite new, so there is no solid
foundation of previous research.

Model-checking has been shown adequate for timing analysis of small parts
of single-core systems [7,8]. There are also attempts to analyze parallel systems
using model-checking [9,10,11]. However, complexity matters is a common big
issue for these attempts.

This paper uses a more approximate approach (abstract execution). If an-
alyzing a program consisting of only one thread, the method presented in this
paper becomes comparable to the methods presented by Gustafsson et al. [4] and
Ermedahl et al. [5]. An early version of the analysis presented here [12] could
analyze a subset of PPL (without locks); the version here can analyze any PPL
program.

There are several other approaches towardWCET analysis of parallel and con-
current programs that are not defined based on abstract execution. Mittermayr
and Blieberger [13] use a graph based approach and Kronecker algebra to calcu-
late an estimation on the WCET of a concurrent program. Potop-Butucaru and
Puaut [14] target static timing analysis of parallel processors where “channels”
are used to communicate between, and synchronize, the parallel tasks. The goal
of this approach is to enable the use of the traditional abstract interpretation
techniques for sequential software when analyzing parallel systems. Ozaktas et
al. [15] focus on analyzing synchronization delays experienced by tasks executing
on time-predictable shared-memory multi-core architectures.

The work presented in these publications targets parallel systems with quite
specific restrictions, whereas our analysis targets general parallel systems. We
focus on analyzing parallel systems on code level, where the underlying archi-
tecture could be sequential or parallel, bare metal or an operating system. The
only assumption is that the temporal behavior of the underlying architecture,
and thus of the threads in the analyzed program, can be safely approximated.

62 A. Gustavsson, J. Gustafsson, and B. Lisper

4 PPL: A Parallel Programming Language

In this section, a rudimentary, parallel programming language, PPL, whose se-
mantics includes timing behavior, will be presented. The purpose of PPL is to
put focus on communication through shared memory and synchronization on
shared resources.

The parallel entities of execution will be referred to as threads. PPL provides
both thread-private and globally shared memory, referred to as registers, r ∈
Reg, and variables, x ∈ Var, respectively. Arithmetical operations etc. within
a thread can be performed using the values of the thread’s registers. PPL also
provides shared resources, referred to as locks, lck ∈ Lck, that can be acquired
in a mutually exclusive manner by the threads. The operations (statements)
provided by the instruction set may have variable execution times. (C.f. multi-
core CPUs, which have both local and global memory, a shared memory bus
and atomic, i.e. mutually exclusive, operations.) Note that Reg, Var and Lck are
finite sets of identifiers that are specific to each defined PPL program.

The syntax of PPL, which is a set of operations using the discussed architec-
tural features, is defined in Fig. 1. Π denotes a program, which simply is a (con-
stant and finite) set of threads, i.e. Π = Thrd, where each thread, T ∈ Thrd, is a
pair of a unique identifier, d ∈ ZZ, and a statement, s ∈ Stm. This makes every
thread unique and distinguishable from other threads, even if several threads
consist of the same statement. The axiom-statements (all statements except
the sequentially composed statement, s1;s2) of each thread are assumed to be
uniquely labeled with consecutive labels, l ∈ ZZ. a ∈ Aexp and b ∈ Bexp denote
an arithmetic and a boolean expression, respectively, and n ∈ ZZ is an integer
value.

Π ::= {T1, . . . ,Tm}
T ::= (d, s)

s ::= [halt]l
∣∣ [skip]l ∣∣ [r := a]l

∣∣ [if b goto l′]l
∣∣ [store r to x]l

∣∣
[load r from x]l

∣∣ [unlock lck]l
∣∣ [lock lck]l

∣∣ s1;s2

a ::= n
∣∣ r

∣∣ a1 + a2

∣∣ a1 - a2

∣∣ a1 * a2

∣∣ a1 / a2

b ::= true
∣∣ false

∣∣ !b ∣∣ b1 && b2
∣∣ a1 == a2

∣∣ a1 <= a2

Fig. 1. Syntax of the parallel programming language, PPL

The semantic state of a program is described by a configuration, c, defined as
〈[T, pcT, �T, t a

T]T∈Thrd,�, �〉. The notation [T, pcT, �T, t
a
T]

T∈{T1,...,Tm} expands

to 〈T1, pcT1
, �T1 , t

a
T1
, . . . ,Tm, pcTm

, �Tm , t
a
Tm
〉. This notation is needed since the

number of threads in a program is not known before the program is defined.
pcT is a program counter, pointing to the current statement in T. Note that the

tuple 〈pcT1
, . . . , pcTm

〉, assuming that Thrd = {T1, . . . ,Tm}, defines a unique
program point. �T is a mapping from T’s registers to their values. t a

T is the

Timing Analysis of Parallel Software Using Abstract Execution 63

accumulated execution time of T. � is a mapping from variables and threads to
a set of timestamped values. � is a mapping from locks to their states. The state
for a lock is a tuple containing information on (in the following order) whether
the lock is acquired or not, which thread owns it, a deadline for when the lock
must be acquired by the owning thread, the previous owner, and when it was
last released. (If the reader finds the variable and lock domains peculiar, the
need for their definitions will become clear in Sects. 5 and 6.) The BCET and
WCET for a set of configurations are given in Definition 1.

Definition 1. Given a set of configurations, C, the BCET and WCET for that
set are defined as:{

BCET ::= min({max({t aT | T ∈ Thrd}) | 〈[T, pcT, �T, t a
T]

T∈Thrd
,�, �〉 ∈ C})

WCET ::= max({max({t aT | T ∈ Thrd}) | 〈[T, pcT, �T, t a
T]T∈Thrd,�, �〉 ∈ C})

The semantics of transitions between configurations is described by −−→prg as
defined in Fig. 2. exp1 ? exp2 : exp3 is exp2 if exp1 , and exp3 otherwise. λp ∈
P.exp(p) is a function from p (an element of P) to exp(p). stm gives the current
statement of the issuing thread. time gives a relative execution time for the
current statement of the calling thread (the definition of this function is out of
this paper’s scope, but it is assumed to be non-negative). Given some lock state
mapping and some lock, own gives the owner of the lock (which is ⊥thrd iff the
lock is free; note however that Thrd is not a complete lattice), pown gives the
previous owner of the lock, rel gives the time at which the lock was last released.
Note that similar functions can be defined to mask out the current state – taken
or free – and the lock owner assignment deadline [16].
−→
ax (whose formal definition is omitted due to space limitations; see [16])

describes the semantics of a single statement within a thread when considered in
isolation from other threads: halt stops the execution of the issuing thread (i.e.
none of the input states are changed), halt must be the last statement of each
thread in the program, but could also occur anywhere “within” a thread; skip
performs a no-operation (i.e. it only increments the thread’s program counter);
a register is assigned a value using := (the semantics of evaluating arithmetic
and boolean expressions are defined in the standard fashion [16,17] and will not
be further discussed); conditional branching to an arbitrary axiom-statement
is performed using if (thus, if is used when e.g. implementing loops); store
makes the thread’s set of timestamped values for the given variable consist only
of a tuple consisting of the value of the given register and the value of ta′T (i.e.
t); load takes one of the stored timestamped values for the given variable (after
any store, there is only one such value for the given variable since only one
of the values stored to a variable by a set of threads is saved; c.f. Fig. 2) and
puts the value into the given register; unlock releases the given lock (i.e. sets
the lock’s state to free, its owner to ⊥thrd , its previous owner to the issuing
thread, and its release time to t) if the issuing thread is the owner of the lock,
otherwise unlock is a no-operation; lock is used to acquire the given lock in a
mutually exclusive manner. Note that �′′ is used to choose which thread in a set

64 A. Gustavsson, J. Gustafsson, and B. Lisper

Thrdexe �= ∅ ∧ ∀T ∈ Thrdexe : 〈T, pcT, �T,�, �′′, ta′T 〉−→ax 〈pc′T, �′T,�′
T, �

′
T〉

c = 〈[T, pcT, �T, t a
T]T∈Thrd,�, �〉−−→prg

c′ = 〈[T, (T ∈ Thrdexe ? pc′T : pcT), (T ∈ Thrdexe ? �
′
T : �T), t

a′
T]T∈Thrd,�

′, �′〉
where

t = min({t a
T + time(c,T) | T ∈ Thrd ∧ stm(T, pcT) �= [halt]pcT})

Thrdexe = {T ∈ Thrd | t = t a
T + time(c,T) ∧ stm(T, pcT) �= [halt]pcT}

ta′T =

{
t a
T + time(c,T) if T ∈ Thrdexe

t a
T otherwise

�
′ x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� x if Thrdx = ∅
λT ∈ Thrd.(T = T′ ? (�′

T′ x) T′ : ∅) otherwise

where T′ is one of the threads in Thrdx =

{T ∈ Thrdexe | ∃r ∈ RegT : stm(T, pcT) = [store r to x]pcT}

�
′′ lck =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(free,T′, t ,

pown(� lck),

rel(� lck))

for some T′ ∈ {T ∈ Thrdexe |
stm(T, pcT) = [lock lck]pcT},

if {T ∈ Thrdexe | stm(T, pcT) =
[lock lck]pcT} �= ∅ ∧ own(� lck) = ⊥thrd

� lck otherwise

�
′ lck =

{
�
′
own(�′′ lck) lck if own(�′′ lck) ∈ Thrdexe

� lck otherwise

Fig. 2. c−−→prg c′, the semantics of concrete transitions

of competing threads is successful in acquiring the lock and that the unsuccessful
threads wait in a spin-lock fashion until the lock is released – which means that
configurations can deadlock.

It should be apparent that the threads included in a transition between two
configurations (i.e. the threads included in Thrdexe) are such that they execute
their respective current statement at the earliest point in time at which any such
event occurs (i.e. at t). When a thread issuing lock is assigned the given lock,
it sets the lock’s state to taken. As can be seen, the lock assignment deadline is
always t ; i.e. the time at which a lock-statement is issued on the free lock and a
lock owner assignment occurs (which means that the deadline will always be met
by the assigned lock owner since the owner is guaranteed to be one of the threads in
Thrdexe that issue a lock-statement on the given lock – which also means that the
state of the lock is taken iff the owner of it is not ⊥thrd). The complete semantics
of PPL is formally defined and more extensively discussed in [16].

5 Abstractly Interpreting PPL

In the following, time will be assumed to be abstractly interpreted as an interval
(c.f. [17]). For simplicity, values are also abstractly interpreted using the interval
domain. However, several other domains for values could be used instead.

Timing Analysis of Parallel Software Using Abstract Execution 65

The abstract semantic state of a program is described by an abstract config-
uration, c̃ = 〈[T, pcT, �̃T, t̃ a

T]T∈Thrdc̃
, �̃, �̃〉. Like for the concrete configuration,

pcT is a program counter, pointing to the current statement in T. �̃T is a map-
ping (i.e. a function) from T’s registers to their abstract values (i.e. intervals).
t̃ a
T is the accumulated execution time of T (i.e. an interval). �̃ is a mapping from
variables and threads to a set of timestamped values (i.e. pairs of intervals),
where each such value might represent the actual value stored to the variable
at the interval in time represented by c̃. �̃ is a mapping from locks to tuples
containing information on (in the following order) whether the lock is acquired
or not, which thread owns it, a deadline for when the lock must be acquired by
the owning thread, the previous owner, and when it was last released. It should
thus be apparent that an abstract configuration corresponds to a set of concrete
configurations. Thus, these domains safely over-approximate the corresponding
concrete domains (Lemma 1).

Lemma 1. An abstract configuration safely approximates a set of concrete con-
figurations.

Proof (sketch). This proof is conducted by first showing that there are Galois
Connections [17] between the concrete and abstract domains for register, variable
and lock mappings. Note that since the interval domain is used to approximate
values and times, there exist Galois Connections between the concrete and ab-
stract domains for values and time [17]. Finally, it is shown that there is a Galois
Connection between the configuration domains [16]. ��

From Definition 1, it is easy to see that for the interval domain, the BCET
and WCET must be as given by Definition 2. αt and γt are the abstraction
and concretization functions between the concrete time and abstract time (i.e.
interval) domains [17].

Definition 2. Given a set of abstract configurations, C̃, the concrete BCET
and WCET for that set are defined as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

BCET ::= min({max({min(γt (t̃
a
T)) | T ∈ Thrd}) |

〈[T, pcT, �̃T, t̃ a
T]T∈Thrd, �̃, �̃〉 ∈ C̃})

WCET ::= max({max({max(γt (t̃
a
T)) | T ∈ Thrd}) |

〈[T, pcT, �̃T, t̃ a
T]T∈Thrd, �̃, �̃〉 ∈ C̃})

The semantics of transitions between abstract configurations is described by
−̃−→
prg as defined in Fig. 3. Note that: absTime, although its definition is out of
scope for this paper, is assumed to be a safe approximation of time (Assumption
1); dlLock gives a safe approximation of the concrete point in time when the
given lock must be acquired by some thread [16]; accTime, considering some
thread, T, gives a safe approximation of ta′T as defined in Fig. 2 [16]; ˜own, ˜pown

and ˜rel are the abstract counterparts of the masking functions own, pown

and rel, respectively. (The definitions of the above functions are omitted due
to space limitations; see [16].) i1 +̃t i2 is the sum of the two intervals i1 and i2
[16]. −̃→ax is further discussed below.

66 A. Gustavsson, J. Gustafsson, and B. Lisper

Thrdexe �= ∅ ∧ ∀T ∈ Thrdexe : 〈T, pcT, �̃T, �̃, �̃′′, t̃ a′
T 〉 −̃→ax 〈pc′T, �̃′T, �̃′

T, �̃
′
T〉

c̃ = 〈[T, pcT, �̃T, t̃ a
T]T∈Thrdc̃

, �̃, �̃〉 −̃−→prg
c̃′ = 〈[T, (T ∈ Thrdexe ? pc′T : pcT), (T ∈ Thrdexe ? �̃

′
T : �̃T), t̃

a′
T]T∈Thrdc̃

, �̃′, �̃′〉
where

t̃ r
T = absTime(c̃,T)

t̃all = αt ({min({min(γt(t̃
a
T +̃t t̃

r
T)) | B}),min({max(γt(t̃

a
T +̃t t̃

r
T)) | B})})

where B ⇐⇒ T ∈ Thrdc̃ ∧ stm(T, pcT) �= [halt]pcT ∧ ∀lck ∈ Lck :

(stm(T, pcT) = [lock lck]pcT ⇒ ˜own(̃� lck) ∈ {⊥thrd ,T})
Thrdall

exe = {T ∈ Thrdc̃ | t̃all �̃t (t̃
a
T +̃t t̃

r
T) �= ⊥̃t ∧ stm(T, pcT) �= [halt]pcT}

�̃
′′ lck =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(free,T′,
dlLock(c̃, lck),

˜pown(̃� lck),
˜rel(̃� lck))

for some T′ ∈ {T ∈ Thrdc̃ |
∃l ∈ ZZ : stm(T, l) = [lock lck]l},

if ∃T ∈ Thrdall
exe : ˜own(̃� lck) = ⊥thrd ∧
stm(T, pcT) = [lock lck]pcT

�̃ lck otherwise

Thrdhold = {T ∈ Thrdc̃ | ∃lck ∈ Lck : (stm(T, pcT) = [lock lck]pcT ∧
˜own(̃�′′ lck) �= T) ∨ stm(T, pcT) = [halt]pcT}

t̃ = αt({min({min(γt(t̃
a
T +̃t t̃

r
T)) | T ∈ Thrdc̃ \ Thrdhold}),

min({max(γt(t̃
a
T +̃t t̃

r
T)) | T ∈ Thrdc̃ \ Thrdhold})})

Thrdexe = {T ∈ Thrdc̃ \ Thrdhold | t̃ �̃t (t̃
a
T +̃t t̃

r
T) �= ⊥̃t}

�̃
′ lck =

{
�̃
′
˜own(̃�′′ lck)

lck if ˜own(̃�′′ lck) ∈ Thrdexe

�̃
′′ lck otherwise

�̃
′ =

{
trim(�̃′′, t̃) if Thrdc̃ = Thrd

�̃
′′ otherwise

where (�̃′′ x) T =

{
(�̃′

T x) T if T ∈ Thrdexe

(�̃ x) T otherwise

t̃ a′
T = accTime(〈[T′, pcT′ , �̃T′ , t̃ a

T′]T′∈Thrdc̃
, �̃, �̃′′〉,Thrdexe ,T)

Fig. 3. c̃ −̃−→prg c̃′, semantics of abstract transitions

Assumption 1. It is assumed that absTime is a “non-negative” function in
the interval domain that safely approximates time for any thread in any config-
uration, given a specific value of the thread’s program counter, at a specific point
(interval) in time.

Like in the concrete semantics, which threads that execute their respective
current statement on a given abstract transition is determined based on when
in time this would happen. However, since time is approximated using intervals,
it might not be possible to determine the exact order in which certain events
occur in the abstract case:

Timing Analysis of Parallel Software Using Abstract Execution 67

1. The sets of threads that will execute their current statements on a transition
(i.e. Thrdexe) might differ between the concrete and abstract cases even
if the given concrete configuration is safely approximated by the abstract
one. Because of this, different program points might be “visited” in the
concrete and abstract cases, and thus, the concrete collecting semantics (i.e.
all configurations that are reachable from a set of initial configurations [18,3])
cannot be safely over-approximated using −̃−→prg .

2. The execution of load-statements cannot be safely approximated using the
semantic transition rules if the load is not the sole statement executed in the
transition and the value of a global variable (i.e. a variable that might be read
by at least one thread and that might be written by at least one other thread)
is to be loaded. The reason for this is that other threads might execute
store-statements, writing to the loaded variable, in succeeding transitions
that could semantically occur before the load-statement in the concrete case.

3. A similar reasoning to that for load-statements holds for lock-statements; a
non-acquired lock cannot simply be assigned to one of the threads in Thrdexe
that are trying to acquire it, because in the concrete case, some other thread
might be the first to acquire the lock.

4. Since threads are spinning on locks that are owned by some other thread in
the concrete case, but are frozen (see below) in the abstract case, the timing
behavior of deadlocked transitions cannot be safely approximated.

−̃→
ax (whose formal definition is omitted due to space limitations; see [16]) de-

scribes the abstract semantics of a single statement within a thread when consid-
ered in isolation from other threads. There is no difference between the concrete
and abstract behavior of the halt-, skip-, :=- and unlock-statements; how-
ever, the abstract semantics of evaluating arithmetic (and boolean) expressions
is safely induced from the concrete semantics [16,17]. The abstract semantics
of the if-statement is equivalent to the concrete semantics, with the exception
that the register mapping for the issuing thread is restricted to exclude cases for
which the given boolean expression cannot possibly hold [3,16]. store now adds
a tuple consisting of the value of the given register (i.e. an interval) and the value
of t̃ a′

T (i.e. an interval) to the issuing thread’s (i.e. T’s) set of timestamped values
for the given variable. load now loads the given register of the issuing thread
(i.e. T) with the least upper bound of all values that could be the actual value
of the given variable at t̃ a′T . Note that trim removes timestamped values from
the given variable mapping that will never affect a load-statement for the given
variable in any thread at the given point (i.e. interval) in time or in the future
[16]. lock still acquires the given lock only if the issuing thread is the owner of
the lock (in �̃

′′). A difference between the concrete and abstract semantics for
lock is that whenever some thread issues a lock-statement on a free lock in the
abstract case, any thread that might want to acquire the lock somewhere in the
program could be assigned the ownership of the lock; note that this means that
a lock can be owned by some thread without actually being acquired by that
thread (i.e. the state of the lock is free even if the owner is not ⊥thrd). Another
difference is that in the abstract case, the issuing thread will be frozen (not at

68 A. Gustavsson, J. Gustafsson, and B. Lisper

all considered in transitions) if the given lock is owned by some other thread.
The issuing thread remains frozen until the lock becomes free again.

If a lock-issuing thread has not already acquired the given lock, then it must
be that t̃ a′T has not passed the deadline for the lock owner assignment and that
the release time of the lock is not in the future for lock to successfully acquire
the lock. If t̃ a′T has passed the deadline for the lock owner assignment, then the
lock owner assignment, and thus the configuration, has no concrete counterpart
since it must be that some other thread has already acquired the given lock [16].
If the lock’s release time is in the future, then t̃ a′

T will be increased to safely
approximate the concrete spin-waiting [16].

The abstract transitions described by −̃−→prg safely approximate the correspond-
ing concrete transitions, for each thread individually, if they do not include the
loading of a global variable in some thread and all threads wanting to acquire
some lock are eventually able to do so (Lemma 2); i.e. if the hazards in the
problems described by 2 and 4 above do not occur. The problems described by
1–4 above will be further discussed in the next section.

Lemma 2. For each possible chain of transitions (as described by −−→prg) given
some concrete configuration, there is an abstract chain of transitions (as
described by −̃−→prg) that safely approximates the concrete chain, for each thread
considered individually, given that the initial abstract configuration safely approx-
imates the initial concrete configuration, the thread is eventually able to acquire
any lock it wants to, and either |Thrdexe |
> 1 or there is no thread in Thrdexe
that loads the value of a global variable for each transition on the chain.

Proof (sketch). First note that the timing behavior of each thread can be con-
sidered in isolation from any other thread (follows from Assumption 1) and that
−̃→
ax safely approximates −→ax (which partly follows from Lemma 1) [16].
Since either |Thrdexe |
> 1 or there is no thread in Thrdexe that loads the value

of a global variable for each transition on the chain, it must be that the loading
of global variables’ values are never under-approximated since there cannot be
any store-statements in any thread that can be issued in future transitions and
that could semantically affect the loaded value [16].

And, since any thread that might want to acquire a lock somewhere in the
program can become the owner of that lock when some thread issues a lock-
statement on the given lock, and since all threads that want to acquire a lock
will eventually be able to do so, it must be that there exist safe approximations
of all concrete scenarios including synchronization on locks [16].

Thus, since −̃→ax safely approximates−→ax and the timing behavior of each thread
can be considered in isolation from any other thread, it must be that the lemma
holds. ��

6 Analyzing PPL Programs Using Abstract Execution

The abstract execution function, absExe, defined in Algorithm 1, is a worklist
algorithm that encapsulates −̃−→prg and explicitly handles the problems discussed

Timing Analysis of Parallel Software Using Abstract Execution 69

in the previous section. A configuration is said to be in the final state if all
threads are issuing the halt-statement. A configuration is said to be deadlocked
if it cannot possibly reach the final state according to the semantic transition
rules. A configuration is said to be timed-out if the final state cannot possibly
be reached before a given point in time (i.e. t̃to) according to the semantic
transition rules. A configuration is said to have valid concrete counterparts if
it represents at least one concrete configuration that can semantically occur.
Two cases for which a configuration lacks concrete counterparts are when a
deadlock involves a non-acquired lock and when the owner of a non-acquired
lock misses to acquire it before the expiration of the owner assignment deadline.
Such configurations are discontinued. Note that a configuration representing a
lock owner assignment where the owner of some lock has not yet acquired the
lock, and the owner’s accumulated execution time has not passed the owner
assignment deadline, reaches a configuration with valid concrete counterparts if
the owner issues a lock-statement on (i.e. acquires) the lock before the expiration
of the deadline. A formal definition of absExe is found in [16].

The overall strategy of the algorithm is depicted in Fig. 4 (αconf and γconf
are the abstraction and concretization functions for configurations, respectively
[16]); i.e. given some safely approximated (by c̃0) concrete configuration, c0, there
is an abstract transition sequence (which is safe for each thread individually) for
each possible concrete transition sequence starting from c0, and if the concrete
sequence reaches a final state configuration (cq), then so will the correspond-
ing abstract sequence and the concrete final state configuration will be safely
approximated (considering all threads) by the abstract final state configuration
(̃cw). Note that c1, c2, . . . , cq−1 might not be safely approximated to their en-
tirety by any of the abstract configurations c̃1, c̃2, . . . , c̃w−1 because of problem
1, defined on page 67. Although, it should be noted that for each thread indi-
vidually, there are abstract configurations among these that safely approximate
all the concrete states of that thread on the given concrete transition sequence.

For each thread that issues a load-statement on some global variable while
not being the sole thread in Thrdexe , absExe removes that thread from the
configuration and calls itself recursively (with an adapted timeout value) to
derive all the possible values that could be loaded by the thread. Note that this is
possible since the state for variables is a mapping from variables and threads to a
set of timestamped values. This strategy addresses problem 2. Problem 3 is partly
addressed in the definition of −̃−→prg (c.f. Fig. 3), as discussed in the previous section.
absExe fully addresses the problem by collecting all the possible transitions (i.e.
resulting configurations) and adding them to the worklist. Problem 4 is addressed
by identifying deadlocked configurations and aborting their transitions.

absExe(C̃, t̃to) hence safely approximates the timing behavior of all threads
in any configuration in the input set, C̃, up until t̃to (Theorem 1). It should be
noted that if a transition sequence is aborted before a final state configuration
is reached (e.g. because a deadlocked or timed-out configuration is identified),
then an infinite WCET must be assumed for that transition sequence.

70 A. Gustavsson, J. Gustafsson, and B. Lisper

Algorithm 1. Abstract Execution

1: function absExe(C̃, t̃to)
2: C̃w ← C̃ ; C̃f ← ∅ ; C̃d ← ∅ ; C̃t ← ∅
3: while C̃w �= ∅ do
4: extract a configuration, c̃, from C̃w

5: C̃w ← C̃w \ {c̃}
6: if c̃ is in the final state then
7: C̃f ← C̃f ∪ {c̃}
8: else if c̃ is in a deadlocked state then
9: C̃d ← C̃d ∪ {c̃}
10: else if c̃ is timed-out given t̃to then
11: C̃t ← C̃t ∪ {c̃}
12: else if c̃ has, or could reach a c̃′ with, valid concrete counterparts then
13: if a transition from c̃ includes more than one thread and some thread

would load the value of a global variable then

14: for each thread, T, that loads global data in the transition from c̃
15: let c̃T be like c̃, but with T and all its local states removed
16: let t̃Tto be such that, after this time, the data can be safely loaded
17: let (C̃f

T, C̃
d
T , C̃

t
T) be absExe({c̃T}, t̃Tto)

18: let T’s loaded value be the least upper bound of the values that would
be loaded for all configurations in C̃f

T ∪ C̃ d
T ∪ C̃ t

T ∪ {c̃}
19: end for
20: let c̃′ be like c̃, but with the loading of global data safely approximated
21: C̃w ← C̃w ∪ {c̃′}
22: else
23: C̃w ← C̃w ∪ {c̃′ | c̃ −̃−→prg c̃′}
24: end if
25: end if
26: end while
27: return (C̃f , C̃d, C̃t)
28: end function

Theorem 1. For each final state configuration in the concrete collecting seman-
tics, given some initial set of configurations, C, absExe(C̃, t̃to) derives either
a safe approximation of that configuration or aborts the transition sequence at
some point due to reaching a timed-out configuration with respect to t̃to when-
ever it terminates, given that ∀c ∈ C : ∃c̃ ∈ C̃ : c ∈ γconf (̃c). Likewise, for all
configurations in the concrete collecting semantics that are deadlocked, absExe
derives either a deadlocked or timed-out configuration, whenever it terminates.

Proof (sketch). First note that

1. there are Galois Connections between all concrete and abstract domains,
including the domains for configurations (Lemma 1),

Timing Analysis of Parallel Software Using Abstract Execution 71

2. all concrete transitions described by −−→prg are safely approximated by −̃−→prg ,
provided that whenever a thread issues a load-statement on a global vari-
able, that thread is the sole thread in Thrdexe (Lemma 2),

3. all possible transitions for a given configuration, as described by −̃−→prg are
collected and added to the worklist (note that this safely approximates all
concrete orders in which threads can be assigned the ownerships of locks –
this solves the problem discussed in 3 in the previous section),

4. if a thread issues a load-statement on a global variable and that thread is
not the sole thread in Thrdexe , then it is easy to see that the for each-
loop (i.e. the recursive use of absExe) derives a safe approximation of the
value as seen by that thread when issuing the load-statement (follows from
Assumption 1 and Lemma 2) – this solves the problem discussed in 2 in the
previous section,

5. the recursive calling of absExe eventually stops since the set of threads in
any PPL program is finite,

6. if any of the added configurations lacks (and cannot reach a configuration
that has) valid concrete counterparts, it is trivially safe to discontinue it,

7. deadlocked transition sequences are aborted, but remembered – this solves
the problem discussed in 4 in the previous section, and

8. timed-out transition sequences are aborted, but remembered.

It is thus easy to see that the combined use of −̃−→prg and the explicit handling of
each thread loading the value of a global variable when that thread is not alone in
Thrdexe means that all concrete transition sequences are safely approximated for
each thread individually – this solves the problem discussed in 1 in the previous
section.

But then it must be that for each final state configuration in the concrete
collecting semantics, absExe (whenever it terminates) derives either an over-
approximating final state configuration, or a timed-out configuration. Likewise, it
must be that for each deadlocked configuration in the concrete collecting seman-
tics, absExe (whenever it terminates) derives either a deadlocked configuration
or a timed-out configuration. ��

All the details and the complete soundness proof of the presented algorithm
are given in [16]. Note that Theorem 1 does not state that Algorithm 1 terminates
for all possible inputs. This is because it might not terminate for some inputs –
this problem is inherent in abstract execution.

Since abstract execution is not based on fixed point calculation of the col-
lecting semantics in the traditional sense, widening and narrowing [17] cannot
be used to alleviate this issue. Instead, timeouts on execution times and/or the

c0 −−→prg c1 −−→prg c2 −−→prg . . . −−→
prg

cq

αconf γconf αconf γconf

c̃0 −̃−→prg c̃1 −̃−→prg c̃2 −̃−→prg . . . −̃−→
prg c̃w

Fig. 4. Relation between concrete and abstract transitions

72 A. Gustavsson, J. Gustafsson, and B. Lisper

number of transitions can be set in different ways to guarantee termination of
the analysis for all cases. This is further discussed in Sect. 8.

It should also be noted that, although this paper focuses on timing analysis,
the defined algorithm could also be used for deadlock analyses and termination
analyses [16]. If the returned sets are such that C̃d = ∅ and C̃t = ∅, then the
analyzed program is free of deadlocks and always terminates for all initial states
given by the configurations in C̃. Safe timing bounds for the program are then
easily extracted from the configurations in C̃f . On the other hand, if C̃d
= ∅,
then the program might deadlock for the given initial states, and if C̃t
= ∅,
then it might be that the program does not terminate also due to other reasons,
such as an infinite loop in some thread. However, deadlock and/or termination
analysis is not the main focus of the presented approach and many other more
specialized techniques targeting these areas exist.

7 Example Analysis

To clarify and explain Algorithm 1, this section instantiates it for an example
PPL program containing a parallel loop. The example shows how communication
through shared memory and synchronization on locks are handled.

The purpose of the program in Fig. 5 is to increment the value of the vari-
able x with

∑4
i=1(2i + 3). The task of calculating the sum is equally divided

onto two threads, T1 and T2. By definition, Thrd = {T1,T2}, RegT1
= {p, r},

RegT2
= {p, r}, Var = {x} and Lck = {l}. Note that p (and r) represents local

memory within each thread; i.e. the register-name p (and r) can refer to two
different memory locations – what location it refers to depends on which thread
is considered. It is easy to see that x is a global variable when Thrdc̃ = {T1,T2}
and that there are no global variables when Thrdc̃ = {T1} or Thrdc̃ = {T2}.

T1 = (1, [p := p + 1]1;[r := r + 2 * p + 3]2;[if p < 2 goto 1]3;[lock l]4;

[load p from x]5;[p := p + r]6;[store p to x]7;[unlock l]8;[halt]9)

T2 = (2, [p := p + 1]1;[r := r + 2 * p + 3]2;[if p < 4 goto 1]3;[lock l]4;

[load p from x]5;[p := p + r]6;[store p to x]7;[unlock l]8;[halt]9)

Fig. 5. Example: Program

For the sake of simplicity, the timing model (i.e. absTime) as described in
Table 1 gives that each statement within a thread has constant timing bounds;
a ‘−’ indicates that the entry is not applicable.

Assume that c̃0 = 〈[T, pcT, �̃T, t̃ aT]T∈Thrd, �̃, �̃〉 is as described in Table 2.
Note that p and r for T1, and r for T2, are initialized to [0, 0], and that p

for T2 is initialized to [2, 2]. Table 2 also collects all the configurations derived

Timing Analysis of Parallel Software Using Abstract Execution 73

Table 1. Example: Timing model

pcT (T ∈ Thrd) : 1 2 3 4 5 6 7 8 9

absTime(c̃,T1) : [2, 2] [1, 1] [1, 2] [1, 2] [2, 3] [1, 1] [2, 3] [2, 3] −
absTime(c̃,T2) : [2, 2] [1, 1] [4, 5] [5, 6] [2, 5] [2, 2] [2, 4] [2, 3] −

by absExe({c̃0}, [−∞,∞]). A ‘−’ indicates that the entry is not included in
the configuration. Due to space limitations, the details on how t̃ a

T1
and t̃ a

T2
are

calculated on each transition cannot be fully presented; please refer to [16] in
case of unclarities. If a thread, T ∈ Thrd, is not included in Thrdexe (as defined
in Fig. 3), then t̃ a

T in c̃i is equal to t̃ a
T in c̃i−1, where i > 0. If T is included

in Thrdexe , then t̃ a
T in c̃i is equal to t̃ aT +̃t absTime(̃ci−1,T) in c̃i−1, unless

T has been frozen and must have its accumulated execution time adapted to
approximate the concrete spin-waiting.

Figure 6 shows the relation between the derived configurations. In the figure,
final configurations are circled, timed-out configurations are circled and marked
‘t’, and discontinued (invalid) configurations are crossed out. c̃17 is discontinued
since the timing constraints given by t̃ aT2

+̃t absTime(̃c17 ,T2) = [10, 11] +̃t

[4, 5] = [14, 16] and the lock owner assignment deadline, [−∞, 12], give that
T2 cannot acquire l before T1. c̃

1
12 is discontinued since T1 cannot acquire l

after reaching a halt-statement. Due to space limitations, the algorithm for
calculating the deadline for the lock owner assignments made in the transitions
from c̃6 and c̃11 cannot be presented; please refer to [16] in case of unclarities.
Given c̃27 , a store to x in T2 could affect the value loaded by T1; however, the
value loaded by T1 cannot be affected after t̃ a

T1
+̃t absTime(̃c27 ,T1) = [9, 12] +̃t

[2, 3] = [11, 15], which is hence the timeout value for the recursive instance of
absExe.

absExe({c̃0}, [−∞,∞])

c̃0 c̃1 c̃2 c̃3 c̃4 c̃5 c̃6

c̃17

c̃27

absExe({c̃271}, [11, 15]) c̃271 c̃272
t

c̃8

c̃9c̃10c̃11

c̃112

c̃212c̃13c̃14c̃15c̃16

Fig. 6. Example: Configuration relations

It is apparent that absExe({c̃0}, [−∞,∞]) = ({c̃16}, ∅, ∅); i.e. c̃16 is a final-
state configuration and there are no deadlocked or timed-out configurations. It
is thus easy to see that the program always terminates and that the estimated
timing bounds are (Definition 2):

74 A. Gustavsson, J. Gustafsson, and B. Lisper

T
a
b
le

2
.
E
x
a
m
p
le
:
D
er
iv
ed

co
n
fi
g
u
ra
ti
o
n
s

c̃
pc

T
1
pc

T
2
˜�

T
1
p

˜�

T
1
r

˜�

T
2
p

˜�

T
2
r

t̃
a T
1

t̃
a T
2

(˜�

x
)
T

1
(˜�

x
)
T

2
˜ �

l

c̃ 0
1

1
[0
,0
]

[0
,0
]

[2
,2
]

[0
,0
]

[0
,0
]

[0
,0
]

{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(f
re
e
,⊥

th
rd
,⊥̃

t
,⊥

th
rd
,⊥̃

t
)

c̃ 1
2

2
[1
,1
]

[0
,0
]

[3
,3
]

[0
,0
]

[2
,2
]

[2
,2
]

{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(f
re
e
,⊥

th
rd
,⊥̃

t
,⊥

th
rd
,⊥̃

t
)

c̃ 2
3

3
[1
,1
]

[5
,5
]

[3
,3
]

[9
,9
]

[3
,3
]

[3
,3
]

{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(f
re
e
,⊥

th
rd
,⊥̃

t
,⊥

th
rd
,⊥̃

t
)

c̃ 3
1

3
[1
,1
]

[5
,5
]

[3
,3
]

[9
,9
]

[4
,5
]

[3
,3
]

{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(f
re
e
,⊥

th
rd
,⊥̃

t
,⊥

th
rd
,⊥̃

t
)

c̃ 4
2

1
[2
,2
]

[5
,5
]

[3
,3
]

[9
,9
]

[6
,7
]

[7
,8
]

{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(f
re
e
,⊥

th
rd
,⊥̃

t
,⊥

th
rd
,⊥̃

t
)

c̃ 5
3

1
[2
,2
]

[1
2
,1
2
]
[3
,3
]

[9
,9
]

[7
,8
]

[7
,8
]

{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(f
re
e
,⊥

th
rd
,⊥̃

t
,⊥

th
rd
,⊥̃

t
)

c̃ 6
4

2
[2
,2
]

[1
2
,1
2
]
[4
,4
]

[9
,9
]

[8
,1
0
]

[9
,1
0
]

{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(f
re
e
,⊥

th
rd
,⊥̃

t
,⊥

th
rd
,⊥̃

t
)

c̃
1 7

4
3

[2
,2
]

[1
2
,1
2
]
[4
,4
]

[2
0
,2
0
]
[8
,1
0
]

[1
0
,1
1
]
{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(f
re
e
,T

2
,[
−
∞

,1
2
],
⊥

th
rd
,⊥̃

t
)

c̃
2 7

5
3

[2
,2
]

[1
2
,1
2
]
[4
,4
]

[2
0
,2
0
]
[9
,1
2
]

[1
0
,1
1
]
{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(t
a
ke
n
,T

1
,[
−
∞

,1
2
],
⊥

th
rd
,⊥̃

t
)

c̃
2 7
1
−

3
−

−
[4
,4
]

[2
0
,2
0
]
−

[1
0
,1
1
]
{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(t
a
ke
n
,T

1
,[
−
∞

,1
2
],
⊥

th
rd
,⊥̃

t
)

c̃
2 7
2
−

4
−

−
[4
,4
]

[2
0
,2
0
]
−

[1
4
,1
6
]
{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(t
a
ke
n
,T

1
,[
−
∞

,1
2
],
⊥

th
rd
,⊥̃

t
)

c̃ 8
6

3
[0
,0
]

[1
2
,1
2
]
[4
,4
]

[2
0
,2
0
]
[1
1
,1
5
]
[1
0
,1
1
]
{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(t
a
ke
n
,T

1
,[
−
∞

,1
2
],
⊥

th
rd
,⊥̃

t
)

c̃ 9
7

4
[1
2
,1
2
]
[1
2
,1
2
]
[4
,4
]

[2
0
,2
0
]
[1
2
,1
6
]
[1
4
,1
6
]
{(
[0
,0
],
[0
,0
])
}

{(
[0
,0
],
[0
,0
])
}

(t
a
ke
n
,T

1
,[
−
∞

,1
2
],
⊥

th
rd
,⊥̃

t
)

c̃ 1
0
8

4
[1
2
,1
2
]
[1
2
,1
2
]
[4
,4
]

[2
0
,2
0
]
[1
4
,1
9
]
[1
4
,1
6
]
{(
[0
,0
],
[0
,0
])
,

([
1
2
,1
2
],
[1
4
,1
9
])
}
{(
[0
,0
],
[0
,0
])
}

(t
a
ke
n
,T

1
,[
−
∞

,1
2
],
⊥

th
rd
,⊥̃

t
)

c̃ 1
1
9

4
[1
2
,1
2
]
[1
2
,1
2
]
[4
,4
]

[2
0
,2
0
]
[1
6
,2
2
]
[1
4
,1
6
]
{(
[0
,0
],
[0
,0
])
,

([
1
2
,1
2
],
[1
4
,1
9
])
}
{(
[0
,0
],
[0
,0
])
}

(f
re
e
,⊥

th
rd
,[
−
∞

,1
2
],
T

1
,[
1
6
,2
2
])

c̃
1 1
2
9

4
[1
2
,1
2
]
[1
2
,1
2
]
[4
,4
]

[2
0
,2
0
]
[1
6
,2
2
]
[1
4
,1
6
]
{(
[0
,0
],
[0
,0
])
,

([
1
2
,1
2
],
[1
4
,1
9
])
}
{(
[0
,0
],
[0
,0
])
}

(f
re
e
,T

1
,[
−
∞

,2
8
],
T

1
,[
1
6
,2
2
])

c̃
2 1
2
9

5
[1
2
,1
2
]
[1
2
,1
2
]
[4
,4
]

[2
0
,2
0
]
[1
6
,2
2
]
[1
9
,2
8
]
{(
[0
,0
],
[0
,0
])
,

([
1
2
,1
2
],
[1
4
,1
9
])
}
{(
[0
,0
],
[0
,0
])
}

(t
a
ke
n
,T

2
,[
−
∞

,2
8
],
T

1
,[
1
6
,2
2
])

c̃ 1
3
9

6
[1
2
,1
2
]
[1
2
,1
2
]
[1
2
,1
2
]
[2
0
,2
0
]
[1
6
,2
2
]
[2
1
,3
3
]
{(
[1
2
,1
2
],
[1
4
,1
9
])
}
{(
⊥̃

v
a
l,
⊥̃

t
)}

(t
a
ke
n
,T

2
,[
−
∞

,2
8
],
T

1
,[
1
6
,2
2
])

c̃ 1
4
9

7
[1
2
,1
2
]
[1
2
,1
2
]
[3
2
,3
2
]
[2
0
,2
0
]
[1
6
,2
2
]
[2
3
,3
5
]
{(
[1
2
,1
2
],
[1
4
,1
9
])
}
{(
⊥̃

v
a
l,
⊥̃

t
)}

(t
a
ke
n
,T

2
,[
−
∞

,2
8
],
T

1
,[
1
6
,2
2
])

c̃ 1
5
9

8
[1
2
,1
2
]
[1
2
,1
2
]
[3
2
,3
2
]
[2
0
,2
0
]
[1
6
,2
2
]
[2
5
,3
9
]
{(
[1
2
,1
2
],
[1
4
,1
9
])
}
{(
[3
2
,3
2
],
[2
5
,3
9
])
}
(t
a
ke
n
,T

2
,[
−
∞

,2
8
],
T

1
,[
1
6
,2
2
])

c̃ 1
6
9

9
[1
2
,1
2
]
[1
2
,1
2
]
[3
2
,3
2
]
[2
0
,2
0
]
[1
6
,2
2
]
[2
7
,4
2
]
{(
[1
2
,1
2
],
[1
4
,1
9
])
}
{(
[3
2
,3
2
],
[2
5
,3
9
])
}
(f
re
e
,⊥

th
rd
,[
−
∞

,2
8
],
T

2
,[
2
7
,4
2
])

Timing Analysis of Parallel Software Using Abstract Execution 75

⎧⎪⎪⎪⎨⎪⎪⎪⎩
BCET = min({max({min(γt (t̃

a
T)) | T ∈ Thrd}) |

〈[T, pcT, �̃T, t̃ a
T]T∈Thrd, �̃, �̃〉 ∈ {c̃16}}) = 27

WCET = max({max({max(γt (t̃
a
T)) | T ∈ Thrd}) |

〈[T, pcT, �̃T, t̃ a
T]T∈Thrd, �̃, �̃〉 ∈ {c̃16}}) = 42

8 Conclusions and Future Work

This paper has presented a parallel programming language, PPL, with shared
memory and synchronization primitives acting on locks, and an algorithm that
derives safe approximations of the BCET and WCET of PPL programs, given
some sets of initial states and a timing model of the underlying architecture.
The algorithm is based on abstract execution, which itself is based on abstract
interpretation of the PPL semantics, which helps proving the soundness of the
algorithm due to the existence of a Galois Connection between final concrete
and abstract configurations.

The recursive definition of the algorithm means that several auxiliary states
might have to be searched when some thread loads global data to make sure that
the loaded value is a safe approximation of the corresponding concrete value(s).
However, since this only happens for a limited amount of steps (until no thread
can affect the loaded value anymore), it is expected that this will not have a
huge impact on the complexity of the algorithm.

The over-approximate lock owner assignment could cause a lot of auxiliary
configurations to be added to the worklist. However, this is necessary to cover all
the concrete possibilities for in which orders the locks are taken by the threads.
The discontinuation of cases that are guaranteed to never occur concretely both
lowers the complexity and increases the precision of the algorithm, and also
avoids it to deadlock (which otherwise could happen even though the analyzed
program might be deadlock free [16]).

Future work includes implementing and evaluating the algorithm. This in-
cludes deriving a timing model for some more or less realistic architecture. The
precision of the timing model is expected to have a great impact on the complex-
ity of the analysis presented in this paper. Therefore, efforts will also be made
to decrease the overall complexity of the algorithm. How large parallel programs
that will be analyzable by the presented approach remains an open question until
the implementation and evaluation have been performed. However, it is already
obvious that well-written parallel programs (i.e. programs in which communica-
tion through shared memory and synchronization on locks is minimized while
thread-local computations are maximized; c.f. the example presented in Sect. 7)
will be less complex to analyze.

Future work also includes extending PPL with more statements and opera-
tions so that a real programming language can be modeled. One example is to
include different addressing modes so that for example arrays can be introduced
and operated on. Another example could be to introduce other synchronization
primitives, e.g. barriers.

76 A. Gustavsson, J. Gustafsson, and B. Lisper

As previously mentioned, the risk of nontermination is inherent in abstract
execution since the technique is basically a symbolic execution of the analyzed
program. Detecting deadlocks partly solves this issue. Solving the issue com-
pletely can be done by setting a finite upper limit on the number of abstract
transitions. If the limit is reached, the analysis could simply terminate and result
in an infinite upper bound on the execution time. Other timeouts could also be
set, e.g. as upper limits on the calculated execution times of the threads in the
analyzed program or as an upper limit on the run (i.e. execution) time of the
analysis itself. Note that terminating the analysis before all possible transition
sequences have been fully evaluated (i.e. before a final configuration has been
reached) must result in an infinite estimation of the upper limit on the execution
time (i.e. on the WCET).

The path-explosion problem is still an open issue. In the sequential case of
abstract execution, this is solved by merging states [19]. However, this technique
is not expected to be very successful for the analysis presented in this paper since
all the concrete parts of the system state (i.e. the threads’ program counters, the
lock states and owners, etc.) would have to be equal for the states to be merged.
Defining a more approximate abstract lock state could resolve this issue. How
to make this abstraction will be a challenge for not losing too much precision in
the analysis.

Acknowledgment. The research presented in this paper was supported by the
Swedish Foundation for Strategic Research (SSF) via the project RALF31.

References

1. OpenMP: OpenMP Application Program Interface, Version 3.0 (May 2008),
http://www.openmp.org/mp-documents/spec30.pdf

2. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution time prob-
lem — overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS) 7(3), 1–53 (2008)

3. Gustafsson, J.: Analyzing Execution-Time of Object-Oriented Programs Using Ab-
stract Interpretation. PhD thesis, Dept. of Information Technology, Uppsala Uni-
versity, Sweden (May 2000)

4. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic derivation of
loop bounds and infeasible paths for WCET analysis using abstract execution. In:
Proc. 27th IEEE Real-Time Systems Symposium (RTSS 2006), Rio de Janeiro,
Brazil, pp. 57–66. IEEE Computer Society (December 2006)

5. Ermedahl, A., Gustafsson, J., Lisper, B.: Deriving WCET bounds by abstract
execution. In: Healy, C. (ed.) Proc. 11th International Workshop on Worst-Case
Execution Time Analysis (WCET 2011), Porto, Portugal (July 2011)

1 http://www.es.mdh.se/projects/295-RALF3 Software for Embedded High

Performance Architectures

http://www.openmp.org/mp-documents/spec30.pdf

Timing Analysis of Parallel Software Using Abstract Execution 77

6. Shaw, A.C.: Reasoning about time in higher-order software. IEEE Transactions on
Software Engineering 15, 737–750 (1989)

7. Huber, B., Schoeberl, M.: Comparison of implicit path enumeration and model
checking based WCET analysis. In: Proc. 9th International Workshop on Worst-
Case Execution Time Analysis, WCET 2009 (2009)

8. Metzner, A.: Why model checking can improve WCET analysis. In: Alur, R., Peled,
D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 334–347. Springer, Heidelberg (2004)

9. Gustavsson, A., Ermedahl, A., Lisper, B., Pettersson, P.: Towards WCET analysis
of multicore architectures using UPPAAL. In: Lisper, B. (ed.) Proc. 10th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET 2010), Brussels,
Belgium, OCG, pp. 103–113 (July 2010)

10. Lv, M., Guan, N., Yi, W., Deng, Q., Yu, G.: Efficient instruction cache analysis
with model checking. In: Proc. 16th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS 2010), pp. 33–36 (2010); Work-in-Progress
Session

11. Wu, L., Zhang, W.: Bounding worst-case execution time for multicore processors
through model checking. In: Proc. 16th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS 2010), pp. 17–20 (April 2010); Work-in-
Progress Session

12. Gustavsson, A., Gustafsson, J., Lisper, B.: Toward static timing analysis of parallel
software. In: Vardanega, T. (ed.) Proc. 12th International Workshop on Worst-
Case Execution Time Analysis (WCET 2012). OpenAccess Series in Informatics
(OASIcs), vol. 23, pp. 38–47 (July 2012)

13. Mittermayr, R., Blieberger, J.: Timing analysis of concurrent programs. In: Proc.
12th International Workshop on Worst-Case Execution Time Analysis (WCET
2012), pp. 59–68 (2012)

14. Potop-Butucaru, D., Puaut, I.: Integrated Worst-Case Execution Time Estimation
of Multicore Applications. In: Proc. 13th International Workshop on Worst-Case
Execution Time Analysis (WCET 2013), Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik (2013)

15. Ozaktas, H., Rochange, C., Sainrat, P.: Automatic WCET Analysis of Real-Time
Parallel Applications. In: Proc. 13th International Workshop on Worst-Case Exe-
cution Time Analysis (WCET 2013), Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik (2013)

16. Gustavsson, A.: Static Timing Analysis of Parallel Software Using Abstract
Execution. Licentiate thesis, Mälardalen University (2014),
http://www.es.mdh.se/publications/3025-Static Timing Analysis of

Parallel Software Using Abstract Execution

17. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 2nd edn.
Springer (2005) ISBN 3-540-65410-0

18. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. 4th
ACM Symposium on Principles of Programming Languages, Los Angeles, pp. 238–
252 (January 1977)

19. Gustafsson, J., Ermedahl, A.: Merging techniques for faster derivation of WCET
flow information using abstract execution. In: Kirner, R. (ed.) Proc. 8th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET 2008), Prague,
Czech Republic (July 2008)

http://www.es.mdh.se/publications/3025-Static_Timing_Analysis_of_Parallel_Software_Using_Abstract_Execution
http://www.es.mdh.se/publications/3025-Static_Timing_Analysis_of_Parallel_Software_Using_Abstract_Execution

Doomsday Equilibria for Omega-Regular Games

Krishnendu Chatterjee1,	, Laurent Doyen2,
Emmanuel Filiot3,		, and Jean-François Raskin3,	 	 	

1 IST Austria
2 LSV, ENS Cachan & CNRS

3 CS-Université Libre de Bruxelles – U.L.B

Abstract. Two-player games on graphs provide the theoretical framework for
many important problems such as reactive synthesis. While the traditional study
of two-player zero-sum games has been extended to multi-player games with sev-
eral notions of equilibria, they are decidable only for perfect-information games,
whereas several applications require imperfect-information games.

In this paper we propose a new notion of equilibria, called doomsday equilib-
ria, which is a strategy profile such that all players satisfy their own objective, and
if any coalition of players deviates and violates even one of the players objective,
then the objective of every player is violated.

We present algorithms and complexity results for deciding the existence
of doomsday equilibria for various classes of ω-regular objectives, both for
imperfect-information games, and for perfect-information games. We provide op-
timal complexity bounds for imperfect-information games, and in most cases for
perfect-information games.

1 Introduction

Two-player games on finite-state graphs with ω-regular objectives provide the frame-
work to study many important problems in computer science [31,29,14]. One key
application area is synthesis of reactive systems [5,30,28]. Traditionally, the reactive
synthesis problem is reduced to two-player zero-sum games, where vertices of the graph
represent states of the system, edges represent transitions, one player represents a com-
ponent of the system to synthesize, and the other player represents the purely adversar-
ial coalition of all the other components. Since the coalition is adversarial, the game is
zero-sum, i.e., the objectives of the two players are complementary. Two-player zero-
sum games have been studied in great depth in literature [22,14,17].

Instead of considering all the other components as purely adversarial, a more real-
istic model is to consider them as individual players each with their own objective, as
in protocol synthesis where the rational behavior of the agents is to first satisfy their
own objective in the protocol before trying to be adversarial to the other agents. Hence,

� Supported by Austrian Science Fund (FWF) Grant No P23499-N23, FWF NFN Grant No
S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fel-
lows award.

�� Supported by the Belgian National Fund for Scientific Research.
� � � Supported by ERC Start grant (279499: inVEST).

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 78–97, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Doomsday Equilibria for Omega-Regular Games 79

inspired by recent applications in protocol synthesis, the model of multi-player games
on graphs has become an active area of research in graph games and reactive synthe-
sis [1,16,32]. In a multi-player setting, the games are not necessarily zero-sum (i.e.,
objectives are not necessarily conflicting) and the classical notion of rational behavior
is formalized as Nash equilibria [25]. Nash equilibria perfectly capture the notion of
rational behavior in the absence of external criteria, i.e., the players are concerned only
about their own payoff (internal criteria), and they are indifferent to the payoff of the
other players. In the setting of synthesis, the more appropriate notion is the adversarial
external criteria, where the players are as harmful as possible to the other players with-
out sabotaging with their own objectives. This has inspired the study of refinements of
Nash equilibria, such as secure equilibria [10] (that captures the adversarial external
criteria), rational synthesis [16], and led to several new logics where the non-zero-sum
equilibria can be expressed [11,13,24,33,23]. The complexity of Nash equilibria [32],
secure equilibria [10], rational synthesis [16], and of the new logics has been studied
recently [11,13,24,33].

Along with the theoretical study of refinements of equilibria, applications have also
been developed in the synthesis of protocols. In particular, the notion of secure equi-
libria has been useful in the synthesis of mutual-exclusion protocol [10], and of fair-
exchange protocols [20,7] (a key protocol in the area of security for exchange of digital
signatures). One major drawback that all the notions of equilibria suffer is that the
basic decision questions related to them are decidable only in the setting of perfect-
information games (in a perfect-information games the players perfectly know the
state and history of the game, whereas in imperfect-information games each player
has only a partial view of the state space of the game), and in the setting of multi-
player imperfect-information games they are undecidable [28]. However, the model
of imperfect-information games is very natural because every component of a system
has private variables not accessible to other components, and recent works have demon-
strated that imperfect-information games are required in synthesis of fair-exchange pro-
tocols [19]. In this paper, we provide the first decidable framework that can model them.

We propose a new notion of equilibria which we call doomsday-threatening equilib-
ria (for short, doomsday equilibria). A doomsday equilibria is a strategy profile such that
all players satisfy their own objective, and if any coalition of players deviates and vio-
lates even one of the players objective, then doomsday follows (every player objective is
violated). Note that in contrast to other notions of equilibria, doomsday equilibria con-
sider deviation by an arbitrary set of players, rather than individual players. Moreover,
in case of two-player non-zero-sum games they coincide with the secure equilibria [10]
where objectives of both players are satisfied.

Example 1. Let us consider the two trees of Fig. 1. They model the possible behaviors
of two entities Alice and Bob that have the objective of exchanging messages: mAB

from Alice to Bob, and mBA from Bob to Alice. Assume for the sake of illustration that
mAB models the transfer of property of an house from Alice to Bob, while mBA models
the payment of the price of the house from Bob to Alice.

Having that interpretation in mind, let us consider the left tree. On the one hand,
Alice has as primary objective (internal criterion) to reach either state 2 or state 4,
states in which she has obtained the money, and she has a slight preference for 2 as

80 K. Chatterjee et al.

Fig. 1. A simple example in the domain of Fair Exchange Protocols

in that case she received the money while not transferring the property of her house
to Bob, this corresponds to her adversarial external criterion. On the other hand, Bob
would like to reach either state 3 or 4 (with again a slight preference for 3). Also, it
should be clear that Alice would hate to reach 3 because she would have transferred
the property of her house to Bob but without being paid. Similarly, Bob would hate to
reach 2. To summarize, Alice has the following preference order on the final states of
the protocol: 2 > 4 > 1 > 3, while for Bob the order is 3 > 4 > 1 > 2. Is there
a doomsday threatening equilibrium in this game ? For such an equilibrium to exist,
we must find a pair of strategies that please the two players for their primary objective
(internal criterion): reach {2, 4} for Alice and reach {3, 4} for Bob. Clearly, this is only
possible if at the root Alice plays ”send mAB”, as otherwise we would not reach {1, 2}
violating the primary objective of Bob. But playing that action is not safe for Alice
as Bob would then choose ”not send mBA” because he slightly prefers 3 to 4. It can
be shown that the only rational way of playing (taking into account both internal and
external criteria) is for Alice to play ”not send mAB” and for Bob would to play ”not
send mBA”. This way of playing is in fact the only secure equilibrium of the game but
this is not what we hope from such a protocol.

The difficulty in this exchange of messages comes from the fact that Alice is starting
the protocol by sending her part and this exposes her. To obtain a better behaving pro-
tocol, one solution is to add an additional stage after the exchanges of the two messages
as depicted in the right tree of Fig. 1. In this new protocol, Alice has the possibility
to cancel the exchange of messages (in practice this would be implemented by the in-
tervention of a TTP1). For that new game, the preference orderings of the players are
as follows: for Alice it is 3 > 7 > 1 = 2 = 4 = 6 = 8 > 5, and for Bod it is
5 > 7 > 1 = 2 = 4 = 6 = 8 > 3. Let us now show that there is a doomsday equilib-
rium in this new game. In the first round, Alice should play ”send mAB” as otherwise
the internal objective of Bob would be violated, then Bob should play ”send mBA”,
and finally Alice should play “OK” to validate the exchange of messages. Clearly, this
profile of strategies satisfies the first property of a doomsday equilibrium: both players
have reached their primary objective. Second, let us show that no player has an incen-
tive to deviate from that profile of strategies. First, if Alice deviates then Bob would
play ”not send mBA”, and we obtain a doomsday situation as both players have their
primary objectives violated. Second, if Bob deviates by playing ”not send mBA”, then

1 TTP stands for Trusted Third Party.

Doomsday Equilibria for Omega-Regular Games 81

Table 1. Summary of the results

objectives safety reachability Büchi co-Büchi parity
PSPACE

perfect information PSPACE-C PTIME-C PTIME-C PTIME-C NP-HARD

CONP-HARD

imperfect information EXPTIME-C EXPTIME-C EXPTIME-C EXPTIME-C EXPTIME-C

Alice would cancel the protocol exchange which again produces a doomsday situation.
So, no player has an incentive to deviate from the equilibrium and the outcome of the
protocol is the desired one: the two messages have been fairly exchanged. So, we see
that the threat of a doomsday that brings the action ”Cancel” has a beneficial influence
on the behavior of the two players. �

It should now be clear that multi-player games with doomsday equilibria provide a
suitable framework to model various problems in protocol synthesis. In addition to the
definition of doomsday equilibria, our main contributions are to present algorithms and
complexity bounds for deciding the existence of such equilibria for various classes of
ω-regular objectives both in the perfect-information and in the imperfect-information
cases. In all cases but one, we establish the exact complexity. Our technical contribu-
tions are summarized in Table 1. More specifically:

1. (Perfect-information games). We show that deciding the existence of doomsday
equilibria in multi-player perfect-information games is (i) PTIME-complete for
reachability, Büchi, and coBüchi objectives; (ii) PSPACE-complete for safety ob-
jectives; and (iii) in PSPACE and both NP-hard and coNP-hard for parity objectives.

2. (Imperfect-information games). We show that deciding the existence of doomsday
equilibria in multi-player imperfect-information games is EXPTIME-complete for
reachability, safety, Büchi, coBüchi, and parity objectives.

The area of multi-player games and various notion of equilibria is an active area of
research, but notions that lead to decidability in the imperfect-information setting and
has applications in synthesis has largely been an unexplored area. Our work is a step
towards it.

2 Doomsday Equilibria for Perfect Information Games

In this section, we define game arena with perfect information, ω-regular objectives,
and doomsday equilibria.

Game Arena. An n-player game arena Gwith perfect information is defined as a tuple
(S,P , sinit, Σ,Δ) such that S is a nonempty finite set of states, P = {S1, S2, . . . , Sn}
is a partition of S into n classes of states, one for each player respectively, sinit ∈ S
is the initial state, Σ is a finite set of actions, and Δ : S × Σ → S is the transition
function.

Plays in n-player game arena G are constructed as follows. They start in the initial
state sinit, and then an ω number of rounds are played as follows: the player that owns

82 K. Chatterjee et al.

the current state s chooses a letter σ ∈ Σ and the game evolves to the position s′ =
Δ(s, σ), then a new round starts from s′. So formally, a play in G is an infinite sequence
s0s1 . . . sn . . . such that (i) s0 = sinit and (i) for all i ≥ 0, there exists σ ∈ Σ such that
si+1 = Δ(si, σ). The set of plays in G is denoted by Plays(G), and the set of finite
prefixes of plays by PrefPlays(G). We denote by ρ, ρ1, ρi, . . . plays in G, by ρ(0..j)
the prefix of the play ρ up to position j and by ρ(j) the position j in the play ρ. We also
use π, π1, π2, ... to denote prefixes of plays. Let i ∈ {1, 2, . . . , n}, a prefix π belongs to
Player i if last(π), the last state of π, belongs to Player i, i.e. last(π) ∈ Si. We denote
by PrefPlaysi(G) the set of prefixes of plays in G that belongs to Player i.

Strategies and Strategy Profiles. A strategy for Player i, for i ∈ {1, 2, . . . , n}, is a
mapping λi : PrefPlaysi(G)→ Σ from prefixes of plays to actions. A strategy profile
Λ = (λ1, λ2, . . . , λn) is a tuple of strategies such that λi is a strategy of Player i.
The strategy of Player i in Λ is denoted by Λi, and the the tuple of the remaining
strategies (λ1, . . . , λi−1, λi+1, . . . , λn) by Λ−i. For a strategy λi of Player i, we define
its outcome as the set of plays that are consistent with λi: formally, outcomei(λi) is
the set of ρ ∈ Plays(G) such that for all j ≥ 0, if ρ(0..j) ∈ PrefPlaysi(G), then
ρ(j + 1) = Δ(ρ(j), λi(ρ(0..j))). Similarly, we define the outcome of a strategy profile
Λ = (λ1, λ2, . . . , λn), as the unique play ρ ∈ Plays(G) such that for all positions j, for
all i ∈ {1, 2, . . . , n}, if ρ(j) ∈ PrefPlaysi(G) then ρ(j + 1) = Δ(ρ(j), λi(ρ(0..j))).
Finally, given a state s ∈ S of the game, we denote by Gs the game G whose initial
state is replaced by s.

Winning Objectives. A winning objective (or an objective for short) ϕi for Player
i∈{1, 2, . . . , n} is a set of infinite sequences of states, i.e. ϕi⊆Sω. A strategy λi is
winning for Player i (against all other players) w.r.t. an objective ϕi if outcomei(λi) ⊆
ϕi.

Given an infinite sequence of states ρ ∈ Sω, we denote by visit(ρ) the set of states
that appear at least once along ρ, i.e. visit(ρ) = {s ∈ S|∃i ≥ 0 · ρ(i) = s}, and inf(ρ)
the set of states that appear infinitely often along ρ, i.e. inf(ρ) = {s ∈ S|∀i ≥ 0 · ∃j ≥
i · ρ(i) = s}. We consider the following types of winning objectives:

– a safety objective is defined by a subset of states T ⊆ S that has to be never left:
safe(T) = {ρ ∈ Sω | visit(ρ) ⊆ T };

– a reachability objective is defined by a subset of states T ⊆ S that has to be reached:
reach(T) = {ρ ∈ Sω | visit(ρ) ∩ T
= ∅};

– a Büchi objective is defined by a subset of states T ⊆ S that has to be visited
infinitely often: Büchi(T) = {ρ ∈ Sω | inf(ρ) ∩ T
= ∅};

– a co-Büchi objective is defined by a subset of states T ⊆ S that has to be reached
eventually and never be left: coBüchi(T) = {ρ ∈ Sω | inf(ρ) ⊆ T };

– let d ∈ N, a parity objective with d priorities is defined by a priority function
p : S → {0, 1, . . . , d} as the set of plays such that the smallest priority visited
infinitely often is even: parity(p) = {ρ ∈ Sω|min{p(s) | s ∈ inf(ρ)} is even}.

Büchi, co-Büchi and parity objectives ϕ are called tail objectives because they enjoy
the following closure property: for all ρ ∈ ϕ and all π ∈ S∗, ρ ∈ ϕ iff π · ρ ∈ ϕ.

Doomsday Equilibria for Omega-Regular Games 83

:-)

:-)

:-)

:-(

:-(

:-(

(a) Doomsday (Safety)

s1 s2

s3

:-)

:-)

:-)

:-)

:-)

:-)

(b) Büchi objectives

Fig. 2. Examples of doomsday equilibria for Safety and Büchi objectives

Finally, given an objective ϕ ⊆ Sω and a subset P ⊆ {1, . . . , n}, we write 〈〈P 〉〉ϕ
to denote the set of states s from which the players from P can cooperate to enforce
ϕ when they start playing in s. Formally, 〈〈P 〉〉ϕ is the set of states s such that there
exists a set of strategies {λi | i ∈ P} in Gs, one for each player in P , such that⋂

i∈P outcomei(λi) ⊆ ϕ.

Doomsday Equilibria. A strategy profile Λ = (λ1, λ2, . . . , λn) is a doomsday-
threatening equilibrium (doomsday equilibrium or DE for short) if:

1. it is winning for all the players, i.e. outcome(Λ) ∈
⋂

i ϕi;
2. each player is able to retaliate in case of deviation: for all 1 ≤ i ≤ n, for all

ρ ∈ outcomei(λi), if ρ
∈ ϕi, then ρ ∈
⋂j=n

j=1 ϕj (doomsday), where ϕj denotes
the complement of ϕj in Sω.

In other words, when all players stick to their strategies then they all win, and if any
arbitrary coalition of players deviates and makes even just one other player lose then
this player retaliates and ensures a doomsday, i.e. all players lose.

Relation with Secure Equilibria In two-player games, the doomsday equilibria coincide
with the notion of secure equilibrium [10] where both players satisfy their objectives. In
secure equilibria, for all i ∈ {1, 2}, any deviation of Player i that does not decrease her
payoff does not decrease the payoff of Player 3−i either. In other words, if a deviation
of Player i decreases (strictly) the payoff of Player 3−i, i.e. ϕ3−i is not satisfied, then it
also decreases her own payoff, i.e. ϕi is not satisfied. A two-player secure equilibrium
where both players satisfy their objectives is therefore a doomsday equilibrium.

Example 2. Fig. 2 gives two examples of games with safety and Büchi objectives re-
spectively. Actions are in bijection with edges so they are not represented.

(Safety) Consider the 3-player game arena with perfect information of Fig. 2(a) and
safety objectives. Unsafe states for each player are given by the respective nodes of
the upper part. Assume that the initial state is one of the safe states. This example

84 K. Chatterjee et al.

models a situation where three countries are in peace until one of the countries, say
country i, decides to attack country j. This attack will then necessarily be followed
by a doomsday situation: country j has a strategy to punish all other countries. The
doomsday equilibrium in this example is to play safe for all players.

(Büchi) Consider the 3-player game arena with perfect information of Fig. 2(b)
with Büchi objectives for each player: Player i wants to visit infinitely often one of
its “happy” states. The position of the initial state does not matter. To make things more
concrete, let us use this game to model a protocol where 3 players want to share in each
round a piece of information made of three parts: for all i ∈ {1, 2, 3}, Player i knows
information i mod 3+1 and i mod 3+2. Player i can send or not these informations to
the other players. This is modeled by the fact that Player i can decide to visit the happy
states of the other players, or move directly to s(i mod 3)+1. The objective of each player
is to have an infinite number of successful rounds where they get all information.

There are several doomsday equilibria. As a first one, let us consider the situation
where for all i ∈ {1, 2, 3}, if Player i is in state si, first it visits the happy states,
and when the play comes back in si, it moves to s(i mod 3)+1. This defines an infinite
play that visits all the states infinitely often. Whenever some player deviates from this
play, the other players retaliate by always choosing in the future to go to the next s
state instead of taking their respective loops. Clearly, if all players follow their respec-
tive strategies all happy states are visited infinitely often. Now consider the strategy of
Player i against two strategies of the other players that makes him lose. Clearly, the only
way Player i loses is when the two other players eventually never take their states, but
then all the players lose.

As a second one, consider the strategies where Player 2 and Player 3 always take
their loops but Player 1 never takes his loop, and such that whenever the play deviates,
Player 2 and 3 retialate by never taking their loops. For the same reasons as before this
strategy profile is a doomsday equilibrium.

Note that the first equilibrium requires one bit of memory for each player, to remem-
ber if they visit their s state for the first or second times. In the second equilibrium, only
Player 2 and 3 needs a bit of memory. An exhaustive analysis shows that there is no
memoryless doosmday equilibrium in this example. �

3 Complexity of DE for Perfect Information Games

In this section, we prove the following results:

Theorem 1. The problem of deciding the existence of a doomsday equilibrium in an
n-player perfect information game arena and n objectives (ϕi)1≤i≤n is:

– PTIME-C if the objectives (ϕi)1≤i≤n are either all Büchi, all co-Büchi or all reach-
ability objectives, hardness already holds for 2-player game arenas,

– NP-HARD, CONP-HARD and in PSPACE if (ϕi)1≤i≤n are parity objectives, hard-
ness already holds for 2-player game arenas,

– PSPACE-C if (ϕi)1≤i≤n are safety objectives, and PTIME-C for game arenas with
a fixed number of players.

In the sequel, game arena with perfect information are just called game arena.

Doomsday Equilibria for Omega-Regular Games 85

Tail Objectives. We first present a generic algorithm that works for any tail objective
and then analyze its complexity for the different cases. Then we establish the lower
bounds. Let us consider the following algorithm:

– compute the retaliation region of each player: Ri = 〈〈i〉〉(ϕi ∪
⋂j=n

j=1 ϕj);

– check for the existence of a play within
⋂i=n

i=1 Ri that satisfies all the objectives ϕi.

The correctness of this generic procedure is formalized in the following lemma:

Lemma 1. Let G = (S,P , sinit, Σ,Δ) be an n-player game arena with n tail objec-
tives (ϕi)1≤i≤n. Let Ri = 〈〈i〉〉(ϕi ∪

⋂j=n
j=1 ϕj) be the retaliation region for Player i.

There is a doomsday equilibrium in G iff there exists an infinite play that (1) belongs to⋂i=n
i=1 ϕi and (2) stays within the set of states

⋂i=n
i=1 Ri.

Proof. First, assume that there exists an infinite play ρ such that ρ ∈
⋂

i(ϕi ∩ Rω
i).

From ρ, and the retaliating strategies that exist in all states of Ri for each player, we
show the existence of DE Λ = (λ1, λ2, . . . , λn). Player i plays strategy λi as follows:
he plays according to the choices made in ρ as long as all the other players do so, and
as soon as the play deviates from ρ, Player i plays his retaliating strategy (when it is his
turn to play).

First, let us show that if Player j, for some j
= i, deviates and the turn comes back
to Player i in a state s then s ∈ Ri. Assume that Player j deviates when he is in some
s′ ∈ Sj . As before there was no deviation, by definition of ρ, s′ belongs to Ri. But no
matter what the adversary are doing in a state that belongs to Ri, the next state must be
a state that belongs to Ri (there is only the possibility to leave Ri when Player i plays).
So, by induction on the length of the segment of play that separates s′ and s, we can
conclude that s belongs to Ri. From s, Player i plays a retaliating strategy and so all the
outcomes from s are in ϕi ∪

⋂j=n
j=1 ϕj , and since the objective are tails, the prefix up to

s is not important and we get (from sinit) outcomei(λi) ⊆ ϕi ∪
⋂j=n

j=1 ϕj . Therefore
the second property of the definition of doomsday equilibria is satisfied. Hence Λ is a
DE.

Let us now consider the other direction. Assume that Λ is a DE. Then let us show
that ρ = outcome(Λ) satisfies properties (1) and (2). By definition of DE, we know
that ρ is winning for all the players, so (1) is satisfied. Again by definition of DE,
outcome(Λi) ⊆ ϕi ∪

⋂j=n
j=1 ϕj . Let s be a state of ρ and π the prefix of ρ up to s. For

all outcomes ρ′ of Λi in Gs, we have πρ′ ∈ ϕi ∪
⋂j=n

j=1 ϕj , and since the objectives are

tail, we get ρ′ ∈ ϕi ∪
⋂j=n

j=1 ϕj . Hence s ∈ Ri. Since this property holds for all i, we
get s ∈

⋂
iRi, and (2) is satisfied. ��

Accordingly, we obtain the following upper-bounds:

Lemma 2. The problem of deciding the existence of a doomsday equilibrium in an n-
player game arena can be decided in PTIME for Büchi and co-Büchi objectives, and in
PSPACE for parity objectives.

Proof. By Lemma 1 one first needs to compute the retaliation regions Ri for all
i ∈ {1, . . . , n}. Once the sets Ri have been computed, it is clear that the existence

86 K. Chatterjee et al.

of a play winning for all players is decidable in PTIME for all the three types of objec-
tives. For the Büchi and the co-Büchi cases, let us show how to compute the retaliation
regions Ri. We start with Büchi and we assume that each player wants to visit a set
of states Ti infinitely often. Computing the sets Ri boils down to computing the set
of states s from which Player i has a strategy to enforce the objective (in LTL syntax)
�♦Ti ∨

∧j=n
j=1 ♦�Tj , which is equivalent to the formula �♦Ti ∨ ♦�

⋂j=n
j=1 Tj . This is

equivalent to a disjunction of a Büchi and a co-Büchi objective, which is thus equivalent
to a Streett objective with one Streett pair and can be solved in PTime with a classical
algorithm, e.g. [27]. Similarly, for co-Büchi objectives, one can reduce the computa-
tion of the regions Ri in polynomial time to the disjunction of a Büchi objective and a
co-Büchi objective.

For the parity case, the winning objectives for the retaliation sets can be encoded
compactly as Muller objectives defined by a propositional formula using one proposi-
tion per state. Then they can be solved in PSPACE using the algorithm of Emerson and
Lei presented in [15]. ��

Let us now establish the lower bounds.

Lemma 3. The problem of deciding the existence of a DE in an n-player game arena
is PTIME-HARD for Büchi and co-Büchi objectives, NP-HARD and CONP-HARD for
parity objectives. All the hardness results hold even for 2-player game arenas.

Proof. The hardness for Büchi and co-Büchi objectives holds already for 2 players. We
describe the reduction for Büchi and it is similar for co-Büchi. We reduce the problem
of deciding the winner in a two-player zero-sum game arena G with a Büchi objective
(known as a PTIME-HARD problem [18]) to the existence of a DE for Büchi objectives
with two players. Consider a copy G′ of the game arena G and the following two ob-
jectives: Player 1 has the same Büchi objective as Player 1 in G, and Player 2 has a
trivial Büchi objective (i.e. all states are Büchi states). Then clearly there exists a DE in
G′ iff Player 1 has a winning strategy in G. Details are given in the long version of this
paper [8].

For parity games, we can reduce zero-sum two-player games with a conjunction of
parity objectives (known to be CONP-HARD [12]) to the existence of a DE in a three
player game with parity objectives. Similarly, we can reduce the problem of deciding the
winner in a two-player zero-sum game with a disjunction of parity objectives (known to
be NP-HARD [12]) to the existence of a DE in a two-player game with parity objectives.
The main idea in the two cases is to construct a game arena where one of the players can
retaliate iff Player 1 in the original two-player zero-sum game has a winning strategy.
Details are given in the long version of this paper [8]. ��

As a corollary of this result, deciding the existence of a secure equilibrium in a 2-
player game such that both players satisfy their parity objectives is NP-HARD.

Reachability Objectives. We now establish the complexity of deciding the existence
of a doomsday equilibria in an n-player game with reachability objectives. We first
establish an important property for reachability objectives:

Doomsday Equilibria for Omega-Regular Games 87

Proposition 1. Let G = (S,P , sinit, Σ,Δ) be a game arena, and (Ti)1≤i≤n be n
subsets of S. Let Λ be a doomsday equilibrium in G for the reachability objectives
(Reach(Ti))1≤i≤n. Let s the first state in outcome(Λ) such that s ∈

⋃
i Ti. Then every

player has a strategy from s, against all the other players, to reach his target set.

Proof. W.l.o.g. we can assume that s ∈ T1. If some player, say Player 2, as no strategy
from s to reach his target set T2, then necessarily s
∈ T2 and by determinancy the other
players have a strategy from s to make Player 2 lose. This contradicts the fact that Λ is
a doomsday equilibrium as it means that Λ2 is not a retaliating strategy. ��

Lemma 4. The problem of deciding the existence of a doomsday equilibrium in an n-
player game with reachability objectives is in PTIME.

Proof. The algorithm consists in:
(1) computing the sets Ri from which player i can retaliate, i.e. the set of states s

from which Player i has a strategy to force, against all other players, an outcome such
that ♦Ti ∨ (

∧j=n
j=1 �Tj). This set can be obtained by first computing the set of states

〈〈i〉〉♦Ti from which Player i can force to reach Ti. It is done in PTIME by solving
a classical two-player reachability game. Then the set of states where Player i has a
strategy λi such that outcomei(λi) |= �((

⋂j=n
j=1 Tj) ∨ 〈〈i〉〉♦Ti)}, that is to confine

the plays in states that do not satisfy the reachability objectives of the adversaries or
from where Player i can force its own reachability objective. Again this can be done in
PTIME by solving a classical two-player safety game.

(2) then, checking the existence of some i ∈ {1, . . . , n} and some finite path π

starting from sinit and that stays within
⋂j=n

j=1 Rj before reaching a state s such that

s ∈ Ti and s ∈
⋂j=n

j=1 〈〈j〉〉♦Tj .
Let us now prove the correctness of our algorithm. From its output, we can construct

the strategy profile Λ where each Λj (j = 1, . . . , n) is as follows: follow π up to the
point where either another player deviates and then play the retaliating strategy available
in Ri, or to the point where s is visited for the first time and then play according to a
strategy (from s) that force a visit to Ti no matter how the other players are playing.
Clearly, Λ witnesses a DE. Indeed, if s is reached, then all players have a strategy to
reach their target set (including Player i since s ∈ Ti) . By playing so they will all
eventually reach it. Before reaching s, if some of them deviate, the other have a strategy
to retaliate as π stays in

⋂j=n
j=1 Rj . The other direction follows from Proposition 1. ��

Lemma 5. The problem of deciding the existence of a DE in a 2-player game with
reachability objectives is PTIME-HARD.

Proof. It is proved by an easy reduction from the And-Or graph reachability prob-
lem [18]: if reachability is trivial for one of the two players, the existence of a doomsday
equilibrium is equivalent to the existence of a winning strategy for the other player in a
two-player zero sum reachability game. ��

Safety Objectives. We establish the complexity of deciding the existence of a dooms-
day equilibrium in an n-player game with perfect information and safety objectives.

88 K. Chatterjee et al.

Lemma 6 (EASYNESS). The existence of a doomsday equilibrium in an n-player game
with safety objectives can be decided in PSPACE, and in PTIME for game arenas with
a fixed number of players.

Proof. We start with the general case where the number of players is not fixed and is
part of the input. Let us consider an n-player game arena G = (S,P , sinit, Σ,Δ) and
n safety objectives safe(T1), . . . , safe(Tn) for T1 ⊆ S, . . . , Tn ⊆ S. The algorithm is
composed of the following two steps:

(1) For each Player i, compute the set of states s ∈ S in the game such that Player i
can retaliate whenever necessary, i.e. the set of states s from where there exists a strat-
egy λi for Player i such that outcomei(λi) satisfies ¬(�Ti)→

∧j=n
j=1 ¬�Tj , or equiv-

alently ¬(♦Ti) ∨
∧j=n

j=1 ♦Tj . This can be done in PSPACE using a result by Alur et al.
(Theorem 5.4 of [2]) on solving two-player games whose Player 1’s objective is de-
fined by Boolean combinations of LTL formulas that use only ♦ and ∧. We denote by
Ri the set of states in G where Player i has a strategy to retaliate.

(2) then, verify whether there exists an infinite path in
⋂i=n

i=1 (safe(Ti) ∩Ri).
Now, let us establish the correctness of this algorithm. Assume that an infinite path
exists in

⋂i=n
i=1 (safe(Ti)∩Ri). The strategies λi for each Player i are defined as follows:

play the moves that are prescribed as long as every other players do so, and as soon as
the play deviates from the infinite path, play the retaliating strategy.

It is easy to see that the profile of strategies Λ = (λ1, λ2, . . . , λn) is a DE. Indeed,
the states are all safe for all players as long as they play their strategies. Moreover, as
before deviation the play is within

⋂i=n
i=1 Ri, if Player j deviates, we know that the state

that is reached after deviation is still in
⋂j=n

j=1 Rj and therefore the other players can
retaliate.

Second, assume that Λ = (λ1, λ2, . . . , λn) is a DE in the n-player game G for the
safety objectives (safe(Ti))1≤i≤n. Let ρ = outcome(λ1, λ2, . . . , λn). By definition
of doomsday equilibrium, we know that all states appearing in ρ satisfy all the safety
objectives, i.e. ρ |=

∧i=n
i=1 �Ti. Let us show that the play also remains within

⋂i=n
i=1 Ri.

Let s be a state of ρ, i ∈ {1, . . . , n}, and π the finite prefix of ρ up to s. By definition
of DE we have outcome(λi) |= �Ti ∨

∧j=n
j=1 ♦Tj . Therefore for all outcomes ρ′ of λi

in Gs, πρ′ |= �Ti ∨
∧j=n

j=1 ♦Tj . Moreover, π |=
∧j=n

j=1 �Tj since it is a prefix of ρ.

Therefore ρ′ |= �Ti ∨
∧j=n

j=1 ♦Tj and s ∈ Ri. Since it holds for all i ∈ {1, . . . , n}, we

get s ∈
⋂i=n

i=1 Ri.
Let us now turn to the case where the number of players is fixed. Then clearly, in

the construction above, all the LTL formulas are of fixed size and so all the associated
games can then be solved in polynomial time. ��

Lemma 7 (HARDNESS). The problem of deciding the existence of a doomsday equilib-
rium in an n-player game with safety objectives is PSPACE-HARD, and PTIME-HARD

when the number of players is fixed.

Proof. For the general case, we present a reduction from the problem of deciding the
winner in a zero-sum two-player game with a conjunction of k reachability objectives
(aka generalized reachability games), which is a PSPACE-C problem [3]. The idea of the
reduction is to construct a non-zero sum (k + 1)-player game where one of the players

Doomsday Equilibria for Omega-Regular Games 89

:-)
:-)

s1

:-)

:-)

s2

:-)

:-)

s3

Fig. 3. Game arena with imperfect information and Büchi objectives. Only undistinguishable
states of Player 1 (circle) are depicted. Observations are symmetric for the other players.

has a retaliating strategy iff there is a winning strategy in the generalized reachability
game.

When the number of players is fixed, PTIME-HARDNESS is proved by an easy re-
duction from the And-Or graph reachability problem [18]. ��

4 Complexity of DE for Imperfect Information Games

In this section, we define n-player game arenas with imperfect information. We adapt to
this context the notions of observation, observation of a play, observation-based strate-
gies, and we study the notion of doomsday equilibria when players are restricted to play
observation-based strategies.

Game Arena with Imperfect Information. An n-player game arena with imperfect
information is a tuple G = (S,P , sinit, Σ,Δ, (Oi)1≤i≤n) such that (S,P , sinit, Σ,Δ)
is a game arena (of perfect information) and for all i, 1 ≤ i ≤ n, Oi ⊆ 2S is a
partition of S. Each block in Oi is called an observation of Player i. We assume that
the players play in a predefined order2: for all i ∈ {1, . . . , n}, all q ∈ Si and all σ ∈ Σ,
Δ(q, σ) ∈ S(i mod n)+1.

Observations. For all i ∈ {1, . . . , n}, we denote by Oi(s) ⊆ S the block in Oi that
contains s, that is the observation that Player i has when he is in state s. We say that
two states s, s′ are undistinguishable for Player i if Oi(s) = Oi(s

′). This defines an

2 This restriction is not necessary to obtain the results presented in this section (e.g. Theorem 2)
but it makes some of our notations lighter.

90 K. Chatterjee et al.

equivalence relation on states that we denote by∼i. The notions of plays and prefixes of
plays are slight variations from the perfect information setting: a play inG is a sequence
ρ = s0, σ0, s1, σ1, · · · ∈ (S ·Σ)ω such that s0 = sinit, and for all j ≥ 0, we have sj+1 =
Δ(sj , σj). A prefix of play is a sequence π = s0, σ0, s1, σ1, . . . , sk ∈ (S ·Σ)∗ · S that
can be extended into a play. As in the perfect information setting, we use the notations
Plays(G) and PrefPlays(G) to denote the set of plays in G and its set of prefixes, and
PrefPlaysi(G) for the set of prefixes that end in a state that belongs to Player i. While
actions are introduced explicitly in our notion of play and prefix of play, their visibility
is limited by the notion of observation. The observation of a play ρ = s0, σ0, s1, σ1, . . .
by Player i is the infinite sequence written Obsi(ρ) ∈ (Oi × (Σ ∪ {τ})ω such that for
all j ≥ 0, Obsi(ρ)(j) = (Oi(sj), τ) if sj
∈ Si, and Obsi(ρ)(j) = (Oi(sj), σj) if
sj ∈ Si. Thus, only actions played by Player i are visible along the play, and the actions
played by the other players are replaced by τ . The observation Obsi(π) of a prefix π is
defined similarly. Given an infinite sequence of observations η ∈ (Oi × (Σ ∪ {τ}))ω
for Player i, we denote by γi(η) the set of plays in G that are compatible with η, i.e.
γi(η) = {ρ ∈ Plays(G) | Obsi(ρ) = η}. The functions γi are extended to prefixes of
sequences of observations naturally.

Observation-Based Strategies and Doomsday Equilibria. A strategy λi of Player
i is observation-based if for all prefixes of plays π1, π2 ∈ PrefPlaysi(G) such
that Obsi(π1) = Obsi(π2), it holds that λi(π1) = λi(π2), i.e. while playing with
an observation-based strategy, Player i plays the same action after undistinguish-
able prefixes. A strategy profile Λ is observation-based if each Λi is observation-
based. Winning objectives, strategy outcomes and winning strategies are defined as
in the perfect information setting. We also define the notion of outcome relative to
a prefix of a play. Given an observation-based strategy λi for Player i, and a pre-
fix π = s0, σ0, . . . , sk ∈ PrefPlaysi(G), the strategy λπi is defined for all prefixes
π′ ∈ PrefPlaysi(Gsk) where Gsk is the game arena G with initial state sk, by
λπi (π

′) = λi(π · π′). The set of outcomes of the strategy λi relative to π is defined
by outcomei(π, λi) = π · outcomei(λ

π
i).

The notion of doomsday equilibrium is defined as for games with perfect information
but with the additional requirements that only observation-based strategies can be used
by the players. Given an n-player game arena with imperfect information G and n
winning objectives (ϕi)1≤i≤n (defined as in the perfect information setting), we want
to solve the problem of deciding the existence of an observation-based strategy profile
Λ which is a doomsday equilibrium in G for (ϕi)1≤i≤n.

Example 3. Fig. 3 depicts a variant of the example in the perfect information setting,
with imperfect information. In this example let us describe the situation for Player 1. It
is symmetric for the other players. Assume that when Player 2 or Player 3 send their
information to Player 1 (modeled by a visit to his happy states), Player 1 cannot dis-
tinguish which of Player 2 or 3 has sent the information, e.g. because of the usage of
a cryptographic primitive. Nevertheless, let us show that there exists doomsday equi-
librium. Assume that the three players agree on the following protocol: Player 1 and 2
send their information but not Player 3.

Let us show that this sequence witnesses a doomsday equilibrium and argue that
this is the case for Player 1. From the point of view of Player 1, if all players follow

Doomsday Equilibria for Omega-Regular Games 91

this profile of strategies then the outcome is winning for Player 1. Now, let us consider
two types of deviation. First, assume that Player 2 does not send his information (i.e.
does not visit the happy states). In that case Player 1 will observe the deviation and
can retaliate by not sending his own information. Therefore all the players are losing.
Second, assume that Player 2 does not send his information but Player 3 does. In this
case it is easy to verify that Player 1 cannot observe the deviation and so according
to his strategy will continue to send his information. This is not problematic because
all the plays that are compatible with Player 1’s observations are such that: (i) they
are winning for Player 1 (note that it would be also acceptable that all the sequence
are either winning for Player 1 or losing for all the other players), and (ii) Player 1 is
always in position to retaliate along this sequence of observations. In our solution below
these two properties are central and will be called doomsday compatible and good for
retaliation. �

Generic Algorithm. We present a generic algorithm to test the existence of an
observation-based doomsday equilibrium in a game of imperfect information. To
present this solution, we need two additional notions: sequences of observations which
are doomsday compatible and prefixes which are good for retaliation. These two no-
tions are defined as follows. In a game arena G = (S,P , sinit, Σ,Δ, (Oi)1≤i≤n) with
imperfect information and winning objectives (ϕi)1≤i≤n,

– a sequence of observations η ∈ (Oi × (Σ ∪ {τ}))ω is doomsday compatible (for
Player i) if γi(η) ⊆ ϕi ∪

⋂j=n
j=1 ϕj , i.e. all plays that are compatible with η are

either winning for Player i, or not winning for any other player,
– a prefix κ ∈ (Oi × (Σ ∪ {τ}))∗ · Oi of a sequence of observations is good for

retaliation (for Player i) if there exists an observation-based strategy λRi such that
for all prefixes π ∈ γi(κ) compatible with κ, outcome(π, λRi) ⊆ ϕi ∪

⋂j=n
j=1 ϕj .

The next lemma shows that the notions of sequences of observations that are dooms-
day compatible and good for retaliation prefixes are important for studying the existence
of doomsday equilibria for imperfect information games.

Lemma 8. Let G be an n-player game arena with imperfect information and winning
objectives ϕi, 1 ≤ i ≤ n. There exists a doomsday equilibrium in G if and only if there
exists a play ρ in G such that:

(F1) ρ ∈
⋂i=n

i=1 ϕi, i.e. ρ is winning for all the players,
(F2) for all Player i, 1 ≤ i ≤ n, for all prefixes κ of Obsi(ρ), κ is good for retaliation

for Player i,
(F3) for all Player i, 1 ≤ i ≤ n, Obsi(ρ) is doomsday compatible for Player i.

Proof. First, assume that conditions (F1), (F2) and (F3) hold and show that there exists
a DE in G. We construct a DE (λ1, . . . , λn) as follows. For each player i, the strategy
λi plays according to the (observation of the) path ρ in G, as long as the previous
observations follow ρ. If an observation is unexpected for Player i (i.e., differs from the
sequence in ρ), then λi switches to an observation-based retaliating strategy λRi (we will
show that such a strategy exists as a consequence of (F2)). This is a well-defined profile

92 K. Chatterjee et al.

and a DE because: (1) all strategies are observation-based, and the outcome of the
profile is the path ρ that satisfies all objectives; (2) if no deviation from the observation
of ρ is detected by Player i, then by condition (F3) we know that if the outcome does
not satisfy ϕi, then it does not satisfies ϕj , for all 1 ≤ j ≤ n, (3) if a deviation from
the observation of ρ is detected by Player i, then the sequence of observations of Player
i so far can be decomposed as κ = κ1(o1, σ1) . . . (om, σnm where (o1, σ1) is the first
deviation of the observation of ρ, and (om, σm) is the first time it is Player i’s turn to
play after this deviation (so possibly m = 1). By condition (F2), we know that κ1 is
good for retaliation. Clearly, κ1(o1, σ1) . . . (o�, σ�) is retaliation compatible as well for
all � ∈ {1, . . . ,m} since retaliation goodness is preserved by player j’s actions for all
j. Therefore κ is good for retaliation and by definition of retaliation goodness there
exists an observation-based retaliation strategy λRi for Player i which ensures that that
regardless of the strategies of the opponents in coalition, if the outcome does not satisfy
ϕi, then for all j ∈ {1, . . . , n}, it does not satisfy ϕj either.

Second, assume that there exists a DE (λ1, . . . , λn) in G, and show that (F1), (F2)
and (F3) hold. Let ρ be the outcome of the profile (λ1, . . . , λn). Then ρ satisfies (F1) by
definition of DE. Let us show that it also satisfies (F3). By contradiction, if obsi(ρ) is
not doomsday compatible for Player i, then by definition, there is a path ρ′ in Plays(G)
that is compatible with the observations and actions of player i in ρ (i.e., obsi(ρ) =
obsi(ρ

′)), but ρ′ does not satisfy ϕi, while it satisfies ϕj for some j
= i. Then, given the
strategy λi from the profile, the other players in coalition can choose actions to construct
the path ρ′ (since ρ and ρ′ are observationally equivalent for player i, the observation-
based strategy λi is going to play the same actions as in ρ). This would show that the
profile is not a DE, establishing a contradiction. Hence obsi(ρ) is doomsday compatible
for Player i for all i = 1, . . . , n and (F3) holds. Let us show that ρ also satisfies (F2).
Assume that this not true. Assume that κ is a prefix of obsi(ρ) such that κ is not good
for retaliation for Player i for some i. By definition it means that the other players can
make a coalition and enforce an outcome ρ′, from any prefix of play compatible with
κ, that is winning for one of players of the coalition, say Player j, j
= i, and losing for
Player i. This contradicts the fact that λi belongs to a DE. ��
Theorem 2. The problem of deciding the existence of a doomsday equilibrium in an
n-player game arena with imperfect information and n objectives is EXPTIME-C for
objectives that are either all reachability, all safety, all Büchi, all co-Büchi or all parity
objectives. Hardness already holds for 2-player game arenas.

Proof. By Lemma 8, we know that we can decide the existence of a doomsday equilib-
rium by checking the existence of a play ρ in G that respects the conditions (F1), (F2),
and (F3). It can be shown (see Appendix), for all i ∈ {1, . . . , n}, that the set of good
for retaliation prefixes for Player i is definable by a finite-state automaton Ci, and the
set of observation sequences that are doomsday compatible for Player i is definable by
a Streett automaton Di.

From the automata (Di)1≤i≤n and (Ci)1≤i≤n, we construct using a synchronized
product a finite transition system T and check for the existence of a path in T that
satisfy the winning objectives for each player in G, the Streett acceptance conditions
of the (Di)1≤i≤n, and whose all prefixes are accepted by the automata (Ci)1≤i≤n. The
size of T is exponential in G and the acceptance condition is a conjunction of Streett

Doomsday Equilibria for Omega-Regular Games 93

and safety objectives. The existence of such a path can be established in polynomial
time in the size of T , so in exponential time in the size of G. The EXPTIME-hardness is
a consequence of the EXPTIME-hardness of two-player games of imperfect information
for all the considered objectives [4,9]. ��

5 Conclusion

We defined the notion of doomsday threatening equilibria both for perfect and imperfect
informationn player games with omega-regular objectives. This notion generalizes to n
player games the winning secure equilibria [10]. Applications in the analysis of security
protocols are envisioned and will be pursued as future works.

We have settled the exact complexity in games of perfect information for almost
all omega-regular objectives with complexities ranging from PTIME to PSPACE, the
only small gap that remains is for parity objectives where we have a PSPACE algorithm
and both NP and CONP-hardness. Surprisingly, the existence of doomsday threatening
equilibria in n player games with imperfect information is decidable and more precisely
EXPTIME-C for all the objectives that we have considered.

In a long version of this paper [8], we provide a solution in 2EXPTIME for deciding
the existence of a doomsday threatening equilibrium in a game whose objectives are
given as LTL formula (this solution is optimal as it is easy to show that the classical LTL
realizability problem can be reduced to the DE existence problem). We also provide a
Safraless solution [21] suitable to efficient implementation.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 49, 672–713 (2002)

2. Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. TOCL 5
(2004)

3. Alur, R., La Torre, S., Madhusudan, P.: Playing games with boxes and diamonds. In: Amadio,
R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 128–143. Springer, Heidel-
berg (2003)

4. Berwanger, D., Doyen, L.: On the power of imperfect information. In: FSTTCS, pp. 73–82
(2008)

5. Büchi, J.R., Landweber, L.H.: Definability in the monadic second-order theory of successor.
J. Symb. Log. 34(2), 166–170 (1969)

6. Cai, Y., Zhang, T., Luo, H.: An improved lower bound for the complementation of rabin
automata. In: LICS, pp. 167–176. IEEE Computer Society (2009)

7. Chadha, R., Kremer, S., Scedrov, A.: Formal analysis of multiparty contract signing. J. Au-
tom. Reasoning 36(1-2), 39–83 (2006)

8. Chatterjee, K., Doyen, L., Filiot, E., Raskin, J.-F.: Doomsday equilibria for omega-regular
games. CoRR, abs/1311.3238 (2013)

9. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular
games with imperfect information. LMCS 3(3) (2007)

10. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. Theor. Com-
put. Sci. 365(1-2), 67–82 (2006)

11. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6), 677–693
(2010)

94 K. Chatterjee et al.

12. Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: Seidl, H. (ed.)
FOSSACS 2007. LNCS, vol. 4423, pp. 153–167. Springer, Heidelberg (2007)

13. Da Costa Lopes, A., Laroussinie, F., Markey, N.: ATL with strategy contexts: Expressiveness
and model checking. In: FSTTCS. LIPIcs, vol. 8, pp. 120–132 (2010)

14. Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: FOCS, pp. 368–
377. IEEE Comp. Soc. (1991)

15. Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time strikes back. In:
POPL, pp. 84–96 (1985)

16. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R.
(eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)

17. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games, vol. 2500.
Springer (2002)

18. Immerman, N.: Number of quantifiers is better than number of tape cells. Journal of Com-
puter and System Sciences 22, 384–406 (1981)

19. Jamroga, W., Mauw, S., Melissen, M.: Fairness in non-repudiation protocols. In: Meadows,
C., Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 122–139. Springer, Heidel-
berg (2012)

20. Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation and fair exchange
protocols. Journal of Computer Security 11(3), 399–430 (2003)

21. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS (2005)
22. Martin, D.: Borel determinacy. Annals of Mathematics 102, 363–371 (1975)
23. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: What makes ATL* decidable? A decid-

able fragment of strategy logic. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 193–208. Springer, Heidelberg (2012)

24. Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: Proc. of FSTTCS.
LIPIcs, vol. 8, pp. 133–144, Schloss Dagstuhl - LZfI (2010)

25. Nash, J.F.: Equilibrium points in n-person games. PNAS 36, 48–49 (1950)
26. Piterman, N.: From nondeterministic Büchi and streett automata to deterministic parity au-

tomata. Logical Methods in Computer Science 3(3) (2007)
27. Piterman, N., Pnueli, A.: Faster solutions of rabin and streett games. In: LICS, pp. 275–284

(2006)
28. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM

Press (1989)
29. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans.

Amer. Math. Soc. 141, 1–35 (1969)
30. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.

SIAM Journal on Control and Optimization 25(1), 206–230 (1987)
31. Shapley, L.S.: Stochastic games. PNAS 39, 1095–1100 (1953)
32. Ummels, M., Wojtczak, D.: The complexity of nash equilibria in stochastic multiplayer

games. Logical Methods in Computer Science 7(3) (2011)
33. Wang, F., Huang, C.-H., Yu, F.: A temporal logic for the interaction of strategies. In: Katoen,

J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 466–481. Springer, Heidelberg
(2011)

A Additional Details – Doomsday Equilibria for Imperfect
Information Games

We present automata constructions to recognise sequences of observations that are
doomsday compatible and prefixes that are good for retaliation.

Doomsday Equilibria for Omega-Regular Games 95

Lemma 9. Given an n-player game G with imperfect information and a set of reach-
ability, safety or parity objectives (ϕi)1≤i≤n, we can construct for each Player i, in
exponential time, a deterministic Streett automaton Di whose language is exactly the
set of sequences of observations η ∈ (Oi× (Σ ∪{τ}))ω that are doomsday compatible
for Player i, i.e.

L(Di) = {η ∈ (Oi × (Σ ∪ {τ}))ω | ∀ρ ∈ γi(η) · ρ ∈ ϕi ∪
⋂
j �=i

ϕj}.

For each Di, the size of its set of states is bounded by O(2nk log k) and the number of
Streett pairs is bounded by O(nk2) where k is the number of states in G.

Proof. Let G = (S, (Si)1≤i≤n, sinit, Σ,Δ, (Oi)1≤i≤n), and let us show the construc-
tions for Player i, 1 ≤ i ≤ n. We treat the three types of winning conditions as follows.

We start with safety objectives. Assume that the safety objectives are defined implic-
itly by the following tuple of sets of safe states: (T1, T2, . . . , Tn), i.e. ϕi = safe(Ti).
First, we construct the automaton

A = (QA, qAinit, (Oi × (Σ ∪ {τ}), δA)

over the alphabet Oi × (Σ ∪ {τ}) as follows:

– QA = S, i.e. the states of A are the states of the game structure G,
– qAinit = sinit,
– (q, (o, σ), q′) ∈ δA if q ∈ o and there exists σ′ ∈ Σ such that Δ(q, σ′) = q′ and

such that σ = τ if q
∈ Si, and σ = σ′ if q ∈ Si.

The acceptance condition of A is universal and expressed with LTL syntax:

A word w is accepted by A iff all runs ρ of A on w satisfy ρ |= �Ti ∨
∧

j �=i ♦Tj .

Clearly, the language defined by A is exactly the set of sequences of observations η ∈
(Oi × (Σ ∪ {τ}))ω that are doomsday compatible for Player i, this is because the
automatonA checks (using universal nondeterminism) that all plays that are compatible
with a sequence of observations are doomsday compatible.

Let us show that we can construct a deterministic Streett automaton Di that ac-
cepts the language of A and whose size is such that: (i) its number of states is at most
O(2(nk log k)) and (ii) its number of Streett pairs is at most O(nk). We obtain D with
the following series of constructions:

– First, note that we can equivalently see A as the intersection of the languages of
n − 1 universal automata Aj with the acceptance condition �Ti ∨ ♦Tj , j
= i,
1 ≤ j ≤ n.

– Each Aj can be modified so that a violation of Ti is made permanent and a visit
to Tj is recorded. For this, we use a state space which is equal to QA × {0, 1} ×
{0, 1}, the first bit records a visit to Ti and the second a visit to Tj . We denote this
automaton by A′

j , and its acceptance condition is now �♦(QA × {0, 1}× {0})→
�♦(QA×{0}×{0, 1}). Clearly, this is a universal Streett automaton with a single
Streett pair.

96 K. Chatterjee et al.

– A′
j , which is a universal Streett automaton, can be complemented (by duality) by

interpreting it as a nondeterministic Rabin automaton (with one Rabin pair). This
nondeterministic Rabin automaton can be made deterministic using a Safra like
procedure, and according to [6] we obtain a deterministic Rabin automaton with
O(2k log k) states and O(k) Rabin pairs. Let us call this automaton A′′

j .
– Now, A′′

j can be complemented by considering its Rabin pairs as Streett pairs (by
dualization of the acceptance condition): we obtain a deterministic Streett automa-
ton with O(k) Streett pairs for each Aj .

– Now, we need to take the intersection of the n − 1 deterministic automata A′′
j

(interpreted as Streett automata). Using a classical synchronized product we obtain
a single deterministic Streett automaton Di of size with O(2nk log k) states and
O(nk) Streett pairs. This finishes our proof for safety objectives.

Let us now consider reachability objectives. Therefore we now assume the states
in T1, . . . , Tn to be target states for each player respectively, i.e. ϕi = reach(Ti). The
construction is in the same spirit as the construction for safety. Let A = (QA, qAinit, Oi×
(Σ∪{τ}), δA) be the automaton over (Oi×(Σ∪{τ}) constructed fromG as for safety,
with the following (universal) acceptance condition;

A word w is accepted by A iff all runs ρ of A on w satisfy ρ |= (
∨

j �=i ♦Tj)→♦Ti.
Clearly, the language defined by A is exactly the set of sequences of observations η ∈
((Σ ∪ {τ}) × Oi)

ω that are doomsday compatible for Player i (w.r.t. the reachability
objectives). Let us show that we can construct a deterministic Streett automatonDi that
accepts the language of A and whose size is such that: (i) its number of states is at most
O(2(nk log k)) and (ii) its number of Streett pairs is at most O(nk). We obtain Di with
the following series of constructions:

– First, the acceptance condition can be rewritten as
∧

j �=i(♦Tj → ♦Ti). Then
clearly if Aj is a copy of A with acceptance condition ♦Tj → ♦Ti then L(A) =⋂

j �=i L(Aj).
– For each Aj , we construct a universal Streett automaton with one Streett pair

by memorizing the visits to Ti and Tj and considering the acceptance condition
�♦Tj → �♦Ti. So, we get a universal automaton with a single Streett pair.

– Then we follow exactly the last three steps (3 to 5) of the construction for safety.

Finally, let us consider parity objectives. The construction is similar to the other
cases. Specifically, we can take as acceptance condition for A the universal condition∧

j �=i(parityi∨parityj), and treat each condition parityi∨parityj separately. We dualize

the acceptance condition ofA, into the nondeterministic condition parityi∧parityj . This
acceptance condition can be equivalently expressed as a Streett condition with at most
O(k) Streett pairs. This automaton accepts exactly the set of observation sequences
that are not doomsday compatible for Player i against Player j. Now, using optimal
procedure for determinization, we can obtain a deterministic Rabin automaton, with
O(k2) pairs that accepts the same language [26]. Now, by interpreting the pairs of the
acceptance condition as Streett pairs instead of Rabin pairs, we obtain a deterministic
Streett automaton Aj that accepts the set of observations sequences that are doomsday
compatible for Player i against Player j. Now, it suffices to take the product of the n−1

Doomsday Equilibria for Omega-Regular Games 97

deterministic Streett automata Aj to obtain the desired automaton A, its size is at most
O(2nk log k) with at most O(nk2) Streett pairs. ��

Lemma 10. Given an n-player game arena G with imperfect information and a set of
reachability, safety or parity objectives (ϕi)1≤i≤n, for each Player i, we can construct
a finite-state automaton Ci that accepts exactly the prefixes of observation sequences
that are good for retaliation for Player i.

Proof. Let us show how to construct this finite-state automaton for any Player i, 1 ≤
i ≤ n. Our construction follows these steps:

– First, we construct from G, according to Lemma 9, a deterministic Streett automa-
ton Di = (QDi , qDi

init, (Oi × (Σ ∪ {τ}), δDi , StDi) that accepts exactly the set of
sequences of observations η ∈ (Oi × (Σ ∪ {τ}))ω that are doomsday compatible
for Player i. The number of states in Di is O(2|S|2 log |S|) and the number of Streett
pairs is bounded by O(|S|2 · n), where |S| is the number of states in G.

– Second, we consider a turn-based game played on Di by two players, A and B, that
move a token from states to states along edges of Di as follows:
1. initially, the token is in some state q
2. then in each round: B chooses an observation o ∈ Oi s.t. ∃(q, (o, σ), q′) ∈

δDi . Then A chooses a transition (q, (o, σ), q′) ∈ δDi (which is completely
determined by σ as Di is deterministic), and the token is moved to q′ where a
new round starts.

The objective of A is to enforce from state q an infinite sequence of states, so a
run of Di that starts in q, and which satisfies StDi the Streett condition of Di. For
each q, this can be decided in time polynomial in the number of states in Di and
exponential in the number of Streett pairs in StDi , see [27] for an algorithm with
the best known complexity. Thus, the overall complexity is exponential in the size
of the game structure G. We denote by Win ⊆ QDi the set of states q from which
A can win the game above.

– Note that if (o1, σ1) . . . (om, σm) is the trace of a path from qinit in Di to a state
q ∈ Win, then clearly (o1, σ1) . . . (on−1, σn−1)on is good for retaliation. Indeed,
the winning strategy of A in q is an observation based retaliating strategy λRi for
Player i in G. On the other hand, if a prefix of observations reaches q
∈ Win
then by determinacy of Streett games, we know that B has a winning strategy in
q and this winning strategy is a strategy for the coalition (against Player i) in G
to enforce a play in which Player i does not win and at least one of the other
players wins. So, from Di and Win, we can construct a finite state automaton Ci

which is obtained as a copy of Di with the following acceptance condition: a prefix
κ = (o0, σ0), (o1, σ1), . . . , (ok−1, σk−1), ok is accepted by Ci if there exists a path
q0q1 . . . qk in Ci such that q0 is the initial state of Ci and either there exists a
transition labeled (ok, σ) from qk to a state of Win. ��

Bisimulations and Logical Characterizations
on Continuous-Time Markov Decision Processes

Lei Song1, Lijun Zhang2, and Jens Chr. Godskesen3

1 Max-Planck-Institut für Informatik and Saarland University, Saarbrücken, Germany
2 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences
3 Programming, Logic, and Semantics Group, IT University of Copenhagen, Denmark

Abstract. In this paper we study strong and weak bisimulation equivalences for
continuous-time Markov decision processes (CTMDPs) and the logical charac-
terizations of these relations with respect to the continuous-time stochastic logic
(CSL). For strong bisimulation, it is well known that it is strictly finer than the
CSL equivalence. In this paper we propose strong and weak bisimulations for
CTMDPs and show that for a subclass of CTMDPs, strong and weak bisimula-
tions are both sound and complete with respect to the equivalences induced by
CSL and the sub-logic of CSL without next operator respectively. We then con-
sider a standard extension of CSL, and show that it and its sub-logic without X
can be fully characterized by strong and weak bisimulations respectively over
arbitrary CTMDPs.

1 Introduction

Recently, continuous-time Markov decision processes (CTMDPs) have received exten-
sive attention in the model checking community, see for example [5,37,26,27,12,30].
Analysis techniques for CTMDPs suffer especially from the state space explosion prob-
lem. Thus, as for other stochastic models, bisimulation relations have been proposed
for CTMDPs. In [26], strong bisimulation was shown to be sound with respect to the
continuous-time stochastic logic [2] (CSL). This result guarantees that one can first re-
duce a CTMDP up to bisimulation equivalence before analysing it. On the other hand,
as indicated in [26], strong bisimulation is not complete with respect to CSL, i.e., logi-
cally equivalent states might be not bisimilar.

CTMDPs extend Markov decision processes (MDPs) with exponential sojourn time
distributions, and subsume models such as labelled transition systems and Markov
chains as well. While linear and branching time equivalences have been studied for
these sub-models [36,35,6,33], we extend these results to the setting of CTMDPs. In
this paper we study strong and weak bisimulation relations for CTMDPs, and the logi-
cal characterization problem of these relations with respect to CSL and its sub-logics.

We start with a slightly coarser notion of strong bisimulation than the one in [26], and
then propose weak bisimulation for CTMDPs. We study the relationship between strong
and weak bisimulations and the logical equivalences induced by CSL and CSL\X – the
sub-logic of CSL without next operators. Our first contribution is to identify a subclass
of CTMDPs under which our strong and weak bisimulations coincide with CSL and

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 98–117, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Bisimulations and Logical Characterizations on CTMDPs 99

CSL\X equivalences respectively. We discuss then how this class of CTMDPs can be
efficiently determined, and moreover, we argue that most models arising in practice are
among this class.

As for labelled transition systems and MDPs, we also define an extension of CSL,
called CSL∗, which is more distinguishable than CSL. Surprisingly, CSL∗ is able to
fully characterize strong bisimulation over arbitrary CTMDPs, similarly for the sub-
logic without next operator and weak bisimulation.

Since CTMDPs can be seen as models combining both MDPs and continuous-time
Markov chains (CTMCs), we will discuss the downward compatibility of the relations
with those for MDPs [31] and CTMCs in [6]. Summarizing, the paper contains the
following contributions:

1. We extend strong probabilistic bisimulation defined in [31] over probabilistic au-
tomata to CTMDPs, and then prove that it coincides with CSL equivalence for a
subclass of CTMDPs;

2. We propose a scheme to determine the subclass of CTMDPs efficiently, and show
that many models in practice are in this subclass;

3. We introduce a new notion of weak bisimulation for CTMDPs, and show its char-
acterization results with respect to CSL\X;

4. We present a standard extension of CSL that is shown to be both sound and com-
plete with respect to strong and weak bisimulations for arbitrary CTMDPs.

Related work. Logical characterizations of bisimulations have been studied extensively
for stochastic models. For CTMCs, CSL characterizes strong bisimulation, while CSL
without next operator characterizes weak bisimulation [6]. Our results in this paper
are conservative extensions for both strong and weak bisimulations from CTMCs to
CTMDPs. In [17], the results are extended to CTMCs with continuous state spaces.

For CTMDPs, the first logical characterization result is presented in [26]. It is shown
that strong bisimulation is sound, but not complete with respect to CSL equivalence.
In this paper, we introduce strong and weak bisimulation relations for CTMDPs. For a
subclass of CTMDPs, i.e., those without 2-step recurrent states, we show that they are
also complete for CSL and CSL\X equivalences respectively.

For probabilistic automata (PAs), Hennessy-Milner logic has been extended to char-
acterize bisimulations in [22,14,20]. In [16], Desharnais et al. have shown that weak
bisimulation agrees with PCTL∗ equivalence for alternative PAs. Another related paper
for PAs is our previous paper [33], in which we have introduced i-depth bisimulations
to characterize logical equivalences induced by PCTL∗ and its sub-logics.

All proofs are found in the full version of this paper [34].

Organization of the paper. Section 2 recalls the definition of CTMDPs and the logic
CSL. Variants of bisimulation relations and their corresponding logical characterization
results are studied in Section 3. In Section 4 we present the extension of CSL that fully
characterizes strong and weak bisimulations. We discuss in Section 5 related work with
MDPs and CTMCs. Section 6 concludes the paper.

100 L. Song, L. Zhang, and J.C. Godskesen

2 Preliminaries

For a finite set S, a distribution is a function μ : S → [0, 1] satisfying |μ| :=∑
s∈S μ(s) = 1. We denote by Dist(S) the set of distributions over S. We shall use

s, r, t, . . . and μ, ν . . . to range over S and Dist(S), respectively. The support of μ is
defined by Supp(μ) = {s ∈ S | μ(s) > 0}. Given a finite set of non-negative real
numbers {pj}j∈J and distributions {μj}j∈J such that

∑
j∈J pi = 1 for each j ∈ J ,∑

j∈J pj · μj is the distribution such that (
∑

j∈J pj · μj)(s) =
∑

j∈J pj · μj(s) for
each s ∈ S. For an equivalence relation R over S, we write μ R ν if it holds that
μ(C) = ν(C) for all equivalence classes C ∈ S/R where μ(C) =

∑
s∈C μ(s), and

moreover [s]R = {r | s R r} is the equivalence class of S/R containing s. The sub-
script R will be omitted if it is clear from the context. A distribution μ is called Dirac
if |Supp(μ)| = 1, and we let Ds denote the Dirac distribution such that Ds(s) = 1. We
let R≥0 and R>0 denote the set of non-negative and positive real numbers respectively.

2.1 Continuous-Time Markov Decision Processes

Below follows the definition of CTMDPs, which subsume both MDPs and CTMCs.

Definition 1 (Continuous-Time Markov Decision Processes). A tuple C = (S,→
,AP , L, s0) is a CTMDP where s0 ∈ S is the initial state, S is a finite but non-empty
set of states, AP is a finite set of atomic propositions, L : S �→ 2AP is a labelling
function, and→⊆ S × R>0 ×Dist(S) is a finite transition relation such that for each
s ∈ S, there exists λ and μ with (s, λ, μ) ∈→.

From Definition 1 we can see that there are both non-deterministic and probabilistic

transitions in a CTMDP. We write s
λ−→ μ if (s, λ, μ) ∈ →, where λ is called exit rate

of the transition. Let Suc(s) = {r | ∃(s λ−→ μ).μ(r) > 0} denote the successor states
of s, and let Suc∗(s) be its transitive closure. A state s is said to be silent iff for all

s1, s2 ∈ Suc∗(s), L(s1) = L(s2) and s1
λ−→ μ1 implies s2

λ−→ μ2. Intuitively, a state
s is silent if all its reachable states have the same labels as s. In addition, they have
transitions with the same exit rates as transitions of s. States like s are called silent,
since it is not distinguishable from all its successors, either by labels or sojourn time
of states. Therefore a silent state s and all its successors can be represented by a single
state which is the same as s but with all its outgoing transitions leading to itself. A

CTMC is a deterministic CTMDP satisfying the condition: s
λ−→ μ and s

λ′
−→ μ′ imply

λ = λ′ and μ = μ′ for any s ∈ S.

2.2 Paths, Uniformization, and Measurable Schedulers

Let C = (S,→,AP , L, s0) be a CTMDP fixed for the remainder of the paper. Let
Pathsn(C) = S × (R>0 × S)n denote the set containing paths of C with length n. The
set of all finite paths of C is the union of all finite paths Paths∗(C) = ∪n≥0Paths

n(C).
Moreover, Paths∞(C) = S × (R>0× S)∞ contains all infinite paths and Paths (C) =
Paths∗(C)∪Paths∞(C) is the set of all (finite and infinite) paths of C. Intuitively, a path

Bisimulations and Logical Characterizations on CTMDPs 101

is comprised of an alternation of states and their sojourn time. To simplify the discussion
we introduce some notations. Given a path ω = s0, t0, s1, t1 · · · sn ∈ Pathsn(C), |ω| =
n is the length of ω, ω ↓= sn is the last state of ω, ω|i = s0, t0, · · · , si is the prefix
of ω ending at the (i + 1)-th state, and ω|i = si, ti, si+1, · · · is the suffix of ω starting
from the (i + 1)-th state, and ω�(tn, sn+1) is the path obtained by extending ω with
(tn, sn+1). Let ω[i] = si denote the (i + 1)-th state where i ≤ n and time(ω, i) =
ti the sojourn time in the (i + 1)-th state with i < n. Let ω@t be the state at time
t in ω, that is, ω@t = ω[j] where j is the smallest index such that

∑j
i=0 ti > t.

Moreover, Steps(s) = {(λ, μ) | (s, λ, μ) ∈ →} is the set of all available choices
at state s. Let {Ii ⊆ [0,∞)}0≤i≤k denote a set of non-empty closed intervals, then
C(s0, I0, · · · , Ik, sk+1) is the cylinder set of paths ω ∈ Paths∞(C) such that ω[i] = si
for 0 ≤ i ≤ k + 1 and time(ω, i) ∈ Ii for 0 ≤ i ≤ k. Let FPaths∞(C) be the smallest σ
algebra on Paths∞(C) containing all cylinder sets.

As shown in [4], model checking of CTMCs can be reduced to the problem of com-
puting transient state probabilities, which can be solved efficiently, for instance by uni-
formization. In a uniformized CTMC, all states will evolve at the same speed, i.e., all
transitions have the same exit rates. Similarly, we can also define uniformization of a
CTMDP by uniformizing the exit rate of all its transitions. Below we recall the notion
of uniformization for CTMDPs [12,27].

Definition 2 (Uniformization). Given a CTMDP C = (S,→,AP , L, s0), the uni-
formized CTMDP is denoted as C̄ = (S̄,→′,AP , L̄, s̄0) where

1. S̄ = {s̄ | s ∈ S}, s̄0 ∈ S̄ is the initial state,
2. L̄(s̄) = L(s) for each s ∈ S, and
3. (s̄, E, μ̄) ∈→′ iff there exists (s, λ, μ) ∈→ and μ̄ = λ

E · μ′ + (1 − λ
E) · Ds̄ such

that μ′(r̄) = μ(r) for each r ∈ Supp(μ),

Here E is the uniformization rate for C̄, which is a real number equal or greater than
all the rates appearing in C.

By uniformization for each transition (s, λ, μ) we add a self loop to s with rate equal
to E minus the original rate λ. After uniformization every state will have a unique exit
rate on all its transitions. As we will show later, this transformation will not change the
properties we are interested in under certain classes of schedulers.

Due to the existence of non-deterministic choices in CTMDPs, we need to resolve
them to define probability measures. As usual, non-deterministic choices in CTMDPs
are resolved by schedulers (or policies or adversaries), which generate a distribution
over the available transitions based on the given history information. Different classes
of schedulers can be defined depending on the information a scheduler can use in order
to choose the next transition. However not all of them are suitable for our purposes,
which we will explain later. In this paper, we shall focus on one specific class of sched-
ulers, called measurable total time positional schedulers (TTP) [27], which is defined
as follows:

Definition 3 (Schedulers). A scheduler π : S × R≥0 × (R>0 × Dist(S)) �→ [0, 1]
is measurable if π(s, t, ·) ∈ Dist(Steps(s)) for all (s, t) ∈ S × R≥0 and π(·, tr) are
measurable for all tr ∈ 2(R

>0×Dist(S)), where

102 L. Song, L. Zhang, and J.C. Godskesen

– π(s, t, ·) is a distribution such that π(s, t, ·)(λ, μ) = π(s, t, λ, μ), and
– π(·, tr) : (S × R≥0) �→ [0, 1] is a function such that for each (s, t) ∈ S × R≥0, it

holds π(·, tr)(s, t) =
∑

(λ,μ)∈tr π(s, t, λ, μ).

The schedulers defined in Definition 3 are total time positional, since they make de-
cisions only based on the current state and total elapsed time, which are the first and
second parameters of π respectively. The third parameter and fourth parameter of π de-
note the rate and the resulting distribution of the chosen transition respectively. Given
the current state s, the total elapsed time t, and a transition (λ, μ), π will return the
probability with which (λ, μ) will be chosen. This is a special case of the general def-
inition of schedulers, which can make decisions based on the full history, for instance
visited states and the sojourn time at each state. Given a scheduler π, a unique prob-
ability measure Prπ,s can be determined on the σ-algebra FPaths∞(C) inductively as
below: Prπ,s(C(s0, I0, · · · , sn), tt) =⎧⎪⎪⎨⎪⎪⎩

1 n = 0 ∧ s = s0 (1a)

0 s
= s0 (1b)∫
t∈I0

∑
(λ,μ)∈tr

π(s0, tt)(λ, μ) · μ(s1) · λe−λt · Prπ,s1dt otherwise (1c)

where Prπ,s1 is an abbreviation of Prπ,s1(C(s1, . . . , sn), tt+ t), tr = Steps(s0) and
tt is the parameter denoting the total elapsed time. One nice property of TTP sched-
ulers is that uniformization does not change time-bounded reachabilities under TTP
schedulers [27,30]. This result can be extended to cover more properties like CSL\X

and CSL∗
\X, which shall be introduced soon.

Besides TTP schedulers, there are other different classes of schedulers for CTMDPs,
some of which are insensitive to uniformization, whereas some of which may gain or
lose information after uniformization, i.e., properties of a CTMDP may be changed
by uniformization. To avoid technical overhead in the presentation, we refer to [27]
for an in-depth discussion of these different classes of schedulers and their relation to
uniformization.

2.3 Continuous Stochastic Logic

Logical formulas are important for verification purpose, since they offer a rigorous and
unambiguous way to express properties one may want to check. Probabilistic computa-
tion tree logic (PCTL) [18] is often used to express properties of probabilistic systems.
In order to deal with probabilistic systems with exponential sojourn time distributions
like CTMCs and CTMDPs, the continuous stochastic logic (CSL) was introduced to
reason about CTMCs [2,4], and recently extended to reason about CTMDPs in [26].
CSL contains both state1 and path formulas whose syntax is defined by the following
BNFs:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | P�p(ψ),

ψ ::= XI ϕ | ϕUIϕ,

1 The steady-state operator is omitted in this paper for simplicity of presentation.

Bisimulations and Logical Characterizations on CTMDPs 103

where a ∈ AP , p ∈ [0, 1], � ∈ {<,≤,≥, >}, and I ⊆ [0,∞) is a non-empty closed
interval.

We use s |= ϕ to denote that s satisfies the state formula ϕ, while ω |= ψ denotes
that ω satisfies the path formula ψ. The satisfaction relation for atomic proposition and
Boolean operators is standard. Below we give the satisfaction relation for the remaining
state and path formulas:

s0 |= P�p(ψ) iff ∀π.Prπ,s0({ω ∈ Paths∞(C) | ω |= ψ}) � p,
ω |= XI ϕ iff ω[1] |= ϕ ∧ time(ω, 0) ∈ I,

ω |= ϕ1UIϕ2 iff ∃i.(
∑

0≤j<i

time(ω, j) ∈ I ∧ ω[i] |= ϕ2 ∧ (∀0 ≤ j < i.ω[j] |= ϕ1)).

Intuitively, a state s0 satisfies P�p(ψ) iff no matter how we schedule the transitions
of s0 and its successors, the probability of paths starting from s0 and satisfying ψ is
always � p. This operator has the same semantics as in PCTL. Compared to PCTL,
the main difference arises in the semantics of the path formulas. Given a path ω, we
say ω |= XI ϕ, iff the second state in ω satisfies ϕ, moreover the sojourn time in the
first state of ω is within the time interval I . We say ω |= ϕ1UIϕ2, iff along ω, a state
satisfying ϕ2 can be reached at some time point in I , and all the preceding states if
any satisfy ϕ1. If all time bounds are defined to be equal to [0,∞), i.e., removing time
restrictions, CSL will degenerate to PCTL.

Different from [4] where the semantics of CSL is continuous, in this paper we con-
sider pointwise semantics of CSL. This is mainly because the semantics of CSL∗ intro-
duced in Section 4 is also pointwise. However, results in Section 3 are also valid if we
consider continuous semantics.

Logic Equivalences. Let L denote some logic. We say that s and r are L-equivalent,
denoted by s ∼L r, if they satisfy the same set of L state formulas, that is, s |= ϕ iff
r |= ϕ for all state formulas ϕ in L, similarly for ∼L\X , where L\X denotes the sub-

logic of L without the XI operator. In this paper, L will denote either CSL or CSL∗,
which we shall introduce in Section 4.

3 Bisimilarity and CSL Equivalence

In this section, we first introduce the concept of strong bisimulation for CTMDPs, which
can be seen as a variant of strong bisimulation for MDPs. Then we define a sub-class
of CTMDPs, called non 2-step recurrent CTMDPs, and show that strong bisimulation
can be fully characterized by CSL for non 2-step recurrent CTMDPs. We extend the
work to the weak setting and show similar results for weak bisimulation. Finally, we
propose an efficient scheme to determine non 2-step recurrent CTMDPs and we show
that almost all CTMDP models in practice fall into this class.

3.1 Strong Bisimulation

The definition of strong bisimulation we shall introduce in this section slightly gener-
alizes the one introduced in [26]. The reason is that we adopt the notion of combined

104 L. Song, L. Zhang, and J.C. Godskesen

transitions, used in [31] to define strong probabilistic bisimulation for PAs. Combined
transitions allow transitions induced by convex combinations of several transitions.

We shall lift its definition to the setting of CTMDPs. Let s
λ−→P μ iff there exists

{s λ−→ μj}j∈J and {pj}j∈J such that
∑

j∈J pj = 1, and
∑

j∈J pj · μj = μ. The com-
bined transitions of a CTMDP are almost the same as those for PAs except we need to
take care of the rate of each transition. Here we only allow to combine transitions with
the same rate, otherwise we may change non-trivial properties of a CTMDP, which we
will explain soon. Below follows the definition of strong bisimulation:

Definition 4 (Strong Bisimulation). LetR ⊆ S × S be an equivalence relation. R is

a strong bisimulation iff s R r implies that L(s) = L(r) and for each s
λ−→ μ, there

exists r
λ−→P μ

′ such that μR μ′.
We write s ∼ r whenever there exists a strong bisimulationR such that s R r. Let

strong bisimilarity∼ denote the largest strong bisimulation, which is equal to the union
of all strong bisimulation relations.

For s and r to be strong bisimilar, the same set of atomic propositions should hold
at s and r. Furthermore, s should be able to mimic r stepwise and vice versa, that is,
whenever s has a transition with label λ leading to a distribution μ, r should also be able
to perform a (combined) transition with the same label to a distribution ν such that μ and
ν match with each other, i.e., μ and ν assign the same probability to each equivalence
class C ∈ S/R. Strong bisimulation defined in Definition 4 is a conservative extension
of strong probabilistic bisimulation for PAs defined in [31], in the sense that it coincides
with strong probabilistic bisimulation if we replace λ with actions.

The relation defined above is slightly coarser than the one considered in [26], where

the combined transition r
λ−→P μ

′ is replaced by the normal transition r
λ−→ μ′. In [26], it

was also shown that strong bisimulation is only sound but not complete with respect to
CSL equivalence. Even though our definition of strong bisimulation is slightly coarser,
it is still too fine for CSL equivalence as shown in the following theorem:

Theorem 1 ([26]). ∼ � ∼CSL.

The proof in [26] can be directly adapted to prove the soundness of our slightly more
general strong bisimulation. The inclusion in Theorem 1 is strict which is illustrated by
the following example:

Example 1. Suppose we are given two states s0 and r0 of a CTMDP depicted in Fig. 1 (a)
and (b) respectively, where all states have different atomic propositions exceptL(s0) =
L(r0). Assume ui are silent for i = 1, 2, 3, our aim is to show that s0 and r0 satisfy the
same set of CSL formulas, while they are not strong bisimilar by Definition 4.

We first show that s0 ∼CSL r0, i.e., s0 |= ϕ implies r0 |= ϕ for any ϕ and vice versa.
The only non-trivial cases are the time-bounded reachabilities from s0 and r0 to states
in C ⊆ {u1, u2, u3}. For instance the maximal probability from s0 and r0 to {u2, u3}
in time interval [a, b] is equal to 0.7 · (e−a − e−b), irrelevant of the middle transition
of r0. Similarly, we can check that for other C, the maximal (or minimal) probabilities
from s0 and r0 to C in time interval I are all independent from the middle transition of
r0. Therefore we conclude that s0 ∼CSL r0.

Bisimulations and Logical Characterizations on CTMDPs 105

u1 u2 u3 u1 u2 u3 u1 u2 u3

r0

1
1

1

0.3
0.3

0.4 0.4
0.3

0.3 0.5
0.4

0.1

(b)

(a)

s0

u1 u2 u3 u2u1 u3

1 1

0.3
0.3

0.4 0.5
0.4

0.1

Fig. 1. Counterexample of the completeness of strong bisimulation

Secondly, we show that it does not hold that s0 ∼ r0 according to Definition 4.
We prove by contradiction. Assume that there exists a strong bisimulation R such that

s0 R r0. By Definition 4, for the middle transition of r0, i.e., r0
1−→ μ′ where μ′(u1) =

0.4, μ′(u2) = 0.3, and μ′(u3) = 0.3, we need to find a transition s0
1−→P μ of s0 such

that μ R μ′. Since u1, u2, and u3 have different atomic propositions, (ui, uj)
∈ R for
any 1 ≤ i
= j ≤ 3. Therefore the only possibility is thatμ(u1) = 0.4, μ(u2) = 0.3, and
μ(u3) = 0.3. However that is impossible, such μ cannot be the resulting distribution
of any (combined) transition of s0. Otherwise there would exist w1, w2 > 0 such that
w1 + w2 = 1, 0.3 · w1 + 0.5 · w2 = 0.4, and 0.3 · w1 + 0.4 · w2 = 0.3 according to
the definition of combined transition, which is clearly not possible. Hence we conclude
that s0
∼ r0, and ∼ is finer than ∼CSL. ��

In [30] randomized schedulers allow to combine transitions with different rates, i.e.,

the combined transition is defined as: s
λ−→P μ iff there exist {s λi−→ μi}i∈I and {pi}i∈I

such that
∑

i∈I pi · λi = λ and
∑

i∈I pi · μi = μ, where pi ∈ [0, 1] for each i ∈ I and∑
i∈I pi = 1. By adopting this definition of combined transition in Definition 4, we

will obtain a coarser strong bisimulation. However it turns out that this new definition
of strong bisimulation is too coarse for CSL equivalence, since there exist two states

106 L. Song, L. Zhang, and J.C. Godskesen

which are strong bisimilar according to the new definition, but they satisfy different
CSL formulas. Refer to the following example:

Example 2. Suppose that we have two states s1 and r1 such that s1 has two non-
deterministic transitions which can evolve into u1 with rates 1 or 4 respectively. The
state r1 is the same as s1 except that it can evolve into u1 with an extra transition of rate
2. Also we assume that L(s1) = L(r1) and u1 is a silent state with L(u1)
⊆ L(s1).
Suppose that we adopt the new definition of combined transition in Definition 4 by
allowing to combine transitions with different rates, we shall show that s1 and r1 are
strong bisimilar, but they are not CSL-equivalent.

We first show that s1 and r1 are strong bisimilar. Let R be an equivalence relation
only equating s1 and r1, it suffices to prove that R is a strong bisimulation. The only

non-trivial case is when r1
2−→ Du1 , we need to find a matching transition of s1. Since

we allow to combine transitions of different rates, a combined transition s1
2−→P Du1

can be obtained by assigning weights 2
3 and 1

3 to transitions s1
1−→ Du1 and s1

4−→ Du1

respectively. Therefore we conclude that s1 and r1 are strong bisimilar.
Secondly, we show that s1 and r1 are not CSL equivalent. It suffices to find a formula

ϕ such that s1 |= ϕ but r1
|= ϕ. Let ψ = X[a,b] L(u1) where 0 ≤ a < b. The
probabilities for paths starting from s1 and satisfying ψ by choosing the transitions with
rates 1, 2, and 4 are equal to e−a− e−b, e−2a− e−2b, and e−4a− e−4b respectively. We
need only to find a and b such that e−2a − e−2b > max{e−a− e−b, e−4a − e−4b}. Let
a = 0.2 and b = 1, then e−a − e−b ≈ 0.45, e−2a − e−2b ≈ 0.53, and e−4a − e−4b ≈
0.43. Let ϕ = P≤0.46(X

[0.2,1] L(u1)), obviously s1 |= ϕ, but r1
|= ϕ, which means
that s1 and r1 are not CSL-equivalent. ��

Example 2 also shows that in order for two states satisfying the same CSL formulas,
it is necessary for them to have transitions with the same exit rates, otherwise we can
always find CSL formulas distinguishing them, which also justifies that we only allow
to combine transitions with the same rate in Definition 4.

We have shown in Example 1 that ∼ is not complete with respect to ∼CSL. However
in the sequel we shall identify a special class of CTMDPs, in which the completeness
holds. We first give two examples for inspiration:

Example 3. In this example, we show that, it is impossible to construct similar states as
s0 and r0 in Example 1 such that they are not strong bisimilar but only have 2 distinct
successors.

Let s2 and r2 denote the two states depicted in Fig. 2, where x ∈ [0, 1] denotes
an arbitrary or unknown probability and all states have different atomic propositions
except that L(s2) = L(r2). Our aim is to show that states in form of s2 and r2 must
be strong bisimilar, provided that s2 ∼CSL r2. First we show that x ∈ [14 ,

1
2] in order

that s2 ∼CSL r2. This is done by contradiction. Assume that x > 1
2 and let ψ =

X[0,∞)(L(u1)). Then the maximal probability of paths starting from s2 and satisfying
ψ is equal to 1

2 , while the maximal probability of paths starting from r2 and satisfying ψ
is equal to x. Since x > 1

2 , s2 |= P≤ 1
2
(ψ), while r2
|= P≤ 1

2
(ψ), therefore s2
∼CSL r2.

Similarly, we can show that it is not possible for x < 1
4 , hence it holds that x ∈ [14 ,

1
2].

Bisimulations and Logical Characterizations on CTMDPs 107

u1 u2 u1 u2 u1 u2 u1 u2 u1 u2

μ1 μ3 μ1 μ2 μ3

s2 r2

1 1 1
1

1

1
4

3
4

1
2

1
2

1
4

3
4

x 1− x 1
2

1
2

Fig. 2. s2 can always simulate the middle transition of r2, as long as 1
4
≤ x ≤ 1

2

Secondly, we show that s2 ∼ r2 given that x ∈ [14 ,
1
2]. Let R be an equivalence

relation only equating s2 and r2, it suffices to show that R is a strong bisimulation
according to Definition 4. Let μ1, μ2, and μ3 be distributions defined in Fig. 2. The

only non-trivial case is when r2
1−→ μ2, we need to show that there exists w1 and w2

such that w1 +w2 = 1, (w1 · μ1 +w2 · μ3)R μ2. Let w1 = 2− 4x and w2 = 4x− 1,
it is easy to verify that w1, w2 ∈ [0, 1] and w1 + w2 = 1, since x ∈ [14 ,

1
2]. Moreover,

w1 ·μ1+w2 ·μ3 = μ2, since w1 · 14 +w2 · 12 = x and w1 · 34 +w2 · 12 = 1−x. Therefore

s2
1−→P μ2 as desired, andR is indeed a strong bisimulation. ��

In order for Example 1 being a valid counterexample for ∼CSL ⊆ ∼, we have
made another assumption that ui (i = 1, 2, 3) are silent, i.e., they cannot evolve into
other states not equivalent to themselves with positive probability. This assumption is
also crucial which can be seen by the following example:

Example 4. Consider again the two states s0 and r0 introduced in Example 1, where
we prove that s0 and r0 are CSL equivalent. Now suppose that u3 is not silent, but
can evolve into some state u′3 with rate 1, where u′3 is a state with different atomic
propositions from all the others. We are going to show that s0 and r0 are not CSL
equivalent anymore with this slight change. Consider the path formula: ψ = (L(s0) ∨
L(u3))U

[0,b](L(u2)∨L(u′3)), we can show that the probabilities of paths starting from
r0 and satisfying ψ by choosing the left, middle, and right transitions are equal to:
L = 0.3 · w1 + 0.4 · w2, M = 0.3 · w1 + 0.3 · w2, and R = 0.4 · w1 + 0.1 · w2

respectively, where w1 = 1 − e−b and w2 = 1 − e−b − b · e−b. It suffices to find a
b such that M < min{L,R}, which means that the middle transition of r0 dominates
the minimal probability of satisfying ψ. Such b exists, for instance, by letting b = 1
we obtain: L ≈ 0.295, M ≈ 0.269, and R ≈ 0.279, apparently, M < min{L,R}.
In other words, let b = 1 in ψ, we have s0 |= P≥R(ψ), but r0
|= P≥R(ψ), since
there exists a scheduler of r0, i.e., the one choosing the middle transition of r0 such that
the probability of satisfying ψ is equal to M , which is strictly less than R. Therefore
s0
∼CSL r0. ��

In Example 1, we have shown that s0 and r0 satisfy the same CSL formulas, but they
are not strong bisimilar. However in Examples 3 and 4, we show that without the two
assumptions:

108 L. Song, L. Zhang, and J.C. Godskesen

– s0 and r0 should have more than 2 states among their successors;
– there exists no successor which can evolve into a state not CSL equivalent to other

states with positive probability,

we can guarantee that either s0 and r0 are strong bisimilar, or they are not CSL equiva-
lent. These intuitions lead us to the special class of CTMDPs, which we call non 2-step
recurrent CTMDPs in the sequel.

Definition 5 (2-step Recurrent). Let R be an equivalence relation on S. A state s is
said to be 2-step recurrent with respect toR iff s is not silent, |Suc(s)| > 2, and

∃(s λ−→ μ).(∀s′ ∈ (Supp(μ) \ [s]R).∀(s′ λ′
−→ ν).ν(C) = 1), (r1)

where C = ([s]R ∪ [s′]R).
We say C is 2-step recurrent with respect to R, iff there exists s ∈ S such that s is

2-step recurrent with respect to R, otherwise it is non 2-step recurrent with respect to
R. Moreover, we say that s (or C) is (non) 2-step recurrent iff it is (non) 2-step recurrent
with respect to ∼CSL.

In other words, for a state s to be 2-step recurrent, it must be not silent and have more
than 2 successors. Remind that each silent state can be replaced by a single state with-
out changing properties of a CTMDP. After doing so, each silent state will only have
one successor which is itself, so the requirement of non silence can be subsumed by
|Suc(s)| > 2 in this case. Let us explain the more involved condition given in Eq. (r1).

Eq. (r1) says that a 2-step recurrent state s must also satisfy: There exists s
λ−→ μ such

that for all states in Supp(μ) except those in [s]R, they can only evolve into states
equivalent to s or themselves.

Example 5. We show some examples of (non) 2-step recurrent states. First of all, states
s0 and r0 in Example 1 are 2-step recurrent, since they are not silent and have more
than 2 successors. Moreover all successors ui (i = 1, 2, 3) are silent, i.e., can only
evolve into states which are CSL equivalent to themselves. However if we add an extra
transition to u3 as in Example 4, s0 will be non 2-step recurrent, since u3 can reach
the state u′3 with probability 1, where u′3 is not CSL equivalent to either u3 or s0. For
similar reasons, r0 is also non 2-step recurrent.

Secondly, States s1 and r1 in Example 2 and s2 and r2 in Example 3 are trivially non
2-step recurrent, since the number of their successors is ≤ 2. ��

Definition 5 seems tricky, however, we shall show that there exists an efficient scheme
to check whether a given CTMDP is 2-step recurrent or not. More importantly, we shall
see later in Remark 1 that the class of non 2-step recurrent CTMDPs contains an im-
portant part of CTMDP models, in particular those found in practice.

Now we are ready to show the main contribution of this paper. By restricting to
the set of non 2-step recurrent CTMDPs, we are able to prove that the classical strong
bisimulation defined in Definition 4 is both sound and complete with respect to the CSL
equivalence, which is formalized in the following theorem.

Theorem 2. If C is non 2-step recurrent, ∼ = ∼CSL.

Bisimulations and Logical Characterizations on CTMDPs 109

3.2 Weak Bisimulation

In this section we will introduce a novel notion of weak bisimulation for CTMDPs. Our
definition of weak bisimulation is directly motivated by the well-known fact that uni-
formization does not alter time-bounded reachabilities for CTMDPs [27,30] when TTP
schedulers are considered. Similar as in Section 3.1, we also show that weak bisimu-
lation is both sound and complete for CSL\X over non 2-step recurrent CTMDPs. We
shall introduce the definition of weak bisimulation first.

Definition 6 (Weak bisimulation). We say that states s and r in C are weak bisimilar,
denoted by s ≈ r, whenever s̄ ∼ r̄ in the uniformized CTMDP C̄.

The way we define weak bisimulation here is different from the definition of weak
bisimulation for CTMCs in [6], where a conditional measure is considered, see Defini-
tion 7 for the detailed definition. Moreover we will show in Section 5.2 that for CTMCs
our weak bisimulation coincides with weak bisimulation defined in [6]. Even though the
resulting uniformized CTMDP depends on the chosen rate E as shown in Definition 2,
it is worth mentioning that weak bisimulation given in Definition 6 is independent of
E. Since if two states are strong bisimilar in a uniformized CTMDP, they will be strong
bisimilar in any uniformized CTMDP no matter which value we choose for E.

The following lemma establishes some properties:

Lemma 1

1. ∼ ⊆ ≈,
2. for uniformized CTMDPs, ∼ = ≈.

As we mentioned above, by uniformizing a CTMDP we will not change its satisfia-
bility of CSL\X provided that only TTP schedulers are considered. Therefore we have
the following lemma saying that if two states satisfy the same formulas in CSL\X, then
they will satisfy the same formulas in CSL after uniformization and vice versa.

Lemma 2. s ∼CSL\X
r in C iff s̄ ∼CSL r̄ in C̄.

The following theorem says that our weak bisimulation is sound for ∼CSL\X
, and

particularly when the given CTMDP is non 2-step recurrent, weak bisimulation can be
used to fully characterize CSL\X equivalence.

Theorem 3. ≈ � ∼CSL\X
. If C̄ is non 2-step recurrent, ≈ = ∼CSL\X

.

Theorem 3 works if we restrict to only TTP schedulers. However, this is not a restric-
tion. Since it has been proved in [30,11] that there always exists an optimal scheduler
in TTP for any path property in CSL\X.

3.3 Determining 2-step Recurrent CTMDPs

In Theorem 2 and 3, the completeness holds only for CTMDPs which are non 2-step
recurrent. Hence it is important that 2-step recurrent CTMDPs can be checked effi-
ciently. This section discusses a simple procedure for determining (non) 2-step recur-
rent CTMDPs. Before presenting the decision scheme, we shall introduce the following
lemma, which holds by applying the definition of 2-step recurrent CTMDPs directly:

110 L. Song, L. Zhang, and J.C. Godskesen

Lemma 3. Given two equivalence relations R and R′ over S such that R ⊆ R′, if
C is 2-step recurrent with respect to R, then it is 2-step recurrent with respect to R′,
or equivalently if C is non 2-step recurrent with respect to R′, then it is non 2-step
recurrent with respect to R.

Lemma 3 suggests a simple way to check whether a given CTMDP C is 2-step re-
current. Given an arbitrary equivalence relation R such that ∼ ⊆ ∼CSL ⊆ R, by
Lemma 3, we can first check whether C is 2-step recurrent with respect to R. Proper
candidates for R should be as fine as possible, but also can be determined efficiently.
For instance, we can let R = {(s, r) | L(s) = L(r)}, or a finer equivalence relation

defined as follows: s R r iff for each C ∈ S/R and s
λ−→ μ, there exists r

λ−→ μ′ such
that μ′(C) ≥ μ(C). Such R is coarser than ∼CSL, and can be computed efficiently in
polynomial time.

If C is not 2-step recurrent with respect toR, we know that C is non 2-step recurrent
with respect to ∼CSL either. Otherwise we continue to check whether C is 2-step recur-
rent with respect to ∼, if the answer is yes, then C is 2-step recurrent with respect to
∼CSL too. Note that∼ can also be computed in polynomial time, see [38] for details. In
the remaining cases, namely when C is 2-step recurrent with respect to R, but not for
∼, we cannot conclude anything, instead the relation∼CSL shall be computed first for a
definite answer.

As we discussed above, sometimes we need to use ∼CSL to decide whether a given
CTMDP is 2-step recurrent or not. But it turns out that ∼CSL is hard to compute in
general. Actually, we can prove the following lemma showing that the decision of∼CSL

and ∼CSL\X is NP-hard.

Lemma 4. It is NP-hard to decide whether s ∼CSL r and s ∼CSL\X
r.

Remark 1. We have implemented the above described scheme to check whether some
models in practice are 2-step recurrent or not. Even though the implemented classifi-
cation scheme is not complete since we do not compute CSL equivalence, it has been
shown quite useful in practice. Our initial experiments show that the non 2-step recur-
rent CTMDPs consist of most models in practice. For instance the models of “Erlang
Stages” [39], “Stochastic Job Scheduling” [10], “Fault-Tolerant Work Station Clus-
ter” [19,23], and “European Train Control System” [7] are all non 2-step recurrent,
which means that strong bisimulation coincides with∼CSL on these models. To be more
confident, we also checked MDP models from the PRISM [25] benchmark interpreted
as CTMDP models by interpreting all probabilities as rates. We found that all of them
are non 2-step recurrent. ��

4 Bisimilarity and CSL∗ Equivalence

In this section we study the relation between bisimilarity and CSL∗ equivalence. We
first introduce CSL∗, then show that strong bisimulation can be fully characterized by
CSL∗ for arbitrary CTMDPs. Then we extend the work to weak bisimulation.

Bisimulations and Logical Characterizations on CTMDPs 111

4.1 CSL∗

As CTL∗ and PCTL∗ can be seen as extensions of CTL and PCTL respectively, CSL∗

can also be seen as an extension of CSL, where the path formula is defined by the Met-
ric Temporal Logic (MTL) [24]. MTL extends linear temporal logic [29] by associating
each temporal operator with a time interval. It is a popular logic used to specify proper-
ties of real-time systems and has been extensively studied in the literature [1,28,8,21].
The logic MTL was also extended to CTMCs in [13], where the authors studied the
problem of model checking CTMCs against MTL specifications. Formally, the syntax
of CSL∗ is defined by the following BNFs:

ϕ ::=a | ¬ϕ | ϕ ∧ ϕ | P�p(ψ),

ψ ::=ϕ | ¬ψ | ψ ∧ ψ | XI ψ | ψUIψ.

The semantics of state formulas is the same as CSL, while the semantics of path for-
mulas is more involved, since we may have different and embedded time bounds. As
for MTL, there are two different semantics for the path formulas: continuous semantics
and pointwise semantics. These two semantics make non-trivial differences in real-time
systems, see [28] for details. We shall focus on the pointwise semantics as for CSL in
this paper. Given a path ω and a path formula ψ of CSL∗, the satisfiability ω |= ψ is de-
fined inductively as follows: ω |= a iff a ∈ L(ω[0]), ω |= ¬ψ iff ω
|= ψ, ω |= ψ1 ∧ ψ2

iff ω |= ψ1 ∧ ω |= ψ2, ω |= XI ψ iff ω|1 |= ψ ∧ time(ω, 0) ∈ I , and

ω |= ψ1UIψ2 iff ∃i.(ω|i |= ψ2 ∧
∑

0≤j<i

time(ω, j) ∈ I ∧ (∀0 ≤ j < i.ω|j |= ψ1)).

4.2 Strong Bisimulation

In this section we prove the soundness and completeness of strong bisimulation with re-
spect to CSL∗ equivalence. Different from CTL and its extension CTL∗, whose equiv-
alences coincide on labelled transition systems [9], the extension from CSL to CSL∗

is non-trivial, as we shall show in this section that CSL∗ can fully characterize strong
bisimulation for arbitrary CTMDPs. We reconsider Example 1 for inspiration:

Example 6. Let s0 and r0 be the states introduced in Example 1, where we have shown
that s0 and r0 are not bisimilar, but satisfy the same CSL formula. However if we con-
sider CSL∗, s0 and r0 are not CSL∗ equivalent. It suffices to find a formula ϕ in CSL∗

such that s0 |= ϕ, but r0
|= ϕ. Let ψ := (L(s0)U
[0.6,∞)L(u1))∨ (L(s0)U[1,∞)L(u3)),

then the maximal probability of paths starting from s0 and satisfying ψ is equal to
max{0.3·e−0.6+0.4·e−1, 0.5·e−0.6+0.1·e−1} < 0.312,while the probability for r0 is
equal to max{0.3·e−0.6+0.4·e−1, 0.4·e−0.6+0.3·e−1, 0.5·e−0.6+0.1·e−1} > 0.312,
thus s0 |= P≤0.312(ψ), while r0
|= P≤0.312(ψ), which indicates s0
∼CSL∗ r0. Note ψ
is not a valid formula in CSL, since it is the disjunction of two until operators. ��

In the remainder of this section, we shall focus on the proof of ∼ = ∼CSL∗ . First,
we introduce the following lemma in [32]:

112 L. Song, L. Zhang, and J.C. Godskesen

Lemma 5 (Theorem 5 [32]). Given a path formula ψ of CSL∗ and a state s, there
exists a set of cylinder sets Cyls such that Sat(ψ) = ∪C∈CylsC.

As a direct result of Lemma 5, Sat(ψ) is measurable for any path formula ψ of CSL∗,
as Sat(ψ) can be represented by a countable set of measurable cylinders.

Now we are ready to present the main result of this section, i.e., strong bisimulation
coincides with CSL∗ equivalence for arbitrary CTMDPs:

Theorem 4. For any CTMDP, ∼ = ∼CSL∗ .

4.3 Weak Bisimulation

In this section we shall discuss the relation between weak bisimulation and the equiva-
lence induced by CSL∗

\X. Similar as in Section 4.2 for strong bisimulation, weak bisim-
ulation can be fully characterized by CSL∗

\X.
Since our weak bisimulation is defined as strong bisimulation on the uniformized

CTMDPs, foremost we shall make sure that CSL∗
\X is preserved by uniformization un-

der TTP schedulers, that is, we shall prove the following lemma:

Lemma 6. s ∼CSL∗
\X

r in C iff s̄ ∼CSL∗ r̄ in C̄.

As a side contribution, we extend the result in [27,30] and show that uniformization also
does not change properties specified by CSL∗

\X, provided TTP schedulers are consid-
ered. Given Lemma 6, the soundness and completeness of≈ with respect to ∼CSL∗

\X
are

then straightforward from Definition 6 and the fact that ∼ is both sound and complete
with respect to CSL∗.

Theorem 5. For any CTMDP, ≈ = ∼CSL∗
\X

.

Currently, we only prove Theorem 5 with respect to TTP schedulers. However, the
optimal scheduler for a CSL∗ formula may be not a TTP scheduler. Refer to the follow-
ing example:

Example 7. Let C be a CTMDP as in Fig. 3, where the letter on above of each state
denotes its label. Moreover states s8 and s9 only have self-loop transitions which are
omitted. Let ψ = ((a ∨ b)UId) ∨ ((a ∨ c)UIe) be a path formula of CSL∗. We show
that there exists a non-TTP scheduler π such that

Prπ,s4({ω ∈ Paths∞(C) | ω |= ψ}) > Prπ′,s4({ω ∈ Paths∞(C) | ω |= ψ})

for any TTP scheduler π′. Let I = [0,∞]. Since π′ is a TTP scheduler, it can only
make decision based on the elapsed time and the current state. When at s7, π′ will
choose either the transition to s8 or the transition to s9 at each time point. Therefore the
maximal probability of satisfying ψ is 0.5. However for a general scheduler π, it can
make decision based on the full history. For instance when at s7, we can let π choose
the transition to s8, if the previous state is s5, otherwise s9. Under this scheduler, the
maximal probability of satisfying ψ is equal to 1, which cannot be obtained by any TTP
scheduler. From this example, we can see that an optimal scheduler for a CSL∗ formula
may make it decision based on the elapsed time as well as the states visited.

Bisimulations and Logical Characterizations on CTMDPs 113

s4

a

s5

b

s6

c

s7

a

s8

d

s9

e

1

1
2

1
2

1

1

1

1

Fig. 3. TTP schedulers are not enough to obtain optimal values for CSL∗ properties

Example 7 shows that it is not enough to consider TTP schedulers in the setting of
CSL∗. In [27] another class of schedulers called Total Time History dependent sched-
ulers (TTH) is introduced. We conjecture that for TTH schedulers: i) they preserve
CSL∗

\X properties after uniformization, and ii) they are powerful enough to obtain opti-
mal values for CSL∗

\X properties. Condition i) guarantees that Theorem 5 is valid, while
condition ii) makes Theorem 5 general enough. We leave the proof of the conjecture as
our future work.

Remark 2. The expressiveness of CSL∗ may be considered too powerful in certain
cases. For instance, path formulas like �(aU[2,10]b) 2 will be satisfied with probability
0 for any CTMDP. In general, if ψ can only be satisfied with probability strictly less
than 1, the probability of satisfying ψ forever will be 0 for any CTMDP.

In the other hand, a small fragment of CSL∗ is enough to characterize strong bisim-
ulation. Let CSL∨ denote the fragment of CSL∗ whose path formulas are defined by
the following syntax: ψ ::= XI ϕ | ψ ∨ ψ. We have shown in [34] that ∼ = ∼CSL∨

for any CTMDP. Therefore any subset of CSL∗ which subsumes CSL∨ will be strong
enough to fully characterize strong bisimulation.

5 Relation to MDPs and CTMCs

In this section, we compare related work on other stochastic models: MDPs and CTMCs.

5.1 Relation to (Weak) Bisimulation for MDPs

For MDPs, it is known that strong (probabilistic) bisimulation is only sound but not
complete with respect to PCTL [31]–the counterpart of CSL in discrete setting. Differ-
ently, the completeness does not hold either even if we restrict to non 2-step recurrent
MDPs, which can be defined in a straightforward way given Definition 5. Refer to the
following example:

Example 8. Let s0 and r0 be two states as in Example 4, which will be viewed as two
states in an MDP. Moreover we assume that u′3 only has a self loop. Since u′3 has

2 �ψ ≡ ¬((a ∧ ¬a)U[0,∞)¬ψ) for some a, i.e., ψ holds forever.

114 L. Song, L. Zhang, and J.C. Godskesen

atomic propositions different from s0 (r0) and u3, therefore s0 and r0 are not 2-step
recurrent. However s0 and r0 satisfy the same PCTL formulas, since the maximal and
minimal probabilities from s0 and r0 to any subset of {u1, u2, u3, u′3} are the same.
As mentioned before, the middle transition of r0 cannot be simulated by any combined
transition of s0, hence they are not strong probabilistic bisimilar. This indicates that
strong (probabilistic) bisimulation is not complete with respect to PCTL equivalence
even that the given MDP is non 2-step recurrent. ��

The counterpart of CSL∗ in discrete setting is PCTL∗ [3]. Similar as in the continu-
ous case, the equivalence induced by PCTL∗ is strictly finer than∼PCTL [33]. However,
different from the continuous case, ∼PCTL∗ is still coarser than strong (probabilistic)
bisimulation for MDPs, that is, strong (probabilistic) bisimulation is not complete with
respect to PCTL∗:

Example 9. Let s0 and r0 be two states as in Example 1, where we have shown that s0
and r0 are neither strong bisimilar nor CSL∗ equivalent. However in [33] s0 and r0 are
shown to be PCTL∗ equivalent by viewing them as two states in an MDP. Therefore
CSL∗ gains more expressiveness by adding time bounds to the logic. ��

The case for weak bisimulation is similar and omitted here.

5.2 Relation to (Weak) Bisimulation for CTMCs

In this section we show that our bisimulations are downward compatible to those for
CTMCs. Different from CTMDPs, there is no non-deterministic transitions in CTMCs,

i.e., each state has only one transition, which will be denoted by s
λs−→ μs. The notion

of weak bisimulation can be found in [6] for CTMCs, which is repeated as follows:

Definition 7 (Weak Bisimulation of CTMCs). For CTMCs, an equivalence relation
R is a weak bisimulation iff for all sR r it holds: i) L(s) = L(r), and ii) λs · μs(C) =
λr · μr(C) for all equivalence classes C
= [s]R.

States s, r are weak bisimilar, denoted by s ≈CTMC r, iff there exists a weak bisim-
ulationR such that sR r.

Strong bisimulation for CTMCs is defined if in additionλs·μs(C) = λr ·μr(C) holds
for C = [s]R = [r]R as well. States s, r are strong bisimilar, denoted by s ∼CTMC r,
iff there exists a strong bisimulationR such that s R r.

Below we prove that, restricted to CTMCs, our strong and weak bisimulations agree
with strong and weak bisimulations for CTMCs, respectively:

Lemma 7. For CTMCs, it holds that ∼ = ∼CTMC and ≈ = ≈CTMC.

The lemma above shows that ∼ and ≈ are conservative extensions of strong and
weak bisimulations for CTMCs in [6], and so are their logical characterization results
except that they only work on a subset of CTMDPs free of 2-step recurrent states.

Since CTMCs are sub-models of CTMDPs,Theorem 4 and 5 also hold for CTMCs.
Together with Lemma 7, we have the following result:

Corollary 1. 1. ∼CSL∗ = ∼ = ∼CTMC = ∼CSL,
2. ∼CSL∗

\X
= ≈ = ≈CTMC = ∼CSL\X .

Bisimulations and Logical Characterizations on CTMDPs 115

Corollary 1 shows that CSL∗ gains no more distinguishing power than CSL on CTMCs
without non-determinism, similarly for their sub-logics without the next operator.

6 Conclusion and Future Work

In this paper, we have proposed both strong and weak bisimulations for CTMDPs,
which are shown to be able to fully characterize CSL and CSL\X equivalences respec-
tively, but over non 2-step recurrent CTMDPs. For a standard extension of CSL – CSL∗,
we show that strong and weak bisimulations are both sound and complete with respect
to CSL∗ and CSL∗

\X respectively for arbitrary CTMDPs. Moreover, we give a simple
scheme to determine non 2-step recurrent CTMDPs, and show almost all CTMDPs
found in practice are non 2-step recurrent CTMDPs. We note that the work in this paper
can be extended to the simulation setting in a straightforward way.

For future work we would like to consider the approximation of bisimulations and
simulations on CTMDPs as well as their logic characterization, along [15]. Moreover,
the model checking of CSL∗ against CTMCs and CTMDPs will be also worthwhile to
exploit. Another interesting direction is to consider the continuous semantics of CSL∗.

Acknowledgements. Many thanks to the anonymous referees for their valuable sug-
gestions on an early version of this paper. The authors are supported by IDEA4CPS and
the VKR Center of Excellence MT-LAB. The work has received support from the EU
FP7-ICT project MEALS (295261), and the DFG Sonderforschungsbereich AVACS.
Part of the work was done while the first author was with IT University of Copenhagen,
Denmark, and the second author was with Technical University of Denmark.

References

1. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–203 (1994)
2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time Markov chains.

In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer,
Heidelberg (1996)

3. Aziz, A., Singhal, V., Balarin, F., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It usually
works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995. LNCS,
vol. 939, pp. 155–165. Springer, Heidelberg (1995)

4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

5. Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation of time-
bounded reachability probabilities in uniform continuous-time Markov decision processes.
Theor. Comput. Sci. 345(1), 2–26 (2005)

6. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for
Markov chains. Inf. Comput. 200(2), 149–214 (2005)

7. Böde, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R., Wimmer,
R., Becker, B.: Compositional performability evaluation for STATEMATE. In: QEST, pp.
167–178. IEEE (2006)

8. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: LICS, pp. 109–
120. IEEE (2007)

116 L. Song, L. Zhang, and J.C. Godskesen

9. Browne, M.C., Clarke, E.M., Grümberg, O.: Characterizing finite Kripke structures in propo-
sitional temporal logic. Theor. Comput. Sci. 59(1-2), 115–131 (1988)

10. Bruno, J., Downey, P., Frederickson, G.N.: Sequencing tasks with exponential service times
to minimize the expected flow time or makespan. J. ACM 28(1), 100–113 (1981)

11. Buchholz, P., Hahn, E.M., Hermanns, H., Zhang, L.: Model checking algorithms for CT-
MDPs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 225–242.
Springer, Heidelberg (2011)

12. Buchholz, P., Schulz, I.: Numerical analysis of continuous time Markov decision processes
over finite horizons. Computers & Operations Research 38(3), 651–659 (2011)

13. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Time-bounded verification of
CTMCs against real-time specifications. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS
2011. LNCS, vol. 6919, pp. 26–42. Springer, Heidelberg (2011)

14. D’Argenio, P.R., Wolovick, N., Terraf, P.S., Celayes, P.: Nondeterministic labeled Markov
processes: Bisimulations and logical characterization. In: QEST, pp. 11–20. IEEE (2009)

15. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov pro-
cesses. Theor. Comput. Sci. 318(3), 323–354 (2004)

16. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is sound and

complete for pCTL*. Inf. Comput. 208(2), 203–219 (2010)
17. Desharnais, J., Panangaden, P.: Continuous stochastic logic characterizes bisimulation of

continuous-time Markov processes. J. Log. Algebr. Program. 56(1-2), 99–115 (2003)
18. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects

of Computing 6(5), 512–535 (1994)
19. Haverkort, B.R., Hermanns, H., Katoen, J.-P.: On the use of model checking techniques for

dependability evaluation. In: SRDS, pp. 228–237 (2000)
20. Hermanns, H., Parma, A., Segala, R., Wachter, B., Zhang, L.: Probabilistic logical character-

ization. Inf. Comput. 209(2), 154–172 (2011)
21. Jenkins, M., Ouaknine, J., Rabinovich, A., Worrell, J.: Alternating timed automata over

bounded time. In: LICS, pp. 60–69. IEEE (2010)
22. Jonsson, B., Larsen, K., Wang, Y.: Probabilistic extensions of process algebras. In: Bergstra,

J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 685–710. Elsevier (2001)
23. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the

probabilistic model checker MRMC. In: QEST, pp. 167–176 (2009)
24. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time

Syst. 2(4), 255–299 (1990)
25. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-

time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011)

26. Neuhäußer, M.R., Katoen, J.-P.: Bisimulation and logical preservation for continuous-time
Markov decision processes. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 412–427. Springer, Heidelberg (2007)

27. Neuhäußer, M.R., Stoelinga, M., Katoen, J.-P.: Delayed nondeterminism in continuous-time
Markov decision processes. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp.
364–379. Springer, Heidelberg (2009)

28. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS, pp. 188–
197. IEEE (2005)

29. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)
30. Rabe, M.N., Schewe, S.: Finite optimal control for time-bounded reachability in CTMDPs

and continuous-time Markov games. Acta. Inf. 48(5-6), 291–315 (2011)
31. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord. J. Com-

put. 2(2), 250–273 (1995)

Bisimulations and Logical Characterizations on CTMDPs 117

32. Sharma, A., Katoen, J.-P.: Weighted lumpability on Markov chains. In: Clarke, E., Virbit-
skaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 322–339. Springer, Heidelberg
(2012)

33. Song, L., Zhang, L., Godskesen, J.C.: Bisimulations meet PCTL equivalences for proba-
bilistic automata. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
108–123. Springer, Heidelberg (2011)

34. Song, L., Zhang, L., Godskesen, J.C.: The branching time spectrum for continuous-time
mdps. CoRR, abs/1204.1848 (2012)

35. van Glabbeek, R.J.: The linear time - branching time spectrum ii. In: Best, E. (ed.) CONCUR
1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

36. van Glabbeek, R.J.: The linear time - branching time spectrum i. In: Bergstra, J., Ponse, A.,
Smolka, S. (eds.) Handbook of Process Algebra, pp. 3–99. Elsevier (2001)

37. Wolovick, N., Johr, S.: A characterization of meaningful schedulers for continuous-time
Markov decision processes. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS,
vol. 4202, pp. 352–367. Springer, Heidelberg (2006)

38. Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient decision algo-
rithms for probabilistic simulations. Logical Methods in Computer Science 4(4) (2008)

39. Zhang, L., Neuhäußer, M.R.: Model Checking Interactive Markov Chains. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 53–68. Springer, Heidelberg (2010)

Probabilistic Automata

for Safety LTL Specifications

Dileep Kini and Mahesh Viswanathan

University of Illinois at Urbana-Champaign
Department of Computer Science

Abstract. Automata constructions for logical properties play an impor-
tant role in the formal analysis of the system both statically and dynam-
ically. In this paper, we present constructions of finite-state probabilistic
monitors (FPM) for safety properties expressed in LTL. FPMs are prob-
abilistic automata on infinite words that have a special, absorbing reject
state, and given a cut-point λ ∈ [0, 1], accept all words whose probabil-
ity of reaching the reject state is at most 1 − λ. We consider Safe-LTL,
the collection of LTL formulas built using conjunction, disjunction, next,
and release operators, and show that (a) for any formula ϕ, there is an
FPM with cut-point 1 of exponential size that recognizes the models of
ϕ, and (b) there is a family of Safe-LTL formulas, such that the small-
est FPM with cut-point 0 for this family is of doubly exponential size.
Next, we consider the fragment LTL(G) of Safe-LTL wherein always op-
erator is used instead of release operator and show that for any formula
ϕ ∈ LTL(G) (c) there is an FPM with cut-point 0 of exponential size
for ϕ, and (d) there is a robust FPM of exponential size for ϕ, where a
robust FPM is one in which the acceptance probability of any word is
bounded away from the cut-point. We also show that these constructions
are optimal.

1 Introduction

Connections between automata and logic have played an important role in pro-
viding mathematical foundations for understanding the tractability of logics and
the notion of regularity. In addition, translations from logical properties to au-
tomata have been exploited to build efficient tools for model checking and mon-
itoring of systems with respect to formal properties. In this paper we investigate
the construction of probabilistic automata for safety properties expressed in Lin-
ear Temporal Logic.

Finite state probabilistic monitors (FPM), introduced in [1], are finite state
automata on infinite strings that choose the next state on a transition based
on the roll of a dice. They are a special class of Probabilistic Büchi automata
(PBA) [2], wherein all states, except a special absorbing reject state, are accept-
ing. Given a cut-point λ ∈ [0, 1], an FPM accepts all words whose probability
of reaching the reject state is at most 1 − λ. We consider 3 special classes of
FPMs in this paper. A strong monitor is an FPM with cut-point 1, i.e., an input

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 118–136, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Probabilistic Automata for Safety LTL Specifications 119

word is accepted if the probability of reaching the reject state is 0. Thus a strong
monitor never rejects a good word. A weak monitor is an FPM with cut-point
0, i.e., it accepts a word if it has some non-zero probability of being accepted. In
other words, a weak monitor never accepts a bad word. Finally a robust monitor
is an FPM (with cut-point λ) such that there is a gap g > 0 with the prop-
erty that every input word is either accepted with probability at least λ + g or
at most λ − g. Robust monitors are automata with two-sided, bounded error.
Therefore standard techniques like amplification can be used to have their error
probabilities reduced. That is one can execute an input on many independent
instances of the monitor and take the majority answer to have the error reduced
by an exponential factor in the number of repetitions.

We investigate the construction of strong monitors, weak monitors, and ro-
bust monitors, for safety properties expressible in Linear Temporal Logic. Our
motivations for this investigation are three-fold. Understanding the power of
nondeterminism and randomization has driven research in theoretical computer
science for the last 5 decades. The relationship between nondeterministic and
deterministic models of finite automata is pretty well understood, both in terms
of expressive power and efficiency. For probabilistic finite automata 1, while
there have been many results characterizing their expressive power [3,4,2,1],
there are almost no results studying their efficiency. Second, FPMs, as per their
original motivation, model randomized algorithms that monitor system behav-
ior at runtime. The construction of optimal FPMs for logical properties can
yield efficient monitoring algorithms. Finally, model checking algorithms veri-
fying Markov chains against LTL specifications exploit the translation of LTL
formulas into deterministic automata. However, these translations can be both
complicated and result in large automata. Instead, as argued in [5], probabilistic
Büchi automata can be used when verifying qualitative LTL properties of Markov
chains. Thus, translations from fragments of LTL to probabilistic automata can
help in the efficient verification of Markov chains.

Safe-LTL are LTL properties built using propositions, conjunctions, disjunc-
tions, next, and release operators; negations are restricted to being only applied
to propositions. Safe-LTL is known to capture all safety properties expressible in
LTL [6]. We show that for any property ϕ in Safe-LTL, there is a strong monitor
with O(2|ϕ|) states that accepts the models of ϕ. The monitor is essentially the
nondeterministic Büchi automata for the property constructed in [7], where the
nondeterministic choices are turned into probabilistic choices by assigning some
non-zero probability to each choice. While this construction is not novel, it can
be used to verify if a Markov chain violates a safety property with non-zero prob-
ability — since the PBA obtained by flipping the accept states and reject state of
a FPM accepts the complement of the safety property with non-zero probability.
We also prove that there is no translation from Safe-LTL to small weak monitors.
More specifically, we show that there is a family of Safe-LTL properties {ϕn}n∈N

such that |ϕn| = O(n logn) and the smallest weak monitor for ϕn is of size 22
|ϕ|

.

1 By probabilistic automata we loosely refer to both automata on finite and automata
on infinite words.

120 D. Kini and M. Viswanathan

Since all safety properties in LTL can be recognized by a doubly exponential de-
terministic automata, these results show that weak monitors maybe no smaller
than deterministic automata. These results are surprising in the following light.
Strong monitors are known to recognize only regular safety properties [1]. On
the other hand, weak monitors are known to recognize all regular persistence
properties 2 and even some non-regular properties [1]. Thus, while weak moni-
tors recognize a richer class of properties than strong monitors, they are not as
efficient.

Next, we consider a fragment of Safe-LTL, that we call LTL(G), where we only
allow the use of the “always” modal operator instead of release. For this logic, we
show that every formula ϕ has a weak monitor of size O(2|ϕ|). Given results in [9],
our construction demonstrates that weak monitors can be exponentially more
succinct than deterministic automata for a large, natural class of properties. We
also consider the construction of robust monitors for LTL(G). We show that for
any property ϕ, there is a robust monitor of size O(2|ϕ|) with gap 2−|ϕ|. Our
construction is optimal in terms of the gap; we show that any robust monitor

with gap 2−o(|ϕ|) must be of size at least 22
Ω(|ϕ|)

. Thus, robust monitors with
subexponential gaps are no more efficient than deterministic automata for this
logic. Our results are summarized in Figure 1.

DBA NBA Strong Monitors Weak Monitors Robust Monitors

Safe-LTL 2-EXP EXP EXP 2-EXP with gap 1

2o(n) : 2-EXP

LTL(G) 2-EXP EXP EXP EXP with gap 1

2o(n) : 2-EXP

with gap 1
2n

: EXP

Fig. 1. Size of automata recognizing Safety Properties in LTL. EXP means the number
of states is exponential in the size of the formula and 2-EXP means that the number of
states is doubly exponential. DBA stands for Deterministic Büchi Automata and NBA
stands for Nondeterministic Büchi Automata.

We conclude the introduction with a brief discussion of our lower bound proofs
which draw on results in communication complexity [10,11]. More specifically, we
focus on one round protocols, where the only one message is sent from Alice to
Bob, and Bob computes the value of the function based on this message and his
input. We consider the non-membership problem, which is a special case of set
disjointness problem, where Alice gets a subset X ⊆ S, and Bob gets y ∈ S, and
they are required to determine if y ∈ X . We observe that the non-membership
problem has a high VC-dimension, and, therefore, using results in [12], has a high
communication complexity. Next, we observe that for certain languages, an FPM
can be used to construct a one round protocol for this problem. In this protocol
Alice and Bob construct special strings based on their inputs, Alice sends the
state of the FPM after reading her input, and Bob computes the answer to the

2 Informally, persistence properties are those that say that “eventually something al-
ways happens”. For a formal definition see [8].

Probabilistic Automata for Safety LTL Specifications 121

non-membership problem based on whether his string is accepted from the state
sent by Alice. Thus, a lower bound on the communication complexity of the
non-membership problem is lifted to obtain a lower bound on the number of
states in an FPM recognizing certain languages.

The outline of the rest of the paper is as follows: In Section 2 we begin with
prelimnaries, where we introduce FPMs, the safety fragment of LTL, and one
round communication complexity. In Section 3 we present the constructions and
lower bounds for the translating Safe-LTL specifications to strong and robust
monitors. In Section 4 we present the results for going from the fragment LTL(G)
to weak and robust monitors.

2 Preliminaries

First we introduce the notation that we will use throughout the paper. We use
Σ to denote a finite set of symbols. σ to denote elements of Σ. Lower case greek
letters α, β, γ . . . will denote infinite strings from Σω. We will use u, v, w . . . to
denote finite strings in Σ∗. For any string α = σ0σ1 . . . we will use α(i) = σi
to denote the ith symbol in the sequence σi. The notation αi will be used to
denote the suffix begining from the ith position which is σiσi+1 . . ., and we use
←−αi to denote the prefix ending at position i which is σ0σ1 . . . σi. For a finite set
S a distribution over S is any function μ : S → [0, 1] such that Σs∈S μ(s) = 1.
Since S is finite μ can be thought of as a vector with |S| co-ordinates. The set
of all distributions over S will be denoted by dist(S). A stochastic matrix δ is a
square matrix with non-negative entries such that each row of the matrix sums
up-to one.

2.1 Finite State Probabilistic Monitors

Definition 1. A finite state probabilistic monitor (FPM) M is a tuple
(Q,Σ, μ0, qr, (δσ)σ∈Σ) where Q is a finite set of states; μ0 ∈ dist(Q) is the initial
distribution; qr ∈ Q is the reject state, and (δσ)σ∈Σ is an indexed set of stochastic
matrices with dimension |Q| × |Q| such that δσ(qr, qr) = 1 for all σ ∈ Σ.

We will use |M| to denote the size of Q. For q ∈ Q we will use (M, q) to
denote the FPM (Q,Σ, μ′

0, qr, (δσ)σ∈Σ) where μ
′
0(q) = 1.

Given an infinite string α = σ0σ1σ2 . . . as input the FPM M behaves in the
following manner.M first chooses a state q1 according to μ0. If the next symbol
that it is reading is σ then it moves to state q2 with probability δσ(q1, q2);
consumes the input symbol σ and keeps repeating this process for the remaining
input.

For a finite word u = σ0 . . . σn define δu as the matrix product δσ0 . . . δσn ,
and let μM,u be the distribution μ0δu. Define the rejection probability of u

as μrej
M,u = μM,u(qr) and and acceptance probability μacc

M,u = 1 − μrej
M,u. Next

observe that μrej
M,←−αi

≤ μrej
M,←−−−αi+1

because the reject state has no edges leaving it.

So, the sequence μrej
M,←−α0

μrej
M,←−α1

. . . is non decreasing and since it is upper-bounded

122 D. Kini and M. Viswanathan

by 1, its limit exists. DefineM’s probability of rejecting α, denoted by μrej
M,α, to

be this limit. Let M’s probability of accepting α be μacc
M,α = 1− μrej

M,α.
Given a cutpoint λ ∈ [0, 1], the language recognized by M can be defined as

the set of all infinite words with probability of acceptance at least λ or strictly
more than λ. This is formally defined below.

Definition 2. Given a cut-point λ ∈ [0, 1] and FPM M

– L>λ(M) = {α ∈ Σω | μacc
M,α > λ}

– L≥λ(M) = {α ∈ Σω | μacc
M,α ≥ λ}

Example: Figure 2 shows an example of an FPM. Here the input alphabet con-
sists of Boolean assignments for p and q that is Σ = 2{p,q}. The transitions are
shown to be annotated with predicates over p and q: for example the transition
from 1 to 2 is annotated with p, 12 which means if you are in state 1 and see an
input symbol σ for which p ∈ σ then you move to state 2 with probability 1

2 .
Consider the initial distribution to be the one which assigns equal probabilities
to states {1, 2, 3} and let qr be the reject state. The language associated withM
at cutpoints 1 and 0 are: L≥1(M) = �G(p ∧ q)� and L>0 = �G(p ∨Gq)� (The
temporal logic and its semantics are defined in the next section).

1 2

qr3

p, 1
2

p, 1
2

¬p, 1

q, 1

¬q, 1

true, 1p, 1
¬p, 1

Fig. 2. Example FPM M

A cut-point is said to be extremal if it is either 0 or 1, and it is called non-
extremal otherwise. The following proposition states that when the cutpoint is
non-extermal it does not matter as to what that exact cutpoint is. The propo-
sition is proved in [1] and a proof sketch is included here because the same
construction will be used in Corollary 2.

Proposition 1. [1] For any p ∈ [0, 1] and for any FPM M

– there is an FPM M′ of size O(|M|) such that μrej
M′,α = pμrej

M,α

– there is an FPM M′ of size O(|M|) such that μacc
M′,α = pμacc

M,α.

Proof. Let M be (Q,Σ, μ0, qr, (δσ)σ∈Σ). First let us consider when there is a
single state q0 for which μ0(q0) = 1. In this case we introduce two new states
q′0, qacc(/∈ Q) and extend the transition matrices to include δσ(q

′
0, q) := pδσ(q0, q),

δσ(q
′
0, qacc) := (1 − p), δσ(qacc, qacc) := 1 and δσ(q, q

′
0) := δσ(q

′
0, q

′
0) = 0 for all

Probabilistic Automata for Safety LTL Specifications 123

q ∈ Q and σ ∈ Σ. LetM′ be (Q∪ {q′0, qacc}, Σ, μ′
0, qr, (δσ)σ∈Σ) where μ

′
0(q

′
0) :=

1. The construction ensures that every word is diverted to qacc right at the
beginning with probability (1− p). A word α gets rejected on M′ if it does not
go to qacc and ends up in qr. If it does not go to qacc then the word would behave
exactly as it would on M except for the beginning, where the probability gets
scaled by p, and hence μrej

M′,α = pμrej
M,α. When there are multiple states q ∈ Q

with μ0(q) > 0 one can introduce a copy for each of them in the same way.
The second part can be similarly proved by diverting probabilities to qr instead

of qacc at the beginning.

Corollary 1. For any two cutpoints λ1, λ2 ∈ (0, 1) and FPM M1, there is a
FPM M2 such that L>λ1(M1) = L>λ2(M2) and L≥λ1(M1) = L≥λ2(M2) and
M2 is of size O(|M1|).

We will be interested in FPMs for which the probability of accepting any
word is bounded away from the cut-point. We call these FPMs to be robust, and
we define this formally. Robustness, first introduced in [1], is analogous to the
concept of isolated cut-points [3] for probabilistic automata over finite words.

Definition 3. Given FPM M and a cut-point λ define gap(M, λ) as

gap(M, λ) = inf
α∈Σω

|μacc
M,α − λ|

Definition 4. A FPM is said to be robust with respect to a cut-point λ if
gap(M, λ) > 0. When a M is robust for cut-point λ then L>λ(M) = L≥λ(M)
which we will represent by Lλ(M).

For robust FPMs, we can always consider the cut-point to be 1
2 without

seriously changing the size of the automata or its gap. Thus in the rest of the
paper, we will assume that the cut-point of any robust monitor that we consider
is 1

2 .

Corollary 2. If FPM M is robust at λ then there is a FPM M′ of the same
size as M such that Lλ(M) = L 1

2
(M′) and gap(M′, 12) ≥

1
2gap(M, λ)

Proof. The construction of Proposition 1 give us the required FPM M′. When
λ < 1

2 choose p := 1
2(1−λ) and observe that:

gap(M′, 12) = inf
α∈Σω

|μacc
M′,α − 1

2 | = inf
α∈Σω

| 12 − μrej
M′,α|

= inf
α∈Σω

| 12 −
μrej
M,α

2(1−λ) | =
infα∈Σω |μacc

M,α−λ|
2(1−λ) ≥ 1

2gap(M, λ)

Monitorable Languages. An FPMM is said to strongly monitor a language
L ⊆ Σω if L = L≥1(M), meaning the monitor M never declares a correct
behaviour to be wrong. SimilarlyM is said to weakly monitor L if L>0(M) = L
which meansM never accepts a wrong behaviour but it may occasionally reject
a correct behaviour. The FPM M is said to robustly monitor L if there is a
cut-point λ for which M is robust and L = Lλ(M).

124 D. Kini and M. Viswanathan

Gap Amplification. Given a robust FPMM, one can always increase the gap
(and reduce the error probability) by running multiple copies of M in parallel.
Before presenting this result, we introduce some formal definitions that will allow
us to state this result precisely.

A family of FPMs is a sequence of FPMs {Mn}n∈N. We define the size of the
family as the function s(n) = |Mn|, and the gap of the family as the function
g(n) = gap(Mn,

1
2).

Lemma 1. Let {Mn} be a family of robust FPMs, then there exists a family

{M′
n} of size s(n)

� 1
g(n)2

�
with Ω(1) gap such that for all n L 1

2
(Mn) = L 1

2
(M′

n).

Proof. Gap amplification is well known technique wherein a particular experi-
ment is repeated in order to increase the gap or reduce the error probability [13].
Consider M′

n to be the machine that runs ! 1
g(n)2 " copies of Mn in parallel on

an input word α.M′
n rejects α if more than 1

2 of the ! 1
g(n)2 " copies ofMn reject

α. Using Chernoff’s bounds we can show that for any α, |μacc
M′

n,α
− 1

2 | ≥
1
2 − e−2.

The bounds on the size and the gap for M′
n follow from these observations.

2.2 Safety Specifications

In this section, we introduce fragments of LTL that describe safety properties,
and for which we will present constructions of FPMs.

Definition 5. (Safe-LTL syntax) Given a finite set of propositions P the for-
mulae in Safe-LTL fragment of linear temporal logic over P is given by the fol-
lowing grammar:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ |Xϕ | ϕRϕ

Definition 6. (Safe-LTL semantics) Formulae in Safe-LTL over the set of
propositions P are interpreted over words in (2P)ω which are sequences of as-
signments to propositions. The semantics of the logic is given by the following
rules:

α 	 p iff p ∈ α(i)
α 	 ¬p iff p /∈ α(i)
α 	 ϕ1 ∧ ϕ2 iff α 	 ϕ1 and α 	 ϕ2

α 	 ϕ1 ∨ ϕ2 iff α 	 ϕ1 or α 	 ϕ2

α 	 Xϕ iff α1 	 ϕ

α 	 ϕ1 Rϕ2 iff either ∀j ∈ N : αj 	 ϕ2

or ∃k ∈ N : (αk 	 ϕ1 and ∀j ≤ k αj 	 ϕ2)

The semantics of ϕ denoted by �ϕ�, is given by �ϕ� = {α ∈ (2P)ω | α 	 ϕ}

Probabilistic Automata for Safety LTL Specifications 125

Definition 7. The logic LTL(G) over set of propositions P is the fragment of
Safe-LTL over P where the allowed temporal operators are X (next) and G (al-
ways). It is given by the grammar:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ |Xϕ |Gϕ

where p ranges over P . Since Gϕ will be interpreted as falseRϕ, LTL(G) is a
fragment of Safe-LTL. The semantics of G can be given as: α 	 Gϕ iff ∀i ∈ N :
αi 	 ϕ

From the semantics of X, one can infer the following equivalences:

X(ϕ1 ∨ ϕ2) ≡ Xϕ1 ∨Xϕ2 X(ϕ1 Rϕ2) ≡ (Xϕ1)R (Xϕ2)

X(ϕ1 ∧ ϕ2) ≡ Xϕ1 ∧Xϕ2 XGϕ ≡ GXϕ

Therefore for any formula in Safe-LTL or LTL(G) the next operator can be pushed
inside the scope of any other operator. This results in a quadratic blow up in the
size of the formula, but the size of the formula apart from the Xs will remain
the same. We will exploit this observation in the constructions ahead.

2.3 Automata over Infinite Words

A nondeterministic Büchi automaton (NBA) is a tuple (Q,Σ,Q0, δ, F) where Q
is a finite set of states; Q0 ⊆ Q is the initial set of states; Σ is a finite set of input
symbols; δ : Q×Σ → 2Q is the transition function and F ⊆ Q is the set of good
states. A run of a NBA N over a word α ∈ Σω is an infinite sequence of states
ρ = q0q1q2 · · · ∈ Qω such that q0 ∈ Q0 and for each i ∈ N qi+1 ∈ δ(qi, α(i)). A
run is called accepting if there are infinitely many indices i for which qi ∈ F . A
word α ∈ Σω is said to be accepted by N if α has an accepting run. L(B) is
defined as the set of all infinite words over Σ which are accepted by N .

Lemma 2. [14] For every formula ϕ in Safe-LTL there is an NBA
N = (Q,Σ,Q0, δ, {q}) such that δ(q, σ) = {q} for all σ ∈ Σ, �¬ϕ� = L(N) and
size of N is O(2|ϕ|).

Proof. Follows from the constructions of Theorem 22 and Proposition 20 from
[14]. The NBA constructed from the alternating automaton for ¬ϕ has a single
final state with outgoing edges only to itself.

2.4 Communication Complexity

In the two-party communication complexity model of Yao [10], there are two
parties Alice and Bob, who are given strings x ∈ X and y ∈ Y , respectively,
and are trying to cooperatively compute a Boolean function f : X × Y → {0, 1}
on their joint inputs. We are primarily interested in one-round communication
protocols, wherein Alice computes some (randomized) function a on her input
x, sends the output of this function to Bob, and then Bob, based on Alice’s
message and his own input, tries to compute the answer f(x, y) using another
function b. This can be formalized as below.

126 D. Kini and M. Viswanathan

Definition 8. A one round protocol is P = (a, Z, b), where a : X × RA → Z is
the (randomized) function that Alice computes (where RA is the space of Alice’s
random choices), Z is the space of messages that Alice uses to communicate
to Bob, and b : Z × Y × RB → {0, 1} is the (randomized) function that Bob
computes (where again RB is the space of Bob’s random choices).

– The protocol P is said to compute f with error at most ε ∈ (0, 1) if

Pr
r1∈RRA, r2∈RRB

[
b(a(x, r1), y, r2) = f(x, y)

]
≥ 1− ε

where the probability is measured over the random choices made by Alice and
Bob.

– The cost of protocol P will be taken to be the number of bits communicated
by Alice to Bob in the worst case, i.e., cost(P) = log |Z|. Notice, that in
measuring the cost of the protocol, we do not measure the resources needed
to compute the functions a and b.

– The randomized one-round communication complexity of function f , de-
noted by RA→B

ε (f), is the least cost of any one-round protocol computing f
with error at most ε.

The one-round communication compexity of a boolean function f(x, y) is
closely related to the concept of VC-dimension. We take a look at the definition
VC-dimension [15].

Definition 9. Let H be a class of boolean functions over the set Y . A set Y ′ ⊆ Y
is said to be shattered by H if for every T ⊆ Y ′ there exists a function hT ∈ H
such that for all y ∈ Y ′ hT (y) = 1 iff y ∈ T . The size of the largest set Y ′ ⊆ Y
which is shattered by H is known as the VC-dimension of H and is denoted by
V C-dim(H).

For a Boolean function f : X×Y → {0, 1} let fx : Y → {0, 1} be the function
defined as fx(y) = f(x, y) and let fX = {fx | x ∈ X}.

Lemma 3. [12] For any boolean function f : X ×Y → {0, 1} over finite sets X
and Y , and any constant error ε < 1

8 , the one-round randomized communication
complexity of f , RA→B

ε (f) = Ω(V C-dim(fX)).

We will be interested in a particular function which we will call the non mem-
bership function. Given any set S the non-membership function is the Boolean
function gS : X × Y → {0, 1} where X = 2S , Y = S and g(x, y) is 1 when y /∈ x
and 0 otherwise.

Proposition 2. The VC-dimension of the class of functions gSX is equal to the
size of S, that is V C-dim(gSX) = |S|.

Proof. For every subset Y ′ ⊆ S the function gSx ∈ gSX where x = S − Y ′ ∈ X is
such that gSx (y) = 1 iff y ∈ Y ′.

Corollary 3. For error ε < 1
8 , the one-round randomized communication com-

plexity of the non-membership function RA→B
ε (gS) is Ω(|S|)

Probabilistic Automata for Safety LTL Specifications 127

3 Monitors for Safe-LTL

In this section, we present a construction of strong monitors for formulae in
Safe-LTL of exponential size, and also show that the smallest weak monitors for
some formulas in Safe-LTL can be doubly exponential sized. However, before
presenting these results, we observe that any exponential blow-up is inevitable
even for very simple formulas that are built using only the X operator. Thus the
best upper bounds we can hope for is exponential.

Proposition 3. – There exists a family of specification {ϕn}n∈N such that
any family {Mn}n∈N that weakly monitors it has size at least 2|ϕn|, and

– There exists a family of specfication {ϕn}n∈N such that any family {Mn}n∈N

that strongly monitors it has size at least 2|ϕn|

Proof. Consider the class of languages {Ln} where Ln = {uu(0 + 1)ω | u ∈
{0, 1}n}. Ln can be specified by saying that for each i ∈ {1, . . . , n} the ith input
symbol should be the same as the (i + n)th input symbol, which can be done
using only X and the boolean connectives. Any FPM that weakly recognizes Ln

should have at least 2n states because for each u ∈ {0, 1}n one can identify a
state q reachable from u and not reachable on any other v ∈ {0, 1}n such that
the word u is accepted with non-zero probability from q.

The complement of the above Ln serves to show that translation to strong
monitors need also result in an exponential blowup, and can be argued in a
similar fashion.

3.1 Strong Monitors

We present our construction of an exponential size strong monitor for Safe-LTL
formulas.

Theorem 1. For every formula ϕ in Safe-LTL there is a FPM Mϕ of size
O(2|ϕ|) such that Mϕ strongly monitors �ϕ� that is L≥1(Mϕ) = �ϕ�
Proof. We begin by using Lemma 2 to construct a NBA B = (Q,Σ,Q0, δ, qf)
that recognizes all words that don’t satisfy the specification ϕ, such that state qf
is absorbing. Let μ0 ∈ dist(Q) such that μ0(q) =

1
|Q0| if q ∈ Q0 and 0 otherwise.

For all q1, q2 ∈ Q define δσ(q1, q2) = 1
|δ(q1,σ)| if q2 ∈ δ(q1, σ) and 0 otherwise.

The required FPM Mϕ is (Q,Σ, μ0, qf , (δσ)σ∈Σ).
Any word that satisfies ϕ can never reach the reject state of the FPM, if it

could then the accept state of B would also be reachable on that word and since
it is absorbing the word would be accepted by B, which is not possible as B
accepts words that do not satisfy ϕ. Hence no word satisfying ϕ can reach the
reject state of Mϕ so we have �ϕ� ⊆ L≥1(Mϕ). Any word that does not satisfy
ϕ can reach the accepting state of the NBA, and hence can reach the reject state
in Mϕ with non-zero probability and so we have that �ϕ� ⊇ L=1(Mϕ).

128 D. Kini and M. Viswanathan

The above result is not a novel construction. However, it can be potentially
exploited in model checking Markov Chains. Flipping the accept and reject states
of the FPM gives a PBA that accepts the complement of the safety property
with non-zero probability, hence the above construction shows that there are
exponential sized PBAs recognizing co-safety properties expressed in LTL. Thus,
if to check if a Markov chain violates a safety property with non-zero probability,
we can use this PBA instead of constructing a deterministic automaton for the
co-safety property (which can be doubly exponential in size).

3.2 Weak Monitors

While Safe-LTL admits strong monitors of exponential size, we show that the
smallest weak monitors for some formulas can be doubly exponential in size. This
is interesting in the light of the fact that weak monitors are expressively more
powerful than strong monitors (i.e., can recognize languages not recognizable by
strong monitors) [1].

Theorem 2. There exists a family of Safe-LTL specification {ϕn}n∈N of size
O(n log n) such that any family of FPMs that weakly monitors {ϕn}n∈N has size
2Ω(2n)

Proof. Consider Σ = {0, 1,#, $} and the following ω languages over Σ

Sn = (# · (0 + 1)n)+ · $ · (0 + 1)n

R′
n = {(# · (0 + 1)n)∗ · (# · w) · (# · (0 + 1)n)∗ · $ · w | w ∈ (0 + 1)n}

Rn = Sn −R′
n

Ln = Rω
n +R∗

n · (# · (0 + 1)n)ω

A word in Sn can be thought of as an instance of a non-membership query: call
the set of n-bit strings appearing before the $ as the query set and a n-bit string
appearing after the $ as the query string. In a non-membership query you want
to know whether the query string does not occur in the query set. R′

n represents
the words in Sn that are no instances of the non-membership query and Rn

represents the yes instances. Ln represents either a possibly infinite sequences
of yes instances of the non-membership query or finitely many yes instances
followed by an infinite sequence of n-block 0, 1 separated by # alone. For the
Safe-LTL specification the set of propositions P we consider is {0, 1,#, $}, and
we will assume that exactly one proposition holds at any time point. This can
be easily enforced by a constant sized specification. For the sake of simplicity we
present the specification family that is of size O(n2). For details about the more
succinct O(n log n) specification the interested reader should refer to [16] after
reading this proof.

Probabilistic Automata for Safety LTL Specifications 129

∧G(#⇒ (

n∧
i=1

Xi(0 ∨ 1)) ∧Xn+1(# ∨ $)) (1)

∧G($⇒ (
n∧

i=1

Xi(0 ∨ 1)) ∧Xn+1(#)) (2)

∧G(#⇒
n∨

i=1

∨
σ∈{0,1}

(Xi(σ) ∧ (X($ ∧Xi(σc))R (¬$))) (3)

(1) says that the words should begin with # and each # should be followed by a
n-bit string followed by a # or $. (2) says that every $ is followed by n-bit string
block then followed by #. (1) and (2) together describe a sequence of possibly
infinite non-membership queries. (3) says that for any every word in the query
set differs from the query string in at least one position. Hence (1) ∧ (2) ∧ (3)
is a specification of Ln and is of size O(n2).

Now let us assume that we have a family of FPMs {Mn} that weakly monitors
{Ln}. We make the following claim about Mn.

Claim. Consider any n ∈ N and c ∈ (0, 1). Let Mn be (Q,Σ,Q0, qr, (δσ)σ∈Σ).
There exists a u ∈ R∗

n and a state q
= qr with μMn,u(q) > 0 such that for all
β ∈ Rω

n : μacc
(Mn,q),β

≥ c.

Proof. Suppose the claim does not hold for some c and n. Let us fixM to beMn.
Since the claim is false we have that for any u ∈ R∗

n and any q with μM,u(q) > 0
there is a βq ∈ Rω

n such that the measure of accepting runs from q on βq is less
than c. Let us fix q to be a state with maximal μM,u(q) among all q
= qr. For

such a q we have μM,u(q) ≥
μacc
M,u

|M| by pigeon-hole principle. For an FPM the

acceptance measure of any string is non-increasing along its length and so there
should be a finite prefix of βq, say v ∈ R∗

n such that μacc
(M,q),v < c. From this we

get

μacc
M,uv ≤ μacc

M,u

(
1− 1− c

|M|

)
because at least 1− c of the probability of reaching q is lost to qr after seeing v.
So for any u ∈ R∗

n we manage to find a string v ∈ R∗
n such that the acceptance

probability of the extended string uv compared to u decreases by a constant
factor. But observe that uv is once again in R∗

n. So this extension process can
be repeated forever to get a string in Rω

n which is accepted with 0 probability
which is a contradiction. So our claim is indeed true.

Consider S = {0, 1}n. In order to show the required lower bound on Mn we
will show howMn can be used to construct a constant-error one-round protocol
for the non-membership function gS. For the sake of the remaining argument we
instantiate c in the above claim to 7

8 . Consider the state q as per our claim. Let
η denote the string (#an)ω. We make the following observations:

– for w ∈ Rn the acceptance probability of wη starting from q is at least
7
8 . This is because from q every prefix w′ of wη should be accepted with

130 D. Kini and M. Viswanathan

probability at least 7
8 , otherwise we can attach an appropriate suffix to w′

to get a string that contradicts our claim.
– for w ∈ R′

n, the string wη is accepted with 0 probability becauseMn should
accept strings uwη with 0 probability.

So Mn if started from q is able to significantly distinguish between yes and
no instances of the non-membership query. We can use this to construct a one-
round protocol for the function gS : Alice encodes her input set of n-bit blocks
as a string in (# · (0 + 1)n)+$ and runs it on Mn starting from q and sends
to Bob the resulting state q′. Bob then simulates yη from q′ and outputs 0 iff
the simulation results in rejection. (Bob cannot actually run the infinite string η
but he can simulate η’s acceptance because probability of η being accepted from
any state can be calculated). This gives us a randomized one-round protocol
with error < 1

8 . The number of bits exchanged in this protocol is log2 |M|, but
according to Corollary 3 any such protocol needs to exchange at least Ω(2n)
bits. Hence we get that M has at least 2Ω(2n) states.

4 Monitors for LTL(G)

The results in Section 3 show that for general Safe-LTL formulas, weak monitors
can be as large as deterministic automata. In this section, we show that when
we consider the sub-logic LTL(G), we can demonstrate that weak monitors can
be exponentially more succinct than their deterministic counterparts. The idea
behind the construction is that we consider each state to represent a guess about
the truth of all subformulae of the form Gψ: whether it holds now, or holds
starting from some point in the future, or never holds. Then we argue that for
satisfying behaviours one can find accepting runs that need to make finitely
many correct guesses and vice versa.

In the latter part of the section we present constructions of robust monitors
for this logic that are small. This result relies on considering a normalized form
of the formula which yields an efficient way to construct the required monitor.

4.1 Weak Monitors

Before we present our construction of exponential sized weak monitors for the
fragment LTL(G) , we introduce some assumptions and definitions that will
facilitate the proof.

For a formula ϕ let Sub(ϕ) denote the set of all subformulae of ϕ, and let
GSub(ϕ) ⊆ Sub(ϕ) be those which are of the form Gψ.

Definition 10. A annotation for a formula ϕ is a function mapping GSub(ϕ)
to the set {�,⊥, L}. Denote by A the set of all annotations. A annotation is
called stable if it maps GSub(ϕ) to {�,⊥}. Given a annotation a and σ ∈ 2P

an evaluation for ϕ is the unique function eσa : Sub(ϕ) → {�,⊥} that meets
the following constraints:

Probabilistic Automata for Safety LTL Specifications 131

eσa(ψ) =� iff (a(ψ) = �) for ψ ∈ GSub(ϕ)
eσa(p) =� iff p ∈ σ eσa(ψ1 ∧ ψ2)=e

σ
a(ψ1) ∧ eσa(ψ2)

eσa(¬p)=� iff p /∈ σ eσa(ψ1 ∨ ψ2)=e
σ
a(ψ1) ∨ eσa(ψ2)

A annotation represents a guess for each subformula Gψ stating whether Gψ
holds now (�), holds for some later point but not now (L), never holds (⊥). An
evaluation attempts to evaluate the truth for all the subformulae (read eσa(ψ) as
evaluation of ψ annotated with a and σ). Note that an evaluation need not be
logically consistent. For example eσa(Gp) could be � because a(Gp) = �, but
eσa(p) = ⊥ because p /∈ σ. We are now ready to present the main result of this
section.

Theorem 3. For every ϕ ∈ LTL(G) there is a FPM Mϕ of size 2O(|ϕ|) such
that L>0(Mϕ) = �ϕ�
Proof. First we show how the construction works for ϕ ∈ LTL(G) when it does
not have anyX operators. LetQ the set of states be (A×{0, 1})∪{qr}. For σ ∈ 2P

define Tσ to be the binary relation on Q such that for a, b ∈ A, ((a, t1), (b, t2)) ∈
Tσ iff: t2 = 0 and if t1 = 1 then eσa(ϕ) = � and the following conditions on a, b
holds:

(a(Gψ) = �)⇒ (b(Gψ) = � ∧ eσa(ψ) = �)
(a(Gψ) = ⊥)⇒ (b(Gψ) = ⊥)
(a(Gψ) = L)⇒ (b(Gψ)
= ⊥)

For a ∈ A, ((a, t1), qr) ∈ Tσ if for no (b, t2) the above conditions hold. For all
σ, (qr, qr) ∈ Tσ. Define δσ as:

δσ(q1, q2) =
Tσ(q1, q2)∑
q2
Tσ(q1, q2)

,

Define μ0 as follows: for an annotation a, μ0((a, t)) =
1
|A| if t = 1 and define it to

be 0 on the rest of the states. The required FPMMϕ is (Q, 2P , μ0, qr, (δσ)σ∈Σ).
Now we prove that L>0(Mϕ) = �ϕ�.
L>0(Mϕ) ⊇ �φ� : For a string α that satisfies ϕ we look at the sequence of

states induced by α, i.e define the ith state (ai, ti) as ti = 1 iff i = 0 and

ai(Gψ) =

⎧⎪⎨⎪⎩
� if αi 	 Gψ

L if αi � Gψ and ∃j > i : αj 	 Gψ

⊥ if ∀j ≥ i : αj � Gψ

First let us observe that δα(i)((ai, ti), (ai+1, ti+1)) > 0 for any i: If ai(Gψ) = �
then by construction, αi 	 Gψ. This implies αi+1 	 Gψ and so ai+1(Gψ) = �.
Also one can prove that for all i ∈ N and ψ ∈ Sub(ϕ), (αi 	 ψ)⇒ e

α(i)
ai (ψ) = �

by induction on the structure of ψ . If ai(Gψ) = L then we know ψ is going
to hold forever from some point after i, which means it is also going to hold
forever from some point after i + 1 and hence ai+1(Gψ)
= ⊥. If ai(Gψ) = ⊥

132 D. Kini and M. Viswanathan

then we know ψ is going to be false infinitely often from i, so ψ will be false
infinitely often from i + 1 as well hence ai+1(Gψ) = ⊥. This makes sure that

ai and ai+1 are properly related. Since α 	 ϕ we have that e
α(0)
a0 (ϕ) = 1. Thus

((a0, 1), (a1, 0)) ∈ Tα(0). Hence, (a0, 1)(a1, 0) . . . is a valid run of Mϕ over α.
For any ai if Gψ ∈ GSub(ϕ) is marked L then there is a j > i such that

Gψ 	 αj (defnition of ai), so it follows that aj(Gψ) = �. This implies that
every L eventually becomes �, so there exists a point k at which ak marks all
formulae in GSub(ϕ) as either � or ⊥ (which cannot be further modified), and
hence ak′ = ak for all k′ ≥ k. Once you reach ak you cannot go to any other
annotation except itself and hence for all k′ ≥ k : δα(k′)((ak, 0), (ak, 0)) = 1.
Therefore this run does not have to make any probabilistic choice after the
point k and hence has positive acceptance probability.
L>0(Mϕ) ⊆ �ϕ� : Consider any valid accepting run (a0, t0)(a1, t1) . . . of Mϕ

on input α. First observe that in any valid run of Mϕ the number of �s and
⊥s are non decreasing. Since there are finitely many states, the run ultimately
stagnates at a particular state. Let us denote by Ca the set of runs which stay
in the state (a, 0) after finitely many steps. Denote by Ci

a the set of all runs in
Ca that stay in a after i steps. We have Ca = ∪∞

i=1C
i
a.

Fix a to be an unstable annotation. For any σ we have δσ((a, 0), (a, 0)) < 1,
because a has a choice to change a L to � and move to a different annotation.
So the probabiltiy measure associated with Ci

a is 0 because after i steps the only
transition taken is from (a, 0) to (a, 0) which leaks at least 1 − δσ((a, 0), (a, 0))
probability out of (a, 0). This implies the probability associated with the set Ca

is also zero.
So if the set of all accepting runs of α has non-zero measure then it has to

have a run that ultimately reaches a stable annotation. Now with such a run we

prove that the word α satisfies ϕ. For any ϕ′ ∈ Sub(ϕ) and i ∈ N if e
α(i)
ai (ϕ′) = �

then αi 	 ϕ′, this can be proved by performing induction on the structure of
ϕ′. The interesting case is when ϕ′ = Gψ. The definition of e suggests that if

e
α(i)
ai (Gψ) = � then ai(Gψ) = �. Since ((ai, ti), (ai+1, ti+1)) ∈ Tα(i), we get

from the definition of T that e
α(i)
ai (ψ) = � and so it follows that αi 	 ψ from the

induction hypothesis. But if Gψ is marked � in ai then it is marked � in every
aj for j > i. So αj 	 ψ for every j ≥ i and hence we have that αi 	 Gψ. Finally

observe that ((a0, t0), (a1, t1)) ∈ Tα(0) iff e
α(0)
a0 (ϕ) = �. Thus α0 	 ϕ.

What remains is to be shown is the construction in the presence of X opera-
tors. First we push down the X operators to the bottom as we saw in Section 2.2.
If the number of nested Xs is at most k (which is at most |ϕ|) then by looking
ahead k positions into the input one can evaluate the X subformulae just like
literals. So by maintaining the last k input symbols and delaying the computa-
tion by those many steps will give use the required construction. Since we need
to remember k input symbols the construction will blow up only by a factor of
|Σ|k which is again in 2|ϕ|.

Probabilistic Automata for Safety LTL Specifications 133

4.2 Robust Monitors

We will present a construction of robust automata of exponential size for for-
mulae in LTL(G). We begin by observing that the above construction for weak
monitors does not result in a robust monitor. Consider the formula G(p ∨Gq).
The construction of Theorem 3 results in the FPM given in Figure 3. The initial
distribution gives equal probability to the states A, B and C. The states are
as follows: A = (a1, 1), B = (a2, 1), C = (a3, 1), A

′ = (a1, 0), B
′ = (a2, 0) and

C′ = (a3, 0), where a1, a2, a3 are annotations as given below.

A

B

A′ B′

qrC′C

p, 1
2

p, 1
2

¬p, 1

q, 1

¬q, 1

true, 1p, 1

¬p, 1

p, 1
2

p, 1
2

¬p, 1

q, 1

¬q, 1p, 1

¬p, 1

Fig. 3. Weak monitor for G(p ∨G(q))

{a1(G(p ∨Gq)) = �, a1(Gq) = L} {a2(G(p ∨Gq)) = �, a2(Gq) = �}
{a3(G(p ∨Gq)) = �, a3(Gq) = ⊥}

The rest of the annotations do not appear as they are unreachable. To see
why the FPM is not robust we consider the word pnqω . After seeing the first
n > 0 input symbols of this word, the monitor is going to be in state A′ with
probabitlity 1

3.2n , in state B′ with 1
3.2n and in state C′ with probability 1

3 .
Probability of being in state C′ goes to 0 as we see the rest of string qω. This
means as n grows larger the word pnqω is accepted with negligible probability
and hence the language �G(p ∨ Gq)� is not robustly monitored by this FPM.
Therefore, we present a new construction that avoids these pitfalls.

Theorem 4. For every ϕ in LTL(G) there is a FPM Mϕ, which is robust with
1

2|ϕ| gap, 2O(|ϕ|) states such that Mϕ recognizes ϕ.

Proof. As in Theorem 3 we can push all the X in the formula to the bottom and
take care of it by remembering the last k input symbols where k is the nesting

134 D. Kini and M. Viswanathan

depth of the Xs. Therefore we are going to consider only formulae without any
X in this proof.

The FPM that we construct is going to accept safe inputs with probability 1
and reject bad inputs with probability > 1

2|ϕ| .
Let us first consider the simpler logic LTL∨(G) built using literals, disjunction

and G; so the formulas have no conjunction. We will say that a formula ϕ ∈
LTL∨(G) is guarded iff every subformula Gψ of ϕ is of the form G(α ∨ β),
where α is a disjunction of literals, and β is a disjunction of formulae like Gγ;
β could be an empty disjunction. Observe that every formula ϕ in LTL∨(G) is
equivalent to a guarded formula ψ such that |ψ| = O(|ϕ|). This is because we
have GGψ ≡ Gψ, and G(Gα1 ∨Gα2 ∨ · · · ∨Gαn) ≡ (Gα1 ∨Gα2 ∨ · · · ∨Gαn).
Every guarded formula ϕ can be recognized by a deterministic monitor 3 of size
2|ϕ|, whose states keep track of the guarded subformulae which are yet to be
violated. For example, if the formula is G(α1 ∨Gα2 ∨Gα3) then the automaton
monitors α1 until it becomes false and then starts monitoring Gα2 and Gα3

(which are guarded).
Consider ϕ ∈ LTL(G). Since ∧ distributes over ∨ and G(ψ1 ∧ ψ2) ≡ (Gψ1) ∧

(Gψ2), we can pull all the conjunctions out, and show that ϕ is equivalent
to a formula ψ which is conjunction of formulas in LTL∨(G). We can also see
that |ψ| = O(2|ϕ|). The FPM for ψ will be will be a disjoint union of the
deterministic monitors recognizing each of the conjuncts in ψ. Thus, the number
of states in this FPM is thus O(22|ϕ|). The initial distribution assigns equal
probability to the initial states of each of the deterministic monitors (and 0
probability to all other states). A bad input violates one of the conjuncts, and
so the monitor corresponding to that conjunct will reject the input. Thus, bad
inputs are accepted with probability at most (1 − 1

2|ϕ|). On the other hand,
a good input is accepted by the monitors of each of the conjuncts, and so is
accepted by the FPM for ψ with probability 1.

The proof of Theorem 4 constructs a robust FPM with exponential gap. We
show that these bounds on the gap cannot be improved without increasing the
number of states to doubly exponential; this is the content of the next theorem.

Theorem 5. There exists a family of LTL(G) (and hence Safe-LTL) specifica-
tions {ϕn}n∈N of size O(n) s.t. any family of robust FPMs with 1

2o(n) gap that

recognizes it has size 22
Ω(n)

.

Proof. We consider the specfications used in [9] to prove lower bounds on deter-
ministic generators. Let ϕn = G(

∨n
i=1(¬pi ∧G¬qi)). We will reduce the problem

of finding efficient protocols for the non-membership function to the problem of
finding small sized FPMs for this specification.

Let Pp = {p1, . . . , pn}, Pq = {q1, . . . , qn}, Σk be {a ⊆ Pp | |a| = k} and Γk be
{b ⊆ Pq | |b| = k}. We choose k to be n

2 so that |Σk| = 2Ω(n). For any σ ⊆ Pp let
q(σ) = {qi | pi /∈ σ}. Let S = Σk and gS be the corresponding non-membership

3 A deterministic monitor is an FPM in which each transition matrix has entries which
are either 0 or 1.

Probabilistic Automata for Safety LTL Specifications 135

function. Using Corollary 3 we get that for ε ≤ 1
8 the communication complexity

RA→B
ε (gS) ∈ 2Ω(n).
We begin by showing that a constant gap family {Mn} recognizing {ϕn}

should have large size. Consider an FPM familyMn with gap at least 3
8 such that

L(Mn) = �ϕn�. Now we are going construct a randomized one-round protocol for
gS with < 1

8 error using Mn. Alice encodes her input x as a string σ1σ2 . . . σm,
an enumeration of the sets in x (which are also symbols in the alphabet 2Pp∪Pq),
runs it on Mn and gives the resulting state to Bob. Bob whose input is y
simulates the word q(y)(∅)ω from the given state, and outputs 0 if it results
in rejection and outputs 1 otherwise. A word violates ϕn iff there is a point
in the word where for each pi that is false it is the case that eventually qi is
true. Suppose x and y are such that gS(x, y) = 0, this means that there is some
σj ∈ x for which y = σj and so we get that σ1σ2 . . . σmq(y)(∅)ω violates ϕn.
Similarly if gS(x, y) = 1 then is no j such that σj ∈ x and y = σj and so
σ1σ2 . . . σmq(y)(∅)ω satisfies ϕn. Since Mn has a gap of 3

8 it follows that the
protocol that we constructed has an error of at most 1

8 in deciding the output
gS(x, y). The number of bits exchanged in this protocol is log2 |Mn|. But above
we saw that any such protocol should exchange 2Ω(n) bits which imples that the

size ofMn has to be 22
Ω(n). Having shown that constant gap FPMs recognizing

{ϕn} is of size 22
Ω(n)

we invoke Lemma 1 to get the same lower bound for 1
2o(n)

gap FPMs.

5 Conclusion

In this paper we gave constructions of FPMs for safety properties expressed in
LTL. We showed that Safe-LTL has strong monitors of exponential size, where as
weak monitors and robust monitors with sub-exponential gaps, can be doubly
exponentially large. For the sub-logic LTL(G) we gave constructions of weak
monitors and robust monitors of exponential size. However, the gap for robust
monitors for LTL(G) given by our construction is exponential and we showed
that these bounds on the gap cannot be improved without increasing the number
of states to doubly exponential.

A number of questions remain open. While we showed that robust monitor
with sub-exponential gap for Safe-LTL can be doubly exponential in size, we
could not conclude if the construction can be improved if we relax the bounds
on the gap. In particular, it would be interesting to know if there are exponential
sized robust monitors with an exponential gap. More generally, our results say
nothing about properties beyond safety, and good probabilistic Büchi automata
constructions for general LTL could have practical applications in verification.

Acknowledgements. Dileep Kini was supported by NSF grant CCF-1016989.
Mahesh Viswanathan was supported by NSF grant CNS-1016791.

136 D. Kini and M. Viswanathan

References

1. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity
of randomization in finite state monitors. J. ACM 56(5), 26:1–26:44 (2009)

2. Baier, C., Gröβer, M.: Recognizing ω-regular languages with probabilistic au-
tomata. In: Proceedings of the IEEE Symposium on Logic in Computer Science,
pp. 137–146 (2005)

3. Rabin, M.: Probabilitic automata. Information and Control 6(3), 230–245 (1963)
4. Paz, A.: Introduction to Probabilistic Automata. Academic Press (1971)
5. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic büchi

automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301.
Springer, Heidelberg (2008)

6. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspect of Com-
puting, 495–511 (1999)

7. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172–183. Springer, Heidel-
berg (1999)

8. Manna, Z., Pnueli, A.: Temporal verification of reactive and concurrent systems:
Specification. Springer (1992)

9. Alur, R., La Torre, S.: Deterministic generators and games for ltl fragments. ACM
Trans. Comput. Logic 5(1), 1–25 (2004)

10. Yao, A.: Some complexity questions related to distributed computing. In: Proceed-
ings of the ACM Symposium on Theory of Computation, pp. 209–213 (1979)

11. Kushilevtiz, E., Nisan, N.: Communication Complexity. Cambridge University
Press (1996)

12. Kremer, I., Nisan, N., Ron, D.: On randomized one-round communication com-
plexity. In: Symposium on Theory of Computing (June 1995)

13. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press,
New York (1995)

14. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

15. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequen-
cies of events to their probabilities. Theory of Probability & Its Applications 16(2),
264–280 (1971)

16. Kupferman, O., Rosenberg, A.: The blow-up in translating LTL to deterministic
automata. In: van der Meyden, R., Smaus, J.-G. (eds.) MoChArt 2010. LNCS,
vol. 6572, pp. 85–94. Springer, Heidelberg (2011)

Refuting Heap Reachability

Bor-Yuh Evan Chang

University of Colorado Boulder
bec@cs.colorado.edu

Abstract. Precise heap reachability information is a prerequisite for many static
verification clients. However, the typical scenario is that the available heap infor-
mation, computed by say an up-front points-to analysis, is not precise enough for
the client of interest. This imprecise heap information in turn leads to a deluge
of false alarms for the tool user to triage. Our position is to approach the false
alarm problem not just by improving the up-front analysis but by also employing
after-the-fact, goal-directed refutation analyses that yield targeted precision im-
provements. We have investigated refutation analysis in the context of detecting
statically a class of Android memory leaks. For this client, we have found the
necessity for an overall analysis capable of path-sensitive reasoning interproce-
durally and with strong updates—a level of precision difficult to achieve globally
in an up-front manner. Instead, our approach uses a refutation analysis that mixes
highly precise, goal-directed reasoning with facts derived from the up-front anal-
ysis to prove alarms false and thus enabling effective and sound filtering of the
overall list of alarms.

The depth and breadth of what static verification tools can do is really quite astound-
ing. However, the unfortunate truth is that for a software developer to fully realize the
benefits of static verification, she must go through the onerous task of triaging the warn-
ings that such a tool produces to determine whether the warnings are true bugs or false
alarms. Only then can bug fixes be brought to bear. The situation is particularly dra-
matic when we consider the verification of modern programs that make extensive use of
heap allocation. Precise heap information is a prerequisite for effective reasoning about
nearly any non-trivial property of such programs. While there is a large body of work
on heap reasoning, including in broad areas like pointer analysis and shape analysis,
the all-too-common situation is that the available heap information is not quite precise
enough for the client of interest.

Our position is to approach the false alarm problem not just by improving up-front
precision but also with analyses for alarm triage that can wield after-the-fact, targeted
precision improvements on demand. In this context, we investigate the combination of
a scalable, off-the-shelf points-to analysis as an up-front analyzer with an ultra-precise,
after-the-fact refutation analysis for heap reachability queries. The particular challenge
that we examine is how to maximally leverage the combination of the up-front analysis
and the after-the-fact refutation analysis.

The development of our approach has been driven in part by building a tool for
detecting a pernicious class of memory leaks in Android applications. In brief, such
a leak occurs when an operating system object of type Activity is reachable from
a static field after the end of its lifecycle. At this point, the Activity object is no

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 137–141, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

138 B.-Y.E. Chang

Alarms of
Maybe Bugs

Verifier

Proof of No Bug

Manual
Triage

Program Analyzer

Bug Fix

Facts
Alarms of

Maybe Bugs

Verifier

Proof of No Bug

Manual
Triage

Program Analyzer

Refuter

Bug Fix

Facts

Fig. 1. From verification to alarm triage to bug fixes. The traditional setup (left) requires signifi-
cant manual effort to triage alarms before bug fixes can be realized. Our approach (right) targets
the alarm triage problem with an after-the-fact, automated refutation analysis that soundly filters
out as many false alarms as possible to lower the manual triaging effort required. The automated
algorithms are outlined in orange, the artifacts that they take as input or output are outlined in
blue, and manual effort is outlined in red.

longer used by the operating system but cannot be freed by the garbage collector. For
this client, we found the need for a highly precise heap reachability analysis capable of
interprocedural path-sensitive reasoning with strong updates. This level of precision is
quite difficult to achieve globally in an up-front manner, especially for programs with
the size and complexity of our target applications (40K source lines of code plus 1.1M
lines of the Android framework).

The conceptual architecture of our approach is diagrammed in Fig. 1. On the left, we
show the traditional setup for verification emphasizing that if no proof is obtained, then
the report of alarms must be triaged before bug fixes can be produced. On the right, we
illustrate that our approach is to drop in a refuter stage between the alarm report and the
manual triaging process. A refuter is an automated program analysis that tries to prove
as many alarms false as possible in a goal-directed manner, thereby soundly filtering the
list of alarms (hopefully significantly) that manual triaging must consider. For the An-
droid leak client, the “Analyzer” in this architecture is instantiated with an off-the-shelf,
state-of-the-art points-to analysis, and the “Refuter” is a tool called THRESHER that
implements a highly precise symbolic analysis for refuting heap reachability queries.

In our terminology, a sound refuter is given a query assertion σ̂ (i.e., an abstraction
of a set of concrete states) at a particular program point � that the up-front analyzer is
unable to verify. The goal of the refuter is in essence to derive a contradiction—to prove
that there is no possible trace to program point � with any concrete state satisfying σ̂ .
If successful, the alarm is false and can be filtered. Importantly, soundness of refutation
analysis can be phrased in a partial correctness sense neither requiring witnessing a
concrete trace to a state inside or outside the set abstracted by σ̂ . In particular, not asking
for witness traces enables coarser approximation while being sound with respect to
refutations. In our setting, the abstract state σ̂ is a separation logic formula constraining
a sub-heap, which permits the necessary strong update reasoning, and the analysis is a
goal-directed, backwards symbolic analysis that over-approximates all paths to �. The
partial-correctness–style soundness criteria enables a relatively simplistic loop invariant
inference procedure over separation constraints that turns out to be effective in practice
for finding refutations.

Refuting Heap Reachability 139

While the refuter has the advantage of being goal-directed, the needed level of preci-
sion described above is still quite challenging to obtain while simultaneously achieving
the required scalability. To achieve better scalability, one contribution of this work is
a novel use of the up-front points-to analysis result (diagrammed in Fig. 1 as an arrow
from “Facts” to “Refuter”). At a high-level, we enrich the abstract domain in the refu-
tation analysis with a new pure constraint (a from constraint) that connects the heap
abstraction during refutation analysis with the heap abstraction of the up-front points-to
analysis. In essence, the from constraint enables reduction [4] with the points-to analy-
sis result to derive contradictions earlier with less case splitting. This reduction is par-
ticularly important in our context, as case splitting is highly problematic for backwards
analysis with separation constraints (see [3, Sect. 6]).

In the remainder of this extended abstract, we sketch (1) the soundness criteria for
refutation analysis and (2) how the from constraint enables deriving contradictions ear-
lier with less case splitting. Further details about our approach and methodology are
described elsewhere [1, 2]. The bottom line result for our application to Android leak
detection is that on a suite of seven Android applications ranging from 2K source lines
of code to 40K lines plus the Android framework, THRESHER refuted 172 out of 196
false alarms while exposing 115 true bugs. In other words, THRESHER lowered the false
alarm rate from 63% to 17% as compared to the points-to analysis alone—effectively
filtering 88% of the false alarms reported by the points-to analysis.

Refutation Soundness

Concrete

σ ∈ State s ∈ Statement 〈σ ,s〉 ⇓ σ ′

Abstract

σ̂ ∈ ˆState γ : ˆState→℘(State) � {σ̂} s
{

σ̂ ′
}

We leave both the notion
of concrete state σ and
the programming language
of interest mostly unspeci-
fied. The programming lan-
guage is assumed only to be
an imperative language of
statements s defined by a
big-step operational semantics judgment form 〈σ ,s〉 ⇓ σ ′ stating that in concrete state
σ , evaluating statement s can result in a state σ ′. The abstraction σ̂ is unspecified ex-
cept that its meaning is given by a standard concretization function γ. And we write an
unspecified abstract semantics for refuting queries as a judgment form deriving a Hoare
triple � {σ̂} s

{
σ̂ ′
}

stating a pre-condition σ̂ and post-condition σ̂ ′ for a statement s.
The soundness condition for refutations in which we are interested can be stated as

follows:

Condition 1 (Refutation Soundness)
If 〈σ ,s〉 ⇓ σ ′ and � {σ̂} s

{
σ̂ ′
}

such that σ ′ ∈ γ(σ̂ ′),
then σ ∈ γ(σ̂).

Informally, given a query post-condition σ̂ ′, we output a query pre-condition σ̂ such
that if there is some execution of statement s to a concrete state σ ′ satisfying σ̂ ′, then
that execution must begin in a concrete state σ satisfying σ̂ . Note that the pre- and post-
conditions are switched as compared to the standard statement of partial correctness.

140 B.-Y.E. Chang

This switching in the soundness condition is what we consider defining a goal-directed
analysis.

If we derive ⊥, the abstraction of the empty set of concrete states, for the query
pre-condition σ̂ , then there is no execution of statement s to a state satisfying the
query post-condition σ̂ ′. In other words, we have derived a refutation. Our main point
is not Condition 1 itself but that witnessing an execution is not required for deriving
refutations.

Reducing Separation Constraints with Points-to Facts

The result of a (may) points-to analysis is a points-to graph G̊ : 〈V̊ , E̊〉. A vertex repre-
sents a set of possible memory addresses, typically those allocated at a particular static
program point (under some context-sensitivity policy). Such a vertex is typically called
an abstract location. An edge from vertex v̊1 to v̊2 states that there may be an execution
from an address in the concretization of v̊1 to an address in the concretization of v̊2. Let
us write r̊ for a set of vertices in a points-to graph (i.e., r̊ ⊆ V̊ for a points-to graph
G̊ : 〈V̊ , E̊〉).

In the refutation analysis, let us write â for a symbolic address that abstracts a single
concrete address. A from constraint

â from r̊

relates a symbolic address and a set of abstract locations in the points-to graph in a
rather expected way. The meaning is that the concrete address abstracted by â must be
in the set of concrete addresses abstracted by r̊ and can be axiomatized as follows for a
given points-to graph G̊ : 〈V̊ , E̊〉:

â from /0 ⇐⇒ false

â from V̊ ⇐⇒ true

â from r̊1 ∧ â from r̊2 ⇐⇒ â from r̊1∩ r̊2

â from r̊1 ∨ â from r̊2 ⇐⇒ â from r̊1∪ r̊2

For our purposes, if we ever derive â from /0, then we have a derived refutation.
To see how from constraints enable earlier contradictions, consider the following

example triple:

�

⎧⎪⎨⎪⎩
(
y·f ��p ∧ x
= y

)
∨(

y from ptG̊(x)∩ptG̊(y) ∧ x= y
)
⎫⎪⎬⎪⎭ x.f := p { y·f ��p }

Here, we write a program variable (e.g., x) for the value stored there. The query post-
condition y·f �� p states that we are considering a concrete state that has at least one
memory location where the contents of field y.f is p, written y·f �� p. In the pre-
condition, there are two cases to consider depending on whether or not x and y alias. In
the first disjunct, we are looking for a way to reach the pre-location of the assignment
y·f �� p with x and y not aliasing. In the second, we see if it is possible to reach the

Refuting Heap Reachability 141

pre-location with x and y aliasing, which is a sufficient condition to imply the original
query after the assignment. The shaded from constraint intersects the set of possible
abstract locations of y with the points-to set of x, written ptG̊(x). It says that this case is
only possible if the intersection of the points-to set of x and the points-to set of y is non-
empty. But even if this intersection is non-empty, the from constraint does not simply
“check and forget” but retains whatever restriction obtained by considering the points-to
set of x. Intuitively, the â from r̊ constraint abstracts the set of storage locations through
which the concrete address corresponding to â flows.

Anecdotally, we have observed that from constraints are particularly important when
branching from a method body to all of the call sites of the method (for context-
sensitivity). Many of the disjuncts corresponding to the call sites are ruled out by a
contradictory from constraint when intersecting with the points-to sets of the actual ar-
guments. Intuitively, when such disjuncts are ruled out, we obtain a goal-directed form
of object-sensitivity without the cost of analyzing the code between the argument’s al-
location site and the call site.

Acknowledgments. This work is joint with Sam Blackshear and Manu Sridharan. We
thank the University of Colorado Programming Languages and Verification (CUPLV)
group for many insightful discussions. This material is based upon work supported by
the National Science Foundation under Grant No. CCF-1055066.

References

1. Blackshear, S., Chang, B.-Y.E., Sankaranarayanan, S., Sridharan, M.: The flow-insensitive
precision of Andersen’s analysis in practice. In: Yahav, E. (ed.) SAS 2001. LNCS, vol. 6887,
pp. 60–76. Springer, Heidelberg (2011)

2. Blackshear, S., Chang, B.Y.E., Sridharan, M.: Thresher: Precise refutations for heap reach-
ability. In: Conference on Programming Language Design and Implementation (PLDI), pp.
275–286 (2013)

3. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by means
of bi-abduction. J. ACM 58(6), 26 (2011)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Symposium on
Principles of Programming Languages (POPL), pp. 269–282 (1979)

Cascade 2.0

Wei Wang, Clark Barrett, and Thomas Wies

New York University

Abstract. Cascade is a program static analysis tool developed at New
York University. Cascade takes as input a program and a control file.
The control file specifies one or more assertions to be checked together
with restrictions on program behaviors. The tool generates verification
conditions for the specified assertions and checks them using an SMT
solver which either produces a proof or gives a concrete trace showing
how an assertion can fail. Version 2.0 supports the majority of standard
C features except for floating point. It can be used to verify both memory
safety as well as user-defined assertions. In this paper, we describe the
Cascade system including some of its distinguishing features such as its
support for different memory models (trading off precision for scalability)
and its ability to reason about linked data structures.

1 Introduction

Automatic verification using SMT solvers is an active area of research, with a
number of tools emerging, such as ESC/Java [16], Caduceus [15], LLBMC [30],
Spec# [1], HAVOC [8], VCC [10], LAV [29], and Frama-C [13]. Increasingly,
SMT solvers are used as back-end checkers because of their speed, automation,
and ability to model programs and assertions using built-in theory constructs.

Cascade1 is an open-source tool developed at New York University for au-
tomatically reasoning about programs. An initial prototype of the system was
described in [24]. This paper describes version 2.0, a from-scratch reimplemen-
tation which provides a number of new features, including support for nearly
all of C (with the exception of floating point), support for loops and recursion
via unrolling, support for loop invariants and deductive reasoning, and a new
back-end interface supporting both CVC4 [2] and Z3 [14].2 It is easy to add
additional back-end plugins as long as they support the SMT-LIB input format.

In addition to describing the overall system, this paper focuses on two dis-
tinguishing features of Cascade: its support for multiple memory models and its
extensibility for specific domains.

The paper is organized as follows. Section 2 gives an overview of the system
and its features. Section 3 describes the three memory models supported by
Cascade, and reports the results of an empirical evaluation of these models on

1 Available at http://cims.nyu.edu/˜wwang1109/cascade/index.html
2 Another important feature of version 2.0 is that it has a very permissive license and
if CVC4 is used, it does not depend on any code with restrictive licenses.

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 142–160, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://cims.nyu.edu/~wwang1109/cascade/index.html

Cascade 2.0 143

the NECLA suite of static analysis benchmarks [23]. Section 4 describes a case
study in extending the system to reason about linked data structures, Section 5
describes related work, and Section 6 concludes.

2 System Design

Cascade is implemented in Java. The overall framework is illustrated in Figure 1.
This version of Cascade focuses on C, but the system is designed to be able to
accommodate multiple front-end languages. The C front-end converts a C pro-
gram into an abstract syntax tree using a parser built using the Rats parser
generator [17]. The core module takes an abstract syntax tree and a control file
as input. The control file specifies one or more paths through the program, as-
sumptions that should be made along the path, and assertions that should be
checked along the path. The core module uses symbolic execution over the ab-
stract syntax tree to build verification conditions corresponding to the assertions
specified in the control file. Currently, it takes the approach of simple forward
execution [3,5,18]. The core module converts paths through the abstract syntax
tree into logical formulas.

Fig. 1. Cascade framework

2.1 The Control File

Unlike some systems (e.g., [10], [8]), Cascade does not rely on annotated C code.
Rather, a separate control file is used to guide the symbolic execution. Control
files use XML and support the constructs detailed below. The rationale for the
control file is that we want to be able to use Cascade on large existing code bases
without having to modify the code itself.

144 W. Wang, C. Barrett, and T. Wies

Basic structure. Every control file begins with a sourceFile section that gives
the paths to the source files. This is followed by one or more Run sections,
each defining a constrained (symbolic) run of the program. Each run starts
with a single startPosition command and ends with a single endPosition
command that give respectively the start point and end point of the run. If the
source code contains branches, Cascade will consider both branches by default
(merging them when they meet again). If users wish to execute one branch
in particular, they may include one or more wayPoint commands in run, to
indicate the positions that the considered run should pass through. A simple
example is shown in Figure 2.

int abs(int x) {
int result;
if(x>=0)

result = x;
else

result = -x;
return result;

}

<controlFile>
<sourceFile name="abs.c" id="1" />
<run>
<startPosition fileId="1" line="1" />
<wayPoint fileId="1" line="4" />
<endPosition fileId="1" line="8" />

</run>
<run>

<startPosition fileId="1" line="1" />
<wayPoint fileId="1" line="6" />
<endPosition fileId="1" line="8" />

</run>
</controlFile>

Fig. 2. abs.c and abs.ctrl

Function Calls. Cascade supports procedure calls via inlining. Note that Cas-
cade always assigns a unique name for each dynamically encountered variable
declaration, so name clashes between caller and callee functions are not an issue.
By default, Cascade can perform inlining and parameter passing automatically,
as shown in Figure 3 (the body of function pow2 is inlined at the call sites in
main). If users wish to specify a particular path in the function, a wayPoint
command must be used to specify the line on which the function is called. Then,
a function section can be embedded within the wayPoint command which
provides an attribute funcName, as well as the wayPoints of the desired path
inside the function. Even if multiple functions are called at the same line of code,
this can be handled by nesting multiple function sections under the wayPoint
command for that line of code. These function sections will constrain the func-
tion calls on that line in the order that the function calls appear (from left to
right). Figure 4 gives an example.

Loops. By default, loops are eliminated using bounded loop unrolling [3]. A de-
fault number of unrolls can be specified on the command line, and a specific
number of iterations for a particular loop can be specified using a loop com-
mand, as shown in Figure 5. Alternatively, a loop invariant can be specified using
the invariant command as shown in Figure 6. If a loop invariant is provided,
Cascade will simply check that the loop invariant holds when the loop is en-
tered, and that it is preserved by a single iteration of the loop (for this second

Cascade 2.0 145

int pow2(int x) {
return x*x;

}

int main() {
int a, b, result;
a = 2;
b = 3;
result = pow2(a) + pow2(b);
return result;

}

<controlFile>
<sourceFile name="pow2.c" id="1" />
<run>

<startPosition fileId="1" line="5" />
<endPosition fileId="1" line="11" />

</run>
</controlFile>

Fig. 3. pow2.c and pow2.ctrl

int abs(int x) {
int result;
if(x>=0)

result = x;
else

result = -x;
return result;

}

int main() {
int a, result;
a = -4;
result = abs(a) - abs(-a);
return result;

}

<controlFile>
<sourceFile name="absext2.c" id="1" />
<run>
<startPosition fileId="1" line="10" />
<wayPoint fileId="1" line="13" >

<function funcName="abs" funcId="1" >
<wayPoint fileId="1" line="6" />

</function>
<function funcName="abs" funcId="2" >

<wayPoint fileId="1" line="4" />
</function>

</wayPoint>
<endPosition fileId="1" line="15" />

</run>
</controlFile>

Fig. 4. absext2.c and absext2.ctrl

int log2(int num) {
int result, i;
result = 0;
for(i=num; i>1; i=i/2) {

result++;
}
return result;

}

int main() {
int num, result;
num = 1024;
result = log2(num);
return result;

}

<controlFile>
<sourceFile name="log2.c" id="1" />
<run>

<startPosition fileId="1" line="10" />
<wayPoint fileId="1" line="13" >

<function funcName="log2" >
<wayPoint fileId="1" line="4" >

<loop iterTimes="10" />
</wayPoint>

</function>
</wayPoint>
<endPosition fileId="1" line="15" />

</run>
</controlFile>

Fig. 5. log2.c and log2.ctrl

146 W. Wang, C. Barrett, and T. Wies

check, any variables updated in the loop body are assumed to be unconstrained
so that the check is valid for all iterations of the loop). Then, the loop invariant
is assumed going forward (this is in contrast to the default behavior which is
to symbolically execute the loop a fixed number of times). As with assumptions
and assertions (see below), invariants are specified using C expressions. Note that
quantified loop invariants are acceptable, and Cascade’s ability to solve them is
limited only by the quantifier reasoning capabilities of the back-end solver.

int main() {
int sum = 0;

for (int i = 0; i<=10; i++) {
sum = sum + i;

}
return sum;

}

<controlFile>
<sourceFile name="forLoop_test.c" id="1" />
<run>

<startPosition fileId="1" line="1" />
<wayPoint fileId="1" line="4" >

<loop>
<invariant><![CDATA[
sum == (i-1) * i / 2 && i >= 0 && i <= 11
]]>
</invariant>

</loop>
</wayPoint>
<endPosition fileId="1" line="7" />

</run>
</controlFile>

Fig. 6. sum.c and sum.ctrl

Commands. Two commands cascade assume and cascade check are pro-
vided, each of which takes a C expression as an argument. cascade assume is
used to constrain the set of possible states being considered to those satisfying
the argument provided. cascade check generates a verification condition to
check that the symbolic execution up to this point satisfies the argument pro-
vided. Commands are allowed as part of a startPosition, wayPoint, or
endPosition directive (see Figure 7).

int abs(int x) {
int result;
if(x>=0)

result = x;
else

result = -x;
return result;

}

<controlFile>
<sourceFile name="absext.c" id="1" />
<run>

<startPosition fileId="1" line="1" />
<endPosition fileId="1" line="7" >

<command>
<cascadeFunction> cascade_check
</cascadeFunction>
<argument><![CDATA[
result >= 0
]]>
</argument>

</command>
</endPosition>

</run>
</controlFile>

Fig. 7. absext.c and absext.ctrl. The assertion is invalid due to the possibility of signed
overflow.

Cascade 2.0 147

As a new feature of Cascade 2.0, commands can also be included as an-
notations in the source code, as shown in Figure 8. To use this feature, the
“--inline-anno” option must be enabled3. Cascade provides a number of ex-
tensions that can be embedded within C expressions to enable more expressive
reasoning. Some are listed here:

– Logic symbols: implies(P,Q), forall (v, u, E) and exists(v, u, E).
– Memory checks:

• valid(p): denotes that p is guaranteed to point to a memory address
within a region allocated by the program.

• valid(p, size): denotes that the addresses from p, ..., p+ size− 1 are valid
(in the sense described above).

• valid malloc(p, size): denotes the assumptions that can be made on the
pointer p after a malloc instruction.

• valid free(p): denotes that a free instruction on pointer p is admissible.

int strlen(const char* str){
ASSUME(valid_malloc(str,

4*sizeof(char)));

int i=0;
while(str[i] != ’\0’)
++i;

ASSERT(forall(j,
implies(j >= 0 && j <= i,

valid(&str[i])));
return i;

}

<controlFile>
<sourceFile name="strlen.c"

id="1" />
<run>

<startPosition fileId="1"
line="1" />

<wayPoint fileId="1" line="7" >
<loop iterTimes="3" />

</wayPoint>
<endPosition fileId="1"

line="13" />
</run>

</controlFile>

Fig. 8. strlen.c and strlen.ctrl. Because we specify that the loop should be executed
exactly 3 times, no errors are found.

3 Memory Models

One goal of Cascade is to support the analysis of systems software such as device
drivers and operating systems code. These programs make heavy use of pointer
manipulation and require a fairly precise memory model. A complementary goal
of Cascade is to scale to large programs that are not as pointer-intensive. To
achieve these complementary goals, Cascade provides three different memory
models, with different trade-offs in terms of precision and scalability: (1) the
flat model, in which all of memory is modeled as a single array; (2) the Burstall
model [6] which uses an array for every different structure field; and (3) the
partition model which divides up memory into several partitions, using a pointer
analysis to ensure that variables that may alias end up in the same partition.
In this section, we discuss these models in detail, including their semantics,
implementation details, advantages and restrictions.

3 The control file style annotation is designed to keep the source code clean, while the
inline style is available for those users who prefer it.

148 W. Wang, C. Barrett, and T. Wies

3.1 Flat Memory Model

The flat memory model is essentially the standard conceptual memory model for
C: the entire memory is represented as a single flat array M mapping addresses
to values4 (by default, both addresses and values are represented as fixed-width
bit-vectors). Memory operations are modeled with the array operations store
and select. Each program variable is modeled as the content of some address in
memory. For example, the variable x is associated with a memory address addrx,
and all reads from and writes to x are done by accessing M at address addrx.
This model can soundly support all type-unsafe operations including union types,
pointer arithmetic and pointer casts.

Concretely, we model the memory with two arrays M and Size of types

M : BitVec(n)→ BitVec(m)
Size : BitVec(n)→ BitVec(m)

The constants m and n can be assigned on the command line via the options
“--mem-cell-size” and “--mem-addr-size”. 5

To model dynamic memory allocation operations such as x = malloc(size), a
fresh region variable regionx of type BitVec(n) is created and stored at addrx
of M . To keep track of the size of the allocated region, the auxiliary array
variable Size is used to map regionx to size. Deallocation, free(x), is modeled by
selecting the region variableM [addrx] corresponding to x, and updating Size to
0 at M [addrx]. In the initial state, the array Size is assumed to map all indices
to 0. The following table gives the formal semantics of malloc and free.

Statement Interpretation

x = malloc(size)
M ′ = store(M, addrx, regionx)
Size ′ = store(Size, regionx, size)

free(x) Size ′ = store(Size,M [addrx], 0)

Note that the value of store(a, i, v) is a new array equivalent to a except at index
i where its value is now v [27]. The array M is the symbolic value of memory
before the operation andM ′ is the symbolic value of memory afterwards. Having
these definitions, memory checks can be formalized as follows:

valid(p, size) ≡
∃region : BitV ec(n). Size[region] > 0 =⇒

M [addrp] ≥ region ∧M [addrp] + size ≤ region+ Size[region]

The predicate valid(p, size) is inserted as an assertion before each memory
access.

4 Some tools use separate arrays for the stack and the heap. However, this is not
always a sound assumption, so Cascade uses a single mapping to represent both.

5 Integers are represented as fixed-size bit vectors, and thus integer arithmetic is arith-
metic modulo 2k where k is the number of bits. Cascade also allows the user to select
unbounded integers to represent integers in the program. This is activated with the
option “--non-overflow” .

Cascade 2.0 149

Allocation and deallocation have associated guard predicates, valid malloc,
respectively, valid free. The predicate valid free is used to detect errors related
to deallocation of invalid pointers. It is inserted as an assertion before each free
instruction and is defined as follows:

valid free(x) ≡M [addrx] = 0 ∨ Size[M [addrx]] > 0

The predicate valid malloc is used to ensure that the new region regionx is indeed
fresh and does not overlap with previously allocated regions. It is inserted as an
assumption after each malloc instruction. Cascade provides two modes for the
flat memory model that differ in how they interpret this predicate: an unordered
and an ordered mode.

Unordered mode. The unordered mode can be selected with the command line
option “--sound”. In this mode, valid malloc is interpreted as follows:

valid malloc(p, size) ≡
M [addrp]
= 0 =⇒ M [addrp] > 0 ∧M [addrp] ≤M [addrp] + size ∧

(∀region : BitVec(n). Size[region] > 0 ∧ region
=M [addrp] =⇒
M [addrp] + size ≤ region ∨ region + Size[region] ≤M [addrp])

This interpretation accurately reflects the C semantics. However, the size of the
allocation guards grow quadratically with the number of allocations encountered
during symbolic execution (after instantiating the universal quantifiers with the
actual regions). This places a high burden on the back-end SMT solvers.

Ordered mode. To obtain a more efficient SMT encoding, Cascade provides
an additional ordered mode, which sacrifices precision for scalability without
overly constraining the memory model. In this mode, Cascade assumes that ev-
ery freshly allocated memory address is larger than the largest address in the
latest allocated region. In order to track the latest allocated region, a new aux-
iliary variable last region is introduced. This variable is updated appropriately
after each allocation operation. The predicate valid malloc is then interpreted
as follows:

valid malloc(p, size) ≡
M [addrp]
= 0 =⇒ M [addrp] > 0 ∧M [addrp] ≤M [addrp] + size ∧

(last region = 0 ∨ last region + Size[last region] ≤M [addrp])

Hence, in the ordered mode, the memory model does not capture memory man-
agement strategies in which freed addresses will be reallocated. However, this
mode greatly reduces the size of the generated SMT solver queries without sac-
rificing much precision. In particular, many errors due to imprecise reasoning
about pointer arithmetic between fields and objects can still be detected. Note
that during symbolic execution, a data structure “Regions” is maintained to keep
track of all allocated regions along the current path. Using this auxiliary data
structure, we can completely instantiate the quantifiers in the guard predicates
and memory checks.

150 W. Wang, C. Barrett, and T. Wies

3.2 Burstall Memory Model

The main idea of the Burstall memory model [6] is to split the memory according
to the types of allocated objects, making the assumption that pointers with
different types will never alias. Apart from common scalar types, each struct
field is also represented as a unique type. This model guarantees that updates
to different fields of a struct will not interfere with each other. Consequently, it
cannot capture union types or pointer arithmetic on fields inside a struct object.
Cascade has a preprocessor that detects such operations and gives a warning
when using the Burstall model.

To encode the Burstall memory model in Cascade, M is encoded as a record
instead of a flat array. Each record element represents the state of the memory
for one type in the C program. The exact type of M is shown in Fig. 9. The
number of record elements is bounded by the number of structure types defined
in the C program. Note that for each record element, if its type is a pointer, the
element type of the corresponding array is Addr ; otherwise, it is Scalar .

Ptr : uninterpreted type Scalar : BitVec(m)
Offset : BitVec(n) Addr : Ptr × Offset

M : Record

⎧⎪⎪⎨
⎪⎪⎩

type0 : (Addr → Addr | Scalar),
type1 : (Addr → Addr | Scalar),
...
typek : (Addr → Addr | Scalar)

⎫⎪⎪⎬
⎪⎪⎭

Size : Record

⎧⎪⎪⎨
⎪⎪⎩

type0 : (Addr → Scalar),
type1 : (Addr → Scalar),
...
typek : (Addr → Scalar)

⎫⎪⎪⎬
⎪⎪⎭

Fig. 9. Types of auxiliary variables for the encoding of the Burstall memory model

3.3 Partition Memory Model

The partition memory model is a novel experimental model implemented in Cas-
cade. We here provide only an abridged summary of this model since a detailed
description is beyond the scope of this paper.

In the partition model, the memory is divided according to distinct program
pointers. A valid pointer has ownership of the associated memory region. This
model allows arbitrary pointer arithmetic inside a region, as well as dereferencing
pointers to any location inside a region. The model further supports all untyped
operations except pointer aliasing. For example, consider a program that non-
deterministically assigns either &x or &y to a pointer variable s. A subsequent
update of x, respectively, y via pointer s would not be detected if x and y are
assigned to regions that are disjoint from the region of s. To obtain a memory
partition that takes into account pointer aliasing, Cascade incorporates Steens-
gaard’s unification-based pointer analysis [26] as a preprocessing step. Each set

Cascade 2.0 151

of potentially aliasing pointers is assigned to one region. For the above example,
the preprocessor will assign x and y to the same region. In most cases, the num-
ber of pointer classes is much larger than the number of types in the C code.
Hence, the partition model often provides a more fine-grained partition of the
memory into disjoint regions compared to the Burstall model. This can signifi-
cantly speed up the analysis in some cases, which we confirm in our experimental
evaluation.

Similar to Burstall’s model, the state of the memory is encoded as a record.
The detailed types of the auxiliary variables are shown in Figure 10. Every region
has its own array, and the element type of the array can be determined by the
type of the pointers associated with that region.

M : Record

⎧⎪⎪⎨
⎪⎪⎩

ptr0 : BitVec(n) → BitVec(m),
ptr1 : BitVec(n) → BitVec(m),
...
ptrk : BitVec(n) → BitVec(m)

⎫⎪⎪⎬
⎪⎪⎭

Size : Record

⎧⎪⎪⎨
⎪⎪⎩

ptr0 : BitVec(n) → BitVec(m),
ptr1 : BitVec(n) → BitVec(m),
...
ptrk : BitVec(n) → BitVec(m)

⎫⎪⎪⎬
⎪⎪⎭

Fig. 10. Types of auxiliary variables for the encoding of the partition memory model

Initially, the record is empty. During symbolic execution, new record elements
are added for new variable definitions. If the execution context changes its scope
we can safely delete those elements associated with pointers not in the current
scope. In this way, the memory state tracks only the active pointers in the current
scope. This significantly simplifies the query formula given to the SMT solver.
Note that both the unordered mode and the ordered mode used in the flat model
can also be applied to each region in the partition memory model.

3.4 Evaluation

We report on a set of experiments using the multiple memory models in Cas-
cade to check properties of the NECLA suite of static analysis benchmarks [23].
These benchmarks contain C programs demonstrating common programming
situations that arise in practice such as interprocedural data-flow, aliasing, array
allocation, array size propagation and so on. We excluded benchmarks relying
on string library functions and floating point number calculations. The results
of our experiments are summarized in Table 1 and Table 2.6 Note that these
benchmarks have also been used in other recent tool papers such as the one
introducing LLBMC [30] (which also included evaluations of CBMC 3.8, CBMC

6 More information on the experiments including the benchmarks and control files is
available at http://cims.nyu.edu/˜wwang1109/cascade/vmcai.html.

http://cims.nyu.edu/~wwang1109/cascade/vmcai.html

152 W. Wang, C. Barrett, and T. Wies

3.9 [9] and ESBMC 1.16 [12]) and another introducing LAV [29] (which also
evaluated CBMC, ESBMC, and KLEE [7]). For comparison purposes, we report
our results in a similar format to that shown in [29] and also show the best result
reported there (in the LAV column).

The benchmark suite includes both faulty and correct programs. There are two
notable discrepancies with the results reported by LAV. For benchmark ex10.c,
LAV reports an error while Cascade does not. The reason is that we made an
additional assumption, namely that a pointer passed into the main function
was properly allocated. Without this assumption, Cascade would find the same
invalid address access as did LAV. The other discrepancy was in benchmark
ex40.c. In this program, a loop iterates over an array of size 100 until the value
0 is found. If the array does not have a 0 entry, an out-of-bounds violation will
occur in the 101st iteration. Cascade finds this bug if enough loop iterations are
examined.

While collecting the statistics, we have compared the performance of the differ-
ent memory models in Cascade7. For the flat memory model, we did not observe
a significant performance improvement of the ordered mode over the unordered
mode in most of the benchmarks. This is because the size of the benchmarks is
limited and so is the size of the queries given to the SMT solver. However, the
results for some benchmarks with a large number of loop unrollings (ex17-100,
ex26-200), or with invariant reasoning (ex1-inv, ex18-inv) are encouraging. We
also found that the ordered mode is slightly slower than the unordered mode for
benchmark ex23-36, but we have not yet investigated why this is so.

Furthermore, from the results, we can see that both the Burstall model and
partition model scale much better than the flat model – they solved the bench-
marks (ex7-200, ex18-100, ex21-100, and ex22-50) that timed out in either LAV
or Cascade with the flat model (or both). And the overall performance of par-
tition model is much better than Burstall. In particular, benchmark ex27-200
was solved with the partition model, but timed out with the Burstall model.
Partition model is the default memory model in Cascade.

4 Reasoning about Linked Data Structures

In this section, we discuss how to extend Cascade to reason about properties
of linked data structures. Analysis of such data structures typically requires a
reachability predicate to capture the unbounded number of dynamically allocated
cells present in a linked list. For a given address u, the reachability predicate
characterizes the set of cells {u, u.f, u.f.f, . . .} reachable from u via continuously
visiting field f .

4.1 Theory of Reachability in Linked Lists

LISBQ. Rakamarić et al. [21] presented a ground logic and an NP decision pro-
cedure for reasoning about reachability in liked list data structures. The logic

7 Note that the programs in this benchmark suite are all type-safe – the Burstall model
is accurate enough to detect all bugs.

Cascade 2.0 153

Table 1. Evaluation on NECLA Benchmarks. The experiments were conducted on a
1.7GHz, 4GB machine running Mac OS. A timeout (indicated by *) of 600 seconds was
set for each experiment. V indicates the program verification succeeded, and F indicates
the program contains a bug which was detected by Cascade. In the third column, “inv”
indicates that deductive reasoning with a loop invariant was used; a number indicates
the number of loop unrollings used; “-” indicates either that the program is loop-free
or that a failure occurs before any loops are entered; and “?” indicates the unknown
default iteration times used by LAV. In the fourth and later columns, “-” indicates
that there is no corresponding result for that loop configuration.

bnc. F/V #iter
Time(s)

LAV
Flat Model

Burstall Model Partition Model
Unordered Ordered

ex1 V
inv - 68.561 50.079 0.645 0.559
513 * * * * *
3 0.35 0.895 0.663 0.512 0.771

ex2 V
inv - 1.916 1.817 0.434 0.368
1024 * * * * *
3 0.47 0.534 0.535 0.332 0.42

ex3 F
inv - 0.365 0.362 0.471 0.496
10 - 0.576 0.552 0.558 0.774
? 0.06 - - - -

ex4 F
inv - 0.39 0.425 0.375 0.452
10 - 1.756 2.489 1.101 1.451
? 0.24 - - - -

ex5 V - 0.02 0.136 0.132 0.114 0.109

ex6 V - 0.11 0.187 0.134 0.159 0.142

ex7 V
inv - 1.62 1.088 0.393 0.375
200 * * * 9.266 6.552
3 0.15 0.709 0.606 0.269 0.247

ex8 F
inv - 0.173 0.128 0.193 0.193
3 0.14 0.156 0.125 0.129 0.154

ex9 V
inv - 0.666 0.768 0.452 0.441
1024 * * * * *
3 0.62 0.757 0.738 0.365 0.473

ex10 V
inv - 2.795 2.605 0.94 1.115
17 10.47 0.119 0.125 0.13 0.153
3 1.14 0.763 1.407 0.471 0.689

ex11 V 3 0.08 0.215 0.222 0.211 0.215

ex12 F
10 - 1.099 0.985 0.724 0.948
inv - 0.363 0.376 0.428 0.381
? 0.16 - - - -

ex13 F - 0.44 0.117 0.123 0.099 0.118

ex14 V
inv - 0.344 0.332 0.338 0.304
10 - 5.13 4.494 2.1 1.703
? 0.13 - - - -

ex15 V - 0.34 1.731 1.522 0.235 0.233

ex16 F
inv - 0.693 0.737 1.004 0.88
4 - 0.927 0.929 0.955 0.931
2 0.09F 0.22 0.232 0.266 1.82

ex17 V
inv - 0.292 0.282 0.369 0.35
100 - 19.274 17.068 29.193 3.34
? 0.68 - - - -

154 W. Wang, C. Barrett, and T. Wies

Table 2. Evaluation on NECLA Benchmarks (continued)

bnc. F/V #iter
Time(s)

LAV
Flat Model

Burstall Model Partition Model
Unordered Ordered

ex18 V
inv - 424.414 65.531 0.446 0.804
100 * * * 359.59 7.066
10 3.0 8.088 9.412 2.527 1.298

ex19 F
inv - 0.163 0.17 0.183 0.172
3 0.08 0.371 0.424 0.466 0.387

ex20 F
inv - 0.385 0.399 0.451 0.417
1024 * * * * *
1 0.32 0.498 0.389 0.315 0.29

ex21 V
inv - 0.757 0.735 1.26 0.782
100 - * * 12.673 16.2
? 0.36 - - - -

ex22
V 50 - * * 14.919 12.133
V ? 4.1 - - - -

ex23 V
inv - 1.015 1.069 0.571 0.418
36 6.46 27.44 34.0 2.191 2.847

ex25 F
inv - 0.965 0.989 1.163 1.208
3 0.20 1.654 1.046 0.876 1.506

ex26 F
inv - 0.546 0.613 0.748 0.687
200 - 31.122 28.062 20.314 7.877
? 0.62 - - - -

ex27 F
inv - 1.584 1.913 1.219 4.68
200 - * * * 55.585
? 5.28 - - - -

ex30 F
- - 0.134 0.147 0.596 0.395
? 0.24 - - - -

ex31 V
inv - 0.308 0.312 0.348 0.317
7 5.62 0.62 0.976 0.624 0.432

ex32 V
inv - 0.892 0.826 1.067 0.608
1000 - * * * *
? 0.5 - - - -

ex34 V - 0.24 0.416 3.141 0.441 0.508

ex37 F - 0.20 0.107 0.143 0.131 0.132

ex39 F
inv - 0.228 0.238 0.292 0.255
3 0.07 0.306 0.273 0.641 0.307

ex40
F inv - 0.323 0.288 0.336 0.314
V 3 0.10 0.345 0.307 0.271 0.25

ex41 F
inv - 0.24 0.23 0.267 0.25
3 0.44 0.515 0.332 0.214 0.25

ex43 F
- - 1.793 1.318 1.041 1.271

inv - 0.907 0.857 0.731 0.794
? 17.91 - - - -

ex46 F 3 * 0.127 0.124 0.174 0.159

ex47 F
inv - 12.925 9.365 4.563 1.779
2 1.38 0.315 0.449 0.192 0.235

ex49
F inv - 0.33 0.339 0.414 0.378
V 3 0.08 0.24 0.246 0.235 0.204

inf1 F - 0.22 0.261 0.29 0.261 0.282

inf2 F - 1.25 0.223 0.158 0.185 0.195

inf4 F - 0.38 0.403 0.502 0.345 0.662

inf5 F - 0.15 0.221 0.235 0.15 0.209

inf6 V - 0.12 0.247 0.243 0.207 0.216

inf8 V - 0.19 0.333 0.417 0.323 0.439

Cascade 2.0 155

provides a ternary predicate x
f−→ z

f−→ y, which we refer to as the between pred-
icate. The predicate states that cell y is reachable from cell x via field f , yet,
not without going through cell z first. In other words, z is between x and y. Bi-

nary reachability reach(f, x, y) via field f can then be expressed as x
f−→ y

f−→ y.
The between predicate enables precise tracking of reachability information dur-
ing symbolic execution of heap updates that modify field f (potentially creating
cycles in the heap). In [19], Lahiri and Qadeer presented the logic of interpreted
sets and bounded quantification (LISBQ), which includes the between predicate
but also admits reasoning about the content of unbounded list data structures.
They showed that LISBQ is still decidable in NP using a decision procedure that
builds on an SMT solver.

LISBQ as a local theory extension. More recently, we explored the connection
between Lahiri and Qadeer’s result to local theory extensions [25]. A theory
extension is a first-order theory that is defined by extending a base theory with
additional symbols and axioms. For example, the theory of arrays over integer
indices can be formalized as a theory extension where the base theory is the
theory of linear integer arithmetic, the extension symbols are the array store
and select functions, and the extension axioms are McCarthy’s select over store
axioms.

A theory T is called local if satisfiability modulo T can be decided by reduction
to the base theory via local instantiation of the extension axioms. Here, local
instantiation means that only those axiom instances are considered that do not
introduce new terms to the input formula. Local theory extensions are interesting
because they provide completeness guarantees for the quantifier instantiation
heuristics implemented in modern SMT solvers, and at the same time give a
simple syntactic restriction on the kinds of axiom instances that need to be
considered.

In [28], we showed that LISBQ can be formalized as a local theory exten-
sion. This yields an interesting generalization of previous results in [19, 21]. For
example, the base theory can now provide an interpretation of memory cells,
e.g., as bitvectors, which results in a theory of reachability that admits address
arithmetic. Another generalization obtained this way is to interpret fields as
arrays. The formulas generated during symbolic execution in [19, 21] can grow
exponentially in the number of store operations x.f := y along the executed
path. The encoding of fields as arrays avoids this exponential blowup by defer-
ring case splits on store operations to the SMT solver. Finally, the connection
to local theory extensions also provides new possibilities to further improve the
efficiency of SMT-based decision procedures for LISBQ.

4.2 Linked Lists in Cascade

We have explored some of these possibilities in the context of Cascade. We added
a reachability predicate to the C expression language usable in assumptions and
assertions. The axioms of LISBQ are encoded via a new theory axiom encoding

156 W. Wang, C. Barrett, and T. Wies

#define NULL (int *) 0

typedef struct NodeStruct {
struct NodeStruct *next;
int data;

} Node;

void append(Node *l1, Node *l2) {
ASSUME(create_acyclic_list(l1, 5)

&& create_acyclic_list(l2, 5));

Node *l = l1;
Node *e = l1;
Node *last = NULL;

while (e) {
last = e;
e = e->next;

}

if (!last)
l = l2;

else
last->next = l2;

ASSERT(reach(next, l1, l2));
}

<controlFile>
<sourceFile name="list_append.c"

id="1" />
<run>

<startPosition fileId="1"
line="8" />

<wayPoint fileId="1" line="16" >
<loop iterTimes="5" />

</wayPoint>
<wayPoint fileId="1" line="21" />
<endPosition fileId="1"

line="27" />
</run>

</controlFile>

Fig. 11. list append.c and list append.ctrl. The predicate create acyclic list(l, 5) indi-
cates that l is a singly-linked list of size 5. The predicate reach(next, l1, l2) indicates
that l1 can reach l2 by following the link field next.

module. The base theory interprets memory cells as bitvectors of fixed width in
order to model pointer arithmetic; and fields are interpreted as arrays mapping
bitvector indices to bitvector values. Cascade then instantiates the LISBQ theory
axioms for the ground terms appearing in each SMT query and hands the axiom
instances together with the query to the SMT solver.

In order to keep the input formula to the SMT solver relatively small, we
exploit our results on locality: we only partially instantiate the theory axioms.
That is, we only instantiate quantified variables that appear below function
symbols in the axioms, while keeping the remaining variables quantified. The
resulting quantified formulas fall into fragments for which the quantifier instan-
tiation heuristics that are implemented in SMT solvers are guaranteed to be
decision procedures. Partial instantiation provides a good compromise between
an approach where we only rely on the solver’s heuristics and do not instantiate
axioms upfront, and an approach where we fully instantiate the axioms and do
not use the heuristics in the solver at all. The former is typically fast but incom-
plete on satisfiable input formulas, the latter is complete but typically slow. This
is confirmed by our experimental evaluation. In fact, often partial instantiation
yields the best running time.

Example. Figure 11 shows the code and control file of a small list-manipulating
procedure in C that appends two lists together. In this test case, we are interested
in verifying that after the procedure returns, the head of the first list l1 can
reach the head of the second list l2.

Cascade 2.0 157

Evaluation. In order to evaluate Cascade’s new ability to reason about linked
data structures, we chose two suites of benchmark programs manipulating singly-
linked lists (SL) and doubly-linked lists (DL), respectively. In these benchmarks,
various nontrivial reachability-related assertions are checked. The evaluation was
performed on a 1.7GHz, 4GB machine running Mac OS. For each benchmark,
the time limit was set to 60 seconds. The results appear in Table 3. We used
three different instantiation heuristics for the quantified axioms, and partial
instantiation is much more efficient than the other two options in most cases.
This is noteworthy considering that SMT solvers use sophisticated instantiation
heuristics internally.

Note that for the DL benchmarks with invalid assertions, both no instantia-
tion and full instantiation time out most of the time, while partial instantiation
reports “unknown” immediately. For benchmarks with quantifiers that don’t fall
into a know complete fragment, an “unknown” indicates that the SMT solver
was unable to find a proof using its instantiation heuristics. Thus, an unknown
result should be considered the same as an invalid (satisfiable) result with the
understanding that it could be a false positive. In other words, an immediate
“unknown” result is the best we could hope for in this situation.

Table 3. Results on singly- and doubly-linked list benchmarks. A timeout (indicated
by *) of 600 seconds was set for each experiment. NI is for no instantiation, PI is for
partial instantiation, and FI is for full instantiation. The superscript UN indicates that
the result from the SMT solver is “unknown”.

Benchmark F/V NI PI FI Benchmark F/V NI PI FI

sl append V 0.02 0.02 0.08 dl append V 0.08 0.34 0.14
sl contains V 0.01 0.01 0.05 dl contains V 0.01 0.03 0.02
sl create V 0.13 0.05 3.12 dl create V 12.98 0.18 1.81
sl filter F 0.11 0.08 0.13 dl filter F * 0.31UN *

sl findPrev V 0.02 0.05 0.09 dl findPrev V 0.05 0.07 0.06
sl getLast V 0.01 0.01 0.06 dl getLast V 3.34 0.02 1.27

sl insertBefore V 0.20 0.26 3.03 dl insertBefore V * 2.74 *
sl partition F 0.08 0.08 0.09 dl partition F * 0.23UN *
sl remove F 1.34 0.07 1.76 dl remove F * 0.68UN *

sl removeLast F 0.03 0.02 0.06 dl removeLast F * 0.11UN *
sl reverse V 0.09 0.06 1.57 dl reverse V * 18.65 *
sl split F 0.05 0.03 0.07 dl split F * 0.11UN *

sl traverse V 0.03 0.01 0.52 dl traverse V 8.68 0.02 *

5 Related Work

In the last decade, a variety of SAT/SMT-based automatic verifiers for C pro-
grams have been developed, such as bounded model checkers (CBMC [9], ES-
BMC [12], LLBMC [30], LAV [29], Corral [20] and Cascade), symbolic execution
tools (KLEE [7]), and modular verifiers (VCC [10], HAVOC [8], and Frama-
C [13]). In most cases, these tools use either flat memory models (e.g., CBMC,

158 W. Wang, C. Barrett, and T. Wies

LLBMC, ESBMC, LLBMC, LAV, KLEE and early versions of VCC), or Burstall-
style memory models (e.g., Corral and Caduceus [15]).

As we have discussed, these models force the user to choose between scala-
bility and being able to capture the effects of type-unsafe behaviors. The VCC
developers proposed a typed memory model that attempts to strike a balance
between scalability and precision [11]. This model maintains a set of valid point-
ers with disjoint memory locations, and restricts memory accesses only to them.
Special code annotation commands called split and join are introduced to switch
between a typed mode and a flat mode. However, the additional axioms intro-
duced for the mode switching slow down reasoning [4]. Böhme et al. use a variant
of the VCC model [4] but few details are given. A variant of Burstall’s model is
proposed in [22]. It employs a type unification strategy that simply removes the
uniqueness of relative type constants when detecting type casts. However, this
optimization is too coarse to handle code with even mild use of low-level address
manipulations and type casts, as the memory model will quickly degrade into
the flat model.

Frama-C also develops several memory models at various abstraction levels:
Hoare, typed, and flat models. As an optimization strategy, Frama-C mixes the
Hoare model and flat model by categorizing variables into two classes: logical
variables and pointer variables. The Hoare model is used to handle the logical
variables and the flat model manages the pointer variables. This strategy is
similar to our partition model. However, our partition model provides a more
fine-grained partition for the pointer variables.

Our partition model is similar to the memory model of VCC that divides
memory based on various pointers. The main difference is that we map the
pointers to separately updatable memory regions, and thus ease the burden of
SMT axiomatization for distinguishing pointers. Steensgaard’s pointer analysis
is incorporated to control the issue of pointer aliasing. Compared to the VCC
model, our modeling seems more natural – we can detect untyped operations be-
fore memory splitting, and thus avoid switching between typed and flat modes.
The direct performance comparison is difficult because of VCC’s contract based
approach to verification. However, results from [4] seem to confirm the folk wis-
dom that splitting the heap into disjoint regions performs best.

6 Conclusion

In this paper, we presented the latest version of Cascade, an automatic veri-
fier for C programs. It supports multiple memory models in order to balance
efficiency and precision in various ways. Our empirical evaluation shows that
Cascade is competitive with other tools. Furthermore, we have shown that with
a modest effort, it can be extended to reason about simple properties of linked
data structures.

In the future, we will integrate an invariant inference engine to relieve the
annotation burden on users. Moreover, we are planning to support procedure
contracts that enable local reasoning via frame rules.

Cascade 2.0 159

Acknowledgments. We would like to thank Christopher Conway, Morgan De-
ters, Dejan Jovanović, and Tim King for their contributions to the design and
implementation of the Cascade tool. This work was supported by NSF grants
CCF-0644299 and CCS-1320583.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

3. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Proceedings of Design Automation
Conference (DAC 1999), vol. 317, pp. 226–320 (1999)

4. Böhme, S., Moskal, M.: Heaps and data structures: A challenge for automated
provers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 177–191. Springer, Heidelberg (2011)

5. Brand, D., Joyner, W.H.: Verification of protocols using symbolic execution. Com-
put. Networks 2, 351 (1978)

6. Burstall, R.M.: Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence 7, 23–50 (1972)

7. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI 2008, pp.
209–224 (2008)

8. Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamarić, Z.: A reachability predicate
for analyzing low-level software. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 19–33. Springer, Heidelberg (2007)

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

10. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

11. Cohen, E., Moskal, M., Tobies, S., Schulte, W.: A precise yet efficient memory
model for c. ENTCS 254, 85–103 (2009)

12. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ansi-c software. In: ASE, pp. 137–148 (2009)

13. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-c a software analysis perspective (2012)

14. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

15. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004)

160 W. Wang, C. Barrett, and T. Wies

16. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: Programming Language Design and Imple-
mentation (PLDI), pp. 234–245 (2002)

17. Grimm, R.: Rats!, a parser generator supporting extensible syntax (2009)
18. King, J.C.: Symbolic execution and program testing. Communications of the

ACM 385, 226–394 (1976)
19. Lahiri, S.K., Qadeer, S.: Back to the future. Revisting precise program verification

using SMT solvers. In: POPL, pp. 171–182 (2008)
20. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In:

Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443.
Springer, Heidelberg (2012)

21. Rakamarić, Z., Bingham, J.D., Hu, A.J.: An inference-rule-based decision proce-
dure for verification of heap-manipulating programs with mutable data and cyclic
data structures. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349,
pp. 106–121. Springer, Heidelberg (2007)

22. Rakamarić, Z., Hu, A.J.: A scalable memory model for low-level code. In: Jones,
N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 290–304. Springer,
Heidelberg (2009)

23. Sankaranarayanan, S.: Necla static analysis benchmarks (2009)
24. Sethi, N., Barrett, C.W.: Cascade: C assertion checker and deductive engine. In:

Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 166–169. Springer,
Heidelberg (2006)

25. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. Logical Meth-
ods in Computer Science 4, 4 (2008)

26. Steensgaard, B.: Points-to analysis in almost linear time. In: ACM Symposium on
Principles of Programming Languages, pp. 32–41 (1996)

27. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.: A decision procedure for an ex-
tensional theory of arrays. In: Proceedings of the 16th Annual IEEE Symposium
on Logic in Computer Science, p. 29 (2001)

28. Totla, N., Wies, T.: Complete instantiation-based interpolation. In: POPL (2013)
29. Vujošević-Janičić, M., Kuncak, V.: Development and evaluation of LAV: An SMT-

based error finding platform. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 98–113. Springer, Heidelberg (2012)

30. Zitser, M., Lippmann, R., Leek, T.: Testing static analysis tools using exploitable
buffer overflows from open source code. SIGSOFT Softw. Eng., 29 (2004)

A Logic-Based Framework

for Verifying Consensus Algorithms�

Cezara Drăgoi1, Thomas A. Henzinger1, Helmut Veith2,
Josef Widder2, and Damien Zufferey3,		

1 IST Austria
2 TU Wien, Austria

3 MIT CSAIL

Abstract. Fault-tolerant distributed algorithms play an important role
in ensuring the reliability of many software applications. In this paper
we consider distributed algorithms whose computations are organized in
rounds. To verify the correctness of such algorithms, we reason about (i)
properties (such as invariants) of the state, (ii) the transitions controlled
by the algorithm, and (iii) the communication graph. We introduce a
logic that addresses these points, and contains set comprehensions with
cardinality constraints, function symbols to describe the local states of
each process, and a limited form of quantifier alternation to express the
verification conditions. We show its use in automating the verification of
consensus algorithms. In particular, we give a semi-decision procedure
for the unsatisfiability problem of the logic and identify a decidable frag-
ment.We successfully applied our framework to verify the correctness of
a variety of consensus algorithms tolerant to both benign faults (message
loss, process crashes) and value faults (message corruption).

1 Introduction

Fault-tolerant distributed algorithms play a critical role in many applications
ranging from embedded systems [12] to data center management [8,14]. The
development of these algorithms has not benefited from the recent progress in
automated reasoning and the vast majority of the correctness proofs of these
algorithms is still written by hand. A central problem that these algorithms solve
is the consensus problem in which distributed agents have initial values and must
eventually decide on some value. Moreover, processes must agree on a common
value from the set of initial values, even in environments that contain faults and
uncertainty in the timing of events. Charron-Bost and Schiper [10] introduced
the heard-of model as a common framework to model different assumptions on
the environment, and to express the most relevant consensus algorithms from
the literature. We introduce a new logic CL tailored for the heard-of model.

� Supported by the National Research Network RiSE of the Austrian Science Fund
(FWF) and by the Vienna Science and Technology Fund (WWTF) through grant
PROSEED and by the ERC Advanced Grant QUAREM.

�� Damien Zufferey was at IST Austria when this work was done.

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 161–181, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

162 C. Drăgoi et al.

The heard-of model is a round-based computational model: conceptually, pro-
cesses operate in lock-step, and distributed algorithms consist of rules that de-
termine the new state of a process depending on the state at the beginning of
the round and the messages received by the process in the current round. The
work in [10] introduces the notion of heard-of set HO(p, r), which contains the
processes from which some process p may receive messages in a given round r.
Without restricting the heard-of sets, it could be the case that they are all empty,
i.e., that there is no communication, and it is obvious that no interesting dis-
tributed computing problem can be solved. In [10] a way to describe meaningful
communication is introduced, namely via communication predicates that con-
strain the heard-of sets in the computation. For instance, in a system consisting
of n processes, the communication predicate ∀r∀p. |HO(p, r)| > n/2 states that
in all rounds all processes can receive messages from a majority of processes. As
is the case in this example, the quantification over rounds is typically used in a
way that corresponds to a fragment of linear temporal logic, using only simple
combinations of the “globally” and “finally” operators. We can thus eliminate
the round numbers and rewrite the above example as �(∀p. |HO(p)| > n/2),
and call terms like ∀p. |HO(p)| > n/2 topology predicates, as they restrict the
communication graph in a round. It is demonstrated in [10] that many consen-
sus algorithms from the literature can be expressed in this framework. These
algorithms are correct only for specific communication predicates.

Our goal is to automate Hoare-style reasoning for distributed algorithms in
the heard-of model. To this end, we have to define a logic that has a semi-decision
procedure for satisfiability, and is able to capture properties of the states and the
effect of the transitions. For instance, our logic must be able to capture topology
predicates such as

“each process receives messages from at least n− t processes,”

where n and t are integer variables that model the parameters of the system,
such as the number of processes and faulty processes. Moreover, the logic should
describe the values of the variables manipulated by the processes. For example

“if a process p decides on a value v, then a majority of processes currently
have v stored in their x variable.”

Finally, we have to capture the transitions of the algorithms, for instance

“all processes that receive a value v from more than two thirds of the
processes, set variable x to v.”

We thus need a logic that allows universal quantification over processes, defin-
ing sets of processes depending on the values of their variables, and linear con-
straints on the cardinalities of such sets of processes. These constraints can be
expressed in first order logic, but since the satisfiability problem is undecid-
able, we need to find a logic that strikes a balance between expressiveness and
decidability.

A Logic-Based Framework for Verifying Consensus Algorithms 163

Contributions. We introduce a multi-sorted first-order logic called Consensus
verification logic CL whose formulas express topology predicates and constrain
the values of the processes’ local variables using: (1) set comprehensions, (2)
cardinality constraints, (3) uninterpreted functions, and (4) universal quantifi-
cation. To automate the check of verification conditions we introduce a semi-
decision procedure for unsatisfiability. This procedure soundly reduces checking
the validity of implications between formulas in CL to checking the satisfiabil-
ity of a set of formulas in Presburger arithmetics and a set of quantifier-free
formulas with uninterpreted function symbols. The latter two have a decidable
satisfiability problem. Furthermore, we have identified a fragment of the logic
for which the satisfiability problem is decidable. The proof is based on a small
model argument. We have successfully applied the semi-decision procedure to
a number of consensus algorithms from the literature. In particular, we have
applied it to all algorithms from [10], which surveys the most relevant (partially
synchronous) consensus algorithms in the presence of benign faults, including
a variant of Paxos. In addition we applied it to the algorithms from [4], which
tolerate value faults, and to a basic synchronous consensus algorithm from [19].

2 Fault-Tolerant Distributed Algorithms in the
HO-Model

In this section, we present the class of distributed algorithms we want to verify.
These are algorithms in the heard-of model of distributed computations [10].
In the following, we introduce an adaptation of the heard-of model, suitable for
automated verification. Distributed algorithms consist of n processes which in-
teract by message passing, where n is a parameter. The executions are organized
in rounds, and we model each round to consist of two transitions.

In the first transition, called environment transition, processes communicate
by exchanging messages and intuitively an adversary, called environment, de-
termines for each process the set of processes it receives messages from, i.e.,
its heard-of set. In a variant of the heard of model [10], the environment also
assigns to each process a coordinator process. In the second transition, called
computation transition, processes change their local state depending of the mes-
sages received in the previous phase. These transitions update disjoint sets of
variables: the variables updated by the environment, in the first transition of a
round, are called environment variables, the variables updated by the processes,
in the second transition, are called computation variables. In the following we
describe the variables of the distributed algorithm and the semantics of the two
types of transitions.

Variables: The local variables manipulated by the distributed algorithm are of
type process, set of processes or of data types, e.g., integer or boolean.
The variables of type process and sets of processes are the environment variables,
denoted EVars . The heard-of set of a process is represented by a local variable
of type set of processes. Similarly, the coordinator of a process is represented by

164 C. Drăgoi et al.

Init(int vp){ x := vp; dec := ?; }

Comp :
S: send x to all processes

U: if received more than 2n/3
messages,

then x := the smallest most often
received value;

if more than 2n/3 received values
are equal with x

then dec := x

(a) Algorithm.

EVars ::= HO of type set of processes
CVars ::= x, dec of type integer

(b) Process local variables.

TPs ::= “true”
TP1

t ::= “there is a set A with more
than 2n/3 processes s.t. all
processes receive the messages
sent by the processes in A”

TP2
t ::= “all processes receive the

messages sent by more than
2n/3 processes”

(c) Topology predicates; n represents
the size of the network

“All the executions where:
(1) ∃ an environment transition

satisfying TP1
t , and after that

(2) ∃ an environment transition
satisfying TP2

t

solve Consensus.”

(d) Specification.

Fig. 1. A round based algorithm in the HO-model that solves Consensus

a local variable of type process. The variables of data types are called compu-
tation variables, denoted CVars. For some distributed algorithms, we use global
variables, GVars , of integer type to model round numbers. For simplicity of pre-
sentation, although of data type, we consider the global variables as environment
variables that are deterministically incremented in the environment transitions.

Environment Transitions: The environment transitions assigns non-
deterministically values to the environment variables of each process.

Computation Transition: Computation transitions assign values to the lo-
cal computation variables of processes. These assignments are guarded by
if-then-else statements. The latter contain conditions over the local state
of the process and the messages received. In our view of the heard-of model we
regard messages as values of the local variables of data type of other processes.
The set of messages received by a process is determined by the value of its en-
vironment variables (HO-sets) and the send statements executed by the other
processes. These statements are of the form “send var to destination”, e.g. “send
x to all processes” or “send x to coordinator’; they are parametrized by
the variables sent, x, and the destination processes. More precisely, a process p
receives x from process q, if q is in the heard-of set of p, and q executes “send
x” and p is a destination process of this send statement.

Executions: A state of the distributed algorithm is defined by an n-tuple of
local process states, and a valuation for the global variables, if there are any. The
local state of a process is defined by a valuation of its variables. A computation
starts with an initialization round, Init, followed by a sequence of rounds, Comp.
The executions of a typical distributed algorithm are sequences of the form

A Logic-Based Framework for Verifying Consensus Algorithms 165

[p1.Init(v1)|| . . . ||pn.Init(vn)];
(
Env; [p1.Comp|| . . . ||pn.Comp];

)∗
where Env is

an environment transition, Init and Round are defined in Fig. 1, n is the num-
ber of processes, || is the parallel composition, p.R states that process p is ex-
ecuting R, ’∗’ is the Kleene iteration of the sequential composition, and vi, for
1 ≤ i ≤ n, are integers different from a distinguished integer denoted by ’?’.

Example 1. The distributed algorithm in Fig. 1 consists of n processes, each of
them having two local variables x and dec of integer type, and one environment
variable, the HO-set. The computation transitions are given in Fig. 1a. For each
process, the Init transition initializes dec to a special value ’?’ and x to an
input value. In the other rounds, all processes execute Comp. Given a process p,
the values of the x variables of each process q in HO(p) defines a multiset. It
corresponds to the messages received by p.

The first if statement means that if p receives messages from more than two
thirds of the processes, it updates its local variable x to the minimal most often
received value. If the condition does not hold, the value of x stays unchanged. As
the HO-set at different processes may differ, it can be that only some processes
update x. In the second if statement, a process p updates the value of the variable
dec if it received the same value frommore then two thirds of the processes. As two
thirds of the processes have the same value, there is a majority around this value.

3 Verification of Distributed Algorithms

Specifying Consensus. Intuitively, a distributed algorithm solves consensus
if starting from an initial state where each process p has a value, it reaches a
state where all the processes agree on one of the initial values. More precisely,
consensus is the conjunction of four properties: agreement, no two process de-
cide differently, validity, if all processes start with v then v is the only possible
decision, irrevocability, any decision is irrevocable, and termination, eventually
all processes decide. It is well-known from literature [22] that consensus cannot
be solved if the environment transitions are not restricted. Hence, the specifi-
cations we consider are actually conditional. In the literature, the conditions
are given in natural language and we express them with topology predicates and
temporal logic formulas over these predicates. More precisely, topology predi-
cates are conditions on the environment variables. We use topology predicates
to restrict the effect of an environment transition, i.e., they restrict the domain
of the non-deterministic assignments. To restrict the environment transitions
in an execution, we use very simple LTL formulas: we consider conjunctions,
where the first conjunct has the form �φ, and the second conjunct is of the form
♦(φ1 ∧ ♦(φ2 ∧ ♦(. . . ∧ ♦(φ�))), where φ, φ1, . . .φ� are topology predicates.

Example 2. The system in Fig. 1 solves Consensus by making all processes agree
on the valuation of dec. Its specification is given in Fig. 1d. It uses three topology
predicates, TPs, TP

1
t and TP2

t , given in Fig. 1c. In temporal logic parlance,
agreement can be stated as �Agrm, where Agrm says that

166 C. Drăgoi et al.

“for any two processes p, q, either one of them has not decided, i.e., dec = ?
or they decide the same value, i.e., dec(p) = dec(q)
= ?”

(1)
Termination can be stated as ♦Term, where Term says that “for all processes p,
dec(p)
= ?”. To ensure termination, the distributed algorithm in Fig. 1 re-
quires the existence of two specific rounds satisfying the topology predates TP1

t

and TP2
t . The specification is then given by �TPs ⇒ �Agrm and(

�TPs ∧
(
♦ (TP1

t ∧ ♦TP2
t)
))
⇒ ♦Term.

Invariant Checking for Distributed Algorithms.We consider a logic-based
framework to verify that a distributed algorithm satisfies its specification, where
formulas represent sets of states or binary relations between states.

To prove the safety properties, i.e., agreement, validity, and irrevocability1,
we use the invariant checking approach, i.e., given a formula Invs that describes
a set of states of the system, we check that Invs is an inductive invariant for
the set of computations where all states satisfy the topology predicate TPs and
that Invs implies the three safety properties of consensus. The proof that Invs

is an inductive invariant reduces to checking that the initial states of the system
satisfy Invs and checking that the following holds:(

Invs(p, e,a) ∧ TPs(p, e) ∧ TR(p, e, e′,a,a′)
)
⇒ Invs(p, e

′,a′)

where p is the vector of processes, e is the vector of environment variables,
a is the vector of computation variables, TPs(p, e) is a topology predicate,
and TR(p, e, e′,a,a′) is the transition relation associated with an environment
transition or a computation transition (unprimed and primed variables represent
the value of the variables before and after a transition, respectively).

In our example, the invariant Invs states that

“no process has decided or there is a value v such that a
majority of processes store the value v in their local variable x and
all processes that have decided chose v as their decision value”.

(2)

To prove termination, our technique targets specifications that require a
bounded number of constrained environment transitions. W.l.o.g. let r1 and r2 be
the special rounds required for termination such that r1 happens before r2. For
simplicity of presentation, we assume that both rounds satisfy the same topol-
ogy predicate TP t. To prove termination, the user must provide an inductive
invariant, denoted Inv t, that holds between the two special rounds, that is:(

Invs(p, e,a) ∧ TP t(p, e) ∧ TPs(p, e) ∧ TR(p, e, e′,a,a′)
)
⇒ Inv t(p, e

′,a′)(
Inv t(p, e,a) ∧ TPs(p, e) ∧ TR(p, e, e′,a,a′)

)
⇒ Inv t(p, e

′,a′)

1 Irrevocability can be stated as a property of the transition relation. It requires the
use of a relational semantics for the round computations.

A Logic-Based Framework for Verifying Consensus Algorithms 167

Moreover, this invariant has to be strong enough to achieve termination when
the second special round happens, that is:(
Inv t(p, e,a) ∧ TP t(p, e) ∧ TPs(p, e) ∧TR(p, e, e′,a,a′)

)
⇒ Term(p, e′,a′).

In our running example, the invariant for termination Inv t is a stronger version
of the safety invariant, and states that “there exists a value v such that the local
variable x of any process equals v”.

4 Consensus Verification Logic CL

In this section, we introduce our logic CL that formalizes topology predicates,
state properties, and the transition relation. We first introduce a graph-based
representation for the states of the distributed algorithms we consider. Then,
we define the syntax and semantics of our logic, whose formulas are interpreted
over the graph-based representation.

4.1 Graph-Based Representation of States

We model states by network graphs, where each node represents a process.
Node and link labels correspond to the values of the computation variables
and environment variables, respectively. Formally, network graphs are tuples
G = (N,E,LN , LE), where N is a finite set of nodes, LN : N × CVars → D
defines a labeling of nodes with values from a potentially unbounded domain
D, E is a set of edges, and LE : E ⇀ 2EVars defines a labeling of the edges.
For any environment variable ev ∈ EVars of process type, the edges labeled
by ev define a total function over the nodes in the graph (i.e., each node has
exactly one successor defined by an edge labeled by ev). The heard-of sets are
represented by variables of type set of processes; they do not define a total
function because a node can have multiple or no successors w.r.t. the label HO.

A state of a distributed algorithm is a pair C = (G, ν), where G is a network
graph and ν : GVars → D is a valuation of the global variables. Relations be-
tween two network states of the same system are represented by pairs (G, ν),
where the vocabulary of the labels is doubled by introducing their primed ver-
sions. As we are interested in relations between states that belong to the same
execution, the two states contain exactly the same set of processes.

Fig. 2a shows a state with three processes of the algorithm in Fig. 1, and
Fig. 2b shows a relation between two states of the same algorithm. For simplicity,
we draw only the labeled edges and omit the dec variable.

4.2 Syntax and Semantics

We define a multi-sorted first-order logic, called Consensus verification logic CL,
to express properties of sets of states (e.g., invariants) or relations between states
(transition relations). The syntax of the logic is given in Fig. 3. The logic has

168 C. Drăgoi et al.

x : 1 x : 3

x : 5

HO

HO
HO

HO

(a)

x : 1
x′ : 1

x : 3
x′ : 1

x : 5
x′ : 1

HO

HO
HO,HO′

HO,HO′

HO′

(b)

Fig. 2. Sample state (a) and relation between states (b)

Sort P Sort 2P Sort D Sort Z

Function f : P → P F : P → 2P x : P → D | · | : 2P → Z
symbols

Variables p, q S, A v, Θ N , n

Terms tP ::= p, q, f(p) tS ::= S, F (p), tS ∩ tS tD ::= v, x(p) tZ ::= |tS|, N , n

Atomic ϕP ::= t1P = t2P ϕS ::= t1S ⊆ t2S ϕD ::= t1D ≤ t2D ϕZ ::= linear

formulas tP ∈ tS , constraint over tZ

Set comprehensions {q | ∀t. ϕ(q, t,p)}, where ϕ ::= ϕP | ϕD | ϕZ | ¬ϕ | ϕ ∧ ϕ

Universally quantified formulas ψ∀(S) :: = ∀p.B({p ∈ S | p ∈ p, S ∈ S}) ⇒ B
+(ϕD), where

p is a set of process variables, S is a set of set variables and given a set of formulas Γ , B(Γ),

resp. B+(Γ), is a boolean combination, resp., positive boolean combination, of formulas in Γ

ψ ::= ϕP | ϕS | ϕZ | ϕD | ψ∀ | ψ ∧ ψ | ¬ψ, ψCL ::= ψ | ∃p. ψCL | ∃v. ψCL

where set comprehensions can be used as set terms

Fig. 3. Syntax of CL formulas, defined by ψCL

four sorts: process, denoted P , sets of processes, denoted 2P , integers, denoted Z,
and data, denoted D. We write F [ϕ(∗)](p) instead of F (p) ∩ {q | ϕ(q)}.

The models of a formula in CL are pairs (G,μ), where G = (N,E,LN , LE) is
a network graph and μ is a valuation of the free variables. In the following, we
describe the semantics of CL formulas and their use. We use the convention that
the global variables correspond to free variables of formulas. The satisfaction
relation is denoted by G |=μ ϕ. The interpretation of a term t w.r.t. (G,μ) is
denoted by [[t]](G,μ).

Atomic Formulas over Terms of Sort Process: The terms of sort P are
built using a set of function symbols Σpr of type P → P . They are interpreted
as nodes in the graph, e.g., for any variable p ∈ P , [[p]](G,μ) is a node in the graph

A Logic-Based Framework for Verifying Consensus Algorithms 169

G. The interpretation of the function symbols is defined by the labeled edges,
i.e., [[f(p)]](G,μ) = u iff the graph G contains an edge ([[p]](G,μ), u) labeled by f .
The only predicate over terms of type P is equality.

We use the function symbols in Σpr for two purposes. First, they represent
the values of local environment variables of type process, such as the coordinator
of a process. Second, we use them to model processes in the heard-of sets with
distinguished local states, such as the processes storing the minimal value, or
the value with the most occurrences in the considered set.

Atomic Formulas over Terms of Sort Data: The terms of sort D are
interpreted as values of the data domain D. The node labels in G, i.e., the
values of the computation variables, are represented in the logic by a set of
function symbols x : P → D, one for each node label/computation variable.
That is, [[x(p)]](G,μ) = d iff d ∈ D is the label x of the node [[p]](G,μ), i.e.,
LN([[p]](G,μ), x) = d. We assume that the domain D is totally ordered. The
predicates over data terms are non-strict comparison and equality.

Atomic Formulas over Terms of Sort Set: The terms of sort 2P are in-
terpreted as sets of processes, i.e., sets of nodes in the graph. They are built
using a set of function symbols Σset of type P → 2P . For any function sym-
bol F : P → 2P in Σset, [[F (p)]](G,μ) is a set of nodes from N such that
u ∈ [[F (p)]](G,μ) iff F is one of the labels of the edge (u, [[p]](G,μ)) ∈ E. The heard-
of sets are modeled using a function symbol HO ∈ Σset, where [[HO(p)]](G,μ) is
the set of nodes representing the processes [[p]](G,μ) hears from. The logic con-
tains the inclusion predicate over set terms and the membership predicate over
process and set terms.

Atomic Formulas over Terms of Sort Integer: The atomic formulas over Z-
terms are linear inequalities and they constrain the cardinality of the set terms.
We consider a distinguished integer variable n, which is interpreted as the num-
ber of processes in the network. For example, |HO(p)| > 2n/3 states that the
process p receives messages sent by more than two thirds of the processes, and∣∣HO[x(∗) = x(p)

]
(p)

∣∣ > 2n/3 states that the value x(p) is received more than
2n/3 times by process p.

One of the key features of the logic are the set comprehensions. They are
used in the invariants to state that a majority is formed around one value, in
the topology predicates to identify the set of processes that every one hears
from, and in the transition relation to identify the processes that will update
their local state. A set comprehension is defined by {q | ρ(q)}, where ρ is a
(universally quantified) formula that contains at least one occurrence of the
variable q (representing processes in the set). For ease of notation, we associate
with each set comprehension a unique set variable used in a formula as a macro
for its definition. The interpretation of a set comprehension is [[{q | ρ(q)}]](G,μ) =
{u ∈ N | G |=μ[q←u] ρ(q)}.
Set Comprehensions with Quantifier-Free Formulas: Typically, invariants
identify sets of processes whose local variables have the same value. For example,
the invariant Invs in (2) is defined using the set of processes whose local variable

170 C. Drăgoi et al.

x equals v, i.e., SV = {q | x(q) = v}. Topology predicates are also expressed using
set comprehension: the two topology predicates from Fig. 1c are expressed in CL

by:

TP1
t ::= |A| > 2n/3 ∧ |SA| = n, with SA = {q | HO(q) = A}
TP2

t ::= |SHO| = n, with SHO = {q | |HO(q)| > 2n/3},

where A is a set variable, SA is the set of processes whose heard-of set equals A,
and SHO is the set of processes that receive from more than 2n/3 processes.

Set Comprehensions with Universally Quantified Formulas: Typical ex-
amples of such set comprehensions used in topology predicates are: the kernel
K = {q | ∀t. q ∈ HO(t)}, i.e., the set of processes every one hears from and
Sno split = {q | ∀t. |HO(t) ∩ HO(q)| ≥ 1}, which is the set of processes that
share some received message with any other process in the network.

Set comprehensions are also used to select the processes that update their
local state. Typically, the value assigned to some local variable is chosen from
the received ones, e.g., the minimal received value, or the minimal most often re-
ceived value. To express such updates, the process in the HO-set that holds such
a value is represented as the value of a function symbol in Σpr. For example, the
first update from the algorithm in Fig. 1a can be written as x′(p) = x(mMoR(p)),
where mMoR(p) is interpreted as a process q s.t. x(q) is the minimal most often
received value by p. This constraint over the interpretation of mMoR can be
expressed by |S| = n (we assume that all processes have sent the value of their
x variable), where

S =

⎧⎪⎪⎨
⎪⎪⎩

q | ∀t. t ∈ HO(q) ⇒⎛
⎝

|HO[x(∗) = x(mMoR(q))](q)| = |HO[x(∗) = x(t)](q)| ⇒
x(mMoR(q)) ≤ x(t)

∧|HO[x(∗) = x(mMoR(q))](q)| ≥ |HO[x(∗) = x(t)](q)|

⎞
⎠

⎫⎪⎪⎬
⎪⎪⎭

(3)

Above, S represents the set of processes q s.t. x(mMoR(q)) is interpreted as
the minimal most often received value by q. If |S| = n, i.e., S contains all the
processes in the network, then for all processes q, the x variable of mMoR(q)
equals the minimal most often received value by q.

Universally Quantified Formulas: The universally quantified formulas in CL

are implications, where (1) quantification is applied only over process variables,
(2) the left hand side of the implication is a boolean combination of membership
constraints, and (3) the right hand side of the implication is a positive boolean
combination (without negation) of atomic formulas over data. For example, the
transition relation for the algorithm in Fig. 1 is expressed by

TR = ∀p. p ∈ SHO ⇒ x′(p) = mMoR(p) ∧ ∀p. p ∈ SHV ⇒ dec′(p) = x′(p) ∧
∀p. p �∈ SHO ⇒ x′(p) = x(p) ∧ ∀p. p �∈ SHV ⇒ dec′(p) = dec(p),

(4)

where SHV = {q | |HO[x(∗) = x′(q)](q)| > 2n/3} and SHO is defined above.

A Logic-Based Framework for Verifying Consensus Algorithms 171

The state properties in the definition of consensus, e.g., Agrm given by (1) in
Sec. 3, are expressed using universally quantified formulas:

Agrm = |S| = n ∧ ∀p, q. p, q ∈ S ⇒ dec(p) = dec(q). (5)

Remark 1. The formulas that express the guarded assignments, the inductive in-
variants, and the properties that define consensus, are in the form of universally-
quantified implications. The left-hand side of these implications is typically more
involved. To express these formulas, CL restricts the syntax of universally-
quantified implications in a way that is sufficient to express the formulas we
encountered. Note that these constraints on the use of universal variables can
be overpassed using set comprehensions, e.g., ∀t, q. x(t)
= x(q) is equivalent to
S = {q | ∀t. x(t)
= x(q)} ∧ |S| = n.

Finally, CL formulas are existentially-quantified boolean combinations of
atomic formulas and universally quantified formulas.

To conclude let us formalize the definition of the invariants, Invs and Inv t

given in Sec. 3, required to prove the correctness of the system in Fig. 1.

Invs = Inv1
s ∨ ∃v. Inv2

s(v),where

Inv1
s = ∀q. dec[q] = ? and

Inv2
s(v) = |SV | > 2n/3 ∧ ∀q. dec(q) = ? ∨ dec(q) = v = x(q)

Inv t = ∃v ∀q. x(p) = v ∧
(
dec(q) = ? ∨ dec(q) = v = x(q)

) (6)

Verification condition for distributed algorithms are implications between CL

formulas, such as the ones in Sect. 3, where the invariants, transition relations,
and properties are expressed in CL.

5 A Semi-decision Procedure for Implications

Classically, checking the validity of a formula is reduced to checking the unsatis-
fiability of its negation. Since CL is not closed under negation, the negation of an
implication between CL formulas is not necessarily in CL. In this section, we will
present (1) a sound reduction from the validity of an entailment between two
formulas in CL to the unsatisfiability of a formula in CL, (2) a semi-decision
procedure for the unsatisfiability problem in CL, and (3) identify a fragment
CLdec of CL which is decidable.

5.1 Reducing Entailment Checking in CL to Unsatisfiability

Let us consider the following entailment ϕ⇒ ψ between CL formulas ϕ and ψ.
There are two reasons why ϕ ∧ ¬ψ might not belong to CL. First, if ψ has a
sub-formula of the form ∃∗∀∗, then by negation, the quantifier alternation be-
comes ∀∗∃∗, which is not allowed in CL. Second, the restricted use of universally
quantified variables in CL is not preserved by negating the constraints on the

172 C. Drăgoi et al.

existential variables of ψ, e.g., if ψ = ∃p1, p2. p1 = p2, then its negation is not
in CL because difference constraints between universally quantified variables
are not allowed. We define a procedure, which receives as input an implication
ϕ ⇒ ψ between two formulas in CL. The algorithm we define hereafter builds
a new formula φ from ϕ ∧ ¬ψ. It restricts the interpretation of the universally
quantified variables that do not satisfy the syntactical requirements of CL to
terms built over the existentially quantified variables.

Reduction Procedure: The formula φ is built in three steps. In the first step,
the formula ϕ⇒ ψ is transformed into an equivalent formula φ1 = ∃ξ. (ϕ1 ∧ψ1)
where all the existential quantifiers appear at the beginning (ϕ1 and ψ1 are
equivalent to ϕ and ¬ψ, respectively, modulo some renaming of existentially-
quantified variables; also, ψ1 is transformed such that no universal quantifier
appears under the scope of a negation). The second step consists of identifying
the set of universally quantified variables β in ψ1 that appear in sub-formulas
not obeying the syntactic restrictions of CL.

In the last step, let T (ξ) be the set of terms over the variables in ξ that
contain at most k occurrences of the function symbols from CL, where k is
the maximum number of function symbols from a term of the formula ϕ ∧ ¬ψ.
Then, φ is obtained by restricting the interpretation of the universally quantified
variables in β to the domain defined by the interpretation of the terms in T (ξ):

φ = ∃ξ.
∧

γ∈[β→T (ξ)]

(
ϕ1 ∧ ψ1

[
β ← γ(β)

for every β ∈ β

])
(7)

Lemma 1. Let ϕ ⇒ ψ be an implication between two formulas in CL, and φ
the formula in (7). The unsatisfiability of φ implies the validity of ϕ⇒ ψ.

Note that if ψ has no existentially quantified variables, then the unsatisfiability
of φ is equivalent to the validity of ϕ⇒ ψ.

Rationale: All the state properties used to define consensus, e.g., Agrm in (5)
from Sec. 4, are expressible using universally-quantified formulas in CL. Thus,
for checking that an invariant implies these properties, the reduction procedure
is sound and complete. This is not necessarily true for the verification conditions
needed to prove the inductiveness of an invariant, that is, verification conditions
of the form ϕ⇒ ψ, where ψ is an inductive invariant. In the following, we give
evidences for the precision of the reduction procedure in these cases.

In systems that solve consensus, all the computations contain a transition
after which only one decision value is possible [11]. Therefore, the set of reachable
states can be partitioned into two: the states where any value held by a process
may become the decision, and the states where there is a unique value v that
can be decided; often this corresponds to a majority formed around v. This
implies that the inductive invariants are usually a disjunction of two formulas,
one for each set of states described above. In the negation of the invariant, the
universally quantified variables that do not obey to the restrictions in CL are
those used to express that there is no value on which all processes agree.

A Logic-Based Framework for Verifying Consensus Algorithms 173

In all our examples, the two sets of states are demarcated by the existence of at
least one process that has decided.2 Given invariants in this disjunctive form, to
prove them inductive w.r.t. a transition TR, two situations have to be considered:
(1) no process has decided before applying TR and at least one process has
decided after TR, and (2) some processes decided before applying TR. In (1),
to prove the unsatisfiability of ϕ ∧ ¬ψ it is sufficient to map the universally
quantified variables in ¬ψ on terms denoting the value of one of the processes
that have decided, and in (2), it is sufficient to map them on the terms denoting
the values around which a majority was formed before applying TR.

Example 3. To prove that Invs, given in (6), is an invariant w.r.t. the transition
relation TR given in (4), more precisely the case where no process decided before
applying TR, one needs to prove the validity of (Inv1

s∧TR)⇒ Invs[dec← dec′],
where Invs[dec← dec′] is the obtained from Invs by substituting the function
symbol dec with the function symbol dec′. This is equivalent with proving the
unsatisfiability of the following formula, where we have expanded the definition
of Invs[dec← dec′]:

Inv1
s ∧ TR ∧ ∃p. dec′(p)
= ? ∧ ∀v. ¬Inv2

s(v)[dec← dec′]︸ ︷︷ ︸
ρ(v)

.
(8)

Notice that ∀v.¬Inv2
s(v)[dec ← dec′] does not belong to CL because it con-

tains a ∀ ∃ quantifier alternation. In this case, we soundly reduce the unsatisfia-
bility of (8) to the unsatisfiability of

Inv1
s ∧ TR ∧ ∃p. dec′(p)
= ? ∧ ρ(v)[v ← dec′(p)]. (9)

by restricting the interpretation of universally quantified variable v to the value
decided by process p, i.e., dec′(p).

If some processes decided, the term denoting the value around which a ma-
jority was formed before applying TR is the existentially quantified v in Invs.

5.2 Semi-decision Procedure for Unsatisfiability

In this section, we present the semi-decision procedure for the unsatisfiability
problem in CL. This procedure soundly reduces the unsatisfiability of a CL

formula to the unsatisfiability of a quantifier-free Presburger formula (cardinality
constraints) or the unsatisfiability of a formula with uninterpreted functions and
order constraints (constraints on data). The satisfiability of these formulas is
decidable and checkable using an SMT solver.

We give an overview on the main steps, Step 1 to Step 5, of the semi-decision
procedure on an example, before we formalize them.

Overview: Let us consider the formula in (9), stating that no process decided
before applying the transition relation TR given in (4), and afterwards two
processes decide on different values:

2 The only exception is the LastVoting algorithm, where the demarcation includes also
the existence of a process having a local variable (not the decision one) set to true.

174 C. Drăgoi et al.

ϕ = ∀t. dec(t) = ? ∧ TR ∧ dec′(p)
= ? ∧ dec′(q)
= ? ∧ dec′(p)
= dec′(q)

The semi-decision procedure starts by instantiating universal quantifiers and
set comprehension over the free variables of ϕ. This strengthens the data and
cardinality constraints over terms with free variables (see Step 3).

In our example, the cardinality constraints are strengthened by instantiat-
ing the universal quantification in TR and the definition of the set comprehen-
sion SHV , over the free variables p and q. The processes denoted by p and q
decide in the round described by TR, therefore these variables belong to the set
SHV ; from the definition of SHV , the value decided by each of them, i.e., x′(p),
resp., x′(q), was received from at least two thirds of the processes in the network,
i.e., |HO[x(∗) = x′(p)](p)| > 2n/3 and |HO[x(∗) = x′(q)](q)| > 2n/3. The semi-
decision procedure builds a Presburger formula from the cardinality constrains
that use set terms over p and q; the definitions of the sets are abstracted. The
obtained formula is kp > 2n/3 ∧ kq > 2n/3, where kp = |HO[x(∗) = x′(p)](p)|
and kq = |HO[x(∗) = x′(q)](q)| (see Step 4). This formula is a satisfiable.

Then, the semi-decision procedure checks the satisfiability of the quantifier-
free formula with uninterpreted function symbols defined by the data constraints
over terms with free variables (Step 5). In our example this formula is dec′(p) =
x′(p) ∧ dec′(q) = x′(q) ∧ dec′(p)
= dec′(q), and is also satisfiable.

Therefore, for CL formulas, restricting the interpretation of universal quan-
tifiers to free variables is not sufficient to derive contradictions. The reason is
that cardinality constraints induce relations between set comprehentions, which
are neither captured by the Presburger formula nor the quantifier-free data for-
mula. Notice that due to cardinality constraints, which state that each of the
sets HO[x(∗) = x′(p)](p), resp. HO[x(∗) = x′(q)](q), contains more then two
thirds of the processes in the network, their intersection is non-empty. Therefore
there exists a process, r, which belongs to both sets. Instantiating the definitions
of these sets over r reveals that x(r) = x′(p) and x(r) = x′(q), which contradicts
the hypothesis that p and q decided on different values.

Thus, if the Presburger formula is satisfiable, it is used to discover relations
between set comprehension. This formula is used to check which intersections or
differences of set variables are non-empty; for each non-empty region, ϕ is ex-
tended with a free variable representing a process of this region (see Step 4). The
semi-decision procedure is restarted using the new formula constructed from ϕ.

Semi-decision Procedure: Let ϕ = ∀y. ψ be a CL formula in prenex normal
form, where y is a tuple of process variables. W.l.o.g., we assume that the for-
mula does not contain existential quantifiers, only free variables. Formally, the
procedure to check the unsatisfiability of ϕ iterates over the following sequence
of steps:

Step 1: introduce fresh process variables for the application of function symbols
over free variables. Let ϕ1 = ∀y. ψ1, be the formula obtained after this step.

Step 2: enumerate truth valuations for set membership over free variables and
instantiate set comprehensions. Let ϕ2 =

∨
∀y2ψ2, where each disjoint corre-

sponds to a truth valuation. Notice that new quantified formulas are introduced

A Logic-Based Framework for Verifying Consensus Algorithms 175

in this step. Let S = {q | ρ(q)} be a set comprehension, where ρ is universally
quantified and p a free variable of ϕ1. Then, p ∈ S introduces a new universally
quantified formula, i.e., ρ(p), while p
∈ S introduces a new existentially quan-
tified formula, i.e., ¬ρ(p). W.l.o.g the existential quantified variables introduces
at this step are transformed into free variables, modulo a renaming.

Step 3: instantiate universal quantifiers over the free variables of ϕ1. Let p de-
note the set of free process variables of ϕ1 (note that the free variables introduced
in Step 2 are not in p). Each disjunct ∀y2. ψ2 of ϕ2 is equivalently rewritten as
ψ2,∃ ∧ ∀y2. ψ2, where ψ2,∃ =

∧
γe∈[y2→p] ψ2 [γe] and ψ2 [γe] is obtained from ψ2

by substituting each y ∈ y2 with γe(y). Let ϕ3 denote the obtained formula.

Step 4: enumerate truth valuations for set and cardinality constraints over free
variables in ϕ3. Let As(ϕ3) denote the set of atoms that contain the inclusion or
the cardinality operator; each disjunct ψ2,∃ ∧ ∀y2. ψ2 of ϕ3 is transformed into
the equivalent formula∨

γs∈[As(ϕ3)→{0,1}]

(∧
γs(a)=1

a ∧
∧

γs(a)=0

¬a ∧ ψ2,∃[γs] ∧ ∀y2. ψ2

)
, (10)

where ψ2,∃[γs] is obtained from ψ2,∃ by substituting every a ∈ As(ϕ3) with γs(a).
For each disjunct of the formula in (10), let C[γs] be a quantifier-free Pres-

burger formula defined as follows:

• let Ts(ϕ3) be the set of terms S1 ∩ S2 or S1 \ S2, where S1 and S2 are set
variables or applications of function symbols of type P → 2P in ϕ3 (i.e., they do
not contain ∩);
• let Ks be a set of integer variables, one variable k[t] for each term t ∈ Ts(ϕ3).

Each variable k[t] represents the cardinality of the set denoted by t;
• transform each literal a or ¬a with a ∈ As(ϕ3) into a linear constraint over

the integer variables Ks:
− if a is a cardinality constraint, then replace every term |S| by the sum

of all variables k[t] with t ∈ Ts(ϕ3) of the form S ∩ S′ or S \ S′;
− transform set inclusions into cardinality constraints: for every atom a of

the form S1 ⊆ S2, if γs(a) = 1 (resp., γs(a) = 0), a is rewritten as k[S2 \S1] = 0
(resp., k[S1\S2] ≥ 1). The extension to more general atoms that use the inclusion
operator is straightforward;
• for any atom p ∈ S from (10) (chosen in Step 2), add |S| ≥ 1 to C[γs]; similar

constraints can be added for more general constraints of the form p ∈ tS .
If all Presburger formulas associated with the disjuncts of (10) are unsatisfi-

able, then ϕ is unsatisfiable. Otherwise, the formula in (10) is transformed into
an equivalent formula of the form∨

γs ∈ [As(ϕ3) → {0, 1}],
C[γs] satisfiable

(
ψ2,∃[γs] ∧

(∧
C[γs]⇒k[t]>0

∃pt. pt ∈ t
)
∧ ∀y2. ψ2

)
(11)

Step 5: Note that all ψ2,∃[γs] are quantifier-free formulas with uninterpreted
functions and order constraints, for which the satisfiability problem is decidable.

176 C. Drăgoi et al.

If all ψ2,∃[γs] are unsatisfiable then ϕ is unsatisfiable, otherwise the procedure
returns to Step 1 by letting ϕ be the disjunction of all formulas in (11) that have
a satisfiable ψ2,∃[γs] sub-formula.

5.3 Completeness

We identify a fragment of CL, denoted CLdec, whose satisfiability problem is
decidable. The proof is based on a small model argument. The syntactical re-
strictions in CLdec are: (1) function symbols of type P → P are used only in
constraints on data, i.e., they occur only in data terms of the form x(f (p)), (2)
there exists no atomic formula that contains two different function symbols of
type P → 2P , (3) cardinality constraints are restricted to atomic formulas of the
form ϕZ ::= c ∗ |ts| ≥ exp | |t1s| ≥ |t2s| | exp = c ∗ n + b, with b, c ∈ Z, and
(4) set comprehensions are defined using conjunctions of quantifier-free atomic
formulas or universally quantified formulas of the form:

S = {q | ∀t. ϕP (q, t)} | S = {q | ∀t. ϕZ(q, t)} | S = {q | ∀t. t ∈ F (q)⇒ ϕloc(q, t)}
with ϕloc(q, t) ::= ϕD(q, t) | ϕZ(q, t) | ϕloc(q, t) ∧ ϕloc(q, t) | ¬ϕloc(q, t)

where the t, q appear only in terms of the form F [Π](q), x(q), x(f (q)), x(t) with
Π an atomic data formula over t of q.

Let S be a set comprehension whose definition uses universal quantification
and terms of the form F (t), with t universally quantified. The set S defines a
relation between its elements and a potentially unbounded number of processes
in the network. They are called relational set comprehensions. An example is the
kernel of a network, i.e., K = {q | ∀t. q ∈ HO(t)}. In CLdec, the only constraints
allowed on relational set comprehensions are lower bounds on their cardinality,
i.e., given such a set S, it occurs only in atomic formulas |S| ≥ exp or |S| ≥ |tS |
under an even number of negations.

The uncoordinated algorithms in [10] are captured by CLdec, including our
running example.

Theorem 1. The satisfiability problem for formulas in CLdec is decidable.

Proof (Sketch):The small model property for this fragment of CL can be
stated as follows: for any formula ϕ, if ϕ is satisfiable then ϕ has a model whose
size is bounded by a minimal solution of a quantifier-free Presburger formula
constructed from ϕ; the order relation on solutions, i.e., on tuples of integers,
is defined component-wise. Note that, in general, there are exponentially-many
minimal solutions for a quantifier-free Presburger formula.

The Presburger formula is constructed from ϕ by applying a modified version
of Step 4 from the semi-decision procedure in Sec. 5.2. One starts by consider-
ing the Venn diagram induced by the set/process variables used in the formula
(process variables are considered singleton sets) and enumerating all possibilities
of a region to be empty or not. For each non-empty region and each function
symbol of type P → P (resp., P → 2P), we introduce a fresh process variable
(resp., set variable) representing the value of this function for all the elements

A Logic-Based Framework for Verifying Consensus Algorithms 177

in this region. This is possible because it can be proven that if ϕ has a model
of size n then it has also a model of the same size, where all the nodes in the
same Venn region share the same value for their function symbols. Then, one
enumerates all truth valuations for the cardinality constraints and constructs a
Presburger formula encoding these constraints over a larger (exponential) set of
integer variables, one for each region of the Venn diagram (this diagram includes
also the set/process variables introduced to denote values of function symbols).

Given a bound on the small models, one can enumerate all network graphs of
size smaller than this bound, and compute a quantifier-free formula with uninter-
preted functions and order constraints for each one of them. The original formula
is satisfiable iff there exists such a quantifier-free formula which is satisfiable.

5.4 Discussion

The semi-decision procedure introduced in Sec. 5.2 is targeting the specific class
of verification conditions for consensus. Intuitively, when designing consensus
algorithms one wants to avoid that two disjunct sets of processes decide inde-
pendently of each other, as this may lead to a violation of agreement. There are
two ways to avoid it. First, the algorithm can use a topology predicate to en-
force that any twoHO-sets intersect (no-split). Second, the algorithm can ensure
that a decision is made only if “supported” by a majority of processes. When we
apply the semi-decision procedure on formulas expressing the negation of these
two statements, typically it proves them unsatisfiable. It derives a contradiction
starting from the assumption that two sets are disjoint due to their definition (by
comprehension). In the first case, the contradiction is obtained by exploiting an
explicit cardinality constraint on the intersection, i.e., that the cardinality of the
intersection is greater than or equal to 1. In the second case, the contradiction
is derived from the fact that each of the two sets have cardinality greater than
n/2 (majority). For this, one needs to enumerate all pairs of sets and check that
their cardinality constraints imply non-empty intersection.

For arbitrary formulas in CL our semi-decision procedure may fail to derive a
contradiction, because one may need to explore the exponentially many regions
of the Venn diagram that are induced by the sets represented in the formula. For
the decidable fragment CLdec, this is done by the decision procedure in Sec. 5.3.

To conclude, our semi-decision procedure targets the specific class of verifi-
cation conditions needed for consensus. The semi-decision procedure proves the
unsatisfiability of formulas that are not in CLdec. Compared to the decision
procedure for CLdec, the semi-decision procedure avoids deciding quantifier-free
Presburger formulas over an exponential number of variables and computing all
minimal solutions of such formulas (which are exponentially many).

6 Evaluation

We have evaluated our framework on several fault-tolerant consensus algorithms
taken from [10], [4], and [19]. All algorithms in [10] and [4] fit into our frame-

178 C. Drăgoi et al.

Table 1. Experimental results. (1) coordinated, (2) number of rounds per phase, (3)
number of invariants provided by the user (safety + termination), (4) number of veri-
fication conditions, (5) total solving time.

Algorithm coord. rounds invariants VCs solving
(1) (2) (3) (4) (5)

Uniform Voting [10] × 2 2+2 13 < 0.1s
Coordinated Uniform Voting [10] � 3 2+2 10 < 0.1s
Simplified Coordinated Uniform Voting [10] � 2 2+2 8 < 0.1s
One Third Rule [10] × 1 1+1 8 < 0.1s
Last Voting [10] � 4 1+3 15 1s
AT,E [4] × 1 1+2 10 < 0.1s
UT,E [4] × 2 2+2 9 < 0.1s
FloodMin [19, Chapter 6.2.1] × 1 1 5 < 0.1s

work. We tested our semi-decision procedure by manually encoding the algo-
rithms, invariants, and properties in the SMT-LIB 2 format and used the Z3 [21]
SMT-solver to check satisfiability of the formulas produced by the semi-decision
procedure. In the reduction, we inline the minimization problem along the rest of
the formula and let Z3 instantiate the universal quantifiers. The results are sum-
marized in Table 1. The files containing the verification conditions are available
at http://pub.ist.ac.at/~zufferey/consensus/. We give a short description
of each algorithm and how it is proven correct in our framework. The consensus
algorithms we considered are presented in a way such that several consecutive
rounds are grouped together into a phase. This is done, because the computa-
tion transition is different for each round within a phase. We verified agreement,
validity, irrevocability, and termination.

The Uniform Voting algorithm is a deterministic version of the Ben-Or ran-
domized algorithm [3]. The condition for safety is that all environment transi-
tions satisfy the topology predicate ∀i, j. |HO(i) ∩ HO(j)| ≥ 1, called no-split.
Intuitively, a process decides a value v if all the messages it has received in a
specific round are v. Thus two processes decide on different values only if their
HO-sets are disjoint. Roughly, the semi-decision procedure succeeds in finding
a contradiction, by exploring the explicit non-empty intersection of HO-sets de-
fined by the topology predicate; more specifically the non-empty intersection of
HO-sets of two processes that are supposed to decide differently.

Coordinated Uniform Voting and simplified Coordinated Uniform Voting [10]
are coordinated algorithms. Reasoning about topology predicates similar to Uni-
form Voting leads to safety of these two algorithms. In fact simplified Coordinated
Uniform Voting is based on an even stronger topology predicate than no-split.

The One Third Rule algorithm is our running example. It is designed to be
safe without any topology predicate. In this case, the computation transitions
enforce that if a processes decides, a majority of processes are in a specific state.
In Sec. 5.2, the overview explains how the semi-decision procedure derives a
contradiction to prove one of the verification conditions for safety using the ma-
jority argument. Our proof of termination is based on a stronger communication

http://pub.ist.ac.at/~zufferey/consensus/

A Logic-Based Framework for Verifying Consensus Algorithms 179

predicate than the one provided in [10], namely, it requires two uniform rounds
where more that 2/3 of the messages are received by each process.

The Last Voting algorithm is an encoding of Paxos [17] in the HO-model.
This algorithm is coordinated. Similar to One Third Rule it is safe without
any topology predicate, and the algorithm imposes cardinality constraints that
create majority sets: Before voting or deciding, the coordinator makes sure that a
majority of process acknowledged its messages, such that a decision on v implies
|{p | x(p) = v}| > n/2.

The AT,E algorithm [4] is a generalization of the One Third Rule to value
faults that uses different thresholds. It tolerates less than n/4 corrupted messages
per process. Safety and termination of the algorithm follows the same type of
reasoning as the One Third Rule algorithm but require more complex reasoning
about the messages. To model value faults, the HO-sets are partitioned into
a safe part (SHO) and an altered part (AHO). A message from process p to
process q is discarded if p
∈ HO(q), delivered as expected if p ∈ SHO(q), and
if p ∈ AHO(q) an arbitrary message is delivered instead of the original one.
The UT,E algorithm [4] is an consensus algorithm with value faults designed for
communication which is live but not safe. For AT,E and UT,E , to simplify the
manually encoding, we have considered the intersection of up to three sets rather
than two as presented in the semi-decision procedure.

The FloodMin algorithm is a synchronous consensus algorithm tolerating at
most f crash fault [19, Chapter 6.2.1]. In each round the processes sends their
value to all the processes and keep the smallest received value. Executing f + 1
rounds guarantees that there is at least one round where no process crashes.
Agreement is reached in this (special) round. The invariant captures that fact
by counting the number of crashed process and relating it to the number of
processes with different values, i.e. |C| < r ⇒ ∃v. |{p | x(p) = v}| = n. Proving
termination requires a ranking function.

7 Related Work

The verification of distributed algorithms is a very challenging task. Indeed, most
of the verification problems are undecidable for parameterized systems [2,23].
Infinite-state model-checking techniques may be applied if one restricts the type
of actions performed by the processes. Particular classes of systems which are
monotonic enjoy good decidability properties [1,13]. Fault-tolerant distributed
algorithms cannot be modeled as such restricted systems. Recently, John et
al. [15] developed abstractions suitable for model-checking threshold-based fault-
tolerant distributed algorithms.

Orthogonally to the model-checking approach and closer to our approach is
the formalization of programs and their specifications in logics where the satis-
fiability question is decidable. Very expressive logics have been explored for the
verification of data structures and CL is a new combination of the constructs
present in those logics. The array property fragment [6] admits a limited form
of quantifier alternation which is close to ours. Reasoning about sets and car-
dinality constraints is present in BAPA [16]. However, BAPA does not combine

180 C. Drăgoi et al.

well with function symbols over sets [24]. Logics for linked heap structures such
as lists are similar to CL if we encode sets as lists and cardinality constraints as
length constraints. STRAND [20] and CSL [5] offer more quantifier alternations
and richer constraints on data but have more limited cardinality constraints.
Both logics have decision procedures based on a small model property.

If one accepts less automation, distributed algorithms can be formalized and
verified in interactive proof assistants. For instance, Isabelle has been used to
verify algorithms in the heard-of model [9]. The verification of distributed sys-
tems has also been tackled using the TLA+ specification language [18].

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems (1996)

2. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 15, 307–309 (1986)

3. Ben-Or, M.: Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In: PODC, pp. 27–30. ACM (1983)

4. Biely, M., Charron-Bost, B., Gaillard, A., Hutle, M., Schiper, A., Widder, J.: Tol-
erating corrupted communication. In: PODC, pp. 244–253 (2007)

5. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: A logic-based framework for
reasoning about composite data structures. In: Bravetti, M., Zavattaro, G. (eds.)
CONCUR 2009. LNCS, vol. 5710, pp. 178–195. Springer, Heidelberg (2009)

6. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006)

7. Brasileiro, F., Greve, F.G.P., Mostéfaoui, A., Raynal, M.: Consensus in one com-
munication step. In: Malyshkin, V.E. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 42–50.
Springer, Heidelberg (2001)

8. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
OSDI. USENIX Association, Berkeley (2006)

9. Charron-Bost, B., Merz, S.: Formal verification of a consensus algorithm in the
heard-of model. Int. J. Software and Informatics 3(2-3), 273–303 (2009)

10. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distributed Computing 22(1), 49–71 (2009)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

12. Függer, M., Schmid, U.: Reconciling fault-tolerant distributed computing and
systems-on-chip. Dist. Comp. 24(6), 323–355 (2012)

13. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the ACM 39, 675–735 (1992)

14. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination
for internet-scale systems. In: USENIXATC. USENIX Association (2010)

15. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD, pp.
201–209 (2013)

16. Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: Boolean
algebra with presburger arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS
(LNAI), vol. 3632, pp. 260–277. Springer, Heidelberg (2005)

A Logic-Based Framework for Verifying Consensus Algorithms 181

17. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. (1998)
18. Lamport, L.: Distributed algorithms in TLA (abstract). In: PODC (2000)
19. Lynch, N.: Distributed Algorithms. Morgan Kaufman (1996)
20. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures

and data. In: POPL, pp. 611–622. ACM (2011)
21. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

22. Santoro, N., Widmayer, P.: Time is not a healer. In: Cori, R., Monien, B. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989)

23. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process.
Lett. 28(4), 213–214 (1988)

24. Yessenov, K., Piskac, R., Kuncak, V.: Collections, cardinalities, and relations. In:
Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 380–395.
Springer, Heidelberg (2010)

Verifying Array Programs
by Transforming Verification Conditions

Emanuele De Angelis1, Fabio Fioravanti1,
Alberto Pettorossi2, and Maurizio Proietti3

1 DEC, University ‘G. D’Annunzio’, Pescara, Italy
{emanuele.deangelis,fioravanti}@unich.it

2 DICII, University of Rome Tor Vergata, Rome, Italy
pettorossi@disp.uniroma2.it

3 IASI-CNR, Rome, Italy
maurizio.proietti@iasi.cnr.it

Abstract. We present a method for verifying properties of imperative
programs manipulating integer arrays. We assume that we are given a
program and a property to be verified. The interpreter (that is, the op-
erational semantics) of the program is specified as a set of Horn clauses
with constraints in the domain of integer arrays, also called constraint
logic programs over integer arrays, denoted CLP(Array). Then, by spe-
cializing the interpreter with respect to the given program and property,
we generate a set of verification conditions (expressed as a CLP(Array)
program) whose satisfiability implies that the program verifies the given
property. Our verification method is based on transformations that pre-
serve the least model semantics of CLP(Array) programs, and hence the
satisfiability of the verification conditions. In particular, we apply the
usual rules for CLP transformation, such as unfolding, folding, and con-
straint replacement, tailored to the specific domain of integer arrays. We
propose an automatic strategy that guides the application of those rules
with the objective of deriving a new set of verification conditions which
is either trivially satisfiable (because it contains no constrained facts)
or is trivially unsatisfiable (because it contains the fact false). Our ap-
proach provides a very rich program verification framework where one
can compose together several verification strategies, each of them being
implemented by transformations of CLP(Array) programs.

1 Introduction

Horn clauses and constraints have been advocated by many researchers as suit-
able logical formalisms for the automated verification of imperative
programs [2,19,34]. Indeed, the verification conditions that express the correct-
ness of a given program, can often be expressed as constrained Horn clauses [3],
that is, Horn clauses extended with constraints in specific domains such as the
integers or the rationals. For instance, consider the following C-like program
prog :

x=0; y=0;
while (x<n) {x=x+1; y=y+2}

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 182–202, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Verifying Array Programs by Transforming Verification Conditions 183

and assume that we want to prove the following Hoare triple: {n≥1} prog {y>x}.
This triple is valid if we find a predicate P such that the following three verifi-
cation conditions hold:

1. x=0 ∧∧ y=0 ∧∧ n≥1 → P (x, y, n)
2. P (x, y, n) ∧∧ x<n → P (x + 1, y + 2, n)
3. P (x, y, n) ∧∧ x≥n → y>x

Constraints such as the equalities and inequalities in clauses 1–3, are formu-
las defined in a background (possibly non-Horn) theory. The use of constraints
makes it easier to express the properties of interest and enables us to apply
ad-hoc theorem provers, or solvers, for reasoning over those properties.

Verification conditions can be automatically generated either from a formal
specification of the operational semantics of the programs [34] or from the proof
rules that formalize program correctness in an axiomatic way [19].

The correctness of a program is implied by the satisfiability of the verification
conditions. Various methods and tools for Satisfiability Modulo Theory (see, for
instance, [11]) prove the correctness of a given program by finding an interpre-
tation (that is, a relation specified by constraints) that makes the verification
conditions true. For instance, in our example, one such interpretation is:

P (x, y, n) ≡ (x=0 ∧∧ y=0 ∧∧ n≥1) ∨∨ y>x

It has been noted (see, for instance, [3]) that verification conditions can be viewed
as constraint logic programs, also called CLP programs [22]. Indeed, clauses 1
and 2 above can be considered as clauses of a CLP program over the integers,
and clause 3 can be rewritten as the following goal (by moving the conclusion
to the premises):

4. P (x, y, n) ∧∧ x≥n ∧∧ y≤x → false

Various verification methods based on constraint logic programming have been
proposed in the literature (see, for instance, [8,10,34]). These methods consist
of two steps: (i) the first step is the translation of the verification task into a
CLP program, and (ii) the second step is the analysis of that CLP program. In
particular, as indicated in [8], in many cases it is helpful for the analysis step to
transform a CLP program (expressing a set of verification conditions) into an
equisatisfiable program whose satisfiability is easier to show.

For instance, if we propagate, according to the transformations described
in [8], the two constraints representing the initialization condition (x=0 ∧∧ y=0
∧∧ n≥ 1) and the error condition (x≥n ∧∧ y ≤ x), then from clauses 1, 2, and 4
we derive the following new verification conditions:

5. Q(x, y, n) ∧∧ x<n ∧∧ x>y ∧∧ y≥0 → Q(x + 1, y + 2, n)
6. Q(x, y, n) ∧∧ x≥n ∧∧ x≥y ∧∧ y≥0 ∧∧ n≥1 → false

This propagation of constraints preserves the least model, and hence, by ex-
tending the van Emden-Kowalski Theorem [38] to constrained Horn clauses, the
verification conditions expressed by clauses 5–6 are satisfiable iff clauses 1–3 are
satisfiable. Now, proving the satisfiability of clauses 5–6 is trivial because none

184 E. De Angelis et al.

of them is a constrained fact (that is, a clause of the form c → Q(x, y, n), where
c is a satisfiable constraint). Thus, clauses 5-6 are made true by simply taking
Q(x, y, n) to be false.

The approach presented in [8] shows that the transformational verification
method briefly presented in the example above, is quite general. According to
that method, in fact, one starts from a program prog on integers and a safety
property ϕ to be verified. Then, following [34], one specifies the interpreter of
the program as a CLP program whose constraints are in the domain of inte-
ger arrays. Next, by specializing the interpreter with respect to prog and ϕ, a
new CLP program, call it VC , is derived. This program consists of the clauses
that express the verification conditions (hence the name VC) which guarantee
that prog satisfies ϕ. Program VC (and the corresponding set of verification
conditions) is repeatedly specialized with respect to the constraints occurring
in its clauses with the objective of deriving either (i) a CLP program without
constrained facts, hence proving that prog satisfies ϕ, or (ii) a CLP program
containing the fact false, hence proving that prog does not satisfy ϕ (in this case
a counterexample to ϕ can be extracted from the derivation of the specialized
program).

In this paper we extend the method presented in [8] to the proof of partial
correctness properties of programs manipulating integer arrays. In order to spec-
ify verification conditions for array programs, in Section 2 we introduce the class
of CLP(Array) programs, that is, logic programs with constraints in the domain
of integer arrays. In particular, CLP(Array) programs may contain occurrences
of read and write predicates that are interpreted as the input and output re-
lations of the usual read and write operations on arrays. Then, in Section 3 we
introduce some transformation rules for manipulating CLP(Array) programs.
Besides the usual unfolding and folding rules, we consider the constraint re-
placement rule, which allows us to replace constraints by equivalent ones in the
theory of arrays [4,17,30]. In Section 4 we show how to generate the verification
conditions via specialization of CLP(Array) programs. In Section 5 we present
an automatic strategy designed for applying the transformation rules with the
objective of obtaining a proof (or a disproof) of the properties of interest. In
particular, similarly to [8], the strategy aims at deriving either (i) a CLP(Array)
program that has no constrained facts (hence proving satisfiability of the verifi-
cation conditions and partial correctness of the program), or (ii) a CLP(Array)
program containing the fact false (hence proving that the verification condi-
tions are unsatisfiable and the program does not satisfy the given property).
The transformation strategy may introduce some auxiliary predicates by using a
generalization strategy that extends to CLP(Array) the generalization strategies
for CLP programs over integers or reals [14]. Finally, as reported in Section 6,
we have implemented our transformation strategy on the MAP transformation
system [29] and we have tested the verification method using the strategy we
have proposed on a set of array programs taken from the literature.

Verifying Array Programs by Transforming Verification Conditions 185

2 Constraint Logic Programs on Arrays

In this section we recall some basic notions and terminology concerning Con-
straint Logic Programming (CLP), and we introduce the set CLP(Array) of
CLP programs with constraints in the domain of integer arrays. For details on
CLP the reader may refer to [22].

If p1 and p2 are linear polynomials with integer variables and coefficients, then
p1=p2, p1≥p2, and p1>p2 are atomic integer constraints. The dimension n of
an array a is represented as a binary relation by the predicate dim(a, n). For
reasons of simplicity we consider one-dimensional arrays only. The read and
write operations on arrays are represented by the predicates read and write,
respectively, as follows: read(a, i, v) denotes that the i-th element of array a
is the value v, and write(a, i, v, b) denotes that the array b that is equal to
the array a except that its i-th element is v. We assume that both indexes and
values are integers, but our method is parametric with respect to the index and
value domains. (Note, however, that the result of a verification task may depend
on the constraint solver used, and hence on the constraint domain.)

An atomic array constraint is an atom of the following form: either dim(a, n),
or read(a, i, v), or write(a, i, v, b). A constraint is either true, or an atomic
(integer or array) constraint, or a conjunction of constraints. An atom is an
atomic formula of the form p(t1,...,tm), where p is a predicate symbol not in
{=,≥, >, dim, read, write} and t1, . . . , tm are terms constructed out of variables,
constants, and function symbols different from + and *.

A CLP(Array) program is a finite set of clauses of the form A :- c, B, where A is
an atom, c is a constraint, and B is a (possibly empty) conjunction of atoms. A is
called the head and c,B is called the body of the clause. We assume that in every
clause all integer arguments in its head are distinct variables. The clause A :- c is
called a constrained fact. When c is true then it is omitted and the constrained fact
is called a fact. A goal is a formula of the form :- c, B (standing for c ∧∧B → false
or, equivalently, ¬(c ∧∧B)). A CLP(Array) program is said to be linear if all its
clauses are of the form A :- c, B, where B consists of at most one atom.

We say that a predicate p depends on a predicate q in a program P if either
in P there is a clause of the form p(...) :- c, B such that q occurs in B, or there
exists a predicate r such that p depends on r in P and r depends on q in P .
We say that a predicate p in a linear program P is useless if in P there are
constrained facts neither for p nor for each predicate q on which q depends.

Now we define the semantics of CLP(Array) programs. An A-interpretation
is an interpretation I, that is, a set D, a function in Dn → D for each function
symbol of arity n, and a relation on Dn for each predicate symbol of arity n,
such that:

(i) the set D is the Herbrand universe [28] constructed out of the set Z of the
integers, the constants, and the function symbols different from + and *,

(ii) I assigns to +, *, =,≥, > the usual meaning in Z,
(iii) for all sequences a0 . . .an−1, for all integers d,

dim(a0 . . .an−1, d) is true in I iff d=n

186 E. De Angelis et al.

(iv) I interprets the predicates read and write as follows: for all sequences
a0 . . .an−1 and b0 . . . bm−1 of integers, for all integers i and v,
read(a0 . . . an−1, i, v) is true in I iff 0≤i≤n−1 and v=ai, and
write(a0 . . . an−1, i, v, b0 . . . bm−1) is true in I iff

0≤i≤n−1, n=m, bi=v, and for j=0, . . . , n−1, if j �=i then aj=bj
(v) I is an Herbrand interpretation [28] for function and predicate symbols dif-

ferent from +, *, =,≥, >, dim, read, and write.

We can identify an A-interpretation I with the set of ground atoms that are true
in I, and hence A-interpretations are partially ordered by set inclusion.

We write A |= ϕ if ϕ is true in every A-interpretation. A constraint c is
satisfiable if A |= ∃(c), where in general, for every formula ϕ, ∃(ϕ) denotes the
existential closure of ϕ. Likewise, ∀(ϕ) denotes the universal closure of ϕ. A con-
straint is unsatisfiable if it is not satisfiable. A constraint c entails a constraint d,
denoted c 	 d, if A |= ∀(c → d). By vars(ϕ) we denote the free variables of ϕ.

We assume that we are given a solver to check the satisfiability and the en-
tailment of constrains in A. To this aim we can use any solver that implements
algorithms for satisfiability and entailment in the theory of integer arrays [4,17].

The semantics of a CLP(Array) program P is defined to be the least A-model
of P , denoted M(P), that is, the least A-interpretation I such that every clause
of P is true in I.

Given a CLP(Array) program P and a ground goal G of the form :-A, P ∪{G}
is satisfiable (or, equivalently, P �|=A) if and only if A �∈M(P). This property is a
straightforward extension to CLP(Array) programs of van Emden and Kowalski’s
result [38].

3 Transformation Rules for CLP(Array) Programs

Our verification method is based on the application of transformations that,
under suitable conditions, preserve the least A-model semantics of CLP(Array)
programs. In particular, we apply the following transformation rules, collectively
called unfold/fold rules: (i) definition, (ii) unfolding, (iii) constraint replacement,
and (iv) folding. These rules are an adaptation to CLP(Array) programs of the
unfold/fold rules for a generic CLP language (see, for instance, [13]).

Let P be a CLP(Array) program.
Definition Rule. By this rule we introduce a clause of the form newp(X) :-c,A,
where newp is a new predicate symbol (occurring neither in P nor in a clause
introduced by the definition rule), X is the tuple of variables occurring in the
atom A, and c is a constraint.
Unfolding Rule. Given a clause C of the form H :- c,L,A,R, where H and A are
atoms, c is a constraint, and L and R are (possibly empty) conjunctions of atoms,
let us consider the set {Ki :- ci,Bi | i = 1, . . . , m} made out of the (renamed
apart) clauses of P such that, for i=1, . . . , m, A is unifiable with Ki via the most
general unifier ϑi and (c,ci)ϑi is satisfiable. By unfolding C w.r.t. A using P ,
we derive the set {(H :- c,ci,L,Bi,R)ϑi | i = 1, . . . , m} of clauses.

Verifying Array Programs by Transforming Verification Conditions 187

Constraint Replacement Rule. If a constraint c0 occurs in the body of a clause C
and, for some constraints c1, . . . , cn,

A |= ∀ ((∃X0 c0)↔(∃X1 c1 ∨∨ . . . ∨∨ ∃Xn cn))
where, for i = 0, . . . , n, Xi = vars(C)−vars(ci), then we derive n new clauses
C1, . . . , Cn by replacing c0 by c1, . . . , cn, respectively, in the body of C.

The equivalences needed for constraint replacements are shown to hold in
A by using a relational version of the theory of arrays with dimension [4,17].
In particular, the constraint replacements we apply during the transformations
described in Section 5 follow from the following axioms where all variables are
universally quantified at the front:
(A1) I=J, read(A, I, U), read(A, J, V) → U=V

(A2) I=J, write(A, I, U, B), read(B, J, V) → U=V

(A3) I �=J, write(A, I, U, B), read(B, J, V) → read(A, J, V)

Axiom (A1) is often called array congruence and axioms (A2) and (A3) are
collectively called read-over-write. We omit the usual axioms for dim.
Folding Rule. Given a clause E: H :- e, L, A, R and a clause D: K :- d, D intro-
duced by the definition rule. Suppose that, for some substitution ϑ, (i) A = Dϑ,
and (ii) ∀ (e→dϑ). Then by folding E using D we derive H :- e, L, Kϑ, R.

From P we can derive a new program TransfP by: (i) selecting a clause C in P ,
(ii) deriving a new set TransfC of clauses by applying one or more transformation
rules, and (iii) replacing C by TransfC in P . Clearly, we can apply a new sequence
of transformation rules starting from TransfP and iterate this process at will.

The correctness results for the unfold/fold transformations of CLP programs
proved in [13] can be instantiated to our context as stated in the following
theorem.

Theorem 1. (Correctness of the Transformation Rules) Let the CLP(Array)
program TransfP be derived from P by a sequence of applications of the trans-
formation rules. Suppose that every clause introduced by the definition rule is
unfolded at least once in this sequence. Then, for every ground atom A in the
language of P , A∈M(P) iff A∈M(TransfP).

The assumption that the unfolding rule should be applied at least once is
required for technical reasons (see the details in [13]). Informally, this assumption
avoids the replacement of a definition clause A :- B with the clause A :- A obtained
by folding A :- B using itself. This replacement may not preserve the least model
semantics.

4 Generating Verification Conditions via Specialization

We consider an imperative C-like programming language with integer and array
variables, assignments (=), sequential compositions (;), conditionals (if else),
while-loops (while), and jumps (goto). A program is a sequence of (labeled)
commands, and in each program there is a unique halt command which, when
executed, causes program termination.

188 E. De Angelis et al.

The semantics of our language is defined by a transition relation, denoted
=⇒, between configurations. Each configuration is a pair 〈〈c, δ〉〉 of a command c
and an environment δ. An environment δ is a function that maps: (i) every
integer variable identifier x to its value v, and (ii) every integer array identifier
a to a finite sequence a0, . . . , an−1 of integers, where n is the dimension of the
array a. The definition of the relation =⇒ is similar to the ‘small step’ operational
semantics given in [36], and is omitted.

Given an imperative program prog, we address the problem of verifying
whether or not, starting from any initial configuration that satisfies the prop-
erty ϕinit , the execution of prog eventually leads to a final configuration that
satisfies the property ϕerror , also called an error configuration. This problem is
formalized by defining an incorrectness triple of the form {{ϕinit}} prog {{ϕerror}},
where ϕinit and ϕerror are constraints. We say that a program prog is in-
correct with respect to ϕinit and ϕerror , whose free variables are assumed to
be among the program variables z1, . . . , zr, if there exist environments δinit
and δh such that: (i) ϕinit (δinit (z1), . . . , δinit (zr)) holds, (ii) 〈〈�0 : c0, δinit 〉〉 =⇒∗

〈〈�h :halt, δh〉〉, and (iii) ϕerror (δh (z1), . . . , δh(zr)) holds, where �0 :c0 is the first
labeled command of prog and �h : halt is the unique halt command of prog.
A program is said to be correct with respect to ϕinit and ϕerror iff it is not
incorrect with respect to ϕinit and ϕerror . Note that our notion of correctness is
equivalent to the usual notion of partial correctness specified by the Hoare triple
{ϕinit} prog {¬ϕerror}. In this paper we assume that the properties ϕinit and
ϕerror can be expressed as conjunctions of (integer and array) constraints.

We translate the problem of checking whether or not the program prog is
incorrect with respect to the properties ϕinit and ϕerror into the problem of
checking whether or not the nullary predicate incorrect (standing for false) is
a consequence of the CLP(Array) program T defined by the following clauses:

incorrect :- errorConf(X), reach(X).
reach(Y) :- tr(X, Y), reach(X).
reach(Y) :- initConf(Y).

together with the clauses for the predicates initConf(X), errorConf(X), and
tr(X, Y). Those clauses are defined as follows: (i) initConf(X) encodes an initial
configuration satisfying the property ϕinit , (ii) errorConf(X) encodes an error
configuration satisfying the property ϕerror , and (iii) tr(X, Y) encodes the tran-
sition relation =⇒ between pairs of configurations, which depends on the given
program prog. For instance, the following clause encodes the transition relation
for the array assignment � : a[ie] = e (here a configuration pair of the form:
〈〈� :c, δ〉〉 for the command c at label � and the environment δ, is denoted by the
term cf(cmd(L, C), D)):
tr(cf(cmd(L, asgn(arrayelem(A, IE), E)), D), cf(cmd(L1, C), D1)) :-

eval(IE, D, I), eval(E, D, V), lookup(D, array(A), FA), write(FA, I, V, FA1),
update(D, array(A), FA1, D1), nextlab(L, L1), at(L1, C).

(L1 is the label following L in the encoding of the given program.) The predicate
reach(Y) holds if a configuration Y can be reached from an initial configuration.

Verifying Array Programs by Transforming Verification Conditions 189

The imperative program prog is correct with respect to the properties ϕinit

and ϕerror iff incorrect �∈M(T) (or, equivalently, T �|=incorrect), where M(T)
is the least A-model of program T (see Section 2). Our verification method
performs a sequence of applications of the unfold/fold rules presented in Section
3 starting from program T . By Theorem 1 we have that, for each program U
obtained from T by a sequence of applications of the rules, incorrect∈M(T)
iff incorrect∈M(U).

Our verification method is made out of the following two steps, each of which
is realized by a sequence of applications of the unfold/fold transformation rules:
Step (A): Generation of Verification Conditions, and Step (B): Transformation
of Verification Conditions.

In Step (A) program T is specialized with respect to the given tr (which de-
pends on prog), initConf, and errorConf, thereby deriving a new program T 1
such that: (i) incorrect ∈ M(T) iff incorrect ∈ M(T 1), and (ii) tr does not
occur explicitly in T 1. The specialization of T is obtained by applying a variant
of the strategy for interpreter removal presented in [8]. The main difference with
respect to [8] is that the CLP programs considered in this paper contain read,
write, and dim predicates. The read and write predicates are never unfolded
during specialization and they occur in the residual CLP(Array) program T 1.
All occurrences of the dim predicate are eliminated by replacing them by suit-
able integer constraints on indexes. The clauses of T 1 are called the verification
conditions for prog, and we say that they are satisfiable iff incorrect �∈ M(T 1)
(or equivalently T 1 �|=incorrect). Thus, the satisfiability of the verification con-
ditions for prog guarantees that prog is correct with respect to ϕinit and ϕerror .

Step (B) has the objective of checking, through further transformations, the
satisfiability of the verification conditions generated by Step (A). We will de-
scribe this step in detail in Section 5.

Let us consider, for example, the following program SeqInit which initializes
a given array a of n integers by the sequence: a[0], a[0]+1, . . . , a[0]+n−1:

SeqInit : �0 : i = 1;
�1 : while (i<n) { a[i] = a[i−1] + 1; i = i + 1; };
�h : halt

We consider the following incorrectness triple:

{{ϕinit (i, n, a)}} SeqInit {{ϕerror(n, a)}}
where:
(i) ϕinit (i, n, a) is i≥0 ∧∧ n=dim(a) ∧∧ n≥1, and
(ii) ϕerror (n, a) is ∃j (0≤j ∧∧ j + 1<n ∧∧ a[j]≥a[j+1]).

First, the above incorrectness triple is translated into a CLP(Array) program T .
In particular, the properties ϕinit and ϕerror are defined by the following clauses,
respectively:

1. phiInit(I, N, A) :- I≥0, dim(A, N), N≥1.
2. phiError(N, A) :- Z=W+1, W≥0, W+1<N, U≥V, read(A, W, U), read(A, Z, V).

190 E. De Angelis et al.

The clauses defining the predicates initConf and errorConf which specify the
initial and the error configurations, respectively, are as follows:

3. initConf(cf(cmd(l0,Cmd), Ps)):-at(l0,Cmd), progState(Ps), phiInit(Ps).
4. errorConf(cf(cmd(lh,Cmd), Ps)):-at(lh,Cmd), progState(Ps), phiError(Ps).

The predicates at and progState are defined by: ‘at(l0, asgn(int(i), int(1))).’,
‘at(lh, halt).’, and ‘progState([[int(i), I], [int(n), N], [array(a), A]]).’.

Now we apply Step (A) of our verification method, which consists in the removal
of the interpreter. From program T we obtain the following program T 1:

5. incorrect :- Z=W+1, W≥0, W+1<N, U≥V, N≤I,
read(A, W, U), read(A, Z, V), p(I, N, A).

6. p(I1, N, B) :- 1≤I, I<N, D=I−1, I1=I+1, V=U+1,
read(A, D, U), write(A, I, V, B), p(I, N, A).

7. p(I, N, A) :- I=1, N≥1.

The CLP(Array) program T 1 expresses the verification conditions for SeqInit .
Indeed, predicate p is an invariant for the while loop. For reasons of simplicity,
the predicates expressing the assertions associated with assignments and con-
ditionals have been unfolded away during the removal of the interpreter. (The
strategy for removing the interpreter can be customized.)

Due to the presence of integer and array variables, the least A-model M(T 1)
may be infinite, and both the bottom-up and top-down evaluation of the goal
:- incorrect may not terminate (indeed, this is the case in our example above).
Thus, we cannot directly use the standard CLP systems to prove program cor-
rectness. In order to cope with this difficulty, we use a method based on CLP
program transformations, which allows us to avoid the exhaustive exploration of
the possibly infinite space of reachable configurations.

5 A Transformation Strategy for Verification

As mentioned above, the verification conditions expressed as the CLP(Array)
program T 1 generated by Step (A) are satisfiable iff incorrect �∈ M(T 1). Our
verification method is based on the fact that by transforming the CLP(Array)
program T 1 using rules that preserve the least A-model, we get a new
CLP(Array) program T 2 that expresses equisatisfiable verification conditions.

Step (B) has the objective of showing, through further transformations, that
either the verification conditions generated by Step (A) are satisfiable (that is,
incorrect �∈M(T 1) and hence prog is correct with respect to ϕinit and ϕerror),
or they are unsatisfiable (that is, incorrect ∈ M(T 1) and hence prog is not
correct with respect to ϕinit and ϕerror). To this aim, Step (B) propagates the
initial and/or the error properties so as to derive from program T 1 a program
T 2 where the predicate incorrect is defined by either (α) the fact ‘incorrect’
(in which case the verification conditions are unsatisfiable and prog is incorrect),
or (β) the empty set of clauses (in which case the verification conditions are
satisfiable and prog is correct). In the case where neither (α) nor (β) holds, that

Verifying Array Programs by Transforming Verification Conditions 191

is, in program T 2 the predicate incorrect is defined by a non-empty set of
clauses not containing the fact ‘incorrect’, we cannot conclude anything about
the correctness of prog. However, similarly to what has been proposed in [8], in
this case we can iterate Step (B), alternating the propagation of the initial and
error properties, in the hope of deriving a program where either (α) or (β) holds.
Obviously, due to undecidability limitations, it may be the case that we never
get a program where either (α) or (β) holds.

Step (B) is performed by applying the unfold/fold transformation rules ac-
cording to the Transform strategy shown in Figure 1. Transform can be viewed
as a backward propagation of the error property. The forward propagation of
the initial property can be obtained by combining Transform with the Reversal
transformation described in [8]. For lack of space we do not present this extra
transformation here.

Input : A linear CLP(Array) program T1.
Output : Program T2 such that incorrect∈M(T1) iff incorrect∈M(T2).

Initialization:
Let InDefs be the set of all clauses of T1 whose head is the atom incorrect;
T2:=∅ ; Defs := InDefs ;

while in InDefs there is a clause C do
Unfolding: Unfold C w.r.t. the unique atom in its body using T1, and derive

a set U(C) of clauses;
Constraint Replacement: Apply a sequence of constraint replacements by

using the Laws of Arrays, and derive from U(C) a set R(C) of clauses;
Clause Removal: Remove from R(C) all clauses whose body contains an un-

satisfiable constraint;
Definition&Folding: Introduce a (possibly empty) set of new predicate def-

initions and add them to Defs and to InDefs;
Fold the clauses in R(C) different from constrained facts by using the clauses
in Defs, and derive a set F(C) of clauses;

InDefs := InDefs− {C}; T2 := T2 ∪ F(C);
end-while;
Removal of Useless Clauses:
Remove from T2 all clauses with head predicate p, if in T2 there is no constrained fact
q(. . .) :- c where q is either p or a predicate on which p depends.

Fig. 1. The Transform strategy

The input program T 1 is a linear CLP(Array) program (we can show, in fact,
that Step (A) always generates a linear program).
Unfolding performs one inference step backward from the error property.
The Constraint Replacement phase by applying the theory of arrays, infers
new constraints on the variables of the only atom that occurs in the body of
each clause obtained by the Unfolding phase. It works as follows. We select a
clause, say H :- c, G, in the set U(C) of the clauses obtained by unfolding, and

192 E. De Angelis et al.

we replace that clause by the one(s) obtained by applying as long as possible
the following rules. Note that this process always terminates and, in general, it
is nondeterministic.

(RR1) If c 	 (I=J) then
replace: read(A, I, U), read(A, J, V) by: U=V, read(A, I, U)

(RR2) If c ≡ (read(A, I, U), read(A, J, V), d), d �	 (I �=J), and d 	 (U �=V) then
add to c the constraint: I �=J

(WR1) If c 	 (I=J) then
replace: write(A, I, U, B), read(B, J, V)
by: U=V, write(A, I, U, B)

(WR2) If c 	 (I �=J) then
replace: write(A, I, U, B), read(B, J, V)
by: write(A, I, U, B), read(A, J, V)

(WR3) If c �	 I=J and c �	 I �=J then
replace: H :- c, write(A, I, U, B), read(B, J, V), G
by: H :- c, I=J, U=V, write(A, I, U, B), G

and H :- c, I �=J, write(A, I, U, B), read(A, J, V), G

Rules RR1 and RR2 are derived from the array axiom A1 (see Section 3), and
rules WR1–WR3 are derived from the array axioms A2 and A3 (see Section 3).

The Definition&Folding phase introduces new predicate definitions by suit-
able generalizations of the constraints. These generalizations guarantee the ter-
mination of Transform, but at the same time they should be as specific as possible
in order to achieve maximal precision. This phase works as follows. Let C1 in
R(C) be a clause of the form H :- c, p(X). We assume that Defs is structured
as a tree of clauses, where clause A is the parent of clause B if B has been
introduced for folding a clause in R(A). If in Defs there is (a variant of) a clause
D: newp(X):- d, p(X) such that vars(d) ⊆ vars(c) and c 	 d, then we fold
C1 using D. Otherwise, we introduce a clause of the form newp(X):- gen,p(X)
where: (i) newp is a predicate symbol occurring neither in the initial program
nor in Defs , and (ii) gen is a constraint such that vars(gen) ⊆ vars(c) and
c 	 gen. The constraint gen is called a generalization of the constraint c and is
constructed as follows.

Let c be of the form i1, rw1, where i1 is an integer constraint and rw1 is a
conjunction of read and write constraints.

(1) Delete all write constraints from rw1, hence deriving r1.
(2) Rewrite i1, r1 so that all occurrences of integers in read constraints are
distinct variables not appearing in X (this can be achieved by possibly adding
some integer equalities to r1), hence deriving i2, r2.
(3) Compute the projection i3 (in the rationals) of the constraint i2 onto
vars(r2) ∪ {X} (thus i2 	 i3 in the domain of the integers).

Verifying Array Programs by Transforming Verification Conditions 193

(4) Delete from r2 all read(A, I, V) constraints such that either (i) A does not
occur in X or (ii) V does not occur in i3, thereby deriving a new value for r2. If
at least one read has been deleted from r2 then go to step (3).

Let i3, r3 be the constraint obtained after the applications of steps (3)–(4).
(5) If in Defs there is an ancestor (defined as the reflexive, transitive closure of

the parent relation) of C of the form H0 :- i0, r0, p(X) such that r0, p(X) is
a subconjunction of r3, p(X),

Then compute a generalization g of the constraints i3 and i0 such that i3 	 g, by
using a generalization operator for linear constraints (we refer to [7,14,33]
for generalization operators based on widening, convex hull, and well-quasi
orderings). Define the constraint gen as g, r0;

Else define the constraint gen as i3, r3.

The correctness of the strategy with respect to the least A-model semantics
follows from Theorem 1, by observing that every clause defining a new predicate
introduced by Definition&Folding is unfolded once during the execution of
the strategy (indeed every such clause is added to InDefs).

The termination of the Transform strategy is based on the following facts:
(i) Constraint satisfiability and entailment are checked by a terminating solver
(note that completeness is not necessary for the termination of Transform).
(ii) Constraint Replacement terminates (see above).
(iii) The set of new clauses that, during the execution of the Transform strategy,
can be introduced by Definition&Folding steps is finite. Indeed, by construc-
tion, they are all of the form H :- i, r, p(X), where: (1) X is a tuple of variables,
(2) i is an integer constraint, (3) r is a conjunction of array constraints of the
form read(A, I, V), where A is a variable in X and the variables I and V occur
in i only, (4) the cardinality of r is bounded, because generalization does not
introduce a clause newp(X) :- i3, r3, p(X) if there exists an ancestor clause of the
form H0 :- i0, r0, p(X) such that r0, p(X) is a subconjunction of r3, p(X), (5) we
assume that the generalization operator on integer constraints has the follow-
ing finiteness property: only finite chains of generalizations of any given integer
constraint can be generated by applying the operator. The already mentioned
generalization operators presented in [7,14,33] satisfy this finiteness property.

Theorem 2. (Termination and Correctness of the Transform strategy) (i) The
Transform strategy terminates. (ii) Let program T 2 be the output of the Trans-
form strategy applied on the input program T 1. Then, incorrect∈ M(T 1) iff
incorrect∈M(T 2).

Let us now consider again the SeqInit example of Section 4 and perform
Step (B). We apply the Transform strategy starting from program T 1.
Unfolding. First, we unfold clause 5 w.r.t. the atom p(I, N, A), and we get:
8. incorrect:- Z=W+1, W≥0, Z≤I, D=I−1, N=I+1, Y=X+1, U≥V,

read(B, W, U), read(B, Z, V), read(A, D, X), write(A, I, Y, B), p(I, N, A).
Constraint Replacement. Then, by applying the replacement rules WR2,
WR3, and RR1 to clause 8, we get the following clause:

194 E. De Angelis et al.

9. incorrect:- Z=W+1, W≥0, Z<I, D=I−1, N=I+1, Y=X+1, U≥V,
read(A, W, U), read(A, Z, V), read(A, D, X), write(A, I, Y, B), p(I, N, A).

In particular, since W �=I is entailed by the constraint in clause 8, we apply rule
WR2 and we obtain a new clause, say 8.1, where read(B, W, U), write(A, I, Y, B)
is replaced by read(A, W, U), write(A, I, Y, B). Then, since neither Z=I nor Z �=I
is entailed by the constraint in clause 8.1, we apply rule WR3 and we obtain
two clauses 8.2 and 8.3, where the constraint read(B, Z, V), write(A, I, Y, B) is re-
placed by Z = I, Y = V, write(A, I, Y, B) and Z �= I, read(A, Z, U), write(A, I, Y, B),
respectively. Finally, since D = W is entailed by the constraint in clause 8.2, we ap-
ply rule RR1 to clause 8.2 and we add the constraint X = U to its body, hence de-
riving the unsatisfiable constraint X = U, Y = X+ 1, Y = V, U≥V. Thus, the clause
derived by the latter replacement is removed. Clause 9 is derived from 8.3 by
rewriting Z≤I, Z �= I as Z<I.

Definition&Folding. In order to fold clause 9 we introduce a new definition
by applying Steps (1)–(5) of the Definition&Folding phase. In particular,
by deleting the write constraint (Step 1) and projecting the integer constraint
(Step 3), we get a constraint where the variable X occurs in read(A, D, X) only.
Thus, we delete read(A, D, X) (Step 4). Finally, we compute a generalization of
the constraints occurring in clauses 5 and 9 by using the convex hull opera-
tor (Step 5). We get:

10. new1(I, N, A) :- Z=W+1, W≥0, N≤I+1, N≥W+2, W≤I−2, U≥V,
read(A, W, U), read(A, Z, V), p(I, N, A).

By folding clause 9 using clause 10, we get:

11. incorrect:- Z=W+1, W≥0, Z<I, D=I−1, N=I+1, Y=X+1, U≥V,
read(A, W, U), read(A, Z, V), read(A, D, X), write(A, I, Y, B), new1(I, N, A).

Now we proceed by performing a second iteration of the body of the while-loop
of the Transform strategy because InDefs is not empty (indeed, at this point
clause 10 belongs to InDefs).

Unfolding. After unfolding clause 10 we get the following clause:

12. new1(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, N≤I+2, I≥1,
Z≤I, Z≥1, N>I, U≥V, read(B, W, U), read(B, Z, V),
read(A, D, X), write(A, I, Y, B), p(I, N, A).

Constraint Replacement. Then, by applying rules RR1, WR2, and WR3 to
clause 12, we get the following clause:

13. new1(I1, N, B):- I1=I+1, Z=W+1, Y=X+1, D=I−1, N≤I+2, I≥1,
Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), p(I, N, A).

Definition&Folding. In order to fold clause 13 we introduce the following
clause, whose body is derived by computing the widening [5,7] of the integer

Verifying Array Programs by Transforming Verification Conditions 195

constraints in the ancestor clause 10 with respect to the integer constraints in
clause 13:

14. new2(I, N, A):- Z=W+1, W≥0, W≤I−1, N>Z, U≥V,
read(A, W, U), read(A, Z, V), p(I, N, A).

By folding clause 13 using clause 14, we get:

15. new1(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, N≤I+2, I≥1,
Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), new2(I, N, A).

Now we perform the third iteration of the body of the while-loop of the strategy
starting from the newly introduced definition, that is, clause 14. After some
unfolding and constraint replacement steps, followed by a final folding step,
from clause 14 we get:

16. new2(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, I≥1,
Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), new2(I, N, A).

The final transformed program is made out of clauses 11, 15, and 16. Since this
program has no constrained facts, by the last step of the Transform procedure
we derive the empty program T 2, and we conclude that the program SeqInit is
correct with respect to the given ϕinit and ϕerror properties.

6 Experimental Evaluation
We have performed an experimental evaluation of our method on a benchmark
set of programs acting on arrays, mostly taken from the literature [3,12,21,27].
The results of our experiments, which are summarized in Tables 1 and 2, show
that our approach is effective and quite efficient in practice.

Our verifier consists of a module, based on the C Intermediate Language
(CIL) [32], which translates a C program together with the initial and error
configurations, into a set of CLP(Array) facts, and a module for CLP(Array)
program transformation that removes the interpreter and applies the Transform
strategy. The latter module is implemented using the MAP system [29], a tool
for transforming constraint logic programs written in SICStus Prolog.

We now briefly discuss the programs we have used for our experimental evalu-
ation (see Table 1 where we have also indicated the properties we have verified).

Some programs deal with array initialization: program init initializes all the
elements of the array to a constant, while init-non-constant and init-sequence
use expressions which depend on the element position and on the preceding
element, respectively. Program init-partial initializes only an initial portion of
the array. Program copy performs the element-wise copy of an entire array to
another array, while copy-partial copies only an initial portion of the array,
and the program copy-reverse copies the array in reverse order. The program
max computes the maximum of an array. The programs sum and difference
perform the element-wise sum and difference, respectively, of two input arrays.

196 E. De Angelis et al.

Table 1. Benchmark array programs. Variables a,b,c are arrays of integers of size n.

Program Code Verified Property
init for(i=0; i<n; i++)

a[i]=c;
∈i. (0≤ i ∪ i<n)
→ a[i]=c

init-partial for(i=0; i<k; i++)
a[i]=0;

∈i. (0≤ i ∪ i<k ∪ k≤n)
→ a[i]=0

init-
non-constant

for(i=0; i<n; i++)
a[i]=2*i+c;

∈i. (0≤ i ∪ i<n)
→ a[i]=2∗i+c

init-sequence a[0]=7; i=1; while(i<n) {
a[i]=a[i-1]+1; i++;}

∈i. (1≤ i ∪ i<n)
→ a[i]=a[i−1]+1

copy for(i=0; i<n; i++)
a[i]=b[i];

∈i. (0≤ i ∪ i<n)
→ a[i]=b[i]

copy-partial for(i=0; i<k; i++)
a[i]=b[i];

∈i. (0≤ i ∪ i<k ∪ k≤n)
→ a[i] = b[i]

copy-reverse for(i=0; i<n; i++) b[i]=a[i];
for(i=0; i<n; i++) a[i]=b[n-i-1];

∈i. (0≤ i ∪ i<n)
→ a[i]=b[n−i−1]

max m=a[0]; i=1; while(i<n) {
if(a[i]>m) m=a[i]; i++; }

∈i. (0≤ i ∪ i<n ∪ n≥1)
→ m≥a[i]

sum for(i=0; i<n; i++)
c[i]=a[i]+b[i];

∈i. (0≤ i ∪ i<n)
→ c[i]=a[i]+b[i]

difference for(i=0; i<n; i++)
c[i]=a[i]-b[i];

∈i. (0≤ i ∪ i<n)
→ c[i]= a[i]−b[i]

find p=-1; for(i=0; i<n; i++)
if(a[i]==e) { p=i; break; }

(0≤p ∪ p<n)
→ a[p]=e

first-not-null s=n; for(i=0; i<n; ++i)
if(s==n && a[i]!=0) s=i;

(0≤s ∪ s<n) → (a[s] �= 0 ∪
(∈i. (0≤ i∪ i<s) → a[i]=0))

find-first-
non-null

p=-1; for(i=0; i<n; i++)
if(a[i]!=0) { p=i; break; }

(0≤p ∪ p<n)
→ a[p] �=0

partition i=0; j=0; k=0; while(i<n) {
if(a[i]>=0) {
b[j]=a[i]; j++; }

else {
c[k]=a[i]; k++; }

++i; }

(∈i. (0≤ i ∪ i<j)
→ b[i]≥0) ∪

(∈i. (0≤ i ∪ i<k)
→ c[i]<0)

insertionsort-
inner

x=a[i]; j=i-1;
while(j>=0 && a[j]>x) {
a[j+1]=a[j]; --j; }

∈k. (0≤ i∪i<n∪j+1<k∪k≤ i)
→ a[k]>x

bubblesort-
inner

for(j=0; j<n-i-1; j++) {
if(a[j] > a[j+1]) { tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp; } }

∈k. (0≤ i ∪ i< n∪
0≤k ∪ k<j ∪ j =n−i−1)
→ a[k]≤a[j]

selectionsort-
inner

for(j=i+1; j<n; j++) {
if(a[i]>a[j]) { tmp=a[i];
a[i]=a[j]; a[j]=tmp; } }

∈k.(0≤ i ∪ i≤k ∪ k<n)
→ a[k]≥a[i]

Verifying Array Programs by Transforming Verification Conditions 197

The program find looks for a particular value inside an array and returns the
position of its first occurrence, if any, or a negative value otherwise. The programs
find-first-non-null and first-not-null are two programs which return the position
of the first non-zero element. For these programs, differently from [12,21], we
prove that when the search succeeds, the returned position contains a non-zero
element and we also proved that all the preceding elements are zero elements.
The program partition copies non-negative and negative elements of the array
into two distinct arrays. The programs insertionsort-inner, bubblesort-inner, and
selectionsort-inner are based on textbook implementations of sorting algorithms.
The source code of all the verification problems we have considered is available
at http://map.uniroma2.it/smc/.

For verifying the above programs we have applied the Transform strategy
using different generalization operators, which are based on the widening and
convex hull operators. In particular the GenW and GenS operators use the Widen
and CHWidenSum operators between constraints [14].

We have also combined these operators with a delay mechanism which, be-
fore starting the actual generalization process, introduces a definition which is
computed by using convex hull alone, without widening. We denote by GenWD
and GenSD the operators obtained by combining delayed generalization with the
Widen and CHWidenSum operators, respectively.

In Table 2 we report the results obtained by applying Transform with the four
generalization operators mentioned above. The first column contains references
to papers where the program verification example has been considered.

The last four columns are labeled with the name of the generalization oper-
ator. For each program proved correct we report the time in seconds taken to
verify the property of interest. By unknown we indicate that Transform derives
a CLP(Array) program containing constrained facts different from ‘incorrect’,
and hence the satisfiability (or the unsatisfiability) of the corresponding verifi-
cation conditions cannot be checked.

We also report, for each generalization operator, the number of successfully
verified programs (which measures the precision of the operator), the total time
taken to run the whole benchmark and the average time per successful answer,
respectively.

All experiments have been performed on an Intel Core Duo E7300 2.66Ghz
processor with 4GB of memory under the GNU Linux operating system.

The data presented in Table 2 show that by using the GenW operator, which
applies the widening operator alone, our method is only able to prove 7 programs
out of 17. However, precision can be recovered by applying the convex hull
operator when introducing new definitions, possibly combined with widening.

The best trade-off between precision and performance is provided by the
GenWD operator which is able to prove all 17 programs with an average time of
0.92 s. In this case the use of the delay mechanism, which uses convex hull, suffices
to compensate the weakness demonstrated by the use of widening alone. Note
also that one program, init-sequence, can only be proved by applying operators
which use delayed generalization. This confirms the effectiveness of the convex

198 E. De Angelis et al.

Table 2. Verification results using the MAP system with different generalization op-
erators. Times are in seconds.

Program References GenW GenWD GenS GenSD

init [3,12,37] unknown 0.06 0.10 0.08
init-partial [3,12] unknown 0.06 0.07 0.08
init-non-constant [3,12,27,37] unknown 0.06 0.22 0.22
init-sequence [21,27] unknown 0.80 unknown 1.20
copy [3,12,21,27,37] unknown 0.27 0.33 0.29
copy-partial [3,12] unknown 0.29 0.34 0.34
copy-reverse [3,12] unknown 0.27 0.46 0.45
max [21,27] unknown 0.31 0.24 0.33
sum unknown 0.68 1.14 1.12
difference [3] unknown 0.66 1.15 1.11
find [3,12] 0.25 0.43 0.46 0.45
first-not-null [21] 0.38 0.41 0.42 0.42
find-first-non-null [3,12] 1.24 1.87 1.94 1.93
partition [12,27,37] 0.06 0.11 0.14 0.12
insertionsort-inner [21,27,37] 0.21 0.26 0.45 0.43
bubblesort-inner 2.46 2.71 2.45 2.75
selectionsort-inner [37] 7.20 6.40 7.23 7.16

precision 7 17 16 17
total time 11.80 15.65 17.14 18.48

average time 1.69 0.92 1.07 1.09

hull operator which may help inferring relations among program variables, and
may ease the discovery of useful program invariants, while determining (in our
set of examples) only a slight increase of verification times.

A detailed comparison of the performance of our system with respect to the
other verification systems referred to in Table 1 is difficult to make at this time
because the systems are not all readily available and also the results reported in
the literature do not refer to the same code for the input C programs.

7 Related Work and Conclusions
The verification method presented in this paper is an extension of the one in-
troduced in [8], where programs manipulating arrays were not considered. Some
examples suggesting how arrays and recursively defined properties can be dealt
with in our transformational approach were presented in [9], where, however, no
automatic strategy was presented. In this paper we have shown that by applying
a quite simple and general automated transformation strategy it is possible to
prove most of the examples found in the literature, with reasonable performance.
We are currently extending our strategy to deal with recursive programs, such
as quicksort.

The idea of encoding imperative programs into CLP programs for reasoning
about their properties was presented in various papers [15,23,34], which show
that through CLP programs one can express in a simple manner both (i) the

Verifying Array Programs by Transforming Verification Conditions 199

symbolic executions of imperative programs, and (ii) the invariants that hold
during their executions. The peculiarity of our work with respect to [15,23,34]
is that we use CLP program transformations to prove properties, instead of
(symbolic) execution or static analysis.

The verification method presented in this paper is also related to several other
methods that use abstract interpretation and theorem proving techniques.

Now we briefly report on related papers which use abstract interpretations
for finding invariants of programs that manipulate arrays. In [21], which builds
upon [18], invariants are discovered by partitioning the arrays into symbolic
slices and associating an abstract variable with each slice. A similar approach
is followed in [6] where a scalable, parameterized abstract interpretation frame-
work for the automatic analysis of array programs is introduced. In [16,26] a
predicate abstraction for inferring universally quantified properties of array el-
ements is presented, and in [20] the authors present a similar technique which
uses template-based quantified abstract domains.

Methods based on abstract interpretation construct overapproximations, that
is, invariants implied by the program executions. This approach has the advan-
tage of being quite efficient because it fixes in advance a finite set of assertions
where the invariants are searched for, but for the same reason it may lack flexi-
bility as the abstraction should be re-designed when the verification fails.

Also theorem provers have been used for discovering invariants in programs
which manipulate arrays and prove verification conditions generated from the
programs. In particular, in [4] a satisfiability decision procedure for a decid-
able fragment of a theory of arrays is presented. That fragment is expressive
enough to prove properties such as sortedness of arrays. In [24,25,31] the au-
thors present some techniques based on theorem proving which may generate
array invariants. In [37] a backward reachability analysis based on predicate ab-
straction and abstraction refinement is used for verifying assertions which are
universally quantified over array indexes. Finally, we would like to mention that
techniques based on Satisfiability Modulo Theory (SMT) have been applied for
generating and verifying universally quantified properties over array variables
(see, for instance, [1,27]).

The approaches based on theorem proving and SMT are more flexible with
respect to those based on abstract interpretation because no finite set of ab-
stractions is fixed in advance, but the suitable assertions needed by the proof
are generated on the fly.

Although the approach based on CLP program transformation shares many
ideas and techniques with abstract interpretation and automated theorem prov-
ing, we believe that it has some distinctive features that make it quite appealing.
Indeed, this paper and previous work (such as [8,14,34]) show that one can con-
struct a framework where the generation of verification conditions and their
verification can both be viewed as program transformations. The approach is
parametric with respect to the program syntax and semantics, because inter-
preters and proof systems can easily be written in CLP, and verification con-
ditions can automatically be generated by specialization. Moreover, optimizing

200 E. De Angelis et al.

transformations can be applied to improve the efficiency of verification. Finally,
transformations can easily be composed together to derive very sophisticated
verification techniques. For instance, in [8] it is shown that the iteration of
specialization combined with the reversal of the direction used for constraint
propagation can significantly improve the precision of verification.

In order to further validate our approach, we plan to address the issue of
proving correctness of programs manipulating dynamic data structures such as
lists or heaps, looking for a set of suitable constraint replacement laws which
axiomatize those structures. For some specific theories we could also apply the
constraint replacement rule by exploiting the results obtained by external theo-
rem provers or Satisfiability Modulo Theory solvers.

An interesting direction for future research is also the combination of trans-
formations that guarantee equisatisfiability of verification conditions (like the
ones considered in this paper) together with other techniques for checking the
satisfiability of constrained Horn clauses.

Acknowledgements. We would like to thank the anonymous referees for their
helpful comments and constructive criticism.

References

1. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: SAFARI:
SMT-based abstraction for arrays with interpolants. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 679–685. Springer, Heidelberg (2012)

2. Bjørner, N., McMillan, K., Rybalchenko, A.: Program verification as satisfiability
modulo theories. In: SMT 2012, pp. 3–11 (2012)

3. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified Horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 105–
125. Springer, Heidelberg (2013)

4. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In: POPL 1977,
pp. 238–252. ACM (1977)

6. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL 2011, pp. 105–118 (2011)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL 1978, pp. 84–96. ACM (1978)

8. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying Programs via
Iterated Specialization. In: PEPM 2013, pp. 43–52. ACM (2013)

9. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Verification of Imper-
ative Programs by Constraint Logic Program Transformation. In: SAIRP 2013,
Festschrift for Dave Schmidt. Electronic Proceedings in Theoretical Computer Sci-
ence, vol. 129, pp. 186–210 (2013)

10. Delzanno, G., Podelski, A.: Model checking in CLP. In: Cleaveland, W.R. (ed.)
TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)

Verifying Array Programs by Transforming Verification Conditions 201

11. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

12. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010)

13. Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theoretical Computer
Science 166, 101–146 (1996)

14. Fioravanti, F., Pettorossi, A., Proietti, M., Senni, V.: Generalization strategies for
the verification of infinite state systems. Theory and Practice of Logic Program-
ming 13(2), 175–199 (2013)

15. Flanagan, C.: Automatic software model checking via constraint logic. Sci. Comput.
Program. 50(1-3), 253–270 (2004)

16. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL
2002, pp. 191–202. ACM, New York (2002)

17. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision procedures for exten-
sions of the theory of arrays. Ann. Math. Artif. Intell. 50(3-4), 231–254 (2007)

18. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: POPL 2005, pp. 338–350. ACM (2005)

19. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C):
A Software Verifier based on Horn Clauses. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 549–551. Springer, Heidelberg (2012)

20. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically Re-
fining Abstract Interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

21. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI 2008, pp. 339–348 (2008)

22. Jaffar, J., Maher, M.: Constraint logic programming: A survey. Journal of Logic
Programming 19/20, 503–581 (1994)

23. Jaffar, J., Santosa, A.E., Voicu, R.: An interpolation method for CLP traversal.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 454–469. Springer, Heidelberg
(2009)

24. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

25. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470–485. Springer, Heidelberg (2009)

26. Lahiri, S.K., Bryant, R.E.: Predicate abstraction with indexed predicates. ACM
Trans. Comput. Log. 9(1) (2007)

27. Larraz, D., Rodríguez-Carbonell, E., Rubio, A.: SMT-based array invariant gen-
eration. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 169–188. Springer, Heidelberg (2013)

28. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
29. The MAP transformation system,

http://www.iasi.cnr.it/~proietti/system.html
30. McCarthy, J.: Towards a mathematical science of computation. In: Information

Processing: Proc. of IFIP 1962, pp. 21–28. North Holland, Amsterdam (1963)
31. McMillan, K.L.: Quantified invariant generation using an interpolating saturation

prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

http://www.iasi.cnr.it/~proietti/system.html

202 E. De Angelis et al.

32. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Nigel Horspool, R.
(ed.) CC 2002. LNCS, vol. 2304, pp. 209–265. Springer, Heidelberg (2002)

33. Peralta, J.C., Gallagher, J.P.: Convex hull abstractions in specialization of CLP
programs. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 90–108.
Springer, Heidelberg (2003)

34. Peralta, J.C., Gallagher, J.P., Saglam, H.: Analysis of Imperative Programs
through Analysis of Constraint Logic Programs. In: Levi, G. (ed.) SAS 1998. LNCS,
vol. 1503, pp. 246–261. Springer, Heidelberg (1998)

35. Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 245–259. Springer, Heidelberg (2007)

36. Reynolds, C.J.: Theories of Programming Languages. Cambridge Univ. Press
(1998)

37. Seghir, M.N., Podelski, A., Wies, T.: Abstraction refinement for quantified array
assertions. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 3–18.
Springer, Heidelberg (2009)

38. van Emden, M.H., Kowalski, R.: The semantics of predicate logic as a programming
language. Journal of the ACM 23(4), 733–742 (1976)

Weakest Precondition Synthesis

for Compiler Optimizations

Nuno P. Lopes and José Monteiro

INESC-ID, IST Universidade de Lisboa

Abstract. Compiler optimizations play an increasingly important role
in code generation. This is especially true with the advent of resource-
limited mobile devices. We rely on compiler optimizations to improve
performance, reduce code size, and reduce power consumption of our
programs.

Despite being a mature field, compiler optimizations are still designed
and implemented by hand, and usually without providing any guarantee
of correctness.

In addition to devising the code transformations, designers and imple-
menters have to come up with an analysis that determines in which cases
the optimization can be safely applied. In other words, the optimization
designer has to specify a precondition that ensures that the optimization
is semantics-preserving. However, devising preconditions for optimiza-
tions by hand is a non-trivial task. It is easy to specify a precondition
that, although correct, is too restrictive, and therefore misses some op-
timization opportunities.

In this paper, we propose, to the best of our knowledge, the first
algorithm for the automatic synthesis of preconditions for compiler op-
timizations. The synthesized preconditions are provably correct by con-
struction, and they are guaranteed to be the weakest in the precondition
language that we consider.

We implemented the proposed technique in a tool named PSyCO. We
present examples of preconditions synthesized by PSyCO, as well as the
results of running PSyCO on a set of optimizations.

1 Introduction

Compiler optimizations are increasingly important. We rely on them to improve
performance, reduce code size, and reduce power consumption of our programs.
The advent of mobile devices with limited resources and the need to reduce the
operating costs of data centers puts even more pressure on the quality of the
results of compiler optimizations.

This demand for improving code efficiency is driving the development of new
and more complex optimizations. However, neither the specification nor the im-
plementation of these optimizations is usually proved correct.

In fact, a recent study found bugs in all the most used compilers [39]. These
bugs range from mere crashes to subtle wrong-code emission.

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 203–221, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

204 N.P. Lopes and J. Monteiro

Ensuring that compilers are correct is of extreme importance. All the programs
we produce, in one way or another, are processed by compilers. If the compilers
are not proved correct, properties formally verified at the source-code level of a
program are not carried to the binary code, since the compiler may introduce
bugs during the translation process.

Despite such a strong necessity for compilation quality, compilers are still
largely written by hand. Moreover, the source-code of each of the major compilers
has several million lines of code. Testing a whole code base is therefore unlikely
to be practical to accomplish.

This paper gives a step towards improving the situation. We present, to the
best of our knowledge, the first algorithm for the automatic synthesis of the
weakest precondition for compiler optimizations specified in a high-level lan-
guage. These preconditions are provably correct by construction.

We consider a language of preconditions for compiler optimizations consisting
of read and write sets for template statements (and expressions), which we be-
lieve to be adequate to express the most used conditions in this domain. Given a
compiler optimization specified in a high-level template language, our algorithm
synthesizes the weakest precondition in terms of read and write sets (assuming
it is solely expressible in terms of these sets).

The generated preconditions can then be either used by the compiler developer
to implement an analysis that guarantees that the precondition holds before
performing the code transformation, or it can be used by a separate tool to
automatically generate such an analysis.

The algorithm works in a counterexample-driven way. It requires a black box
that can prove the correctness of a compiler optimization, or produce a coun-
terexample otherwise. Then, the algorithm processes the counterexample and
produces the weakest precondition guaranteed to prevent that counterexample.
The algorithm repeats this process until no counterexamples are possible, i.e.,
when the optimization is correct (which is guaranteed to occur, since the set of
possible preconditions is finite).

Our algorithm is more generally applicable than the domain of compiler opti-
mizations. The algorithm can synthesize weakest preconditions for any problem
where the set of preconditions is finite, although possibly too large to test each
case individually, as long as there exists an oracle that can prove correctness or
produce counterexamples if not correct.

The rest of the paper is organized as follows. Section 2 gives a set of prelim-
inary definitions. Section 3 gives an intuition of how our algorithm synthesizes
weakest preconditions for compiler optimizations through a simple example. Sec-
tion 4 describes our algorithm for the synthesis of weakest preconditions for
compiler optimizations. Section 5 presents PSyCO, a tool that implements the
proposed algorithm, as well as examples of preconditions generated by PSyCO
and results of running it over a set of compiler optimizations. Section 6 presents
the related work.

Weakest Precondition Synthesis for Compiler Optimizations 205

e ::= n | v | e1 ⊕ e2 | Ei

b ::= e ≤ 0 | b1 ⊗ b2 | ¬b1 | Bi

c ::= skip | v := e | c1 ; c2 | if b then c1 else c2 | while b do c1 | Si

Fig. 1. Template program syntax. n is an integer number; v is a variable name; Ei

are integer template expressions (side-effect free); Bi are boolean template expressions
(side-effect free); Si are template statements; ⊕ is a binary operator over integer ex-
pressions (e.g., +, −); and ⊗ is a binary operator over boolean expressions (e.g., ∧,
∨).

2 Preliminaries

Compiler optimizations are represented by a triple (τ, ψ, h). Transformation
function τ ≡ Src ⇒ Tgt is a function that takes an instantiation of the source
template program Src and returns the target template program Tgt properly
instantiated. An instantiation of a template program is a mapping from all
the template statements and expressions to concrete (without templates) state-
ments/expressions. The precondition ψ is a sufficient condition that makes τ
semantics-preserving. Finally, h is a profitability heuristic, which states under
which conditions the compiler should apply τ , since τ may not always be per-
formance improving. We will ignore the profitability heuristic for the rest of this
paper because it does not interfere with the correctness of optimizations.

Template Programs. Template programs are specified using the syntax shown
in Figure 1. In addition to the normal program features, template programs may
have template expressions and template statements. Template expressions are
side-effect free expressions whose value is unknown. It may be a constant or
it may be an arbitrary algebraic expression that depends on several variables.
Similarly, template statements are placeholders for arbitrary statements (e.g.,
variable assignments, function calls, or even loops).

Side-effect free expressions are allowed to read any number of variables and
memory locations (including none), but are not allowed to write to them. More-
over, side-effect free expressionsmay not raise exceptions nor trap. Such erroneous
behaviors must be explicitly modeled in the control flow and/or as assignments to
control variables.

Transformation functions state how each template statement/expression from
the source program is transformed (e.g., moved, duplicated, eliminated) to pro-
duce the target program. For example, consider the following transformation
function τ1:

S
v := E ⇒

v := E
S

206 N.P. Lopes and J. Monteiro

As an example, we apply the transformation function τ1 to the following pro-
gram fragment:

x := 0
v := x+ 1

The output of the transformation function is (with the instantiation S �→ x :=
0, E �→ x+ 1):

v := x+ 1
x := 0

The transformed program is not equivalent to the original one, since if the
initial value of x is not zero, then the programs will yield different values for
v. Therefore, a necessary (but not sufficient) precondition to ensure that the
transformation function is always semantics-preserving is that S cannot write to
a variable that is read by E.

Preconditions of optimizations are specified as read and write sets of the
template statements/expressions, which contain the variables that the template
statements/expressions may read and write, respectively. Since template ex-
pressions are side-effect free, their write set is empty, i.e., for every template
expressions Ei and Bi, we have W(Ei) = ∅ and W(Bi) = ∅.

For the previous example, we could use the condition W(S) ∩ R(E) = ∅ ∧ v /∈
R(S) ∧ v /∈ W(S) as the precondition. This precondition is sufficient to ensure
that the transformation function is always semantics-preserving, and it would
therefore rule out the instantiation above.

Let Tmpl(τ) be the set of template statements/expressions of the transforma-
tion function τ . Let Stmts(τ) ⊆ Tmpl(τ) be the set of template statements of
the transformation function τ . In our example, we have Tmpl(τ1) = {S,E} and
Stmts(τ1) = {S}.

Program Paths. A program path π is a sequence of straight-line statements
(no loops nor if statements) and boolean expressions. For example, the path
i := 0 ; i < n ; i := i+1 ; i ≥ n could be a 1-step unrolling of a simple counting
loop. We naturally extend Stmts(π) and Tmpl(π) to program paths.

Context Variables. Let ci ∈ C be a context variable. These variables ci rep-
resent the variables that are possibly in scope where a program template may
be instantiated (possibly none) and that do not appear in the transformation
function.

For the example above we need two context variables and therefore we have
C = {c1, c2}. Variable c1 represents, e.g., the effects of S on x. While variable x
does not appear explicitly in the transformation function, S does indeed modify
x in the example instantiation. Variable c2 represents all the other eventual
variables of the program that are in scope (possibly none) that can be read by
E and that cannot be written by S.

Weakest Precondition Synthesis for Compiler Optimizations 207

while I < N do
if B then

S1

else
S2

I := I + 1

⇒

if B then
while I < N do

S1

I := I + 1
else

while I < N do
S2

I := I + 1

Fig. 2. Loop unswitching: the source template is on the left, and the target template
is on the right

For every template statement Si, we have that the context variable ci =
CtxVar(Si) is always in its write set, i.e., ci ∈ W(Si). Therefore, each template
statement may write to at least one distinct context variable.

In order to not restrict the generated preconditions, we require our precon-
dition synthesis algorithm to be run with at least one more context variable
than template statements, i.e., for transformation function τ we must have
|C| ≥ |Stmts(τ)|+1. This lower bound on the size of C is sufficient to express all
combinations of constraints of the form R(t)∩W(s1) = ∅ and W(s1)∩W(s2) = ∅
(and their respective negations) for any template t and statements s1 and s2.
Constraints of the form R(t1) ∩ R(t2) = ∅ are not considered, since we are not
aware of any optimization requiring such kind of preconditions.

Let Vars(τ) and Vars(π) be the set of variables in a transformation function τ
or in a path π, respectively. Moreover, context variables are contained in these
sets, i.e., C ⊆ Vars(τ). In our example, we have Vars(τ1) = {v, c1, c2}.

Miscellaneous. Throughout the paper, we use the constraint x = ite(a, b, c) as
the usual shorthand for a→ x = b ∧ ¬a→ x = c.

3 Illustrative Example

We illustrate our algorithm to synthesize weakest preconditions for compiler
optimizations on a simple example. Figure 2 shows an optimization known as
loop unswitching. Intuitively, this optimization looks correct iff B evaluates to
the same boolean value in every iteration (i.e., B must be loop invariant).

S1 and S2 are template statements. They are placeholders that represent an
arbitrary statement, such as a variable assignment, a loop, or a compound state-
ment. Similarly, B is a template (side-effect free) boolean expression. We do not
know what these statements and expressions exactly do (this is only defined
when the optimization is applied to a specific piece of code), and so we need to
derive a generic precondition to restrict their operation to guarantee that the
transformation will be always semantics-preserving.

The language of preconditions we use for compiler optimizations is that of read
and write sets of template statements/expressions. For example, to state that

208 N.P. Lopes and J. Monteiro

the template expression B cannot read variable I we use the notation I /∈ R(B).
This condition is actually necessary (but not sufficient) for the precondition of
loop unswitching.

Our algorithm works in a counterexample-driven way. We require the exis-
tence of a black box that can prove the correctness of compiler optimizations,
or produce a counterexample if the optimization is not correct.

For our example, starting with the precondition P = true, we could get the
following paths π1 and π2 (respectively, for the source and target templates):

I < N ; B ; S1 ; I := I + 1 ; I < N ; ¬B ; S2 ; I := I + 1 ; I ≥ N

and:

B ; I < N ; S1 ; I := I + 1 ; I < N ; S1 ; I := I + 1 ; I ≥ N

Without any knowledge about S1 and S2, these paths are clearly a counterex-
ample since S1 and S2 execute a different number of times in the source and
target templates. For example, the instantiation S1 �→ I := I + 1, S2 �→ I :=
I + 2, B �→ I ≤ 0 makes the paths of the source and target programs terminate
with different values for variable I. Therefore, we need to constrain the set of
possible instantiations of S1 and S2 with a suitable precondition.

To generate a precondition for a given counterexample, we first encode the
counterexample paths into logic in the usual way, with the variables of the target
template being renamed in order to be different from the variables used in the
source template. We explain only how template statements and expressions are
encoded. Each template statement is treated as a conditional assignment to all
variables of the program by a fresh variable. Then, for each pair of the same
template symbol, we assert that their corresponding fresh variables are equal
iff the values of their corresponding input variables that are in the read set are
equal. Similarly, template expressions are replaced by fresh variables.

For our counterexample, we obtain the following constraint φ1 for the source
path (with Vars(π1;π2) = {I,N, c1, c2, c3}):

I0 < N0 ∧
B0 ∧
I1 = ite(wI

S1, S1
I
0, I0) ∧ N1 = ite(wN

S1, S1
N
0 , N0) ∧

c11 = ite(wc1
S1, S1

c1
0 , c10) ∧ c21 = ite(wc2

S1, S1
c2
0 , c20) ∧ c31 = ite(wc3

S1, S1
c3
0 , c30)

∧ I2 = I1 + 1 ∧
I2 < N1 ∧
¬B1 ∧
I3 = ite(wI

S2, S2
I
0, I2) ∧ N2 = ite(wN

S2, S2
N
0 , N1) ∧

c12 = ite(wc1
S2, S2

c1
0 , c11) ∧ c22 = ite(wc2

S2, S2
c2
0 , c21) ∧ c32 = ite(wc3

S2, S2
c3
0 , c31)

∧ I4 = I3 + 1 ∧
I4 ≥ N2

Weakest Precondition Synthesis for Compiler Optimizations 209

The encoding (φ2) of the target path is similar.
The boolean variables wv

s mean that statement s writes to variable v. This is
required because v ∈ W(s) states that s may write to variable v, but it is not
mandatory to do so. We define φw to be the conjunction of the following set of
constraints (for each pair of template statement s and variable v):

wv
s → v ∈ W(s)

We now generate the constraints φu that assert when the fresh values gener-
ated from the template statements/expressions are equal. These constraints are
akin to Ackermann’s reduction for uninterpreted function symbols. For example,
to state when B0 and B1 are equal, we use the following constraint:(
(I ∈ R(B)→ I0 = I2) ∧ (N ∈ R(B)→ N0 = N1) ∧ (c1 ∈ R(B)→ c10 = c11) ∧
(c2 ∈ R(B)→ c20 = c21) ∧ (c3 ∈ R(B)→ c30 = c31)

)
→ B0 = B1

Set membership constraints (x ∈ y) are encoded as boolean variables.
Now that we have all the necessary constraints, we construct the following

formula φ and give it to an SMT solver:

∀V (φ1 ∧ φ2 ∧ φw ∧ φu →
I4 = I8 ∧ N2 = N4 ∧ c12 = c14 ∧ c22 = c24 ∧ c32 = c34)

where I4/I8, N2/N4, c12/c14, c22/c24, and c32/c34 are the final values of the
I/N/c1/c2/c3 variables of the source and target templates, respectively. V is the
set of variables that are universally quantified. These include the variables wv

s ,
and all the fresh variables created by the path encoding process.

Giving this formula to an SMT solver will yield assignments to the boolean
variables corresponding to the read and write sets’ membership (the only ex-
istentially quantified variables). Each set of these assignments (a model of the
formula) is a sufficient precondition that makes the two paths equivalent (or
unreachable).

For this formula, we may obtain the model R(B) = ∅ ∧ W(S1) = {c1} ∧
W(S2) = {c2}. Although this condition is certainly sufficient to make the first
path unreachable (because it implies that B is a constant, and therefore it cannot
evaluate to two different values), this condition is not the weakest.

As we stated before, our algorithm is iterative and so it keeps weakening the
counterexample’s precondition until it gets the weakest precondition. We do so
by negating each model, adding it to formula φ, and then retrieving another
model from the SMT solver. We stop when there are no more models (i.e., the
conjunction of φ and the negation of all the previously discovered models is un-
satisfiable). The weakest precondition for the counterexample is the disjunction
of all models.

After processing one counterexample, we strengthen the transformation func-
tion’s weakest precondition with the counterexample’s weakest precondition. We
iterate until there are no more counterexamples, i.e., until the transformation
function is correct.

210 N.P. Lopes and J. Monteiro

The algorithm terminates because the precondition is strengthened when each
counterexample is processed and because the language of preconditions we con-
sider is finite.

Finally, the precondition we obtain for our example (loop unswitching) after
processing all the counterexamples is the following:

P = I /∈ R(B) ∧W(S1) ∩ R(B) = ∅ ∧W(S2) ∩ R(B) = ∅

Optimizations. The algorithmwe just presented informally will take significant
time to terminate, since it will usually enumerate many models. We present two
optimizations that improve the speed of convergence significantly, as well as
improve the compactness of the generated preconditions.

The first optimization we perform is model weakening, meaning that given a
model generated by an SMT solver, we try to make it weaker (more general) by
dropping literals from it (which are therefore “don’t cares”). For a model μ of
φ, we know that ¬φ ∧ (

∧
l ∈ μ) is unsatisfiable. Moreover, if for some literal l′,

¬φ ∧ (
∧
l ∈ μ′ = μ \ {l′}) is still unsatisfiable, then we know that both μ′ ∪ {l′}

and μ′∪{¬l′} are models of φ. Therefore, μ′ is a weaker (partial) model of φ. We
leverage this knowledge to iterate over each of the literals in a model to check
which ones can be removed.

The second optimization we perform is to add additional constraints to φ that
represent common precondition patterns. In particular, we noticed that stating
that the intersection of read/write sets must be empty (e.g., W(S1) ∩ R(B) = ∅)
is a common pattern. We therefore associate a boolean variable to each of such
constraints, and try to bias the weakening of the models (as previously described)
towards these variables. This optimization not only produces more compact pre-
conditions, but also reduces the number of models considerably (since it avoids
enumerating all the models that correspond to the constraint they succinctly
imply).

4 The Algorithm

Our precondition synthesis algorithm, named PSyCO, is counterexample-guided.
The algorithm relies on a verification tool as a black box that can prove the
correctness of optimizations (such as CORK [25] or PEC [20]) or return a coun-
terexample otherwise.

4.1 PSyCO

The pseudo-code for the PSyCO algorithm is shown in Figure 3. The algorithm
takes as input a transformation function τ and returns the corresponding weakest
precondition ψ. Starting with the precondition true, the algorithm iteratively
calls the CheckTF function that checks whether τ is correct under the given
precondition or returns a counterexample otherwise (given as two paths, π1 and
π2, of the source and target programs, respectively). The CheckTF function is
a black box given as input.

Weakest Precondition Synthesis for Compiler Optimizations 211

1
2
3
4
5
6
7

function PSyCO

input
τ – transformation function

vars
λ – generated precondition

begin
λ := true
repeat

match CheckTF(τ, λ) with
| correct ->

return λ
| counterexample (π1, π2) ->

λ := λ ∧ SynthWP(π1, π2)
end.

Fig. 3. PSyCO algorithm

At each step, PSyCO strengthens the precondition with a condition that is
sufficient (and necessary) to discharge the counterexample. Therefore, a given
counterexample is never seen more than once. Since the number of possible
combinations of preconditions in the considered language is finite and we keep
strengthening the precondition at each step, we have that PSyCO terminates
(assuming that CheckTF always terminates).

4.2 SynthWP

Figure 4 shows the function SynthWP that takes two paths, π1 and π2, as input,
and returns the weakest precondition that makes the two paths equivalent.

The idea is to construct an universally quantified formula such that a model
for it guarantees that the two paths are equivalent (or either one becomes un-
reachable) for all possible program inputs. The union of all models is the weakest
precondition. The models can be generated with an off-the-shelf SMT solver.

SynthWP starts by generating a formula that corresponds to each of the
counterexample paths (lines 3 and 4). This is done using standard techniques,
that we do not describe here. VCGen takes as input a path π, a map σ0 with
the initial values of the program variables, a set of variables V containing the
variables of the source path, and a map w containing a fresh boolean variable
for each pair of statements and variables. If a certain statement writes to a given
program variable, its corresponding boolean variable in w will be true.

VCGen replaces each template statement s with the following constraint:∧
v∈V

(v′ = ite(w(s, v), fv, v))

where v′ is the new value of v and fv is a fresh variable (one per variable v).
Template expressions are replaced with a fresh variable.

VCGen returns a formula corresponding to the input path, a map σ with the
final value of each of the program variables and a set u. The set u contains triples

212 N.P. Lopes and J. Monteiro

1
2
3
4
5

6
7
8
9

10
11

12
13
14
15

function SynthWP

input
π1, π2 – counterexample paths

vars
λ – generated precondition

begin
σ0 := {v 	→ fresh integer var | v ∈ Vars(π1;π2)}
w := {(s, v) 	→ fresh boolean var | s ∈ Stmts(π1;π2) ∧ v ∈ Vars(π1;π2)}
φ1, σ1, u1 := VCGen(π1, σ0,Vars(π1), w)
φ2, σ2, u2 := VCGen(π2, σ0,Vars(π1), w)
φu :=

∧
(σ,v,t),(σ′,v′,t′)∈(u1∪u2)∧t=t′((∧

v′′∈Vars(π1)
(B(v′′ ∈ R(t)) → σ(v′′) = σ′(v′′))

)
→ v = v′

)

φw :=
∧

((s,v) �→l)∈w (l → B(v ∈ W(s)))

φc :=
∧

s∈Stmts(π1;π2)
(B(CtxVar(s) ∈ W(s)))

φd, d := MkDisj(π1;π2)
V := {σ0(v) | v ∈ Vars(π1; π2)} ∪ {l | ((s, v) 	→ l) ∈ w} ∪

{v | (σ, v, t) ∈ (u1 ∪ u2)} ∪ d

φ := ∀V
(
φu ∧ φw ∧ φc ∧ φd ∧ φ1 ∧ φ2 →

∧
v∈Vars(π1)

(σ1(v) = σ2(v))
)

μf := {¬B(v ∈ R(t)) | v ∈ Vars(π1;π2) ∧ t ∈ Tmpl(π1;π2)} ∪
{¬B(v ∈ W(s)) | v ∈ Vars(π1;π2) ∧ s ∈ Stmts(π1;π2)} ∪ d

λ := false
while φ ∧ ¬λ is satisfiable do

λ := λ ∨ GeneralizeWP(φ,GetModel(φ) ∩ μf , d)
return λ

end.

Fig. 4. SynthWP algorithm

(σ, v, t), one per each fresh variable v created for template statement/expression
t, with σ being a map with the value of the variables at the point where the
template statement/expression was evaluated.

In line 5, we generate a formula akin to Ackermann’s reduction for uninter-
preted function symbols. For each pair of triples (σ, v, t) and (σ′, v′, t′) in w
coming from the same template (i.e., t = t′), we assert that the fresh variables
v and v′ must be equal if each of the variables in the read set of t has the same
value in σ and σ′. We use the notation B(x ∈ y) to introduce a boolean variable
that represents that x ∈ y.

In line 6, we generate a constraint that asserts that a template statement can
only write to a variable v if v is in its write set. The constraint generated in
line 7 asserts that each template statement si has at least one distinct context
variable ci in its write set. This is an important optimization, since it avoids the
generation of multiple equivalent models that are equal modulo a renaming of
the context variables.

In line 8, we introduce a set of boolean variables to represent constraints of
the form W(s1) ∩W(s2) = ∅ and R(t) ∩W(s1) = ∅ for every pair of template
statements s1 and s2 and template statements/expressions t. This is an opti-
mization that enables us to more succinctly express preconditions of this form

Weakest Precondition Synthesis for Compiler Optimizations 213

without having to enumerate all the possible combinations of read and write sets
that satisfy the corresponding constraint.

For a path π, MkDisj generates constraints of the form:

∧
s,s′∈Stmts(π)

⎛⎝⎛⎝¬ ∨
v∈Vars(π)

(B(v ∈W(s)) ∧ B(v ∈ W(s′)))

⎞⎠↔ fv

⎞⎠
with fv being a fresh variable (one per each pair (s, s′)). MkDisj generates sim-
ilar constraints for every pair of read and write sets. In addition to the generated
constraint, MkDisj returns the set of fresh variables used.

In line 9, we collect the set of variables that will be universally quantified,
namely the set of initial values of the variables and the set of fresh variables
used in previous steps. The remaining variables (the booleans representing set
membership and the variables in d) are implicitly existentially quantified. Finally,
in line 10, we assemble the final constraint. It states that either one of the paths
is unreachable or the final value of the variables of the two paths must be equal.

In line 11, we compute a model filter, since we are only interested in negative
membership constraints and empty intersection constraints (d). We do not need
to consider positive membership constraints, since e.g., v ∈ R(t) means that
t may read v (but not necessarily). Therefore, a model μ including a positive
membership constraint l, e.g., μ = μ′∪{l}, implies that μ′∪{¬l} is also a model.

Lines 13–15 implement the main synthesis loop. We iterate over the models
of the formula φ (filtered by μf) and generalize each one in the hope that we
will produce more succinct preconditions and converge faster. We pass the set
of variables d to GeneralizeWP, so that it can bias the result and express it
over more literals of d whenever possible. Function GetModel is given by the
SMT solver and returns a model for the formula given as input.

Encoding Size. In the worst-case, the size of formula φ is dominated by φu,
since that is the only constraint that grows quadratically with the size of the
input. Given a counterexample (π1, π2), the worst-case size of φu (and therefore

of φ) is O
(
(|π1 ; π2| · |Vars(π1)|)2

)
.

4.3 GeneralizeWP

Figure 5 shows the function GeneralizeWP. As input, it takes a formula φ,
a model μ of φ given as a set of literals, and a set of preferred literals ψ. The
purpose of this function is to compute a new model for φ, hopefully smaller than
μ (and obviously not bigger), while maximizing the set of literals of ψ that will
be part of the result.

From the definition of model of a formula, we know that ¬φ ∧ (
∧
l ∈ μ) is

unsatisfiable. If we a drop a literal, say l′, from μ and if ¬φ ∧ (
∧
l ∈ μ \ {l′}) is

still unsatisfiable, then μ′ = μ\{l′} is a model of φ as well. However, μ′ contains
fewer literals than μ, and is therefore more generic (since we now know that both
μ′ ∪ {l} and μ′ ∪ {¬l} are models of φ).

214 N.P. Lopes and J. Monteiro

1
2
3
4

function GeneralizeWP

input
φ – a formula
μ – a model of formula φ (set of literals)
λ – set of preferred literals to bias the solution

begin
if ¬φ ∧ (

∧
l ∈ μ ∩ λ) is unsatisfiable

return MinimizeCore(¬φ,GetUnsatCore(¬φ, μ ∩ λ))
else

return MinimizeCore(¬φ,GetUnsatCore(¬φ, μ) ∪ (μ ∩ λ)))
end.

Fig. 5. GeneralizeWP algorithm

1
2
3
4
5
6

function MinimizeCore

input
φ – a formula
ζ – an unsat core of formula φ (set of literals)

vars
Ψ – minimized core

begin
Ψ := ∅
while ζ �= ∅ do

κ := take one from ζ
if φ ∧ (

∧
l ∈ Ψ ∪ ζ) is satisfiable then

Ψ := Ψ ∪ {κ}
return Ψ

end.

Fig. 6. MinimizeCore algorithm

Function GeneralizeWP works as follows. First, it checks whether restrict-
ing the model to the set of preferred literals is sufficient to make φ unsatisfiable.
If so, it callsMinimizeCore to further reduce the size of the solution. We use the
function GetUnsatCore, which is usually provided by SMT solvers, as an op-
timization. GetUnsatCore(x, y) returns a set y′ ⊆ y such that x ∧ (

∧
l ∈ y′)

is unsatisfiable.
If the set of preferred literals is not enough, then we call MinimizeCore with

the whole model. Since we are not able to bias the result of GetUnsatCore,
we need to ensure that the set of preferred literals is passed to MinimizeCore.

4.4 MinimizeCore

Figure 6 shows the function MinimizeCore. Given a formula φ and a set of
literals ζ such that φ ∧ (

∧
l ∈ ζ) is unsatisfiable, the objective of this function is

to find a possibly smaller set Ψ ⊆ ζ such that φ ∧ (
∧
l ∈ Ψ) is still unsatisfiable.

MinimizeCore works by checking if each literal l ∈ ζ is necessary for the for-
mula to be unsatisfiable. If so, l is added to the result set Ψ . We employ a linear

Weakest Precondition Synthesis for Compiler Optimizations 215

search, as opposed to potentially better search strategies such as QuickXplain [19]
or Progression [26], since linear search proved to perform well in our benchmarks.

In our implementation, ζ is a list and we perform a linear search from the
beginning to the end of the list. This strategy enables us to bias the search
to give priority for removal of certain literals. In particular, in the function
GeneralizeWP, we put all the preferred literals ψ at the end of the list, which
biases the solution towards having a higher number of literals of ψ.

4.5 Discussion

The proposed algorithm, although agnostic to the verification algorithm used,
assumes that only counterexamples for partial functional correctness proofs are
generated. This means that the algorithm as presented will produce weakest lib-
eral preconditions. To produce weakest preconditions, the algorithm has to be
extended so that it can handle counterexamples for relative termination mis-
matches (based upon, e.g., [5, 8, 17]).

The proposed specification language does not include instructions to access
heap locations or arrays. This means that the current algorithm does not handle
optimizations that perform explicit transformations to memory access instruc-
tions. It does, however, support instantiation of templates with memory access-
ing instructions (such as instantiating a template expression with a load from a
memory location), provided that the instantiation meets the precondition (which
can be verified using, e.g., a data dependency analysis).

In this paper, we only consider preconditions in the language of read and
write sets. However, arithmetic preconditions may be needed for some optimiza-
tions. For example, a specialization of the loop unrolling optimization requires
the number of iterations of the source loop to be even1. Synthesizing such pre-
conditions could be done by, for example, adapting the counterexample-driven
algorithm of Seghir and Kroening [33].

5 Evaluation

We implemented a prototype named PSyCO2, which stands for Precondition
Synthesizer for Compiler Optimizations. PSyCO is implemented in Python (in
about 1,400 lines of code), and uses Z3 4.3.2 [10] for constraint solving.

In principle, PSyCO can be used with any compiler optimization verification
tool that can produce counterexamples. However, we chose to implement a sim-
ple bounded model checker (BMC) within PSyCO for convenience. This BMC
only checks optimizations for partial correctness, and therefore the results we
present in this section are weakest liberal preconditions. We did not use our own
verification tool, CORK [25], since it is several orders of magnitude slower at

1 We used a more general version of loop unrolling (that accounts for an even and odd
number of loop iterations) in our experiments.

2 Prototype and benchmarks available from
http://web.ist.utl.pt/nuno.lopes/psyco/.

216 N.P. Lopes and J. Monteiro

producing counterexamples than our simple BMC. Furthermore, CORK does not
support disjunctive preconditions natively, and therefore it has to first convert
such preconditions to DNF and test each of the conjuncts separately.

We show in Table 1 a few examples of compiler optimizations and the cor-
responding preconditions generated by PSyCO. This list is not supposed to be
exhaustive, since there are many optimizations and each one of them may be
specified in slightly different ways. We show these examples so that the reader
can truly appreciate the simplicity of the generated preconditions and realize
how surprising the weakest preconditions can be (from what you would expect
at first thought).

There are very few published formally stated preconditions for compiler opti-
mizations. However, the PEC paper [20] does include a precondition for software
pipelining (in a slightly different language than the one we used), that was writ-
ten down by hand and then verified correct by PEC. The precondition synthe-
sized by PSyCO (as shown in Table 1) is, however, weaker than that in PEC’s
paper. Their precondition requires that V1 /∈ W(S1) and V2 /∈ W(S1), while the
precondition generated by PSyCO does not. Therefore, the precondition gen-
erated by PSyCO is weaker than that published by experts in formal methods
and compiler optimizations, showing that automatic precondition synthesis does
indeed help to make optimizations more widely applicable.

We ran PSyCO over a set of optimizations (mostly loop manipulating). The
experiments were run on a machine running Linux 3.10.10 with an Intel Core 2
Duo 3.00 GHz CPU, and 4 GB of RAM. The results are shown in Table 2.

Since we are not aware of any other algorithm for precondition synthesis
for compiler optimization, we cannot compare PSyCO against other tools. In
Table 2, we show the number of counterexamples required for each optimization
to reach convergence. We notice that in general only a few counterexamples are
required (with certain optimizations with a trivial precondition requiring none).

Then, we present the total number of models obtained for preconditions. The
ratio of the number of models per number of counterexamples is small because
of the employed optimizations described before (model weakening and inference
of common precondition patterns).

Finally, we show the time taken by the precondition synthesis algorithm, as
well as the overall time taken by the tool. The overall time includes not only
the synthesis algorithm, but also the BMC time as well as minor initializations
performed by the tool. We argue that the time taken by the precondition syn-
thesis algorithm is low. Overall, PSyCO is usually fast, with a few exceptions
due to high inefficiencies in the Z3Py module exposed by our BMC. However,
the running time for this kind of tool is not critical, since it is supposed to be
run off-line, and only once per optimization specification.

6 Related Work

This work is related with both precondition synthesis and compiler (optimiza-
tions) correctness. We briefly describe both topics here.

Weakest Precondition Synthesis for Compiler Optimizations 217

Table 1. Examples of weakest preconditions synthesized by PSyCO

Optimization Weakest Liberal Precondition

Partial redundancy elimination (PRE)

if B then
S1

V1 := E
S2

else
S3

V2 := E

⇒

if B then
S1

V1 := E
S2

V2 := V1

else
S3

V2 := E

V1 /∈ R(E) ∧ V1 /∈ W(S2) ∧
R(E) ∩W(S2) = ∅

Code hoisting
if B then

S1

S2

else
S1

S3

⇒

S1

if B then
S2

else
S3

R(B) ∩W(S1) = ∅

Loop unrolling

while V1 < V2 do
S
V1 := V1 + 1

⇒

while (V1 + 1) < V2 do
S
V1 := V1 + 1
S
V1 := V1 + 1

if V1 < V2 then
S
V1 := V1 + 1

V2 /∈ W(S) ∧
(V1 /∈ W(S) ∨
R(S) ∩W(S) = ∅)

Strength reduction

while V1 < V2 do
V3 := V1 ∗ E
S
V1 := V1 + 1

⇒

V4 := V1 ∗ E
while V1 < V2 do

V3 := V4

V4 := V4 + E
S
V1 := V1 + 1

V1 /∈ R(E) ∧ V3 /∈ R(E) ∧
R(E) ∩W(S) = ∅ ∧(
V1 /∈ W(S) ∨
(V3 /∈ R(S) ∧
R(S) ∩W(S) = ∅)

)

Software pipelining

while V1 < V2 do
S1

S2

V1 := V1 + 1

⇒

if V1 < V2 then
S1

while V1 < (V2 − 1) do
S2

V1 := V1 + 1
S1

S2

V1 := V1 + 1

V2 /∈ W(S2) ∧(
(R(S1) ∩W(S2) = ∅ ∧
R(S1) ∩W(S1) = ∅ ∧
R(S2) ∩W(S2) = ∅) ∨
V1 /∈ W(S2)

)

218 N.P. Lopes and J. Monteiro

Table 2. List of compiler optimizations [1,28], the numberof counterexamples processed,
the number of models obtained for preconditions, the time taken by the precondition
generation algorithm, and the overall time taken by the tool (including the BMC)

Optimization # Counterexamples # Models WP Time Total Time

Code hoisting 1 1 0.07s 0.23s
Constant propagation 1 1 0.04s 0.16s
Copy propagation 0 0 0s 0.11s
If-conversion 0 0 0s 0.11s
Partial redundancy elimin. 1 1 0.10s 0.30s

Loop fission 6 36 1.28s 2.18s
Loop flattening 1 1 0.07s 3.31s
Loop fusion 6 36 1.26s 2.19s
Loop interchange 11 25 1.42s 23.8s
Loop invariant code motion 3 3 0.22s 0.55s
Loop peeling 0 0 0s 0.27s
Loop reversal 4 7 0.25s 0.54s
Loop skewing 1 1 0.06s 163s
Loop strength reduction 1 2 1.14s 1.41s
Loop tiling 1 1 0.07s 4.60s
Loop unrolling 2 4 0.13s 0.50s
Loop unswitching 2 2 0.15s 0.77s
Software pipelining 1 2 0.13s 0.58s

6.1 Precondition Synthesis

The concepts of weakest preconditions (WPs) and weakest liberal preconditions
(WLPs) have long been introduced by Dijkstra [11]. Since then, several algo-
rithms have been published to accomplish their automatic generation.

There are several competing approaches for WLP synthesis. These include,
for example, precondition templates and constraint solving (e.g., [15]), quantifier
elimination (e.g., [27]), abstract interpretation (e.g., [9]), and CEGAR, predicate
abstraction, and interpolation for predicate generation (e.g., [33]). Some algo-
rithms combine multiple techniques to achieve better performance.

Our unsat core minimization algorithm, that biases the result towards certain
literals, is similar to the one presented by Seghir and Kroening [33].

Leino [21] describes a compact encoding for verification conditions generated
from the weakest precondition calculus.

Cook et al. [8] propose a counterexample-driven algorithm for precondition
synthesis (not necessarily weakest) to guarantee program termination, and Bozga
et al. [5] propose an algorithm based on abstract interpretation.

Calcagno et al. [7] present an algorithm for WLP synthesis based on separation
logic.

Gulwani et al. [14] present an algorithm to synthesize loop-free programs
that implement a given specification. While the goal of the algorithm is not
to synthesize preconditions, there is a similarity in the encoding of program
equivalence and in the usage of an SMT solver to find assignments to variables
that represent the synthesized artifact.

Weakest Precondition Synthesis for Compiler Optimizations 219

6.2 Compiler Correctness

Several approaches have been proposed to improve the correctness of compil-
ers, including manual and computer-assisted proofs, automatic verification, and
automatic generation of correct optimizations by construction.

CompCert [24] is a compiler that aims to provide end-to-end correctness guar-
antees (from a program’s source code down to the resulting binary). CompCert
was written from scratch with verification in mind, and its correctness proofs are
done in Coq. Vellvm [41] is a Coq-based framework that enables the development
and verification of compiler optimizations for LLVM.

CORK [25] is a compiler optimization verifier based on recurrence compu-
tation. PEC [20, 37] (a successor of Cobalt [22] and Rhodium [23]) is also a
verifier, but uses bisimulation relation synthesis as the underlying technique.
Both CORK and PEC require a precondition to be given as input.

Translation validation (e.g., [13,30,31,34,38,40,42]) is a technique for estab-
lishing the correctness of compiler optimizations after the optimization was run
by checking the original and optimized programs for equivalence. Namjoshi and
Zuck [29] propose augmenting transformation functions so that they generate
auxilarly invariants to help the translation validation process, which otherwise
could fail to derive those invariants automatically.

Guo and Palsberg [16] present a bisimulation-based technique to reason about
the correctness of trace optimizations.

Godlin and Strichman [12] propose a set of proof rules to prove equivalence of
programs and to prove mutual termination using uninterpreted function symbols
to abstract recursive function calls. The technique is later extended with the
introduction of mutual summaries [17].

Relational Hoare logic [4] is an extension to Hoare logic to prove equiva-
lence of programs. Barthe et al. [3] extend this work to support non-structurally
equivalent programs.

Superoptimization (e.g., [2, 6, 18, 35]) is a technique to do code optimization
given a set of theorems that establish equalities between code sequences and
then searching for a better equivalent program.

Tate et al. [36] propose an algorithm to extrapolate compiler optimizations
directly from concrete examples.

Scherpelz et al. [32] propose an algorithm to automatically synthesize flow
functions from compiler optimizations’ preconditions.

7 Conclusion

In this paper we presented, to the best of our knowledge, the first algorithm
for the automatic synthesis of weakest preconditions for compiler optimizations.
The algorithm generates preconditions iteratively, in a counterexample-driven
approach. Preconditions for counterexamples are generated by an SMT solver.

We built a prototype, named PSyCO, that implements the proposed algorithm
and we presented several preconditions generated by it.

220 N.P. Lopes and J. Monteiro

Acknowledgments. The authors thank the anonymous reviewers for their
comments and suggestions on earlier drafts of this paper.

This work was partially supported by the FCT grants SFRH/BD/63609/2009
and INESC-ID multiannual funding PEst-OE/EEI/LA0021/2013.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley (2006)

2. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. In: AS-
PLOS (2006)

3. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011)

4. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL (2004)

5. Bozga, M., Iosif, R., Konečný, F.: Deciding conditional termination. In: Flana-
gan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 252–266. Springer,
Heidelberg (2012)

6. Brain, M., Crick, T., De Vos, M., Fitch, J.: TOAST: Applying answer set pro-
gramming to superoptimisation. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006.
LNCS, vol. 4079, pp. 270–284. Springer, Heidelberg (2006)

7. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL (2009)

8. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-
tional termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
328–340. Springer, Heidelberg (2008)

9. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 128–148. Springer, Heidelberg (2013)

10. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.)TACAS2008.LNCS, vol. 4963, pp. 337–340. Springer,Heidelberg (2008)

11. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

12. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures. Acta Inf. 45(6), 403–439 (2008)

13. Goldberg, B., Zuck, L., Barrett, C.: Into the loops: Practical issues in translation
validation for optimizing compilers. Electron. Notes Theor. Comp. Sci. 132 (2005)

14. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: PLDI (2011)

15. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference
over predicate abstraction. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 120–135. Springer, Heidelberg (2009)

16. Guo, S.-Y., Palsberg, J.: The essence of compiling with traces. In: POPL (2011)
17. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly com-

paring programs using automated theorem provers. In: Bonacina, M.P. (ed.) CADE
2013. LNCS, vol. 7898, pp. 282–299. Springer, Heidelberg (2013)

18. Joshi, R., Nelson, G., Zhou, Y.: Denali: A practical algorithm for generating opti-
mal code. ACM Trans. Program. Lang. Syst. 28(6), 967–989 (2006)

19. Junker, U.: QUICKXPLAIN: Preferred explanations and relaxations for over-
constrained problems. In: AAAI (2004)

Weakest Precondition Synthesis for Compiler Optimizations 221

20. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: PLDI (2009)

21. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288
(2005)

22. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of
compiler optimizations. In: PLDI (2003)

23. Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs for
dataflow analyses and transformations via local rules. In: POPL (2005)

24. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

25. Lopes, N.P., Monteiro, J.: Automatic equivalence checking of UF+IA programs. In:
Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 282–300.
Springer, Heidelberg (2013)

26. Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates in
boolean formulae. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 592–607. Springer, Heidelberg (2013)

27. Moy, Y.: Sufficient preconditions for modular assertion checking. In: Logozzo,
F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 188–202.
Springer, Heidelberg (2008)

28. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann (1997)

29. Namjoshi, K.S., Zuck, L.D.: Witnessing program transformations. In: Logozzo, F.,
Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 304–323. Springer, Heidelberg
(2013)

30. Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI (2000)
31. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)

TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)
32. Scherpelz, E.R., Lerner, S., Chambers, C.: Automatic inference of optimizer flow

functions from semantic meanings. In: PLDI (2007)
33. Seghir, M.N., Kroening, D.: Counterexample-guided precondition inference. In:

Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 451–471.
Springer, Heidelberg (2013)

34. Stepp, M., Tate, R., Lerner, S.: Equality-based translation validator for LLVM. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 737–742.
Springer, Heidelberg (2011)

35. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach
to optimization. In: POPL (2009)

36. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Generating compiler optimizations
from proofs. In: POPL (2010)

37. Tatlock, Z., Lerner, S.: Bringing extensibility to verified compilers. In: PLDI (2010)
38. Tristan, J.-B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-

idation for LLVM. In: PLDI (2011)
39. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C

compilers. In: PLDI (2011)
40. Zaks, A., Pnueli, A.: CoVaC: Compiler validation by program analysis of the cross-

product. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 35–51.
Springer, Heidelberg (2008)

41. Zhao, J., Nagarakatte, S., Martin, M.M., Zdancewic, S.: Formal verification of
SSA-based optimizations for LLVM. In: PLDI (2013)

42. Zuck, L., Pnueli, A., Goldberg, B., Barrett, C., Fang, Y., Hu, Y.: Translation and
run-time validation of loop transformations. Form. Methods Syst. Des. 27 (2005)

Message-Passing Algorithms for the Verification

of Distributed Protocols

Löıg Jezequel and Javier Esparza

Institut für Informatik, Technische Universität München, Germany

Abstract. Message-passing algorithms (MPAs) are an algorithmic para-
digm for the following generic problem: given a system consisting of sev-
eral interacting components, compute a new version of each component
representing its behaviour inside the system. MPAs avoid computing the
full state space by propagating messages along the edges of the system
interaction graph. We present an MPA for verifying local properties of
distributed protocols with a tree communication structure. We report
on an implementation, and validate it by means of two case studies,
including an analysis of the PGM protocol.

Introduction

Message-passing algorithms (MPAs) are an algorithmic paradigm for problems
(called reduction problems) that can be generically described as follows. The
input to the problem is a system consisting of several components communi-
cating in some way. When considered in isolation, each component has a set of
behaviours. However, not all these behaviours are necessarily realizable within
the system, since some actions may need the cooperation of other components.
The problem consists of computing a new version of each component whose
behaviours are those behaviours of the original component that are realizable
within the system.

MPAs work by propagating messages containing information about the be-
haviour of parts of the system along the edges of its interaction graph. Before
sending a message, a component can process it to remove redundant or useless
information. This way MPAs avoid computing the full state space. MPAs can be
applied on any system, however they ensure to solve the reduction problem only
for systems whose interaction graph is a tree. A generic description of MPAs
can be found in [1]. In particular, MPAs for distributed planning of [2, 3] have
been developed in an automata theoretic setting. More precisely, to each compo-
nent of the system is attached a (weighted) automaton, and interaction between
components is modelled by means of automata-theoretic operations. The nice
experimental results obtained with this approach on planning problems suggest
to study the use of MPAs for solving more generic formal verification problems,
and in this paper we explore this idea.

We present an MPA for verifying local properties of distributed protocols with
a tree communication structure. Loosely speaking, “local” means that the prop-
erty is defined from the point of view of one of the components of the protocol.

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 222–241, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Message-Passing Algorithms for the Verification of Distributed Protocols 223

For instance, a local property of a protocol for broadcast communication is that
a receiver gets all messages sent by the source. On the other hand, the mutual
exclusion property for a mutal exclusion protocol with N processes is an example
of a global property (which may sometimes be equivalent to a local property,
but not always).

We model components as labeled transition systems (LTSs) L1, . . . ,Ln, com-
municating à la CSP by rendez-vous. We present a generic MPA parametrized
by an equivalence relation ≡, which is assumed to be a congruence with respect
to parallel composition and hiding. The MPA computes LTSs K1, . . . ,Kn such
that Ki ≡ (L1|| · · · ||Ln) \ Σi, where Σi is the complement of the alphabet of
Li (that is, we hide all actions but those involving the i-th component). We call
Ki the update of Li. For a system with n-components the MPA requires 2n− 2
messages, which we show is optimal. We then present two different instances of
the algorithm, suitable for checking safety and liveness properties, respectively.
The first instance instantiates ≡ with the standard trace semantics. The second
one chooses for ≡ the semantics consisting of the infinite traces of the LTS plus
its set of divergences, i.e., the traces after which an infinite sequence of silent
transitions can occur. For both semantics we report on an implementation of the
MPA, and we describe the technique used to reduce the size of the messages.

We evaluate our two instances on two case studies: a mutual exclusion pro-
tocol for tree networks proposed in [4], and a version of the Pragmatic General
Multicast Protocol (PGM) [5]. For the PGM we show how the result of the
MPA allows us to identify potential problems of the protocol when the different
parameters of the protocol are assigned unsuitable values.

Related Work. The connection of our work to other work on MPAs has been
described above.

Several compositional approaches to verification exist, aiming at avoiding the
state-explosion problem in the verification of distributed systems by considering
them component by component. In [6] the authors use an assume-guarantee way
of reasoning in which they show that a component guarantees some property
as soon as it is in a system satisfying some assumption, the hard part being to
choose good assumptions, which is achieved by progressively learning them. In
[7] the authors introduce thread-modular model checking where the states of a
multithreaded software are enumerated thread by thread (a state taking into
account the value of the program counter of a single thread instead of the value
of the program counters of all threads), potentially leading to an exponential re-
duction of the size of the state space considered, at the price of doing incomplete
verification.

Our work is based on the possibility to replace a component of a system by
an equivalent one (with respect to a suitable notion of equivalence or preorder),
but smaller in some way. This is also the starting point of works such as [8,
9] for example. This approach has been implemented for trace, failures, and
bisimulation equivalence or related preorders in tools like FDR [10, 11], the
Concurrency Workbench [12], CADP [13] and others, and most model-checkers
using abstraction techniques use it in some way. However, these tools address

224 L. Jezequel and J. Esparza

the problem of computing an update of the whole system, instead of an update
for each component, and leave the choice of which components to minimize or
reduce with respect to the given congruence, and in which order, to the user.
(In particular, this hinders a direct comparison with these tools, since we would
have to compare a fully automatic and a partially manual procedure. On the
other hand, our algorithm could also be implemented on top of these tools.)
By focusing on this problem we are able to provide a simple algorithm with a
minimal number of exchanged messages.

Protocols with tree communication structure have also been analyzed by
means of regular model checking (see [14] for a recent survey). The goal of
regular model checking is more ambitious than ours, since it aims at proving
the protocol correct for an arbitrary number of processes. On the other hand,
this reduces the range of protocols that can be verified. In particular, we do not
know of any analysis of our two case studies using regular model checking.

The PGM protocol has been analysed in a number of papers [15–17]. This
work is orthogonal to ours. In [15, 16] the focus is on timing aspects and rela-
tions between parameters, which are analysed for small instances of the protocol
(below five processes), while we concentrate on analyzing simpler properties of
larger instances with more than one hundred processes. Finally, the work in [17]
is a manual proof providing cut-off bounds for parametric analysis.

1 Definitions and Notations

LTS. A labelled transition system with silent transitions (LTS) is a tuple L =
(Σ,S, T, s0) where Σ is a finite set of labels, S is a finite set of states, T =
{T σ : σ ∈ Σ} ∪ {T τ} is a set of transition relations : ∀σ ∈ Σ ∪ {τ}, T σ ⊆ S× S
(the elements of T σ are called σ-transitions), and s0 ∈ S is an initial state. A
finite (resp. infinite) sequence of labels and τ , tr = σ1σ2 . . . is a trace of L if there
exits a finite (resp. infinite) alternating sequence of states and transitions (a path)
π = s0t1s1t2 . . . realizing it, that is, such that s0 = s0, and ti = (si−1, si) ∈ T σi

for all i > 0. A finite (resp. infinite) sequence of labels tr is an observable trace
of L if there exists a trace tr′ of L such that by removing all τ from tr′ one
gets tr: tr′|Σ = tr. The set of finite observable traces of L is denoted by T ∗

L
while its set of infinite observable traces is denoted by T ω

L , and the set of all its

observable traces is TL = T ∗
L ∪ T ω

L . We write s0
τ
L sn if there exists a path

π = s0t1s1t2 . . . sn such that ∀1 ≤ i ≤ n, ti ∈ T τ . Figure 1 gives some examples
of LTSs, states are represented by circles and labelled transitions by labelled
arrows between states. Initial states are distinguished with small arrows.

Definition 1. The hiding of a set Σ′ in an LTS L = (Σ,S, T, s0) is the LTS
L \Σ′ = (Σ \Σ′, S, T ′, s0) with T ′ such that T ′σ = T σ for any σ ∈ Σ \Σ′ and
T ′τ = ∪σ∈Σ′∪{τ}T

σ.

For L = (Σ,S, T, s0) and some set of labels Σ′ we sometimes write L \Σ′
for

L \ (Σ \Σ′).

Message-Passing Algorithms for the Verification of Distributed Protocols 225

Definition 2. Let L1 and L2 be LTSs where Li = (Σi, Si, Ti, s
0
i). Their parallel

composition L1||L2 is the LTS L = (Σ,S, T, s0) such that: Σ = Σ1 ∪ Σ2, S =
S1×S2, if σ ∈ Σ1∩Σ2 then T σ = {((s1, s2), (s′1, s′2)) : (s1, s

′
1) ∈ T σ

1 ∧ (s2, s′2) ∈
T σ
2 }, if σ ∈ Σ1 \ Σ2 then T σ = {((s1, s2), (s′1, s2)) : (s1, s

′
1) ∈ T σ

1 ∧ s2 ∈ S2},
if σ ∈ Σ2 \ Σ1 then T σ = {((s1, s2), (s1, s′2)) : s1 ∈ S1 ∧ (s2, s

′
2) ∈ T σ

2 }, and
T τ = {((s1, s2), (s′1, s2)) : (s1, s

′
1) ∈ T τ

1 ∧ s2 ∈ S2} ∪ {((s1, s2), (s1, s′2)) : s1 ∈
S1 ∧ (s2, s

′
2) ∈ T τ

2 }, and finally s0 = (s01, s
0
2).

Notice that this parallel composition is commutative and associative, so one
can safely write L = L1|| . . . ||Ln for the parallel composition of more than two
LTSs. The right LTS in Figure 3 is the parallel composition of the middle LTS
in the same figure and the right LTS in Figure 1.

Definition 3. An equivalence relation between LTSs is called a congruence for
LTSs, denoted by ≡, if for any LTSs L1,L2,L such that L1 ≡ L2 and any set of
labels Σ one has L1||L ≡ L2||L and L1 \Σ ≡ L2 \Σ.

MLTS. A marked labelled transition system (MLTS), or LTS with marked
states, is a tuple ML = (L, F) where L = (Σ,S, T, s0) is an LTS and F ⊆ S is
a set of marked states. According to the set of marked states one can define the
set of marked traces MTML of ML as the set of traces for which there exists
a realization verifying some condition on the marked states (examples are given
below: automata and Büchi automata).

Definition 4. Given MLTSs ML1,ML2 where MLi = (Li, Fi), their parallel
composition ML1||ML2 is the MLTS ML = (L, F) such that L = L1||L2 and
F = F1 × F2.

FSA. A finite state automaton (FSA) is an MLTS A = (L, F) such that a
trace tr of A is a marked trace if and only if it is finite and it has a realization
π = s0t1s1 . . . sk such that sk ∈ F. The set MTA is usually called the language
of A.

NBA. A Büchi automaton (NBA) is an MLTS B = (L, F) such that a trace
tr of B is a marked trace if and only if it is infinite and it has a realization
π = s0t1s1t2 . . . such that there exists an infinite number of i ≥ 0 for which
si ∈ F. As for FSAs, the set MTB is usually called the language of B.

2 Message-Passing Algorithms

Before presenting a formal description of message-passing algorithms, we illus-
trate them on an example. Consider the three LTSs of Figure 1. They represent
an abstract view of a small distributed system involving three processes: a sender
(S), a capacity one channel (C), and a receiver (R). S has to accomplish some
task. It initially does a choice between doing it alone (right transition) or doing
it together with R (left transition) by exchanging some messages through C.

226 L. Jezequel and J. Esparza

S

choice

S!R S?R

choice

internal

C

S!R

R!S

R?S

S?R

R

R?SR!S

R?S

Fig. 1. A distributed system constituted of three interacting LTSs

The behaviour of this system is captured by L = S||C||R, and so – denoting by
ΣS (resp. ΣC , ΣR) the set of labels of S (resp. C, R) – the behaviour of S (resp.
C, R) inside this system is captured by L \ΣS (resp. L \ΣC , L \ΣR).

Definition 5. The interaction graph of a system L1|| · · · ||Ln, where Σi is the
alphabet of Li, has L1, . . . ,Ln as nodes, and an edge {Li,Lj} when Σi∩Σj
= ∅.

The MPAs can solve the reduction problems for systems whose interaction graph
is a tree. They proceed by sending messages (which have the same type as the
components, i.e. LTSs in our example) along the edges of the tree, i.e. each
component sends a message to each of its neighbours. In the system of Figure 1,
the interaction graph is a line (and so a tree) with C in the middle and S and
R at the extremities (see Figure 2). Indeed S interacts (that is, shares labels)
only with C and R also interacts only with C. So each of S and R will send a
message to C and C will send a message to each of S and R.

S C R
{S!R, S?R} {R!S,R?S}

MS,C MC,R

Fig. 2. The interaction graph of the system of Figure 1. Over each edge (plain line)
the corresponding set of shared labels is indicated. Dashed lines represent the messages
propagated from S to R.

The idea behind these messages is the following. In a tree shaped interaction
graph, each edge separates the graph into two subtrees whose roots are the
extremities of the edge (in our example, the edge (C,R) separates the graph into
a tree containing only R and a tree with C as root and S as leaf). Using this
fact each component at the extremity of the removed edge will send a message
to the other component. This message describes the possible behaviours of the
subtree from which its sender is the root as they can be seen by its receiver (for
example C sends a message to R describing the behaviour of S||C as R sees it,
that is using only labels shared between C and R). This message is computed
from the messages received from the neighbours of its sender in the subtree from
which this sender is the root.

Message-Passing Algorithms for the Verification of Distributed Protocols 227

In the system of Figure 1 the message from S to C is thenMS,C ≡ S\ΣS ∩ΣC

(see Figure 3, left for an example preserving observable traces) and it is then
used to build the message from C to R: MC,R ≡ (MS,C ||C) \ ΣC ∩ΣR (see
Figure 3, middle). Similarly the remaining messages can be built: MR,C ≡ R \
ΣR ∩ΣC and MC,S ≡ (MR,C ||C) \ ΣC ∩ΣS . It can then be proved (it is a
consequence of Theorem 1 below) using the separation property of the edges
of a tree shaped interaction graph described above, that the composition of
each component with all the messages it received describes the behaviour of this
component in the full system. For example (see Figure 3, right) R′ = R||MC,R

has the same set of observable traces than L \ΣR. Similarly S′ = S||MC,S and
C′ = C||MR,C ||MS,C have the same set of observable traces than L \ ΣS and
L \ΣC respectively.

MS,C

S!R

S!R S?R

MC,R

R?S

R!S

R!S

R?S

R!S

R′

R?S

R?S R!S

Fig. 3. Messages from S to R, updated component R′

2.1 Formal Description of an MPA for LTSs

Algorithm 1 below presents a formal description of an MPA for a system L =
L1|| . . . ||Ln whose interaction graph G = (V,E) is a tree. Any LTS Ki obtained
at the end of Algorithm 1 is called the update of Li (in G).

For the presentation it is convenient to model an undirected edge {Li,Lj}
as two directed edges (Li,Lj) and (Lj ,Li). So the input to Algorithm 1 is a
directed graph G derived from a tree in this way.

We denote by x :≡ L that the variable x is assigned some LTS L′ such that
L′ ≡ L. Notice that this is a nondeterministic assignment, and so Algorithm 1
is nondeterministic. In the next section we present several instances of the algo-
rithm, and for each one we explain how the nondeterminism is resolved.

In order to formulate and prove the correctness of the algorithm we introduce
some notations.

Definition 6. Given G = (V,E) with V = {L1, . . . ,Ln}, we denote the parallel

composition (L1|| · · · ||Ln) by Ĝ.
Given a tree G = (V,E) and (Li,Lj) ∈ E, we denote by Gij the maximal subtree
of G containing Lj but not Li.

228 L. Jezequel and J. Esparza

Algorithm 1. An MPA for LTSs

Input: an interaction graph G = (V,E) with V = {L1, . . . ,Ln}
1: M ← E
2: while M �= ∅ do
3: choose (Li,Lj) ∈ M such that (Lk,Li) /∈ M for every k �= j
4: Mi,j :≡ (Li || (|| k �= j,

(Lk,Li) ∈ E

Mk,i)) \Σj

5: remove (Li,Lj) from M
6: end while
7: for all i ∈ V do
8: Ki :≡ Li || (||(Lj ,Li)∈EMj,i)
9: end for

Lemma 1. Let G = (V,E) be a tree and (Li,Lj) ∈ E. LetMG
j,i be the content of

variableMj,i after termination of Algorithm 1 on input G. ThenMG
j,i = Ĝij \Σi.

Proof. The proof is by induction on the depth of Gij . If Gij has depth 1, then Gij
contains the vertex Lj and no arcs. By line 4 we get MG

j,i ≡ Li \ Σi = Ĝij \Σj

(recall that, since we represent undirected trees as directed graphs, we have
(Lj ,Li) ∈ E).

Assume now that Gij has depth larger than 1. Let Lj1 , . . . ,Ljm be the neigh-
bours of Lj in Gij . Then the trees Gjj1, . . .Gjjm are proper subtrees of Gij, and
in particular have smaller depth. By induction hypothesis we have

MGij

j1,j
≡ Ĝjj1 \Σj . . . MGij

jm,j ≡ Ĝjjm \Σj (1)

By line 4 of the algorithm, and since ≡ is a congruence, we get

MG
j,i ≡ (Lj || (|| k �= i,

(Lk,Lj) ∈ E

MG
k,j)) \Σi (2)

≡ (Lj || MG
j1,j
|| · · · || MG

jm,j) \Σi (3)

≡ (Lj || MGij

j1,j
|| · · · || MGij

jm,j) \Σi (4)

≡ (Lj || (Ĝjj1 \Σj) || · · · || (Ĝjjm \Σj)) \Σi (5)

where (4) follows from (3) because Lk is a node of Gij for everyMk,j .

Since G is a tree, the sets of labels of Ĝjj1 , . . . , Ĝjjm are pairwise disjoint, and
so

Lj || (Ĝjj1 \Σj)|| · · · ||(Ĝjjm \Σj) ≡ (Lj || Ĝjj1 || · · · ||Ĝjjm) \Σj (6)

Moreover, for the same reason, there are no edges between any of Lj1 , . . . ,Ljm

and Li. So Σi ∩ (Σj1 ∪ · · · ∪Σjm) = ∅, which implies

(Lj || Ĝjj1 || · · · ||Ĝjjm) \Σj \Σi ≡ (Lj || Ĝjj1 || · · · ||Ĝjjm) \Σi (7)

Message-Passing Algorithms for the Verification of Distributed Protocols 229

Putting together (4)-(7), we obtain

Mj,i ≡ (Lj || Ĝjj1 || · · · || Ĝjjm) \Σi (8)

By definition of Ĝij , we have

Ĝij ≡ Lj || Ĝjj1 || · · · || Ĝjjm (9)

which together with (8) yields

MG
j,i ≡ Ĝij \Σi (10)

as desired.

We can now prove correctness of Algorithm 1.

Theorem 1. Let G = (V,E) with V = {L1, . . . ,Ln} be a tree-shaped interaction
graph. The result of running Algorithm 1 on G are LTSs K1, . . . ,Kn such that
Ki ≡ Ĝ \Σi for every Li ∈ V .

Proof. We have

Ki ≡ Li || (||(Lj ,Li)∈E MG
i,j) (11)

≡ Li || (||(Lj ,Li)∈E (Ĝij \Σi)) (12)

≡ Li || (||(Lj ,Li)∈E Ĝij) \Σi (13)

≡ Ĝ \Σi (14)

Here, (11) follows from line 8 of the algorithm; (12) follows from Lemma 1;
(13) follows from the fact that no two neighbours of Li are connected by an edge,
and so their sets of labels are disjoint. Finally, (14) follows from the definitions

of Ĝ and Ĝij .

If the messages of Algorithm 1 are large in the worst case (in theory they can
have the size of the full system) their number is optimal. More precisely, no MPA
using fewer messages can be correct, where the only assumption we make about
MPAs is that the output Ki is a function of Li and the messages Li receives
from its neighbours.

Theorem 2. For every correct MPA algorithm and every n ≥ 1 there is a graph
Gn such that the algorithm requires at least 2n− 2 messages on Gn.

Proof. Assume there is a correct MPA A which always requires less than 2n− 2
messages on graphs with n nodes. Consider the system S1 = L1|| · · · ||Ln where
for every 1 ≤ i ≤ n the only maximal trace of Li is aiai+1bi+1bi (its interaction
graph is a line). Since the algorithm needs fewer than 2n− 2 messages, there is
an index i such that either Li sends no message to Li−1, or sends no message
to Li+1.

230 L. Jezequel and J. Esparza

In the first case, consider the system S2 which is identical to S1, except that
the only maximal trace of Li is aibi+1ai+1bi. For S1 the only maximal trace
of Kn is anan+1bn+1bn, while for S2 the only maximal trace of Kn is anan+1.
Since, by our assumption on MPAs, Li−1 does not receive any message from Li,
it returns the same result Kn in both cases, and so the algorithm is incorrect.

In the second case, consider the system S2 which is identical to S1, except
that the only maximal trace of Li+1 is aibi+1ai+1bi, and proceed analogously
with K1 instead of Kn.

Observations. The restriction to tree-shaped interaction graphs can be weak-
ened in several ways.

Communication Graphs. We can replace the interaction graph by a potentially
smaller communication graph, thus reducing the number of messages.

Definition 7. Let G be any subgraph of an interaction graph. An edge (Li,Lj) ∈
E is redundant if there exists a sequence (Li,Lk1)(Lk1 ,Lk2) . . . (Lk�

,Lj) of edges
such that i
= km
= j and ΣLkm

⊇ ΣLi ∩ΣLj for every 1 ≤ km
= j.
A communication graph of a system is any subgraph of the interaction graph

obtained by iteratively removing redundant edges.

If some communication graph of a system is a tree then all its communication
graphs are trees [1]. We then say that the system lives on a tree. The following
proposition shows that the MPA can be applied to any system that lives on a
tree, even if its interaction graph is not a tree.

Proposition 1. Let G = (V,E) with V = {L1, . . . ,Ln} be a tree-shaped com-
munication graph of L = L1|| . . . ||Ln. The result of running Algorithm 1 on G
are LTSs K1, . . . ,Kn such that Ki ≡ Ĝ \Σi for every Li ∈ V .

Proof. The proof follows the lines of Theorem 2. We just have to adjust the
arguments justifying Equations (6) and (7) in Lemma 1, and Equation (13) in
Theorem 2. For (6) and (13) observe that, if the communication graph is a
tree, then there are no edges between the neighbours of Lj . Therefore, by the
definition of communication graph, every common label of any two processes in
(5) belongs to Σj which suffices to derive (6) and (13).

For (7) we observe that the communication graph also contains no edges
between any of Lj1 , . . . ,Ljm and Li. So we have (Σj1 ∪ . . . ∪ Σjm) ∩ Li ⊆ Lj ,
and so

(Lj || Ĝjj1 || · · · ||Ĝjjm) \Σj \Σi ≡ (Lj || Ĝjj1 || · · · ||Ĝjjm) \Σi

Tree decompositions. Any system L = L1|| . . . ||Ln can be transformed into an
equivalent one that lives on a tree. This is in itself trivial, since we can always
choose this system as one single LTS equivalent to L. However, this destroys
the concurrency of the system. In order to preserve as much concurrency as

Message-Passing Algorithms for the Verification of Distributed Protocols 231

possible we can compute a tree decomposition of a communication graph [18].
Every set {Li1 , . . . ,Lik} of the decomposition is then replaced by any single LTS
equivalent to the subsystem Li1 || . . . ||Lik . For instance, if the interaction graph
of L1|| . . . ||Ln is a ring with an even number of components, we can take the
system L′

1|| . . . ||L′
n/2, where L′

i ≡ Li||Ln−i+1 (Figure 4).

L1

L2 L3

L4

L5L6 L1||L6

L2||L5

L3||L4

Fig. 4. A possible tree decomposition (right) of a ring-shaped interaction graph (left)

Computing one summary. Finally, we observe that computing one single update
of component only requires to exchange n− 1 messages instead of 2n− 2.

Proposition 2. Let L1, . . . ,Ln be LTSs such that the system L = L1|| . . . ||Ln

lives on a tree, and let 1 ≤ i ≤ n. The update Ki of Li can be computed by an
MPA that uses only n− 1 messages.

Proof. Consider a communication graph G = (V,E) of L = L1, . . . ,Ln that
is a tree. If n = 1 then i = 1 and L1 = K1 is computed using n − 1 = 0
messages. Assume the proposition is true up to n = k. Consider n = k + 1
and take 1 ≤ i ≤ n. Remark that Ki is computed exactly from the messages
of the form MLj,Li for (Lj ,Li) ∈ E (denote by Ei the set containing these
edges). Given such a Lj , consider the largest subtree of G rooted in Lj which
does not contains Li. This subtree has nj < k + 1 nodes, so the update of
Lj in this subtree can be computed from nj − 1 messages. Remark that the
hiding of Σi in this update is exactly MLj ,Li . From that Ki is computed using∑

(Lj,Li)∈Ei
(nj − 1) + |Ei| = n− 1 messages.

3 Local Verification of Distributed Protocols on Trees

In this section we describe our implementations of Algorithm 1, tailored for
checking local linear-time safety and liveness properties, respectively. Each im-
plementation requires to

– Choose a congruence ≡ that preserves the properties of interest.
– Resolve the nondeterminism introduced by :≡ in lines 4 and 8

Furthermore, L′ :≡ L′ should be implemented so that L′ is as small as possible.

232 L. Jezequel and J. Esparza

3.1 Safety

A local safety property of a component Li within a system (L1|| . . . ||Ln) is a
property of the (observable) finite traces of Ki, the update of Li. In order to
preserve local safety properties we choose ≡ as (observable) finite trace equiv-
alence, i.e., L ≡ L′ if and only if T ∗

L = T ∗
L′ . This equivalence is well known to

be a congruence, and in the following we denote it by ≡T . By Theorem 1, local
safety properties of Li can be decided by examining the traces of its update Ki

returned by Algorithm 1.
We implement L′ :≡T L as follows: L′ is the unique τ -free, minimal determin-

istic LTS equivalent to L. More precisely,

L′ := MIN(DET (RED(L))),

where RED,DET,MIN are algorithms for removing τ -transitions, determiniz-
ing, and minimizing LTSs, respectively. These algorithms are implemented using
standard automata operations (see e.g. [19]).

This particular instantiation of Algorithm 1 closely corresponds to the MPA
at the basis of the work presented in [2, 3].

3.2 Liveness

It is well known that defining a local liveness property of Li as a property of the
(observable) infinite traces of Ki is inadequate [20]. Consider two systems with
sets of infinite traces {abω} and {abω, acω}, respectively. If Σi = {a, b}, then in
both cases the only infinite trace of Ki is ab

ω. However, in the first system Li

satisfies “after a eventually b”, while in the second it does not. To solve this
problem we keep information about the divergences of Li.

Definition 8. Given L = (Σ,S, T, s0) with transitions labelled by τ , a diver-
gence of L is a finite observable trace tr of L such that there exists an infinite
trace tr′ of L verifying tr′|Σ = tr. The set of divergences of L is denoted by DL .

Given (L1|| . . . ||Ln) without τ-transitions, a divergence of Li in L is a finite
observable trace tri ∈ T ∗

Li
such that there exists an infinite observable trace

tr ∈ T ω
L satisfying tr|Σi = tri.

The hiding operation links these two definitions: Given L = L1|| . . . ||Ln without
τ -transitions, the set of divergences of Li in L is equal to the set DL\Σi

of

divergences of L \Σi.
We define a local liveness property of Li as a property of TKi and DL\Σi

, and

so we choose: L ≡ L′ if and only if TL = TL′ and DL = DL′ . This equivalence is
known to be a congruence for LTSs (see [21] for example). In the following we
denote it by ≡D .

By Theorem 1, local liveness properties of Li can be decided by examining
the traces of the updated version Ki obtained by Algorithm 1.

In order to implement L′ :≡D L, we profit from the following fact: for finite
LTSs, TL = TL′ iff T ∗

L = T ∗
L′ , and so L ≡D L iff T ∗

L = T ∗
L and DL = DL′ . This

Message-Passing Algorithms for the Verification of Distributed Protocols 233

allows us to replace the nondeterministic assignment by a five-step procedure:

L′ := HID(MIN(DET (RED(DIV (L))))),

where MIN , DET , and RED are defined as above. For L = (Σ,S, T, s0),
DIV (L) is the LTS (Σd, Sd, Td, s

0
d) such that: Σd = Σ ∪ {τ ′} with τ ′ /∈ Σ,

Sd = S, Td = T ∪ T τ ′
d with T τ ′

d = {(s, s) : ∃s′, s τ
L s′
τ
L s′}, and s0d = s0.

Finally, HID(L) is defined as L \ {τ ′}, where τ ′ has to be the same as used in
DIV . We have:

Theorem 3. L ≡D HID(MIN(DET (RED(DIV (L))))) for any LTS L.

Proof. Denote by Σ the set of labels of L. First remark that a finite sequence tr
of labels from Σ is a divergence of L if and only if trτ ′ω is an infinite observable
trace of DIV (L). This is because (1) tr is a divergence of L if and only if there
exists a path realizing tr in L and reaching a state from which there exists an
infinite path using only τ -transitions, and (2) DIV (L) is an exact copy of L
with the addition of τ ′-transitions, all of the form (s, s) for s ∈ Sd = S, and
there is a τ ′-transition from a state s to itself if and only if there exists in L an
infinite path using only τ -transitions and starting from s.

From this, and because MIN , DET , and RED preserve observable traces,
one gets that a finite sequence tr of labels from Σ is a divergence of L if and
only if trτ ′ω is an infinite observable trace ofMIN(DET (RED(DIV (L)))). Also
remark that MIN(DET (RED(DIV (L)))) does not contain any τ -transition.

The remark thatHID only replaces τ ′-transitions by τ -transitions then allows
to conclude that a finite sequence tr of labels from Σ is a divergence of L if and
only if trτω is an infinite trace of HID(MIN(DET (RED(DIV (L))))) if and
only if tr is a divergence of HID(MIN(DET (RED(DIV (L))))).

4 Experimental Evaluation

The approaches described in the previous section have been implemented as an
extension of the planner Distoplan [3]. In this section we report on an experi-
mental evaluation of the performances of this implementation on two protocols:
a mutual exclusion algorithm on trees [4] and the pragmatic general multicast
protocol [5]. All experiments were performed using the same computer with an
Intel Core i5 processor and a memory limit set to 4GB.

4.1 Raymond’s Mutual Exclusion Protocol

In [4], Raymond presents a distributed protocol ensuring mutual exclusion for
n processes organized as a tree. Processes communicate by rendez-vous, which
allows us to model the protocol as a parallel composition of LTSs, one for each
process. The unique communication graph is given by the tree. The scaling
parameter is the number of processes, which fits well with our approach as the

234 L. Jezequel and J. Esparza

difference between two instances of the protocol is due to the number of LTSs
needed to model them, rather than to their sizes.

The protocol can be roughly described as follows. A single token is passed
between the processes, a process being allowed to access its critical section only
if it owns the token. At any time, each process Pi not holding the token knows
which of its neighbours in the tree is closest to the token. In other words Pi knows
in which maximal subtree containing exactly one of its neighbours, but not Pi

itself, the token currently is. Its requests for the token (and all requests by other
processes that it may have to transmit) are sent to this particular neighbour.
A more precise description of this protocol is given in Algorithm 2. It describes
in a Promela-like manner an agent called x. N denotes the set of neighbours
of x in the tree of agents on which the protocol is executed. We consider that
x ∈ N . Q(N) denotes the set of queues of elements from N . Notice that the
same element never appears twice in the queue requestQ. At each step one of
three mutually exclusive guarded atomic instruction sequences is executed: (1)
re-assignation of the token when x holds it, (2) request for the token, (3) non-
deterministic choice between: asking for entering the critical section, receiving a
request message from a neighbour, receiving the token from a neighbour, deciding
to exit the critical section.

Algorithm 2. An agent for Raymond’s mutual exclusion protocol

Agent x (holder: N , using: {true, false}, requestQ: Q(N), asked: {true, false})
holder=x ∧ using=false

∧ isnotempty(requestQ) → holder:=dequeue(requestQ)
asked:=false
holder=x → using:=true
holder�=x → !token to holder

holder�=x ∧ asked=false
∧ isnotempty(requestQ) → !request(x) to holder

asked:=true
else → isnotin(x,requestQ) → enqueue(x,requestQ)

?request(n) → enqueue(n,requestQ)
?token → holder:=x
using=true → using:=false

We consider instances of this protocol in which processes form a complete
binary tree. The results obtained are presented in Table 1. The leftmost columns
give the depth of the binary tree considered (Depth) and the corresponding
number of processes (Processes). For each depth the column Traces reports the
time (in seconds) needed for the following tasks: (1) run Algorithm 1 to obtain
the updated versions of all the processes with respect to trace equivalence ≡T
(subcolumn MPA); (2) same but computing only n − 1 messages in order to
obtain the updated version of the root only (subcolumn OneWay); (3) verify a
simple local property from the updated root (subcolumn Verification). Column

Message-Passing Algorithms for the Verification of Distributed Protocols 235

Table 1. Results for the analysis of Raymond’s mutual exclusion protocol on complete
binary trees. Times are in seconds.

Depth Processes
Traces Divergences

MPA OneWay Verification MPA OneWay Verification

2 3 0.12 0.15 <0.01 0.14 0.13 <0.01

3 7 1.41 1.23 <0.01 2.07 1.88 <0.01

4 15 2.36 2.20 <0.01 4.58 4.36 <0.01

5 31 5.29 4.67 <0.01 10.44 9.67 <0.01

6 63 10.62 9.63 <0.01 21.81 20.27 <0.01

7 127 21.94 19.70 <0.01 44.86 41.55 <0.01

Divergences gives the times required by analogous tasks, but with respect to
divergence equivalence ≡D .

We check a safety (in the case of ≡T) and a liveness (in the case of ≡D)
property in order to compare our MPA with an algorithm that constructs the
state space, for which we use Spin. The local safety property verified for the root
processes is: “It is not possible to request the token twice without receiving it in
between”. Remark that, it is also expressible as the following global property: “It
is not possible for the root process to request the token twice without receiving
it in between”. We verify this property by checking emptiness of the product
of the automaton ϕ on the left of Figure 5 (representing the negation of the
property) and the (projection onto the labels of ϕ of the) updated version of
the root process obtained by Algorithm 1 (in which all states are considered
accepting). The local liveness property verified for the root processes is: “The
token is received in finite time after any request”. Similarly, the property is
verified by checking emptiness of the product of the Büchi automaton ϕ′ on the
right of Figure 5 (representing the negation of the property) with the (projection
on the labels of ϕ′ of the) updated version of the root process obtained by
Algorithm 1 (in which all states are considered accepting).

ϕ

!request

?token

!request !request
ϕ′

!request

ττ

!request ?token

Fig. 5. Two properties to be checked on Raymond’s mutual exclusion protocol. !request
is a general token request action and ?token is a general token reception action.

Analysis of the Results. As expected, the approach scales very well with
the number of components: at each depth the number of components almost
doubles while the time spent for computing the updates of the components is
slightly more than doubling. We compare it with a verification of the same prop-
erties using Spin [22]. Since the system is highly concurrent, we use Spin with
the partial order reduction optimization. Spin outperforms our approach for the

236 L. Jezequel and J. Esparza

complete binary tree of depth 2 (it needs less than 0.01 seconds to verify the
properties). For trees of depth 3 or greater, however, Spin runs out of memory
(memory limit being 4GB). Notice that, since the properties we check are true,
Spin needs a full state-space exploration to verify them, while our MPA prevents
this. We also remark that the time needed by our MPA is almost entirely spent
in computing the updates of the components, and so the additional cost of veri-
fying other properties after the first one is small, since the previously computed
updates can be re-used. Finally, observe that, in this example, the difference
in time spent between the standard application of Algorithm 1 (computing all
updates) and the case where only the update of the root is computed (so only
half of the messages are constructed) is not significant. This can be explained
by the fact that – being the initial owner of the token – the root imposes more
constraints to the system than the other components. So the messages from the
root are potentially much simpler to compute than the messages to the root.

4.2 The Pragmatic General Multicast Protocol

[5] describes the pragmatic general multicast protocol (PGM), a reliable dis-
tributed protocol for distributing information from multiple senders to multiple
receivers in a network, designed to minimize the load of the network due to
acknowledgement messages and retransmissions of lost messages. We consider
the specific version of this very generic protocol given in Algorithm 3 (which is
almost the one described in [17]): a unique source sends information to multi-
ple receivers in a network organized as a tree. Each process is described in a
Promela-like manner and consists of a single loop in which a non-deterministic
choice is done at each step between several guarded atomic instruction sequences.

The source can receive a negative acknowledgement nak(nr) for some data,
in this case it sends back a confirmation ncf(nr) and, if the data nr is still
within range of its window it adds it to the set recNak of data to be re-sent.
If some data nr is in the set recNak and still within range of the window this
data can be re-sent as a message rdata(nr, txWTr). And, if no data needs to be
re-sent, a new data can be sent as a message odata(nr, txWTr) and the window
may be moved. Any network element can receive negative acknowledgements and
propagate them above itself in the tree. It can also transmit data below itself
in the tree. Finally, it may generate new negative acknowledgements while no
confirmation have been received for them. A receiver can receive data, and, when
it allows it to deduce that some data are missing (by looking at the previously
received data and because of the fact that the data are consecutive integers) it
can send negative acknowledgements for these data.

As before we represent each process by an LTS. However, communications are
no longer by rendez-vous but use messages sent through bidirectional channels
(which can lose messages). Each channel is thus also modelled as an LTS. The
unique communication graph of such a system is a tree.

In our experiments we considered two possible topologies for the systems: lines
and complete binary trees. In each of these cases we considered instances of the
protocol with increasing numbers of processes. We also made other parameters

Message-Passing Algorithms for the Verification of Distributed Protocols 237

Algorithm 3. PGM: source, network elements, and receivers

Source (data: N, winSize: N, txWTr: N, recNak: 2N)
?nak(nr) → !ncf(nr)

txWTr < nr → recNak := add(recNak,nr)
isin(nr,recNak) → nr > txWTr → !rdata(nr,txWTr)

recNak := remove(recNak,nr)
lenght(recNak) = 0 → !odata(data,txWTr)

data := data + 1
odata > winSize + txWTr → txWTr := txWTr + winSize

Network element (setRepair: 2N)
?nak(nr) → setRepair := add(setRepair,nr)

isnotin(setRepair,nr) → !nak(nr) upwards
!ncf(nr) downwards

?rdata(nr,txWTr) → setRepair := remove(setRepair,nr)
!rdata(nr,txWTr) downwards

?ncf(nr) → setRepair := remove(setRepair,nr)
?odata(nr,txWTr) → !odata(nr,txWTr) downwards
isin(nr,setRepair) → !nak(nr) upwards

Receiver (rxWTr: N, setNr: 2N, setMissing: 2N)
?odata(nr,txWTr) ∧ rxWTr < nr → rxWTr < txWTr → rxWTr := txWTr

setNr := add(setNr,nr)
for all (rxWTr < i < nr ∧ isnotin(i,setNr))

setMissing := add(setMissing,i)
setMissing := remove(setMissing,nr)

?rdata(nr,txWTr) ∧ rxWTr < nr → rxWTr < txWTr → rxWTr := txWTr
setNr := add(setNr,nr)
setMissing := remove(setMissing,nr)

isin(nr,setMissing) → nr > rxWTr → !nak(nr)
nr ≤ rxWTr setMissing := remove(setMissing,nr)

vary: the number of different data to be sent by the source (two or three) and
the capacity of the channels (one or two messages). The initial value of data for
the source is set to 1 and the value of winSize is set to anything higher than the
number of different data to be sent. All other integer parameters are initialized
to 0 and all sets are initially empty.

Figure 6 presents the update of a leaf as obtained by Algorithm 1 (using
≡T as congruence) when ran on a complete binary tree of depth five with two
data to be sent and channels of capacity one. It is interesting to notice that
just by looking at this LTS, a behaviour (corresponding to the path with larger
labels in the figure) that may not be directly anticipated from the description
of the protocol can be remarked: it is possible for the leaf to deduce that the
second (and last) data will never be received. This can in fact be explained by
the possible losses of messages. For sure ncf(1) has been sent (by the source
after reception of nak(1) from another leaf) after odata(2, 0). So, each channel

238 L. Jezequel and J. Esparza

between the source and the leaf represented in Figure 6 has contained ncf(1) at
some time, and if it has contained odata(2, 0) at some time it was before ncf(1).
The only explanation for receiving ncf(1) before odata(2, 0) is thus a loss of
odata(2, 0) at some channel.

?ncf(1)

!nak(1)

?ncf(1) !nak(1)

? rdata(1 ,0)

!nak(1)

?rda ta(1 ,0)
?ncf(1) ?rda ta (1 ,0)

!nak(1)?ncf(1)

?rda ta (1 ,0)

?rda ta (1 ,0)

?odata(2 ,0)

?ncf(1)
?odata(2 ,0)

?odata(1 ,0)

Fig. 6. PGM protocol: update of a leaf in a complete binary tree of depth five when
the number of different data to be sent is two and the channels capacity is one

Table 2 gives the results obtained for the PGM protocols on lines, in the case
where the source can only send two different data and the channels are of ca-
pacity one. Results are organized as before. The only difference are in the Basic
and MPA columns. The Basic column presents the times obtained by running
Algorithm 1 while the MPA columns present the times obtained by running Al-
gorithm 4. This algorithm is a variation of Algorithm 1 where messages that
“cross” at some edge of the communication graph are not completely indepen-
dent: the constraints imposed by the first to be computed are used to compute
the second.

Algorithm 4. Variation of Algorithm 1

Input: an interaction graph G = (V,E) with V = {L1, . . . ,Ln}
1: M ← E
2: while M �= ∅ do
3: choose (Li,Lj) ∈ M such that (Lk,Li) /∈ M for every k �= j
4: Li :≡ Li || (|| k �= j,

(Lk,Li) ∈ E

Mk,i)

5: Mi,j :≡ Li \Σj

6: remove (Li,Lj) from M
7: end while
8: for all i ∈ V do
9: Ki :≡ Li || (||(Lj ,Li)∈EMj,i)
10: end for

The local safety and liveness properties we check at the source are the fol-
lowing: “The last data can only be sent once” (its negation is represented by
the FSA ϕ on the left of Figure 7) and “The first data is always sent at least
once” (its negation is represented by the NBA ϕ′ on the right of Figure 7). The
verification process is the same as above.

Message-Passing Algorithms for the Verification of Distributed Protocols 239

ϕ !maxdata !maxdata
ϕ′

!mindata

τ

Fig. 7. Two properties to be checked on PGM. !maxdata (respectively !mindata) rep-
resents any sending of the last data (respectively the first data) using an odata or an
rdata message.

Table 2. Analysis of PGM (with two different data and channels of capacity one) on
lines. Times are in seconds.

Processes
Traces Divergences

Basic MPA OneWay Verification MPA OneWay Verification

5 7.79 0.08 0.03 <0.01 0.11 0.08 <0.01

10 20.27 0.13 0.08 <0.01 0.16 0.13 <0.01

15 32.76 0.19 0.15 <0.01 0.22 0.20 <0.01

20 41.99 0.23 0.16 <0.01 0.26 0.20 <0.01

25 53.14 0.26 0.21 <0.01 0.31 0.24 <0.01

30 67.50 0.30 0.25 <0.01 0.37 0.27 <0.01

35 77.32 0.35 0.29 <0.01 0.43 0.34 <0.01

40 89.95 0.40 0.32 <0.01 0.49 0.36 <0.01

45 101.25 0.46 0.36 <0.01 0.57 0.40 <0.01

50 113.60 0.50 0.40 <0.01 0.60 0.44 <0.01

Table 3. Analysis of PGM on lines using Algorithm 4. Different numbers of data to
be sent (d) and different sizes of channels (c) are considered. Times are in seconds.

Processes
Traces Divergences

d=2, c=2 d=3, c=1 d=2, c=2 d=3, c=1

5 10.71 10.63 15.37 13.26

10 19.19 12.60 28.94 18.00

15 27.24 14.56 41.77 22.21

20 35.53 16.46 55.77 26.80

25 43.66 18.24 68.40 30.95

30 52.14 20.66 81.43 35.36

35 60.16 22.64 95.39 39.82

40 68.78 24.80 109.17 44.49

45 77.00 26.66 122.57 48.56

50 85.12 29.01 136.60 53.27

Table 3 gives the other results obtained for the PGM protocols on lines. Ta-
ble 4 gives the results obtained for the PGM protocols on complete binary trees.
They only report the running times of Algorithm 4 as the verification of the
properties considered still always requires less than 0.01 seconds.

240 L. Jezequel and J. Esparza

Table 4. Analysis of PGM on complete binary trees using Algorithm 4. Different
numbers of data to be sent (d) and different sizes of channels (c) are considered. Times
are in seconds.

Depth Proc.
Traces Divergences

d=2, c=1 d=2, c=2 d=3, c=1 d=2, c=1 d=2, c=2 d=3, c=1

3 7 0.85 26.26 59.30 1.41 33.96 93.02

4 15 1.58 56.10 114.05 1.60 72.89 156.93

5 31 2.48 113.82 235.32 2.93 153.47 316.63

6 63 5.06 231.27 472.19 5.73 310.28 641.13

7 127 10.24 474.57 979.85 12.10 625.61 1582.23

Analysis of the Results. Spin can deal with lines of length 5 within 20
seconds but cannot handle larger lines nor binary trees without running out of
the 4GB of memory allowed to it. In addition to what has been noticed in the
case of Raymond’s mutual exclusion protocol, it appears that using Algorithm 4
instead of Algorithm 1 can significantly reduce running times. This is due to the
fact that some constraints are taken into account earlier, and so some messages
can be simplified. Using this version of our approach is not always that efficient
however. In the case of Raymond’s mutual exclusion protocol, for example, it
almost does not reduce running times. The comparison of the different numbers
of data and capacities of channels also shows that, if our approach scales well
with the number of components of the system to analyse, it is more sensitive to
increases of the sizes of these components.

Conclusion

We have presented message-passing algorithms for the verification of local prop-
erties of distributed protocols. The components of the protocol must have a
tree-shaped communication structure. The MPAs compute for each component
Li an LTS equivalent to the result of hiding in the full LTS (the LTS of the full
protocol) all actions not appearing in Li. We have shown that the MPAs can be
instantiated with different equivalence notions, in particular trace equivalence
and divergence equivalence. We have evaluated the algorithms on two well-known
protocols, and shown that for several important properties they scale very well,
in particular much better than a generic search-based model-checker like Spin.

The properties we have used for our comparison with Spin were true proper-
ties, i.e., properties that hold for the protocol. In fact, for false properties Spin
often outperforms our approach, possibly due to the existence of a relatively
large number of counterexamples, which allows Spin to quickly find one. This
suggests to run Spin and a suitable MPA in parallel.

Future work will explore how to instantiate the MPAs with equivalence rela-
tions sensitive to deadlocks or partial deadlocks.

Message-Passing Algorithms for the Verification of Distributed Protocols 241

References

1. Fabre, E.: Bayesian Networks of Dynamic Systems. Habilitation à diriger des
recherches, Université de Rennes1 (2007)

2. Fabre, E., Jezequel, L.: Distributed optimal planning: an approach by weighted
automata calculus. In: CDC, pp. 211–216 (2009)

3. Fabre, E., Jezequel, L., Haslum, P., Thiébaux, S.: Cost-optimal factored planning:
Promises and pitfalls. In: ICAPS, pp. 65–72 (2010)

4. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. TCS 7(1),
61–77 (1989)

5. Speakman, T., et al.: PGM reliable transport protocol specification. RFC 3208
(Experimental) of the IETF (2001)

6. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

7. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

8. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: Clarke,
E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 186–196. Springer, Hei-
delberg (1991)

9. Grumberg, O., Long, D.E.: Model checking and modular verification.
TOPLAS 16(3), 843–871 (1994)

10. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hullance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Brinksma, E., Steffen, B., Cleave-
land, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133–152. Springer, Heidelberg (1995)

11. FRD2 user manual (2009)
12. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: A semantics-

based tool for the verification of concurrent systems. TOPLAS 15(1), 36–72 (1993)
13. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the

construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)
14. Abdulla, P.A.: Regular model checking. STTT 14(2), 109–118 (2012)
15. Bérard, B., Bouyer, P., Petit, A.: Analysing the PGM protocol with UPPAAL.

International Journal of Production Research 42(14), 2773–2791 (2004)
16. Boyer, M., Sighireanu, M.: Synthesis and verification of constraints in the PGM

protocol. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 264–281. Springer, Heidelberg (2003)

17. Esparza, J., Maidl, M.: Simple representative instantiations for multicast protocols.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 128–143.
Springer, Heidelberg (2003)

18. Bodlaender, H.: A linear time algorithm for finding tree-decompositions of small
treewidth. In: STC, pp. 226–234 (1993)

19. Sakarovitch, J.: Éléments de théorie des automates. Vuibert (2003)
20. Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating pro-

cesses. In: Brookes, S.D., Winskel, G., Roscoe, A.W. (eds.) Seminar on Concur-
rency. LNCS, vol. 197, pp. 281–305. Springer, Heidelberg (1985)

21. Valmari, A.: All linear-time congruences for finite LTSs and familiar operators. In:
ACSD (2012)

22. Holzmann, G.: The SPIN model checker: primer and reference manual. Addison-
Wesley Professional (2003)

Safety Problems Are NP-complete for Flat Integer
Programs with Octagonal Loops

Marius Bozga1, Radu Iosif1, and Filip Konečný2

1 VERIMAG/CNRS, Grenoble, France
2 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. This paper proves the NP-completeness of the reachability problem
for the class of flat counter machines with difference bounds and, more generally,
octagonal relations, labeling the transitions on the loops. The proof is based on
the fact that the sequence of powers {Ri}∞

i=1 of such relations can be encoded as
a periodic sequence of matrices, and that both the prefix and the period of this
sequence are 2O(||R||2) in the size of the binary encoding ||R||2 of a relation R. This
result allows to characterize the complexity of the reachability problem for one
of the most studied class of counter machines [6,10], and has a potential impact
on other problems in program verification.

1 Introduction

Counter machines are powerful abstractions of programs, commonly used in software
verification. Due to their expressive power, counter machines can simulate Turing
machines [18], hence, in theory, any program can be viewed as a counter machine.
In practice, effective reductions to counter systems have been designed for programs
with dynamic heap data structures [3], arrays [5], dynamic thread creation and shared
memory [1], etc. Since counter machines with only two variables are Turing-complete
[18], all their decision problems (reachability, termination) are undecidable. This early
negative result motivated researchers to find classes of systems with decidable prob-
lems, such as: (branching) vector addition systems [13,17], reversal-bounded counter
machines [16], Datalog programs with gap-order constraints [20], and flat counter ma-
chines [2,10,6]. Despite the fact that reachability of a set of configurations is decidable
for these classes, few of them are actually supported by tools, and used for real-life
verification purposes. The main reason is that the complexities of the reachability prob-
lems for these systems are, in general, prohibitive. Thus, most software verifiers rely on
incomplete algorithms, which, due to the loss of precision, may raise large numbers of
false alarms. Improving the precision of these tools requires mixed techniques such as
combinations of static analysis and acceleration and relies on identifying subproblems
for which the set of reachable states, or the transitive closure of the transition relation,
can be computed precisely [14].

We study the complexity of the reachability problems for a class of flat counter
machines (i.e., the control structure forbids nested loops), in which the transitions oc-
curring inside loops are all labeled with difference bounds constraints, i.e. conjunctions
of linear inequalities of the form x− y ≤ c where x,y ∈ x∪ x′ and c ∈ Z is a constant.

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 242–261, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops 243

Furthermore, we extend the result to the case of octagonal relations, which are conjunc-
tions of the form ±x± y≤ c.

The decidability of the reachability problem for these classes relies on the fact that
the transitive closures R+ of relations R, defined by difference bounds and octagonal
constraints, are expressible in Presburger arithmetic [10]. In [6], we presented a concise
proof of this fact, based on the observation that any sequence of powers {Ri}i=1, can
be encoded as a periodic sequence of matrices, which can be defined by a quantifier-
free Presburger formula whose size depends on the prefix and the period of the matrix
sequence. In this paper we show primarily that both the prefix and period and this
sequence are of the order of 2O(||R||2), where ||R||2 is the size of the binary encoding of
the relation. More precisely, the quantifier-free Presburger formula defining a transitive
closure (and, implicitly, the reachability problem for the counter machine) has 2O(||R||2)

many disjuncts of polynomial size. A non-deterministic Turing machine that solves the
reachability problem can guess, for each loop relation R, the needed disjunct of R+, and
validate its guess in NPTIME(||R||2).

Related Work. The complexity of safety, and, more generally, temporal logic proper-
ties of integer counter machines has received relatively little attention. For instance,
the exact complexity of reachability for vector addition systems (VAS) is an open
problem (the only known upper bound is non-primitive recursive), while the coverage
and boundedness problems are EXPSPACE-complete for VAS [19], and 2EXPTIME-
complete for branching VAS [13].

In [15] the authors study the functional equivalence of programs with increment,
decrement and zero test, in the reversal-bounded case, where the counters are allowed to
switch between non-decreasing and non-increasing modes a number of times which is
bounded by a constant. It is found that the equivalence problem is in PSPACE, while the
in-equivalence problem is NP-complete. Our model of computation is incomparable,
since flat programs with non-deterministic updates are not reversal-bounded.

On what concerns counter machines with gap-order constraints (a restriction of dif-
ference bounds constraints x−y≤ c to the case c≤ 0), reachability is PSPACE-complete
[9], even in the absence of the flatness restriction on the control structure. Our result is
incomparable to [9], as we show NP-completeness for flat counter machines with more
general1, difference bounds relations on loops.

The results which are probably closest to ours are the ones in [12,11], where flat
counter machines with deterministic transitions of the form

∧m
j=1 ∑n

i=1 a ji · xi + b ji ≤
0∧∧n

i=1 x′i = xi + ci are considered. In [12] it is shown that model-checking LTL is
NP-complete for these systems, matching thus our complexity for reachability with dif-
ference bounds constraints, while model-checking first-order logic and linear µ-calculus
is PSPACE-complete [11], matching the complexity of CTL* model checking for gap-
order constraints [9]. These results are again incomparable with ours, since (i) the linear
guards are more general, while (ii) the vector addition updates are more restrictive (e.g.
the direct transfer of values x′i = x j for i
= j is not allowed).

1 The generalization of gap-order to difference bound constraints suffices to show undecidability
of non-flat counter machines, hence the restriction to flat control structures is crucial.

244 M. Bozga, R. Iosif, and F. Konečný

2 Preliminary Definitions

We denote by Z and N the sets of integers and positive integers, and let Z∞ = Z∪
{∞}. We write [n] for the interval {0, . . . ,n− 1}, abs(n) for the absolute value of the
integer n ∈ Z, and lcm(n1, . . . ,nk) for the least common multiple of n1, . . . ,nk ∈ N.
Let x denote a nonempty set of variables, and x′ = {x′ | x ∈ x}. A valuation of x is
a function ν : x−→ Z. The set of all such valuations is denoted by Zx, and we denote
by ZN the N-times cartesian product Z× . . .×Z, for some N > 0. We assume that
the reader is familiar with Presburger arithmetic, and we denote by QFPA (quantifier-
free Presburger arithmetic) the set of boolean combinations of linear inequalities and
linear modulo constraints. For a QFPA formula φ, let Atom(φ) denote the set of atomic
propositions in φ, and ϕ[t/x] denote the formula obtained by substituting the variable x
with the term t in ϕ.

A formula φ(x,x′) is evaluated with respect to two valuations ν1,ν2 ∈ Zx, by replac-
ing each occurrence of x ∈ x with ν1(x) and each occurrence of x′ ∈ x′ with ν2(x) in φ.
The satisfaction relation is denoted by (ν1,ν2) |= φ(x,x′). A formula φR(x,x′) is said
to define a relation R ⊆ Zx×Zx whenever for all ν1,ν2 ∈ Zx, (ν1,ν2) ∈ R if and only
if (ν1,ν2) |= φR. The composition of two relations R1,R2 ⊆ Zx×Zx defined by formu-
lae ϕ1(x,x′) and ϕ2(x,x′), respectively, is the relation R1 ◦R2, defined by the formula
∃y . ϕ1(x,y)∧ϕ2(y,x′). The identity relation Idx is defined by the formula

∧
x∈x x′ = x.

Definition 1. A class of relations is a set R of QFPA formulae φR(x,x′) defining rela-
tions R⊆Zx×Zx, such that Idx is R -definable, and, for any two R -definable relations
R1,R2 ⊆ Zx×Zx, their composition R1 ◦R2 is R -definable.

Notice that any set R of formulae ϕ(x,x′) that has quantifier elimination is a class
of relations. If the class of a relation is not specified a priori, we consider it to be
the set of all QFPA formulae. Given a relation R, we denote by Ri, for i > 0, the i-
times composition of R with itself, and by R0 the identity relation Idx. We denote by
R+ =

⋃∞
i=1 Ri the transitive closure of R. Notice that, if R is an R -definable relation,

then the sequence {Ri}i≥0 is R -definable as well. In the following, we sometimes use
the same symbol to denote a relation R⊆ Zx×Zx and the formula φR(x,x′) defining it.

For a constant c∈Z, we denote by ||c||2 = !log2(abs(c))", if abs(c)> 2 and ||c||2 = 2,
otherwise, the size of its binary encoding2. The binary size of a formula is the sum of
the binary sizes of its coefficients. It is known that the satisfiability problem for QFPA is
NP-complete in the binary size of the formula [22]. The binary size of an R -definable3

relation R is ||R||R2 = min{||φR||2 | φR ∈ R , φR defines R}. When the class of a relation
is obvious from the context, it will be omitted. For space reasons, all proofs and missing
material are given in [7].

2 Abstracting from particular machine representations, we assume that at least 2 bits are needed
to encode each integer.

3 The class R is relevant here, because the same relation can be defined by a smaller formula
not in R

Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops 245

3 The Reachability Problem for Flat Counter Machines

Formally, a counter machine is a tuple M = 〈x,L, �init , � f in,⇒,Λ〉, where x is a set of
first-order variables ranging over Z, L is a set of control locations, �init , � f in ∈ L are

initial and final control locations, ⇒ is a set of transition rules of the form �
R⇒ �′,

where �,�′ ∈ L are control locations, and R ⊆ Zx ×Zx is a relation, and Λ(� R⇒ �′)
gives the class of R. A loop is a path in the control graph 〈L,⇒〉 of M, where the
source and the destination locations are the same, and every transition rule appears
only once. A counter machine is said to be flat if and only if every control location is
the source/destination of at most one loop. The binary size of a counter machine M is

||M||2 = ∑
�

R⇒�′
||R||Λ(�

R⇒�′)
2 .

A configuration of M is a pair (�,ν), where � ∈ L is a control location, and ν ∈
Zx is a valuation of the counters. A run of M to � is a sequence of configurations
(�0,ν0), . . . ,(�k,νk), of length k≥ 0, where �0 = �init , �k = �, and for each i= 0, . . . ,k−1,

there exists a transition rule �i
Ri⇒ �i+1 such that (νi,νi+1) ∈ Ri. If � is not specified, we

assume �= � f in, and say that the sequence is a run of M.
The reachability problem asks, given a counter machine M, whether there exists a

run in M? This problem is, in general, undecidable [18], and it is decidable for flat
counter machines whose loops are labeled only with certain, restricted, classes of QFPA
relations, such as difference bounds (Def. 7) or octagons (Def. 9). The crux of the
decidability proofs in these cases is that the transitive closure of any relation of the
above type can be defined in QFPA, and is, moreover, effectively computable (see [6] for
an algorithm). The goal of this paper is to provide tight bounds on the complexity of the
reachability problem in these decidable cases. The parameter of the decision problem
is the binary size of the input counter machine M, i.e. ||M||2. The following theorem
proves decidability of the reachability problem for flat counter machines, under the
assumption that the composition L of the relations on every loop in a counter machine
has a QFPA-definable transitive closure.

Theorem 1 ([8,6,2]). The reachability problem is decidable for any class of counter

machines M = {M flat counter machine | for all q
R1⇒ . . .

Rn⇒ q in M, (R1 ◦ . . .◦Rn)
+ is

QFPA-definable}.

4 Periodic Relations

We introduce a notion of periodicity on classes of relations that can be naturally repre-
sented as matrices. In general, an infinite sequence of integers is said to be periodic if
the elements of the sequence beyond a certain threshold (prefix), and which are situated
at equal distance (period) one from another, differ by the same quantity (rate). This no-
tion of periodicity is lifted to matrices of integers, entry-wise. If R is a periodic relation,
the sequence of powers {Rk}k≥0 has an infinite subsequence, that can be captured by a
QFPA formula, defining infinitely many powers of the relation.

Example 1. For instance, consider the relation R⇔ x′ = y+ 1∧ y′ = x. This relation is
periodic, and we have R2k+1 ⇔ x′ = y+ k+1∧y′ = x+ k and R2k+2 ⇔ x′ = x+ k+1∧
y′ = y+ k+ 1, for all k ≥ 0.

246 M. Bozga, R. Iosif, and F. Konečný

Definition 2. An infinite sequence of matrices {Ak ∈ Zm×m
∞ }∞

k=0 is said to be periodic
if and only if there exist integers b,c > 0 and matrices Λ0, . . . ,Λc−1 ∈ Zm×m

∞ such that
Ab+(k+1)c+i = Λi +Ab+kc+i, for all k ≥ 0 and i ∈ [c].

The smallest integers b,c are called the prefix and the period of the sequence. The
matrices Λi, corresponding to the prefix-period pair (b,c), are called the rates of the
sequence. A relation R is said to be ∗-consistent if and only if Rn
= /0, for all n > 0.

Definition 3. A class of relations R is said to be periodic iff there exist two functions
σ : R →⋃

m>0Z
m×m
∞ and ρ :

⋃
m>0Z

m×m
∞ →R , such that ρ(σ(φ))⇔ φ, for each formula

φ ∈ R , and for any ∗-consistent relation R defined by a formula from R , the sequence
of matrices {σ(Ri)}i≥0 is periodic.

If R is a ∗-consistent relation, the prefix, period b,c > 0 and rates Λ0, . . . ,Λc−1 ∈ Zm×m

of the {σ(Ri)}i≥0 sequence are called the prefix, period and rates of R, respectively.
Otherwise, if R is not ∗-consistent, we convene that its prefix is the smallest b> 0 such
that Rb = /0, and its period is one. Examples of mappings σ and ρ are given in Section
7.3 for difference bounds relations, and in Section 8.1 for octagonal relations.

Definition 4. Let R ⊆ Zx × Zx be a relation. The closed form of R is the formula
R̂(k,x,x′), where k
∈ x, such that the formula R̂[n/k] defines Rn, for all n≥ 0.

If R is a class of relations, let R [k] denote the set of closed forms of relations defined by
formulae in R 4. Let Z[k]m×m

∞ be the set of matrices M[k] of univariate linear terms, i.e.
Mi j ≡ ai j ·k+bi j, where ai j,bi j ∈ Z, for all 1≤ i, j≤m or Mi j = ∞. In addition to the σ
and ρ functions from Def. 3, we consider a function π :

⋃
m>0Z[k]

m×m
∞ →R [k], mapping

matrices M[k] into formulae φ(k,x,x′) such that π(M)[n/k]⇔ ρ(M[n/k]), for all n≥ 0.
The following lemma characterizes the closed form of a periodic relation, by defining
an infinite periodic subsequence of powers of the form {Rkc+b+i}k≥0, for some b,c > 0
and i ∈ [c].

Lemma 1. Let R be a periodic class of relations, and R ⊆ Zx×Zx be a R -definable
relation. Let b,c > 0 be integers, and Λi be matrices, for all i ∈ [c]. Consider the fol-
lowing statements, for all k≥ 0 and i ∈ [c]:

1. R is ∗-consistent
2. R̂(k · c+ b+ i) ⇔ π(k ·Λi+σ(Rb+i))

3. π(k ·Λi +σ(Rb+i))
⇔ false
4. ∃y . π(k ·Λi +σ(Rb+i))(x,y) ∧ Rc(y,x′) ⇔ π((k+ 1) ·Λi+σ(Rb+i))(x,x′)

Then (1) and (2) hold if and only if (3) and (4) hold.

4 The closed form of a QFPA-definable relation can always be defined in first-order arithmetic,
using Gödel’s encoding of integer sequences, and is not, in general, equivalent to a QFPA
formula.

Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops 247

5 Flat Counter Machines with Periodic Loops

For simplicity’s sake, consider first the counter machines with the structure below:

�init
I(x′)−−→

R(x,x′)
�

�
F(x)−−→ � f in (1)

where R ⊆ Zx×Zx is a periodic relation (Def. 3), and I,F ⊆ Zx are QFPA-definable
sets of valuations. In the following, we give sufficient conditions (Def. 6) under which
the reachability problem for the counter machines (1) is NP-complete.

Definition 5. A class of relations R is said to be poly-logarithmic if and only if there
exist integer constants p,q,r,s > 0, depending on R , such that, for all P,Q,R ∈ R :

1. ||Rn||2 = O(||R||p2 · (log2 n)q), for all n > 0
2. the composition P◦Q can be computed in time O((||P||2 + ||Q||2)r)
3. the consistency R
⇔ false can be checked in time O(||R||s2)

If R is a poly-logarithmic class of relations, it is not difficult to see that there exists
a constant d > 0, depending of R , such that, for any R -definable relation R, the n-
th power Rn can be computed by a fast exponentiation algorithm in time O((||R||2 ·
log2 n)d).

Definition 6. A class of periodic relations R is said to be exponential if and only if (A)
R is poly-logarithmic, (B) the mappings σ, ρ and π (Def. 3) are computable in PTIME,
and (C) for each R -definable relation R⊆ Zx×Zx:

1. there exist integer constants p,q > 0, depending on R , such that the prefix and
period of R are bounded by 2||R||

p
2 and 2||R||

q
2 , respectively

2. given i ∈ [c] and Λi = σ(Rb+c+i)−σ(Rb+i), points (3) and (4) of Lemma 1 can be
checked in NPTIME(||R||2)

The idea of the reduction is to show the existence of a non-deterministic Turing ma-
chine (Alg. 1) that produces, in time at most polynomial in the binary size of the input, a
QFPA formula, which encodes the reachability question for the given counter machine.
If the formula produced by a non-deterministic branch is satisfiable, the reachability
question has a positive answer. Otherwise, if no branch of Alg. 1 returns “yes”, the
reachability question has a negative answer.

Since the formulae produced by Alg. 1 (lines 6 and 13) are of size at most polynomial
in the size of the input (1), and that deciding whether a QFPA formula is satisfiable is
an NP problem, it turns out that the reachability problem for the counter machines (1)
is in NP. The general result is given in Thm. 2, which applies the idea used for single
loop counter machines (1) to flat counter machines, in general.

To understand Alg. 1, observe first that the reachability problem for (1) can be stated
as the satisfiability of the following formula: I(x)∧k≥ 0∧ R̂(k,x,x′)∧F(x′). Since, in
general, the closed form R̂(k,x,x′) is not QFPA-definable, we focus on the case where
R is a periodic relation (Def. 3). We distinguish two cases. First, if R is not ∗-consistent,
i.e. Ri = /0 if and only if i is greater or equal than the prefix b of R, the reachability

248 M. Bozga, R. Iosif, and F. Konečný

Algorithm 1. Non-deterministic Algorithm for the Reachability Problem (1)
1: function ISREACHABLE(I,R,F)
2: goto 8 or 3 [guess whether R is ∗-consistent]
3: choose 0 < b < 2||R||

p
2

4: assume Rb−1
= /0 and Rb = /0 [check that R is not ∗-consistent]
5: choose i ∈ [b]
6: assume ∃x∃x′ . I(x)∧Ri(x,x′)∧F(x′)
7: return YES

8: choose 0 < b < 2||R||
p
2 , 0 < c < 2||R||

q
2 and j ∈ [c]

9: Λ← σ(Rb+c+ j)−σ(Rb+ j)
10: assume ∀k≥ 0 ∃x∃x′ . π(k ·Λ+σ(Rb+ j))(x,x′) [check that R is ∗-consistent]

11: assume
(
∀x∀x′∀k≥ 0 [∃y . π(k ·Λi +σ(Rb+i))(x,y) ∧ Rc(y,x′)]

⇔ π((k+ 1) ·Λi+σ(Rb+i))(x,x′)

)
12: choose i ∈ [b]
13: assume ∃x∃x′ . I(x)∧ [Ri(x,x′)∨ (k≥ 0∧π(k ·Λ+σ(Rb+ j)))]∧F(x′)
14: return YES

problem for (1) is equivalent to the satisfiability of the formula I(x)∧
[∨b−1

i=0 Ri(x,x′)
]
∧

F(x′). Second, if R is ∗-consistent, the reachability problem for (1) is equivalent to the
satisfiability of the following formula:

I(x)∧
[b−1∨

i=0

Ri(x,x′)︸ ︷︷ ︸
prefix

∨
c−1∨
j=0

k ≥ 0∧π(k ·Λ j +σ(Rb+ j))︸ ︷︷ ︸
period

]
∧F(x′) (2)

where b,c > 0 are integers, and Λ0, . . . ,Λc−1 are matrices meeting the conditions of
the second point of Lemma 1. The first disjunct above takes care of the case when the
number of iterations of the loop is smaller than the prefix b, and the second one deals
with the other case, when kc+ b+ j iterations of the loop are needed, for some k ≥ 0
and j ∈ [c].

The first guess of Alg. 1 is whether R is ∗-consistent or not (line 2). If the guess was
that R is not ∗-consistent, Alg. 1 guesses further a positive constant b, bounded by 2||R||

p
2 ,

where p > 0 depends on the class R (line 3). Then it checks that b is the prefix of R,
by computing Rb−1 and Rb, and checking that Rb−1
= /0 and Rb = /0 (line 4). By Def. 5,
this check can be done in PTIME(||R||2). If the prefix check (line 4) is successful, the
reachability problem can be encoded in QFPA by further guessing i∈ [B], and producing
the QFPA formula I(x)∧Ri(x,x′)∧F(x′) (line 6). Since R is a poly-logarithmic class,
||Ri||2 = O(||R||r2 · (log2 i)s) = O(||R||r+s

2), for some r,s > 0, depending on R . Thus, the
binary size of this formula is polynomial in ||I||2 + ||R||2 + ||F ||2, and the reachability
problem, can be answered in NPTIME(||R||2 + ||I||2 + ||F||2), by checking satisfiability
of this formula (line 6).

If, on the other hand, the first guess was that R is ∗-consistent, then Alg. 1 will
further guess constants 0 < b < 2||R||

p
2 and 0 < c < 2||R||

q
2 , for some constants p,q > 0

depending on R , and j ∈ [c] (line 8). Next, it computes the powers Rb+ j and Rb+c+ j in

Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops 249

PTIME(||R||2), using fast exponentiation, and lets Λ = σ(Rb+c+ j)−σ(Rb+ j). Clearly,
the binary size of Λ is bounded by a polynomial in ||R||2. Further, the algorithm needs
to check whether the choices of b,c, j and Λ where adequate for defining the closed
form of the infinite sequence of powers {Rc·k+b+ j}k≥0, using Lemma 1. Moreover, it
also needs to check the initial guess that R is ∗-consistent, using this closed form. To
this end, it must check the points (3) and (4) of Lemma 1, which by Def. 6 (point C.2)
can be done in NPTIME(||R||2) (lines 10 and 11 of Alg. 1, respectively). Next, Alg.
1 outputs a QFPA formula encoding the reachability problem, using the closed form
for the sequence {Rc·k+b+ j}k≥0 (line 13). The size of this formula is polynomial in
||I||2 + ||R||2 + ||F||2, and its satisfiability status, and thus the reachability problem for
the counter machine (1), can be decided in NPTIME(||I||2 + ||R||2 + ||F||2).

It is not difficult to see that the reachability problem for (1) is NP-hard, by reduction
from the satisfiability problem for QFPA [22]: let I(x) be any QFPA formula over x,
R = false and F = true. Then q f is reachable from qi if and only if I(x) is satisfiable.
The following theorem generalizes the proof from (1) to general flat counter machines.

Theorem 2. If R is a periodic exponential class of relations, the reachability problem

for the class MR = {M flat counter machine | for all rules q
R⇒ q′ on a loop of M, R is

R -definable} is NP-complete.

6 The Periodicity of Tropical Matrix Powers

Weighted graphs are central to the upcoming developments. The main intuition is that
the sequence of matrices representing the powers of a difference bounds relation cap-
tures minimal weight paths of lengths 1,2,3 . . . in a weighted graph. Formally, a weight-
ed digraph is a tuple G = 〈V,E,w〉, where V is a set of vertices, E ⊆ V ×V is a set of
edges, and w : E → Z is a weight function. A path π in G is said to be elementary if all
vertices on π are distinct, except for the first and last vertex, which may be the same. For
a path π, we denote its length by |π|, and its weight (the sum of the weights of all edges

on π) by w(π). The average weight of π is defined as w(π) = w(π)
|π| . We assume that the

reader is familiar with the notion of strongly connected component (SCC). A cycle is
said to be critical if it has minimal average weight among all cycles in its SCC. The
cyclicity of a SCC is the greatest common divisor of the lengths of all its elementary
critical cycles, or 1, if the SCC contains no cycles.

Let A ∈ Zm×m
∞ be a square matrix, and G be any weighted graph, such that A is the

incidence matrix of G. Let (A�B)i j =minm
k=1(aik+bk j) denote the tropical product of A

and B, A�1
= A and A�k+1

= A�k �A, for all k > 0. The sequence {A�k}∞
k=1 of tropical

powers of A gives the minimal weights of the paths of lengths k = 1,2, . . . between any
two vertices in G. The following theorem shows that any sequence of tropical matrix
powers is periodic, and provides an accurate characterization of its period.

Theorem 3 ([21]). Let A∈Zm×m
∞ be a matrix, G= 〈V,E,w〉 be a weighted graph whose

incidence matrix is A, and W1, . . . ,Wn be the partition of G in strongly connected com-
ponents. The sequence {A�k}∞

k=1 is periodic, and its period is lcm(c1, . . . ,cn), where
c1, . . . ,cn are the cyclicities of W1, . . . ,Wn, respectively.

250 M. Bozga, R. Iosif, and F. Konečný

The above theorem does not give an estimate on the prefix of the sequence, which is
carried out by the following theorem:

Theorem 4. Given a matrix A ∈ Zm×m
∞ , the sequence {A�k}∞

k=1 is periodic with prefix
at most max(m4,4 ·M ·m6), where M = max{abs(Ai j) | 1≤ i, j ≤ m,Ai j < ∞}.

Notice that if A has only 0 and ∞ entries, then M = 0 and the prefix depends only on m.

7 Difference Bounds Relations

In the rest of this section, let x = {x1,x2, ...,xN} be a set of variables ranging over Z.

Definition 7. A formula φ(x) is a difference bounds constraint if it is a finite conjunc-
tion of atomic propositions of the form xi − x j ≤ αi j, 1 ≤ i, j ≤ N, where αi j ∈ Z.
A relation R⊆Zx×Zx is a difference bounds relation if it can be defined by a difference
bounds constraint φR(x,x′). The class of difference bounds relations is denoted by R DB.

Difference bounds constraints are represented either as matrices or as graphs. If φ(x) is
a difference bounds constraint, then a difference bounds matrix (DBM) representing φ is
an N×N matrix Mφ such that (Mφ)i j = αi j if xi− x j ≤ αi j ∈ Atom(φ), and (Mφ)i j = ∞,
otherwise. The constraint graph Gφ = 〈x,→〉 is a weighted graph, where each vertex

corresponds to a variable, and there is an edge xi
αi j−→ x j in Gφ if and only if there exists

a constraint xi− x j ≤ αi j in φ (Fig. 1(a)). Clearly, Mφ is the incidence matrix of Gφ. If
R is a difference bounds relation defined by the difference bounds constraint φR(x,x′),

the folded graph of R is the graph G f
R = 〈x, f−→〉, which has an edge xi

f−→ x j whenever

xi
α−→ x j, xi

α−→ x′j, x′i
α−→ x j, or x′i

α−→ x′j in GR. For any two variables xi,x j ∈ x, we write

xi ∼R x j whenever xi and x j belong to the same SCC of G f
R (Fig. 1(c)). If M ∈ ZN×N

∞ is

x2 x′2

x1 x′1
1

−1

2

−2

⎛⎜⎜⎜⎜⎝

x1 x2 x′1 x′2
x1 0 ∞ 1 −1
x2 ∞ 0 −2 2

x′1 ∞ ∞ 0 ∞
x′2 ∞ ∞ ∞ 0

⎞⎟⎟⎟⎟⎠
x2

x1

x2
x1

x(0) x(1) x(2) x(3) x(4) x(5) x(6)

π1 π2

x2
x1

π3 π4

(a) GR (b) M∗
R (c) G f

R (d) z-paths in Gω
R

Fig. 1. Let R(x1,x2,x′1,x
′
2)⇔ x1−x′1 ≤ 1∧x1−x′2 ≤−1∧x2−x′1 ≤−2∧x2−x′2 ≤ 2 be a differ-

ence bounds relation. (a) shows the graph representation GR, (b) the closed DBM representation
of R, and (c) the folded graph of GR, where x1 ∼R x2. (d) shows several odd forward z-paths:
π1 (essential and repeating), π2 (repeating), π3 (essential) and π4 = π3.π1 (neither essential nor
repeating).

Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops 251

a DBM, we define5:

Φuu
M ≡ ∧

Mi j<∞ xi− x j ≤Mi j Φpu
M ≡ ∧

Mi j<∞ x′i− x j ≤Mi j

Φup
M ≡ ∧

Mi j<∞ xi− x′j ≤Mi j Φpp
M ≡ ∧

Mi j<∞ x′i− x′j ≤Mi j

A DBM M is said to be consistent if and only if Φuu
M is consistent. A consistent

difference bounds matrix M ∈ ZN×N
∞ is said to be closed if Mii = 0, for all 1 ≤ i ≤

N, and all triangle inequalities Mik ≤ Mi j +Mjk hold, for all 1 ≤ i, j,k ≤ N. Given
a consistent DBM M, the (unique) closed DBM which is logically equivalent to M is
denoted by M∗ (Fig. 1(b)). It is well known that difference bounds constraints have
quantifier elimination6, and are thus closed under relational composition.

Lemma 2. The class R DB is poly-logarithmic.

7.1 Zigzag Automata

Zigzag automata have been used in the proof of Presburger definability of transitive
closures [8], and of periodicity [6], for difference bounds and octagonal relations. They
are needed here for showing that difference bounds relations are exponential (Def. 6).
Let x = {x1, . . . ,xN} be a set of variables, and R ⊆ Zx×Zx be a difference bounds
relation, with constraint graph GR. Let ΣR = 2GR denote the set of subgraphs of GR.
A finite word of length n ≥ 0 over ΣR is a mapping w : [n]→ ΣR. The notion of finite
words over ΣR extends naturally to infinite words w : N→ ΣR, and to bi-infinite words
w : Z→ ΣR. The concatenation of two finite words w : [n]→ ΣR and w′ : [m]→ ΣR is a
word w ·w′ : [n+m]→ ΣR, defined as (w ·w′)(i) =w(i), for all 0≤ i< n and (w ·w′)(i) =
w′(i− n), for all n≤ i < n+m. The set of finite words is denoted Σ∗R. For a finite word
w : [n]→ ΣR, we denote by ωwω its bi-infinite iteration, i.e. ωwω(i) = w(i mod n) for
all i ∈ Z. For example, Fig. 2(a) shows the constraint graph GR of a difference bounds
relation R, and Fig. 2(b) shows several symbols γ1, . . . ,γ9 ∈ ΣR. We associate with every
finite word w : [n]→ Σ a graph Hw = (

⋃n
i=0 x(i),−→), where x(i) = {x(i) | x ∈ x}, and:

– x(i)k
α−→ x(i+1)

� in Hw if and only if xk
α−→ x′� in w(i)

– x(i+1)
k

α−→ x(i)� in Hw if and only if x′k
α−→ x� in w(i)

for all 1 ≤ k, � ≤ N and for all 0 ≤ i < n. For example, Fig. 2(c) shows the graph Hv

corresponding to the word v = γ0.γ2
1.γ2.γ3.γ4.γ3

5.γ6.γ7.γ3
8.γ9.γ1.γ2.γ3.γ4. This notation is

extended to bi-infinite words, in the obvious way. In the following, we abuse notation
and denote the graph HωGR

ω , corresponding to the bi-infinite iteration of GR, by ωGR
ω.

A word w : [n]→ ΣR is said to be valid if and only if each vertex of Hw has in-degree
and out-degree at most one, and the in-degree and out-degree of each vertex from the set

{x(i)k | i = 1, . . . ,n−1} are equal. It is easy to see that the word v from Fig. 2(c) is valid,
by inspection of the graph Hv. The notion of validity extends from finite to bi-infinite
words, in the obvious way.

5 The superscripts u and p stand for unprimed and primed, respectively.
6 The quantifier elimination procedure relies on the classical Floyd-Warshall closure algorithm.

252 M. Bozga, R. Iosif, and F. Konečný

x7 x′7

x6 x′6

x5 x′5

x4 x′4

x3 x′3

x2 x′2

x1 x′10

0

−1

−1

0

0
0

1

0

0

−1

−1

0

0

0

0

−1

−1

0

0

1

0

0

−1

−1

0

0
0

0

0

−1

0

0

0

−1

0

−1

−1

−1

0

0

−1

0

0

0

−1

0

0

0

0

−1

−1

0

0

0

γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9

(a) GR (b) Symbols of the zigzag alphabet ΣR.

x7

x6

x5

x4

x3

x2

x1

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12) x(13) x(14) x(15) x(16) x(17) x(18) x(19)

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1
0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

0

(c) A fitting odd forward z-path from x(0)1 to x(19)
7 in Hγ0.γ2

1.γ2.γ3.γ4.γ3
5.γ6.γ7.γ3

8.γ9.γ1.γ2.γ3.γ4
.

Fig. 2. Zigzag alphabet and a path in the unfolded constraint graph of a difference bounds relation
R≡ x1−x′2 ≤ 0∧ x2−x′3 ≤ 0∧ x′3−x4 ≤ 0∧ x′4−x5 ≤ 0∧ x′5−x6 ≤ 0∧ x′6−x6 ≤ 1∧ x′6−x7 ≤
0∧ x7−x′7 ≤−1∧ x′7−x5 ≤ 0∧ x5−x′1 ≤−1

Given a difference bounds relation R ⊆ Zx ×Zx, the set of valid finite words in
Σ+

R is recognizable by a finite weighted automaton, called a zigzag automaton in the
following. Let TR = 〈Q,Δ,ω〉 be a weighted graph7, called the transition table of the
zigzag automata over ΣR, where Q = {�,r, �r,r�,⊥}N is a set of states, Δ : Q×ΣR → Q
is a transition mapping, and ω : ΣR → Z∞ is a weight function. Intuitively, a state q =
〈q〈1〉, . . . ,q〈N〉〉 ∈ Q describes a vertical cut in a word, as follows: for each i = 1, . . . ,N,
q〈i〉 = � (q〈i〉 = r) if there is a path in the word which traverses the cut at position i
form left to right (right to left), q〈i〉 = �r (q〈i〉 = r�) if there is a path from the right
(left), which bounces to the right (left) at position i, and q〈i〉 =⊥ if no path in the word
traverses the cut at position i (see Fig. 2(c) for an intuitive example). The transition
function Δ ensures that the (local) validity condition is met. More precisely, each path

ρ : q0
γ1−→ q1

γ2−→ . . .
γk−→ qk in TR, between two arbitrary states q0,qk ∈ Q, recognizes a

valid word denoted as Gρ = γ1 · . . . · γk. The weight ω(γ) of a graph γ ∈ ΣR is the sum of
the weights of its edges, and the weight of a path is ω(ρ) = ∑k

i=1 ω(γi). Finally, a zigzag
automaton is a tuple A = 〈TR, I,F〉, where I,F ⊆ Q are sets of initial and final states,

respectively. We denote the language of A as L(A) = {Gρ | qi
ρ⇒ q f ,qi ∈ I,q f ∈ F}. For

example, the zigzag automaton depicted in Fig. 3(a), with initial state q0 and final state
q6 has a run over the word γ0 · γ2

1 · γ2 · γ3 · γ4 · γ3
5 · γ6 · γ7 · γ2

8 · γ9 · γ2 · γ3 · γ4 (see Fig. 2(c)),

7 For reasons of presentation, we differ slightly from the definition of a weighted graph given in
the previous section – here the weight of an edge is associated with the symbol labeling that
edge.

Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops 253

q0 q1 q2 q3 q4 q5 q6

q7q8q9q10q11

γ0 γ1 γ2 γ3 γ4 γ5
γ5

γ6γ7γ8γ8

γ9γ1
γ5γ8

(a) The zigzag automaton Ao f
1,7 recognizing odd forward z-paths from x1 to x7.

x1

x2

x3

x4

x5

x6

x7

�

�

r

�

x1

x2

x3

x4

x5

x6

x7

�

⊥
⊥

�r

⊥

⊥
�r

�

�

⊥

�r

r

r

�

q0 q1 q2 q5 q6 q6

⊥

⊥

⊥

⊥
⊥

⊥

�

⊥
⊥

⊥
⊥

⊥

�

⊥

r�

r

⊥

r�

⊥

⊥
�

r

�

⊥

r�

⊥

⊥
⊥

⊥

�

q3 q4

x(0) x(1) x(2) x(8)x(7)x(6)x(5)x(4)x(3)

γ0 γ1γ1 γ2 γ3 γ4 γ5 γ5 γ5q2

�

�

r

r

�

�

�

�

r

r

r�

�r

r�

�r

γ6 γ7 γ8 γ8 γ8 γ9 γ2γ1

⊥

⊥

�r

⊥
⊥

⊥

�

⊥

⊥

�r

�

⊥

⊥

r�

x(10)x(9) x(12)

⊥
�r

�

�

r

⊥
⊥

r�

�r

�

�

r

⊥
x(13)

�r �

⊥

r�

�

�

r

r

r�

�r

�

�

r

�r

x(15)x(14)

�

�

r

r
�

x(16)

r�

�r

x(11)

⊥

⊥

�r

�

�

r

⊥

q7 q9 q10 q10 q2q2q11q8

r�

x(19)

⊥

γ3 γ4

⊥

r�

r

⊥

r�

⊥

⊥
�

r

�

⊥

r�

⊥

⊥
⊥

⊥

�

x(18)x(17)

q3 q4 q5

�

�

r

�

(b) A run of Ao f
17 over γ0.γ2

1.γ2.γ3.γ4.γ3
5.γ6.γ7.γ3

8.γ9.γ1.γ2.γ3.γ4 (Fig. 2(c))

Fig. 3. Zigzag automaton for the difference bounds relation R ≡ x1 − x′2 ≤ 0∧ x2 − x′3 ≤ 0∧
x′3− x4 ≤ 0∧ x′4− x5 ≤ 0∧ x′5− x6 ≤ 0∧ x′6− x6 ≤ 1∧ x′6− x7 ≤ 0∧ x7− x′7 ≤ −1∧ x′7− x5 ≤
0∧ x5−x′1 ≤−1 and an example of its run (Fig. 2 contd.)

depicted in Fig. 3(b). A detailed definition of zigzag automata can be found in [8]. For
the purposes of the upcoming developments, we rely on the example in Fig. 3 to give
the necessary intuition.

Remark 1. The transition table TR = 〈Q,Δ,ω〉 of a difference bounds relation R ⊆
Zx ×Zx has at most 5card(x) vertices, since Q = {�,r, �r,r�,⊥}card(x) is a possible
representation of the set of states [8].

7.2 Paths Recognizable by Zigzag Automata

This section studies the paths that occur within the words recognizable by zigzag au-
tomata. Consider the bi-infinite unfolding of GR, denoted as ωGω

R . A finite path ρ :

x(j1)
i1

α1−→ x(j2)
i2

α2−→ . . .x
(jk−1)
ik−1

αk−1−−−→ x(jk)
ik

in ωGω
R , for j1, . . . , jk ∈ Z is said to be a z-

path whenever, for all 1 ≤ p < q ≤ k, ip = iq and jp = jq only if p = 1 and q = k.
See Fig. 1(d) or Fig. 2(c) for examples of z-paths. We say that a variable xis oc-
curs on ρ at position js, for all 1 ≤ s ≤ k. A z-path is called a z-cycle if i1 = ik and
j1 = jk. A z-path is said to be odd if j1
= jk and even otherwise. For instance, in

254 M. Bozga, R. Iosif, and F. Konečný

Fig. 2(c), the z-path x(1)1
0−→ x(2)2

0−→ x(3)3
0−→ x(2)4

0−→ x(1)5
−1−→ x(2)1 is an odd z-path, while

x(1)1
0−→ x(2)2

0−→ x(3)3
0−→ x(2)4

0−→ x(1)5 is an even z-path. We denote by ||ρ||= abs(jk− j1) its

relative length, by w(ρ) = ∑k−1
i=1 αi its weight, and by w(ρ) = w(ρ)

||ρ|| its relative weight.

We write vars(ρ) for the set {xi1 , . . . ,xik} of variables occurring within ρ, called the
support set of ρ.

An even z-path is said to be forward if j1 = jk = min(j1, . . . , jk) and backward if
j1 = jk = max(j1, . . . , jk). An even z-path is said to be fitting if it is either forward
or backward. An odd z-path is said to be forward if j1 < jk and backward if j1 > jk.
An odd forward (backward) z-path is said to be fitting if j1 = min(j1, . . . , jk) and jk =
max(j1, . . . , jk) (j1 = max(j1, . . . , jk) and jk = min(j1, . . . , jk)). We say that a fitting
z-path ρ is encoded by a word w, if and only if w consists of nothing but ρ and several
z-cycles not intersecting with ρ. Let Enc(w) be the set of z-paths encoded by a word
(this set is either a singleton or the empty set), and Enc(L) =

⋃
w∈L Enc(w) for any set

of words L ⊆ Σ∗R. For instance, the word γ0.γ2
1.γ2.γ3.γ4.γ3

5.γ6.γ7.γ3
8.γ9.γ1.γ2.γ3.γ4 encodes

the z-path x(0)1 −→ . . .−→ x(19)
7 from in Fig. 2(c).

Theorem 5 ([8]). Let R⊆ Zx×Zx be a ∗-consistent difference bounds relation, where
x = {x1, . . . ,xN}, and GR be its corresponding constraint graph. Then, for every xi,x j ∈
x, there exist zigzag automata8 A•i j = 〈TR, I•i j,F

•
i j〉, • ∈ {e f ,eb,o f ,ob}, where TR =

〈Q,Δ,ω〉, such that Enc(L(A•i j)) are the sets of fitting even/odd, forward/backward z-

paths, starting with x(k)i and ending with x(�)j , respectively, for some k, � ∈ Z. Moreover,
for each fitting z-path ρ, ω(ρ) = min{ω(γ) |
γ ∈ L(Ae f

i j)∪L(Aeb
i j)∪L(Ao f

i j)∪L(Aob
i j),ρ ∈ Enc(γ)}.

In the following, we denote the concatenation of two z-paths π and ρ by π.ρ. Notice
that π.ρ is defined only if the last variable from the first z-path equals the first variable
from the second z-path, and the two z-paths do not intersect in some vertex which occurs
in the middle of one of them. A z-path π is said to be repeating if and only if the i-times
concatenation of π with itself, denoted πi, is defined, for any i> 0. If π is repeating, then
it clearly starts and ends with the same variable, and is necessarily odd. A repeating z-
path is said to be essential if all variables occurring on the path are distinct, with the
exception of the first and last, which must be equal. The concatenation of an essential
repeating z-path with itself several times is called an essential power. For instance, in
Fig. 1(d) the z-path π1 is essential and repeating, while π2 is repeating but not essential.
For a repeating z-path π, we denote by ωπω the bi-infinite concatenation of π with itself.

7.3 The Complexity of Acceleration for Difference Bounds Relations

In this section, we prove that difference bounds constraints induce a periodic expo-
nential class of relations (Def. 6). First, we recall that difference bounds relations are
periodic (Def. 3) [6]. If R⊆ZN×ZN is a difference bounds relation, let σ(R)≡MR and,

8 Superscripts e f ,eb,o f and ob stand for even forward, even backward, odd forward and odd
backward, respectively.

Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops 255

for each M ∈ Z2N×2N
∞ , let �M, �M, M�, M� ∈ ZN×N denote its top-left, bottom-left,

top-right and bottom-right corners, respectively. Intuitively, �M, �M, M�, M� capture
constraints of the forms xi− x j ≤ c, x′i− x j ≤ c, xi− x′j ≤ c and x′i− x′j ≤ c, respectively
(see Fig. 1(b)). We define ρ(M) ≡ Φuu

�M
∧ Φup

M� ∧ Φpu
�M ∧ Φpp

M� . If M ∈ Z[k]2N×2N
∞

is a matrix of univariate linear terms in k, π(M)(k,x,x′) is defined analogously to ρ.
With these definitions, it was shown in [6], that the class of difference bounds rela-

tions is periodic (Def. 3). The reason is that the sequence of difference bounds matrices
{MRi}∞

i=1 corresponding to the powers of a relation R is a pointwise projection of the

sequence of tropical powers {M �i

R }∞
i=1 of the incidence matrix MR of the transition

table TR. By Thm. 3, any sequence of tropical powers of a matrix is periodic, which
entails the periodicity of the difference bounds relation R. Recall that the number of
vertices in TR is 5N = 2O(N). Consequently, the prefix of a difference bounds relation
can be bounded using Thm. 4:

Lemma 3. The prefix of a difference bounds relation R⊆ ZN×ZN is 2O(||R||2).

A preliminary estimation of the upper bound of the period of a difference bounds
relation R⊆ ZN×ZN can be already done using Thm. 3. Since the size of the transition
table TR of the zigzag automata for R is bounded by 5N , by definition, the cyclicity of
any SCC of TR is at most 5N , hence, by Thm. 3, the period is bounded by lcm(1, . . . ,5N).

Applying the following lemma, one shows immediately that the period is 22O(N)
.

Lemma 4. For each n≥ 1, lcm(1, . . . ,n) = 2O(n).

We next improve the bound on periods to simply exponential (Thm. 6).

Theorem 6. The period of a difference bounds relation R⊆ ZN×ZN is 2O(N).

This leads to one of the main results of the paper:

Theorem 7. The class R DB is exponential, and the reachability problem for the class

M DB = {M flat counter machine | for all q
R⇒ q′ on a loop of M, R is R DB-definable}

is NP-complete.

Before proceeding with the technical developments, we summarize the proof idea
of Thm 6. Let TR be the transition table of the zigzag automata for the difference
bounds relation R ⊆ ZN ×ZN , and let MR be its incidence matrix. The main idea is
that each non-trivial SCC of TR, which intersects a path between an initial and a final
state of a zigzag automaton, contains a critical elementary cycle λ, whose length divides
lcm(1, . . . ,N). Then the cyclicity of the SCC containing λ is, by definition, the greatest
common divisor of the lengths of all critical elementary cycles of the SCC, and conse-
quently, a divisor of lcm(1, . . . ,N) as well. Since this holds for any non-trivial SCC in

TR, by Thm. 3, the period of the sequence {M �k

R }∞
k=1 of tropical powers of MR is also

a divisor of lcm(1, . . . ,N), which is of the order of 2O(N) (Lemma 4).
It remains to prove the existence, in each non-trivial SCC of TR, of an elementary

critical cycle of length which divides lcm(1, . . . ,N). The proof consists of several steps:

1. Let q
γ−→ q be a critical cycle of TR. Intuitively, a sufficiently long iteration of γ will

exhibit a word z, consisting of repeating z-paths (and possibly several cycles), such
that w(z) = w(γ).

256 M. Bozga, R. Iosif, and F. Konečný

2. We define an equivalence relation on repeating z-paths (Def. 8), and define a word
µ, which is obtained from z by keeping only one representative per equivalence
class. Moreover, we have w(µ)≤ w(z) (Lemma 5), and we show that it is possible
to connect µ to z both left and right, via some connecting words η and ξ, thus
obtaining a valid word zm.η.µn.ξ.zp, for every m,n, p > 0 (Lemma 6).

3. The word µ is further used to define a word λ, consisting only of essential powers
πn1

1 , . . . ,π
nk
k , where |πi| ≤N, for all i = 1, . . . ,k such that w(λ)≤w(µ), and there ex-

ist words σ and τ, such that µq.σ.λr.τ.µs is a valid word, for all q,r,s> 0. Moreover,
|λ| divides lcm(|π1|, . . . , |πk|), and, since λ consists of essential powers |πi| ≤N, for
all i = 1, . . . ,k. Hence |λ| divides lcm(1, . . . ,N).

4. Finally, for sufficiently large m,n, p,q,r > 0, the word zm.η.µn.σ.λp.τ.µq.ξ.zr is

mapped back into a path of the form: q−→ �
λ−→ �−→ q, which traverses a cycle from

the same SCC as the initial cycle q
γ−→ q (Lemma 7).

Multipaths and Reducts. A multipath is a (possibly empty) finite set of z-paths from
ωGR

ω, which all start and end on the same positions (see Fig. 4). Formally, a multipath
µ = {π1, . . . ,πn} is a set of z-paths such that there exist integers k < � such that, for all
i = 1, . . . ,n, either (i) πi is a forward (backward) odd z-path from k to � (from � to k),
(ii) πi is an even z-path from k to k (� to �), or (iii) πi is a z-cycle whose set of positions
of variable occurrences is included in the interval [k, �], and (iv) no two z-paths in µ
intersect each other. The relative length of a multipath µ, is defined as ||µ|| = �− k if
µ
= /0, or ||µ||= 0 if µ = /0.

For a multipath µ, we denote by µac the set of acyclic z-paths in µ. The weight of µ is
defined as w(µ)=∑n

π∈µ w(π), and its average weight is w(µ)= w(µ)
||µ|| if ||µ||
= 0, or w(µ)=

0 if ||µ||= 0. The support set of a multipath is denoted as vars(µ) =
⋃

π∈µ vars(π). The
concatenation µ1.µ2 of two multipaths µ1 and µ2 is defined as the union of the two
graphs, only if the result is a valid multipath. A multipath µ is iterable if it can be
concatenated with itself any number of times, i.e. µi is a valid multipath, for all i > 0
(Fig. 4 (b,d,e)). A repeating multipath is an iterable multipath in which all acyclic z-
paths are repeating (Fig. 4 (d,e)) – an empty multipath is repeating, by convention. A
repeating multipath is said to be essential if every acyclic z-path is an essential power.
A multipath µ is said to be fitting if every acyclic z-path in µ is fitting (Fig. 4 (b-e)).

Definition 8. Let R⊆Zx×Zx be a difference bounds relation, and GR be its constraint
graph. Let π1 and π2 be repeating z-paths in ωGω

R . We say that π1 may join π2, denoted

π1 �R π2, if and only if (i) there exists an SCC S of the folded graph G f
R , such that

vars(π1)∪vars(π2)⊆ S and (ii) there exists a path in ωGω
R from some vertex in ωπ1

ω to
some vertex in ωπ2

ω.

It is not hard to show that �R is an equivalence relation. For a repeating multipath µ, we
denote by µac

/�R
the partition of the set of acyclic paths µac in equivalence classes of the

�R relation. An sc-multipath (for strongly connected multipath) is a repeating multipath
whose repeating z-paths belong to the same equivalence class of the �R relation (see
Fig. 4). A repeating multipath ν is said to be a reduct of a repeating multipath µ if and

Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops 257

x′
2

x′
1

x2

x1
00

0

x2
x1

x(0) x(1)

x2
x1

x(0) x(1)

x2
x1

x(0) x(1) x(2)

x2
x1

x(0) x(1) x(2)

(a) GR (b) µ1 (c) µ2 (d) µ3 (e) µ4

Fig. 4. Examples of multipaths. R is x1 = x′2 ∧ x2 = x′1 and GR is shown in (a). µ1 is iterable but
not repeating, µ2 is not iterable. Both µ3 and µ4 are fitting, iterable, repeating, and they consist
of two balanced sc-multipaths each. If R is x1 = x′2 ∧ x2 = x′1 ∧ x1 ≤ x′1 instead (the dotted edge

x1
0−→ x′1), then µ3 is a balanced sc-multipath and µ4 is an unbalanced sc-multipath, since τ1 �R τ2

for the two forward repeating z-paths τ1,τ2 ∈ µ4.

only if ν ⊆ µ and, for each equivalence class C ∈ µac
/�R

: if the difference between the
number of repeating forward (backward) z-paths and the number of repeating backward
(forward) z-paths in C equals k ≥ 0, then ν∩C contains exactly k repeating forward
(backward) z-paths and no repeating backward (forward) z-path.

Example 2. Consider for instance, in Fig. 2(c), the highlighted sc-multipath µ = {π1 :

x(2)1
0−→ x(3)2

0−→ x(4)3
0−→ x(3)4

0−→ x(2)5
−1−→ x(3)1 ,π2 : x(3)6

1−→ x(2)6 ,π3 : x(2)7
−1−→ x(3)7 }. Notice that

π1 �R π2 �R π3, since all variables x1, . . . ,x7 are in the same SCC of the folded graph

G f
R of the difference bounds relation, and, e.g. x(5)5

0−→ x(4)6 connects ωπ1
ω to ωπ2

ω, while

x(2)6
0−→ x(1)7 connects ωπ2

ω to ωπ3
ω in ωGR

ω. Moreover, since π1,π3 are forward z-paths,

and π2 is a backward z-path, ν1 = {π1} and ν2 = {π3} are the only reducts of µ.

Lemma 5. Let R ⊆ Zx×Zx be a ∗-consistent difference bounds relation, and GR be
its constraint graph. Let µ be an sc-multipath in ωGω

R and ν be a reduct of µ. Then
w(ν)≤ w(µ).

Example 3. (contd. from Ex. 2) For instance, for the multipaths µ, ν1 and ν2 from Ex.
2, we have w(ν1) = w(ν2) = w(µ) =−1. See the highlighted edges in Fig. 2(c).

Balanced SC-Multipaths and Strongly Connected Zigzag Cycles. An sc-multipath
µ is said to be balanced if and only if the difference between the number of forward
repeating and backward repeating z-paths in µ is either 1, 0, or −1. Let us observe
that each reduct of a balanced sc-multipath contains at most one repeating z-path. For
instance, the multipath µ from Ex. 2 is balanced, and its reducts ν1 and ν2 contain one
z-path each.

Lemma 6. Let R ⊆ Zx ×Zx be a ∗-consistent difference bounds relation, GR be its
constraint graph and µ be a balanced sc-multipath in ωGω

R . Then there exists an essen-
tial sc-multipath, τ = {τ0}, such that τ0 is an essential repeating z-path, w(τ) ≤ w(µ),
and two sc-multipaths ξ and ζ such that µm.ξ.τn.ζ.µp is a valid sc-multipath for all
m,n, p≥ 0.

Example 4. (contd. from Ex. 2) For instance, the multipath µ from Ex. 2 can be con-
nected with its reducts ν1 and ν2, and back (see Fig. 2(c)).

258 M. Bozga, R. Iosif, and F. Konečný

The motivation for defining and studying balanced sc-multipaths can be found when

examining the words generated by the iterations of a cycle q
γ−→ q in a zigzag automaton.

Without losing generality, we assume that the state q is both reachable (from an initial
state) and co-reachable (a final state is reachable from q). With this assumption, it is
possible to prove that sufficiently many iterations of the γ cycle will exhibit a subgraph
composed only of balanced sc-multipaths. Details can be found in [7].

Example 5. (contd. from Ex. 2) For instance, for the γ1 cycle in the zigzag automaton in
Fig. 3(a), the balanced sc-multipath is µ, defined in Ex. 2, and highlighted in Fig. 2(c),

and the connecting multipaths are η= {x(3)2
0−→ x(4)3

0−→ x(3)4 } and ξ= {x(3)1
0−→ x(4)2 , x(4)4

0−→

x(3)5
−1−→ x(4)1 , x(4)6

1−→ x(3)6 , x(3)7
−1−→ x(4)7 }. We have γn

1 = η.µn−2.ξ, for all n≥ 2.

The next lemma maps this graph, composed only of balanced sc-multipaths, back

into another critical elementary loop q′
λ−→ q′ of the zigzag automaton, belonging to the

same SCC as γ, such that λ is composed of essential powers, and w(λ) = w(γ). Since λ
is composed of essential powers, and the length of an essential power is bounded by the
number of variables N in the arithmetic representation of R, we have that |λ| is a divisor
of lcm(1, . . . ,N). This is the final step needed to conclude the proof of Thm. 6.

Lemma 7. Let R ⊆ Zx×Zx be a difference bounds relation, where x = {x1, . . . ,xN},
TR = 〈Q,Δ,ω〉 be its transition table, and A = 〈TR, I,F〉 be one of the zigzag automata

from Thm. 5. If q ∈ Q is a reachable and co-reachable state of A, and q
γ−→ q is a cycle,

then there exists a state q′ ∈Q, a cycle q′
λ−→ q′, and paths q−→ q′ and q′ −→ q in TR, such

that (i) w(λ)≤ w(γ), and (ii) |λ| | lcm(1, . . . ,N).

Example 6. (contd. from Ex. 2 and 5) Consider the zigzag automaton depicted in Fig.

3(a). The (reachable and co-reachable) cycle q2
γ1−→ q2 is a critical cycle of average

weight −1. The balanced sc-multipath µ, defined in Ex. 2 is obtained by the unfolding

of the q2
γ1−→ q2 cycle, and has relative average weight of−1 as well. The reduct ν1 of µ

(Ex. 2) consists of one essential repeating path π1 : x(2)1
0−→ x(3)2

0−→ x(4)3
0−→ x(3)4

0−→ x(2)5
−1−→

x(3)1 , which appears in the unfolding of another critical cycle q10
γ8−→ q10 of the zigzag

automaton. Moreover, the latter cycle is from the same SCC as q2
γ1−→ q2. The fact that

both cycles belong to the same SCC is witnessed by the fact that the multipath µ can be
connected to its reduct ν1, and back, via two connecting multipaths.

8 Octagonal Relations

The class of integer octagonal constraints is defined as follows:

Definition 9. A formula φ(x) is an octagonal constraint if it is a finite conjunction of
terms of the form xi− x j ≤ ai j, xi + x j ≤ bi j or −xi− x j ≤ ci j where ai j,bi j,ci j ∈ Z, for
all 1 ≤ i, j ≤ N. A relation R ⊆ Zx×Zx is an octagonal relation if it can be defined by
an octagonal constraint φR(x,x′).

Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops 259

We represent octagons as difference bounds constraints over the dual set of variables
y = {y1,y2, . . . ,y2N}, with the convention that y2i−1 stands for xi and y2i for −xi, re-
spectively. For example, the octagonal constraint x1+x2 = 3 is represented as y1−y4≤
3∧y2−y3≤−3. In order to handle the y variables in the following, we define ı̄ = i−1,
if i is even, and ı̄ = i+ 1 if i is odd. Obviously, we have ¯̄ı = i, for all i ∈ N. We denote
by φ(y) the difference bounds constraint over y that represents φ(x):

Definition 10. Given an octagonal constraint φ(x), x = {x1, . . . ,xN}, its difference
bounds representation φ(y), over y = {y1, . . . ,y2N}, is a conjunction of the following
difference bounds constraints, where 1≤ i, j ≤ N, c ∈ Z.

(xi− x j ≤ c) ∈ Atom(φ) ⇔ (y2i−1− y2 j−1 ≤ c),(y2 j− y2i ≤ c) ∈ Atom(φ)
(−xi + x j ≤ c) ∈ Atom(φ)⇔ (y2 j−1− y2i−1 ≤ c),(y2i− y2 j ≤ c) ∈ Atom(φ)
(−xi− x j ≤ c) ∈ Atom(φ)⇔ (y2i− y2 j−1 ≤ c),(y2 j− y2i−1 ≤ c) ∈ Atom(φ)
(xi + x j ≤ c) ∈ Atom(φ) ⇔ (y2i−1− y2 j ≤ c),(y2 j−1− y2i ≤ c) ∈ Atom(φ)

An octagonal constraint φ is equivalently represented by the DBM Mφ ∈ Z2N×2N
∞ , cor-

responding to φ. We say that a DBM M ∈ Z2N×2N
∞ is coherent9 iff Mi j = Mj̄ı̄ for all

1≤ i, j ≤ 2N. Dually, for a coherent DBM M ∈ Z2N×2N
∞ , we define:

Ψuu
M ≡ ∧

1≤i, j≤N xi− x j ≤M2i−1,2 j−1∧ xi + x j ≤M2i−1,2 j ∧−xi− x j ≤M2i,2 j−1

Ψup
M ≡ ∧

1≤i, j≤N xi− x′j ≤M2i−1,2 j−1∧ xi + x′j ≤M2i−1,2 j ∧−xi− x′j ≤M2i,2 j−1

Ψpu
M ≡ ∧

1≤i, j≤N x′i− x j ≤M2i−1,2 j−1∧ x′i + x j ≤M2i−1,2 j ∧−x′i− x j ≤M2i,2 j−1

Ψpp
M ≡ ∧

1≤i, j≤N x′i− x′j ≤M2i−1,2 j−1∧ x′i + x′j ≤M2i−1,2 j ∧−x′i− x′j ≤M2i,2 j−1

A coherent DBM M is said to be octagonal-consistent if and only if Ψuu
M is consistent.

Definition 11. An octagonal-consistent coherent DBM M ∈Z2N×2N
∞ is said to be tightly

closed iff it is closed and, for all 1≤ i, j ≤ 2N, Miı̄ is even, and Mi j ≤ *Miı̄
2 ++ *

Mj̄ j
2 +.

Intuitively the conditions of Def. 11 ensure that all knowledge induced by the triangle
inequality and the y2i−1 = −y2i constraints has been propagated in the DBM. Given an
octagonal-consistent coherent DBM M ∈ Z2N×Z2N , we denote the (unique) logically
equivalent tightly closed DBM by Mt . Octagonal constraints are closed under existential
quantification, thus octagonal relations are closed under composition [4]. Tight closure
of octagonal-consistent DBMs is needed for quantifier elimination. The set of octagonal
constraints forms therefore a class, denoted further R OCT .

Lemma 8. The class R OCT is poly-logarithmic.

8.1 The Complexity of Acceleration for Octagonal Relations

The proof idea for the periodicity of R OCT is the following. Since any power Ri of an
octagonal relation R is obtained by quantifier elimination, and since quantifier elimina-
tion for octagons uses the tight closure of the DBM representation, then the sequence

9 DBM coherence is needed because xi− x j ≤ c can be represented as both y2i−1− y2 j−1 ≤ c
and y2 j−y2i ≤ c.

260 M. Bozga, R. Iosif, and F. Konečný

{Ri}i>0 is defined by the sequence {Mt
Ri
}i>0 of tightly closed DBMs. In [6] we prove

that this sequence of matrices is periodic, using the result from Thm. 8, below. If R ⊆
ZN×ZN is an octagonal relation, let σ(R)≡MR be the characteristic DBM of its differ-
ence bounds representation, and for a coherent DBM M ∈ Z4N×4N

∞ , we define ρ(M) ≡
Ψuu

�M
∧ Ψup

M� ∧ Ψpu
�M ∧ Ψpp

M� . Analogously, π(M) is defined in the same way as ρ, for

each matrix M ∈Z[k]4N×4N
∞ of univariate linear terms. With these definitions, periodicity

of R OCT has been shown in [6], using the periodicity of R DB and the following theorem
[4], establishing the following relation between Mt

Rm (the tightly closed octagonal DBM
corresponding to the m-th iteration of R) and M∗

Rm (the closed DBM corresponding to

the m-th iteration of the difference bounds relation R), for all m > 0:

Theorem 8. [4] Let R ⊆ ZN ×ZN, be a ∗-consistent octagonal relation. Then, for all

m > 0 and 1≤ i, j ≤ 4N: (Mt
Rm)i j = min

{
(M∗

Rm)i j,

⌊
(M∗

Rm)iı̄

2

⌋
+

⌊
(M∗

Rm) j̄ j
2

⌋}
.

In the rest of this section, we show that the periodic class R OCT is also exponential,
which proves NP-completness of the reachability problem for flat counter machines
with octagonal constraints labeling their loops.

Lemma 9. Let {sm}∞
m=1 and {tm}∞

m=1 be two periodic sequences. Then the sequences
{min(sm, tm)}∞

m=1, {sm + tm}∞
m=1 and

{⌊ sm
2

⌋}∞
m=1 are periodic as well. Moreover, the

prefixes and periods of these sequences are linear in the prefixes and periods of {sm}∞
m=1

and {tm}∞
m=1.

A consequence of Thm. 8 and Lemma 9 is that the asymptotic bounds on the prefix and
period and an octagonal relation match the ones of its difference bounds representation,
which uses twice as many variables (Def. 10).

Lemma 10. Let R ⊆ Zx×Zx, where x = {x1, . . . ,xN}, be an octagonal relation. The
prefix and period of R are 2O(||R||2) and 2O(N), respectively.

The previous lemma provides the bounds on the prefix and periods of octagonal rela-
tions, needed for the next theorem, which gives the second main result of the paper:

Theorem 9. The class R DB is exponential, and the reachability problem for the class

MOCT = {M flat counter machine | for all q
R⇒ q′ on a loop of M, R is ROCT -definable}

is NP-complete.

9 Conclusions and Future Work

We prove that the verification of reachability properties for flat counter machines with
difference bounds and octagonal relations on loops is NP-complete. Future work in-
cludes the extension of this result to finite monoid affine relations [6], and the inves-
tigation of temporal logic properties of flat counter machines with transitions defined
using these classes of relations.

References

1. Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstraction. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 62–77. Springer, Heidelberg
(2013)

Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops 261

2. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. PhD, Univ. de Liège
(1999)

3. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with lists
are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 517–
531. Springer, Heidelberg (2006)

4. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009)

5. Bozga, M., Habermehl, P., Iosif, R., Konečný, F., Vojnar, T.: Automatic verification of integer
array programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 157–
172. Springer, Heidelberg (2009)

6. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer, Heidel-
berg (2010)

7. Bozga, M., Iosif, R., Konečný, F.: Safety problems are NP-complete for flat
integer programs with octagonal loops. Tech. Rep. arXiv 1307.5321 (2013),
http://arxiv.org/abs/1307.5321

8. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundamenta Informat-
icae 91(2), 275–303 (2009)

9. Bozzelli, L., Pinchinat, S.: Verification of gap-order constraint abstractions of counter sys-
tems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 88–103.
Springer, Heidelberg (2012)

10. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic.
In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidel-
berg (1998)

11. Demri, S., Dhar, A.K., Sangnier, A.: On the complexity of verifying regular properties on flat
counter systems, In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part II. LNCS, vol. 7966, pp. 162–173. Springer, Heidelberg (2013)

12. Demri, S., Dhar, A.K., Sangnier, A.: Taming past LTL and flat counter systems. In: Gram-
lich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 179–193. Springer,
Heidelberg (2012)

13. Demri, S., Jurdzinski, M., Lachish, O., Lazic, R.: The covering and boundedness problems
for branching vector addition systems. J. Comput. Syst. Sci. 79(1), 23–38 (2013)

14. Gawlitza, T.M., Monniaux, D.: Invariant generation through strategy iteration in succinctly
represented control flow graphs. Logical Methods in Computer Science 8(3) (2012)

15. Gurari, E.M., Ibarra, O.H.: The complexity of the equivalence problem for simple programs.
J. ACM 28(3), 535–560 (1981)

16. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J.
ACM 25(1), 116–133 (1978)

17. Leroux, J.: Vector addition system reachability problem: a short self-contained proof. In:
POPL, pp. 307–316 (2011)

18. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
19. Rackoff, C.: The covering and boundedness problems for vector addition systems. Theor.

Comput. Sci. 6, 223–231 (1978)
20. Revesz, P.Z.: A closed-form evaluation for Datalog queries with integer (gap)-order con-

straints. Theor. Comput. Sci. 116(1&2), 117–149 (1993)
21. Schutter, B.D.: On the ultimate behavior of the sequence of consecutive powers of a matrix

in the max-plus algebra. Linear Algebra and its Applications 307, 103–117 (2000)
22. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational Horn clauses. In:

Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 337–352. Springer, Hei-
delberg (2005)

http://arxiv.org/abs/1307.5321

Parameterized Model Checking

of Token-Passing Systems

Benjamin Aminof1, Swen Jacobs2, Ayrat Khalimov2, and Sasha Rubin1,3,	

1 IST Austria
first.last@ist.ac.at

2 TU Graz
first.last@iaik.tugraz.at

3 TU Wien

Abstract. We revisit the parameterized model checking problem for
token-passing systems and specifications in indexed CTL∗\X. Emerson
and Namjoshi (1995, 2003) have shown that parameterized model check-
ing of indexed CTL∗\X in uni-directional token rings can be reduced to
checking rings up to some cutoff size. Clarke et al. (2004) have shown
a similar result for general topologies and indexed LTL\X, provided pro-
cesses cannot choose the directions for sending or receiving the token.

We unify and substantially extend these results by systematically ex-
ploring fragments of indexed CTL∗\X with respect to general topologies.
For each fragment we establish whether a cutoff exists, and for some con-
crete topologies, such as rings, cliques and stars, we infer small cutoffs.
Finally, we show that the problem becomes undecidable, and thus no
cutoffs exist, if processes are allowed to choose the directions in which
they send or from which they receive the token.

1 Introduction

As executions of programs and protocols are increasingly distributed over multi-
ple CPU cores or even physically separated computers, correctness of concurrent
systems is one of the primary challenges of formal methods today. Many con-
current systems consist of an arbitrary number of identical processes running
in parallel. The parameterized model checking problem (PMCP) for concurrent
systems is to decide if a given temporal logic specification holds irrespective of
the number of participating processes.

The PMCP is undecidable in many cases. For example, it is undecidable al-
ready for safety specifications and finite-state processes communicating by passing
a binary-valued token around a uni-directional ring [17,8]. However, decidability
may be regained by restricting the communication primitives, the topologies un-
der consideration (i.e., the underlying graph describing the communication paths

� This work was supported by the Austrian Science Fund through grant P23499-N23
and through the RiSE network (S11403, S11405, S11406, S11407-N23); ERC Start-
ing Grant (279307: Graph Games); Vienna Science and Technology Fund (WWTF)
grants PROSEED, ICT12-059, and VRG11-005.

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 262–281, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Parameterized Model Checking of Token-Passing Systems 263

between the processes), or the specification language. In particular, previous re-
sults have shown that parameterizedmodel checking can sometimes be reduced to
model checking a finite number of instances of the system, up to some cutoff size.

For token-passing systems (TPSs) with uni-directional ring topologies, such
cutoffs are known for specifications in the prenex fragment of indexed CTL∗

without the next-time operator (CTL∗\X) [10,8]. For token-passing in general
topologies, cutoffs are known for the prenex fragment of indexed LTL\X, provided
that processes are not allowed to choose the direction to which the token is sent
or from which it is received [5]. In this paper we generalize these results and
elucidate what they have in common.

Previous Results. In their seminal paper [8], Emerson and Namjoshi consider
systems where the token does not carry messages, and specifications are in prenex
indexed temporal logic — i.e., quantifiers ∀ and ∃ over processes appear in a
block at the front of the formula. They use the important concept of a cutoff — a
number c such that the PMCP for a given class of systems and specifications can
be reduced to model checking systems with up to c processes. If model checking
is decidable, then existence of a cutoff implies that the PMCP is decidable.
Conversely, if the PMCP is undecidable, then there can be no cutoff for such
systems.

For uni-directional rings, Emerson and Namjoshi provide cutoffs for formulas
with a small number k of quantified index variables, and state that their proof
method allows one to obtain cutoffs for other quantifier prefixes. In brief, cutoffs
exist for the branching-time specification language prenex indexed CTL∗\X and
the highly regular topology of uni-directional rings.

Clarke et al. [5] consider the PMCP for token-passing systems arranged in
general topologies. Their main result is that the PMCP for systems with arbi-
trary topologies and k-indexed LTL\X specifications (i.e., specifications with k
quantifiers over processes in the prenex of the formula) can be reduced to com-
bining the results of model-checking finitely many topologies of size at most 2k
[5, Theorem 4]. Their proof implies that, for each k, the PMCP for linear-time
specifications in k-indexed LTL\X and general topologies has a cutoff.

Questions. Comparing these results, an obvious question is: are there cutoffs for
branching time temporal logics and arbitrary topologies (see Table 1)? Clarke et
al. already give a first answer [5, Corollary 3]. They prove that there is no cutoff

Table 1. Direction-Unaware TPSs

Uni-Ring
Topologies

Arbitrary
Topologies

in
d
ex

ed
LT

L
\X

– [5]

in
d
ex

ed
C
T
L
∗ \
X

[8] this paper

Table 2. Direction-Aware TPSs

Bi-Ring
Topologies

Arbitrary
Topologies

in
d
ex

ed
LT

L
\X

[7] this paper

in
d
ex

ed
C
T
L
∗ \
X

this paper this paper

264 B. Aminof et al.

for token-passing systems with arbitrary topologies and specifications from 2-
indexed CTL\X. However, their proof makes use of formulas with unbounded
nesting-depth of path quantifiers. This lead us to the first question.

Question 1. Is there a way to stratify k-indexed CTL∗\X such that for each level
of the stratification there is a cutoff for systems with arbitrary topologies? In
particular, does stratification by nesting-depth of path quantifiers do the trick?

Cutoffs for k-indexed temporal logic fragments immediately yield that for each
k there is an algorithm (depending on k) for deciding the PMCP for k-indexed
temporal logic. However, this does not imply that there is an algorithm that can
compute the cutoff for a given k. In particular, it does not imply that PMCP
for full prenex indexed temporal logic is decidable.

Question 2. For which topologies (rings, cliques, all?) can one conclude that the
PMCP for the full prenex indexed temporal logic is decidable?

Finally, an important implicit assumption in Clarke et al. [5] is that processes
are not direction aware, i.e., they cannot sense or choose in which direction
the token is sent, or from which direction it is received. In contrast, Emerson
and Kahlon [7] show that cutoffs exist for certain direction-aware systems in bi-
directional rings (see Section 8). We were thus motivated to understand to what
extent existing results about cutoffs can be lifted to direction-aware systems, see
Table 2.

Question 3. Do cutoffs exist for direction-aware systems on arbitrary topologies
and k-indexed temporal logics (such as LTL\X and CTL\X)?
Our Contributions. In this paper, we answer the questions above, unifying
and substantially extending the known cutoff results:

Answer to Question 1. Our main positive result (Theorem 7) states that for arbi-
trary parameterized topologies G there is a cutoff for specifications in k-indexed
CTL∗d\X— the cutoff depends onG, the number k of the process quantifiers, and
the nesting depth d of path quantifiers. In particular, indexed LTL\X is included
in the case d = 1, and so our result generalizes the results of Clarke et al. [5].

Answer to Question 2. We prove (Theorem 14) that there exist topologies for
which the PMCP is undecidable for specifications in prenex indexed CTL\X or
LTL\X. Note that this undecidability result does not contradict the existence
of cutoffs (Theorem 7), since cutoffs may not be computable from k, d (see the
note on decidability in Section 2.4). However, for certain topologies our positive
result is constructive and we can compute cutoffs given k and d (Theorem 15).
To illustrate, we show that rings have a cutoff of 2k, cliques of k+1, and stars of
k + 1 (independent of d). In particular, PMCP is decidable for these topologies
and specifications in prenex indexed CTL∗\X.
Answer to Question 3. The results just mentioned assume that processes are not
direction-aware. Our main negative result (Theorem 17) states that if processes
can control at least one of the directions (i.e., choose in which direction to send
or from which direction to receive) then the PMCP for arbitrary topologies and

Parameterized Model Checking of Token-Passing Systems 265

k-indexed logic (even LTL\X and CTL\X) is undecidable, and therefore does not
have cutoffs. Moreover, if processes can control both in- and out-directions, then
the PMCP is already undecidable for bi-directional rings and 1-indexed LTL\X.
Technical contributions relative to previous work. Our main positive result (The-
orem 7) generalizes proof techniques and ideas from previous results [8,5]. We
observe that in both of these papers the main idea is to abstract a TPS by
simulating the quantified processes exactly and simulating the movement of the
token between these processes. The relevant information about the movement of
the token is this: whether there is a direct edge, or a path (through unquantified
processes) from one quantified process to another. This abstraction does not
work for CTL∗d\X and general topologies since the formula can express branch-
ing properties of the token movement. Our main observation is that the relevant
information about the branching-possibilities of the token can be expressed in
CTL∗d\X over the topology itself. We develop a composition-like theorem, stat-
ing that if two topologies (with k distinguished vertices) are indistinguishable
by CTL∗d\X formulas, then the TPSs based on these topologies and an arbi-
trary process template P are indistinguishable by CTL∗d\X (Theorem 9). The
machinery involves a generalization of stuttering trace-equivalence [16], a notion
of d-contraction that serves the same purpose as the connection topologies of
Clarke et al. [5, Proposition 1], and also the main simulation idea of Emerson
and Namjoshi [8, Theorem 2].

Our main negative result, undecidability of PMCP for direction-aware systems
(Theorem 17), is proven by a reduction from the non-halting problem for 2-
counter machines (as is typical in this area [8,11]). Due to the lack of space, full
proofs are omitted, and can be found in the full version [1].

2 Definitions and Existing Results

Let N denote the set of positive integers. Let [k] for k ∈ N denote the set
{1, . . . , k}. The concatenation of strings u and w is written uw or u · w.

Let AP denote a countably infinite set of atomic propositions or atoms. A
labeled transition system (LTS) over AP is a tuple (Q,Q0, Σ, δ, λ) where Q is the
set of states, Q0 ⊆ Q are the initial states, Σ is the set of transition labels (also
called action labels), δ ⊆ Q ×Σ ×Q is the transition relation, and λ : Q→ 2AP

is the state-labeling and satisfies that λ(q) is finite (for every q ∈ Q). Transitions

(q, σ, q′) ∈ δ may be written q
σ→ q′.

A state-action path of an LTS (Q,Q0, Σ, δ, λ) is a finite sequence of the form
q0σ0q1σ1 . . . qn ∈ (QΣ)∗Q or an infinite sequence q0σ0q1σ1 · · · ∈ (QΣ)ω such
that (qi, σi, qi+1) ∈ δ (for all i). A path of an LTS is the projection q0q1 . . .
of a state-action path onto states Q. An action-labeled path of an LTS is the
projection σ0σ1 . . . of a state-action path onto transition labels Σ.

2.1 System Model (Direction-Unaware)

In this section we define the LTS PG — it consists of replicated copies of a
process P placed on the vertices of a graph G. Transitions in PG are either

266 B. Aminof et al.

internal (in which exactly one process moves) or synchronized (in which one
process sends the token to another along an edge of G). The token starts with
the process that is at the initial vertex of G.

Fix a countably infinite set of (local) atomic propositions APpr (to be used by
the states of the individual processes).

Process Template P . Let Σint denote a finite non-empty set of internal-
transition labels. Define Σpr as the disjoint union Σint ∪ {rcv, snd} where rcv
and snd are new symbols.

A process template P is a LTS (Q,Q0, Σpr, δ, λ) over APpr such that:
i) the state set Q is finite and can be partitioned into two non-empty sets, say
T ∪N . States in T are said to have the token.

ii) The initial state set is Q0 = {ιt, ιn} for some ιt ∈ T, ιn ∈ N .

iii) Every transition q
snd→ q′ satisfies that q has the token and q′ does not.

iv) Every transition q
rcv→ q′ satisfies that q′ has the token and q does not.

v) Every transition q
a→ q′ with a ∈ Σint satisfies that q has the token if and

only if q′ has the token.
vi) The transition relation δ is total in the first coordinate: for every q ∈ Q

there exists σ ∈ Σpr, q
′ ∈ Q such that (q, σ, q′) ∈ δ (i.e., the process P is

non-terminating).
vii) Every infinite action-labeled path a0a1 . . . is in the set (Σ∗

int snd Σ
∗
int rcv)

ω ∪
(Σ∗

int rcv Σ
∗
int snd)

ω (i.e., snd and rcv actions alternate continually along every
infinite action-labeled path of P). 1

The elements of Q are called local states and the transitions in δ are called
local transitions (of P). A local state q such that the only transitions are of the

form q
snd→ q′ (for some q′) is said to be send-only. A local state q such that the

only transitions are of the form q
rcv→ q′ (for some q′) is said to be receive-only.

Topology G. A topology is a directed graph G = (V,E, x) where V = [k] for
some k ∈ N, vertex x ∈ V is the initial vertex, E ⊆ V × V , and (v, v)
∈ E for
every v ∈ V . Vertices are called process indices.

We may also write G = (VG, EG, xG) if we need to disambiguate.

Token-Passing System PG. Let APsys := APpr × N be the indexed atomic
propositions. For (p, i) ∈ APsys we may also write pi. Given a process template
P = (Q,Q0, Σpr, δ, λ) over APpr and a topology G = (V,E, x), define the token-
passing system (TPS) PG as the finite LTS (S, S0, Σint∪{tok}, Δ, Λ) over atomic
propositions APsys := APpr × N, where:
– The set S of global states is QV , i.e., all functions from V to Q. If s ∈ QV is

a global state then s(i) denotes the local state of the process with index i.
– The set of global initial states S0 consists of the unique global state s0 ∈ QV

0

such that only s0(x) has the token (here x is the initial vertex of G).
– The labeling Λ(s) ⊂ APsys for s ∈ S is defined as follows: pi ∈ Λ(s) if and

only if p ∈ λ(s(i)), for p ∈ APpr and i ∈ V .

1 This restriction was introduced by Emerson and Namjoshi in [8]. Our positive results
that cutoffs exist also hold for a more liberal restriction (see Section 7).

Parameterized Model Checking of Token-Passing Systems 267

– The global transition relation Δ is defined to consist of the set of all internal
transitions and synchronous transitions:
• An internal transition is an element (s, a, s′) of S × Σint × S for which
there exists a process index v ∈ V such that
i) s(v)

a→ s′(v) is a local transition of P , and
ii) for all w ∈ V \ {v}, s(w) = s′(w).

• A token-passing transition is an element (s, tok, s′) of S × {tok} × S for
which there exist process indices v, w ∈ V such that (v, w) ∈ E and

i) s(v)
snd→ s′(v) is a local transition of P ,

ii) s(w)
rcv→ s′(w) is a local transition of P , and

iii) for every u ∈ V \ {v, w}, s′(u) = s(u).
In words, the system PG can be thought of the asynchronous parallel compo-

sition of P over topology G. The token starts with process x. At each time step
either exactly one process makes an internal transition, or exactly two processes
synchronize when one process sends the token to another along an edge of G.

2.2 System Model (Direction-Aware)

Inspired by direction-awareness in the work of Emerson and Kahlon [7], we ex-
tend the definition of TPS to include additional labels on edges, called directions.
The idea is that processes can restrict which directions are used when they send
or receive the token.

Fix finite non-empty disjoint sets Dirsnd of sending directions and Dirrcv of
receiving directions. A direction-aware token-passing system is a TPS with the
following modifications.

Direction-aware Topology. A direction-aware topology is a topology G =
(V,E, x) with labeling functions dirrcv : E → Dirrcv, dirsnd : E → Dirsnd.

Direction-aware Process Template. For process templates of direction-aware
systems, transition labels are taken from Σpr := Σint ∪Dirsnd ∪Dirrcv. The defini-
tion of a direction-aware process template is like that in Section 2.1, except that
in item iii) snd is replaced by d ∈ Dirsnd, in iv) rcv is replaced by d ∈ Dirrcv, and
in vii) snd is replaced by Dirsnd and rcv by Dirrcv .

Direction-aware Token Passing System. Fix Dirsnd and Dirrcv, let G be a
direction-aware topology and P a direction-aware process template. Define the
direction-aware token-passing system PG as in Section 2.1, except that token-
passing transitions are now direction-aware: direction-aware token-passing tran-
sitions are elements (s, tok, s′) of S × {tok} × S for which there exist process
indices v, w ∈ V with (v, w) ∈ E, dirsnd(v, w) = d, and dirrcv(v, w) = e, such that:

i) s(v)
d→ s′(v) is a local transition of P .

ii) s(w)
e→ s′(w) is a local transition of P .

iii) For every u ∈ V \ {v, w}, s′(u) = s(u).

Notations Pu, Psnd, Prcv, Psndrcv. Let Pu denote the set of all process templates
for which |Dirsnd| = |Dirrcv| = 1. In this case PG degenerates to a direction-
unaware TPS as defined in Section 2.1. If we require |Dirrcv| = 1, then processes

268 B. Aminof et al.

1

2

3

4

cw

cw
ccw

ccw

cw

cw

ccw

ccw

cw

cw
ccw

ccw

cw

cw

ccw

ccw

(a) Bi-directional ring with directions

1

2

3

4

snd1

rcv1

rcv2snd1

rcv3
snd2

(b) Directed topology with multiple edges
of same direction

Fig. 1. Direction-aware Topologies

cannot choose from which directions to receive the token, but possibly in which
direction to send it. Denote the set of all such process templates by Psnd . Sim-
ilarly define Prcv to be all process templates where |Dirsnd| = 1 — processes
cannot choose where to send the token, but possibly from which direction to
receive it. Finally, let Psndrcv be the set of all direction-aware process templates.

Examples. Figure 1(a) shows a bi-directional ring with directions cw (clockwise)
and ccw (counterclockwise). Every edge e is labeled with an outgoing direction
dirsnd(e) and an incoming direction dirrcv(e).

2 Using these directions, a process
that has the token can choose whether he wants to send it in direction cw or
ccw. Depending on its local state, a process waiting for the token can also choose
to receive it only from direction cw or ccw.

Figure 1(b) depicts a topology in which process 1 can choose between two
outgoing directions. If it sends the token in direction snd1, it may be received by
either process 2 or 3. If however process 2 blocks receiving from direction rcv1,
the token can only be received by process 3. If 3 additionally blocks receiving
from rcv2, then this token-passing transition is disabled.

2.3 Indexed Temporal Logics

Indexed temporal logics (ITL) were introduced in [4,9,8] to model specifications
of certain distributed systems. Subsequently one finds a number of variations
of indexed temporal-logics in the literature (linear vs. branching, restrictions on
the quantification). Thus we introduce Indexed-CTL∗ which has these variations
(and those in [5]) as syntactic fragments.

Syntactic Fragments of CTL∗, and ≡TL. We assume the reader is familiar
with the syntax and semantics of CTL∗, for a reminder see [2]. For d ∈ N let
CTL∗d\X denote the syntactic fragment of CTL∗\X in which the nesting-depth of
path quantifiers is at most d (for a formal definition see [16, Section 4]).

2 For notational simplicity, we denote both outgoing direction sndcw and incoming
direction rcvcw by cw, and similarly for ccw.

Parameterized Model Checking of Token-Passing Systems 269

Let TL denote a temporal logic (in this paper these are fragments of CTL∗\X).
For temporal logic TL and LTSs M and N , write M ≡TL N to mean that for
every formula φ ∈ TL, M |= φ if and only if N |= φ.

Indexed-CTL∗. Fix an infinite set Vars = {x, y, z, . . . } of index variables, i.e.,
variables with values from N. These variables refer to vertices in the topology.

Syntax. The Indexed-CTL∗ formulas over variable set Vars and atomic proposi-
tions AP are formed by adding the following rules to the syntax of CTL∗ over
atomic propositions AP× Vars. We write px instead of (p, x) ∈ AP× Vars.

If φ is an indexed-CTL∗ state (resp. path) formula and x, y ∈ Vars, Y ⊂ Vars,
then the following are also indexed-CTL∗ state (resp. path) formulas:
– ∀x. φ and ∃x.φ (i.e., for all/some vertices in the topology, φ should hold),
– ∀x. x ∈ Y → φ and ∃x.x ∈ Y ∧ φ (for all/some vertices that that are

designated by variables in Y),
– ∀x. x ∈ E(y)→ φ and ∃x.x ∈ E(y)∧φ (for all/some vertices to which there

is an edge from the vertex designated by the variable y).

Index Quantifiers. We use the usual shortands (e.g., ∀x ∈ Y. φ is shorthand
for ∀x. x ∈ Y → φ). The quantifiers introduced above are called called index
quantifiers, denoted Qx.

Semantics. Indexed temporal logic is interpreted over a system instance PG (with
P a process template and G a topology). The formal semantics are in the full
version of the paper [1]. Here we give some examples. The formula ∀i.EF pi states
that for every process there exists a path such that, eventually, that process is
in a state that satisfies atom p. The formula EF∀i.pi states that there is a path
such that eventually all processes satisfy atom p simultaneously. We now define
the central fragment that includes the former example and not the latter.

Prenex indexed TL and {∀, ∃}k-TL. Prenex indexed temporal-logic is a syn-
tactic fragment of indexed temporal-logic in which all quantifiers are at the
front of the formula, e.g., prenex indexed LTL\X consists of formulas of the form
(Q1x1) . . . (Qkxk) ϕ where ϕ is an LTL\X formula over atoms AP×{x1, . . . , xk},
and the Qixis are index quantifiers. Such formulas with k quantifiers will be re-
ferred to as k-indexed, collectively written {∀, ∃}k-TL. The union of {∀, ∃}k-TL
for k ∈ N is written {∀, ∃}∗-TL and called (full) prenex indexed TL.

2.4 Parameterized Model Checking Problem, Cutoffs, Decidability

A parameterized topology G is a countable set of topologies. E.g., the set of uni-
directional rings with all possible initial vertices is a parameterized topology.

PMCPG(−,−). The parameterized model checking problem (PMCP) for param-
eterized topology G, processes from P , and parameterized specifications from
F , written PMCPG(P ,F), is the set of pairs (ϕ, P) ∈ F × P such that for all
G ∈ G, PG |= ϕ. A solution to PMCPG(P ,F) is an algorithm that, given a
formula ϕ ∈ F and a process template P ∈ P as input, outputs ’Yes’ if for all
G ∈ G, PG |= ϕ, and ’No’ otherwise.

270 B. Aminof et al.

Cutoff. A cutoff for PMCPG(P ,F) is a natural number c such that for every
P ∈ P and ϕ ∈ F , the following are equivalent:
– PG |= ϕ for all G ∈ G with |VG| ≤ c;
– PG |= ϕ for all G ∈ G.
Thus PMCPG(P ,F) does not have a cutoff iff for every c ∈ N there exists

P ∈ P and ϕ ∈ F such that PG |= ϕ for all G ∈ G with |VG| ≤ c, and there
exists G ∈ G such that PG
|= ϕ.

Observation 1. If PMCPG(P ,F) has a cutoff, then PMCPG(P ,F) is decidable
Indeed: if c is a cutoff, let G1, . . . , Gn be all topologies G in G such that

|VG| ≤ c. The algorithm that solves PMCP takes P, ϕ as input and checks
whether or not PGi |= ϕ for all 1 ≤ i ≤ n.

Note about Decidability. The following statements are not, a priori, equiva-
lent (for given parameterized topology G and process templates P):
- For every k ∈ N, PMCPG(P , {∀, ∃}k-TL) is decidable.
- PMCPG(P , {∀, ∃}∗-TL) is decidable.
The first item says that for every k there exists an algorithm Ak that solves

the PMCP for k-indexed TL. This does not imply the second item, which says
that there exists an algorithm that solves the PMCP for ∪k∈N{∀, ∃}k-TL. If the
function k �→ Ak is also computable (e.g., Theorem 15) then indeed the second
item follows: given P, ϕ, extract the size k of the prenex block of ϕ, compute a
description of Ak, and run Ak on P, ϕ.

For instance, the result of Clarke et al. — that there are cutoffs for k-
index LTL\X and arbitrary topologies — does not imply that the PMCP for
{∀, ∃}∗-LTL\X and arbitrary topologies is decidable. Aware of this fact, the au-
thors state (after Theorem 4) “Note that the theorem does not provide us with
an effective means to find the reduction [i.e. algorithm]...”.

In fact, we prove (Theorem 14) that there is some parameterized topology
such that PMCP is undecidable for prenex indexed LTL\X.
Existing Results. We restate the known results using our terminology.
A uni-directional ring G = (V,E, x) is a topology with V = [n] for some n ∈ N,
there are edges (i, i+ 1) for 1 ≤ i ≤ n (arithmetic is modulo n), and x ∈ V . Let
R be the parameterized topology consisting of all uni-directional rings.

Theorem 2 (Implict in [8]). For every k ∈ N, there is a cutoff for the problem
PMCPR(Pu, {∀, ∃}k-CTL∗\X). 3

Although Clarke et al. [5] do not explicitly state the following theorem, it
follows from their proof technique, which we generalize in Section 3.

Theorem 3 (Implicit in [5]). For every parameterized topology G, and every
k ∈ N, the problem PMCPG(Pu, {∀, ∃}k-LTL\X) has a cutoff. 4.

3 The paper explicitly contains the result that 4 is a cutoff for ∀∀-CTL∗\X on rings.
However the proof ideas apply to get the stated theorem.

4 Khalimov et al. [14, Corollary 2] state that 2k is a cutoff if G is taken to be R. How-
ever this is an error: 2k is a cutoff only for formulas with no quantifier alternations.
See Remark 16 in Section 5.

Parameterized Model Checking of Token-Passing Systems 271

Theorem 4 ([5, Corollary 3]). There exists a parameterized topology G and
process P ∈ Pu such that the problem PMCPG({P}, {∃}2-CTL\X) does not have
a cutoff.

The proof of this theorem defines G, process P , and for every c ∈ N a formula
ϕc, such that if G ∈ G then PG |= ϕc if and only if |VG| ≤ c. The formula ϕc is
in 2-indexed CTL\X and has nesting depth of path quantifiers equal to c.

3 Method for Proving Existence of Cutoffs

We give a method for proving cutoffs for direction-unaware TPSs that will be
used to prove Theorem 7.

In a k-indexed TL formula Q1x1 . . .Qkxk. ϕ, every valuation of the variables
x1, . . . , xk designates k nodes of the underlying topology G, say ḡ = g1, . . . , gk.
The formula ϕ can only talk about (the processes in) ḡ. In order to prove that the
PMCP has a cutoff, it is sufficient (as the proof of Theorem 5 will demonstrate)
to find conditions on two topologies G,G′ and ḡ, ḡ′ that allow one to conclude
that PG and PG′

are indistinguishable with respect to ϕ.
We define two abstractions for a given TPS PG. The first abstraction simulates

PG, keeping track only of the local states of processes indexed by ḡ. We call it the
projection of PG onto ḡ.5 The second abstraction only simulates the movement
of the token in G, restricted to ḡ. We call it the graph LTS of G and ḡ.

Notation. Let ḡ denote a tuple (g1, . . . , gk) of distinct elements of VG, and ḡ′

a k-tuple of distinct elements of VG′ . Write v ∈ ḡ if v = gi for some i.

The Projection PG|ḡ. Informally, the projection of PG onto a tuple of process
indices ḡ is the LTS PG and a new labeling that, for every gi ∈ ḡ, replaces
the indexed atom pgi by the atom p@i; all other atoms are removed. Thus p@i
means that the atom p ∈ APpr holds in the process with index gi. In other words,
process indices are replaced by their positions in ḡ.

Formally, fix process P , topology G, and k-tuple ḡ over VG. Define the pro-
jection of PG = (S, S0, Σint ∪ {tok}, Δ, Λ) onto ḡ, written PG|ḡ as the LTS
(S, S0, Σint ∪ {tok}, Δ, L) over atomic propositions {p@i : p ∈ APpr, i ∈ [k]},
where for all s ∈ S the labeling L(s) is defined as follows: L(s) := {p@i : pgi ∈
Λ(s), i ∈ [k]}.
The Graph LTS G|ḡ. Informally, G|ḡ is an LTS where states are nodes of
the graph G, and transitions are edges of G. The restriction to ḡ is modeled by
labeling a state with the position of the corresponding node in ḡ.

Let G = (V,E, x) be a topology, and let ḡ be a k-tuple over VG. Define the
graph LTS G|g as the LTS (Q,Q0, Σ,Δ,Λ) over atomic propositions {1, . . . , k},
with state set Q := V , initial state set Q0 := {x}, action set Σ = {a}, transition
relation with (v, a, w) ∈ Δ iff (v, w) ∈ E, and labeling Λ(v) := {i} if v = gi for
some 1 ≤ i ≤ k, and ∅ otherwise.6

5 Emerson and Namjoshi [8, Section 2.1] define the related notion “LTS projection”.
6 Atomic propositions that have to be true in exactly one state of a structure are
called nominals in [3].

272 B. Aminof et al.

Fix a non-indexed temporal logic TL, such as CTL∗\X. We now define what it
means for TL to have the reduction property and the finiteness property. Infor-
mally, the reduction property says that if G and G′ have the same connectivity
(with respect to TL and only viewing k-tuples ḡ, ḡ′) then PG and PG′

are indis-
tinguishable (with respect to TL-formulas over process indices in ḡ, ḡ′).
��������	 property for TL7

For every k ∈ N, process P ∈ Pu, topologies G,G
′, k-tuples ḡ, ḡ′,

if G|ḡ ≡TL G
′|ḡ′ then PG|ḡ ≡TL P

G′ |ḡ′.

�	���	��� property for TL

For every k ∈ N, there are finitely many equivalence classes [G|ḡ]≡TL

where G is an arbitrary topology, and ḡ is a k-tuple over VG.

Theorem 5 (��������	 &
�	���	��� =⇒ Cutoffs for {∀, ∃}k-TL). If
TL satisfies the reduction and the finiteness property, then for every k,G,
PMCPG(Pu, {∀, ∃}k-TL) has a cutoff.

Proof. Fix quantifier prefix Q1x1 . . . Qkxk. We prove that there exist finitely
many topologies G1, · · · , GN ∈ G such that for every G ∈ G there is an i ≤ N
such that for all P ∈ Pu , and all TL-formulas ϕ over atoms APpr × {x1, · · · , xk}

PG |= Q1x1 . . . Qkxk. ϕ ⇐⇒ PGi |= Q1x1 . . . Qkxk. ϕ

In particular, max{|VGi | : 1 ≤ i ≤ N} is a cutoff for PMCPG(Pu, {∀, ∃}k-TL).
Suppose for simplicity of exposition that Qixi is a quantifier that also ex-

presses that the value of xi is different from the values of xj ∈ {x1, . . . , xi−1}.8
Fix representatives of [G|ḡ]≡TL

and define a function r that maps G|ḡ to the rep-
resentative of [G|ḡ]≡TL

. Define a function rep that maps PG|ḡ to PH |h̄, where
r(G|ḡ) = H |h̄.

For every ≡TL-representative H |h̄ (i.e., H |h̄ = r(G|ḡ) for some topology G
and k-tuple ḡ), introduce a new Boolean proposition qH|h̄. By the finiteness

property of TL there are finitely many such Boolean propositions, say n.
Define a valuation eϕ (that depends on ϕ) of these new atoms by

eϕ(qH|h̄) :=

{
� if PH |h̄ |= ϕ[pxj �→ p@j]

⊥ otherwise.

For every G ∈ G define Boolean formula BG := (Q1g1 ∈ VG) . . . (Qkgk ∈
VG) qr(G|ḡ), where Q is the Boolean operation corresponding to Q, e.g., ∃gi ∈ VG
is interpreted as

∨
g∈VG\{g1,...,gi−1}.

9

7 Properties of this type are sometimes named composition instead of reduction, see
for instance [15].

8 All the types of quantifiers defined in Section 2.3, such as ∃x ∈ E(y), can be dealt
with similarly at the cost of notational overhead.

9 Note that in the Boolean propositions G is fixed while ḡ = (g1, . . . , gn) ranges over
(VG)

k and is determined by the quantification.

Parameterized Model Checking of Token-Passing Systems 273

Then (for all P,G and ϕ)

PG |= Q1x1 . . . Qkxk. ϕ

⇐⇒ Q1g1 ∈ VG . . . Qkgk ∈ VG : PG |= ϕ[pxj �→ pgj]

⇐⇒ Q1g1 ∈ VG . . . Qkgk ∈ VG : PG|ḡ |= ϕ[pxj �→ p@j]

⇐⇒ Q1g1 ∈ VG . . . Qkgk ∈ VG : rep(PG|ḡ) |= ϕ[pxj �→ p@j]

⇐⇒ eϕ(BG) = �

Here ϕ[pxj �→ pgj] is the formula resulting from replacing every atom in ϕ of the
form pxj by the atom pgj , for p ∈ APpr and 1 ≤ j ≤ k. Similarly ϕ[pxj �→ p@j]
is defined as the formula resulting from replacing (for all p ∈ APpr, j ≤ k) every
atom in ϕ of the form pxj by the atom p@j. The first equivalence is by the
definition of semantics of indexed temporal logic; the second is by the definition
of PG|ḡ; the third is by the reduction property of TL; the fourth is by the
definition of eϕ and rep.

Fix BG1 , . . . , BGN (with Gi ∈ G) such that every BG (G ∈ G) is logically
equivalent to some BGi . Such a finite set of formulas exists since there are 22

n

Boolean formulas (up to logical equivalence) over n Boolean propositions, and
thus at most 22

n

amongst the BG for G ∈ G.
By the equivalences above conclude that for every G ∈ G there exists i ≤

N such that PG |= Q1x1 . . . Qkxk. ϕ if and only if PGi |= Q1x1 . . . Qkxk. ϕ.
Thus ‘∀G ∈ G, PG |= ϕ’ is equivalent to ‘

∧
i≤N eϕ(BGi)’ and so the integer

c := max{|VGi | : 1 ≤ i ≤ N} is a cutoff for PMCPG(Pu , {∀, ∃}k-TL).

Remark 6. The theorem implies that for every k,G, PMCPG(P , {∀, ∃}k-TL) is
decidable. Further, fix G and suppose that given k one could compute the finite
set G1, · · · , GN . Then by the last sentence in the proof one can compute the
cutoff c. In this case, PMCPG(P , {∀, ∃}∗-TL) is decidable.

4 Existence of Cutoffs for k-indexed CTL∗
d\X

The following theorem answers Question 1 from the introduction.

Theorem 7. Let G be a parameterized topology. Then for all k, d ∈ N, the
problem PMCPG(Pu, {∀, ∃}k-CTL∗d\X) has a cutoff.

Corollary 8. Let G be a parameterized topology. Then for all k, d ∈ N, the
problem PMCPG(Pu, {∀, ∃}k-CTL∗d\X) is decidable.

To prove the Theorem it is enough, by Theorem 5, to show that the logic
{∀, ∃}k-CTL∗d\X has the reduction property and the finiteness property.

Theorem 9 (Reduction). For all d, k ∈ N, topologies G,G′, processes P ∈ Pu,
k-tuples ḡ over VG and k-tuples ḡ′ over VG′ :

If G|ḡ ≡CTL∗d\X G
′|ḡ′ then PG|ḡ ≡CTL∗

d\X P
G′ |ḡ′.

274 B. Aminof et al.

The idea behind the proof is to show that paths in PG can be simulated by
paths in PG′

(and vice versa). Given a path π in PG, first project it onto G to
get a path ρ that records the movement of the token, then take an equivalent
path ρ′ in G′ which exists since G|ḡ ≡CTL∗d\X G′|ḡ′, and then lift ρ′ up to get

a path π′ in PG′
that is equivalent to π. This lifting step uses the assumption

that process P is in Pu, i.e., P cannot control where it sends the token, or from
where it receives it. The proof can be found in the full version of the paper [1].

Remark 10. As immediate corollaries we get that the reduction property holds
with TL = LTL\X (take d = 1), CTL∗\X (since if the assumption holds with
TL = CTL∗\X then the conclusion holds with TL = CTL∗d\X for all d ∈ N, and
thus also for TL = CTL∗\X) and, if P is finite, also for TL = CTL\X (since
CTL\X and CTL∗\X agree on finite structures).

Finiteness Theorem. Theorem 4 ([5, Corollary 3]) states that there exists
G such that the problem PMCPG(Pu , ∃∃-CTL∗\X) does not have a cutoff. We
observed that the formulas from their result have unbounded nesting depth of
path quantifiers. This leads to the idea of stratifying CTL∗\X by nesting depth.

Recall from Section 2.3 that i) CTL∗d\X denotes the syntactic fragment of
CTL∗\X in which formulas have path-quantifier nesting depth at most d; ii)
M ≡CTL∗d\X N iff M and N agree on all CTL∗d\X formulas. Write [M]CTL∗

d\X for
the set of all LTSs N such that M ≡CTL∗

d\X N .
Following the method of Section 3 we prove that the following finiteness

property holds (where k represents the number of process-index quantifiers in
the prenex indexed temporal logic formula).

Remark 11. For ease of exposition we sketch a proof under the assumption that
path quantifiers in formulas ignore runs in which the token does not visit every
process infinitely often. This is an explicit restriction in [5] and implicit in [8].
In the full version [1] we remove this restriction. For the purpose of this paper
this restriction only affects the explicit cutoffs in Theorem 15.

Theorem 12 (Finiteness). For all positive integers k and d, there are finitely
many equivalence classes [G|ḡ]≡CTL∗

d
\X where G is an arbitrary topology, and ḡ is

a k-tuple over VG.

Proof Idea. We provide an algorithm that given positive integers k, d, topology
G, k-tuple ḡ over VG, returns a LTS condG|ḡ such that G|ḡ ≡CTL∗

d\X condG|ḡ.
Moreover, we prove that for fixed k, d the range of cond | is finite.

Recursively define a marking function μd that associates with each v ∈ VG
a finite set (of finite strings over alphabet μd−1(VG)). For the base case define
μ0(v) := Λ(v), the labeling of G|ḡ. The marking μd(v) stores (representatives)
of all strings of μd−1-labels of paths that start in v and reach some element in ḡ.
The idea is that μd(v) determines the set of CTL∗d\X formulas that hold in G|ḡ
with initial vertex v, as follows: stitch together these strings, using elements of
ḡ as stitching points, to get the CTL∗d\X types of the infinite paths starting in

Parameterized Model Checking of Token-Passing Systems 275

v. This allows us to define a topology, called the d-contraction condG|ḡ, whose
vertices are the μd-markings of vertices in G. In the full version [1] we prove that
G|ḡ is CTL∗d\X-equivalent to its d-contraction, and that the number of different
d-contractions is finite, and depends on k and d.

Definition of d-contraction ��	dG|ḡ. Next we define d-contractions.

Marking μd. Fix k, d ∈ N, topology G, and k-tuple ḡ over VG. Let Λ be the
labeling-function of G|ḡ, i.e., Λ(v) = {i} if v = gi, and Λ(v) = ∅ for v
∈ ḡ.
For every vertex v ∈ VG define a set X(v) of paths of G as follows: a path
π = π1 . . . πt, say of length t, is in X(v) if π starts in v, none of π1, . . . , πt−1 is
in ḡ, and πt ∈ ḡ. Note that X(gi) = {gi}.

Define the marking μd inductively:

μd(v) :=

{
Λ(v) if d = 0

{destutter(μd−1(π1) . . . μd−1(πt)) : π1 . . . πt ∈ X(v), t ∈ N} if d > 0,

where destutter(w) is the maximal substring s of w such that for every two con-
secutive letters si and si+1 we have that si
= si+1. Informally, remove identical
consecutive letters of w to get the ‘destuttering’ destutter(w).

The elements of μd(v) (d > 0) are finite strings over the alphabet μd−1(VG).
For instance, strings in μ1(v) are over the alphabet {{1}, {2}, . . . , {k}, ∅}.
Equivalence relation ∼d. Vertices v, u ∈ VG are d-equivalent, written u ∼d v, if
μd(v) = μd(u). We say that ∼d refines ∼j if u ∼d v implies u ∼j v.

Lemma 13. If 0 ≤ j < d, then ∼d refines ∼j.

Indeed, observe that for all nodes v, all strings in μd(v) start with the letter
μd−1(v). Thus μd(v) = μd(u) implies that μd−1(v) = μd−1(u). In other words, if
u ∼d v then u ∼d−1 v, and thus also u ∼j v for 0 ≤ j < d.

d-contraction condG|ḡ. Define an LTS condG|ḡ called the d-contraction of G|ḡ
as follows. The nodes of the contraction are the ∼d-equivalence classes. Put an
edge between [u]∼d

and [v]∼d
if there exists u′ ∈ [u]∼d

, v′ ∈ [v]∼d
and an edge in

G from u′ to v′. The initial state is [x]∼d
where x is the initial vertex of G. The

label of [u]∼d
is defined to be Λ(u) — this is well-defined because, by Lemma 13,

∼d refines ∼0.
In the full version [1] we prove that G|ḡ is CTL∗d\X-equivalent to its

d-contraction, and that the number of different d-contractions is finite, and
depends on k and d.

5 Cutoffs for k-index CTL∗\X and Concrete Topologies

The following two theorems answer Question 2 from the introduction, regarding
the PMCP for specifications from {∀, ∃}∗-CTL∗\X.

First, the PMCP is undecidable for certain (pathological) parameterized
topologies G and specifications from {∀, ∃}∗-CTL∗\X.

276 B. Aminof et al.

Theorem 14. There exists a process P ∈ Pu, and parameterized topologies G,
H, such that the following PMCPs are undecidable
1. PMCPG({P}, {∀, ∃}∗-LTL\X).
2. PMCPH({P}, {∀, ∃}2-CTL\X).
Moreover, G and H can be chosen to be computable sets of topologies.

Second, PMCP is decidable for certain (regular) parameterized topologies
and specifications from {∀}∗-CTL∗\X. This generalizes results from Emerson
and Namjoshi [8] who show this result for {∀}k-CTL∗\X with k = 1, 2 and
uni-directional ring topologies. By Remark 11, these cutoffs apply under the
assumption that we ignore runs that do not visit every process infinitely often.

Theorem 15. If G is as stated, then PMCPG(Pu, {∀}k-CTL∗\X) has the stated
cutoff.
1. If G is the set of uni-directional rings, then 2k is a cutoff.
2. If G is the set of bi-directional rings, then 2k is a cutoff.
3. If G is the set of cliques, then k + 1 is a cutoff.
4. If G is the set of stars, then k + 1 is a cutoff.
Consequently, for each G listed, PMCPG(Pu, {∀}∗-CTL∗\X) is decidable.

This theorem is proved following Remark 6: given k, d, we compute a set
G1, . . . , GN ∈ G such that every BG for G ∈ G is logically equivalent to some
BGi , where the Boolean formula BG is defined as

∧
ḡ qcondG|ḡ. To do this, note

that BG is logically equivalent to BH if and only if {condG|ḡ : ḡ ∈ VG} =
{condH |h̄ : h̄ ∈ VH} (this is where we use that there is no quantifier alternation).
So it is sufficient to prove that, if c is the stated cutoff,

|VG|, |VH | ≥ c =⇒ {condG|ḡ : ḡ ∈ VG} = {condH |h̄ : h̄ ∈ VH}

To illustrate how to do this, we analyze the case of uni-directional rings and
cliques (the other cases are similar).

Uni-directional rings. Suppose G are the uni-directional rings and let G ∈ G.
Fix a k-tuple of distinct elements of VG, say (g1, g2, . . . , gk). Define a function
f : VG → {g1, . . . , gk} that maps v to the first element of ḡ on the path v, v +
1, v + 2, . . . (addition is mod |VG|). In particular f(gi) = gi for i ∈ [k]. In
the terminology of the proof of Theorem 12, X(v) consists of the simple path
v, v + 1, · · · , f(v).

We now describe μd. Clearly μd(gi) = {μd−1(gi)}. By induction on d one can
prove that if v
∈ ḡ with f(v) = gj then μd(v) = {μd−1(v) · μd−1(gj)}. So for
every d > 1, the equivalences ∼d and ∼1 coincide.

d 0 1 2 . . .

μd(v) for v = gi {i} {{i}} {{{i}}} . . .
μd(v) if v
∈ ḡ and f(v) = gj ∅ {∅ · {j}} {{∅ · {j}} · {{j}}} . . .

Thus for every k ∈ N, the d-contraction condG|ḡ is a ring of size at most 2k (in
particular, it is independent of d). In words, the d-contraction of G is the ring

Parameterized Model Checking of Token-Passing Systems 277

resulting by identifying adjacent elements not in ḡ. It is not hard to see that if
G,H are rings such that |VG|, |VH | ≥ 2k then for every ḡ there exists h̄ such that
condG|ḡ = condH |h̄.

Cliques. Fix n ∈ N. Let G be a clique of size n. That is: VG = [n] and (i, j) ∈ EG

for 1 ≤ i
= j ≤ n. Fix a k-tuple of distinct elements of VG, say (g1, g2, . . . , gk).
We now describe μd(v). Clearly μd(gi) = {μd−1(gi)} and for v
∈ ḡ we have
μd(v) = {μd−1(v) · μd−1(j) : j ∈ [k]}. So for every d > 1, the equivalences ∼d

and ∼1 coincide, and the d-contraction condG|ḡ is the clique of size k + 1. In
words, the d-contraction of G results from G by identifying all vertices not in ḡ.
It is not hard to see that if G,H are cliques such that |VG|, |VH | ≥ k + 1 then
for every ḡ (of size k) there exists h̄ such that condG|ḡ = condH |h̄.

Remark 16. For cliques and stars, k+1 is also a cutoff for {∀, ∃}k-CTL∗\X. Also,
2k is not a cutoff for uni-rings and {∀, ∃}k-LTL\X as stated in [14, Corollary
2]. To see this, let toki express that the process with index i has the token,
and adj(k, i) := toki → toki U tokk ∨ tokk → tokk U toki. Then the formula
∃i∃j∀k. adj(k, i) ∨ adj(k, j), holds in the ring of size 6, but not 7.

6 There Are No Cutoffs for Direction-Aware Systems

In the following, we consider systems where processes can choose which directions
are used to send or receive the token, i.e., process templates are from Psnd , Prcv ,
or Psndrcv . Let B be the parameterized topology of all bi-directional rings, with
directions cw (clockwise) and ccw (counter-clockwise). The following theorem
answers Question 3 from the introduction.

Theorem 17. 1. PMCPB(Psndrcv, ∀-LTL\X) is undecidable.
2. For F equal to {∀}9-LTL\X or {∃}9-CTL\X, and P ∈ {Psnd,Prcv}, there

exists a parameterized topology G such that PMCPG(P ,F) is undecidable.

Proof Idea. We reduce the non-halting problem of two-counter machines (2CMs)
to the PMCP. The idea is that one process, the controller, simulates the finite-
state control of the 2CM. The other processes, arranged in a chain or a ring,
are memory processes, collectively storing the counter values with a fixed mem-
ory per process. This allows a given system to simulate a 2CM with bounded
counters. Since a 2CM terminates if and only if it terminates for some bound
on the counter values, we can reduce the non-halting problem of 2CMs to the
PMCP. The main work is to show that the controller can issue commands, such
as ‘increment counter 1’ and ‘test counter 1 for zero’. We give a detailed proof
sketch for part 1 of the theorem, and then outline a proof for part 2.
1. ∀-LTL\X and Psndrcv in bi-directional rings.

The process starting with the token becomes the controller, all others are
memory, each storing one bit for each counter of the 2CM. The current value of
a counter c is the total number of corresponding bits (c-bits) set to 1. Thus, a
system with n processes can store counter values up to n− 1.

278 B. Aminof et al.

Fix a numbering of 2CM-commands, say 0 �→ ‘increment counter 1’, 1 �→
‘decrement counter 1’, 2 �→ ‘test counter 1 for zero’, etc. Every process has a
command variable that represents the command to be executed when it receives
the token from direction ccw.

If the controller sends the token in direction cw, the memory processes will
increment (mod 6) the command variable, allowing the controller to encode
which command should be executed. Every process just continues to pass the
token in direction cw, until it reaches the controller again.

If the controller sends the token in direction ccw, then the memory processes
try to execute the command currently stored. If it is an ’increment counter c’
or ’decrement counter c’ command, the memory process tries to execute it (by
incrementing/decrementing its c-bit). If the process cannot execute the command
(because the c-bit is already 1 for an increment, or 0 for a decrement), then it
passes the token along direction ccw and remembers that a command is being
tried. If the token reaches a memory process which can execute the command,
then it does so and passes the token back in direction cw. The processes that
remembered that a command is being tried will receive the token from direction
cw, and know that the command has been successfully executed, and so will the
controller. If the controller gets the token from ccw, the command failed. In this
case, the controller enters a loop in which it just passes the token in direction
cw (and no more commands are executed).

If the command stored in the memory processes is a ‘test for zero counter c’,
then the processes check if their c-bit is 0. If this is the case, it (remembers that
a command is being tried and) passes the token to the next process in direction
ccw. If the token reaches a process for which the c-bit is 1, then this process sends
the token back in direction cw. Other memory processes receiving it from cw (and
remembering that the command is being tried), pass it on in direction cw. In
this case, the controller will receive the token from cw and know that counter
c is not zero. On the other hand, if all memory processes store 0 in their c-bit,
then they all send the token in direction ccw. Thus, the controller will receive it
from ccw and knows that counter c currently is zero. To terminate the command,
it sends the token in direction cw, and all processes (which remembered that a
command is being tried), know that execution of this command is finished.

With the description above, a system with n− 1 memory processes can sim-
ulate a 2CM as long as counter values are less than n. Let HALT be an atomic
proposition that holds only in the controller’s halting states. Then solving the
PMCP for ∀iG¬HALTi amounts to solving the non-halting problem of the 2CM.
2. {∀}9-LTL\X and Psnd.

We give a proof outline. In this case there are 2n memory processes, n for
each counter c ∈ {1, 2}. The remaining 9 processes are special and called ‘con-
troller’, ’counter c is zero’, ‘counter c is not zero’, ‘counter c was incremented’,
and ‘counter c was decremented’. When the controller wants to increment or
decrement counter c, it sends the token non-deterministically to some memory
process for counter c. When the controller wants to test counter c for zero, it
sends the token to the first memory process. When a memory process receives

Parameterized Model Checking of Token-Passing Systems 279

the token it does not know who sent it, and in particular does not know the
intended command. Thus, it non-deterministically takes the appropriate action
for one of the possible commands. If its bit is set to 0 then it either i) increments
its bit and sends the token to a special process ‘counter c was incremented’, or
ii) it sends the token to the next memory node in the chain, or to the special
process ‘counter c is zero’ if it is the last in the chain. If its bit is set to 1 then
it either i) decrements its bit and sends the token to a special process ‘counter
c was decremented’, or ii) sends the token to a special process ‘counter c is not
zero’.

Even though incoming directions are not available to the processes, we can
write the specification such that, out of all the possible non-deterministic runs,
we only consider those in which the controller receives the token from the ex-
pected special node (the formula requires one quantified index variable for each
of the special nodes). So, if the controller wanted to increment counter c it needs
to receive the token from process ’counter c was incremented’. If the controller
receives the token from a different node, it means that a command was issued
but not executed correctly, and the formula disregards this run. Otherwise, the
system of size 2n+1 correctly simulates the 2CM until one of the counter values
exceeds n.

7 Extensions

There are a number of extensions of direction-unaware TPSs for which the theo-
rems that state existence of cutoffs (Theorems 7 and 15) still hold. We describe
these in order to highlight assumptions that make the proofs work:

1. Processes can be infinite-state.
2. The EN-restriction on the process template P can be relaxed: replace item

vii) in Definition 2.1 by “For every state q that has the token there is a finite
path q . . . q′ such that q′ does not have the token, and for every q that does
not have the token there is a finite path q . . . q′ such that q′ has the token”.

3. One can further allow direction-sensing TPSs, which is a direction-aware

TPS with an additional restriction on the process template: “If q
d→ q′ ∈ δ for

some direction d ∈ Dirsnd, then for every d ∈ Dirsnd there exists a transition

q
d→ q′′ ∈ δ”; and a similar statement for Dirrcv. Informally: we can allow

processes to change state according to the direction that the token is (non-
deterministically) sent to or received, but the processes are not allowed to
block any particular direction.

4. One can further allow the token to carry a value but with the strong restric-
tion that from every state that has the token and every value v there is a
path of internal actions in P which eventually sends the token with value v,
and the same for receiving.

These conditions on P all have the same flavor: they ensure that a process can
not choose what information to send/receive, whether that information is a value
on the token or a direction for the token.

280 B. Aminof et al.

8 Related Work

Besides the results that this paper is directly based on [17,8,5], there are several
other relevant papers.

Emerson and Kahlon [7] consider token-passing in uni- and bi-directional
rings, where processes are direction-aware and tokens carry messages (but can
only be changed a bounded number of times). However, the provided cutoff
theorems only hold for specifications that talk about two processes (in a uni-
directional ring) or one process (in a bi-directional ring), process templates need
to be deterministic, an cutoffs depend on the size of the process implementation.

German and Sistla [12] provide cutoffs for the PMCP for systems with pairwise
synchronization. Although pairwise synchronization can simulate token-passing,
their cutoff results are restricted to cliques and 1-indexed LTL. Moreover, their
proof uses vector-addition systems with states and their cutoff depends on the
process template and the specification formula.

Delzanno et al. [6] study a model of broadcast protocols on arbitrary topolo-
gies, in which a process can synchronize with all of its available neighbors ‘at
once’ by broadcasting a message (from a finite set of messages). They prove
undecidability of PMCP for systems with arbitrary topologies and 1-indexed
safety properties, and that the problem becomes decidable if one restricts the
topologies to ‘graphs with bounded paths’ (such as stars). Their proof uses the
machinery of well-structured transitions systems, and no cutoffs are provided.
They also show undecidability of the PMCP in the case of non-prenex indexed
properties of the form G(∃i.s(i) ∈ B) on general and the restricted topologies.

Rabinovich [15, Section 4] proves, using the composition method, that if
monadic second-order theory of the set of topologies in G is decidable, then
the PMCP is decidable for propositional modal logic. The systems considered
are defined by a very general notion of product of systems (which includes our
token passing systems as a subcase).

The PMCP for various fragments of non-prenex indexed LTL is undecidable,
see German and Sistla [12, Section 6] for systems with pairwise synchronization,
and John et al. [13, Appendix A] for systems with no synchronization at all.

9 Summary

The goal of this work was to find out under what conditions there are cutoffs for
temporal logics and token-passing systems on general topologies. We found that
stratifying prenex indexed CTL∗\X by nesting-depth of path quantifiers allowed
us to recover the existence of cutoffs; but that there are no cutoffs if the processes
are allowed to choose the direction of the token. In all the considered cases where
there is no cutoff we show that the PMCP problem is actually undecidable.

Our positive results are provided by a construction that generalizes and uni-
fies the known positive results, and clearly decomposes the problem into two
aspects: tracking the movement of the token through the underlying topology,
and simulating the internal states of the processes that the specification formula

Parameterized Model Checking of Token-Passing Systems 281

can see. The construction yields small cutoffs for common topologies (such as
rings, stars, and cliques) and specifications from prenex indexed CTL∗\X.

Acknowledgments. We thank Roderick Bloem for detailed comments on nu-
merous drafts and Krishnendu Chatterjee for important comments regarding
the structure of the paper. We thank Roderick Bloem, Igor Konnov, Helmut
Veith, and Josef Widder for discussions at an early stage of this work that, in
particular, pointed out the relevance of direction-unawareness in [5].

References

1. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized Model Checking
of Token-Passing Systems, pre-print on arxiv.org (2013)

2. Baier, C., Katoen, J.P., et al.: Principles of model checking, vol. 26202649. MIT
Press, Cambridge (2008)

3. Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of enriched μ-
calculi. In: Logical Methods in Computer Science (LMCS 2008), vol. 4(3:11), pp.
1–27 (2008)

4. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many
identical finite state processes. Inf. Comput. 81, 13–31 (1989)

5. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276–291. Springer, Heidelberg (2004)

6. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 313–327. Springer, Heidelberg (2010)

7. Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based mes-
sage passing systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS,
vol. 3210, pp. 325–339. Springer, Heidelberg (2004)

8. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003)

9. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Courcoubetis, C.
(ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993)

10. Emerson, E.A., Namjoshi, K.: Reasoning about rings. In: POPL, pp. 85–94 (1995)
11. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:

Symposium on Logic in Computer Science, p. 352 (1999)
12. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.

ACM 39(3), 675–735 (1992)
13. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Counter attack on byzan-

tine generals: Parameterized model checking of fault-tolerant distributed algo-
rithms. CoRR abs/1210.3846 (2012)

14. Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 108–127. Springer, Heidelberg (2013)

15. Rabinovich, A.: On compositionality and its limitations. ACM Trans. Comput.
Logic 8(1) (January 2007)

16. Shamir, S., Kupferman, O., Shamir, E.: Branching-depth hierarchies.
ENTCS 39(1), 65–78 (2003)

17. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process.
Lett. 28(4), 213–214 (1988)

Modularly Combining Numeric Abstract

Domains with Points-to Analysis,
and a Scalable Static Numeric Analyzer for Java

Zhoulai Fu	

Université de Rennes 1 – INRIA, France

Abstract. This paper contributes to a new abstract domain that com-
bines static numeric analysis and points-to analysis. One particularity of
this abstract domain lies in its high degree of modularity, in the sense
that the domain is constructed by reusing its combined components as
black-boxes. This modularity dramatically eases the proof of its sound-
ness and renders its algorithm intuitive. We have prototyped the abstract
domain for analyzing real-world Java programs. Our experimental results
show a tangible precision enhancement compared to what is possible by
traditional static numeric analysis, and this at a cost that is comparable
to the cost of running the numeric and pointer analyses separately.

1 Introduction

Static numeric analysis – that approximates values of scalar variables and their
relationship – has drawn on a rich body of techniques including abstract domains
of intervals [9], polyhedron [13] and octagons [24] etc. which have found their way
into mature implementations. In a similar way, the analysis of properties describ-
ing the shape of data structures in the heap has flourished into a rich set of points-
to and alias analyses which also have provided a range of production-quality
analyzers. However, when extending numeric analyses to heap-manipulating pro-
grams we are immediately faced with the issues that pointers introduce aliases
which make program reasoning difficult because understanding the communica-
tion between numeric properties and dynamic data structures is needed. This
gives rise to the problem of combining static numeric analysis and heap analysis.

The combination of the two analyses has been studied, but the solutions
proposed so far tend to be complex to implement or impractical to analyze
large programs. For example, Simon [27] shows how to combine ad hoc numeric
abstract domains with manually refined flow-sensitive points-to analyses. His
combination approach requires extensive experiences and intimate familiarity
with the abstract domains themselves, thereby hard to implement. Miné’s ab-
straction [23], by contrast, is designed to be modular. The purpose was to lift

� The research leading to these results has received financial help from AX –
L’Association des Anciens Élèves et Diplômés de l’École polytechnique. 5, rue
Descartes 75005 PARIS.

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 282–301, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Combining Numeric Domains with Points-to Analysis 283

existing abstract domains in ASTREE [3] developed with several man-years to
cope with pointer-aware programs. Reusing existing components as modules is
particularly important in that context. However, Miné’s framework is based on
type-based pointer analysis, which is cheap but too coarse by its nature. This
prohibits the general practicability of the Miné’s analysis. At the other extreme,
shape-analysis [26] based approaches come with sophisticated pointer analyses
and can indeed infer non-trivial properties. However, analyses that are based on
shape abstraction can hardly (see [5,32] for exceptions) run on large programs.

Different from the work mentioned above, our objective is to develop a com-
bined analysis satisfying the following requirements:

– Modular design: The combined analysis should enable the reusing of ex-
isting analyses that have been developed since decades. The construction of
the combined analysis should only depend on the interfaces, not the specific
implementations, of its components.

– Scalability: We are seeking a tool that runs on codes of hundreds of thou-
sands of lines. We examine the feasibility of our analysis over moderate and
large sized benchmarks, and ensure that the combined analysis only presents
small complexity overhead compared with its component analyses.

– Precision: Although the query of scalability inevitably demands a sacrifice
on precision, we inspect that the combined analysis has to be, at least, as
precise as its components.

The core contribution of this work is a theoretical foundation that combines
in a generic manner

– an abstract domain dedicated to static numeric analysis of programs without
allocations, and

– an abstract domain for points-to static analysis.

On the practical side, we have implemented the abstract domain, using the Java
Optimization Framework SOOT [29] as the front-end, and relying on the abstract
domains from existing static analysis libraries such as the Parma Polyhedra
Library PPL [1] and the SOOT Pointer Analysis Research Kit SPARK [20].
This prototype analyzer, called NumP, has been run on all 11 programs in the
Dacapo-2006-MR2 [4] benchmark suite. The suite is composed of moderate and
large sized program with rich object behaviors and demanding memory system
requirements. Our experiments confirm that the combined analysis is feasible
even for large-sized programs and that it discovers significantly more program
properties than what is possible by pure numeric analysis, and this at a cost that
is comparable to the cost of running the numeric and pointer analysis separately.

1.1 Organization of the Paper

The interfaces of traditional numeric and pointer analyses are specified in Sect. 2.
The intuition of our analysis is illustrated with a small example in Sect. 3. In
Sect. 4, we define the modeled language and its concrete semantics. The abstract

284 Z. Fu

domain and its operators are presented in Sect. 5. Experimental results are shown
in Sect. 6. Finally, we compare our analysis with related work and conclude in
Sect. 7 and 8.

The formal underpinning and semantic correctness of the combination tech-
nique are presented in the author’s Ph.D. thesis [17].

2 Analysis Interfaces

This section is define the interfaces of two existing analysis, static numeric anal-
ysis and points-to analysis.

General notation. For a given set U , the notation U⊥ means the disjoint union
U∪{⊥}. Given a mappingm ∈ A→ B⊥, we express the fact thatm is undefined
in a point x by m(x) = ⊥.

Syntactical notations. Primary data types include: scalar numbers in I, where I

can be integers, rationales or reals; and references (or pointers) in Ref . Primary
syntactical entities include the universe of local variables and fields. They are
denoted by Var and Fld respectively. An access path is either a variable or a
variable followed by a sequence of fields. The universe of access paths is denoted
by Path. We subscript Varτ , Fieldτ , or Pathτ with τ ∈ {n, p} to indicate their
types as a scalar number or a reference, respectively. The elements in these sets
can also be sub-scripted with types. The types will be omitted if they are clear
from context.

We use Impn to refer to the basic statements only involving numeric variables
and use the meta-variables sn to range over these statements. Similarly, we let
Impp be the statements that only use pointer variables and let sp range over
these statements. Below we list the syntactical entities and meta-variables used
to range over them.

k ∈ I scalar numbers
r ∈ Ref concrete references
xτ , yτ ∈ Varτ numeric/pointer variables
fτ , gτ ∈ Fieldτ numeric/pointer fields
uτ ,vτ ∈ Pathτ numeric/pointer access paths
sn ∈ Impn xn = k | xn = yn | xn = yn - zn | xn � yn
sp ∈ Impp xp = new | xp = yp.fp | xp = yp | xp.fp = yp

where - ∈ {+,−, ∗, /}, and � is an arithmetic comparison operator.

2.1 Static Numeric Analysis

Static numeric analysis can be modeled as an abstract interpretation of Impn.
We use the term numeric property [22] for any conjunction of formula in a

certain theory of arithmetic. For example, the numeric property {x2 + y2 ≤
1, x ≤ 0, y ≤ 0} is composed of the conjunction of three arithmetic formulas

Combining Numeric Domains with Points-to Analysis 285

As usual, an environment maps variables to their values. We consider numeric
environments :

Num � Varn → I⊥ (1)

The relationship between an environment and a property can be formalized by
the concept of valuation. We say that n is a valuation of n�, denoted by

n |= n� (2)

if n� becomes a tautology after each of its free variables, if any, has been replaced
by its corresponded value in n.

Definition 1 (Interface of the traditional numeric analyzer)

(Impn, ℘(Num), [|·|]�n , γn,Num
�, [|·|]�n)

The concrete numeric domain and the abstract numeric domain for the language
Impn are ℘(Num) and Num� respectively. They are related by the concretization
function γn : Num� → ℘(Num) defined by γn(n

�) = {n ∈ Num | n |= n�}.
The partial order . is consistent with the monotonicity of γn, i.e., n

�
1 . n�2

implies γn(n
�
1) ⊆ γn(n

�
2). For each statement sn of Impn, the concrete seman-

tics is given by a standard transfer function [|sn|]�n ∈ ℘(Num) → ℘(Num). The

abstract semantics [|·|]�n satisfies the soundness condition:

[|·|]�n ◦ γn ⊆ γn ◦ [|·|]�n (3)

At last, we assume the availability of a join operator � and a widening operator
/. The join operator is assumed to be sound with regard to the partial order .,
and the soundness of / is specified in [10].

2.2 Pointer Analysis

Pointer analysis can be modeled as an abstract interpretation of Impp.
Let Pter be the set of concrete states in Impp. Traditionally, a state p ∈ Pter

is a pair of environment and heap. We write p to range over them.

p ∈ Pter � (Varp → Ref ⊥)× ((Ref × Fldp)→ Ref ⊥) (4)

The essence of pointer analysis is the process of heap disambiguation, i.e., the
analysis partitions Ref into a finite set H and then summarizes the run-time
pointer relations via elements h inH . The process is based on the naming scheme.

Definition 2. The naming scheme is a mapping from concrete references to
their names in H. The names used by the naming scheme of a pointer analysis
are called abstract references or abstract locations.

 ∈ Ref → H (5)

286 Z. Fu

We say r ∈ Ref is abstracted by h ∈ H if r h. It is required that the mem-
ory regions abstracted by different abstract references have no common concrete
reference. ∀h1, h2 ∈ H,h1
= h2 ⇒ −1(h1) ∩−1(h2) = ∅.

This paper considers points-to analysis [15] that is widely used in heap analy-
sis. The lattice used in the points-to abstract domain is commonly called points-
to graph. This graph has two kinds of arcs, the unlabeled arcs from a variable
to an abstract reference and the labeled arcs between abstract references that
are labeled by a field. The abstract domain used in points-to analysis is a set of
points-to graphs, denoted by Pter �.

Pter � � (Varp → ℘(H))× ((H × Fldp)→ ℘(H)) (6)

Remark 1. Points-to analysis is based on a naming scheme that is flow inde-
pendent. In other words, a given analysis pass of points-to analysis allows for a
unique naming scheme, whatever the abstractions of the heap. It is worth noting
that this property on the naming scheme is respected by all variants of points-to
analysis (including flow-sensitive points-to analysis). In this presentation, we use
a typical naming scheme to name heap elements after the program point of the
statement that allocates them.

Definition 3 (Interface of traditional points-to analyzer)

(Impp, ℘(Pter), [|·|]
�
p , γp,Pter

�, [|·|]�p)

The concrete domain and the abstract domain of points-to analysis are denoted
by ℘(Pter) and Pter � respectively. They are related by a monotone concretiza-
tion function γp : Pter � → ℘(Pter). The concrete semantics is interfaced by a

standard transfer function [|·|]�p ∈ ℘(Pter) → ℘(Pter �). The abstract semantics

[|·|]�p ∈ Pter � → Pter � is provided by a static numeric analyzer. This analyzer is
assumed sound:

[|·|]�p ◦ γp ⊆ γp ◦ [|·|]�p (7)

3 Combining Points-to and Numeric Analysis: Intuition

This section presents the intuition behind the technique of combining points-to
analyses and numeric analyses. The idea is to use the names computed by the
points-to analysis to create summarized variables that represent the numeric
values stored at particular heap locations.

Example 1. Consider the Java snippet in Listing 1.1. An abstract class Unsigned
uses unsigned numbers to represent both positive and negative values. Unsigned
has two subclasses Pos and Neg for this purpose. It is the responsibility of clients
to ensure the underlined contract, i.e., the objects of type Unsigned must hold

Combining Numeric Domains with Points-to Analysis 287

non-negative values. The Java source code takes an array buf and passes the
elements to the list elem of type List. The list has a field item for data type
Unsigned and a field next of type List. The compound condition structure (l. 7-
14 in Listing 1.1) creates an object of class Pos or Neg according to whether n is
positive or not. In both cases, data.val is assigned to the absolute value of n so
that the assumed property of unsignedness can be preserved. From l. 15 to l. 19,
the program allocates a new cell to store data and links it to the list created by
the precedent iteration.

Below we show how we infer the following properties at the end of the program
(l. 21).

– Prop1. Each list element of is in the range of 0 to 9:

∀l ≥ 0, hd.nextl.item.val ∈ [0, 9]

– Prop2. Each array element of buf is in the range of -9 to 7: buf [∗] ∈ [−9, 7].

1 int [] buf = { - 9 ,7 ,3 , - 5} ; // h1

2 Unsigned data = null ;
3 L i s t hd = null ;
4 int idx = 0 ;
5 while (idx < buf . l ength){
6 int n = buf [idx] ;
7 i f (n > 0){
8 data = new Pos () ; // h2

9 data . val = n ;
10 }
11 else {
12 data = new Neg () ; // h3

13 data . val = -n ;
14 }
15 L i s t elem = new L i s t () ; // h4

16 elem . item = data ;
17 elem . next = hd ;
18 hd = elem ;
19 idx = idx + 1 ;
20 }
21 return ;

Listing 1.1. A Java snippet

1 δh1,[∗]
.
= - 9 ;

2 δh1,[∗]
.
= 7 ;

3 δh1,[∗]
.
= 3 ;

4 δh1,[∗]
.
= - 5 ;

5 idx = 0 ;
6 while (?){
7 n

.
=

′
δh1,[∗] ;

8 i f (n > 0)
9 δh2,val

.
= n ;

10 δh3,val
.
= n ;

11 else
12 δh2,val

.
= -n ;

13 δh3,val
.
= -n ;

14 idx = idx + 1 ;
15 }
Listing 1.2. Semantics actions

Fig. 1. An example in Java. The program passes an array of integers to a list of
Unsigned numbers. Unsigned is a superclass of Pos and Neg. It has one field val of
integer type. The class List has two fields, item of type Unsigned, and next of type
List.

We start with a flow-insensitive points-to analysis. A single points-to graph for
the whole program can be obtained (Fig. 2). Semantically, the points-to graph

288 Z. Fu

disambiguates the heap by telling what must not alias. We derive a summarized
variable δh,val for each pair of heap location h and field val. The key point is,
numeric values bound to syntactically distinct summarized variables are guaran-
teed to be stored at different concrete heap locations. In line with the semantics
of points-to graph, the analysis of the program in Listing 1.1 can be treated as
an extended numeric analysis. This analysis is called “extended” because it not
only deals with scalar variables, but also deals with summarized variables.

Variable names buf

��

data

�� ���
��

��
��

��
elem

����
���

���
���

�� hd

��
Allocation sites h1 h2 h3 h4

next

��
item��

item

��

Fig. 2. A flow-insensitive points-to graph for the program in Listing 1.1

Listing 1.2 illustrates the semantics actions taken by our analysis. From l. 1
to l. 4, the summarized variable δh1,[∗] is updated with −9, 7, 3 and −5 suc-
cessively. Since more than one run-time heap locations of the array buf can be
associated with δh1,[∗], the semantics action is a weak update (denoted by

.
=),

i.e., accumulating values rather than overwriting them. The semantics action at
l. 7 assigns the summarized variable δh1,[∗] to the scalar variable n. Note again
that this abstract semantics should be distinguished from the abstract semantics
of assignment in traditional numeric domain. This is because we should not es-
tablish a numeric relation between δh1,[∗] and n as in traditional static numeric

analysis. Here we use
.
=

′
to make a distinction. Intuitively, the assignment of

δh1,[∗] to n should be abstracted as assigning the possible values of δh1,[∗] to n
without coupling δh1,[∗] and n. The rest of the semantics actions in the listing
should be clear now. The assignments to scalar variables at l. 5 and l. 14 are the
same as in traditional numeric domains. The assignments at l. 9, 10, 12, 13 are
weak update to δh2,val and δh3,val since both h2 and h3 are pointed to by the
variable data following the points-to graph.

By performing the extended interval analysis, we are able to infer these invari-
ants at the end of the program: δh2,val ∈ [0, 9]∧δh3,val ∈ [0, 9] and δh1,[∗] ∈ [−9, 7],
which imply Prop1 and Prop2 respectively.

Remark 2. The compelling part of this approach should not be the semantics ac-
tions presented so far, but the way that they can be constructed by an interplay
between traditional numeric domains and points-to analysis. The advantage of
this approach is that this interplay does not requires knowledge beyond the in-
terfaces of the components in question. As demonstrated by our implementation
of the analysis and its experimental results, this approach allows for direct access
to many existing abstract domains including their join, widening and narrowing
operators which are known difficult to implement.

Combining Numeric Domains with Points-to Analysis 289

4 The Language and Its Concrete Semantics

This paper focuses on how to deal with language Impnp. The statements in
Impnp include those in Impn and Impp, and two more statements in the forms of
yp.fn = xn and xn = yp.fn. We write snp to range over Impnp.

snp ::= sn | sp | yp.fn = xn | xn = yp.fn (8)

A concrete state in Impnp can be regarded as a pair of an environment and a
heap

State =

Env︷ ︸︸ ︷
(Varn → I⊥)× (Varp → Ref ⊥)

× ((Ref × Fldn)→ I⊥)× ((Ref × Fldp)→ Ref ⊥)︸ ︷︷ ︸
Heap

(9)

We can turn this domain into an isomorphic shape

State � Num[(Ref × Fldn) ∪Varn]× Pter (10)

where Num[(Ref × Fldn) ∪Varn] extends Num to (Ref × Fldn) ∪Varn)→ I⊥.

Remark 3. The isomorphism consists of a crucial step. It prepares the re-use
of the abstract pointer values when extending the numeric domains to cover
properties about heap values.

Regarding states as (10) allows us to express the concrete semantics of Impnp
via those of Impn and Impp. As a shortcut, we set

D = Ref × Fldn (11)

and use meta variable d to range over the pairs in D. In Fig. 3, we show the
structural operational semantics (SOS) of Impnp, denoted by −→�. It is expressed

by
Pter−→ and

Num−→ (with
Num−→ in the figure extended over D ∪ Varn).

〈sn, n〉 Num−→ n′

〈sn, (n, p)〉−→�(n′, p)

d = (p(yp), fn) 〈d = xn, n〉 Num−→ n′

〈yp.fn = xn, (n,p)〉−→�(n′, p)

〈sp, p〉 Pter−→ p′

〈sp, (n, p)〉−→�(n,p′)

d = (p(yp), fn) 〈xn = d, n〉 Num−→ n′

〈xn = yp.fn, (n,p)〉−→�(n′, p)

Fig. 3. Structural Operational semantics −→� : Impnp → ℘(State × State)

We use the lifting of −→� to the powerset ℘(State). as the collecting semantics
of Impnp, denoted as

[|·|]� � λs : Impnp.post[−→�(s)] (12)

290 Z. Fu

5 The Abstract Domain

A state in our proposed abstract domain is a pair (n�, p�), where n� is a numeric
property expressed via scalar variables of Varn and summarized variables (see
below) of the setH×Fldn; the element p� is a lattice of Pter �, namely, a points-to
graph in our context.

Definition 4 (Summarized variable). A summarized variable is a pair of an
abstract reference h ∈ H and a numeric field fn ∈ Fldn. The set of summarized
variables is denoted by Δ.

Δ � H × Fldn (13)

We will use the meta-variable δ to range over the pairs in Δ, or we write δh,fn
to indicate the summarized variable corresponding to (h, fn).

Definition 5 (The abstract domain NumP�). The abstract domain NumP�

is defined to be

NumP� � Num�[Δ ∪ Varn]× Pter � (14)

Below, we specify the concretization function. It consists of an essential step
before defining and proving the correctness of the abstract operators on NumP�.

Revisit the example in Sect. 3. We have obtained the state (n�, p�) at the end
of the program, with

n� = {δh2,val ∈ [0, 9], δh3,val ∈ [0, 9], δh1,[∗] ∈ [−9, 7]} (15)

and p� is the points-to graph specified in Fig. 2. A concrete state (n, p) ∈ State
is in the concretization of (n�, p�) if for any reference r,

– we have n(r, val) ∈ [0, 9] as long as r is abstracted by h2, i.e., r h2, and

– we have n(r, val) ∈ [0, 9] as long as r is abstracted by h3, i.e., r h3, and

– we have n(r, [∗]) ∈ [−9, 7] as long as r is abstracted by h1, i.e., r h1

and p has to be a concrete state abstracted by p�, i.e., p ∈ γp(p
�). By abuse

of language, we have treated the array index [∗] above as an aggregate numeric
field. In other words, we say (n, p) is in the concretization of (n�, p�) if n is in
the concretization of all n�

′
that is the numeric property n� with each of its

summarized variables δ substituted by some d of Ref × Fldn (namely D) that
satisfies (d) = δ (with extended by taking care of numeric fields).

Definition 6 (Instantiation). Let be naming scheme that is extended from
Ref → H to Ref × Fldn → H × Fldn. We define the space of instantiation as a
set of mappings from Δ to D.

Ins� � {σ : Δ→ D | σ(h, fn) = (r, gn) ⇒ h = (r) ∧ fn = gn} (16)

Combining Numeric Domains with Points-to Analysis 291

Definition 7. The concretization function γnp of NumP� → ℘(State) is defined
as

γnp(n
�, p�) � {(n, p) | p ∈ γp(p�) ∧ ∀σ ∈ Ins� : n ∈ γn ◦ [σ](n�)} (17)

where we denote by [σ] the capture-avoiding substitution operator that replaces
all the free occurrences of δ in n� ∈ Num�[Δ ∪ Varn] with σ(δ).

Example 2. Consider the following program:

1 L i s t hd = null , tmp ;
2 int i ;
3 for (i = - 17 ; i < 42 ; i++){
4 L i s t tmp = new L i s t () ; // a l l o c a t i o n s i t e h

5 tmp . val = i ;
6 tmp . next = hd ;
7 hd = tmp ;
8 }

A list of integers ranging from −17 to 41 is stored iteratively on the heap. At
each iteration, a memory cell bound to variable tmp is allocated. The cell consists
of a numeric field val and a reference field next. The head of the list is always
pointed to by the variable hd.

The abstract memory state computed at the end of program is given by

(n�, p�) =

(
{δh,val ∈ [−17, 41], i = 42}

tmp
hd

�� h

next

		
)

(18)

5.1 Transfer Functions

Let (n�, p�) be a state of NumP�. We are concerned with how it should be updated
by statements of Impnp.

Transfer Function for sn. It is sound to assume that assignments or assertions
of numeric variables have no effect on the heap. If sn is an assignment in Impn,
it can be treated in the same way as in traditional numeric analysis using its
abstract transfer function [|·|]�n (as specified in Sect. 2.1).

The transfer function for updating (n�, p�) with sn can be defined as:

[|sn|]� (n�, p�) � [|sn|]�n n�, p� (19)

If sn is an assertion in Impn, p� may be refined. For example, consider the
compound statement1 if (a > 0) p = q where p and q are reference variables
and a is a numeric variable. Although it should be possible to perform a dead-
code elimination using inferred numeric relations, similar to Pioli’s conditional
constant propagation [25], we still use the Eq. (19) for the ease of implementation.

1 This term is used here to be distinguished from basic statements as sn, sp or snp.
Note that sn is the assertion, not the whole if-statement.

292 Z. Fu

Transfer Function for sp. It is also sound to assume that sp has no effect
upon n�. Yet the reasoning is different from the above case. For example, if
(n�, p�) is the state shown on Eq. (18), how can we tell whether an assignment
of pointers operation modifies n� or not? Recall that the intended semantics of
δh,val → [17, 41] is that every value stored in each (r, val) satisfying (r) = h
must be in the range of [−17, 41]. That is to say, n� represents a fact about the
numeric content stored in the corresponding concrete references. Since a pointer
assignment can by no means modify any numeric values stored in the heap, the
algorithm to update (n�, p�) with sp can be written as:

[|sp|]� (n�, p�) � n�, [|sp|]�p p
� (20)

Transfer Function of yp.fn = xn. Consider an assignment yp.fn = xn with
yp pointing to h ∈ H . We regard yp.fn = xn as an weak update to summarized
variable δh,fn , That is, the field fn of one of the concrete objects represented
by h is to be updated with the value of xn, while the other concrete objects
represented by h remain unchanged. This effect can be approximated by λn�.n��
[|δh,fn = xn|]�n (n�). Below, we write

p� � yp.fn ⇓ δ (21)

if δ is associated with (h, val) and yp points to h. The transfer function of
yp.fn = xn can be modeled by joining the effects of weak update of all δ by xn
such that p� � yp.fn ⇓ δ.

[|yp.fn = xn|]� (n�, p�) �

⎛⎝⎛⎝ ⊔
p	�yp.fn⇓δ

n� � [|δ = xn|]�n (n�)

⎞⎠ , p�

⎞⎠ (22)

Note that it is not necessary to compute transfer functions for assertions involv-
ing field expressions for they are transformed beforehand by our front-end SOOT
to assertions in Impn or in Impp. For instance, a source code if (x.f > 0) ...,
is transformed to a = x.f; if (a > 0) ... before our analysis.

Transfer Function of xn = yp.fn. Consider the snippet

a = x.f; b = y.f; if (a < b) {...}

Assume that p� � x.f ⇓ δ and p� � y.f ⇓ δ. It is tempting, but wrong, to abstract
the semantics of a = x.f (resp. b = y.f) as [|a = δ|]�n (resp. [|b = δ|]�n) following
which the analysis would incorrectly argue that the if branch can never be
reached.

This issue was carefully studied and solved by Gopan et al. [18]. The authors
showed that it would be wrong to correlate a summarized dimension δ to a non-
summarized dimension xn even if the former is assigned to the later; they argued
that the correct way to assign a summarized dimension δ to a non-summarized

Combining Numeric Domains with Points-to Analysis 293

dimension xn takes three steps: first, copy the summarized dimension δ to a fresh
δ′, and then relate xn with δ′ using traditional abstract semantics for assignment.
Finally, the newly introduced dimension δ′ has to be removed. Intuitively, the
resulting abstract value keeps the possible (abstract) values of δ without being
correlated with it. Gopan et al. have introduced four non-standard operators, in
particular, “drop” that removes dimensions, and “expand” that copies dimen-
sions. We use

[|xn = yp.fn|]� (n�, p�) �
⊔

p	�yp.fn⇓δ

G(xn, δ) n
�, p� (23)

where Gopan’s operator G(xn, δ) is the composition of the three steps described
above:

G(xn, δ) � λn�. drop�δ′ ◦ [|xn = δ′|]�n ◦ expand
�
δ,δ′ n

� (24)

Above, we assume dimension δ′ does not belong to the dimensions of n� in
question.

Example 3. Let n� = δ → [0, 1]. Even if we use a relational domain like poly-
hedral analysis, only G(x, δ)n� = x → [0, 1], δ → [0, 1] can be obtained, while
traditional numeric domains would establish a relationship between x and δ.

Theorem 1 (Soundness). The transfer functions [|·|]� : Impnp → (NumP� →
NumP�), defined in (19), (20), (22) and (23), are sound with respect to [|·|]�: for
any statement s of Impnp and abstract state (n�, p�) of NumP�, [|s|]�◦γnp(n�, p�) ⊆
γnp ◦ [|s|]� (n�, p�).

We give a proof sketch for the case of [|xp.fn = yn|]�. It is important to note that

the soundness of the theorem is based on the soundness hypotheses of [|·|]�n and

[|·|]�p. The combined analysis is sound as long as its component analyses are.

Proof. For all n� ∈ Num�[Δ ∪ Varn] and p� ∈ Pter �, we prove

[|xp.fn = yn|]� (γnp(n�, p�)) ⊆̇ γnp([|xp.fn = yn|]� (n�, p�)) (25)

By the definitions of [|xp.fn = yn|]� and [|xp.fn = yn|]� and the monotony of γδ,
it is sufficient to show for any d such that γp(p

�) � xp.fn ⇓ d, we have

[|d = yn|]�n ◦ γδ(n�) ⊆ γδ(n
� � [|δ = yn|]�n (n�)) (26)

where we note δ = (d).
By the definition of γδ, it is then sufficient to prove a stronger condition:

∀σ ∈ Ins� : [|d = yn|]�n ◦ γn ◦ [σ](n�) ⊆ γn ◦ [σ](n�) ∪ γn ◦ [σ]([|δ = yn|]�n (n�))
(27)

Given an instantiation σ (as defined in Eq. (6)), we make two cases to
conclude:

294 Z. Fu

– Case I: σ does not map δ to d. By consequence d does not appear in [σ](n�)

and [|d = yn|]�n ◦ γn ◦ [σ](n�) = γn ◦ [σ](n�). This concludes this case.
– Case II: σ maps δ to d. We can then simplify the right part of (27) because

[σ]([|δ = yn|]�n (n�)) = ([|d = yn|]�n ◦ [σ](n�)). We then conclude this last case

using the soundness of [|d = yn|]�n.

5.2 Join and Widening

The join of two facts is defined as the set of all facts that are implied indepen-
dently by both. Thanks to our hypothesis of flow independent naming scheme
(in Sect. 2.2), the join and widening of NumP� are easy to define: we just have to
compute the join (or widening) component wise. Then, if a concrete state (n, p)

is in γnp(n
�
1, p

�
1) or γnp(n

�
2, p

�
2), it is also in the concretization of (n�1�n

�
2, p

�
1∪p

�
2).

Thus the join of (n�1, p
�
1) and (n�2, p

�
2) is the join of n�1 and n�2, paired with the

join of p�1 and p�2 (Sect. 2). The case for widening is similar.

(n�1, p
�
1) �� (n�2, p

�
2) = (n�1 � n�2, p

�
1 ∪ p�2) (28)

(n�1, p
�
1)/� (n�2, p

�
2) = (n�1 / n�2, p

�
1 ∪ p�2) (29)

5.3 Constraint System with a Flow-Insensitive Points-to Analysis

In our implementation, we use a flow-insensitive points-to analysis as a pre-
analysis step. It is worth nothing that using flow-insensitive variant does not
cause any soundness issue. This is because the soundness of our analysis is based
on the soundness of its component numeric domains and pointer analysis; taking
the flow-insensitive points-to graph during all propagation can be modeled as an
analysis that is initialized with a set that is larger than the least fix point of a
flow-sensitive analysis, and propagates in the style of skip, which satisfies the
soundness requirement for the pointer analysis component.

Let F �(s) � λn�.fst ◦ [|s|]� (n�, p�fi), where p�fi is the flow-insensitive points-
to graph, and fst is the operator that extracts the first element from a pair of
components. We use the following constraint system that operates on numeric
lattice n� only (rather than on (n�, p�) pair):

n�[l] � F �(s)(n�[l′]) (30)

where we write n�[l] (resp. n�[l′]) for the numeric component of NumP� at control
point l (resp. l′), l′ being the control point of statement s, and (l′, l) is an arc of
the program control flow.

Example 4. Consider the Java snippet in Fig. 4. From l. 4 to l. 10 is the same
as in the example program of Sect. 4. Since we do not propagate the points-to
graph here, the state at l. 10 is the numeric lattice n�0:

n�0 = {δh,val → [−17, 41], i→ 42,max→ �, n→ �} (31)

Combining Numeric Domains with Points-to Analysis 295

where three scalar variables i, max and n as well as a summarized variable δh,val
are involved. Note that the flow-insensitive points-to graph

p�fi =
tmp
hd
cur

�� h

next

		 (32)

is used in the process of propagation of states but the points-to graph itself will
keep unchanged (as formalized in (30)). From l. 14 to l. 21, the program finds
the maximal value from the list. This value is then stored in the variable max.
In case there is no positive value or the list is empty, max takes its initial value
0. We will show that at the end of the program, (l. 10):

– the scalar value max has to be in the range of [0, 41]

The propagation of states from lattice n�0 is shown in Fig. 5.

1 // c r e a t e a l i s t o f i n t e g e r s

2 L i s t hd = null , cur , tmp ;
3 int i , n , max ;
4 for (i = - 17 ; i < 42 ; i++){
5 L i s t tmp = new L i s t () ;

// h

6 tmp . val = i ;
7 tmp . next = hd ;
8 hd = tmp ;
9 }

10

11 // f i n d t h e maximum

12 cur = hd ;
13 max = 0 ;
14 while (cur != null){
15 n = cur . val ;
16 i f (max < n){
17 max = n ;
18 }
19 cur = cur . next ;
20 }
21

Fig. 4. An example in Java. The class List has val and next as fields.

6 Experiments

We have implemented a prototype for the abstract domain NumP�. The imple-
mentation is called NumP. This section presents the prototype and our experi-
mental results.

The input Java program is passed to SOOT. It computes the points-to graph
and transforms the program to Jimple IR [30]. The analysis combines the ab-
stract domains from PPL and the points-to analysis in SOOT. It infers numeric
properties for each program point of the IR.

The analyzer NumP combines PPL and SOOT in a modular way. We first
implement the traditional static numeric analyzer for Java. The implementation
is denoted by Num, which is implemented by wrapping abstract domains in
PPL. Num either skips unrecognized statements or conservatively approximates
them using the unconstraint operator in PPL. The re-used components in
SOOT include notably the flow-insensitive points-to analysis (from its SPARK
toolkit [20]). This analyzer is denoted by Pter subsequently.

296 Z. Fu

1 δ → [−17, 41], i → 42, max → �, n → �
2 cur = hd ;
3 δ → [−17, 41], i → 42, max → �, n → �
4 max = 0 ;
5 δ → [−17, 41], i → 42, max → 0, n → �
6 while (hd != null){
7 δ → [−17, 41], i → 42, max → 0, n → �
8 δ → [−17, 41], i → 42, max → [0, 41], n → �
9 n = hd . val ;

10 δ → [−17, 41], i → 42, max → 0, n → [−17, 41]

11 δ → [−17, 41], i → 42, max → [0, 41], n → [−17, 41]

12 i f (max < n){
13 δ → [−17, 41], i → 42, max → 0, n → [1, 41]

14 δ → [−17, 41], i → 42, max → [0, 41], n → [1, 41]

15 max = n ;
16 δ → [−17, 41], i → 42, max → [1, 41], n → [1, 41]

17 }
18 δ → [−17, 41], i → 42, max → [0, 41], n → [−17, 41]

19 hd = hd . next ;
20 δ → [−17, 41], i → 42, max → [0, 41], n → [−17, 41]

21 }
22 δ → [−17, 41], i → 42, max → [0, 41], n → [0, 41]

Fig. 5. The propagation of states from l. 14 to l. 21 of the program in Fig. 4. The
fixpoint is reached in two steps.

To demonstrate the effectiveness of our technique, we evaluate the analyzer
on Dacapo-2006-MR2 [4] benchmark suite. The experiments were performed on
a 3.06 GHz Intel Core 2 Duo with 4 GB of DDR3 RAM laptop with JDK 1.6.
We tested all 11 benchmarks in Dacapo.

Experimental results are shown in Tab. 1 using the interval domain Int64 Box

from PPL and the flow-insensitive points-to analysis from SOOT. The charac-
teristics of the benchmarks are presented by the number of analyzed Jimple
statements (col. 2, STATEMENT) and the number of write access statements
in the form of yp.fn = xn or yp.fn = k with k being a constant (col. 3, WA).

We measure PRCS (col. 4) for the number of the write access statements
after which the obtained invariants are strictly more precise than Num. Q PRCS
(col. 5) is the ratio of PRCS and WA

Q PRCS � PRCS/WA (33)

We record Q PRCS as the metric for precision enhancement of the analyzer.
The execution time is measured for Num, Pter and NumP (col. 8, 9 and 10).

The parameters T Num and T Pter are the times spent by Num and Pter when
they analyze individually. The parameter T NumP records the time spent our
combined analysis instantiated with the interval and flow-insensitive points-to
analysis.

Combining Numeric Domains with Points-to Analysis 297

Table 1. Evaluation of NumP on the benchmark suite Dacapo-2006-MR2

Benchmark Characteristics Precision Time
BENCHMARK STATEMENT WA PRCS Q PRCS T NUM T PTER T NUMP Q T

antlr 26776 766 174 23% 00m29s 00m53s 01m36s 117%

bloat 64328 2472 943 38% 01m35s 01m02s 16m33s 632%

chart 132627 10244 3690 36% 04m17s 13m20s 83m21s 473%

eclipse 56772 820 116 14% 00m46s 00m54s 01m52s 112%

fop 198541 23482 6166 26% 03m25s 05m11s 275m28s 3203%

jython 88302 2583 1356 52% 00m57s 01m04s 05m38s 279%

hsqldb 6286 352 10 3% 00m19s 00m49s 01m16s 112%

luindex 22192 1206 250 21% 00m33s 00m54s 01m31s 105%

lusearch 26711 1503 418 28% 00m38s 00m56s 01m35s 101%

pmd 80640 3675 1316 36% 00m50s 00m55s 04m25s 252%

xalan 5197 341 3 1% 00m16s 00m49s 01m12s 111%

Mean 64397 4313 1313 25% 01m17s 02m26s 35m52s 500%

The last column Q T evaluates the time overhead of our analyzer. It is com-
puted as the ratio of the time spent by our analysis to the total time spent by
its component analyses.

Q T � T NumP/(T Num + T Pter) (34)

The size of the analyzed Jimple statements ranges from 5, 197 (xalan) to
198, 541 (fop). The average precision metric is given in the last row of Tab. 1.
The mean Q PRCS (25%) shows a clear precision enhancement of our approach
over numeric analysis only. The time overheads Q T are generally acceptable.

In summary, we have designed an analysis in a modular way. It can be scaled to
real-life programs; analyzing programs of hundreds of thousands of lines within
hours can be a reasonable time budget for many applications. The precision
enhancement is validated in practice.

7 Related Work

Static analysis of numeric properties has been extensively studied, especially
in the framework of abstract interpretation [11]. While a large number of arti-
cles covers issues related to numeric abstractions, program analyses where both
pointers and numeric values are taken into account are comparatively few.

The back-end of CodePeer2 takes a flow-insensitive may-aliasing analysis to
distinguish heap objects and to transform the analyzed programs to their SSA
forms using the global value numbering technique. The value propagation of
CodePeer infers the value ranges of subtraction of variables, in other words,
properties of the zone abstract domain. CodePeer goes further by taking care of

2 http://www.adacore.com/codepeer

http://www.adacore.com/codepeer

298 Z. Fu

inductive loop variables and the disjunctive numeric constraints, so that proper-
ties such as b > 0⇒ a = 2 ∗ b can be inferred where a or b is an inductive scalar
variable. Compared with our approach, however, CodePeer uses a single zone
abstract domain and do not offer the flexibility to easily plug in other abstract
domains of different precision/cost tradeoffs such as the more efficient inter-
val abstract domain or the more precise polyhedral domain. In our approach,
even the capability of expressing disjunctive facts in CodePeer can be easily
implemented by instantiating our numeric domain component as the powerset
construction domains [2].

Efforts have been made to parametrize numeric domains with a dedicate
pointer analysis. Fähndrich and Logozzo’s Clousot analyzer [16] uses a value
numbering algorithm to compute an under-approximation of must-alias. An op-
timistic assumption is then made so that Clousot regards two access paths not
aliased if they do not have the same value numbering.3 The ASTREE static
analyzer [3] relies on a type based pointer analysis to deal with numeric proper-
ties of heap objects. The abstraction can be used with pointer arithmetic, union
types and records of stack variables in C programs that do not have dynamic
memory allocation or recursive structure. This category of static analyzers, as
well as ours, can be regarded as applications of the theory of abstract domain
combination which has been thoroughly studied and applied in many other con-
texts [28,12,8].

A more sophisticated heap abstraction is shape analysis [26]. The TVLA [19]
framework based on shape analysis uses canonical abstraction to create bounded-
size representations of memory states. The analyses of this family are precise and
expressive. TVLA users are demanded to specify the concrete heap using first-
order predicates with transitive closure, or user-defined instrumentation predi-
cates like IsNotNull. Then TVLA automatically derives an abstract semantics
based on the users’ specification. The numeric abstraction of Gopan et al. [18]
allows the integration of TVLA with existing numeric domains. The static veri-
fier DESKCHECK [21] combines TVLA and numeric domains. It is sufficiently
precise and expressive to check quantified invariants over both heap objects and
numeric values. Besides the burden for users to specify the program (a problem
that XISA [7,6] attempts to remedy), the major issue of the shape-analysis-
based approaches lies in their scalability. In contrast, our experiments show our
capability to run over large programs.

Pioli and Hind [25] show the mutual dependence of conditional constant anal-
ysis and pointer analysis. The combination is specifically designed for the con-
ditional constant analysis and is not generalized to standard numeric domains.
In particular, this approach does not directly cooperate with standard numeric
domains because their method relies on the particular feature of conditional
constant analysis that is able to partially eliminate infeasible branches.

In a somewhat different strand of work, numeric domains have been used to
enhance pointer analysis. Deutsch [14] uses a parametrized numeric domain to

3 This assumption is said optimistic because it is possible two access paths alias at
run-time but are considered never aliased by Clousot.

Combining Numeric Domains with Points-to Analysis 299

improve the accuracy of alias analysis in the presence of recursive pointer data
structures. The key idea is to quantify the symbolic field references with integer
coefficients denoting positions in data structures. This analysis is able to express
properties for cyclic structures such as “for any k, the k-th element of list l
of length len, is aliased to its (k + len)-th element”. Venet [31] develops the
structure called the abstract fiber bundle to formalize the idea of embedding an
abstract numeric lattice within a symbolic structure. The structure enables the
using of the large number of existing numeric abstractions to encode a broad
spectrum of symbolic properties.

8 Conclusion

The primary objective of this work has been the automatic discovery of numeric
invariants in Java-like programs, which are generally pointer-aware. We have
proposed a methodology for combining numeric analyses and points-to analysis,
developed using an approach based on concepts from abstract interpretation. In
particular, we have shown how the abstract domain used in points-to analysis
can be used to lift a numeric domain to encompass values stored in the heap.
The new abstract domain and the accompanying transfer functions have been
specified formally and their correctness proved. Moreover, the modular way in
which the abstract domains are combined via some well-defined interfaces is
reflected in the modular construction of a prototype implementation of the anal-
ysis framework. This modularity has enabled us to experiment with different
choices for the tradeoff between efficiency and accuracy by tuning the granular-
ity of the abstraction and the complexity of the abstract operators. Concretely,
the derived abstract semantics allows us to combine existing numeric domains
(interval domains, octagon etc.) with existing points-to analyses. The modular
analyzer is able to combine advanced libraries as PPL and SPARK and it shows
a clear precision enhancement with low time overhead.

Acknowledgments. The author wishes to express his gratitude to Thomas
Jensen, Laurent Mauborgne and David Pichardie for their thoughtful feedback.

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hard-
ware and software systems. Technical Report 457, Dipartimento di Matematica,
Università di Parma, Italy (2006)

2. Bagnara, R.: A hierarchy of constraint systems for data-flow analysis of constraint
logic-based languages. Sci. Comput. Program. 30(1-2), 119–155 (1998)

3. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival,
X.: Static analysis by abstract interpretation of embedded critical software. ACM
SIGSOFT Software Engineering Notes 36(1), 1–8 (2011)

300 Z. Fu

4. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: OOPSLA 2006: Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and
Applications, pp. 169–190. ACM Press, New York (2006)

5. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26 (2011)

6. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: POPL, pp. 247–
260 (2008)

7. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant
checkers. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–
401. Springer, Heidelberg (2007)

8. Cortesi, A., Le Charlier, B., Van Hentenryck, P.: Combinations of abstract do-
mains for logic programming: open product and generic pattern construction. Sci.
Comput. Program. 38(1-3), 27–71 (2000)

9. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, pp. 106–
130, Dunod, Paris (1976)

10. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2(4), 511–547 (1992)

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

12. Cousot, P., Cousot, R., Mauborgne, L.: The reduced product of abstract domains
and the combination of decision procedures. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 456–472. Springer, Heidelberg (2011)

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84–96 (1978)

14. Deutsch, A.: A storeless model of aliasing and its abstractions using finite repre-
sentations of right-regular equivalence relations. In: ICCL, pp. 2–13 (1992)

15. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In: PLDI, pp. 242–256 (1994)

16. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011)

17. Fu, Z.: Static Analysis of Numerical Properties in the Presence of Pointers. PhD
thesis, Université de Rennes 1 – INRIA, France (2013)

18. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with
summarized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 512–529. Springer, Heidelberg (2004)

19. Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In:
Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg
(2000)

20. Lhoták, O., Hendren, L.: Scaling java points-to analysis using SPARK. In: Hedin,
G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

21. McCloskey, B., Reps, T., Sagiv, M.: Statically inferring complex heap, array, and
numeric invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337,
pp. 71–99. Springer, Heidelberg (2010)

Combining Numeric Domains with Points-to Analysis 301

22. Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Poly-
technique, Palaiseau, France (December 2004)

23. Miné, A.: Field-sensitive value analysis of embedded c programs with union types
and pointer arithmetics. In: LCTES, pp. 54–63 (2006)

24. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

25. Pioli, A., Hind, M.: Combining interprocedural pointer analysis and conditional
constant propagation. Technical report, IBM T. J. Watson Research Center (1999)

26. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 1999, pp. 105–118. ACM, New York (1999)

27. Simon, A.: Value-Range Analysis of C Programs. Springer (August 2008)
28. Toubhans, A., Chang, B.-Y.E., Rival, X.: Reduced product combination of abstract

domains for shapes. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 375–395. Springer, Heidelberg (2013)

29. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a java bytecode optimization framework. In: Proceedings of the 1999 Conference
of the Centre for Advanced Studies on Collaborative Research, CASCON 1999, p.
13. IBM Press (1999)

30. Vallee-Rai, R., Hendren, L.J.: Jimple: Simplifying java bytecode for analyses and
transformations. Technical report, Sable Research Group, McGill University (July
1998)

31. Venet, A.: Towards the integration of symbolic and numerical static analysis.
In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 227–236.
Springer, Heidelberg (2008)

32. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.W.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

Generic Combination of Heap and Value

Analyses in Abstract Interpretation

Pietro Ferrara1,2

1 IBM Thomas J. Watson Research Center, USA
2 ETH Zurich, Switzerland
pietroferrara@us.ibm.com

Abstract. Abstract interpretation has been widely applied to approx-
imate data structures and (usually numerical) value information. One
needs to combine them to effectively apply static analysis to real soft-
ware. Nevertheless, they have been studied mainly as orthogonal prob-
lems so far. In this context, we introduce a generic framework that, given
a heap and a value analysis, combines them, and we formally prove its
soundness. The heap analysis approximates concrete locations with heap
identifiers, that can be materialized or merged. Meanwhile, the value
analysis tracks information both on variable and heap identifiers, taking
into account when heap identifiers are merged or materialized. We show
how existing pointer and shape analyses, as well as numerical domains,
can be plugged in our framework. As far as we know, this is the first
sound generic automatic framework combining heap and value analyses
that allows to freely manage heap identifiers.

1 Introduction

Two major fields of static program analysis have been heap and (usually numer-
ical) value abstractions. Venet states that “If one wants to use static analysis to
support or achieve verification of real programs, we believe that symbolic (i.e.,
heap) and numerical static analysis must be tightly integrated”[33]. Neverthe-
less, “symbolic and numerical static analysis are commonly regarded as entirely
orthogonal problems”.

Object-oriented programming languages are currently mainstream in software
development, and many analyzers targeting these languages have been developed.
Two main lines appeared in this context: (i) analyzers focused on value informa-
tion that preprocess the program applying a specific heap analysis, and replace
heap accesses with symbolic variables (e.g., Clousot [23]), and (ii) heap abstrac-
tions (e.g., TVLA [22]) that do not track value information, or that have to be
manually extended (e.g., with specific predicates) to track a particular type of
value information [24,25]. As far as we know, existing analyzers that combine
heap and value analyses are not both generic (that is, they are specific on a
particular heap and/or value analysis) and automatic (that is, they require to
provide some annotation, like instrumentation predicates).

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 302–321, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Generic Combination of Heap and Value Analyses in Abstract Interpretation 303

Motivating Example. Consider the motivating example in Figure 1. Class
ListInt represents a list of integers, with an integer field f (containing the
value of an element) and a ListInt next field (pointing to the next element of
the list, or to null if we are at the end). Method absSum(l) computes the sum
of the absolute values of the elements in the list. Imagine that two clients call
this method. client1 passes the list [1; 2]1 to absSum, where the two elements
are allocated at different program points (p1 and p2). Instead, client2 calls
absSum with a list of n positive elements, where n is an input of the program.

1 int absSum(ListInt l) {
2 int sum = 0;
3 ListInt it = l;
4 while(it != null) {
5 if (it . f < 0) sum = sum − it.f;
6 else sum = sum + it.f;
7 it=it.next ;
8 }
9 return sum;

10 }

Fig. 1. The motivating example

There are various properties and invariants
we would like to prove and infer on such pro-
gram. First of all, we would like to prove that
we do not have any NullPointerException

(property P1). In addition, we could discover
that the value returned by sumAbs is positive
(P2), or that it is greater or equal than all the
elements in the list pointed by l (P3). These
properties require to combine different heap
and value analyses. P1 does not require any
particular numerical analysis, and for both
the clients a simple and efficient heap analy-
sis based on the allocation sites [29] would be precise enough. Instead, P2 requires
at least a numerical domain that tracks the sign of numerical variables, while
P3 requires a relational domain like Octagons [28]. In addition, for client1

the allocation site-based heap abstraction would be precise enough both for P2
and P3. Instead, on client2 this abstraction would approximate all the nodes
of the list with a unique summary node, and it would not be able to discover
that the value added to sum is positive, since it cannot track precise informa-
tion on the Boolean condition of the if statement. Therefore, we need a more
precise heap abstraction that materializes the node pointed by it (e.g., shape
analysis [30]).

Contribution. The contribution of this work is the formalization of a sound
generic analysis that allows to combine various heap and value abstractions au-
tomatically. The heap analysis approximates concrete locations through heap
identifiers, while the value analysis tracks information on these identifiers. In
addition, our framework allows the heap analysis to freely manage heap iden-
tifiers, and in particular to merge and materialize them. These modifications
are represented by substitutions, and they are propagated to the value analy-
sis. For the most part, our approach relies on standard components of abstract
interpretation-based sound static analyses, and we formally define and prove
the soundness of their combination. In addition, we show how to instantiate
our framework with a pointer and a shape analyses, as well as with numerical

1 [1; 2] is a shortcut to denote a list of two elements, with value 1 stored in the field f

of the first element list, and 2 in the second one.

304 P. Ferrara

Fig. 2. The architecture of the domains in our approach

domains. This proves that our framework is expressive enough to be applied to
the most common heap and value analyses.

1.1 Overview of the Framework

Domains. Figure 2 depicts the overall structure of our approach. On the left,
we have standard object-oriented states composed by an environment and a
store. On the right, we have our target abstract domain composed by a heap
and a value abstract state. Here we represent the state of client1 when calling
method absSum in our motivating example. We adopt an allocation site-based
heap abstraction [1] and the Interval domain [9]. Therefore, the heap analysis
abstracts the list with two abstract nodes named p1 and p2, while the value
analysis tracks that field f of p1 is [1..1], and field f of p2 is [2..2].

The heap analysis concretizes to a set of environments and stores representing
information only about references. This is represented in Figure 2 in the upper
central box of split states, and it is obtained through the heap concretization
γH. Similarly, the value analysis concretizes to environments and stores repre-
senting information only about values through γV. The value analysis contains
information about heap identifiers p1.f and p2.f, and it needs the concretization
of heap identifiers γHId provided by γH to produce concrete states. For instance,
in Figure 2 we assume that one possible γHId concretizes p1.f and p2.f to (#1, f)
and (#2, f), respectively.

Fig. 3. The semantics’ architecture of our approach

Generic Combination of Heap and Value Analyses in Abstract Interpretation 305

Semantics. The heap semantics may need to materialize or merge heap iden-
tifiers. The information about how the heap identifiers are modified is commu-
nicated through substitutions. A substitution is a function that tells the value
analysis from which heap identifiers of the pre-state the identifiers of the post-
state come. In this way, the value analysis can preserve the soundness of the
information tracked on heap identifiers modified by the heap analysis.

For instance, consider the semantics step depicted in Figure 3. Suppose to
analyze our motivating example combining a simple shape analysis [30] with the
Interval domain. We analyze method absSum when it is called by client2. The
abstract state on the left of Figure 3 is produced before computing the abstract
semantics of line 3 in Figure 12. Supposing that the node pointed by it has
to be always definite, when we assign l to it, a definite node is materialized
from u1. The value analysis was already tracking information about u1.f before
this step, and it has to propagate this information to the materialized identifier
u2.f. The heap analysis communicates a substitution sub to the value analysis,
telling that u1.f and u2.f in the post-state derive from u1.f in the pre-state.
Then the value analysis is updated reflecting the semantics of this substitution,
that is, assigning the value tracked on u1.f in the pre-state to u1.f and u2.f in
the post-state.

This paper formalizes this generic combination of heap and value analyses.
First of all, Section 2 introduces the minimal object-oriented language we deal
with. Then we formalize a standard concrete and a split domain and semantics in
Section 3. Section 4 formalizes and proves the soundness of the abstract domain
and semantics. Section 5 shows how to plug in our framework pointer and shape
analyses, as well as numerical domains. In this way, we prove that our approach
is generic enough to support some of the most common heap and value analyses.
Finally, Section 6 discusses the related work, while Section 7 concludes.

Notation: In this paper, we will denote by→A a small-step transition semantics
on the domain A, and by →℘(A) the pointwise application of→A to set of states
in A. Formally, 〈st,A1〉 →℘(A) {a′ : ∃a ∈ A1 : 〈st, a〉 →A a′} where A1 ⊆ A.
With an abuse of notation, we will denote by πn the projection of a set of tuples
(with at least n components) to the set containing the n-th component of each
single tuple in the given set. Our approach is based on the abstract interpretation
theory [9,10]. We will denote concrete sets and elements by C and c, respectively,
and abstract sets and elements by A and a, respectively. In addition, γA will

denote the concretization function of the abstract domain A.

2 Language

A program consists of a control flow graph of basic blocks. Each basic block
consists of a sequence of statements. Different blocks are connected through
edges that optionally contain a Boolean condition to represent conditional jumps.

2 For the sake of simplicity, we assume that l is acyclic containing at least two
elements.

306 P. Ferrara

e′ = e[x 	→ s(e(y), f)]
〈x = y.f, (e, s)〉 →Σ (e′, s)

e′ = e[x 	→ e(y)]
〈x = y, (e, s)〉 →Σ (e′, s)

e′ = e[x 	→ alloc(C, (e, s))]
〈x = new C, (e, s)〉 →Σ (e′, s)

s′ = s[(e(x), f) 	→ e(y)]
〈x.f = y, (e, s)〉 →Σ (e, s′)

s′ = s[(e(x), f) 	→ eval(vexp, (e, s))]
〈x.f = vexp, (e, s)〉 →Σ (e, s′)

e′ = e[x 	→ eval(vexp, (e, s))]
〈x = vexp, (e, s)〉 →Σ (e′, s)

Fig. 4. The concrete semantics →Σ

Table 1. Expressions and statements

rexp ::= x | x.f | new C

vexp ::= x | x.f | vexp1 < op > vexp2

op ::= + | − | ∗ | · · ·
st ::= x = rexp | x.f = y |

| x = vexp | x.f = vexp

For the sake of simplicity, we fo-
cus our attention on the statements
of the minimal object-oriented lan-
guage defined in Table 1. This
supports assignments to variables
and fields, and it distinguishes
among value and reference expres-
sions. Reference expressions can be
variable identifiers, field accesses,
and object creations. Value expressions can be variables, field accesses, or bi-
nary combinations of value expressions through an (e.g., arithmetic) operator.
Therefore, we assume that we can distinguish between value (that is, vexp return-
ing values of native types like int and double in Java) and reference expressions
(that is, rexp). Note that in Table 1 y represents a variable of reference type,
and C ∈ Class where Class denotes the set of the classes of the object-oriented
program that can be instantiated.

3 Concrete Domain and Semantics

In this section we first introduce a standard domain (Σ) and semantics (→Σ)
of object-oriented programs, and we abstract it with a split domain (ΣSplit) and
semantics (→Split) proving the soundness of our approach.

3.1 Standard Domain and Semantics

First of all, we partition the content of variables and heap locations into values
(Val) and references (Ref). As usual in object-oriented programming languages, a
state of the execution is composed by an environment (that relates local variables
to references or values, Env : Var→ (Ref∪Val)) and a store (that relates locations
to references or values, Store : (Ref × Field) → (Ref ∪ Val)). A concrete state is
defined by Σ = Env× Store. The lattice structure is given by 〈℘(Σ),⊆〉.

Semantics. Figure 4 defines a standard concrete small step semantics →Σ,
while Figure 5 defines a standard concrete evaluation of value expressions. We
assume that a function alloc : (Class × Σ) → Ref is given. This allocates an
object instance of the given class, and returns the reference pointing to it.

Generic Combination of Heap and Value Analyses in Abstract Interpretation 307

eval : (vexp× Σ) → Val
eval(x, (e, s)) = e(x)
eval(x.f, (e, s)) = s(e(x), f)
eval(vexp1 < op > vexp2, (e, s)) = eval(vexp1, (e, s)) < op > eval(vexp2, (e, s))

Fig. 5. The concrete expression evaluation

evalSplit : (vexp
′ × ΣVal) → Val

evalSplit(x, (eVal, sVal)) = eVal(x)
evalSplit(< r > .f, (eVal, sVal)) = sVal(r, f)
evalSplit(vexp1 < op > vexp2, (eVal, sVal)) =

= evalSplit(vexp1, (eVal, sVal)) < op > evalSplit(vexp2, (eVal, sVal))

Fig. 6. The split expression evaluation

3.2 Split Domain

We split the concrete domain and semantics between the portion dealing with
values (EnvVal : Var → Val, StoreVal : (Ref × Field) → Val, and ΣVal = EnvVal ×
StoreVal), and the portion dealing with references (EnvRef : Var → Ref, StoreRef :
(Ref × Field)→ Ref, and ΣRef = EnvRef × StoreRef). A state is then the Cartesian
product of these two components (ΣSplit = ΣRef×ΣVal). Like the concrete domain,
the lattice structure is given by set of elements, that is, 〈℘(ΣSplit),⊆〉.

Soundness. To prove the soundness of 〈℘(ΣSplit),⊆〉 with respect to 〈℘(Σ),⊆〉,
we have to formalize the concretization γSplit : ℘(ΣSplit) → ℘(Σ) that defines
how states in ΣSplit are mapped into states in Σ. Intuitively, this consists in
the pointwise set union of the two parts of split states. Formally, γSplit(T) =
{(ev ∪ eh, sv ∪ sh) : ((eh, sh), (ev, sv)) ∈ T} . Note that, since in the definition of
the language in Section 2 we assumed that we can distinguish among value and
reference expressions (and in particular local variables and field accesses), the
domains of ev and eh do not overlap. The same considerations apply to sv and
sh.

Then, we have that 〈℘(ΣSplit),⊆〉 is a sound approximation of 〈℘(Σ),⊆〉 , that
is, they form a Galois connection.

Semantics. Figure 6 defines the evaluation of expressions in vexp′, where
vexp′ ::=x|< r > .f|vexp1′ < op > vexp2′ with r ∈ Ref. The main difference
w.r.t. the concrete expression evaluation defined by Figure 5 is that it deals only
with the value portion of the heap state. This is possible since vexp′ contains

s′Val = sVal[(r, f) 	→ evalSplit(vexp
′, (eVal, sVal))]

〈< r > .f = vexp
′, (eVal, sVal)〉 →Val (eVal, s

′
Val)

e′Val = eVal[x 	→ evalSplit(vexp
′, (eVal, sVal))]

〈x = vexp
′, (eVal, sVal)〉 →Val (e

′
Val, sVal)

Fig. 7. The semantics of the value part

308 P. Ferrara

e′Ref = eRef [x 	→ alloc(C, (eRef , sRef))]
〈x = new C, (eRef , sRef)〉 →Ref (e

′
Ref , sRef)

e′Ref = eRef [x 	→ sRef(eRef(y), f)]
〈x = y.f, (eRef , sRef)〉 →Ref (e

′
Ref , sRef)

s′Ref = sRef [(eRef(x), f) 	→ eRef(y)]
〈x.f = y, (eRef , sRef)〉 →Ref (eRef , s

′
Ref)

e′Ref = eRef [x 	→ eRef(y)]
〈x = y, (eRef , sRef)〉 →Ref (e

′
Ref , sRef)

Fig. 8. The semantics of the heap part

〈x = rexp, σRef〉 →Ref σ
′
Ref

〈x = rexp, (σRef , σVal)〉 →Split (σ
′
Ref , σVal)

〈x.f = y, σRef〉 →Ref σ
′
Ref

〈x.f = y, (σRef , σVal)〉 →Split (σ
′
Ref , σVal)

〈R�x.f, σRef�=R�vexp, σRef�, σVal〉 →Val σ
′
Val

〈x.f = vexp, (σRef , σVal)〉 →Split (σRef , σ
′
Val)

〈x =R�vexp, σRef�, σVal〉 →Val σ
′
Val

〈x = vexp, (σRef , σVal)〉 →Split (σRef , σ
′
Val)

Fig. 9. The semantics of the split domain

a reference instead of a local variable when accessing a field with statement
< r > .f. Then, we have that →Split is a sound approximation of →Σ.

The small-step semantics→Split over ΣSplit is formalized by Figure 9. It mainly
applies the proper semantics of the value (Figure 7) or the heap (Figure 8) part
of the state by looking to the statement. The only noticeable difference appears
when we deal with statements requiring both value and heap state (namely,
x = vexp and x.f = vexp). In these cases, we preprocess vexp and x.f with the
following function R:

R : (vexp× ΣRef)→ vexp′

R�x, (eRef , sRef)� = x

R�x.f, (eRef , sRef)� = <eRef(x)> .f
R�vexp1 < op > vexp2, (eRef , sRef)� =

= R�vexp1, (eRef , sRef)�< op >R�vexp2, (eRef , sRef)�
This function replaces in a value expression the local variable x in a field

access x.f with the reference r pointed by x in the reference environment. This
step is necessary to allow the evaluation of value expressions to perform without
any knowledge of the actual state of the reference part.

4 Abstract Domain and Semantics

The reference (ΣRef) and the value (ΣVal) part of the split domain are approxi-
mated by a given heap (H) and value (V) analysis, respectively. In addition, the
heap analysis defines a set of heap identifiers HId which aims at abstracting con-
crete locations, and the value analysis tracks information over these identifiers
like it does over variable identifiers. Since we want to allow the heap analysis to
merge and materialize heap identifiers, we have to communicate these changes
to the value analysis through substitutions. In this Section, we formalize and
prove the soundness of this framework.

Generic Combination of Heap and Value Analyses in Abstract Interpretation 309

4.1 Abstract Domain

We assume that a value analysis V and a heap analysis H are provided with
lattice operators (〈V,.V,�V,�V〉 and 〈H,.H �H,�H〉, respectively). In addition,

they provide the widening operators ∇V and ∇H, respectively. The states Σ of

our abstract domain are composed by a heap and a value state (Σ = H × V).
Then a state of our analysis is the Cartesian product of H and V denoted by
〈Σ,.Σ,�Σ,�Σ〉.

4.2 Concretization Function

We assume that the heap analysis defines a finite set of heap identifiers HId. In
addition, it provides a function heapId : H→ ℘(HId) that returns the set of heap
identifiers contained in a given abstract heap. The value analysis tracks informa-
tion on variables as well as heap identifiers. Therefore, the concretization of the
value analysis produces (i) environments in EnvVal, and (ii) stores with abstract
heap identifiers instead of concrete locations since the value analysis alone can-
not concretize heap identifiers (StoreHId : HId → ℘(Val)). Note that we have a
set of concrete values as codomain since a single heap identifier, representing a
summary node, may concretize into many concrete references that could have
different values in the same store’s concretization. For instance, a list of posi-
tive values may be approximated by a single heap identifier u. Imagine that we
are dealing with a particular concretization of this list containing two elements.
These two elements are not necessarily equal, so for instance the value analysis
could tell us that u.f concretizes to {1, 2} (e.g., to represent a list [1; 2]).

To concretize a store in StoreHId to Store, we need that the heap analysis
provides the concretization of heap identifiers. Therefore, the heap concretization
has to provide a function γHId that relates each heap identifier to a set of concrete

locations (HId → ℘(Ref × Field)). Also in this case, we need to have a set of
concrete locations as codomain in order to support summary nodes.

In this way, the heap analysis can track the shape of the heap, and repre-
sent symbolically nodes using heap identifiers. When it concretizes, the concrete
values of references in one concrete store transform the shape into a concrete
memory state. In this scenario, the heap identifiers’ concretization is the com-
ponent that tells us how we go from the shape to the concrete references. Note
that a single shape could concretize to a (possibly infinite) set of concrete stores,
since there are infinitely many possible reference values for the heap identifiers,
and the heap identifiers’ concretization is specific for one concrete store.

Formally, the heap concretization γH returns a set of pairs containing a con-

crete store, and a concretization of heap identifiers (γH : H → ℘(ΣRef × (HId →
℘(Ref × Field)))). The mapping of heap identifiers to sets of concrete locations
is necessary to concretize later value stores.

310 P. Ferrara

We assume that the heap and value analyses are sound, that is, they form a Ga-

lois connection. Formally, 〈℘(EnvVal×StoreHId),⊆〉 −−−→←−−−
αV

γV 〈V,.V〉 and 〈℘(ΣRef),⊆

〉 −−−−−−→←−−−−−−
αH

π1◦γH 〈H,.H〉. In addition, we assume that γV and π1(γH) are complete

meet-morphisms.
We are now in position to combine the heap and value concretizations to con-

cretize abstract states in Σ to ℘(ΣSplit). What is still missing is the concretization
of StoreHId to Store. Intuitively, the resulting stores should relate a location (r, f)
with the values related to a heap identifier that is concretized into (r, f). For-
mally, we define γStoreHId : (StoreHId × (HId → ℘(Ref × Field))) → ℘(StoreVal) as
follows:
γStoreHId(s, γHId) = {[(r, f) �→ v] : i ∈ dom(γHId) ∧ (r, f) ∈ γHId(i) ∧ v ∈ s(i)}

Finally, the concretization of abstract states γΣ : Σ→ ℘(ΣSplit) is defined by:

γΣ(v, h) = {(σH , (ev, s′v)) : (ev, sv) ∈ γV(v) ∧ (σH , γHId) ∈ γH(h)∧
s′v ∈ γStoreHId(sv, γHId)}

Running Example. Consider now the motivating example of Figure 1 with
the list passed by client1, and the abstract state depicted in the right part
of Figure 2. The numerical domain concretizes the store (sv in the definition
of γΣ) to {[(p1, f) �→ {1}, (p2, f) �→ {2}]} while the value environment ev is
empty since there is no local value variable. Instead, γH may concretize to many
heaps with different γHId. For the sake of simplicity, let us focus on the case in
which γHId = [(p1, f) �→ {(#1, f)}, (p2, f) �→ {(#2, f)}]. Then γStoreHId returns
the numerical store s′v = [(#1, f) �→ 1, (#2, f) �→ 2], that is, it substitutes (p1, f)
and (p2, f) with (#1, f) and (#2, f) in sv, respectively.

Soundness. We need to assume some conditions on how heap identifiers are
concretized in order to prove the soundness of the analysis.

C1 γHId has to define the concretization of all the heap identifiers contained in

the concretized heap. Formally, ∀γHId ∈ π2(γH(h)) : dom(γHId) = heapId(h).
C2 If a heap identifier is not in all the states we are intersecting, then it will not

be part of the results of the intersection, since through the greatest lower
bound we are taking only the part that is common among all the states we
are intersecting. Formally, ∀H1 ⊆ H : heapId(

�
h∈H1

h) =
⋂

h∈H1
heapId(h).

C3 Different heap identifiers represent different portions of the heap. Formally,
∀i1, i2 ∈ dom(γHId) : i1
= i2 ⇒ γHId(i1) ∩ γHId(i2) = ∅.

C4 When we intersect a set of abstract heaps, the heap identifiers’ concretiza-
tion is the pointwise intersection of the heap identifiers’ concretization of
all the intersected states. Formally, ∀(σH , γHId) ∈ γH(

�
h∈H1

h), ∀(σH , γiHId
) ∈

γH(hi) : hi ∈ H1 ⇒ γHId = λx.
⋂

hi∈H1
γi
HId

(x).

Condition C1 is necessary since otherwise the value analysis could track in-
formation on heap identifiers that it does not know how to concretize. Condition
C3 is a rather standard assumption over abstract nodes in heap analysis (e.g.,
in shape analysis [30]), and it states that different identifiers represents different

Generic Combination of Heap and Value Analyses in Abstract Interpretation 311

portions of the heap. In this way, the assignment of an identifier is guaranteed
not to affect other identifiers. Condition C2 and C4 are both necessary to prove
that γΣ is meet-preserving. This is a fundamental property for Galois connec-
tions induced by a glb-preserving concretization function (e.g., see Proposition 7
of [11]). Intuitively, they correspond to the requirement that π1(γH) and γV are
complete meet-morphism applied to π2(γH).

Theorem 1 (〈Σ,.〉 is a sound approximation of 〈℘(ΣSplit),⊆〉)
〈℘(ΣSplit),⊆〉 −−−−→←−−−−

αΣ

γΣ 〈Σ,.〉 where αΣ = λX. �Σ {x : X ⊆ γΣ(x)}.

Since Galois connections compose [9], we have that 〈℘(Σ),⊆〉 −−−−−−−−−→←−−−−−−−−−
αΣ◦α℘(Split)

γ℘(Split)◦γΣ

〈Σ,.〉 that is, Σ is sound with respect to the standard concrete domain ℘(Σ).

4.3 Substitutions

Substitutions allow the heap analysis to freely manage heap identifiers when
applying semantic operators. They are defined by Sub : ℘(HId) → ℘(HId). The
meaning of a relation in a substitution is that the identifiers in the domain are
in the post-state, and they derive from the identifiers in the pre-state they are
in relation with. For instance, [{id1, id2} �→ {id3}] represents that id1 and id2
are materialized from id3, while [{id1} �→ {id2, id3}] means that id2 and id3 are
merged into id1.

In our notation, we will represent by →sub
H

that the heap semantic operator

→H produced the substitution sub. Function applySub : (V × Sub) → V applies
a substitution to a state of the value analysis, and it is defined by:

applySub(v, sub) = vn where sub = [I1 �→ I′1, ..., In �→ I′n], v0 = v∧
∀j ∈ [1..n] : vj = �i′∈I′j{v

′
n : Ij = {i1, · · · , in}, v′0 = vj−1,

∀k ∈ [1..n] : 〈ik = i′, v′k−1〉 →V v′k}
The intuition behind applySub is that, given a substitution sub, each single

replacement Ij �→ I′j ∈ sub represents that the identifiers in I′j are substituted by
Ij . Therefore, each identifier i′ ∈ I′j is assigned to each identifier i ∈ Ij .

Soundness. We expect that the substitution produced by a heap semantic
operator is coherent with respect to the modifications of the heap identifiers that

have been induced by such operator. This means that, if 〈st, h〉 →sub
H

h
′
and [I �→

I′] ∈ sub, the concrete locations represented by I′ in the pre-state corresponds to
what is represented by I in the post-state. This correspondence is bound to heap
concretization that are related through the concrete heap semantics →Ref . This
concept is formalized by the following proposition.

Proposition 1 (Soundness of the substitution). Let h ∈ H be a state of

the heap analysis such that 〈st, h〉 →sub
H

h
′
.

A substitution is sound iff ∀(h, γHId) ∈ γH(h) : 〈st, h〉 →Ref h′, (h′, γ′
HId

) ∈
γH(h

′
) we have that γ′

HId
= γHId[i �→ I′ : I′ ⊆

⋃
i1∈sub(I) γHId(i1) ∧ ∃I ∈ dom(sub) :

i ∈ I] and ∀I ∈ dom(sub) :
⋃

i∈I γ
′
HId

(i) =
⋃

i′∈sub(I) γHId(i
′).

312 P. Ferrara

Intuitively, the substitution univocally establishes how heap identifiers’ con-
cretization is affected by the heap semantic operator. In addition, since a substitu-
tion represents how heap identifiers are modified in a single step, we do not want
that different replacements in the same substitution overlap. The intuition is that
a set of heap identifiers can be substituted by another set, but during one single
substitution the same heap identifiers cannot be in many replacements. For in-
stance, imagine that we have the substitution [{id1} �→ {id2}, {id2} �→ {id3}].
In this case, it is not clear what is represented. In particular, we could have that
(i) id1 is replaced by id2 that is then replaced by id3, or (ii) id2 is replaced by
id3 and id1 is replaced by id2. To avoid this ambiguity, we do not allow this
scenario. Nevertheless, the effects of overlapping substitutions (like the one we
sketched) can be obtained by a sequence of non-overlapping substitutions that
disambiguate the semantics. For instance, (i) corresponds to [{id1} �→ {id2}]
followed by [{id2} �→ {id3}], while (ii) corresponds to [{id2} �→ {id3}] followed
by [{id1} �→ {id2}].

Proposition 2 (Non-overlapping replacements). We assume that single
replacements in the same substitution do not overlap. Formally, ∀I ∈ dom(sub),
∀I′ ∈ dom(sub) \ {I} : I ∩ I′ = ∅ ∧ sub(I) ∩ sub(I′) = ∅.

Running Example. Consider again the program in Figure 1, and suppose to
have a transition like the one depicted in Figure 3. The materialization of u2
produces the replacement [{u1.f, u2.f} �→ {u1.f}], and its application to the
numerical state produces [u1.f �→ [0..+∞], u2.f �→ [0..+∞]].

This replacement satisfies the soundness conditions of the substitution. In-
tuitively, the two heap identifiers u1.f and u2.f in the post state corresponds
to u1.f in the heap state. Therefore, given a particular concrete state, the con-
cretization of the heap identifiers of u1.f and u2.f in the post-state corresponds
to the concretization of u1.f in the pre-state, that is exactly what is stated by
Proposition 1. In addition, the substitution does not overlap, and therefore it
satisfies Proposition 2.

4.4 Semantics

In our split domain, we assumed that the value part ΣVal takes care of statements
about values, while the heap partΣRef defines the semantics of statements dealing
with the heap. Nevertheless, we needed the heap state to replace field accesses
with a reference and the accessed field in value expressions, and when assigning
a value to a location. Similarly, we will have to replace field accesses with heap
identifiers when defining the abstract semantics.

Let us define vexp ::=x|i|vexp1 < op > vexp2 where i ∈ HId. vexp is the ab-
stract counterpart of vexp′. We assume that V provides the semantics of value
assignment 〈i = vexp, v〉 →V v′, and that H provides (i) the semantics of field

access 〈x.f, h〉 →H I (where I ⊆ HId is the set of heap identifiers obtained by

Generic Combination of Heap and Value Analyses in Abstract Interpretation 313

〈x.f = y, h〉 →sub
H h′ ∧ applySub(v, sub) = v′

〈x.f = y, (h, v)〉 →Σ (h
′
, v′)

v′ =
⊔

i ∈ R�x.f, h�,

vexp ∈ R�vexp, h�

v1 : 〈i = vexp, v〉 →V v1

〈x.f = vexp, (h, v)〉 →Σ (h, v′)

〈x = rexp, h〉 →sub
H h′ ∧ applySub(v, sub) = v′

〈x = rexp, (h, v)〉 →Σ (h
′
, v′)

v′ =
⊔

vexp∈R�vexp,h�

v1 : 〈x = vexp, v〉 →V v1

〈x = vexp, (h, v)〉 →Σ (h, v′)

Fig. 10. The abstract semantics →Σ

〈i = vexp, (eVal, sHId)〉 →Val′ (eVal, sHId[i 	→ eval ′(vexp, (eVal, sHId))])

〈x = vexp, (eVal, sHId)〉 →Val′ (eVal[x 	→ eval ′(vexp, (eVal, sHId))], sHId)

Fig. 11. The semantics →Val′

accessing x.f)3, (ii) the semantics of local variable assignment 〈x = rexp, h〉 →sub
H

h
′
, and (iii) the semantics of field assignment 〈x.f = y, h〉 →sub

H
h
′

The abstract semantics is defined by Figure 10. It relies on function R:
R : (vexp× H)→ ℘(vexp)

R�x, h� = {x}
R�x.f, h� = I where 〈x.f, h〉 →H I
R�vexp1 < op > vexp2, (h, v)� = ⋃

vexp1 ∈ R�vexp1, h�
vexp2 ∈ R�vexp2, h�

vexp1< op >vexp2

Similarly to R, this function replaces each field access x.f with the heap iden-
tifier i that represents such field access in the current heap state. Since the heap
analysis may return a set of heap identifiers when accessing a field (e.g., because
it may track that a local variable could point to two different abstract heap
nodes), R returns a set of possible value expressions in vexp.

Running Example. Suppose to analyze the statement it = l at line 3 of the
motivating example of Figure 1 obtaining a transition as depicted in Figure 3.
The analysis materializes the node pointed by it, and it produces a substitution
as discussed in Section 4.3. The definition of the semantics →Σ simply applies
this substitution to the value analysis after the heap semantics.

3 For the sake of simplicity, we assume that field accesses do not produce any sub-
stitution nor they modify the abstract heap state. Anyway, this does not limit the
expressiveness of our approach, since we may obtain this substitution and a new
heap state by simulating this statement by assigning a field access to a local vari-
able, and then by replacing the field access with this local variable in the expression
or assignment containing x.f.

314 P. Ferrara

eval ′ : (vexp × (EnvVal × StoreHId)) → Val
eval ′(x, (eVal, sHId)) = eVal(x)
eval ′(i, (eVal, sHId)) = sHId(i)
eval ′(vexp1 < op > vexp2, (eVal, sHId)) =

= eval ′(vexp1, (eVal, sHId)) < op > eval ′(vexp2, (eVal, sHId))

Fig. 12. The expression evaluation eval ′

Soundness. Before establishing the soundness conditions of the heap and the
value analyses, we need to introduce the semantics→Val′ that defines the seman-
tics of statements dealing with vexp on EnvVal × StoreHId. This is formalized by
Figure 11 and 12. Then, we assume that the semantics of the value and the heap
analysis are both sound.

Proposition 3 (Soundness of the value semantics). We assume that the
semantic operator provided by the value analysis is sound. Formally,
∀v ∈ V, 〈st, v〉 →V v′, 〈st, γV(v)〉 →℘(Val′) V

′ ⇒ V′ ⊆ γV(v
′)

where st ∈ {x = vexp, x.f = vexp}.

Proposition 4 (Soundness of the heap semantics). We assume that the
semantic operators provided by the heap analysis are sound. Formally,

– ∀h ∈ H, 〈st, h〉 →sub
H

h
′
, 〈st, π1(γH(h))〉 →℘(Ref) H

′ ⇒ H′ ⊆ π1(γH(h
′
)) where

st ∈ {x = rexp, x.f = y}, and
– ∀h ∈ H, 〈x.f, h〉 →H I, ∀((eRef , sRef), γHId) ∈ γH(h)⇒ (eRef(x), f) ∈

⋃
i∈I γHId(i).

Theorem 2 (Soundness of →Σ). Let (h, v) ∈ Σ and st ∈ St be a set of initial
states and a statement, respectively. Then

〈st, (h, v)〉 →Σ (h
′
, v′), 〈st, γΣ(h, v)〉 →℘(Split) S⇒ S ⊆ γΣ(h

′
, v′)

4.5 Reduction

In abstract interpretation, the reduced product [10] allows two analyses to ex-
change information through a reduce operator. This operator is represented by
a function ρΣ : Σ → Σ such that (i) ρΣ(σ) .Σ σ, and (ii) γΣ(ρΣ(σ)) = γΣ(σ).
Since the reduce operator may change what is represented by heap identifiers, it
may produce a substitution whose effects are propagated to V through applySub.

For instance, a numerical analysis could discover that a list contains 2 ele-
ments, while the heap analysis was unable to track this information (e.g., it
tracks the shape depicted on the left part of Figure 3). The reduce operator may
refine the heap state leading to a shape similar to the one depicted in the upper
right part of Figure 2.

Thanks to the genericness of the approach we adopted, we allow one to arbi-
trarily refine the heap state with the information tracked by the value analysis.
Nevertheless, this refinement has to be defined on specific instances of value and
heap analyses.

Generic Combination of Heap and Value Analyses in Abstract Interpretation 315

4.6 Interface of the Value and the Heap Analysis

We now summarize the interface of the value and the heap analysis. First of all,
we have some standard assumptions on sound abstract domains. In particular,
both the analyses form a lattice (〈V,.V,�V,�V〉 and 〈H,.H �H,�H〉) and a
Galois connection with the concrete domain. In addition, they provide sound
semantic operators to assign and read heap locations.

We have then some specific requirements on the heap analysis. In particular, H
provides (i) a finite set of heap identifiers HId, (ii) a function heapId : H→ ℘(HId)
that, given a state, returns the set of heap identifiers contained in that state,
(iii) a coherent concretization of them (Conditions C1-4), and (iv) coherent
substitutions of heap identifiers (Proposition 1 and 2).

These components are necessary to allow our framework to combine the heap
and the value analyses, and to formally prove its soundness.

5 Instances

In this Section, we show how to plug two heap (namely, pointer and shape)
analyses, and existing numerical domains in our framework. In this way, we prove
that our framework is expressive enough to be applied to the most common heap
and value analyses.

5.1 Pointer Analysis PA

Pointer analysis [20] has been extensively studied. One of the most known results
in this field is Andersen’s flow-insensitive analysis[1]. This analysis has been
extended in various ways [31]. In this Section, we propose a slight modification
of Might et al.’s analysis [26]. In particular, our analysis is flow-sensitive, field-
sensitive, and it does not deal with context-sensitivity since we did not support
method calls in our language. Nevertheless, we expect that our approach can
be straightforwardly extended to such scenario. We adopt a standard allocation
site abstraction [1,12,13,29] to approximate dynamic locations in a finite way.

Domain. Heap identifiers are represented by pairs made by (i) program la-
bels in Lab of the new statements that allocate memory, and (ii) field names
(HIdPA = Lab × Field). Since the sets of program labels and of field names
are both finite, HIdPA is finite as well. The abstract environment relates each
variable to a set of program labels (EnvPA : Var → ℘(Lab)). We need a set
of program labels as codomain since statically a variable could be related to
references allocated at different program labels. Similarly, an abstract store re-
lates a pair composed by a program label and a field name to a set of pro-
gram labels (StorePA : (Lab × Field) → ℘(Lab)). Finally, abstract states are
the Cartesian product of abstract environments and stores (ΣPA = EnvPA ×
StorePA). The function heapIdPA : ΣPA → ℘(HIdPA) returns the set of all the
abstract memory locations in the environment and in the store. First of all, we

316 P. Ferrara

EPA : (rexp× ΣPA)→ ℘(Lab)
EPA�x, (e, s)� = e(x)
EPA�x.f, (e, s)� = ⋃

l∈e(x) s(l, f)

EPA�new C, (e, s)� = {label(new C)}
(a) The expression semantics of PA,
where label given a statement returns
its program label

s′ =
⊔

l∈e(x)

s[(l, f) �→ e(y)]

〈x.f = y, (e, s)〉 →∅
PA (e, s′)

e′ = e[x �→ EPA�rexp, (e, s)�]
〈x = rexp, (e, s)〉 →∅

PA (e′, s)

〈x.f, (e, s)〉 →PA

⋃
l∈e(x)

s(l, f)

(b) The statement semantics of
PA

Fig. 13. PA definitions

collect all the labels that are actually stored in the abstract state. Formally,
label(ePA, sPA) =

⋃
x∈dom(ePA)

ePA(x)
⋃

(l,f)∈dom(sPA)
{l} ∪ sPA(l, f). Then heapIdPA

is defined as follows: heapIdPA(ePA, sPA) =
⋃

l∈label(ePA,sPA),f∈fieldValPA(l)
(l, f) where

fieldValPA : Lab→ Field is a function that, given a program point that contains
the assignment of a new statement, returns all the possible value field names of
the instantiated object.

The lattice structure relies on the pointwise application of set operators on
EnvPA and StorePA, and the widening operator corresponds to the least upper
bound operator since the set of program labels is finite. The concretization γPA
first concretizes each label to a set of concrete references that could have been
created at that program label, and then builds up the environments and stores in
which abstract references are replaced by the corresponding references. Formally,

γPA(ePA, sPA) = {((e, s), γHId)} :
γHId ∈ {[(l, f) �→ (r, f) : (l, f) ∈ heapIdPA(ePA, sPA) ∧ r ∈ allocatedRef (l)]}
e ∈ {[x �→ r : x ∈ dom(e) ∧ r ∈

⋃
l∈e(x) γHId(allocatedRef (l))]}

s ∈ {[(r1, f) �→ r2 : (l1, f) ∈ dom(s) ∧ r1 ∈ allocatedRef (l1)∧
r2 ∈

⋃
l2∈s(l1,f)

allocatedRef (l2)]}

where allocatedRef : Lab → ℘(Ref) is a function that returns all the references
allocated by a given program label.

These definitions satisfy the soundness conditions of heap identifier concretiza-
tion, and in particular C1 since γHId always concretizes all the heap identifiers
in the state, C2 since by definition �PA is the pointwise application of the set
intersection ∩, C3 since what is allocated by a label is disjoint from what can
be allocated by other labels, and C4 since what is represented by a label never
changes during the computation of the abstract semantics.

Semantics. Figure 13a formalizes the abstract evaluation of expressions, while
Figure 13b deals with the semantics of statements. Both these semantics are

Generic Combination of Heap and Value Analyses in Abstract Interpretation 317

quite standard. The evaluation of expressions simply enquires the environment
or the store to know the abstract references pointed by a variable or a field
access, respectively. Instead, when we create a new object, this returns a sin-
gleton containing the label of the statement. Similarly, the abstract semantics
of statements assigns the set of labels returned by the evaluation of expressions
to the assigned variable or abstract location. The semantics always creates an
empty substitution, since statements do not change how we concretize the heap
identifiers, because each heap identifier represents all the concrete locations al-
located by a given label. This is not touched by the abstract semantics, and
empty substitutions always satisfy Proposition 1. In addition, since only empty
substitutions are produced, Proposition 2 trivially holds.

5.2 TVLA-Based Shape Analysis

Shape analysis [30] is an approach to heap analysis that achieved an impressive
amount of research results, and it was used to define quite precise abstractions.
TVLA [22] is the first and one of the most popular shape analysis engines. Fer-
rara et al. [15] combined TVLA and value analyses in a generic way relying on
substitutions. A further work [16] has plugged this combination in the framework
we introduced in this paper.

Intuitively, the concrete structure of the heap is represented by shapes de-
fined by 2-valued logic structures. These are then approximated by 3-valued
logic structures. At this level, maybe nodes represent summary node in the heap
graph. Unfortunately, TVLA names nodes in a completely arbitrary and unpre-
dictable way. Therefore, TVAL+ augmented states with unary name predicates.
Condition C3 imposes that different names point to different nodes. Therefore,
each name predicate can point only to one node, and each node has to be pointed
by one name predicate. The states satisfying this property are called normalized.
When computing the TVLA semantics, the exit state may not be normalized. [15]
then defines a normalization algorithm, and [16] proves that the substitutions it
produces satisfy Propositions 1 and 2.

5.3 Numerical Domains

Numerical domains are by far the most studied value abstraction, and usually
they track information on local variables. Our approach introduces heap iden-
tifiers in addition to variables. On the one hand, if a heap identifier represents
a definite node (that is, it is always concretized to a single concrete reference
by γHId), then the value domain can treat it exactly as a variable identifier. On
the other hand, if it is a summary node (that is, it concretizes to many concrete
references), the value analysis has to take into account this fact to preserve the
soundness of the whole analysis.

There are three major issues in this scenario. First of all, when performing an
assignment to a heap identifier representing a summary node, the value analysis
has to perform a weak update, that is, it has to compute the least upper bound
between the state before the assignment and after it. A similar issue arises when

318 P. Ferrara

reading from a summary node. Imagine to analyze a = l.f; b = l.next.f; with
the linear equalities domain [21] on the heap state depicted in the upper-left
corner of Figure 3. The heap analysis would evaluate both l and l.next with u1.
Therefore, after the computation of the semantics of a = u1.f; b = u1.f; we would
infer that a == u1.f ∧ b == u1.f, and then that a == b, that is unsound. For
this reason, when considering expressions containing summary nodes, the value
domain has to consider that the same heap identifiers may represent different
concrete heap locations. Finally, numerical domains usually deal with all the
program variables. Instead, in our framework we cannot know a priori the heap
identifiers produced by the heap approximation during the analysis. For instance,
this would lead to situations in which we have to join value states defined on
different environments.

All these issues are already well-known, and Gopan et al. [18] extended ex-
isting numerical domains (dealing only with local variables) to summarized di-
mensions in a generic way. In particular, they require four operators from a
numerical domain (add, drop, fold, and expand). Using these operators, they
define a sound semantics dealing with summary nodes. Their main insight is to
(i) materialize one node from the summary node, (ii) perform the abstract eval-
uation or assignment on this node, and (iii) merge this node with the summary
node where it comes from. If on the one hand this approach is quite precise,
on the other hand it could introduce several identifiers when computing the
semantics, slowing down the analysis.

6 Related Work

In this Section, we briefly discuss some previous work dealing with the combina-
tion of (usually shape) heap and (usually numerical) value analyses.

McCloskey et al. [25] proposed a generic way of combining heap and numerical
domains. Similarly to our work, the heap analysis splits the heap into classes of
disjoint portions of the heap as we did with heap identifiers (in particular with
Condition C3). They assume that “the set of individuals belonging to a class is
not affected by an assignment”, that in our framework roughly means that what
is represented by heap identifiers is not modified by assignments. Instead, one of
the main focuses of our approach was to allow this scenario, and substitutions
are the component used to communicate to the value analysis how heap identi-
fiers are modified. In addition, they adopt first order logic formula to allow the
analyses to communicate, and they require that the user of the analysis provides
the predicates that are shared among the analyses. Instead, we automatically
combined heap and value analysis, while we rely on reduce operators to commu-
nicate information from the value to the heap analysis. Similarly, Gulwani and
Tiwari [19] rely on the Nelson-Oppen method to combine analyzers represented
in first order logic, while our approach relies on abstract interpretation-based
domains. Chang and Leino [6] relied on heap analyses based on equalities to
allow the numerical domain to track information over heap locations. They ex-
tended the variable identifiers usually adopted by numerical domains with aliens

Generic Combination of Heap and Value Analyses in Abstract Interpretation 319

expressions to track information over heap locations. Intuitively, this corresponds
to our notion of heap identifiers.

There are only few previous works that combined generically heap and numer-
ical domains based on abstract interpretation. Miné’s memory abstraction [27],
that is part of ASTRÉE [4], is parametrized on a numerical domain, but it does
not support neither summary nodes, nor dynamic allocation. Abstract cofibered
domains [32] (and in a more generic way the reduced cardinal power [10]) takes
as argument a numerical domain, and they could be instantiated with various
heap analyses. This framework requires to manually define the functor to glue
the two domains, while our work is aimed at building a generic framework that
automatically combines the two domains, and that relies on few assumptions to
ensure the soundness of the whole analysis. Recently, Chang and Rival [7] in-
troduced a modular combination of shape and numerical abstract domains. The
shape analysis relies on points-to predicate, while the numerical domain tracks
information on a symbolic representation of values stored in the heap. This is
slightly different from our concept of heap identifiers, that are aimed at abstract-
ing memory locations. In addition, this work targets shape analyses based on
summarization and materialization of nodes. This implies that when a node is
materialized, the shape analysis needs to track a disjunctive abstraction made
by a set of shapes.

Several works dealt with refining the results of a specific heap analysis with
some numerical information inferred by another analysis. In this context, Magill
et al. [24] refine a heap analysis based on separation logic with some numeri-
cal domains through counter-examples generated by the shape analysis. Simi-
larly, Beyer et al. [3] combined the model checker BLAST [2] with TVLA using
Counter-Example Guided Abstraction Refinement for refining the shape analy-
sis. Bouajjani et al. [5] developed a framework to statically infer properties over
programs manipulating lists containing integer numerical data. Instead, our ap-
proach is generic both on the heap and value analysis, and the information
tracked by the heap analysis could be refined by the value analysis through a
reduce operator as described in Section 4.5.

7 Conclusion

In this paper we presented a sound generic framework to combine heap and value
analyses automatically. Our framework relies on standard operators of static
analyses based on abstract interpretation. In addition, it requires that the heap
analysis provides a set of heap identifiers, how these identifiers are concretized
into references, and some additional soundness conditions. As far as we know,
this is the first generic combination that allows the heap analysis to merge and
materialize heap identifiers. We instantiated our framework to a standard pointer
and shape analyses as well as to numerical domains, thus proving empirically the
expressiveness of our approach.

320 P. Ferrara

7.1 Future Work

The most part of the theoretical ideas contained in this paper came from some
practical experience the authors get with Sample [8,14,17,34], a generic static
analyzer that combines different heap and value analyses. We are currently ex-
tending this analyzer with all the results of this paper, and to provide an interface
to plug implementation of heap and numerical analyses to external users.

Acknowledgments. This work was partially supported by the SNF project
“Verification-Driven Inference of Contracts”.

References

1. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen (1994)

2. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
blast. STTT 9(5-6), 505–525 (2007)

3. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 532–546. Springer, Heidelberg (2006)

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings of
PLDI 2003. ACM (2003)

5. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Abstract domains for auto-
mated reasoning about list-manipulating programs with infinite data. In: Kuncak,
V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 1–22. Springer,
Heidelberg (2012)

6. Chang, B.-Y.E., Leino, K.R.M.: Abstract interpretation with alien expressions and
heap structures. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 147–163.
Springer, Heidelberg (2005)

7. Chang, B.-Y.E., Rival, X.: Modular construction of shape-numeric analyzers. In:
Festschrift for Dave Schmidt, EPTCS (2013)

8. Costantini, G., Ferrara, P., Cortesi, A.: Static analysis of string values. In: Qin, S.,
Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 505–521. Springer, Heidelberg
(2011)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977. ACM (1977)

10. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of POPL 1979. ACM (1979)

11. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
Journal of Logic Programming 13, 103–179 (1992)

12. Ferrara, P.: JAIL: Firewall analysis of java card by abstract interpretation. In:
Proceedings of EAAI 2006 (2006)

13. Ferrara, P.: A fast and precise analysis for data race detection. In: Bytecode 2008
(2008)

14. Ferrara, P.: Static type analysis of pattern matching by abstract interpretation. In:
Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE 2010, Part II. LNCS, vol. 6117, pp.
186–200. Springer, Heidelberg (2010)

Generic Combination of Heap and Value Analyses in Abstract Interpretation 321

15. Ferrara, P., Fuchs, R., Juhasz, U.: TVAL+: TVLA and value analyses together. In:
Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504,
pp. 63–77. Springer, Heidelberg (2012)

16. Ferrara, P., Fuchs, R., Juhasz, U.: Tval+: A sound and generic combination of tvla
and value analyses. Technical report, ETH Zurich (November 2013)

17. Ferrara, P., Müller, P.: Automatic inference of access permissions. In: Kuncak,
V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 202–218. Springer,
Heidelberg (2012)

18. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with summa-
rized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
pp. 512–529. Springer, Heidelberg (2004)

19. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: Proceedings of PLDI
2006. ACM (2006)

20. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Proceedings of
PASTE 2001. ACM (2001)

21. Karr, M.: On affine relationships among variables of a program. Acta Informat-
ica 6(2), 133–151 (1976)

22. Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In: Pals-
berg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg (2000)

23. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011)

24. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic strengthening for shape
analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 419–
436. Springer, Heidelberg (2007)

25. McCloskey, B., Reps, T., Sagiv, M.: Statically inferring complex heap, array, and
numeric invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337,
pp. 71–99. Springer, Heidelberg (2010)

26. Might, M., Smaragdakis, Y., Van Horn, D.: Resolving and exploiting the k-cfa para-
dox: illuminating functional vs. object-oriented program analysis. In: Proceedings
of PLDI 2010. ACM (2010)

27. Miné, A.: Field-sensitive value analysis of embedded c programs with union types
and pointer arithmetics. In: Proceedings of LCTES 2006. ACM (2006)

28. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
(2006)

29. Robert, V., Leroy, X.: A formally-verified alias analysis. In: Hawblitzel, C., Miller,
D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 11–26. Springer, Heidelberg (2012)

30. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems 24(3), 217–298 (2002)

31. Sridharan, M., Chandra, S., Dolby, J., Fink, S.J., Yahav, E.: Alias analysis for
object-oriented programs. In: Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing in
Object-Oriented Programming. LNCS, vol. 7850, pp. 196–232. Springer, Heidelberg
(2013)

32. Venet, A.: Abstract cofibered domains: Application to the alias analysis of untyped
programs. In: Cousot, R., Schmidt, D.A. (eds.) SAS 1996. LNCS, vol. 1145, pp.
366–382. Springer, Heidelberg (1996)

33. Venet, A.: Towards the integration of symbolic and numerical static analysis.
In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 227–236.
Springer, Heidelberg (2008)

34. Zanioli, M., Ferrara, P., Cortesi, A.: SAILS: static analysis of information leakage
with Sample. In: Proceedings of SAC 2012. ACM (2012)

Modeling Parsimonious Putative Regulatory

Networks: Complexity and Heuristic Approach

Vicente Acuña1,2, Andrés Aravena1,2,5,
Alejandro Maass1,2,3, and Anne Siegel4,5

1 Center for Mathematical Modeling (UMI-CNRS 2807), University of Chile, Chile
2 Center for Genome Regulation, University of Chile, Chile

3 Department of Mathematical Engineering, University of Chile, Chile
4 CNRS UMR 6074, IRISA Project Dyliss, Université de Rennes 1 (UMR 6074),

France
5 INRIA, Centre Rennes-Bretagne-Atlantique, Project Dyliss, Campus de Beaulieu,

Rennes, France

Abstract. A relevant problem in systems biology is the description of
the regulatory interactions between genes. It is observed that pairs of
genes have significant correlation through several experimental condi-
tions. The question is to find causal relationships that can explain this
experimental evidence.

A putative regulatory network can be represented by an oriented
weighted graph, where vertices represent genes, arcs represent predicted
regulatory interactions and the arc weights represent the p-value of the
prediction. Given such graph, and experimental evidence of correlation
between pairs of vertices, we propose an abstraction and a method to
enumerate all parsimonious subgraphs that assign causality relationships
compatible with the experimental evidence.

When the problem is modeled as the minimization of a global weight
function, we show that the enumeration of scenarios is a hard problem.
As an heuristic, we model the problem as a set of independent minimiza-
tion problems, each solvable in polynomial time, which can be combined
to explore a relevant subset of the solution space. We present a logic-
programming formalization of the model implemented using Answer Set
Programming.

We show that, when the graph follows patterns that can be found in
real organisms, our heuristic finds solutions that are good approxima-
tions to the full model. We encoded these approach using Answer Set
Programming, applied this to a specific case in the organism E. coli and
compared the execution time of each approach.

Keywords: Genic regulatory network reconstruction, Complexity, Al-
gorithm, Heuristics.

Optimization methods and abstract methods such as static analysis or
model-checking appear to have more and more interplays. For instance,
optimization-based approaches are required in static analysis to handle
the complexity of some numerical domains. The same issue holds in sys-
tems biology. In this domain, both static analysis and model-checking ap-
proaches have been widely developed (de Jong et al., 2003; Calzone et al.,

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 322–336, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Modeling Parsimonious Putative Regulatory Networks 323

2006; Chabrier-Rivier et al., 2004; Danos et al., 2007, 2012), but they are
applied tomodels having strong litterature-based confidence and evidences.
Meanwhile, the emergence of new sequencing technologies implies thatmore
and more models of relatively low confidence are produced with learning
and reconstruction approaches (Meyer et al., 2007; Herrg̊ard et al., 2004;
Marbach et al., 2010). A main prospective issue is now to apply model-
checking approaches to such uncertain models reconstructed from “omics”
data.

As a first step in this direction, in this paper, we propose to use logic
programming approaches to analyze “rough” data in order to build a
robust and valid biological model that can be considered as a entry for
formal approaches. More precisely, we address the issue of reconstruct-
ing a minimal graph model of regulatory interaction from genome and
co-expression information. We prove that the underlying combinatorial
problem is of high complexity, and we introduce a less complex (also NP-
complete) heuristics to solve the problem. Then, interestingly, we propose
to use a quite recent paradigm of logic programming, named Answer Set
Programming (Gebser et al., 2011), to solve the combinatorial problem.
Interestingly, it appears that the progress of solvers developed for ASP
now allows solving the heuristics that we have introduced.

1 Introduction

Molecular biology is source of many interesting graph problems. For instance,
the transcriptional regulation network of an organism is usually represented by a
directed graph where nodes represent genes and arcs connect each regulator gene
to a regulated one. In theory the knowledge of the complete regulation network,
including regulations signs (activation or repression), would allow a complete
description of the cell behavior as a dynamical system (Xiao, 2009).

The set of genes is called the genotype of the organism, and the physical
outcome that includes metabolites, proteins and the cell shape, constitute the
phenotype. So the genotype is the potential outcome of a cell, while the phenotype
is the effective outcome. The regulation network encodes the mechanism that
enables a fixed genotype to become different phenotypes, for example when a
multicellular organism develops and tissues are formed.

If we describe metaphorically a cell as a mechanical clock, the genetic infor-
mation is the blueprint that describes each one of the gears. Genetic network
reconstruction methods aim to describe how these gears are interconnected and
how they interact for a given outcome. The long term goal is to describe accu-
rately these interactions in a way that allow us to predict the effect of a change
in the mechanism and, in principle, determine which modifications have to be
made to obtain a desired result.

The regulation network can be modeled as a set of coupled differential equa-
tions, where each node is represented by a variable and the arcs represent the
subset of these variables that are relevant for each equation. Unfortunately, these
equations usually depend on parameters that are not easily measured. Another
approach is to model them as boolean networks, where the nodes can be “active”

324 V. Acuña et al.

or “inactive” and the next state of each node depends only on the state of the
nodes connected by incoming arcs.

The purpose of gene regulation network reconstruction has thus at least two
aspects. It constitutes new scientific knowledge as it describes the basis of the
behavior of a cell. It is also the basis for biotechnological applications, like new
antibiotics or genetic engineering (Davidson and Levin, 2005).

These networks are hard to determine experimentally (Streit et al., 2013).
Instead, many approximative methods build putative networks using pattern
matching techniques in the DNA sequence (Bailey et al., 2009). These methods
have usually low specificity (Medina-Rivera et al., 2011) and the resulting puta-
tive networks have a number of arcs around ten times larger than the expected.
Putative networks are represented by weighted digraphs where each gene is rep-
resented by a vertex, an arc connects two vertices when the pattern matching
suggests that the first gene regulates the second, and the arc weight is related
to the pattern matching score or p-value.

Another approach to understand the genetic regulation is to observe the be-
havior of all genes through several conditions and determine correlations among
genes that suggest that some of them are (indirectly) controlled by the same
regulator. This is usually done using differential expression data from microar-
rays experiments. When the expression level of a gene is not independent from
the level of another gene, they are called a pair of co-expressed genes. This asso-
ciation can be measured using linear correlation or mutual information, among
other techniques (Butte and Kohane, 2000).

We can integrate these two kinds of data and use the experimental evidence
as a constraint to define valid putative arc predictions and to determine parsi-
monious graphs that represent the transcriptional regulatory network. We are
interested in the enumeration of all subgraphs that satisfy a connectivity re-
striction and are minimal in some sense. Our approach (Aravena et al., 2013)
to this parsimonious description is to find the subgraphs representing networks
that have, for each pair of vertices representing co-regulated genes, at least one
vertex that precedes them, directly or indirectly.

The arcs of the graph resulting from our method are novel targets for experi-
mental validation. One of the advantages of our method over the classical tools
is that the average degree is reduced, thus this validations can be focused on a
few cases, decreasing experimental time and cost. Once some arc have been val-
idated, this new knowledge can be easily incorporated into our model and close
the loop between experiments and modeling. This iterative process alternating
theoretical analysis and practical validation is classic in systems biology.

The paper is organized as follows: the next two sections explore parsimony
by enumerating minimal subgraphs considering two definitions of graph mini-
mality, the complexity of these problems is determined, in Section 4 an heuristic
approach is described, finally in Section 5 this heuristic is applied to a well known
organism.

Modeling Parsimonious Putative Regulatory Networks 325

2 Arc Minimal Subgraphs

In the following, V represents the set of all genes and A0 represents all putative
regulatory relationships. We also have a collection O ⊆ P2(V) whose elements
are subsets of V with cardinality 2, that is, unordered pairs {t, t′} of distinct
vertices (i.e. t
= t′). This collection represents the pairs of co-regulated genes.

In order to obtain parsimonious regulatory graphs we need to compute sub-
graphs with a minimal set of arcs that can explain all experimental evidence.
Thus, the solutions to our problem are completely defined by their set of arcs
A ⊆ A0.

Let G = (V ,A0) be a directed graph on vertex set V and arc set A0. A graph
G = (V , A) is a subgraph of G = (V ,A0), if A ⊆ A0.

Now, we model the condition that for each pair of co-regulated genes our
subgraph should contain a common regulator.

Definition 1. Given an arc set A ⊆ A0 we say that a vertex s ∈ V precedes a
vertex t ∈ V in A if there exists an oriented path from s to t using only arcs in
A. In particular every node v ∈ V precedes itself.

Definition 2. We say that an arc set A is O-coherent if each pair in O satisfies
the precedence condition:

∀{t, t′} ∈ O ∃s ∈ V , s precedes t in A ∧ s precedes t′ in A.

We also say that the subgraph G = (V , A) is O-coherent when its arc set A is
O-coherent.

We assume that A0 is O-coherent. Notice that, for each {t, t′} ∈ O, if A con-
tains a directed path from t to t′ then the precedence condition is automatically
satisfied by choosing s = t.

The idea is to describe the subsets of A0 which are O-coherent. Notice that
the property of being O-coherent is monotone: if A is O-coherent then every
graph containing A is also O-coherent. Thus, we are interested in enumerate
only the subgraphs that are minimal in the following sense:

Definition 3. We say that an O-coherent arc set A is minimal O-coherent
if for any a ∈ A we have that A− a is not O-coherent. We say that the subgraph
G = (V , A) is minimal O-coherent when its arc set A is minimal O-coherent.

Checking if a subgraph G is O-coherent can be done in polynomial time. For
each {t, t′} ∈ O we build the sets of all predecessors of t and all predecessors of
t′ in linear time. If the intersection is not empty for all pair {t, t′} ∈ O then G is
O-coherent. Therefore, it is easy to find one minimal O-coherent subgraph of G.
By iteratively removing arcs of G while the condition is maintained we obtain a
minimal graph in quadratic time. Consider the following problem:

EnumCohe(G,O): Given an oriented graph G and a set of pairs of ver-
tices O ⊂ P2(V), enumerate all minimal O-coherent subgraphs of G.

326 V. Acuña et al.

We want to analyse the computational complexity of this enumeration problem.
Notice that the number of minimal O-coherent subgraphs of G can grow expo-
nentially (consider, for instance, A0 a complete graph and O containing only
one pair of vertices). Therefore, just printing the result would take exponential
time in terms of the input size. In these cases, it is more appropriate to use total
time to analyse the complexity of enumeration. That is, the time is measured
in terms of the size of the input and the number of solutions (Johnson et al.,
1988). Thus, we say that EnumCohe can be done in polynomial total time if
we can enumerate the solutions in polynomial time in the size of G, O and the
number of minimal O-coherent subgraphs of G.

Unfortunately, the problem EnumCohe is hard in following sense: enumerate
all minimal O-coherent subgraphs cannot be done in polynomial total time un-
less P = NP. To prove this, we reduce EnumCohe to the path conjunction
problem:

PathConj(G,P): Given an oriented graph G = (V ,A0) and a set of pairs
of vertices M = {(si, ti), i = 1 . . . n} ⊆ V × V , enumerate all minimal
subsets A ⊆ A0 such that for each (si, ti) ∈M, there is an oriented path
from si to ti.

Here minimality is in the subset sense: if A is minimal then it connects all
pairs in M and for each a ∈ A there is at least one pair in M that is not
connected in A − a. Khachiyan et al. (2007) shows that PathConj cannot be
enumerated in polynomial total time unless P = NP.

s2

a

b

c

d

es3

s1

t2

t3

t1

s2

s3

s1

t2

t3

t1

s'2

s'3

s'1

Fig. 1. (A) Example of the path conjugation problem, which enumerates all
minimal subgraphs connecting pairs of vertices in M = {(s1, t1), (s2, t2), (s3, t3)}. One
such subgraph is the induced by the vertices a, b and d. (B) Reduction of the path
conjugation problem to EnumCohe. Additions of the s′i nodes guarantees that each
si is connected to the corresponding ti, as described in the text. The latter problem is
thus as complex as the first.

Theorem 1. Problem EnumCohe cannot be solved in polynomial total time
unless P = NP.

Proof. Problem PathConj can be reduced to EnumCohe in linear time. Let us
consider G = (V,A0) and M = {(si, ti), i = 1 . . . n} an instance of PathConj.

Modeling Parsimonious Putative Regulatory Networks 327

We can create an instance for EnumCohe to solve this problem. Define the graph
G′ = (V ∪ V ′,A0 ∪ A0

′) where V ′ = {s′i, i = 1 . . . n} and A0
′ = {(s′i, si), i =

1 . . . n}. Consider the set of pairs O = {(s′i, ti), i = 1 . . . n}. Clearly each minimal
O-coherent subgraph of G′ is exactly the set of arcs in A′ union a minimal sub-
graph connecting the pairs inM. Then, there is a one-to-one correspondence be-
tween the solutions of EnumCohe(G′,O) and the solutions of PathConj(G,P).

3 Minimum Weight Subgraphs

The graphs that represent putative regulatory networks are built using pat-
tern matching techniques that determine when a given gene can be a regulator
(Altschul et al., 1997) and which genes can it regulate (Bailey et al., 2009) based
on the DNA sequence of the genome. This prediction is characterized by the score
of each gene versus the reference pattern, and by a p-value that states the prob-
ability of observing that score under the null hypothesis that there not exists a
regulation relationship. A lower p-value corresponds to a higher confidence that
the arc corresponds to a real regulatory relationships.

We assume that each arc in A0 has a positive weight that increases with the
p-value of the arc. Then each subgraph has a global weight, and a parsimonious
regulatory graph is any O-coherent subgraph of minimum weight.

Let w : A0 → N be the function that assigns a non-negative weight to each
arc in A0. Then the weight (or cost) of an arc-set A is W (A) =

∑
a∈A w(a). We

are interested in finding a O-coherent subgraph of minimum weight. It is easy
to see that any minimum weight O-coherent subgraph is also arc minimal, but
not all arc minimal subsets have minimum weight. Unfortunately, even finding
one O-coherent subgraph of minimum weight is NP -hard. We define formally
this problem as MinCohe:

MinCohe(G,O): Given an oriented graph G and a set of pairs of vertices
O ⊂ P2(V), find a O-coherent subgraph of minimum weight.

To prove MinCohe is NP -hard, we introduce the Steiner Weighted Directed
Tree problem:

SWDT(G, s, T): Given an oriented weighted graph G = (V ,A0), a vertex
s ∈ V and a set of vertices T = {ti, i = 1 . . . n} ⊆ V , find a subgraph of
minimum weight that connect s to ti for all ti ∈ T .

The problem SWDT is NP -hard. Indeed, the undirected case of this problem
corresponds, in their decision version, to one of Karp’s 21 NP -complete problems
(Karp, 1972). Since SWDT is an extension of the undirected case, it is also NP -
hard.

Theorem 2. Problem MinCohe is NP-hard.

Proof. We reduce SWDT problem to MinCohe in a similar way than in the
previous result. Let us consider G = (V ,A0), s ∈ V and T = {ti, i = 1 . . . n} an

328 V. Acuña et al.

s

a

b

c

d

e

t2

t3

t1

s t2

t3

t1

s'

Fig. 2. (A) Schema of Steiner Directed Weighted Tree (SDWT), which enu-
merates all minimum weight subgraphs connecting s to vertices in T = {t1, t2, t3}. For
example the tree induced by nodes a and d connects s with T with minumum weight.
(B) Reduction of Steiner Directed Weighted Tree problem to MinCohe. The
latter problem is thus as complex as the first one.

instance of SWDT. Define the graph G′ = (V ∪ {s′},A0 ∪ {(s′, s)}) where s′ is
a new vertex and (s′, s) is a new arc with weight zero. Consider the set of pairs
O = {(s′, ti), i = 1 . . . n}. Clearly a solution of MinCohe(G′,O) is exactly the
singleton {(s′, s)} union a solution of SWDT(G, s, T).

4 Subgraphs with Minimum Weight Paths

We define a v-shape as the union of two directed paths starting from the same
vertex with no other vertex in common. Formally,

Definition 4. Let s, t and t′ be three vertices of G with t
= t′. Let P be a
directed path from s to t and let P ′ be a directed path from s to t′ such that
P and P ′ have only vertex s in common. Then, we say that Q = P ∪ P ′ is a
v-shape. We also say that vertices t and t′ are v-connected by Q.

Clearly if an arc set A ⊆ A0 is O-coherent, then for each pair {t, t′} in O
there is at least one v-shape in G(V , A) that v-connects t and t′. Thus, if we
consider local parsimony principle, for each pair {t, t′} in O we should include
in our solution A a v-shape of minimum weight v-connecting t and t′.

This is not necessarily the case for the solutions given by MinCohe. Indeed,
a solution G of MinCohe has minimum global weight, but this does not imply
that every pair is v-connected by a minimum weight v-shape, as can be seen in
Fig. 3.

In the following, we would like to consider only O-coherent subgraphs that
contain a minimum weight v-shape for each pair in O. We first define the col-
lection of all v-shapes of minimum weight connecting two vertices in our initial
graph G(V ,A0):

Definition 5. Given a graph G(V ,A0), we call Short-v-shape(t, t′) to the col-
lection of all v-shapes that v-connect t and t′ and are of minimum weight in
A0.

Modeling Parsimonious Putative Regulatory Networks 329

a

b

c

d

e

f

g

jk2
22

2

2

Fig. 3. Example graph where MinCohe solution is not formed by a minimum
weight v-shapes. If O = {{d, g}, {e, f}} then the MinCohe solution has weight 7
and uses the arcs (a, b), (b, d), (b, e), (a, c), (c, f), (c, g). An O-short solution has weight
8. In contrast, when O = {{d, e}, {f, g}}, both solutions coincide. Arcs have weight 1
unless otherwise declared.

Now, we can define the solutions that contain a minimum weight v-shape for
every pair in O.

Definition 6. Given a O-coherent arc set A ⊆ A0, we say that A is O-short
if the subgraph G(V , A) contains a v-shape in Short-v-shape(t, t′) for each pair
{t, t′} ∈ O .

We are interested in finding the O-coherent subgraphs that are O-short. In
particular we are interested in those O-short having minimum weight. We pro-
pose the following problem:

MinWeightOshort(G,O) : Given an oriented graph G = (V ,A0) and
a set of pairs of vertices O ⊂ P2(V), find a O-short subgraph of minimum
weight.

The following result is proved by a reduction from the NP-complete prob-
lem Hitting set (see Garey and Johnson, 1979): given a set of elements A =
{1, . . . ,m} and a collection of subsets I = {I1, . . . , In} of A, find a minimum
cardinality subset of elements H ⊆ A such that H

⋂
Ii
= ∅, ∀i = 1, . . . , n.

Theorem 3. The problem MinWeightOshort is NP-hard.

Proof. Let A and I = {I1, . . . , In} be an instance of hitting set problem. We
consider the the graph G(V , A), where for each element a in A there are two
vertices a and a′ and an arc from a to a′ of weight one. Additionally, for each
set Ii with i ∈ {1, . . . , n} there are two vertices Ii and I

′
i . Moreover, if a belongs

to Ii , then there are two arcs of weight zero: one from vertex Ii to vertex a
and one from vertex a′ to vertex I ′i. If we define the set O by including all the
pairs of vertices {Ii, I ′i}, then clearly any O-short subgraph of minimum weight
correspond to a minimum cardinality hitting set of the original problem.

Although this problem is theoretically hard, it could be much more tractable
than the previous formulations for the instances that we are interested. Indeed,
the combinatorial explosion of feasible solutions can be controlled if the size of

330 V. Acuña et al.

the collections Short-v-shape(t, t′) is small for every pair {t, t′} in O. That is,
the number of v-shapes of minimum weight between each pair of vertices in O
is small.

Thus, we can use a complete enumeration of unions generated by choosing
one v-shape for each pair. At the end we select those unions of minimum weight.

Notice that, for a pair {t, t′} ∈ O, computing the set Short-v-shape(t, t′) can be
done in polynomial total time by using some clever modification of the Dijkstra’s
algorithm (Dijkstra, 1959).

5 An Illustrative Example

To evaluate these approaches we consider a toy problem on a well known or-
ganism. We build a graph G using the genomic DNA sequence of the bacteria
E. coli and patterns described in RegulonDB. We identified as putative regula-
tors the genes with high homology to know genes coding for transcription factors
following a standard protocol: using Blast (Altschul et al., 1997) with a cutoff
E-value of 10−10. Then we determined where these transcription factors could
bind using the tool FIMO from the MEME suite (Bailey et al., 2009) to deter-
mine the presence of putative binding sites in the upstream region of every gene,
with a p-value cutoff of 10−5. When these binding sites were found we connected
with an arc each regulator gene to the gene located downstream the binding
site. This protocol is basically the classical protocol used for regulatory network
reconstruction.

As described, the arcs of this graph are inferred using probabilistic tools that
characterize them with a E-value and a p-value. We combined these two values
and ranked all the arcs into three categories: high, medium and low confidence.
We assigned discrete weights to each arc according to this classification. High
confidence arcs have weight equal to 1, medium confidence arcs have weight 10
and high confidence arcs have weight 100.

We determined the set O of pairs of co-expressed genes from a set of 133
differential expression experiments, estimating the mutual information among
them using the Pearson method and choosing the relevant relationships by the
Maximum Relevance Minimum Redundancy (MRNET) criteria (Meyer et al.,
2007). This method uses mutual information as a way to determine non-linear
dependencies between the expression profiles of the genes, and then determines
which dependencies are significant with the following iterative procedure: for
each gene a, it determines a set Sa of potentially associated genes. Initially
Sa = ∅. In each iteration MRNET determines the gene b that maximizes

MI(a, b)− 1

|Sa|
∑
c∈Sa

MI(b, c)

The gene b that maximizes this expression with a value over a threshold is
added to the set S. This expression corresponds perfectly to the idea behind
MRNET. The first term of this expression focus on finding the associated genes
that are of maximal relevance for a, while the second term focus on minimizing

Modeling Parsimonious Putative Regulatory Networks 331

the redundancy with respect to the associated genes already in Sa. Under these
conditions the pair (a, b) is in O. We further limited O to the 10 000 elements
with higher mutual information.

Finally, to include an aditional biological constraint and reduce the network
size we contracted the graph G and the set O using the node equivalence classes
defined by operons as predicted in ProOpDB (Taboada et al., 2012). This can
be done because, in bacteria and other prokaryotes, operons are set of genes that
are always expressed together so their behavior is identical.

The graph G contains 2215 vertices and 11 584 arcs, the set O contains 9442
pairs of vertices. We relied on Boolean constraint processing technology for
coding MinCohe(G,O), given that it is highly effective for solving demand-
ing combinatorial problems. To be more precise, we take advantage of Answer
Set Programming (ASP), a declarative problem solving approach providing a
declarative framework for modeling various Knowledge Representation and Rea-
soning problems (Baral, 2003) combining a rich yet simple modeling language
with high-performance Boolean constraint solving capacities.

The pairing of declarativeness and performance in state-of-the-art ASP solvers
allows for concentrating on an actual problem, rather than how to implementing
it. The basic idea of ASP is to express a problem in a logical format so that
the models of its representation provide the solutions to the original problem.
Problems are expressed as logic programs and the resulting models are referred
to as answer sets. Although determining whether a program has a answer set is
the fundamental decision problem in ASP, more reasoning modes are needed for
covering the variety of reasoning problems encountered in applications. Hence,
a modern ASP solver, like clasp supports several reasoning modes for assessing
the multitude of answer sets, among them, regular and projective enumeration,
intersection and union, and multi-criteria optimization. As well, these reason-
ing modes can be combined, for instance, for computing the intersection of all
optimal models. This is accomplished in several steps. At first, a logic program
with first-order variables is turned by efficient database techniques into a propo-
sitional logic program. This is in turn passed to a solver computing the answer
sets of the resulting program by using advanced Boolean constraint technology.
For optimization, a solver like clasp uses usually branch-and-bound algorithms
(other choices, like computing unsatisfiable cores, exist). The enumeration of all
optimal models is done in two steps. At first an optimal model is determined
along with its optimum value. This computation has itself two distinct phases.
First, an optimal model candidate must be found and second, it must be shown
that there is no better candidate; the latter amounts to a proof of unsatisfiability
and is often complex. Then, all models possessing the same value are enumerated
in a second step.

Our encodings are written in the input language of gringo 3 (Gebser et al.,
2009, 2011). In what follows we introduce its basic syntax and we refer the reader
to the corresponding literature for more details. An atom is a constant (e.g. p,
q) or a function symbol (e.g. p(a,b), q(X,10)) where uppercase denotes first-
order variables. Then, a rule is of the form

332 V. Acuña et al.

H:- B1, . . . , Bn.

where H (head) is an atom and any Bj (body) is a literal of the form A or not
A for an atom A where the connective not corresponds to default negation. Fur-
ther, a rule without body is a fact, whereas a rule without head is an integrity
constraint. A logic program consists of a set of rules, each of which is terminated
by a period. The connectives :- and , can be read as if and and, respectively. A
statement starting with not is satisfied unless its enclosed proposition is found
to be true. The semantics of a logic program is given by the stable models seman-
tics (Gelfond and Lifschitz, 1988). Intuitively, the head of a rule has to be true
whenever all its body literals are true. In ASP every atom needs some derivation,
i.e., an atom cannot be true if there is no rule deriving it. This implies that only
atoms appearing in some head can appear in answer sets, i.e. stable models. We
end this quick introduction by three language constructs particularly interesting
for our encoding. First, the so called choice rule of the form,

{H1, . . . , Hm}:- B1, . . . , Bn.

allows us to express choices over subsets of atoms. Any subset of its head atoms
can be included in a stable model, provided the body literals are satisfied. Note
that using a choice rule one can easily generate an exponential search space of
candidate solutions. Second, a conditional literal is of the form

L : L1 : · · · : Ln

The purpose of this language construct is to govern the instantiation of the
literal L through the literals L1, . . . , Ln. In this respect, the conditional literal
above can be regarded as the list of elements in the set {L|L1, . . . , Ln}. Finally,
for solving (multi-criteria) optimization problems, ASP allows for expressing
cost functions in terms of a weighted sum of elements subject to minimization
and/or maximization. Such objective functions are expressed in ASP in terms
of optimization statements of the form

#minimize[L1 = W1@P1, . . . , LN =WN@PN].

where every Lj is a literal and everyWj an integer weight. Further, Pi provides an
integer priority level. Priorities allow for representing lexicographically ordered
minimization objectives, greater levels being more significant than smaller ones.
By default all priorities are 1.

The coding, shown in Fig 4, is straight-forward. Predicates arc(X,Y,W) rep-
resent the arcs in A0 and their weights, and predicates coexp(X,Y) represent
the elements of O. The optimization is carried on in two stages. First the solver
looks for the minimum possible global weight. Then, once this value has been
determined, we look for all the answer sets that realize the minimum values. In
each answer set the predicates used arc(X,Y,W) indicate the arcs of a subgraph
satisfying MinCohe(G,O).

Execution of this program is highly time-consuming. After a week of clock time
we reached the time limit of our cluster scheduler without finding the minimum
weight value.

Modeling Parsimonious Putative Regulatory Networks 333

% Input: arc(X,Y,W) means there is an arc between X and Y with weight W

% Input: coexp(X,Y) means that {X,Y} are in O

% each arc can be used or not

{ used_arc(X,Y,W) } :- arc(X,Y,W).

% node X precedes node Y

precedes(X,Y) :- used_arc(X,Y,_).

precedes(X,Y) :- precedes(X,Z), used_arc(Z,Y,_).

% motif M is an explanation of operons A and B linked by coexpressedOp/2

v_connected(A,B) :- precedes(M,A), precedes(M,B), coexp(A,B).

% all coexpressed vertices should be v-connected

:- coexp(A,B), not v_connected(A,B).

% look for minimum global weight

#minimize [used_arc(X,Y,W)=W].

Fig. 4. ASP code to find a solution of MinCohe

% Input: vshape(I,A,B) when v-shape I is in short-v-shapes(A,B)

% Input: arcInVshape(I,X,Y,W) when v-shape I has an arc (X, Y) w/weight W

% Input: coexp(X,Y) means that {X,Y} are in the set O

% only one v-shape is chosen for each {t,t’} in O

1{ chosen(I) : vshape(I,A,B) }1 :- coexp(A,B).

% consider the arcs that are part of the chosen v-shape

used_arc(X,Y,W) :- arcInVshape(I,X,Y,W), chosen(I).

% minimize the global weight

#minimize [used_arc(_,_,W) = W].

#hide.

#show used_arc/3.

Fig. 5. ASP code to find a solution of MinCohe

We then proceeded to solve MinWeightOshort(G,O) using the following
strategy. For each {t, t′} ∈ O we determine the set Short-v-shape(t, t′) using
the get.all.shortest.paths of the igraph library (Csardi and Nepusz, 2006)
in the R environment (R Core Team, 2012), and assigned an unique id to each
one. We coded these v-shapes using the ASP predicate vshape(ID,T1,T2) and
the arcs that form them with the predicate arcInVshape(ID,X,Y,W). In this
encoding ID corresponds to the v-shape id, T1,T2 correspond to t, t′ ∈ O, X,Y
identify the extremes of an arc, and W is the weight of it.

Using these predicates, and the rules in Fig. 5, we used ASP solver unclasp
to find the minimum weight. Execution time was 15 seconds.

334 V. Acuña et al.

A second execution was performed to find all answer sets realizing that weight.
Notice that this encoding can describe the same graph as combinations of differ-
ent v-shapes. We used the meta-commands #hide, #show used arc/3 and the
clasp option project to collapse all answer sets with the same used arc/3 pred-
icates in a single answer. This second execution took 80 minutes and resulted in
a unique graph.

6 Conclusion

The proposed algorithm can enumerate MinWeightOshort solutions in prac-
tical time, providing a way to explore a relevant subset of the O-coherent sub-
graphs significantly faster than solving MinCohe. In many cases, when the
graph represents a real regulatory network, it is reasonable to expect that many
co-expressed nodes are connected by short v-shapes. In such cases the proposed
algorithm can be used as an heuristic for MinCohe.

When it is relevant to find an exact solution of MinCohe, the heuristic solu-
tion is still useful. First, it provides a good upper bound for the global weight,
which can speed up the search for the optimal value. Second, a solution of
MinWeightOshort is a graph that can be used as a starting point for the
combinatorial exploration required by MinCohe. We think this can be applied
using the new heuristic ASP solver hclasp in the Potassco suite.

Acknowledgements. We acknowledge the support by Fondap [15090007]; Basal
Grant CMM; IntegrativeBioChile INRIA Associated Team; CIRIC-INRIA Chile
line Natural Ressources; ANR Biotempo[ANR-10-BLANC-0218]; U. Européenne
de Bretagne [to A.A.]; INRIA-Conicyt 2010–55 [to A.A. and A.M.]; and “Es-
tad́ıas de Investigación U. de Chile” [to A.A.].

References

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped blast and psi-blast: a new generation of protein database search
programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

Aravena, A., Guziolowski, C., Ostrowski, M., Schaub, T., Eveillard, D., Maass, A.,
Siegel, A.: Deciphering regulatory relationships with a logic-based model of causality
for gene expression associations (2013) (in preparation)

Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J.,
Li, W.W., Noble, W.S.: Meme suite: tools for motif discovery and searching. Nucleic
Acids Research 37 (Web Server issue), W202 (2009)

Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cam-
bridge University Press (2003)

Butte, A.J., Kohane, I.S.: Mutual information relevance networks: functional genomic
clustering using pairwise entropy measurements. In: Pac. Symp. Biocomput., pp.
418–429 (2000)

Calzone, L., Fages, F., Soliman, S.: Biocham: an environment for modeling biological
systems and formalizing experimental knowledge. Bioinformatics (2006)

Modeling Parsimonious Putative Regulatory Networks 335

Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and
querying biomolecular interaction networks. Theoretical Computer Science 325(1),
25–44 (2004)

Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal, Complex Systems 1695 (2006)

Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-
Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-
based models. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2012. LIPIcs, vol. 18, pp. 276–288. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2012)

Davidson, E., Levin, M.: Gene regulatory networks. Proceedings of the National
Academy of Sciences of the United States of America 102(14), 4935 (2005)

de Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic network analyzer:
qualitative simulation of genetic regulatory networks. Bioinformatics 19(3), 336–344
(2003)

Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathe-
matik 1(1), 269–271 (1959)

Garey, M.R., Johnson, D.S.: Computers and Intractability (A guide to the theory of
NP-completeness). W.H. Freeman and Company, New York (1979)

Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input language
of ASP grounder gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 502–508. Springer, Heidelberg (2009)

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The potsdam answer set solving collection. AI Communications 24(2),
107–124 (2011)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, vol. 88, pp. 1070–1080 (1988)

Herrg̊ard, M.J., Covert, M.W., Palsson, B.Ø.: Reconstruction of microbial transcrip-
tional regulatory networks. Curr. Opin. Biotechnol. 15(1), 70–77 (2004)

Johnson, D., Yannakakis, M., Papadimitriou, C.: On generating all maximal indepen-
dent sets. Information Processing Letters 27(3), 119–123 (1988)

Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher,
J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press
(1972)

Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V., Makino, K.: Enumerating dis-
junctions and conjunctions of paths and cuts in reliability theory. Discrete Applied
Mathematics 155(2), 137–149 (2007)

Marbach, D., Prill, R.J., Schaffter, T., Mattiussi, C., Floreano, D., Stolovitzky, G.:
Revealing strengths and weaknesses of methods for gene network inference. In: Pro-
ceedings of the National Academy of Sciences (2010)

Medina-Rivera, A., Abreu-Goodger, C., Thomas-Chollier, M., Salgado, H., Collado-
Vides, J., van Helden, J.: Theoretical and empirical quality assessment of transcrip-
tion factor-binding motifs. Nucleic Acids Research 39(3), 808–824 (2011)

Meyer, P.E., Kontos, K., Lafitte, F., Bontempi, G.: Information-theoretic inference of
large transcriptional regulatory networks. EURASIP J. Bioinform. Syst. Biol., 79879
(2007)

336 V. Acuña et al.

R Core Team: R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria (2012). ISBN 3-900051-07-0

Streit, A., Tambalo, M., Chen, J., Grocott, T., Anwar, M., Sosinsky, A., Stern, C.D.:
Experimental approaches for gene regulatory network construction: The chick as a
model system. Genesis 51(5), 296–310 (2013)

Taboada, B., Ciria, R., Martinez-Guerrero, C.E., Merino, E.: Proopdb: Prokaryotic
operon database. Nucleic Acids Res. 40(Database issue), D627–D631 (2012)

Xiao, Y.: A tutorial on analysis and simulation of boolean gene regulatory network
models. Current Genomics 10(7), 511 (2009)

Practical Floating-Point Tests with Integer Code

Anthony Romano

Stanford University

Abstract. Testing integer software with symbolic execution is well-
established but floating-point remains a specialty feature. Modern sym-
bolic floating-point tactics include concretization, lexical analysis,
floating-point solvers, and intricate theories, but mostly ignore the de-
fault integer-only capabilities. If a symbolic executor is already high-
performance, then software-emulation, common to integer-only machines,
becomes a compelling choice for symbolic floating-point.

We propose a software floating-point emulation extension for symbolic
execution of binary programs. First, supporting a soft floating-point li-
brary requires little effort, so multiple models are cheap; our executor
has five distinct open source soft floating-point code bases. For integrity,
test cases from symbolic execution of library code itself are hardware val-
idated; mismatches with hardware appear in every tested library, a just-
in-time compiler, a machine decoder, and several floating-point solvers.
In practice, the executor finds program faults involving floating-point in
hundreds of Linux binaries.

1 Introduction

Symbolic execution [29] is a popular dynamic analysis technique
[40] for finding execution paths leading to program errors. A binary symbolic
executor [7,9,18,23,35] explores paths by interpreting a program binary with
symbolic expressions and forking the program state on contingent conditions.
A state accrues path constraints (its model) by following feasible conditional
branches. To obtain a satisfying variable assignment for a path (a test case),
constraints are usually cast over a theory of bit-vectors and arrays which is
solved with a decision procedure or theorem prover. Deciding satisfiability mod-
ulo the theory of bit-vectors is meant for integer workloads; expressions are built
from two’s complement arithmetic, integer comparisons, and bitwise operators.

Solving for expressions over floating-point operations requires additional ef-
fort and is considered a significant challenge in model checking [1]. There is little
agreement on how to best handle symbolic floating-point data in a symbolic ex-
ecutor; in fact, several classes of floating-point support have been proposed. The
simplest support evaluates only concrete data [8], which is fast and sound, but
incomplete. Another approach, but still incomplete, applies taint analysis [17]
and floating-point expression matching [11] to detect suspicious paths. The most
challenging, complete and accurate symbolic floating-point semantics, relies on
the flawless reasoning of a floating-point solver [2,3,5].

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 337–356, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

338 A. Romano

Accurate floating-point is essential for checking software. The de facto floating-
point standard, IEEE-754 [25], fully describes a floating-point arithmetic model;
it is subtle and complicated. A cautious software author must account for lurid
details [20] such as infinities, not-a-numbers (NaNs), denormals, and rounding
modes. Ignoring these details is convenient once the software appears to work
but defects then arise from malicious or unintended inputs as a consequence.

Fortunately, IEEE-754 emulation libraries already encode the specifics of
floating-point in software. Namely, soft floating-point emulates IEEE-754 op-
erations with integer instructions. These libraries are a fixture in operating
systems; unimplemented floating-point instructions trap into software handlers.
Elsewhere, soft floating-point shared libraries assist when the instruction set
lacks floating-point instructions.

This work presents an integer-only binary symbolic executor augmented to
support floating-point instructions through soft floating-point libraries. Five off-
the-shelf soft floating-point libraries are adapted to the symbolic executor by
mapping soft floating-point library operations to a unified runtime interface.
Floating-point instructions are mapped to integer code by replacing program
instructions with calls to soft floating-point runtime functions. Aside from testing
floating-point paths in general purpose programs, binary symbolic execution with
soft floating-point provides a novel means for testing floating-point semantics in
floating-point emulation libraries and floating-point theories.

The rest of this paper is structured as follows. Section 2 discusses related
work, relevant background, and the motivation behind soft floating-point in a
symbolic executor. Section 3 describes the operation and implementation of soft
floating-point in a binary symbolic executor. Section 4 analyzes operation in-
tegrity through symbolic execution of soft floating-point libraries with symbolic
operands and comparing the generated test cases against native evaluation on
host hardware. Section 5 continues further by testing floating-point SMT solvers
for inconsistencies with hardware. Section 6 considers general purpose applica-
tions by examining errors in Linux binaries found through symbolic execution
with soft floating-point. Finally, Section 7 concludes.

2 Related Work

Testing and verification of floating-point software is the topic of much study. At
the most primitive level, finite-width floating-point variables are reconciled with
real and rational arithmetic and are the focus of floating-point decision proce-
dures. Static analysis of source code leverages these primitives to find floating-
point bugs but is limited to only an approximation of execution. A symbolic
executor of floating-point code dynamically executes programs and must bal-
ance performance, completeness, and soundness with different workload needs.
If floating-point data is concrete or uninteresting symbolically, symbolic exe-
cution of floating-point operations may be exclusively concrete. Fast, but un-
sound, symbolic floating-point, useful for bug finding, applies canonicalization
and matching on floating-point expressions. When complete semantics are nec-
essary, precise symbolic floating-point integrates a floating-point solver into the

Practical Floating-Point Tests with Integer Code 339

symbolic execution stack. This work introduces a new point in this progression:
symbolically executed soft floating-point with integer code.

Many techniques have been developed to handle abstract floating-point data.
Abstract domains [13], interval propagation [14], and abstraction refinement [10]
are some influential approaches for computing solutions to value constraints.
Such concepts have been extended, improved, and refined for floating-point
values through exact projections [5], filtering by maximum units in the last
place [2], interval linear forms [34], monitor variables [26], saturation with sim-
plex bounding [12], conflict analysis over lattice abstractions [22], and guided
approximation transformations of formulas [6], among others. For ease of use,
decision procedures based on these strategies may be integrated into a solver
back-end [2,5,6,12,22]. For hardware, formal floating-point specifications have
been used to verify the correctness of a gate-level description of a floating-point
unit [38].

Static analysis of source code to find floating-point bugs includes a broad class
of notable abstract interpretation systems. The fluctuat [21] system models
floating-point values in C programs with affine arithmetic over noise symbols
to locate sources of rounding error with respect to real numbers. astrée [4]
is based on an interval abstraction that uses a multi-abstraction, specializable,
domain-aware analysis to prove the absence of overflows and other errors for
source programs written in a subset of the C language.

The simplest floating-point symbolic execution tactic discards symbolic data
in favor of processing floating-point operations through concretization [8]. To
dispatch a floating-point operation on symbolic data, each operand is constrained
to a satisfying variable assignment (concretized) and the operation is evaluated.
As an example, if x is unconstrained and 0 is the default assignment, computing
x + 1.0 concretizes to 0.0 + 1.0. Concretization is fast but it overconstrains the
variable term x and discards most feasible values (i.e., x
= 0.0).

A symbolic executor with expression matching also avoids the difficulty of
supporting full floating-point semantics. These symbolic executors broaden the
expression language to include floating-point operators but only consider the
structure of the expressions. Taint tracking is one instance of expression anal-
ysis on symbolic floating-point; floating-point operations tag expressions and
dereferences of tagged pointers are flagged [17]. Beyond tainting, comparison of
expression structure [11,32] demonstrates equivalence between algorithm imple-
mentations. This analysis is often unsound; spurious errors are possible.

Precise symbolic floating-point reasons about the underlying semantics with
the assistance of a floating-point solver. Although explicit reasoning is accurate
and often complete by design, it demands a careful solver implementation (tested
in Section 5) and invasive executor modifications [3]. In some cases, authors of
these systems use the symbolic executor as a platform to test their own floating-
point decision algorithms in lieu of a third-party IEEE-754 solver [2,5,31].

This paper proposes symbolically executed soft floating-point, a compromise
between concretization and full symbolic floating-point. Where a floating-point
solver may model a formula as disjunctions of several feasible subformulas, soft

340 A. Romano

floating-point models that formula with many states. A soft floating-point op-
eration partially concretizes on program control at contingent branches by fork-
ing into multiple feasible states. These states partition floating-point values by
disjunction but together represent the set of all feasible floating-point values.
Additional states are costly but soft floating-point is still attractive because the
complicated floating-point component is off-the-shelf software which requires lit-
tle support code and no changes to the core symbolic execution system. Aside
from its simplicity, soft floating-point is self-testing, a property explored in Sec-
tion 4 and applied to floating-point solvers in Section 5.

3 Soft Floating-Point

This section details the implementation of a soft floating-point extension for
an integer-only symbolic binary executor. First, an abstract soft floating-point
library is defined by its set of floating-point operations. Next, the components
for the base binary symbolic executor are briefly outlined. Finally, a description
of a runtime interface and implementation establishes the connection between
the symbolic executor and several soft floating-point libraries.

3.1 Floating-Point Operations

A soft floating-point library is a collection of idempotent integer-only operation
functions which model an IEEE-754-1985 [25] compliant floating-point unit. The
client code bitcasts floating-point data (single or double precision) into integer
operands; the library unpacks the sign, mantissa, and exponent components
(Figure 1) with bitwise operators into distinct integers. Operations evaluate the
components, then pack and return floating-point results in IEEE-754 format.

31
Sign Exponent Mantissa

1 bit 8 bits 23 bits
0

Single Precision

63
Sign Exponent Mantissa

1 bit 11 bits 52 bits
0

Double Precision

Fig. 1. IEEE-754 format for single and double precision floating-point data

Arithmetic. IEEE-754 defines the four-function arithmetic operations and re-
mainder: +, −, ∗, /, and %. Arithmetic operations are complete floating-point
valued functions over single and double-precision pairs. A major repercussion
of floating-point arithmetic is many desirable invariants from real numbers and
two’s-complement are lost: addition is non-associative, subtraction has cancella-
tion error, and division by zero is well-defined.

Practical Floating-Point Tests with Integer Code 341

Comparisons. Conditions on floating-point values are computed with com-
parison functions. Comparisons are defined for all pairs of 32-bit and 64-bit
floating-point values and are represented with the usual symbols (i.e., =,
=, >,
<, ≥, and ≤). Evaluation returns the integer 1 when true, and 0 when false.

Comparisons take either an ordered or unordered mode. The mode determines
the behavior of the comparison on non-number values. An ordered comparison
may only be true when neither operand is a NaN. An unordered comparison is
true if either operand is a NaN. During testing, only ordered comparisons were
observed in code, so the two were never confused.

Type-Conversion. Type conversion translates a value from one type to an-
other; floating-point values may be rounded to integers and back, or between
single and double precision. In general, rounding is necessary for type conver-
sion. Additionally, values may be rounded to zero, down to −∞, up to ∞, or
to nearest, depending on the rounding mode. However, only the round near-
est mode appeared in program code during testing. There are several ways a
floating-point computation may be rounded for type conversion:

– Truncation and Expansion (↔). Data is translated between single and
double precision. Mantissa bits may be lost and values can overflow.

– Integer Source (f←i). Conversion from integer to float. The integer may
exceed the mantissa precision.

– Integer Target (f→i). Conversion from float to integer; NaN and ∞ values
may be converted.

Elementary Functions. The only elementary function required by IEEE-754-
1985 is the square root function. Hence, all soft floating-point libraries support
it. Transcendental functions, on the other hand, were deemed too costly to due to
the precision necessary for correctness to the half-unit in the last place (the table-
maker’s dilemma [27]). Although present in some instruction sets (e.g., x86),
transcendental functions are treated as unsupported non-standard extensions.

3.2 Binary Symbolic Executor

The binary symbolic executor uses the klee [8] LLVM symbolic interpreter,
the STP [16] SMT solver, and the VEX [37] machine instruction decoder. A
modified klee interpreter dispatches instructions by decoding program binaries
from machine code into LLVM with a custom VEX-to-LLVM dynamic binary
translator (DBT). In addition, the system has a just-in-time DBT (the JIT)
built on the VEX-to-LLVM translator and the LLVM JIT engine; in Section 4
the JIT tests the interpreter’s fidelity to bitcode semantics on concrete data.

3.3 Runtime Libraries

The soft floating-point extended symbolic interpreter handles floating-point op-
erations by calling out to a runtime library with a standard interface. All floating-
point instructions are replaced with runtime function calls that manipulate

342 A. Romano

Table 1. Rewritten LLVM instructions with corresponding SoftFloat function calls

LLVM Instruction SoftFloat Function

FAdd, FSub float{32,64} {add,sub}
FMul, FDiv, FRem float{32,64} {mul,div,rem}
FCmp float{32,64} {lt,le,eq}
FPExt float32 float64
FPTrunc float64 float32
FPToSI float{32,64} int{32,64}
SIToFP int{32,64} float{64,32}
sqrtf, sqrt float{32,64} sqrt

floating-point data with integer instructions. Internally, the runtime libraries
differ on a fundamental level by the data encoding used for computation. For
porting a library to the interpreter, floating-point emulation code from open-
source operating systems supplies the majority of the library implementations.

A soft floating-point library, loaded as part of the klee LLVM bitcode run-
time, encodes data operations in integer terms with an idempotent function call
interface. If the library is correct, then every floating-point operation is com-
pletely modeled; there is no need to re-encode the details. To map floating-point
code to the integer-only interpreter, the program code is rewritten with soft
floating-point calls. To validate the design, the runtime supports five off-the-
shelf soft floating-point implementations: bsdhppa (PA-RISC from NetBSD),
bsdppc (PowerPC from NetBSD), linmips (MIPS from Linux), softfloat (the
SoftFloat library [24]), and shotgun (from an emulator [28]).

Instruction Rewriting. A function pass rewrites program code to call soft
floating-point runtime functions in place of LLVM floating-point instructions.
The pass replaces every floating-point instruction in the program code with a
call to a type thunking stub. The thunk function bitcasts the operands into
integers and jumps to the corresponding runtime library function. At execution
time, these integer-only runtime functions compute all floating-point operations.

Interface. For basic functionality, the standard interface uses a strict subset of
the SoftFloat [24] library. SoftFloat features a set of functions which take floats
and doubles bitcast to unsigned integers and return bitcast results. All other soft
floating-point libraries require small custom SoftFloat interface adapters. This
standardization simplifies instruction rewriting with a single target interface.

LLVM instructions are rewritten as function calls to their SoftFloat counter-
parts. Table 1 lists the functions which replace LLVM instructions for symbolic
interpretation. The instructions encode arithmetic, comparisons, and rounding
which are handled by the soft floating-point functions.

Floating-point operation handlers are stored as interchangeable libraries for
the interpreter. Depending on the emulation code, each library is compiled from
C to LLVM bitcode (a binary representation of an LLVM assembly listing).

Practical Floating-Point Tests with Integer Code 343

A bitcode library is native to the klee LLVM machine but can not support
hand-coded assembly which is found in some soft floating-point implementations.

Software Encodings. Floating-point unpacking policies are either selective
or unselective. SoftFloat selectively masks components out as needed to local
variables. Both bsdhppa and bsdppc, on the other hand, completely unpack
floating-point values into a data structure before every operation and repack the
result into the IEEE-754 format. Each representation is acceptable depending
on the circumstance. SoftFloat has a single compilation unit; the representation
likely benefits from interprocedural analysis. BSD has multiple compilation units;
mask calculations like SoftFloat’s would repeat at function boundaries.

Operating System Handlers. The runtime uses off-the-shelf operating sys-
tem code ported from one Linux and two BSD floating-point emulators. The
soft floating-point implementations in operating systems are often quite good
and at least heavily tested. This is because on several machine architectures
(e.g., x86, ARM, MIPS), an operating system may be expected to emulate a
hardware floating-point unit through software. Correctness and reproducibility
demand that the software emulation closely matches hardware, hence operating
systems should have accurate soft floating-point implementations.

In many cases, soft floating-point code can be compiled into LLVM bitcode
for the runtime bitcode library. The floating-point emulation layer is intended
to run on the target operating system architecture and is usually written in C.
After adjusting a few header files, the code can be compiled independently into a
bitcode library. Handlers accelerated with assembly code (e.g., x86 Linux, ARM
BSD), however, must compile to native machine code.

An operating system’s native emulation mechanism traps and emulates miss-
ing floating-point instructions. Whenever a user program issues a floating-point
instruction, control is trapped and vectored to the operating system. The trapped
instruction is decoded into a soft floating-point computation; the computation
uses only integer instructions and stores the result to the machine state. Finally,
control returns to the next program instruction. Since the symbolic executor
rewrites floating-point instructions instead of trapping, the executor bypasses
the decoding logic and directly calls the floating-point operations.

Library-specific SoftFloat glue code translates internal floating-point calls to
the standardized SoftFloat interface. The internal functions never trap or decode
instructions, so those stages are ignored and inaccessible. Porting requires rela-
tively few lines of code; glue code for linmips, bsdhppa, and bsdppc is between
50 and 150 lines of C source.

4 Operation Integrity

Once a floating-point library is in place, it is possible to test the library. Test
cases are gathered by symbolically executing a binary program with a given soft

344 A. Romano

floating-point library for each floating-point operation. Cross-checking intermedi-
ate path data with the JIT over the host’s hardware floating-point unit detects
interpreter and soft floating-point inconsistencies. Pooling tests by operation
across all libraries addresses the problem of single library underspecification; the
JIT, with soft floating-point libraries and without, is checked against hardware
execution of the binary on all test cases. Every library disagrees with hardware;
some patterns emerge as common pitfalls. Finally, significant library coverage
confirms the thoroughness of testing.

When comparing soft floating-point libraries with hardware, it is useful to
distinguish between consistency and verification. If tests derived from a library
L all match hardware, then L is consistent with hardware under a symbolic ex-
ecutor; for every library path there is a test case which matches hardware. When
L is consistent on an operation ◦ it is ◦-consistent. Verification against hardware
is stronger than consistency: all possible inputs for L must match hardware.
Consistency without verification arises when an underspecified program misses
edge cases which describe inconsistent test cases. Consequentially, tests from a
library L∗ may induce a mismatch on a consistent but underspecified library L.

The soft floating-point code is tested in two phases. In the first phase, oper-
ation programs are symbolically executed to produce test cases for each library.
To determine consistency, the symbolic executor is cross-checked with the LLVM
JIT’s machine code through a log replay mechanism that compares intermediate
concrete values. If the emulation is wrong, symbolic interpretation diverges from
the JIT values, potentially causing false positives and negatives with respect to
native execution. In the second phase, to handle underspecification, operations
are cross-tested on a test case pool and checked against an Intel Core2 processor.
Further, the pool tests the JIT, which compiles floating-point LLVM instructions
to machine code, and raises several translation errors.

Fig. 2. Generating tests and cross-checking soft floating-point for a binary program

Practical Floating-Point Tests with Integer Code 345

Figure 2 illustrates the process of cross-checking floating-point symbolic in-
terpretation with a JIT and native hardware. To generate test cases, an x86-64
program binary is symbolically executed with klee and a soft floating-point bit-
code library. The symbolic executor emits a register log file which cross-checks
on replay with the LLVM JIT engine using native floating-point instructions (In-
terpreter × JIT). Test case values are inputs for hardware cross-checking (JIT
× Hardware); the soft floating-point JIT is cross-checked, basic code block by
basic block, against the registers from native execution of the binary program.

4.1 Gathering Test Cases

Each floating-point operation is modeled through a distinct test program binary.
Every operation program is compiled from a small C file into an x86-64 Linux
program that reads its IEEE-754 format operands from the standard input. Bi-
nary programs, instead of C source or LLVM bitcode, model operations to avoid
compilation artifacts [36] which may interfere with native hardware evaluation
of the program. Likewise, the operation programs test the machine code inter-
face of the symbolic executor with compiled C, so some functionality is masked
or inaccessible. This masking is particularly noticeable for the remainder (%)
program which must use the math library fmod function because the C language
only defines integer modulus operations.

Symbolic execution of an operation program reads operands from a symbolic
standard input stream. When the symbolic executor completes a path, it creates
a test case by selecting a feasible input bit-string which satisfies the path con-
straints imposed by the soft floating-point runtime library. Feeding the bit-string
into the operand program reproduces the floating-point library path.

Table 2 lists the number of test cases produced by the symbolic executor for
each floating-point library. Test programs are split by precision: 32-bit single-
precision (f32) and 64-bit double-precision (f64). The number of test cases for
a completed operation is a strict upper bound on the number of states that
will fork on a floating-point instruction in a symbolically executed program.
Implementation differences lead to unique test case counts for each operation
across libraries; some libraries fork more (bsdppc) than others (softfloat).

A complete symbolic execution of an operation test program exhausts all
paths. Every feasible path becomes a test input (e.g., pairs of floating-point val-
ues for binary operations) which satisfies the path constraints. Path exhaustion
can be costly, however, so each program runs for a maximum time of one hour
with a two minute solver timeout in order to enforce a reasonable limit on total
execution time; most operations ran to completion. Relatively complicated op-
erations, such as division, timed out across all libraries. The symbolic executor
is sensitive to the branch organization of the library code so some simpler oper-
ations (e.g., + for bsdppc and linmips) time out from excessive state forking.

346 A. Romano

Table 2. Test cases from symbolic execution. Operations with † and ‡ timed out
exploring paths and solving queries respectively.

Op. bsdhppa bsdppc linmips softfloat softgun

f32 f64 f32 f64 f32 f64 f32 f64 f32 f64

+ 122 1017 1670† 2016† 3741 6523† 99 99 458 868

- 122 1017 1615† 1717† 3738 6480† 99 99 458 868

* 3700‡ 520†‡ 368†‡ 349†‡ 1945‡ 2235†‡ 51 51 388‡ 582†‡

/ 6109† 6268† 2932† 3520† 4694† 5268† 132‡ 81†‡ 6373† 6639†

% 3247† 3359† 2 3680† 3156† 3397† 2900† 3010† 3057† 3394†

< 28 32 1341† 1661† 91 91 7 7 11 13
≤ 34 38 2034† 2353† 91 91 7 7 11 13

= 2890 42 1359† 1140† 2905 91 125 14 1061 18

�= 2890 42 1402† 1413† 2905 91 125 14 1061 18
↔ 29 31 29 91 29 22 8 14 28 27

→i32 81 67 68 69 65 20 17 12 64 15
→i64 142 142 171†‡ 145†‡ 97 82 39 34 201 211
←i32 14 6 75 34 51 35 5 4 72 34
←i64 118 46 1466† 491 191 89 14 8 477 119√

x 3451† 2979† 2583† 4500† 4856† 3819† 32‡ 25‡ 92‡ 1355†‡

4.2 Cross-Checking for Consistency: Interpreter × JIT

Symbolically executing an operation ◦ produces a set of test inputs which exercise
distinct paths through the floating-point emulation library. Ideally, the symbolic
interpreter exhausts all paths on ◦, leading to a test case for every possible path
on ◦. The test cases are replayed concretely on the LLVM JIT and cross-checked
with the symbolic interpreter’s concrete values to find bugs in the symbolic
interpeter. Testing with cross-checking determines consistency; when all of ◦’s
test cases for a library cross-check as matching, the library is ◦-consistent.

The symbolic interpreter is a custom LLVM interpreter which may diverge
from bitcode semantics. To find divergences, the interpreter’s soft floating-point
library results (in emulated hardware registers) are checked against natively
executed LLVM JIT machine code for bit-equivalence at every dispatched VEX-
decoded instruction block. These checks replay a test case on the JIT and cross-
check with the interpreter’s concrete register log.

The number of failures for symbolically generated test cases is given in Ta-
ble 3. There are three reasons for failure to cross-check: 1) the path terminated
early (log runs out), 2) the floating-point library is wrong, or 3) the JIT en-
gine is wrong. Failure to complete paths is demonstrated by softfloat division
and linmips multiplication. All libraries fail cross-checking as highlighted in
Table 4. It is likely the libraries have never been systematically cross-checked,
so inconsistency is expected. Furthermore, JIT engine errors arise in

√
x and %

for bsdppc and softfloat, but are discussed in the next section because they
require systematic hardware cross-checking for confirmation.

Practical Floating-Point Tests with Integer Code 347

Table 3. Failures on JIT register log cross-checking from library consistency tests

Op. bsdhppa bsdppc linmips softfloat softgun

f32 f64 f32 f64 f32 f64 f32 f64 f32 f64
+ 1 1 0 76 0 0 0 0 0 0
- 1 1 0 5 0 0 0 0 0 0
* 2 30 29 28 0 8 0 0 0 18
/ 2 1 2 0 0 0 0 29 1 0
% 7 3 0 828 30 2 13 3 67 207
< 0 0 0 148 0 0 0 0 1 2
≤ 0 0 0 368 0 0 0 0 2 1
= 0 0 174 161 0 0 0 0 718 12
�= 0 0 233 213 0 0 0 0 718 12
↔ 0 0 6 0 1 2 0 0 1 0

→i32 2 2 12 0 0 0 2 0 0 0
→i64 2 2 86 5 0 0 2 0 169 152
←i32 0 0 30 19 0 0 0 0 0 0
←i64 0 1 312 76 0 0 0 0 0 0√

x 9 92 8 4 5 1 8 10 84 18

4.3 Cross-Testing for Underspecification Bugs

A consistent floating-point library may appear correct with path-exhaustive test-
ing but it is still unverified. Consistency merely demonstrates interpreter and JIT
equivalence; it is disconnected from hardware ground-truth. Some components
could be underspecified, leading to a false confidence. Underspecification may
stem from the library (and therefore its tests) partially describing IEEE-754 se-
mantics or the decoder mistranslating machine instructions. Pooling all tests for
all discovered library paths and testing concrete JIT replay against native pro-
cesses, on the other hand, finds bugs from underspecification and mistranslation.

Pooled Tests. Cross-checking is limited to detecting mismatches on known in-
puts; the symbolic executor must provide the input test cases. If a floating-point
library is underspecified, then symbolic execution may not generate a test case
for a hardware mismatch. An underspecified library is incorrect despite being
consistent. In fact, many operations cross-check as consistent; softfloat and
linmips seem to perfectly convert floating-point to and from integers because
the libraries are {→i32,→i64,←i32,←i64}-consistent. However, these consistent
operations are not correct but underspecified.

The underspecification problem can be partially mitigated by cross-testing
across libraries. All tests are pooled and hardware cross-checked on all floating-
point libraries. The test pool is applied to each library to cover values or condi-
tions missed by underspecification.

Figure 3 illustrates the distinct value coverage for each library. There are two
ways to account for the uneven test case distribution among the libraries. One,

348 A. Romano

Table 4. Selected mismatches from soft floating-point library consistency tests

Library Operation Soft FP Hardware FP

bsdhppa ∞∗ 0.0 NaN -NaN

bsdppc 1.1125...6e-308 + 1.1125...7e-308 5e-324 2.2250...1e-308
linmips 0x7ff0000001000000 (NaN) →f32 0x7fbfffff (NaN) 0x7fc00000 (NaN)
softfloat NaN →i32 0x7fffffff 0x80000000

softgun 0.0 / 0.0 0.0 -NaN

0
10
20
30
40
50
60
70
80
90

100

+ - * / % <<= = !=
<->

>i32
>i64

<i32
<i64

x1/2

%
 T

ot
al

 T
es

t C
as

es

Single-Precision Operation

Single-Precision Test Cases By FPU

0
10
20
30
40
50
60
70
80
90

100

+ - * / % <<= = != >i32
>i64

<i32
<i64

x1/2

%
 T

ot
al

 T
es

t C
as

es

Double-Precision Operation

Double-Precision Test Cases By FPU

<->

linmips
softfloat
softgun bsdppc

bsdhppa
shared

Fig. 3. Floating-point test case distribution

interpretations could follow the same model, but the states are sliced differently.
Two, given distinct models, the extra test cases may cover a divergence between
library and hardware floating-point algorithms. Ideally, the test cases would
uncover no divergences because no library would be underspecified.

In total, there were 103624 distinct test cases. The test count is 34 orders
of magnitude better than brute force testing ((6(232 + 264) + 9(264 + 2128))
tests). However, so many tests may be relatively inefficient; one hand-designed
suite [30] for exp(x) uses 2554 tests. When test count is a concern (e.g., tests
are expensive), non-exhaustive execution can give useful results. We found ran-
domly dropping forked states on hot branches still covered incorrect values for
all libraries with 19560 distinct tests.

Checking JIT × Hardware. Table 5 shows cross-checking errors found from
cross-testing with a pool of foreign test cases. The JIT is cross-tested with a
ptraced native shadow process; for every dispatched decoded instruction block,
ptrace hardware registers are checked against the JIT’s emulated registers. A
single bit difference is an error for a test case. Consistent operations, such as
softfloat’s −, are shown to be incorrect and underspecified by the test pool.

Applying the tests to the JIT engine, which is never symbolically executed, and
comparing the registerswith hardware execution revealed bugs on interesting edge
cases. For instance,

√
x on a negative single-precision value returns NaN in the JIT,

but -NaN for hardware and softfloat. Errors in the JIT from translating machine

Practical Floating-Point Tests with Integer Code 349

Table 5. Hardware cross-check errors from all distinct tests

Op. bsdhppa bsdppc linmips softfloat softgun JIT

f32 f64 f32 f64 f32 f64 f32 f64 f32 f64 f32 f64
+ 603 135 7 8034 45 90 6 12 80 92 0 0
- 623 109 47 5354 45 63 6 9 62 81 0 0
* 50 53 8 1295 21 23 8 7 23 28 0 0
/ 56 52 2 831 32 28 2 4 37 41 0 0
% 176 123 134 13 176 58 9 7 4263 4638 35 3
< 0 0 0 270 0 0 0 0 52 402 0 0
≤ 0 0 0 405 0 0 0 0 72 609 0 0
= 0 0 650 7 0 0 0 0 4665 125 0 0
�= 0 0 669 6 0 0 0 0 4736 204 0 0
↔ 5 84 49 19 4 7 0 0 2 4 0 0

→i32 40 32 86 38 25 26 40 31 25 26 0 0
→i64 153 76 304 121 24 27 47 36 257 264 0 0
←i32 147 75 147 75 0 0 0 0 0 0 0 0
←i64 1668 650 1671 651 55 0 55 0 55 0 55 0√

x 36 6 39 18 36 0 0 0 36 6 36 6

x86-64 Assembly

cvtsi2ss %rbx , %xmm2 # i64 −> f 32
movd %xmm2, %rcx # get f32

Vex IR

t1 = 64to32 (And64(GET: I64 (216) , 0x3 : I64)) # get rounding mode
t2 = GET: I64 (40) # get rbx
PUT(288) = F64toF32(t 1 , I64StoF64 (t 1 , t2)) # i64 −> f 32
PUT(24) = GET: I64 (288) # f32 −> rcx

Fig. 4. Mistranslation of the cvtsi2ss instruction in the VexIR

code (a known problem formachine code interpreters on integer workloads [19,33])
to LLVM bitcode appear across all libraries (e.g., f32←i64). Mismatches which
appear solely for the JIT could be due to instruction selection.

For an in-depth example, Figure 4 reproduces the code involved for a f32←i64
conversion error. The operation program begins as x86-64 machine code which
is translated by the VEX decoder into VEX IR, then from VEX IR into LLVM
bitcode; if VEX mistranslates the machine code, the symbolic interpretation will
be wrong. In the case of f32←i64, the x86-64 instruction cvtsi2ss converts a 64-
bit signed integer to a single precision floating-point number. The corresponding
VEX IR converts the signed integer into a double precision number, then to sin-
gle precision. This induces rounding errors (confirmed by the VEX maintainer)
that cause certain inputs (e.g., rbx = 72057598332895233) to evaluate one way
natively (7.20576e+16) and another way through VEX (7.2057594e+16).

350 A. Romano

4.4 Common Pitfalls

Some effort was put into improving the library code’s cross-checking results
before finalizing the data. The softfloat and linmips libraries were intended
to be consistent whereas the consistency of bsdhppa and bsdppc was a lower
priority. Most improvements concentrated on a few frequent problems.

Endianness. Architecture byte-order can conflict with the hardware byte-
order. The PA-RISC (bsdhppa), PowerPC (bsdppc), and MIPS (linmips) ar-
chitectures are big-endian but the host x86-64 machine is little-endian. MIPS
is dual-endian so linmips has a #define to enable little-endian mode. For
bsdhppa, the glue code must swap double-precision operands and results. bsdppc,
evolved from SPARC and m68k code bases, is staunchly big-endian. For instance,
a 32-bit function for converting double precision values expects the most signif-
icant half of a 64-bit value as its 32-bit return result, a big-endian convention.

Default NaN. Certain operations, such as division by zero, produce a default
”quiet” NaN. Unfortunately, hardware is free to deterministically choose a QNaN

from 223 bit-patterns. Both single and double precision QNaNs differed from the
host machine for every library. The single-precision QNaN was 0x7fffffff, as
opposed to x86-64 hardware which uses 0xffc00000. Manual inspection of the
Linux x87 emulator confirmed the values on x86-64 matched the expected QNaN.

NaN operands. The x86-64 floating-point unit encodes extra diagnostic in-
formation into the mantissa of its NaNs which disagrees with emulation. There
are numerous ways to mishandle a NaN operation so the bits do not match. For
operations between NaNs, a signaling NaN would sometimes be converted into
the wrong QNaN. Arithmetic between a NaN and number would use the default
NaN, missing the mantissa bits. Likewise, operands returning the left-hand NaN in
hardware instead used the library default NaN. Although this extra information
is optional, it is still desirable to stay bit-identical to the host hardware.

4.5 Coverage

Operation test cases raise plenty of mismatches but the depth of testing remains
unclear. Code coverage for each library is a simple metric for overall testing qual-
ity; high coverage implies thorough testing. Figure 5 shows the coverage of each
floating-point implementation from symbolic execution. The instruction cover-
age percentages are calculated from visited functions. The set of instructions is
limited to visited functions because soft floating-point libraries often have addi-
tional features which are inaccessible through the interpreter (e.g., trapped in-
struction decoding). Total covered instructions gauges the complexity, although
not necessarily the correctness, of the library implementation.

Between 79%–95% of instructions were covered by test cases for each library,
which leaves 5%–21% of instructions uncovered. There are several justifiable
reasons for missing instructions. All libraries support all rounding modes but only
round-nearest is tested because it is the default mode. Compiler optimizations
mask paths; when converting x to floating-point, one optimization tests if x is
0 to avoid the floating-point instruction, leaving the 0 library path unexplored.

Practical Floating-Point Tests with Integer Code 351

 0

 20

 40

 60

 80

 100

bsdhppa
bsdppc

linmips
softfloat

softgun
 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

%
 C

ov
er

ag
e

C
ov

er
ed

 In
st

ru
ct

io
ns

Coverage of Visited Functions

Coverage % Instructions

Fig. 5. Soft floating-point library code coverage and total covered instructions

Finally, compiled-in assertions, such as checking for bad type tags, often remain
uncovered because the code never contradicts the assertion predicate.

5 Floating-Point SMT Solvers

This section evaluates the accuracy of floating-point solvers with respect to
floating-point hardware. A floating-point solver decides the satisfiability of for-
mulas over a theory of floating-point and therefore must at least encode floating-
point semantics like those found in soft floating-point libraries. Prior work [41]
suggests testing floating-point solvers with randomly generated conformance
formulas. Unlike randomized conformance queries, test cases derived from soft
floating-point target interesting edge cases defined by the emulation code. De-
spite the importance of accuracy, testing a selection of solvers reveals divergent
results in every solver. Furthermore, each floating-point solver has implementa-
tion quirks which impede testing with all operations and values.

Several freely available contemporary floating-point solvers support a theory
of IEEE-754 floating-point. These solvers include mathsat5-2.8 [22], sonolar-
2013-05-15 [39], and Z3 [15] (current stable and unstable FPA versions from the
git repository). Such specialized floating-point solvers back the only complete
symbolic execution alternative to soft floating-point. However, these solvers only
occasionally conform to a standard interface, have complicated internals and,
despite formal proofs of correctness, are clearly wrong in many cases.

SMTLIB2-FPA [42] (a proposed standard) conformance tests [41] provide a
useful baseline test suite for SMTLIB2-FPA compliant solvers (mathsat and Z3).
The conformance tests cover a range of features in SMTLIB2-FPA. These tests
exercise the front-end and floating-point theory for a floating-point solver. A
solver implements SMTLIB2-FPA in its front-end by translating floating-point
arithmetic (FPA) theory primitives into an internal floating-point representa-
tion. The tests were generated from the reference implementation with random
floating point numbers for a total of 20320 SMTLIB2-FPA queries.

352 A. Romano

(set−logic QF FPA)
(set−info : s t a tu s sat)
(assert (= (/ roundNearestTiesToEven

; a = 4.96875
((asFloat 8 24) (bv0 1) (bv2031616 23) (bv129 8))
; b = 1.9469125 e−38
((asFloat 8 24) (bv0 1) (bv5505024 23) (bv1 8)))

; r = 2.5521178 e+38
((asFloat 8 24) (bv0 1) (bv4194304 23) (bv254 8))))

(check−sat)
; a / b = 2.5521178 e+38 i s sat , but model c la ims a/b=p l u s I n f i n i t y

Fig. 6. A Z3 test case query for checking a single-precision division result

Table 6. Conformance and library test cases applied to several FPA solvers

Solver Conformance Library Tests

Pass Fail Pass Fail Unknown
mathsat 14487 5833 10096 0 2455
sonolar 10699 482 0
z3-stable 20023 297 7081 2931 1076
z3-fpa 20090 230 9996 16 1076

The automatically generated test cases from soft floating-point libraries are
novel in that they work as semantically derived tests for third-party floating-
point solvers. Each test includes an operation and operands (e.g., (+ a b)) and
a scalar result r computed through hardware. Each solver is tested against the
hardware result by checking that the operation feasibly evaluates to r with a
bit-vector equality query as in Figure 6. The library tests are based on the
smaller fork-inhibited data set from Section 4.3 to reduce testing overhead. These
tests are simple satisfiability tests on concrete expressions; they neither impose
symbolic constraints on operands nor examine counter-examples.

Table 6 lists the test results for the floating-point solvers. Even though the
tests are shallow, every solver fails some test (fail) or gives no answer after five
minutes or refusing certain inputs (unknown). Each row only has a subset of
the tests because the front-end and library interfaces lack particular operations
(e.g.,
=). Overall, the rate of failure indicates these solvers are currently more
appropriate for domain-specific applications than general program testing.

Each solver has its own quirks. mathsat’s front-end accepts the most recent
SMTLIB2-FPA proposal but misses a rounding mode in the conformance tests.
For concrete tests mathsat is consistent but rejects NaN inputs and often times
out on division operations. Sonolar only supports floating-point with library
bindings. The Z3 solver accepts obsolete SMTLIB2-FPA and lacks some type
conversions. Furthermore, the stable branch of Z3 is nearly a year old; the current
unstable Z3 FPA branch is an improvement but still diverges from hardware.

Practical Floating-Point Tests with Integer Code 353

Table 7. Bugs found in Linux programs following floating-point computation

Bug Type Programs

Divide By Zero 26
Bad Write 57
Bad Read 259

Total Programs 314

6 Bugs in Linux Programs

The previous sections focus on custom testing with soft floating-point; here,
the symbolic executor is applied to a large general program set. Test cases are
collected by symbolically executing program binaries belonging to two Linux
distributions. Floating-point arithmetic appears in hundreds of program faults
from these test cases. However, the influence of floating-point operations can be
subtle and independent of the crash. Additionally, few paths use the symbolic
floating-point capabilities but the overhead from concrete evaluation with soft
floating-point is often negligible compared to built-in concrete evaluation.

Test cases were collected from five minutes of symbolic execution on program
binaries from Ubuntu 13.10 (x86-64) and Fedora 19 (x86) using the SoftFloat
library. The symbolic executor analyzed 27795 binaries total with 4979 binaries
raising some kind of error. To isolate floating-point tests, only paths covering
floating-point instructions on replay (837 test cases) are considered.

Table 7 presents a summary of flagged floating-point programs. Test cases
are classified as errors by the type of program fault they cause. The errors are
validated with a replay mechanism based on the JIT (568 test cases); fault-free
test cases in the JIT replay are ignored. The largest class, bad memory reads,
frequently accessed lower addresses which presumably stem from NULL pointers.

Floating-point is often independent of the actual bug; programs such as
gifrsize, scs2ps, and pngcrush all access NULL pointers solely through inte-
ger constraints. Regardless, floating-point numbers may subtlety influence sym-
bolic integer values. The unicoverage program (crashes on a buffer overflow)
lends an example expression: 100.0*nglyphs/(1+cend-cstart). Terms cend

and cstart are symbolic integers (read from scanf) and nglyphs is a concrete
integer. The floating-point 100.0 term coerces the symbolic integer expression
into a double precision floating-point value. The floating-point multiplication
therefore imposes floating-point constraints (from the i32→f64 operation) on
integer-only terms. Curiously, manual inspection of many reports yielded no di-
rect floating-point crashes (e.g., a dereference with a floating-point index) but
this may be a symptom of the brief symbolic execution time per program.

The majority of floating-point test cases rely solely on concrete floating-point
data. Only 94 programs (18%) forked on soft floating-point library code and hence
processed any symbolic floating-point values at all. Programs which process only
concrete floating-point data incur overhead from dispatching extra instructions
for floating-point emulation. The instruction overhead from emulating concrete

354 A. Romano

floating-point with integer code, compared to the default klee concrete floating-
point dispatch, is negligible. Soft floating-point tests incur 242058 extra instruc-
tions on average (1.04× overhead) with a 135474 instruction standard deviation
(1.61× overhead) and 613 instruction median (1.0007× overhead). Floating-point
heavy programs skew the average: a program for processing triangulated meshes,
admesh, suffered themaximuminstructionoverheadof 6.98×, followedbybristol,
an audio synthesizer emulator, with 2.68× overhead.

7 Conclusion

The best software analysis tools must soundly model floating-point. Floating-
point as a runtime library is perhaps the simplest worthwhile way to model
high-quality floating-point semantics in a symbolic binary executor. This qual-
ity comes from soft floating-point being testable within reason through a combi-
nation of symbolic execution and cross-checking against hardware. Integer-only
symbolic execution produces concrete test files with floating-point information
which can be directly confirmed by hardware. If important tests are missed from
underspecification, they may be found by testing with multiple floating-point
libraries. Finally, although the library testing is incomplete in some cases, the
results have demonstrated that a symbolic soft floating-point unit is sufficient
for finding many verifiable test cases for bugs in commodity binary programs.

Acknowledgements. Dawson Engler, anonymous reviewers, and shepherding
from Sriram Sankaranarayanan provided valuable feedback which improved the
quality of this paper. This work was supported in part by the US Air Force
through contract AFRL-FA8650-10-C-7024 and by DARPA award HR0011-12-
2-009. Any opinions, findings, conclusions, or recommendations expressed herein
are those of the authors, and do not necessarily reflect those of the US Govern-
ment or the Air Force.

References

1. Alglave, J., Donaldson, A.F., Kroening, D., Tautschnig, M.: Making software veri-
fication tools really work. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 28–42. Springer, Heidelberg (2011)

2. Bagnara, R., Carlier, M., Gori, R., Gotlieb, A.: Symbolic path-oriented test data
generation for floating-point programs. In: Proceedings of the 6th IEEE Interna-
tional Conference on Software Testing, Verification and Validation, p. 10. IEEE
Press, Luxembourg City (2013)

3. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic detection of floating-point excep-
tions. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2013, pp. 549–560. ACM, New
York (2013)

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation (PLD 2003), June 7-14, pp. 196–207. ACM Press, San Diego (2003)

Practical Floating-Point Tests with Integer Code 355

5. Botella, B., Gotlieb, A., Michel, C.: Symbolic execution of floating-point compu-
tations. Software Testing, Verification and Reliability 16(2), 97–121 (2006)

6. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: FMCAD, pp. 69–76. IEEE (2009)

7. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis
platform. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 463–469. Springer, Heidelberg (2011)

8. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation of
high-coverage tests for complex systemsprograms. In:OSDI 2008, pp. 209–224 (2008)

9. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo multi-path
analysis of software systems. In: ASPLOS 2011, pp. 265–278 (2011)

10. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

11. Collingbourne, P., Cadar, C., Kelly, P.H.: Symbolic crosschecking of floating-point
and SIMD code. In: Proceedings of the Sixth Conference on Computer Systems,
EuroSys 2011, pp. 315–328. ACM, New York (2011)

12. Conchon, S., Melquiond, G., Roux, C., Iguernelala, M.: Built-in treatment of an
axiomatic floating-point theory for SMT solvers. In: Fontaine, P., Goel, A. (eds.)
SMT 2012. EPiC Series, vol. 20, pp. 12–21. Easy Chair (2013)

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1977, pp. 238–252. ACM, New York (1977)

14. Davis, E.: Constraint propagation with interval labels. Artificial Intelligence 32(3),
281–331 (1987)

15. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

16. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007)

17. Godefroid, P., Kinder, J.: Proving memory safety of floating-point computations by
combining static and dynamic program analysis. In: Proceedings of the 19th Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2010, pp. 1–12. ACM,
New York (2010)

18. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Network Distributed Security Symposium (2008)

19. Godefroid, P., Taly, A.: Automated synthesis of symbolic instruction encodings
from I/O samples. In: PLDI, pp. 441–452 (2012)

20. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys 23, 5–48 (1991)

21. Goubault, É., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

22. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: Cabodi, G., Singh, S. (eds.) FMCAD, pp. 131–140.
IEEE (2012)

23. Hansen, T., Schachte, P., Søndergaard, H.: State joining and splitting for the sym-
bolic execution of binaries. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS,
vol. 5779, pp. 76–92. Springer, Heidelberg (2009)

24. Hauser, J.: SoftFloat-2b (2002),
http://www.jhauser.us/arithmetic/SoftFloat.html

http://www.jhauser.us/arithmetic/SoftFloat.html

356 A. Romano

25. IEEE Task P754: ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arith-
metic (August 1985)

26. Ivancic̀, F., Ganai, M.K., Sankaranarayanan, S., Gupta, A.: Software model check-
ing the precision of floating-point programs. In: Proceedings of the 8th ACM/IEEE
International Conference on Formal Methods and Models for Codesign (MEM-
OCODE 2010), pp. 49–58. IEEE (2010)

27. Kahan, W.: Implementation of algorithms (lecture notes by W. S. Haugeland and
D. Hough). Technical Report 20 (1973)

28. Karrer, J.: Softgun – the embedded system simulator (2013),
http://softgun.sourceforge.net

29. King, J.C.: Symbolic execution and program testing. Communications of the
ACM 19, 385–394 (1976)

30. Kuliamin, V.V.: Standardization and testing of implementations of mathematical
functions in floating point numbers. Programming and Computer Software 33(3),
154–173 (2007)

31. Lakhotia, K., Tillmann, N., Harman, M., de Halleux, J.: FloPSy - search-based
floating point constraint solving for symbolic execution. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 142–157. Springer,
Heidelberg (2010)

32. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2012, pp. 215–224. ACM, New York (2012)

33. Martignoni, L., McCamant, S., Poosankam, P., Song, D., Maniatis, P.: Path-
exploration lifting: hi-fi tests for lo-fi emulators. In: ASPLOS 2012, pp. 337–348.
ACM, New York (2012)

34. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Schmidt, D.A. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer,
Heidelberg (2004)

35. Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs
in x86 binary linux programs. In: Proceedings of the 18th Conference on USENIX
Security Symposium, SSYM 2009, pp. 67–82. USENIX Association (2009)

36. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans.
Program. Lang. Syst. 30(3), 12:1–12:41 (2008)

37. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI 2007, pp. 89–100 (2007)

38. O’Leary, J., Zhao, X., Gerth, R., Seger, C.J.H.: Formally verifying IEEE compliance
of floating-point hardware. Tech. rep., Intel Technical Journal (First quarter 1999)

39. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011)

40. Păsăreanu, C., Visser, W.: A survey of new trends in symbolic execution for soft-
ware testing and analysis. International Journal on Software Tools for Technology
Transfer (STTT) 11, 339–353 (2009)

41. Rümmer, P.: Preliminary SMT-FPA conformance tests (2010),
http://www.cprover.org/SMT-LIB-Float/

42. Rümmer, P., Wahl, T.: An SMT-LIB theory of binary floating-point arithmetic.
In: Informal Proceedings of 8th International Workshop on Satisfiability Modulo
Theories (SMT) at FLoC, Edinburgh, Scotland (2010)

http://softgun.sourceforge.net
http://www.cprover.org/SMT-LIB-Float/

Monitoring Parametric Temporal Logic

Peter Faymonville1, Bernd Finkbeiner1, and Doron Peled2

1 Fachrichtung Informatik
Universität des Saarlandes, Germany
2 Department of Computer Science

Bar Ilan University, Israel

Abstract. Runtime verification techniques allow us to monitor an execution and
check whether it satisfies some given property. Efficiency in runtime verification
is of critical importance, because the evaluation is performed while new events
are monitored. We apply runtime verification to obtain quantitative information
about the execution, based on linear-time temporal properties: the temporal spec-
ification is extended to include parameters that are instantiated according to a
measure obtained at runtime. The measure is updated in order to maintain the
best values of parameters, according to their either maximizing or minimizing
behavior, and priority. We provide measuring algorithms for linear-time tempo-
ral logic with parameters (PLTL). Our key result is that achieving efficient run-
time verification is dependent on the determinization of the measuring semantics
of PLTL. For deterministic PLTL, where all disjunctions are guarded by atomic
propositions, online measuring requires only linear space in the size of the speci-
fication and logarithmic space in the length of the trace. For unambiguous PLTL,
where general disjunctions are allowed, but the measuring is deterministic in the
truth values of the non-parametric subformulas, the required space is exponential
in the size of the specification, but still logarithmic in the length of the trace. For
full PLTL, we show that online measuring is inherently hard and instead provide
an efficient offline algorithm.

1 Introduction

While verifying the complete behavior of a system (e.g., using model checking) is cer-
tainly desirable, it is not always possible, as its internal structure is not always given, or
its state space is prohibitively large. Runtime verification analyzes the ongoing execu-
tion of a system against a given specification, written for example in Linear Temporal
Logic (LTL), based on monitoring its externally measurable events. The challenge in
runtime verification is to provide an efficient algorithm that can perform its required
updates between any two successive monitored events.

We study here the runtime monitoring of a system with respect to temporal prop-
erties, expressed using LTL, where (discrete time) duration counters are added to the
subformulas. The runtime verification reports not only about the conformance between
the currently monitored sequence and the specification, but also provides numerical
values that bound the duration of the scope of subformulas on the checked execution
from either above or below. For example, the specification �(r→�≤xg) computes the
maximal response time x between a request r and a response g. We call this approach

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 357–375, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

358 P. Faymonville, B. Finkbeiner, and D. Peled

for runtime verification “runtime measuring” (as “model measuring” [2] is related to
“model checking”). While runtime verification can check and alarm against unwanted
situations, runtime measuring collects statistics on the system behavior.

Our monitoring approach is declarative as opposed to operational. In an operational
approach [7,8], the measures are collected by explicitly specifying the initialization and
update of counters that calculate the reported values. In a declarative approach, we at-
tach parameters to temporal formulas to specify the measure we are interested in, and
the monitoring algorithm takes care of finding parameter valuations such that the for-
mula is satisfied. Suppose, for example, that we do not want to measure all response
times, but are interested only in the last request that was successfully answered. The
formula �(©�(r∧�g)∨ (r→�≤xg)) uses the disjunction to filter out all requests be-
fore the last successful request: in every step, if the left disjunct holds, then the response
time is irrelevant, because the disjunction is true for any value of x; the right disjunct
thus only becomes relevant when the left disjunct is false, i.e., when there is no future
request that is successfully answered.

Research on the runtime verification of LTL [6,8,10] distinguishes online algorithms
that need to keep only some bounded amount of information about the trace seen so far,
from offline algorithms that store the entire sequence for later evaluation. For runtime
measuring, we also look for an online algorithm with reasonable space consumption.
Since measuring necessarily entails updating counters, an algorithm that requires loga-
rithmic space in the length of the trace is acceptable, while an algorithm that requires
linear space in the length of the trace, such as an offline algorithm, is in general not
practical. We show that the complexity of runtime measuring depends on the disjunc-
tive characterization of the LTL specification; that is, when the formula contains a dis-
junction, or some subformula that can be satisfied in different ways (e.g., ϕ U ψ may
be satisfied when the first ψ holds, but also when ϕ continues to hold until some sub-
sequent occurrences of ψ). Due to this disjunction characteristics, counting results are
not uniquely defined. Consider a sequence of length n where a, b and c happen in each
event. The formula (a U≤x (b U≤y c)) can obtain any natural number for the parameters
x and y such that x+ y = n. One way to obtain unique measures is to impose a priority
order among the parameters and seek for the best (minimal) results according to the
lexicographic ordering. We show that for this case, an online measuring algorithm with
logarithmic memory in the length of the trace is impossible.

An alternative approach to obtain unique measures is to modify the logic. We present
two variations of PLTL that not only provide unique measures, but also have efficient
online measuring algorithms. Deterministic PLTL allows, like deterministic LTL [11],
only guarded disjunctions of the form ((p∧ψ1)∨ (¬p∧ψ2)), where p is an atomic
proposition. Runtime measuring of deterministic PLTL indeed requires only logarith-
mic memory. The drawback of deterministic PLTL is, however, its limited expressive-
ness: deterministic LTL can only express properties in the intersection of LTL and
ACTL [11]. To eliminate this drawback, we introduce unambiguous PLTL, which main-
tains the full expressiveness of LTL. Instead of syntactically restricting the possible dis-
junctions, unambiguous PLTL only disambiguates the PLTL semantics with respect to
the measuring. For example, in a disjunction (ψ1∨ψ2), we only measure ψ2 if ψ1 is is
false under all possible parameter values.

Monitoring Parametric Temporal Logic 359

Consider, for example, again the problem of measuring the maximal response time x
between a request r and a response g. To express this measuring problem in determinis-
tic PLTL, we use a disjunction guarded by r: �(¬r∨ (r∧�≤xg)). This encoding relies
on the fact that the condition that triggers the measuring, r, is an atomic proposition.
If we modify the problem, as discussed earlier, to only measure the last successful re-
quest, then this is no longer possible, because the decision whether or not to measure
the current request depends on the success of future requests. The modified measuring
problem can thus no longer be expressed in deterministic PLTL. The PLTL specification
�(©�(r∧�g)∨(r→�≤xg)), discussed above, does, however, work for unambiguous
PLTL. In unambiguous PLTL, the (unguarded) disjunction is allowed, and the right dis-
junct is evaluated whenever the left disjunct is false. Hence, the specification computes
precisely the response time of the last successful request.

We obtain the following results: for deterministic PLTL, online measuring requires
only logarithmic space in the length of the trace and linear space in the size of the
specification. For unambiguous PLTL, the required space is exponential in the size of
the specification, but still logarithmic in the length of the trace. For full PLTL, we
provide an efficient offline algorithm, which can also be used as an online algorithm
by keeping the trace seen so far in storage. This algorithm requires quasilinear space in
the length of the trace. We also show that, in fact, no online measuring algorithm with
logarithmic space in the length of the trace exists. Unambiguous PLTL thus appears to
be the sweet spot in the trade-off between expressiveness and complexity.

Related Work. The synthesis of monitors for LTL is a well-studied problem,
see [3,5,6,8,10,13]. The offline backwards runtime algorithm of Havelund and Rosu [6]
calculates with each event the truth values of the subformulas according to subformula
order. Thus, with each new monitored event, the calculation would be linearly related
to both the length of the sequence so far and the size of the checked formula. The
testers construction by Pnueli and Zaks [13] can be used to backwards assign values to
variables representing subformulas in a compositional manner. In previous work of the
second author together with Sankaranarayanan and Sipma [8,7], alternating automata
are used to obtain efficient algorithms for runtime verification. The query language con-
sidered there extends LTL with functions that are executed along the trace in order to
collect measures and more complicated statistics such as the average number of packet
transmissions in a communication protocol. Unlike the declarative approach of this pa-
per, the collection of measures and statistics is specified operationally, not in the form
of parameters. A different type of parametric monitoring has been studied by Rosu
and Chen [14]: They consider traces that contain events with parameter bindings. Such
traces can be considered as several different traces merged together and the challenge
for the monitoring algorithm lies in the efficient slicing of the trace.

2 Parametric Temporal Logic

Syntax. Parametric Temporal Logic (PLTL) [2] is an extension of linear-time temporal
logic (LTL) [12] with parameterized operators, which measure the duration from the
introduction of a temporal goal until it is satisfied. E.g., for a subformula of the form

360 P. Faymonville, B. Finkbeiner, and D. Peled

ϕ U ψ, we expect to measure the duration until ψ happens. We assign a parameter x
together with a comparison operator to the subformula, e.g., ϕU≤x ψ, with the intended
meaning that ψ should hold within at most x steps while ϕ holds. In contrast to LTL
variants like Prompt-LTL [9], PLTL allows multiple parameters within a formula.

The syntax of PLTL is given, for a set of atomic propositions AP, with typical element
p, and a set of parameter variables V as follows:

ψ ::= true | p | ¬ψ | (ψ∧ψ) | (ψ∨ψ) |©ψ |�ψ |�ψ | (ψU ψ) | (ψR ψ) |�≤xψ |�≤xψ

The operators U-until, �-eventually, �-always, R -release, ©-next are the usual
temporal operators from LTL. In the two new parametric operators �≤xψ and �≤xψ, x
may be either a constant natural number or a parameter variable.

In addition to disjunction, conjunction, and negation, we also allow the usual derived
Boolean connectives such as implication →. In addition to �≤xψ and �≤xψ, we also
use the following derived parametric operators

�>x,�>x,U≤x,U>x,R≤x, and R>x,

where x is again a parameter or a natural number. We assume that each parameter vari-
able occurs at most once. Let α : X �→N∪{∞} denote a value assignment for the param-
eters. Then α(x) is the integer value assigned to x by α. For simplicity, we set α(k) = k
for k ∈ N. We denote by α[k/x] the valuation that maps y to k if y = x and to α(y) if
y
= x. Let α\ x be the valuation α, excluding the parameter x.

Semantics. In the following, we adapt the PLTL semantics to the finite traces observed
during monitoring. We interpret a given PLTL formula ψ over a finite trace σ of events,
numbered with nonnegative integers, where each event provides an interpretation to
the Boolean propositions AP, i.e., σ : {0 . . . |σ| − 1} → 2AP. Let the kth element of σ
(starting with k = 0) be denoted by σ[k].

We denote by (σ,k,α) |= ψ, the fact that trace σ satisfies the formula ψ at position k
with valuation α. The satisfaction relation |= is defined recursively as follows.
For atomic propositions and Boolean connectives:

– (σ,k,α) |= p iff p ∈ σ[k]; (σ,k,α) |= ¬ψ iff (σ,k,α)
|= ψ
– (σ,k,α) |= (ψ1∧ψ2) iff (σ,k,α) |= ψ1 and (σ,k,α) |= ψ2.
– (σ,k,α) |= (ψ1∨ψ2) if (σ,k,α) |= ψ1 or (σ,k,α) |= ψ2.

For the LTL operators:

– (σ,k,α) |=©ψ iff |σ|> k+ 1 and (σ,k+ 1,α) |= ψ.
– (σ,k,α) |= (ψ1 U ψ2) if there exists i, k< i< |σ| where (σ, i,α) |= ψ2, and for each

j, k≤ j < i, (σ, j,α) |= ψ1.
– (σ,k,α) |= (ψ1 R ψ2) if for each k ≤ i < |σ|, it holds that either (σ, i,α) |= ψ2 or

there exists j, k ≤ j < i such that (σ,k+ j,α) |= ψ1.

We use the following standard abbreviations: �ϕ = (true U ϕ), �ϕ = (false R ϕ).
The parametric operators are defined as follows:

– (σ,k,α) |= �≤xψ if there exists 0 ≤ i ≤ α(x), where k+ i < |σ|, such that (σ,k+
i,α) |= ψ;

– (σ,k,α) |=�≤xψ if for all 0≤ i≤ α(x), where k+ i < |σ|, (σ,k+ i,α) |= ψ;

Monitoring Parametric Temporal Logic 361

We also write (σ,α) |= ϕ for (σ,0,α) |= ϕ. We can extend our syntax and semantic
definitions to allow also constants in addition to (or instead of) the variable parameters:
Constants are simply parameters that have the same values under each valuation.

The semantics of the derived parametric operators is given by the following equalities
(see [2], Lemma 2.2):

– �>xψ =�≤x�©ψ;
– �>xψ =�≤x�©ψ;
– ψ1 U≤k ψ2 = ((ψ1 U ψ2)∧�≤kψ2);
– ψ1 R≤k ψ2 = ((ψ1 R ψ2)∨�≤kψ2);
– ψ1 U>k ψ2 =�≤k(ψ1∧©(ψ1 U ψ2));
– ψ1 R>k ψ2 =�≤k(ψ1∨©(ψ1 R ψ2)).

Each of the parametric operators is either upward or downward closed. �≤x is up-
ward closed: if �≤x for some value α(x) = a, then �≤x also holds for any α(x) = b with
b > a. If an operator is upward closed, we want to minimize the value we report. How-
ever, as this operator can hold in multiple suffixes of the measured sequence, we need
to report on a value that would guarantee all of them, hence the maximum among these
minimal values. Likewise, �≤x is downward closed: if �≤x for some value α(x) = a,
then �≤x also holds for any α(x) = a with 0≤ b< a. If an operator is downward closed,
we want to maximize the value we report. However, as this operator can hold in multiple
suffixes of the measured sequence, we need to report on a value that would guarantee
all of them, hence the minimum among these maximal values.

We assume that the PLTL formulas are in negation normal form (i.e., negations
may only occur in front of atomic propositions). Negation normal form can be es-
tablished by pushing negations inward according to the usual rewrite rules for LTL,
e.g., ¬(ψ1 U ψ2) = (¬ψ1 R ¬ψ2), and, additionally, the following equivalence for the
parametric operators: ¬�≤xψ = �≤x¬ψ. This transformation increases the size of the
formula only by a constant factor. We also assume that the parameterized operators
are only �≤x and �≤x. The transformation according to the equalities for the derived
parametric operators can result in an exponential explosion in the size of the formula.
However, one does not need to explicitly represent such a formula: one can introduce
“formula variables” to name repeating subformulas and use them repeatedly. Indeed, in
all algorithms in this paper, one does not pay for the repetition of subformulas resulting
from the rewriting [4].

Unique Measures. An attractive feature of PLTL is that the logic permits more than
one parameter in the same formula. As discussed in the introduction, this means, how-
ever, that a trace can satisfy the formula with multiple incomparable value assignments:
for example, the formula �≤x�≤y p is satisfied on a trace where p is false in the first
position and true in the second position both for the value assignment α : x �→ 1,y �→ 0
and for the value assignment α′ : x �→ 0,y �→ 1.

To avoid such ambiguities, we introduce a total (i.e., linear) priority order 2 on
the parameters in X . Let max(X) be the maximum element of X according to 2. The
priority order induces a total order � on value assignments where α1 � α2 if, for x =
max(X),

362 P. Faymonville, B. Finkbeiner, and D. Peled

– (α1(x)−α2(x))> 0 and we maximize x (i.e., the operator of x is downward closed)
or

– (α1(x)−α2(x))< 0 and we minimize x (i.e., the operator of x is upward closed) or
– α1(x) = α2(x) and α1 \ x� α2 \ x.

The measure of a PLTL formula ϕ over an infinite trace σ is the optimal (with respect
to �) value assignment α such that (σ,0,α) |= ϕ.

3 Offline Measuring

We present a first algorithm for measuring a given finite trace. We call the algorithm
offline, because it requires access to the trace positions in reverse chronological order;
this type of access is possible if the trace has been stored before its analysis. The algo-
rithm is less appropriate for the online setting of monitoring, where the trace becomes
available one position at a time. We will study online measuring in Sections 4 and 5.

Intuitively, we focus first on the parameter with highest priority, setting up the other
variables to a default value of 0 for a maximizing parameter, and |σ|+ 1 for a mini-
mizing parameter. We perform a binary search on the value of this variable, hence are
left with a formula with constant parameters. After finding the optimal (minimal or
maximal) value for this parameter in this way, we fix it, and move to optimize the next
highest priority parameter and so forth.

Checking Formulas with Constant Parameters. We begin with the simple case of
PLTL formulas without parameters that may still contain parametric operators that refer
to constants. In this case, we are only interested in the truth value, not in an actual
measurement.

Let σ be a finite trace and let ϕ be a PLTL formula in normal form with constants
instead of variable parameters. We check the satisfaction of ϕ in a backward traversal of
σ. During the traversal, we maintain for every subformula ψ the truth value bψ, which
indicates whether ψ is satisfied on the suffix from the currently considered position. For
every subformula ψ that starts with a parametric operator (referring to some constant
k) we additionally maintain a counter cψ, which indicates for ψ = �≤kµ the number
of steps until µ is satisfied, and for ψ = �≤kµ the number of steps until µ is falsified,
respectively; in case µ (respectively, ¬µ) never become true, we set cψ =⊥.

Before we process the last event in the trace we set up the values as follows:

– b�≤kψ = false, c�≤kψ =⊥,
– b�≤kψ = true, c�≤kψ =⊥,
– b©ψ = false.

– b(ψ1Uψ2) = false.
– b(ψ1R ψ2) = true.

For the Boolean connectives and the non-parametric operators, the backward prop-
agation proceeds as in a standard backward update algorithm for LTL (c.f., [6]). We
denote the values for the current level i with bψ and cψ and the values for the previously
considered level i+1 with b′ψ and c′ψ. For Boolean combinations we evaluate bottom-up
as follows: b(ϕ∧ψ) = (bϕ∧bψ) and b(ϕ∨ψ) = (bϕ∨bψ).

Monitoring Parametric Temporal Logic 363

For the non-parametric temporal operators, we propagate the truth values as follows:

– b©ψ = b′ψ
– bψ1∨ψ2 = bψ1 ∨bψ2

– b(ψ1Uψ2) = (bψ2 ∨ (bψ1 ∧b′ψ1Uψ2
))

– b(ψ1R ψ2) = (bψ2 ∧ (bψ1 ∨b′ψ1R ψ2
))

For the parametric operators, we need to update the counters. In the following we
assume ⊥+ 1 = 0 and ⊥
≤ i for any i ∈ N.

– c�≤kψ := if bψ then 0
else if c′�≤kψ < k then c′�≤kψ + 1 else ⊥.

– c�≤kψ := if ¬bψ then ⊥
else if c′�≤kψ < k then c′�≤kψ + 1 else 0.

The truth values of the parametric operators can then be derived from the counter
values: b�≤kψ = (c�≤kψ ≤ k); b�≤kψ = (c�≤kψ ≥ k).

In order to check ϕ on σ, we thus update two values for every subformula and trace
position. The running time of our algorithm is therefore in O(2|ϕ| × |σ|).

Measuring Formulas with at least one Parameter. In the case that ϕ contains a
single parameter x, we know that the possible values of x are bounded by the length of
the trace. We carry out a binary search to find the best value. The running time of the
algorithm thus increases by a logarithmic factor in the length of the trace: O(2|ϕ|×|σ|×
log|σ|). In case that ϕ contains n > 1 parameters, we focus on the parameter x with the
highest priority by replacing all other parameters by their ‘weakest’ values, i.e., 0 if we
maximize and |σ|+ 1 if we minimize that parameter. This clearly does not affect the
value of x in the measure. Once the value of x is obtained, we replace x with its value,
and continue with the parameter with the next-highest priority.

The algorithm from the single-parameter case is therefore applied n times, where n
is bounded by |ϕ|. We therefore obtain the following complexities.

Theorem 1. Let ϕ be a PLTL formula and σ be a finite trace. With direct access to all
trace positions, the measure of ϕ on σ can be computed in space O(|ϕ|× |σ|× log|σ|)
and time O(|ϕ|× 2|ϕ| × |σ|× log|σ|).

4 Online Measuring is Hard

The algorithms from the previous section assume direct access to the full trace. Since
huge traces are common in practice for runtime verification, in fact, their size may not
be a priori bounded, one would like to avoid storing the full trace, and instead only
work with a logarithmic representation, such as the current value of a fixed number of
counters. The following theorem shows that, unfortunately, such a monitoring algorithm
cannot exist.

Theorem 2. There is no online measuring algorithm for PLTL that uses only logarith-
mic space in the length of the trace.

364 P. Faymonville, B. Finkbeiner, and D. Peled

0 k1 n n+k2 2n (n−1)n (n−1)n+kn

↓ ↓ ↓ ↓ ↓ ↓ ↓
a c b a c b a . . . a c a

b
↑ ↑ ↑

n−1 2n−2 n ·n︸ ︷︷ ︸
σ

n−i
↓
b

︸ ︷︷ ︸
ρ

Fig. 1. Sequences σ and ρ in the proof of Theorem 2

Proof. Suppose that such an online algorithm exists. We run the algorithm on the for-
mula �(a→ ((�≤xb)∨(�≤yc))), where x2 y. We will show that there is a sequence σ
of length O(n2), such that the memory of the monitor must, after processing σ, contain
all elements of an arbitrary chosen set K = {k1,k2, . . . ,kn} of n natural numbers.

Assume, without loss of generality, that k1 < k2 < .. . < kn. The sequence σ is con-
structed as follows. There is an a in the first position and then again after n steps, after
2n steps, and so on, for a total of n+ 1 times. In the first interval between two occur-
rences of a, there is a b after n− 1 steps following the first a, and a c after k1 steps
following the first a, in the second interval, there is a b after n− 2 steps following the
first a and a c after k2 steps, and so on. The construction of σ is illustrated on the left in
Figure 1.

The monitor must keep the entire set K in memory after processing σ, because we
can force the monitor to retrieve ki ∈K for any i= 1, . . .n, by extending σ with a suitable
sequence ρ such that the y-measurement of σ · ρ is ki. The extension, after the last a,
consists of another n− 1 steps with a b in the (n− i)th step and no further or c (or a).
The construction is illustrated on the right in Figure 1. With only logarithmic memory,
it is impossible to store K. Logarithmic space can only distinguish O(n) cases; however,
there can be 2n different sets K.

The measurement of the higher priority variable x in σ · ρ cannot be smaller than
x = n− i+ 1, since the last a is followed by a b after that distance, but not with any c.
For the purposes of measuring y, we only need to consider the first i− 1 occurrences
of a, because for all other occurrences, the left disjunct, with the chosen measure of x
being at least x = n− i+ 1, is always satisfied. In order not to increase the value of x
beyond n− i+1, we need to satisfy the disjunction for each of the first i−1 occurrences
of a (which follow by a b at a larger distance, namely, n− i+2, n− i+3 . . .n) using its
righthand side, i.e., through the first occurrence of a c after each a. In order to guarantee
that all these distances from a to the first subsequent c are satisfying the formula with
the measurement of y, we must choose y as the maximal value of them. As the distances
appear in ascending order, we must have y = ki−1. ��

5 Online Measuring in Logarithmic Space

In this section, we present online measuring algorithms that only need logarithmic space
in the length of the trace. Since we know from Theorem 2 that disjunctions between

Monitoring Parametric Temporal Logic 365

subformulas with parameters make this impossible for PLTL, we must look at syntactic
or semantic variations of PLTL that “determinize” such disjunctions. We start with a
syntactic fragment based on deterministic LTL [11]: in deterministic LTL, the only
allowed disjunctions are of the form ((p∧ψ1)∨ (¬p∧ψ2)), where the subformulas ψ1

and ψ2 are guarded by a proposition p; since the value of p is immediately available,
the choice of the disjunct is deterministic. Indeed, as we show in Section 5.1, runtime
measuring of deterministic PLTL can be done with logarithmic cost in the length of the
trace. Deterministic PLTL is, however, not completely satisfying as a logic for runtime
measuring, because it is less expressive than full LTL: deterministic LTL can express
exactly the properties in the intersection of LTL and ACTL [11].

We solve this problem in Section 5.2 by introducing unambiguous PLTL, which
maintains the full expressiveness of LTL. Instead of syntactically restricting the possible
disjunctions, we only disambiguate the PLTL semantics with respect to the measuring.
For example, in a disjunction (ψ1 ∨ψ2), we only measure ψ2 if ψ1 is false for all
possible instantiations of the parameters. Again, the complexity of online measuring
drops from linear to logarithmic in the length of the trace.

5.1 Deterministic PLTL

We define deterministic PLTL in analogy to deterministic LTL [11] by restricting the
syntax of PLTL such that disjunctions and eventualities are always guarded by atomic
propositions.

Syntax and Semantics. The syntax of PLTLdet is given, for a set of atomic proposi-
tions AP and a set of parameter variables V as follows:

ψ ::= true | p | ¬ψ | ψ∧ψ | (p∧ψ)∨ (¬p∧ψ) | ©ψ |�p | (p∧ψ) U (¬p∧ψ) |
�≤x p |�≤x p

PLTLdet is a sublogic of PLTL; the semantics remains the same.

Measuring Automata. We construct a monitor in the form of an extended finite-state
automaton, which maintains the current measurements in a fixed number of integer
variables. We begin with a formal definition of measuring automata.

A measuring automaton is a deterministic finite-state automaton extended with a set
of variables, which are used to store data needed to compute the measure. The variables
are initialized with either 0 or ∞. In each step, the automaton may update the integer
variables with a reset to 0, an increment by 1, or by computing the minimum or maxi-
mum of two values. When the automaton reaches a final state it accepts the input word
and outputs its measurement based on the state and the values of the integer variables.

Definition 1. A measuring automaton (Σ,Ω,Q,q0,X ,θ,δ,γ,F,ω) consists of an input
alphabet Σ, an output domain Ω, a finite set of states Q, an initial state q0, a finite set
of variables X, an initial assignment θ : X → {0,∞}, a transition function δ : Q×Σ→
(Q∪{⊥}), an update function γ : Q×Σ→ (X →N)→ (X →N), a set of final states F,
and an output function ω : F× (X →N)→Ω. The update function γ is restricted to one

366 P. Faymonville, B. Finkbeiner, and D. Peled

of the following operations for each variable x∈X: reset x := 0, an increment x := y+1,
or with the maximum or minimum of two values: x :=min(x,y) or x :=max(x,y), where
y is some other variable y ∈ X.

A run of a measuring automaton A = (Σ,Ω,Q,q0,X ,θ,δ,γ,F,ω) on an input se-
quence σ = σ0σ1 . . .σn ∈ Σ∗ is a sequence (s0,η0)(s1,η1) . . . (sn,ηn) of configurations,
where each configuration is a pair (si,ηi) of a state si and a valuation ηi : X → N of the
integer variables, such that

– s0 = q0

– η0 = θ
– si+1 = δ(si,σi) for i = 0 . . .(n− 1)
– ηi+1 = γ(si,σi)(ηi) for i = 0 . . . (n− 1)
– sn ∈ F .

The result of the run is ω(sn,ηn). For every input sequence, A has either no run at all
or a unique run. If A has a run on σ, we say that A accepts σ with result ω(sn,ηn).

Since the only allowed update operations are reset, increment, maximum, and min-
imum, the values of the variables are always either ∞ or bounded by the length of the
input sequence. These values can therefore be represented in logarithmic space in the
length of the input.

Lemma 1. The configuration of a measuring automaton can be represented in loga-
rithmic space in the length of the input sequence.

From Formulas to Automata. We measure formulas of PLTLdet with a measuring
automaton with input alphabet Σ = 2AP and output domain Ω : V →N, consisting of the
evaluations of the parameters. The state space of the automaton is based, as in classic
LTL-to-automata translations, on the closure of the formula.

Definition 2. The closure ϕ, denoted by cl(ϕ), of a PLTL formula ϕ is the set of PLTL
formulas that includes all the subformulas of ϕ and the negations of the non-parametric
subformulas of ϕ.

The states of the measuring automaton consist (in addition to a unique initial state
q0) of subsets of the closure called atoms. Intuitively, an atom represents the state of the
temporal specification after processing a prefix of the trace.

Definition 3. An atom of a PLTL formula ϕ is subset of formulas from cl(ϕ) that is
consistent with respect to propositional logic, locally consistent with respect to the until,
release, globally, and parametric globally operators, and maximal.

– A subset A⊆ cl(ϕ) of the closure is consistent with respect to propositional logic if
the following conditions hold: (ψ1∧ψ2) ∈ A iff ψ1 ∈ A and ψ2 ∈ A; ψ ∈ A implies
that ¬ψ
∈ A; and true ∈ cl(ϕ) implies that true ∈ A.

– A subset A ⊆ cl(ϕ) of the closure is locally consistent with respect to the until
operator if for all (ψ1 U ψ2) ∈ cl(ϕ) the following conditions hold: ψ2 ∈ A implies
that (ψ1 U ψ2) ∈ A; and (ψ1 U ψ2) ∈ A and ψ2
∈ A implies that ψ1 ∈ A;

Monitoring Parametric Temporal Logic 367

– A subset A ⊆ cl(ϕ) of the closure is locally consistent with respect to the release
operator if for all (ψ1 R ψ2) ∈ cl(ϕ) the following conditions hold: ψ1 ∈ A and
ψ2 ∈ A implies that (ψ1 R ψ2) ∈ A; and (ψ1 R ψ2) ∈ A implies that ψ2 ∈ A;

– A subset A ⊆ cl(ϕ) of the closure is locally consistent with respect to the globally
operator if for all �ψ ∈ cl(ϕ) it holds that if �ψ ∈ A then ψ ∈ A;

– A subset A⊆ cl(ϕ) of the closure is locally consistent with respect to the parametric
globally operator if for all �≤xψ ∈ cl(ϕ) it holds that if �≤xψ ∈ A then ψ ∈ A.

– A subset A⊆ cl(ϕ) of the closure is maximal if, for all non-parametric subformulas
ψ ∈ cl(ϕ), we have that either ψ ∈ A or ¬ψ ∈ A.

Let Atϕ denote the set of atoms of ϕ. We consider the following successor relation
on atoms:

Definition 4. Let→⊆ Atϕ× 2AP×Atϕ be a successor relation between atoms of ϕ and

for each t, e⊆ AP, t ′, we have t
e−→ t ′ if t ′ is the smallest set s.t.

– t ′ ∩AP = e.
– If©ψ ∈ t then ψ ∈ t ′.
– If �ψ ∈ t, then �ψ ∈ t ′.
– If (ψ1 U ψ2) ∈ t then either ψ2 ∈ t or ψ1 ∈ t and (ψ1 U ψ2) ∈ t ′.
– If �ψ ∈ t then ψ ∈ t or �ψ ∈ t ′.
– If �≤xψ ∈ t then ψ ∈ t or �≤xψ ∈ t ′.
– If �≤xψ ∈ t then ψ ∈ t and ψ
∈ t ′ or �≤xψ ∈ t ′.

For PLTLdet, this successor relation leads to a deterministic automaton.

Lemma 2. For every atom t ∈ At(ϕ) of a PLTLdet formula ϕ and every event e there
is at most one atom t ′ ∈ At(ϕ) such that t

e−→ t ′.

The transition function δ of the measuring automaton is therefore directly based on
the successor relation:

– For the initial state q0, the successor δ(q0,e) is the unique atom that contains ϕ and
is consistent with e, i.e., the atom t ∈ Atϕ with ϕ ∈ t and t∩AP = e, or ⊥ if no such
atom exists.

– For every other state t ∈ Atϕ, the successor δ(t,e) is, whenever it exists, the unique

atom t ′ with t
e−→ t ′. If no successor atom exists, then δ(t,e) =⊥.

The set X of variables of the measuring automaton contains two variables nv and mv

for each parameter v ∈ V . The variable nv is a counter, similar to the counter used in
the offline algorithm: nv indicates the number of steps since the formula that starts with
the operator that is parametric in v has existed in the atom. Since the same formula may
be generated several times along the trace, e.g., the subformula �≤xq of the formula
�(p → �≤xq) (written in negation normal form) is generated whenever p is true, we
additionally keep track of the worst (maximal, if we need to minimize, or minimal, if
we need to maximize the measure) value of nv seen so far (thus ensuring that the final
measurement will cover all occurrences). This is the purpose of the second variable mv:

368 P. Faymonville, B. Finkbeiner, and D. Peled

for the upward-closed operator �≤x, mx contains the greatest value of nx seen so far, for
the downward-closed operator �≤x, mx contains the smallest value of nx seen so far. In
θ, we initialize nx with 0 and mx with ∞ for �≤x and with 0 for �≤x.

For the update function γ(s,e), which maps a state and an input to a mapping between
successive valuations, we need to distinguish situations where a parametric formula is
freshly generated from situations where the formula is present in order to continue a
measurement started earlier.

Definition 5. A formula ψ ∈ t is generated in a pair of atoms t, t ′ ∈ Atϕ, denoted by
generated(ψ, t, t ′), if one of the following conditions is true:

– ψ is the direct subformula of some other formula in t ′;
– ©ψ is a formula in t.

For simplicity of notation, we extend generated(ψ,s,s′) to pairs of states s,s′ ∈ Q of
the measuring automaton, where we set generated(ψ,q0, t ′) = true for all t ′ ∈ Atϕ,ψ∈ t ′

to also cover the designated initial state. The updates of mx and nx take into account
whether we want to maximize or minimize a subformula. Also, the updates take into ac-
count the fact that a measured subformula may be regenerated while predecessor atoms
already include that subformula, hence it is already in the process of being measured.
For example, when monitoring �(p→�≤xq), the subformula �≤xq may be generated,
or a result of it appearing in the previous atom, or both. We need to measure an over-
all worst minimal value (i.e., maximum among minimal values from the time �≤x p is
generated in an atom until p it holds a subsequent atom). In this case, we ignore any
new generation of the subformula in the current atom. The situation is reversed when
we have an �≤xq subformula: Since we need the worst among maximal measurements,
we ignore the occurrence of the subformula that is propagated from a predecessor atom
in favor of a current generation, and start to count from fresh.

For �≤xη ∈ δ(s,e): if η ∈ t ′ then mx := max(mx,nx);nx := 0
else mx := mx; nx := nx + 1.

For �≤xη ∈ δ(s,e): if η ∈ δ(s,e) then if generated(�≤xη,s,δ(s,e))
then mx := mx;nx := 0
else mx := mx;nx := nx + 1;

else mx := min(mx,nx);nx := 0.

If x does not occur in the new atom, then mx and nx remain unchanged: mx := mx and
nx := nx. The final states of the measuring automaton are the atoms without unfulfilled
obligations, i.e., t ∈ F , iff for all η U µ ∈ t also µ ∈ t, for all �≤xµ also µ ∈ t, and there
is no formula©ψ in t. For such states, ω reports the parameter assignment v �→mv for
all parameters, with the exception of remaining formulas of type �≤xµ, where it reports
min(mx,nx) to take care of a new possible minimum on the last event on the trace.

Theorem 3. For every PLTLdet formula ϕ there exists a measuring automaton Aϕ =
(Σ,Ω,Q,q0,X ,θ,δ,γ,F,ω) with a linear number of states Q in |ϕ| and a linear number
of variables X in |ϕ| such that for every sequence σ ∈ (2AP)∗, σ is accepted by Aϕ with
result r iff r is the measure of ϕ on σ.

Monitoring Parametric Temporal Logic 369

Soundness. We split the correctness argument of Theorem 3 into two lemmata:

Lemma 3. If there exists a run of Aϕ on the trace σ = e0e1 . . .en−1 ∈ (2AP)∗ with result
r, then (σ,0,r) |= ϕ.

Lemma 4. For a trace σ = e0e1 . . .en−1 ∈ (2AP)∗, if (σ,0,r) |= ϕ, then there exists a
run π = (t0,η0),(t1,η1) . . . (tn,ηn) of Aϕ on σ with result r′, where r′ . r.

Because Aϕ has at most one run on a given trace and therefore a unique result, pro-
vided that some run exists, Lemmata 3 and 4 imply that the result of Aϕ is the measure
of ϕ on the given trace. To prove Lemma 3, we first establish that the formulas in the
atoms are satisfied for the respective suffixes of the trace.

Lemma 5. If there exists a run of ϕ in Aϕ with atom sequence t0 . . . tn, then we have
that for all subformulas ψ, for all positions i, if ψ ∈ ti then (σ, i− 1,r) |= ψ.

The proof of Lemma 5 is by induction on the length of the trace, progressing back-
wards from the last position. It remains to show that the result of the run satisfies ϕ.

Lemma 6. If there exists a run π = (t0,η0),(t1,η1) . . . (tn,ηn) in Aϕ with result r, we
have that (σ,0,r) |= ϕ.

To prove Lemma 6, we show, inductively, that for a subformula �≤xψ in atom ti,
the distance to the next atom with [ψ] is at most r(x)−ηi(nx) steps; and, likewise, that
for a subformula �≤xψ in atom ti, the distance to the next atom with ¬[ψ] is at least
r(x)−ηi(nx) steps.

For the reverse direction, stated as Lemma 4, we first construct the sequence of atoms
corresponding to the given trace. Based on the semantics definition, we show induc-
tively that the subformulas in the atoms hold over the respective suffices.

Lemma 7. For a trace σ = e0e1 . . .en−1 and a deterministic PLTL formula ϕ, if
(σ,0,r) |= ϕ, then there exists an atom sequence t0 . . . tn such that t0 is the unique atom

that contains ϕ and is consistent with e0, ti
si−→ ti+1 for all i = 0 . . .n− 2, and for every

subformulas ψ and position i = 0 . . .n− 1, if ψ ∈ ti, (σ, i− 1,r) |= ψ.

We complete the atom sequence of Lemma 7 into a complete run by computing
the values of nx and mx for each parameter x and each trace position according to the
definition of the automaton.

Lemma 8. For a trace σ = e0e1, . . .en−1 and a deterministic PLTL formula ϕ, if
(σ,0,r) |= ϕ, then there exists a run of Aϕ, π = (t0,η0),(t1,η1) . . . (tn,ηn) where

ti
ei−→ ti+1 and for all subformulas and positions i, if ψ ∈ ti, (σ, i− 1,r) |= ψ, with

result ω(en,ηn). r.

To prove the claim in Lemma 8, that the result of the run is at least as good as r,
we show, inductively, that for each subformula �≤xψ and each trace position i, ηi(nx)
is less than or equal to the difference of r(x) and the distance of the closest atom that
contains [ψ]; and that for each subformula �≤xψ and each trace position i, the sum of
ηi(nx) and the distance of the closest atom that contains ¬[ψ] is greater than or equal to

370 P. Faymonville, B. Finkbeiner, and D. Peled

r(x). Since mx maintains for�≤xψ and for�≤xψ, the maximum and minimum measure,
respectively, the claim of Lemma 8 follows.

From Theorem 3 and Lemma 1 it follows that the space required by the online mon-
itor is linear in the size of the specification and logarithmic in the length of the trace.

Theorem 4. A PLTLdet formula ϕ can be measured in linear space in the size of ϕ and
logarithmic space in the length of the trace.

5.2 Unambiguous PLTL

As discussed in the introduction of Section 5, the disadvantage of the syntactic re-
striction in deterministic PLTL is that it affects the expressiveness of the logic. In un-
ambiguous PLTL, we modify the semantics of PLTL, rather than its syntax, in order
to determinize the measuring behavior. Because the change does not affect the truth
value of the non-parametric subformulas, we maintain the full expressiveness of LTL.
In particular, under the unambiguous interpretation we give priority in (ϕ∨ψ) to ϕ, and
measure according to ψ only when [ϕ] does not hold. Similarly, for �≤xϕ, we measure
x to the first occurrence where ϕ holds.

Syntax and Semantics. We use the full PLTL syntax as defined in Section 2. The
changes in the semantics (we do not redefine the cases that remain the same) are as
follows:

– (ρ,k,α) |= (ψ∨η) if (ρ,k,α) |= ψ or (ρ,k,α) |= (¬[ψ]∧η);
– (ρ,k,α) |= (ψ U η) if there exists i where |σ| < k+ i, such that (ρ,k+ i,α) |= η,

and for each j, 0≤ j < i, (ρ,k+ j,α) |= ψ∧ [¬η];
– (σ,k,α) |= �≤xη if there exists 0 ≤ i ≤ α(x), where k+ i < |σ|, such that (σ,k+

i,α) |= η and for each j, 0≤ j < i, (ρ,k+ j,α) |= [¬η];
– (σ,k,α) |= (ψR η) if for each k≤ i< |σ|, either (σ, i,α) |= η∧ [¬ψ] or there exists

j, k≤ j < i such that (σ,k+ j,α) |= ψ.

The definition uses the LTL abstraction [ψ] of a PLTL formula ψ, which is the LTL
formula that is satisfied exactly if the PLTL formula is satisfiable for some instance of
the parameters, i.e.,

– [�≤xψ] =�[ψ]
– [�≤xψ] = [ψ]
– [p] = p; [¬p] = ¬p; [(ψ1∧ψ2)] = ([ψ1]∧ [ψ2]); [(ψ1∨ψ2)] = ([ψ1]∨ [ψ2]);
– [©ψ] =©[ψ]; [�ψ] =�[ψ]; [�ψ] =�[ψ];
– [(ψ1 U ψ2)] = ([ψ1]U [ψ2]); [(ψ1 R ψ2)] = ([ψ1]R [ψ2]).

Example. Consider the PLTL formula ϕ = a U �≤xb on the trace σ = {a}{a,b} /0.
According to the standard semantics from Section 2, we have both (σ,0,x �→ 1) |= ϕ,
because (σ,0,x �→ 1) |= �≤xb, and (σ,0,x �→ 0) |= ϕ because (σ,0,x �→ 0) |= a and
(σ,1,x �→ 0) |= �≤xb. The result according to the standard semantics is therefore 0.
According to the unambiguous semantics, we only have (σ,0,x �→ 1) |= ϕ, because
(σ,0,x �→ 1) |= [�≤xb] =�b, and (σ,0,x �→ 1) |=�≤xb. The result is therefore 1.

Monitoring Parametric Temporal Logic 371

Note that for formulas in the syntax of deterministic PLTL, the unambiguous and the
standard semantics agree. Unambiguous PLTL is thus a strict generalization of deter-
ministic PLTL.

From Formulas to Automata. Measuring unambiguous PLTL is more difficult than
deterministic PLTL, since the disjuncts are no longer guarded by atomic propositions,
we generally do not know the truth value of a disjunct until the end of the trace. Our
construction exploits the fact that the counting that is needed to compute the measure
of the trace is deterministic in the truth value of the temporal subformulas. While the
actual value of the future formulas is not known during monitoring, it is possible to split
the analysis into a fixed set of cases based on the possible truth values of the temporal
subformulas.

The states of the measuring automaton are sets of atoms. The intuitive idea is that
each atom represents a possible future behavior. The sets of atoms correspond to a
determinization of the possible futures. As the execution unrolls, some of the future
possibilities are ruled out. As before, an atom is a subset of the formulas of the closure.
We extend the closure of the PLTL formula ϕ with the subformulas of [ϕ] and the
negations of the subformulas of [ϕ]. Under the unambiguous semantics, we additionally
require unambiguity with respect to disjunction and until:

Definition 6. An atom of an unambiguous PLTL formula ϕ is subset of formulas from
cl(ϕ) that is consistent with respect to propositional logic, locally consistent with re-
spect to the until, release, globally, and parametric globally operators, maximal, and
unambiguous with respect to disjunction and until.

– A subset A⊆ cl(ϕ) of the closure is unambiguous with respect to disjunction if, for
every η∨µ ∈ A either [η] ∈ A and η ∈ A, or ¬[η] ∈ A and µ ∈ A.

– A subset A⊆ cl(ϕ) of the closure is unambiguous with respect to the until operator
if, for every η U µ ∈ A, either η ∈ A and ¬[µ] ∈ A, or µ ∈ A.

The transition function δ of the measuring automaton computes the set of successor
atoms analogously to the construction for deterministic PLTL; the difference is that the
successor atoms are no longer unique and we maintain a set of atoms.

– For the initial state q0, the successor δ(q0,e) is the set of atoms that contain ϕ and
are consistent with e, i.e., the atoms t ∈ Atϕ with ϕ and t ∩AP = e.

– For every other state t = s ⊆ Atϕ, the successor δ(s,e) is the set of atoms t ′ with

t
e−→ t ′ for some t ∈ s.

We observe that the only nondeterminism in the successor relation
e−→ is in the

selection of the non-parametric subformulas; once the non-parametric formulas have
been chosen, the parametric formulas to be included in an atom are determined.

Lemma 9. Let t, t ′ be two atoms in a state of the measuring automaton reached after
reading some trace σ = e0e1e2 . . .en, such that there exists a sequence t1t2 . . . tn+1 of
atoms with ti ∈ si for i = 1 . . .n+ 1 and ti

ei−→ ti+1 for i = 1 . . .n such that tn+1 = t,
and a sequence t ′1t ′2 . . . t

′
n+1 of atoms with t ′i ∈ si for i = 1 . . .n+ 1 and t ′i

ei−→ t ′i+1 for
i = 1 . . .n such that t ′n+1 = t ′. If ti and t ′i agree on the non-parametric formulas for all
i = 1 . . .n+ 1, then t = t ′.

372 P. Faymonville, B. Finkbeiner, and D. Peled

The set X of variables contains now the variables nx,t and mx,t for each parameter x∈
V and each atom t ∈ Atϕ, where the intended meaning is the same as in the construction
for deterministic PLTL: the variable nx,t is the counter, the variable mx,t maintains the
greatest counter value reached so far if x is an upward-closed parameter, and the smallest
counter value reached so far if x is a downward-closed parameter.

As before, θ initializes nx with 0, and mx with ∞ for �≤x and with 0 for �≤x. The
key observation that allows us to define the update function γ is that every atom has a
unique predecessor: while, for a pair of successor states s,s′, each atom t ∈ s may have
multiple atoms t ′ ∈ s′ such that t

e−→ t ′, we have that, reversely, each atom t ′ ∈ s′ has
exactly one atom in s with t

e−→ t ′; we denote this unique atom by pre(s,s′, t ′).

Lemma 10. Let t1, t2 be two atoms in a state of the measuring automaton reached af-
ter reading some trace σ, and let t ′ be an atom in the state reached after reading the
additional event e, such that t1

e−→ t ′ and t2
e−→ t ′. Then t1 = t2.

The update function γ computes the new values of nx,t and mx,t based on the values
of nx,pre(s,s′,t′) and mx,pre(s,s′,t′), i.e.,

for �≤xη ∈ t ′: if η ∈ t ′ then mx,t′ := max(mx,pre(s,s′,t′),nx,pre(s,s′,t′));nx,t′ := 0
else mx,t′ := mx,pre(s,s′,t′); nx,t′ := nx,pre(s,s′,t′) + 1;

for �≤xη ∈ t ′: if η ∈ t ′ then if generated(�≤xη, pre(s,s′, t ′), t ′)
then mx,t′ := mx,pre(s,s′,t′);nx,t′ := 0
else mx,t′ := mx,pre(s,s′,t′);nx,t′ := nx,pre(s,s′,t′) + 1;

else mx,t′ := min(mx,pre(s,s′,t′),nx,pre(s,s′,t′));nx,t′ := 0.

If x does not occur in the atom, then mx,t′ := mx,pre(s,s′,t′) and nx,t′ := nx,pre(s,s′,t′).
The final states of the measuring automaton are the sets that contain an atom without
unfulfilled obligations, i.e., f ∈ F iff there is a t ∈ f such that for all ηU µ∈ t also µ∈ t,
for all η R µ ∈ t also η ∈ t, and there is no formula©ψ in t. As the following lemma
clarifies, every reachable final state f ∈ F contains in fact exactly one such atom.

Lemma 11. Every final state f ∈ F reached by the measuring automaton on some
trace contains exactly one atom t ∈ f , without unfulfilled obligations, i.e., where for
all η U µ ∈ t also µ ∈ t, for all η R µ ∈ t also η ∈ t, and there is no formula©ψ in t.

The output is based on this unique atom t ∈ f : ω reports the parameter assignment
x �→ mx,t for all parameters, with the exception of remaining formulas of type �≤xµ,
where it reports min(mx,t ,nx,t) to take care of a new possible minimum on the last event
on the trace.

Theorem 5. For every PLTL formula ϕ there exists a measuring automaton Aϕ =
(Σ,Ω,Q,q0,X ,θ,δ,γ,F,ω) with an exponential number of states Q in |ϕ| and a lin-
ear number of variables X in |ϕ| such that for every sequence σ∈ (2AP)∗, σ is accepted
by Aϕ with result r iff r is the measure of ϕ on σ under the unambiguous semantics.

Monitoring Parametric Temporal Logic 373

Soundness. The proof of the correctness of the construction of Aϕ in Theorem 5 fol-
lows the structure of the proof of Theorem 3 for the corresponding construction for
deterministic PLTL. The key difference is in the proof of Lemma 7, where we claim
that for every trace σ and formula ϕ, if (σ,0,r) |= ϕ, then there exists an atom se-
quence that satisfies the successor relation. For deterministic PLTL, this sequence can
be constructed in a simple induction, progressing from the first position forwards, be-
cause the semantics is deterministic, i.e., the subformulas of the successor atom are
uniquely determined by the present atom and the next event. For unambiguous PLTL,
the parametric subformulas are chosen based on the truth value of the non-parametric
subformulas. We therefore construct the sequence of atoms in two steps. In the first
step, we compute, progressing backwards from the final position, precisely the set of
non-parametric formulas that are satisfied in each position. In the second step, we add,
progressing forwards from the initial position, the parametric subformulas according to
the (now deterministic) semantics of unambiguous PLTL.

From Theorem 5 and Lemma 1 it follows that the space required by the online mon-
itor is exponential in the size of the specification and logarithmic in the length of the
trace.

Theorem 6. Under the unambiguous semantics, a PLTL formula ϕ can be measured in
exponential space in the size of ϕ and logarithmic space in the length of the trace.

6 Experiments

We have implemented the offline measuring algorithm for PLTL from Section 3 and the
online algorithm for unambiguous PLTL from Section 5. (Since unambiguous PLTL is
a generalization of deterministic PLTL, the online algorithm handles the deterministic
case as well.) The offline algorithm traverses the trace several times in backwards di-
rection from the last event to the first event; the online algorithm traverses the trace just
once in forward direction. Table 1 shows data from two experiments carried out with
our Java implementation on a Intel Core i7 processor with 2.6 GHz and 8 GB main
memory. The traces were generated based on simulation runs from two applications, a
bus arbiter and a memory controller, and stored on a solid-state disk drive. We tested
traces of varying length, between 10 000 and 10 000 000 events, and report the running
time of both algorithms in milliseconds.

Bus arbiter. In this benchmark, we measure traces generated from an implementation
of a synchronous bus arbiter for three clients. The parameters measure the duration
between the occurrence of a request until a grant is given to the client.

Memory controller. Our second benchmark is a memory controller. The memory con-
troller provides a bus interface to a memory module. We measure the retention
period of a memory cell over a trace.

The online algorithm is significantly faster than the offline algorithm. In part, this can
be explained by the fact that the offline algorithm has to perform several passes over the
data, which is read anew from the disk every time. Additionally, the algorithm needs to
evaluate all subformulas for every event, because a subformula might be satisfied from
an earlier position onwards. The online algorithm only needs to evaluate the reachable
sets of atoms and thus typically performs less work per event.

374 P. Faymonville, B. Finkbeiner, and D. Peled

Table 1. Running times for the offline and online measuring algorithms

bus arbiter memory controller
trace length offline online offline online
10k events 2027 ms 74 ms 444 ms 84 ms

100k events 6679 ms 263 ms 752 ms 246 ms
1M events 63711 ms 1484 ms 6275 ms 727 ms

10M events 180281 ms 13642 ms 65209 ms 15606 ms

7 Conclusions

We have presented a logical and algorithmic framework for runtime measuring: a way to
provide quantitative results for a trace that needs to conform with an LTL specification,
based on duration parameters attached to the LTL subformulas. This is a declarative
approach, where minimal/maximal results need to be reported, as opposed to an opera-
tional approach, where counters are spawned and updated explicitly while the LTL for-
mula is being verified. The complexity of runtime measuring depends on the disjunctive
nature of a formula. Due to explicit disjunctions and temporal operators with implicit
disjunctive semantics, such as until, there can be multiple answers. Disambiguating the
results using priority among the measured variables resulted in an algorithm that re-
quires quasilinear space in the length of the trace.

We showed that an efficient online algorithm is possible if one determinizes the mea-
suring semantics of PLTL. The completely deterministic semantics of deterministic
PLTL leads to a logarithmic space requirement in the length of the trace and a lin-
ear space requirement in the size of the specification; the combination of standard LTL
semantics for non-parametric formulas with deterministic measuring in unambiguous
PLTL increases the space requirement to exponential in the size of the specification, but
still maintains the logarithmic dependency on the length of the trace.

Our interpretation is based on finite sequences, and thus differs a bit from the usual
LTL interpretation. Indeed, in runtime verification, only a finite part of the sequence
is always revealed. This is consistent with the formation of runtime verification algo-
rithms for LTL [8,6]. A promising direction for future work is to consider an interpre-
tation over infinite sequences. Then, we obtain three possible result values instead of
the two Boolean values: true, false and maybe [10]. In the last position of the trace, we
need to check whether the formulas in any of the closures are still satisfiable. Such a
satisfiability algorithm would be similar to the one presented in [2].

Acknowledgments. This work was partly supported by the German Research Council
(DFG) as part of the Transregional Collaborative Research Center “Automatic Verifica-
tion and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org). The
first author was supported by an IMPRS-CS PhD Scholarship. The third author was
supported by ISF grant 126/12 “Efficient Synthesis Method of Control for Concurrent
Systems”.

www.avacs.org

Monitoring Parametric Temporal Logic 375

References

1. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma,
H.B., Mehrotra, S., Manna, Z.: Lola: Runtime Monitoring of Synchronous Systems. In:
TIME 2005, pp. 166–174 (2005)

2. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for “model mea-
suring”. ACM Trans. Comput. Log. 2(3), 388–407 (2001)

3. Bauer, A., Leucker, M., Schallhart, C.: Runtime Verification for LTL and TLTL. ACM Trans.
Software Engineering Methodologies 20(4), 14 (2011)

4. Etessami, K.: A note on a question of Peled and Wilke regarding stutter-invariant LTL. In-
formation Processing Letters 75, 261–263 (2000)

5. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of
linear temporal logic. In: PSTV 1995, pp. 3–18 (1995)

6. Havelund, K., Roşu, G.: Synthesizing Monitors for Safety Properties. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002)

7. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime execu-
tions. Proceedings of Runtime Verification (RV 2002), Electronic Notes in Theoretical Com-
puter Science 70(4), 36–54 (2002)

8. Finkbeiner, B., Sipma, H.: Checking Finite Traces Using Alternating Automata. Formal
Methods in System Design 24(2), 101–127 (2004)

9. Kupferman, O., Piterman, N., Vardi, M.Y.: From Liveness to Promptness. Formal Methods
in System Design 34(2), 83–103 (2009)

10. Kupferman, O., Vardi, M.Y.: Model Checking of Safety Properties. Formal Methods in Sys-
tem Design 19(3), 291–314 (2001)

11. Maidl, M.: The Common Fragment of CTL and LTL. In: FOCS 2000, Rodendo Beach, CA,
USA, pp. 643–652 (2000)

12. Manna, Z., Pnueli, A.: Completing the Temporal Picture. Theoretical Computer Science 83,
91–130 (1991)

13. Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via Testers. In: Misra,
J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer,
Heidelberg (2006)

14. Rosu, G., Chen, F.: Semantics and Algorithms for Parametric Monitoring. Logical Methods
in Computer Science 8, 1 (2012)

15. Vardi, M., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verification.
In: LICS 1986, Cambridge, MA, pp. 332–344 (1986)

Precisely Deciding Control State Reachability
in Concurrent Traces with Limited Observability

Chao Wang and Kevin Hoang

Department of ECE, Virginia Tech, Blacksburg, VA 24061, USA

Abstract. We propose a new algorithm for precisely deciding a control state
reachability (CSR) problem in runtime verification of concurrent programs, where
the trace provides only limited observability of the execution. Under the assump-
tion of limited observability, we know only the type of each event (read, write,
lock, unlock, etc.) and the associated shared object, but not the concrete values of
these objects or the control/data dependency among these events. Our method is
the first sound and complete method for deciding such CSR in traces that involve
more than two threads, while handling both standard synchronization primitives
and ad hoc synchronizations implemented via shared memory accesses. It relies
on a new polygraph based analysis, which is provably more accurate than existing
methods based on lockset analysis, acquisition history, universal causality graph,
and a recently proposed method based the causally-precedes relation. We have im-
plemented the method in an offline data-race detection tool and demonstrated its
effectiveness on multithreaded C/C++ applications.

1 Introduction

The idea of using an offline analysis of the trace log to predict subtle bugs of a concur-
rent system has been the focus of intense research in recent years. The core problem in
this analysis is to decide an instance of the control state reachability (CSR) problem:
given a valid execution trace ρ, decide whether there exists an alternative interleaving
ρ′ of the events of the trace that can lead to a bad system state, e.g. one that manifests
a data-race, a deadlock, or an atomicity violation. Although there exists a large body
of work on trace based analysis for predicting concurrency bugs, e.g. using either un-
derapproximation [19,20,7,24] or overapproximation [18,26,31,4], none of the existing
methods can precisely decide CSR for input traces with limited observability.

Under the assumption of limited observability, the input trace records only the global
operations but not thread-local operations. Even for the global operations, such as
thread synchronizations and shared memory accesses, we only know the event types
and the associated shared objects, but not the concrete values of these objects or the
control/data dependency among the events. For instance, executing the code tmp:=X;
Y:=tmp+10;would produce events READ(X) and WRITE(Y) in the trace log. However,
we would not know the concrete values of X and Y , or whether WRITE(Y) is data-
dependent on READ(X). As another example, executing the code if(X==10) Y:=0

would produce the same READ(X) and WRITE(Y) events in the trace log.
Precisely deciding CSR under limited observability is challenging for two reasons.

First, we need to characterize the set of bugs that can be predicted, with certainty, by

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 376–394, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Precisely Deciding CSR in Concurrent Traces with Limited Observability 377

analyzing only the input trace under limited observability. Second, we need to design
a new algorithm that can produce the exact set of predictable bugs. In other words, the
algorithm should report a bug in the trace if and only if the bug is guaranteed to show up
in some actual program execution. However, to the best of our knowledge, there does
not exist any method that can precisely decide this CSR problem. For example, classic
methods based on lockset analysis [18] may produce false alarms due to overapprox-
imation, whereas classic methods based on the happens-before causality relation [13]
may miss real bugs due to underapproximation.

For two threads synchronizing via nested locks only, Kahlon et al. [9] proposed the
first sound and complete algorithm for deciding CSR based on a lock acquisition history
(LAH) analysis. They subsequently proposed a lock causality graph (LCG) analysis [8],
which generalizes LAH to handle also non-nested, but finite-length, lock chains. The
theoretical significance of LAH and LCG is that they prove the decidability of CSR
under certain synchronization patterns even for concurrently running recursive proce-
dures. However, neither LAH nor LCG considers synchronization primitives other than
locks. Kahlon and Wang [10] proposed a universal causality graph (UCG) analysis,
which generalizes LCG to handle non-lock synchronization primitives as well. How-
ever, UCG is sound and complete for deciding CSR in traces that involve only two
threads. For more than two threads, UCG may produce false alarms.

In this paper, we propose the first sound and complete algorithm for deciding CSR
for input traces that involve more than two threads, while precisely handling both stan-
dard synchronizations and ad hoc synchronizations via shared memory accesses. We
introduce a new polygraph based analysis framework, which is provably more accurate
than the existing UCG analysis. The polygraph abstraction allows us to strengthen the
CSR decision procedure to make it sound and complete for traces that involve an ar-
bitrary, but fixed, number of threads. Note that, being part of a testing procedure, our
method do not guarantee to detect all bugs in the program. Instead, our sound and com-
plete argument is restricted to the set of predictable bugs for the given input execution
trace.

We also introduce a new predictive model to more accurately model not only standard
synchronization primitives such as locks and wait/notify (as in UCG), but also ad hoc
synchronizations implemented using shared memory accesses. This can significantly
increase the precision of bug detection. When being applied to data-race detection, for
instance, our method will be provably more accurate than both UCG and a more recent
causally precedes (CP [24]) analysis. Similar to ours, the CP method does not report
false alarms. However, it accomplishes this by aggressively dropping valid interleav-
ings, in a way that may lead to missed bugs. Our method does not have this problem.

We have implemented the new method in an offline data-race detection tool based
on the LLVM platform. Our experiments conducted on a set of multithreaded C/C++
applications show that the new method is indeed more accurate that the existing ones.

To sum up, we have made the following contributions:

– We propose a new polygraph based analysis for precisely deciding CSR in execu-
tion traces with only limited visibility. The method is sound and complete for an
arbitrary, but fixed, number of concurrent threads.

378 C. Wang and K. Hoang

– We implement the new method inside an offline data-race detection tool and demon-
strate that, in addition to being provably more accurate, it actually reports more real
bugs than CP and fewer false alarms than UCG.

2 Preliminaries

The control state reachability (CSR) problem arises from trace based analysis of mul-
tithreaded programs for detecting subtle concurrency bugs. Given a concrete execution
trace ρ of the program, this analysis typically consists of three steps:

1. Identify a set of potential bugs by scanning the trace ρ for known error patterns.
2. For each potential bug, create an error condition EC and check for feasibility, i.e.

EC can be satisfied by some valid interleaving ρ′ of the concurrent events in ρ.
3. Compute a thread schedule for each bug found in Step 2 for deterministic replay.

Our main contribution lies in step 2, where our new algorithm can precisely decide the
feasibility of EC. This is equivalent to deciding the CSR problem, where we are con-
cerned with the simultaneous reachability of some locations in the concurrent threads
communicating through standard and ad hoc synchronization operations.

Let the input trace be a sequence ρ = e1, . . . , en, where each event ei (1 ≤ i ≤ n)
models an operation in thread Ti of one of the following types:

– fork(thrd) for the creation of child thread thrd ; and
– join(thrd) for the join back of child thread thrd .
– acq(lk) for acquiring lock lk;
– rel(lk) for releasing lock lk;
– signal(cv) for sending signal via condition variable cv;
– wait(cv) for receiving signal via condition variable cv;
– R(sh) for reading from shared variable sh;
– W (sh) for writing to shared variable sh.

For example, the wait operation in POSIX threads is of the form wait(cv , lk), where
cv is a condition variable and lk is a lock. Based on the POSIX standard, this operation
consists of three substeps. First, the thread releases lk to allow other threads to acquire
lk and execute signal(cv). Next, the thread enters the sleep mode. Finally, after the
signal operation is executed by another thread, the thread wakes up and acquires lk
again. There, the entire wait operation is equivalent to rel(lk);wait(cv); acq(lk).

We assume that the input trace ρ is feasible because it represents a real execution.
If ρ itself exposes a bug, we are done. Otherwise, we check whether there exists a
permutation ρ′ that exposes a bug. Permutation ρ′ is feasible (or real) if ρ′ can appear
in some actual execution of the program. Furthermore, we assume that it is not possible
to run the original program again to test the validity of ρ′. Instead, we define a statically
checkable condition over ρ, under which permutation ρ′ is guaranteed to be feasible.

First, we define the condition for threads synchronizing via standard synchronization
primitives. Let ρ = e1, . . . , en be the input trace and ρ′ = e′1, . . . , e

′
n be a permutation,

where for all 1 ≤ i, j ≤ n, each event e′i maps to a unique ej and vice versa. Let
ei → ej denote that ei appears before ej when the two events are in different threads.
Let ei <PO ej denote that ei appears before ej in the same thread. The conditions for
ρ′ is to be feasible are as follows (c.f. [10]):

Precisely Deciding CSR in Concurrent Traces with Limited Observability 379

1. program order: events within each thread must follow their program order. That
is, ei <PO ej if ei appears before ej in ρ and both events are from the same thread.

2. fork/join order: events in a child thread t must appear after the fork(t) event, but
before the join(t) event, of the parent thread.

3. signal/wait order: events in each matching signal(cv) and wait(cv) pair must
appear in the same order as they appear in the input trace ρ.

4. acq/rel order: events from two matching lock/unlock pairs, e.g. (acq1, rel1) and
(acq2, rel2) over the same lock, must be mutually exclusive. Since critical sections
should not interleave, either rel1 → acq2 or rel2 → acq1.

For threads that do not synchronize via shared memory accesses, these are both suffi-
cient and necessary conditions for ρ′ to be feasible. However, in the general case, they
are only necessary conditions. That is, if any condition is violated, ρ′ is guaranteed to
be infeasible. But even if all of them are satisfied, ρ′ may still be infeasible. It is worth
pointing out that, since the input trace ρ is feasible, every lock acquired by a thread in
ρ must have been released by the same thread. To overcome the problem, we add the
following condition:

5. write/read order: events from two matching write/read pairs, e.g. (W1, R1) and
(W2, R2), where R1(x) reads the value set by W1(x) and R2(x) reads the value
set by W2(x), must not interfere. They should satisfy W1 → R1, W2 → R2, and
in addition, either R1 →W2 or R2 →W1.

This condition may not hold in all execution traces, but instead, is imposed by the given
input trace ρ. The condition ensures that, as long as ρ is feasible, ρ′ is also feasible,
even if we do not have any information about the program that generates the input trace
ρ. If there exist a write event in ρ that does not have any matching read event, we add a
dummy read event immediately after the write event.

We assume that ρ provides limited observability of the program. For example, we do
not know whether the read event R(x) comes from a:=x+5 or if(x>10) or if(x<0).
Similarly, we do not know whether the write event W (x) comes from x:=10 or x:=0.
Given the sequenceR(x) . . .W (sh), we do not know whetherW (sh), which may come
from a:=sh, is control-dependent on R(x), which may come from if(x>0). Assume
that a and b are thread-local, traces from the following programs are indistinguishable:

– program 1: if (x==0) { b:=0; } a:=sh; or
– program 2: if (x!=0) { a:=sh; } or
– program 3: { b:=x; a:=sh; }

Nevertheless, we show that, by requiring eachR1(x) in ρ′ to read from the sameW1(x)
as in ρ, we can ensure that R(sh) will be executed in ρ′, regardless of the expression in
the if-condition, and whether the if-condition is guardingR(sh).

We want to stress that the core analysis procedure proposed in this paper is not tied
up to whether the write/read order (Condition 5) is used or not. To make our subsequent
presentation clear, we define the following two types of predictive models:

– The CSR model includes Conditions 1, 2, 3, and 4, but not Condition 5.
– The CDSR model includes Conditions 1, 2, 3, 4, and 5.

380 C. Wang and K. Hoang

The CSR model considers only standard synchronizations, whereas the CDSR model
also considers ad hoc synchronizations implemented by using shared memory accesses.
In the sequel, we shall present our new polygraph based analysis method for the CSR
model first, and then extend it the CDSR model.

3 Polygraph Based Causality Analysis

Deciding the feasibility of an error condition EC is challenging mainly due to inter-
leaving explosion – the number of possible interleavings is often exponentially large.
Therefore, naively enumerating the feasible interleavings and checking them against
EC is not practical. Instead, we rely on checking a new polygraph where deciding the
feasibility of EC is equivalent to deciding the absence of cycles in the graph.

3.1 From Input Trace ρ to Polygraph Gρ

A polygraph is a generalization of a directed graph that we use to capture all feasible
interleavings of the events of an input trace. The term was coined by Papadimitriou [16]
while studying view serializability: nodes in his polygraph are requests and responses
of database transactions, whereas in our case, they are events of a multithreaded pro-
gram. Let the input trace be ρ. The ρ-induced polygraph, denoted Gρ = (V,E,Epoly),
consists of a set V of nodes, a set E of edges, and a set Epoly of polyedges:

– Each node in V models an event in ρ.
– Each edge inE, denoted a→ b, means amust appear before b. Initially, these edges

come from the program order, fork/join, and signal/wait as defined in Section 2.
– Each polyedge in Epoly , denoted (a → b, c → d), represents an either-or choice,

meaning that either a appears before b, or c appears before d.

For the CSR model (Section 2), the polyedges come from the acq-rel event pairs:

– For any two acq-rel event pairs over lock lk, say (acq1 , rel1) and (acq2 , rel2), their
mutual exclusion demands that either rel1 appears before acq2, or rel2 appears
before acq1. In Gρ, this is modeled by polyedge (rel1 → acq2 , rel2 → acq1).

This defines the set of interleavings in the CSR model, for which we set out to design a
sound and complete algorithm for checking the feasibility of EC.

Later, in Section 5, we will add another type of polyedges for modeling the non-
interference properties of the write-read pairs (the CDSR model in Section 2). If the
threads synchronize solely via standard synchronization primitives – without using
shared variable accesses – the CSR model would be precisely for predicting all the
real bugs (w.r.t. the input trace). Otherwise, we need to consider the CDSR model. Re-
gardless, our core analysis procedure works for both models.

3.2 From Error Condition EC to Polygraph Gρ(EC)

Given an error condition EC, e.g. representing a potential data-race, we construct a
new polygraph Gρ(EC), which is a specialization of Gρ for checking EC. We model

Precisely Deciding CSR in Concurrent Traces with Limited Observability 381

EC by adding a set of new edges to Gρ, and then perform a slicing ofGρ, to remove all
polyedges that are irrelevant to satisfying EC. Below are examples for modeling some
typical concurrency bugs:

– Data-race: Let (a, b) be the events that have a potential data-race. These potential
data-races may be computed using standard lockset analysis [18]. That is, we com-
pute the set of locks held by a thread at each of its program locations. Then, for
any two events a and b that access the same memory from different threads without
holding a common lock, there is a potential data-race. Let a′ and b′ be the immedi-
ate preceding events of a and b in the two threads, respectively. The error condition
EC consists of edges a′ → b and b′ → a.

– Atomicity violation: Let a and b be two events that are intended to execute atomi-
cally in one thread, and c be an interfering event in another thread. Here, c interferes
with a (and b) if and only if they access the same memory location with at least one
write event. In such case, the event order a < c < b indicates a violation. The error
condition EC consists of edges a→ c and c→ b.

– Order violation: Let the event sequence a1, . . . , ak be an unintended execution
order. The error condition EC consists of edges a1 → a2, a2 → a3 ..., and
ak−1 → ak, since the violation is exposed when all these edges are satisfied.

Slicing Gρ(EC) with respect to EC broadens the coverage and allows more real
bugs to be detected. Recall that our goal is to find a valid interleaving that can lead to
the satisfaction of all edges inEC. However, the valid interleaving does not have to be a
permutation of the whole input trace ρ. Instead, a subsequence or prefix, from the initial
state to EC, would suffice. Therefore, we remove from Gρ(EC) any happens-before
obligation (edges and polyedges) that are not needed for satisfying EC.

3.3 Resolving the Polyedges to Detect Cycles

Since each edge in Gρ(EC) represents a precedence relation that must be satisfied, a
cycle in this graph means that no valid interleaving exists. Therefore, we decide the
feasibility of EC by detecting cycles in Gρ(EC). Sometimes, Gρ(EC) has no cycle
initially, but existing edges may force the either-or decisions of some polyedges, which
in turn lead to cycles. This polyedge resolution process is often triggered by the addition
of the EC edges. It is iterative because resolving one polyedge may introduce a new
regular edge that triggers the resolution of another polyedge.

For the CSR model (Section 2), we use the following polyedge resolution rule:

Rule 1: For any polyedge (rel1 → acq2, rel2 → acq1), if there already exists a regular
edge s → t such that acq1 <PO s and t <PO rel2, we remove the polyedge and add
regular edge rel1 → acq2 (see the three cases in Fig. 1). The reason is that, the other
choice rel2 → acq1 would have formed a cycle with s→ t.

Therefore, our procedure starts by resolving all polyedges whose choices are forced
by some existing edges. It repeats the process until (1) a cycle is detected, meaning that
no feasible interleaving exists in Gρ(EC); (2) all polyedges are resolved, meaning that
a feasible interleaving is found; or (3) there are still some unresolved polyedges. In the
third case, the problem remains undecided.

382 C. Wang and K. Hoang

T2

acq2

rel2

acq1

rel1

e1
acq2

rel2

acq1

rel1

e2

acq2

rel2

acq1

rel1
e3

s

t

s

s

t

t

T1 T2 T1 T2 T1

Fig. 1. Polyedge resolution due to existing edge s → t, which adds rel1 → acq2

By now, our new polygraph based procedure matches the precision of the UCG [10],
although the underlying decision mechanisms are drastically different. UCG does not
rely on polygraph, but instead on a set of custom made inference rules. Our use of
polygraph allows the new analysis framework to be easily extended to handle not only
standard synchronization primitives but also ad hoc synchronizations such as shared
memory read/write accesses.

If the goal is to design an over-approximated analysis, the undecided EC in Case
3 may be reported as a potential bug. If the goal is to design an under-approximated
analysis, the undecided EC in Case 3 may be dropped. Both would lead to a loss of
precision. In the next section, we shall propose a new method for resolving the third
case, thereby avoiding the precision loss.

4 Generalizing the Algorithm to k Threads

We start by proving that the polyedge resolution algorithm in Section 3.3 (Rule 1) is
sound and complete for two threads communicating via standard synchronizations.
Then, we show why it does not work for traces with more than two threads. Finally,
we extend Rule 1 to make it sound and complete for traces with more than two threads.

Theorem 1. If our algorithm defined in Section 3.3 generates a cycle inGρ(EC), there
does not exist any valid interleaving in the CSR predictive model that satisfies EC.

The proof is straightforward because all edges in Gρ(EC) represent precedence rela-
tions that must hold at all time. Thus, a cycle meaning that EC is not satisfiable. �

Theorem 2. If our algorithm defined in Section 3.3 does not generate a cycle in
Gρ(EC), for 2 threads, a valid interleaving always exists in the CSR predictive model.

The proof consists of two cases. First, if all polyedges are resolved at the end of the
iterative process and there is no cycle, since nondeterminism is removed completely,
EC is satisfiable. Second, if some polyedges still remain un-resolved at the end of the
iterative process, we show that they can always be resolved as follows:

Precisely Deciding CSR in Concurrent Traces with Limited Observability 383

1. Pick a polyedge arbitrarily and replace it with one of the either-or edges.
2. Apply Rule 1 to resolve the affected polyedges.
3. Repeat the above steps until all polyedges are resolved.

We prove, by contradiction, that the above process would not create any cycle for two
threads. Assume that resolving polyedge 〈rel1 → acq2, rel2 → acq1〉 into regular edge
rel1 → acq2 creates a cycle subsequently. With two threads, the cycle must involve
edges rel1 → acq2 <PO s→ t <PO rel1, where s→ t is an existing edge. However,
based on Rule 1, since edge s→ t already exists, it should have resolved the polyedge
already. Therefore, our assumption is not correct. The theorem is proved. �
A byproduct is that, for two threads, the schedule reconstruction procedure as described
above can always generate a valid thread interleaving in polynomial time.

4.1 From 2 Threads to 3 Threads

The proof in Theorem 2 does not work for trees with 3 threads, as shown in Fig. 2.
Here, we have four regular edges (s → p, s′ → p, q → t′, and q → t) and one
polyedge 〈rel1 → acq2, rel2 → acq1〉. While there is no feasible interleaving, there is
no cycle either. The reason why there is no feasible interleaving is due to the transitive
precedence constraints s
 t and s′
 t′. However, notice that none of the regular
edges alone can resolve the polyedge based on Rule 1. Furthermore, both choices of the
polyedge would create a cycle.

T1

rel1

s

t

s′

t′

acq1 acq2

rel2

T2 T3

p

q

Fig. 2. Example (3 threads): There is no valid interleaving and the polygraphs have no cycle

A straightforward way to strengthen the algorithm is to include transitive edges such
as s
 t in Rule 1. For example, in Fig. 2, one transitive edge is s→ p <PO q → t and
another is s′ → p <PO q → t′. With the modified Rule 1, these two transitive edges
would lead to a cycle. Unfortunately, although this fix works for traces with 3 threads,
it does not work for traces with 4 threads, as shown by Fig. 3.

Fig. 3 has two polyedges that cannot be resolved by the existing edges and their
transitive edges. Therefore, the polygraph is cycle-free. However, there does not exist
a feasible interleaving either. Consider all four cases for resolving the two polyedges –
all would lead to contradictions (cycles):

384 C. Wang and K. Hoang

– If we select rel′1 → acq′2 from the second polyedge, transitive edge s → q1 <PO

rel′1 → acq′2 <PO p2 → t would induce rel1 → acq2; bug transitive edge s′ →
q1 <PO rel′1 → acq′2 <PO p2 → t′ would induce rel2 → acq1.

– If we select rel′2 → acq′1 from the second polyedge, transitive edge s → q2 <PO

rel′2 → acq′1 <PO p1 → t would induce rel1 → acq2; but transitive edge s′ →
q2 <PO rel′2 → acq′1 <PO p1 → t′ would induce rel2 → acq1.

Therefore, we need to strengthen the algorithm further for traces with 4 or more threads.

T4

rel2

acq2

rel1

acq1

rel′1 rel′2

acq′1 acq′2

q2t

p1s′s p2

q1
t′

T1 T2 T3

Fig. 3. Example (4 threads): There is no valid interleaving and the polygraphs have no cycle

4.2 Heuristics for Resolving the Remaining Polyedges

Before continuing our effort on strengthening Rule 1, let us pause for a moment to
consider the current polygraphGρ(EC), which (1) has no cycle, and also (2) has some
unresolved polyedges. Therefore, either it has a feasible interleaving, or it does not.
Recall that Rule 1 is geared toward proving infeasibility (by finding a cycle). What if
EC actually is feasible? In this case, the best strategy is not to find a cycle (since it
does not exist) but to find a valid interleaving. Toward this end, we must resolve the
remaining polyedges in a consistent fashion, for example, by employing our schedule
reconstruction algorithm proposed as part of the proof for Theorem 2.

Recall that in the proof for Theorem 2, for each unresolved polyedge, we arbitrarily
pick one of the either-or choices and then apply Rule 1 to propagate its impact on the
remaining polyedges. If we can resolve all polyedges without creating a cycle, we have
proved the feasibility of the EC. However, since the schedule reconstruction algorithm
resolves polyedges arbitrarily, it may not be the best strategy for finding a feasible
interleaving if there exists one.

Fig. 4 shows that, if we make the wrong decision, by choosing rel1 → acq2 first to
resolve the polyedge on the left-hand side, it would lead to a cycle regardless of how we
resolve the second polyedge. Notice that in this example, there actually exists a feasible
interleaving: it is possible to resolve both polyedges, e.g. by picking rel2 → acq1 and
rel′2 → acq′1, while avoiding the creation of any cycle.

Therefore, we use a causally precedes (CP) relation [24] as guidance to increase the
success rate of the schedule reconstruction. That is, we impose a strict precedence order

Precisely Deciding CSR in Concurrent Traces with Limited Observability 385

T4

rel2

acq2

rel1

acq1

rel′1 rel′2

t′

s′

acq′1 acq′2

q1 q2

p1 p2

T1 T2 T3

Fig. 4. There exists a valid interleaving, but arbitrarily selecting edges from unresolved polyedges,
e.g. rel1 → acq2, may lead to a cycle. Note that s′
 t′ always holds.

between any two critical sections that share conflicting data accesses – two accesses of
the same memory location and at least one of them is a write. Enforcing the CP relation
takes a polynomial time w.r.t. the trace length, and the main advantage is that, if the
graph remains acyclic, EC is guaranteed to be feasible (c.f. [24]). More specifically,
our use of the CP relation based heuristic is as follows:

– For any unresolved polyedge 〈rel1 → acq2, rel2 → acq1〉, if rel1 <CP acq2,
where <CP means causally-precedes [24], we replace it with edge rel1 → acq2;

If the above heuristic search finds a valid interleaving, we are done. Otherwise, we
resolve it in the the next step. Therefore, our overall method is at least as accurate as
the CP-only method [24] for detecting bugs. In Section 6, we will show that in practice,
our method is often significantly better.

4.3 Generalizing the Resolution Rule for k Threads

When the CP heuristic based search in Section 4.2 encounters a cycle, it does not mean
that EC is infeasible, since the cycle may be created by a wrong decision. Therefore,
we should backtrack and try again. However, a naive backtracking algorithm can be
expensive: for |Epoly| polyedges, it may take O(2|Epoly|) time.

Instead, we propose a bounded lookahead search whose complexity remains polyno-
mial in |Epoly|. Let k be the number of threads. We propose to strengthen Rule 1 with
an exhaustive lookahead of k polyedges, to explore both of the either-or choices of all
k polyedges. The goal is to identify hidden implications such as the ones in Fig. 3. In
particular, Rule 1 is modified as follows:

Rule 1 (strengthened): For any polyedge 〈rel1 → acq2, rel2 → acq1〉, we also check
if there exists a path from s to t such that (1) it involves ≤ k polyedges along the
way and (2) all the 2k ways of revolving this polyedges lead to s < t. If such path
exists (s → t is only a special case), we remove the polyedge and add regular edge
rel1 → acq2, since it is implied.

This strengthened rule directly leads to the proof of the following theorem.

386 C. Wang and K. Hoang

Theorem 3. If our strengthened algorithm as defined in this section does not generate
a cycle in Gρ(EC), a valid interleaving always exists in the CSR predictive model.

It is polynomial in |Epoly | for two reasons. First, in a graph with |V | nodes, there
are at most O(|V |2) edges to add, which bounds the number of iterations. Furthermore,
adding one such edge requires a graph analysis which takesO(|V |+ |E|) time. Second,
with k threads, we only need to check for cycles that involve at most k threads and
therefore k polyedges, because larger cycles can be decomposed into these smaller cy-
cles. Checking all possible combinations of k polyedges takesO(2k) time. With |Epoly |
polyedges, there are at most O(|Epoly |k) distinct cycles that need to be inspected in the
k-step lookahead.

Therefore, the overall method takes O(|V |2 (|V | + |E|) 2k |Epoly |k) time, which
is polynomial in |V | and E. Note that in an offline trace based analysis, the number of
threads k is fixed, and often small, whereas the trace length |V | can be arbitrarily large.
Therefore, it is advantageous to have a worst-case complexity polynomial in |V |.

4.4 The Overall Flow

The overall algorithm is illustrated in Fig. 5. Given an input trace ρ, we first construct a
polygraph Gρ and compute a set of potential error conditions. For each error condition
EC, we construct the specialized polygraph Gρ(EC) and resolve polyedges. If there
exists a cycle in Gρ(EC), we conclude that the error condition cannot be satisfied.
Otherwise, we search for a valid schedule using the CP heuristic. If a valid schedule is
found, it is a real bug. Otherwise, we switch to the lookahead search.

When the number of events |V | is large and the number of threads is more than 2,
the lookahead search may become expensive. In such case, other practical tricks may be
needed, together with our new algorithm, to control the execution time. For example, a
popular technique in runtime verification of large applications is to restrict the analysis
to a sliding window of say, 5000 events, as opposed to the entire trace.

Even in such case, our generalized algorithm is valuable for two reasons. First, it pro-
vides useful insight for us to understand the various sources of precision loss in the CSR
analysis. Second, it provides a unified framework for us to progressively increase the
precision of the CSR analysis in the practical implementation. For example, when we
set the lookahead depth to 1, 2, 3, ..., our algorithm would become precise automatically
for traces that involve an increasing number of threads.

5 Applying the New Algorithm to CDSR Model

For the second predictive model defined in Section 2, namely the CDSR model, our
polygraph Gρ contains not only the acq-rel polyedges (Section 3.2) but also another
type of polyedges, called the write-read polyedges:

– For any two write-read event pairs, denoted (W1, R1) and (W2, R2), where R1(x)
reads from W1(x), and R2(x) reads from W2(x) in ρ, we maintain their write-to-
read correspondence by requiring that either R1 appears before W2, or R2 appears
before W1. The polyedge is denoted 〈R1 →W2, R2 →W1〉.

Precisely Deciding CSR in Concurrent Traces with Limited Observability 387

(no bug)
yes

yes

no

no

cycle?

Create polygraph
condition (EC)
Identify error

reconstruction
schedule

(CP)

detected

no

yes

& resolve polyedges

search
Look−ahead

(real bug)
Feasible Infeasible

Gρ

input trace ρ

Construct Gρ(EC)

Fig. 5. Overall flow of our polygraph based prediction method

The new polyedges ensure that all the R(x) events get the same W (x) events as in the
input trace ρ. Although this is not required by the program semantics, it is required by
the CDSR model to ensure that ρ′ is feasible whenever ρ is feasible.

Interestingly, there is an analogy between the write-read polyedge and the acq-rel
polyedge. The non-interference property of write-read event pairs is similar in its form
– although not in its meaning – to the mutual exclusion property of the critical sections
defined by the acq-rel event pairs.

s

W2

R1
R2

e1
W2

R1
R2R1

R2

W1
W1

W2

W1

t

s

s

e2
t t

e3

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

Fig. 6. Polyedge resolution due to existing edge s → t, which adds edge R1 → W2

Therefore, similar to Rule 1 in Section 3.3, we define a new polyedge resolution rule
as follows:

388 C. Wang and K. Hoang

Rule 2. For any polyedge 〈R1 → W2, R2 → W1〉, we check if there exists an edge
s→ t in the graph that forces the resolution of the either-or choice.

– When each write-read event pair comes from the same thread, non-interference is
similar to mutual exclusion – hence the new rule is the same as Rule 1 (see the three
cases in Fig. 1), except for substituting acq with W and rel with R.

– When the events from a write-read pair come from two different threads, the rule
is slightly different (see the three cases in Fig. 6). In all of the three cases, if there
exists an edge s → t in the graph that forces the resolution of the either-or choice,
we replace the polygraph with edgeR1 →W2. More specifically, we look for edge
s → t such that W1 < s and t < R2. There are two ways to satisfy W1 < s. One
is W1 <PO s as illustrated by the source nodes of edges e1 and e2 in Fig. 6. The
other is R1 <PO s, which together with W1 → R1 leads to W1 < s as illustrated
by the source node of edge e3.

Similar to the original Rule 1, the above rule works only for two threads. To han-
dle traces with more than two threads, we strengthen Rule 2 in the same way as we
strengthen Rule 1 in Section 4.3. That is, in the Strengthened Rule 2, we check for not
only an edge s → t, but also a path from s to t such that (1) it involves ≤ k polyedges
along the way and (2) all the 2k ways of revolving these polyedges lead to s < t. If such
a path exists, we must replace the polyedge 〈R1 → W2, R2 → W1〉 with the regular
edge R1 →W2 since it is implied.

The proof of correctness is almost identical to the one for the CSR model and there-
fore is omitted. We give the two theorems as follows:

Theorem 4. If our algorithm defined in this section generates a cycle inGρ(EC), there
does not exist any valid interleaving in the CDSR model that satisfies EC.

Theorem 5. If our algorithm does not generate a cycle inGρ(EC), a valid interleaving
always exists in the CDSR model.

By now, our new polygraph based analysis is already provably more accurate than
the UCG analysis [10] in the following sense. First, it works not only for two threads –
as in UCG – but also for an arbitrary (but fixed) number of threads. Second, the CDSR
model is more accurate than the one used in UCG. Recall that UCG has only inference
rules that are equivalent to our Rule 1, whereas our new method also has Rule 2.

6 Running Examples

In this section, we demonstrate the application of our new decision procedure in an
offline predictive analysis for detecting data-races. We use a popular programming id-
iom in POSIX threads to illustrate some application specific optimizations that we made
during our implementation in contrast to both UCG and CP. The program in Fig. 7 (left)
shows a typical scenario for using condition variable c, which ensures that assignment
x:=1 in thread T1 always appears before a:=x in thread T2. Here, lock l protects the
concurrent accesses to the condition variable c since it is shared by both threads.

Precisely Deciding CSR in Concurrent Traces with Limited Observability 389

According to the POSIX standard, if T2 enters the critical section (l7 . . . l12) first,
the execution of wait(c,l) would release lock l and block. At this time, thread T1
has to execute signal(c) and then unlock(l) at l6. After that, T2 wakes up from
wait(c,l), re-acquires lock l and then continues. This thread interleaving is shown
by Trace 1 in the middle, where the wait(c, l) operation splits into three distinct events
rel(l);wait(c); acq(l).

Thread T1

l1 : x = 1;
l2 : y = 2;
l3 : lock(l);
l4 : signal(c);
l5 : z = 1;
l6 : unlock(l);

Thread T2

l7 : lock(l);
l8 : y = 3;
l9 : if(z == 0)
l10 : wait(c, l);
l11 : a = x;
l12 : unlock(l);

Two concurrent threads synchro-
nize through the lock l, condition
variable c, and shared variable z.

RHS are the two execution traces.

T1 T2

l1 : W (x)
l2 : W (y) l7 : acq(l)

l8 : W (y)
l9 : R(z)
l′10 : rel(l)

l3 : acq(l)
l4 : signal(c)
l5 : W (z)
l6 : rel(l) l′′10 : wait(c)

l′′′10 : acq(l)
l11 : R(x)
l12 : rel(l)

T1 T2

l1 : W (x)
l2 : W (y)
l3 : acq(l)
l4 : nop
l5 : W (z)
l6 : rel(l)

l7 : acq(l)
l8 : W (y)
l9 : R(z)

l11 : R(x)
l12 : rel(l)

trace 1 trace 2

Fig. 7. UCG would report a bogus race on x on trace 2; CP would miss the real race on y

The use of variable z is crucial in ensuring that wait(c,l) is executed only when
T1 has not yet executed signal(c). If T1 enters the critical section (l3 . . . l6) and
executes signal(c) first, since T2 is not waiting, the signal sent by T1 would be lost. In
this case, T2 must skip wait(c,l) based on checking z’s value. Otherwise, executing
wait(c,l) would cause T2 to hang. This second interleaving is shown in Trace 2.

Also note that the two input traces provide only limited observability. That is, we
know l8 is a write to y in trace 1 but not the value written (or the right-hand-side ex-
pression). We know that both l′10 and l11 happen after l9, but do not know that l10 is
guarded by l9 but l11 is not. These are reasonable assumptions in many real-world appli-
cations, where getting more detailed program information is expensive or impossible,
e.g. when the execution trace logs are generated during production runs on the client
site.

There are two potential data-races on variables x and y, respectively. Here a data-
race refers to the simultaneous accesses of the same memory location by two concurrent
threads, where at least one access is a write. These potential data-races can be identified
by a standard lockset analysis, because the thread locations (11, l11) and (l2, l8) are not
protected by the same lock.

When the input is Trace 1, both UCG and CP would correctly decide that the data-
race on y is real and the data-race on x is bogus, due to the signal-to-wait edge l4 → l′′10.
However, when the input is Trace 2, UCG would incorrectly classify (l1, l11) as being
reachable (bogus) and CP would incorrectly classify (l2, l8) as unreachable (missed).

The imprecision of UCG for Trace 2 is due to the fact that UCG considers only
standard synchronization operations while ignoring ad hoc synchronization events such

390 C. Wang and K. Hoang

asW (z) andR(z). Since l1 and l11 are not protected by a common lock, and not ordered
by signal/wait, UCG assumes that they can be executed simultaneously.

The imprecision of CP for Trace 2 is due to its dropping of valid interleavings too
aggressively. That is, whenever two critical sections share conflicting data accesses –
such as W (z) andR(z) in Trace 2 – it imposes a causally-precedes relation, effectively
adding l6 <CP l7. Although this removes the bogus data-race on x, it also removes
the real data-race on y because it forbids any interleaving in which the order of the
two critical section is swapped. Indeed, the constraint l5 <CP l6 is too strong, because
according to the semantics of the locks, l6 can actually happen before l5.

Our method, in contrast, can correctly classify both cases in Fig. 7. It improves over
UCG by adding the new Rule 2. The addition of write/read consistency, in particu-
lar, is responsible for the correct classification of the data-race on x. It also improves
over CP by applying the goal (EC) directed polyedge slicing (Section 3.2), goal di-
rected polyedge resolution (Section 3.3), before resorting to the use of CP heuristic
(Section 4.2). Therefore, it may be able to find a feasible solution without using the
(often more restrictive) CP relation at all. Indeed, this is the reason why we can still
detect the data-race on y whereas the original CP method cannot.

7 Experiments

We have implemented the new procedure in an offline data-race prediction tool based
on the LLVM platform. The tool is capable of analyzing traces generated by arbitrary
concurrent C/C++ programs written using the POSIX threads. It is worth pointing out
that other instrumentation tools, such as the PIN binary instrumentation tool, may also
be used to generate the input traces.

We have conducted experiments on two sets of benchmarks. The first set is a collec-
tion of traces from small multithreaded programs in the recent literature (e.g. [10,24]).
The main purpose is to confirm that our implementation is indeed more accurate than
existing methods. For example, the benchmark cp7 comes from an example used in [24]
to illustrate why there is no CP-predictable data-race and how CP can avoid false
alarms. Our tool discovers that it actually has a real and predictable data-race under
the CDSR predictive model. We were surprised initially by the data-race reported by
our tool, but confirmed subsequently that this was indeed a real data-race, although it
could not be detected by using the CP method.

The second set of benchmarks is a collection of traces from various open-source
projects with known bugs, which we use to demonstrate the effectiveness of our method.
The set contains bug samples extracted from applications such as Mozilla and MySQL,
as well as two open-source projects (aget-0.4 and pfscan-1.0) downloaded from
the sourceforge.net website. Some of the extracted examples are kindly provided by
the authors of [32], whereas others are used in some prior publications (e.g. [15]). All
benchmarks are accompanied by test cases to facilitate concrete execution.

We compare the performance of three methods: UCG [10], CP [24], and Poly. All
methods were implemented in the same data-race prediction tool to facilitate a fair
comparison. (Recall that the original CP algorithm [24] was for Java.) Our experiments
were conducted on a workstation with 2.8 GHz Pentium D processor and 2GB memory.

Precisely Deciding CSR in Concurrent Traces with Limited Observability 391

Table 1. Comparing our new method with UCG [10] and CP [24] for predicting data-races

Test Program Partial Trace Num. Data-races Time (sec/race)
name LOC thr lks cvs vars evs lkevs coevs rwevs (r / w) r-p r-ucg r-poly r-cp t-ucg t-new t-cp

cp1 79 3 1 0 2 21 4 0 6 (2/4) 5 1 0 0 0.021 0.029 0.002
cp2b 113 3 1 0 4 27 4 0 12 (5/7) 11 3 1 1 0.020 0.043 0.005
cp2 113 3 1 0 4 27 4 0 12 (5/7) 11 3 1 1 0.030 0.044 0.002
cp4 67 3 1 0 1 18 4 0 3 (0/3) 3 1 1 1 0.015 0.019 0.002
cp5 168 4 3 0 3 45 14 0 14 (4/10) 12 1 0 0 0.042 0.049 0.006
cp5b 144 4 3 0 3 42 14 0 11 (2/9) 9 1 1 0 0.029 0.035 0.003
cp6 255 5 6 0 5 71 24 0 23 (8/15) 19 1 0 0 0.043 0.059 0.005
cp7 277 5 7 0 6 80 30 0 25 (6/19) 20 1 1 0 0.073 0.080 0.008
cp8 119 3 3 0 2 33 12 0 8 (2/6) 7 1 1 1 0.030 0.035 0.004
vt1 53 2 1 0 1 13 4 0 2 (1/1) 1 1 1 1 0.007 0.009 0.002
vt2 59 2 1 0 2 15 4 0 4 (2/2) 1 1 0 0 0.015 0.021 0.004
vt2b 60 2 1 0 2 15 4 0 4 (2/2) 1 1 1 0 0.008 0.012 0.003
vt2c 56 2 1 0 1 14 4 0 3 (1/2) 1 1 1 0 0.015 0.020 0.005
vt2d 56 2 1 0 1 14 4 0 3 (1/2) 1 1 1 0 0.017 0.023 0.005
vtex4 72 2 1 1 2 19 4 1 6 (2/4) 3 1 0 0 0.016 0.020 0.003
vtex5 73 2 1 1 2 19 4 1 6 (2/4) 3 1 1 0 0.032 0.011 0.005
vtex6 92 3 1 1 2 26 6 2 6 (2/4) 5 0 0 0 0.027 0.008 0.007
Total 20 11 5

UpdateTimer 266 2 1 0 4 50 32 0 11 (6/5) 6 1 1 1 0.026 0.034 0.006
SeekToItem 246 3 1 0 3 49 28 0 10 (6/4) 7 1 1 1 0.021 0.031 0.004
TimerThread 240 2 2 1 4 51 30 2 10 (5/5) 0 0 0 0 0.020 0.024 0.004
NodeState 176 2 1 0 3 32 20 0 5 (2/3) 1 1 1 1 0.047 0.052 0.004
MysqlLog 181 2 1 0 2 32 20 0 5 (2/3) 2 2 2 2 0.033 0.039 0.004
Loadscript 227 3 2 0 3 50 30 0 8 (4/4) 1 0 0 0 0.048 0.055 0.006
FileTransport 184 2 1 0 2 33 20 0 6 (3/3) 2 2 2 2 0.039 0.048 0.009
CreateThread 178 2 1 0 4 32 16 0 9 (5/4) 3 2 1 1 0.041 0.046 0.003
thrift-1606 44 2 0 0 1 9 0 0 3 (1/2) 2 1 1 1 0.002 0.003 0.000
apache-21285 484 3 1 0 8 69 8 0 50 (35/15) 35 8 2 2 0.019 0.043 0.012
apache-25520 82 3 0 0 2 16 0 0 6 (3/3) 5 3 1 1 0.019 0.033 0.001
maple-cir-list 1393 3 2 0 38 208 56 0 140 (60/80) 43 2 1 1 0.137 0.243 0.047
mysql2011 231 3 2 0 10 53 4 0 37 (18/19) 33 3 3 3 0.011 0.021 0.004
pfscan-1.0-r3 4431 4 4 3 324 791 66 29 678 (288/390) 117 6 3 0 0.007 0.158 0.064
aget-0.4.comb 9277 3 1 0 785 1294 40 0 1243(1089/154) 513 405 11 10 0.132 0.357 0.042
Total 430 30 26

Table 1 shows the results. In this table, the first six columns show the statistics of the
test programs, including the name, the number of lines of code, the number of threads,
lock variables, condition variables, and shared variables. The next four columns show
the statistics of the input trace, including the number of events (evs), the number of
lock events (lkevs), the number of condition variable events (coevs), and the number of
read/write events (rwevs). We also provide a break-down of the read and write events.

The next four columns show the statistics of the data-race prediction algorithm. Col-
umn rp shows the number of potential data-races. These are the data-races found by our
implementation of a standard lockset based analysis. Column r-ucg shows the number
of data-races reported by the UCG algorithm. Both lockset and UCG may report spu-
rious data-races but miss no real data-races that are predictable from the given traces.
Column r-poly shows the number of real data-races found by our new algorithm. Col-
umn r-cp shows the number of data-races found by CP. The last three columns show the
runtime performance, which is the average time (seconds) per feasibility check.

392 C. Wang and K. Hoang

In the first set of examples, our new method found more real data-races than CP (11
versus 5), while avoiding all false alarms generated by UCG (a total of 9). In the second
set of examples, our new method also found more real data-races than CP (30 versus
26), while avoiding all false alarms generated by UCG (a total of 406).

In terms of runtime performance, our method on average takes longer time than both
UCG and CP. This is as expected due to its more involved causality analysis. The benefit
of the extra effort is that our method always returns the precise result, without false
alarms and missed bugs. Furthermore, the runtime numbers of all three methods are very
small – practically negligible – for the targeted application. Therefore, we conclude that
our for offline applications, our new method is competitive in that it provides a much
more in-depth analysis of the concurrent execution traces.

8 Related Work

We have reviewed existing trace-based predictive analysis methods including the lock-
set analysis and the lock causality based methods for deciding control state reachability
(LAH [9,11], LCG [8], UCG [10], and CP [24]). Our new procedure is more generally
applicable and accurate than these existing methods.

Beyond offline bug prediction, there is a large body of work on online bug detection,
e.g. for detecting data-races [6,1,14] and atomicity violations [3,30]. The distinction
between these two types of methods is fairly large. Typically, online methods focus pri-
marily on reducing the runtime overhead, often at the expense of losing precision (false
alarms) or decreasing coverage (missed bugs). Whereas offline analysis methods focus
primarily on improving the precision and coverage. If spending a few extra seconds
or even minutes on analyzing a trace log can lead to the discovery of a few more real
bugs, it would considered worthwhile. Our polygraph based method is by far the most
accurate method for offline analysis of execution traces with limited observability.

A closely related work is PENELOPE [25,5], which can predict and subsequently
confirm atomicity violations and null pointer violations. A core predictive analysis in
PENELOPE is the LAH [9] analysis. Since our method improves over LAH, in prin-
ciple, it may also be used to enhance the analysis in PENELOPE. In addition, PENE-
LOPE confirms the predicted buggy interleavings by trying to re-execute them. This
approach works well when it is possible to re-execute in the original environment. Our
new method, in contrast, is better suited for applications where re-running the program
is impossible, e.g. when the traces are generated on the client site.

Another related work is jPredictor [2], which requires the analysis of a complete
execution trace consisting of all global and local instructions involved in the execution.
A similar limitation exists in the SAT/SMT based predictive methods
[27,29,12,21,23,17,22,28], which require the program source code in conjunction to
a trace to construct the prediction model. Although in general, these methods are more
powerful, the detailed program code information may not be available in in many ap-
plication settings. Our new method, in contrast, relies on only a simple trace, which
is better suited for applications where detailed information about the program is not
available.

Precisely Deciding CSR in Concurrent Traces with Limited Observability 393

9 Conclusions

We have presented a new polygraph based procedure for deciding control state reach-
ability properties in simple execution traces generated by multithreaded programs. We
have customized our core analysis procedure for an offline data-race detection tool. In
this context, our method is provably more accurate than the existing ones, including the
more recent causally-precedes method and the universal causality graph method. We
have implemented and evaluated our method through experiments. The results confirm
that our procedure is indeed more accurate than the existing ones.

Acknowledgments. We thank the anonymous reviewers for their feedback. This
work is supported in part by the NSF grant CCF-1149454 and the ONR grant
N00014-13-1-0527.

References

1. Bond, M.D., Coons, K.E., McKinley, K.S.: PACER: proportional detection of data races. In:
Programming Language Design and Implementation, pp. 255–268 (2010)

2. Chen, F., Serbanuta, T., Rosu, G.: jPredictor: a predictive runtime analysis tool for java. In:
International Conference on Software Engineering, pp. 221–230 (2008)

3. Farzan, A., Madhusudan, P.: Monitoring atomicity in concurrent programs. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer, Heidelberg (2008)

4. Farzan, A., Madhusudan, P., Sorrentino, F.: Meta-analysis for atomicity violations under
nested locking. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 248–262.
Springer, Heidelberg (2009)

5. Farzan, A., Madhusudan, P., Razavi, N., Sorrentino, F.: Predicting null-pointer dereferences
in concurrent programs. In: Foundations of Software Engineering, p. 47 (2012)

6. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection. Com-
mun. ACM 53(11), 93–101 (2010)

7. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sound and complete dynamic atomicity
checker for multithreaded programs. In: Programming Language Design and Implementa-
tion, pp. 293–303 (2008)

8. Kahlon, V.: Boundedness vs. unboundedness of lock chains: Characterizing decidability of
pairwise cfl-reachability for threads communicating via locks. In: International Symposium
on Logic in Computer Science, pp. 27–36 (2009)

9. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning about threads communicating via locks. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 505–518. Springer,
Heidelberg (2005)

10. Kahlon, V., Wang, C.: Universal Causality Graphs: A precise happens-before model for de-
tecting bugs in concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 434–449. Springer, Heidelberg (2010)

11. Kahlon, V., Wang, C.: Lock removal for concurrent trace programs. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 227–242. Springer, Heidelberg (2012)

12. Kundu, S., Ganai, M.K., Wang, C.: CONTESSA: Concurrency testing augmented with sym-
bolic analysis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 127–131. Springer, Heidelberg (2010)

13. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

394 C. Wang and K. Hoang

14. Li, D., Srisa-an, W., Dwyer, M.B.: SOS: saving time in dynamic race detection with station-
ary analysis. In: ACM Conference on Object Oriented Programming, Systems, Languages,
and Applications, pp. 35–50 (2011)

15. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: detecting atomicity violations via access interleav-
ing invariants. In: Architectural Support for Programming Languages and Operating Sys-
tems, pp. 37–48 (2006)

16. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26(4),
631–653 (1979)

17. Said, M., Wang, C., Yang, Z., Sakallah, K.: Generating data race witnesses by an SMT-based
analysis. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS,
vol. 6617, pp. 313–327. Springer, Heidelberg (2011)

18. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A dynamic data
race detector for multithreaded programs. ACM Trans. Comput. Syst. 15(4), 391–411 (1997)

19. Sen, K., Rosu, G., Agha, G.: Runtime safety analysis of multithreaded programs. In: Foun-
dations of Software Engineering, pp. 337–346 (2003)

20. Sen, K., Roşu, G., Agha, G.: Detecting errors in multithreaded programs by generalized pre-
dictive analysis of executions. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS,
vol. 3535, pp. 211–226. Springer, Heidelberg (2005)

21. Sinha, A., Malik, S.: Using concurrency to check concurrency: Checking serializability in
software transactional memory. In: Parallel and Distributed Processing Symposium (2010)

22. Sinha, A., Malik, S., Wang, C., Gupta, A.: Predictive analysis for detecting serializabil-
ity violations through trace segmentation. In: Formal Methods and Models for Codesign,
pp. 99–108 (2011)

23. Sinha, N., Wang, C.: On interference abstractions. In: ACM Symposium on Principles of
Programming Languages, pp. 423–434 (2011)

24. Smaragdakis, Y., Evans, J., Sadowski, C., Yi, J., Flanagan, C.: Sound predictive race detec-
tion in polynomial time. In: ACM Symposium on Principles of Programming Languages,
pp. 387–400 (2012)

25. Sorrentino, F., Farzan, A., Madhusudan, P.: PENELOPE: weaving threads to expose atomic-
ity violations. In: Foundations of Software Engineering, pp. 37–46 (2010)

26. von Praun, C., Gross, T.R.: Object race detection. In: ACM Conference on Object Oriented
Programming, Systems, Languages, and Applications, pp. 70–82 (2001)

27. Wang, C., Chaudhuri, S., Gupta, A., Yang, Y.: Symbolic pruning of concurrent program
executions. In: Foundations of Software Engineering, pp. 23–32 (2009)

28. Wang, C., Ganai, M.: Predicting concurrency failures in the generalized execution traces
of x86 executables. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 4–18.
Springer, Heidelberg (2012)

29. Wang, C., Limaye, R., Ganai, M., Gupta, A.: Trace-based symbolic analysis for atomicity
violations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 328–342.
Springer, Heidelberg (2010)

30. Wang, C., Said, M., Gupta, A.: Coverage guided systematic concurrency testing. In: Interna-
tional Conference on Software Engineering, pp. 221–230 (2011)

31. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multithreaded programs. IEEE
Trans. Software Eng. 32(2), 93–110 (2006)

32. Yu, J., Narayanasamy, S.: A case for an interleaving constrained shared-memory multi-
processor. In: International Symposium on Computer Architecture, pp. 325–336 (2009)

Modular Synthesis of Sketches Using Models

Rohit Singh, Rishabh Singh, Zhilei Xu, Rebecca Krosnick,
and Armando Solar-Lezama	

Massachusetts Institute of Technology

Abstract. One problem with the constraint-based approaches to syn-
thesis that have become popular over the last few years is that they only
scale to relatively small routines, on the order of a few dozen lines of
code. This paper presents a mechanism for modular reasoning that al-
lows us to break larger synthesis problems into small manageable pieces.
The approach builds on previous work in the verification community of
using high-level specifications and partially interpreted functions (we call
them models) in place of more complex pieces of code in order to make
the analysis modular.

The main contribution of this paper is to show how to combine these
techniques with the counterexample guided synthesis approaches used
to efficiently solve synthesis problems. Specifically, we show two new
algorithms; one to efficiently synthesize functions that use models, and
another one to synthesize functions while ensuring that the behavior
of the resulting function will be in the set of behaviors allowed by the
model. We have implemented our approach on top of the open-source
Sketch synthesis system, and we demonstrate its effectiveness on several
Sketch benchmark problems.

1 Introduction

Over the last few years, constraint-based approaches to synthesis based on
sketches or templates have become quite popular [11,19,26,28,29]. In these ap-
proaches, the user specifies her intent with a template of the desired solution
leaving parts of the code unspecified (a sketch), and the synthesizer finds the
unknown code fragments such that the completed template conforms to a given
set of behavioral constraints (the spec). One problem with such approaches, how-
ever, is that they only scale to relatively simple routines, on the order of a few
dozen lines of code. Scaling such methods to more complex programs requires a
mechanism for modular reasoning.

The idea of modular reasoning has been quite successful and is widely used
today in verification of software and hardware, where pre and post-conditions
are commonly used to model complex functions (e.g. MAGIC [7],DAFNY [14]),
and where uninterpreted or partially interpreted functions play an important
role in abstracting away complex functional units [4,5]. These assume-guarantee
� This work was funded by NSF grants NSF-1116362, NSF-1139056, and DOE grant

DE-SC0005372.

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 395–414, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

396 R. Singh et al.

reasoning based approaches perform compositional verification by breaking down
the verification task of a system into smaller tasks that involve verification of
individual components, which enables the verification tools to then compose the
proofs to verify the whole system [18,30].

In this paper, we present a mechanism of modular reasoning for synthesizing
complex sketches, where we use function models to specify the behavior of con-
stituent function components. A function model consists of three components:
pre-processing code that canonicalizes the input, an uninterpreted function that
models the function behavior, and a post-condition that specifies the desired
properties of a function. A model can also have a pre-condition that specifies
which parameters are legal for the function. However, we place two restriction
on models: 1) they cannot have any unknown code fragment (holes) and 2) they
cannot post-process the output of the uninterpreted function before returning
it. These function models are more general than pre and post-conditions with-
out uninterpreted functions, but are less general than pre and post-conditions
with quantifiers. This intermediate generality of function models provides us the
expressiveness to specify many complex functions and at the same time allows
us to efficiently use them for synthesis.

The function models in sketches introduce two new synthesis problems: 1)
synthesis with models and 2) synthesis for adherence. The synthesis with models
problem requires us to solve for unknown control parameters such that for any
uninterpreted function that satisfies the model’s post-condition, the specification
of main function should also hold. This problem in principle can be solved by
the traditional Cegis [24] algorithm but Cegis performs poorly in practice.
We present a new algorithm Cegis+ that combines the Cegis algorithm with
an approach that selectively uses existential quantification for some inputs [11]
for efficiently solving this problem. The sketch will use the function model in
place of a more complex function that itself may have unknowns. Therefore,
we also need to solve a second synthesis problem: synthesis for adherence, which
ensures that this more complex function is synthesized in a way that matches the
behavior promised by the model. This synthesis problem introduces a standard
doubly quantified constraint but with an existentially quantified function to
find a function that satisfies the model post-condition on all valid inputs and
has an equivalent input-output relationship with the original function. To solve
this problem, we present an approach to eliminate the existentially quantified
function by taking advantage of the specific form of the constraint and do not
require additional function templates unlike previous approaches [24,33].

We have implemented the algorithms in the Sketch synthesis system [25]
and present the evaluation of the algorithm on several benchmark problems. We
show that function models enable synthesis of several complex benchmarks, and
our algorithm outperforms both Cegis and previously published algorithms.

Specifically, the paper makes the following contributions:

– We show that the existing approaches to counterexample guided synthesis
break down in the presence of models and present a new algorithm that can
efficiently synthesize functions that use models.

Modular Synthesis of Sketches Using Models 397

– We present a new way to encode the problem of synthesizing a function that
behaves according to a model without the need for existentially quantified
functions.

– We present the evaluation of our algorithm on several benchmark problems
and show how it enables solving of complex sketches.

2 Motivating Examples

We use two running examples to motivate the need of function models: integer
square root and big integer multiplication. They represent different kinds of
models, namely fully specified models and partially specified models, which will
expose different aspects of our algorithm.

2.1 Example 1: Square Root for Primality Testing

For the first example, consider the sketch of an algorithm for primality testing
shown in Figure 1(a). The sketch requires the synthesizer to discover many of
the details of a fast primality testing algorithm that computes much smaller
number of divisibility checks than

√
p for every input p. Most importantly for

our purposes, the sketch calls a sqrt function to compute the integer square root.
This sqrt function is also sketched—not shown in the figure—so the synthesizer
would normally have to derive the details of the primality test and of the sqrt

function simultaneously. The correctness of the resulting implementation will be
established by comparing the result to that of a linear time primality test, one
that simply tries to divide p against all integers less than p. Sketch uses bounded
reasoning when deriving the details; in the case of this example, it will only
consider values of p with up to 8 bits. The sketch uses the optimize function to
ensure that the bound bnd is minimized for any value of p. The linexp construct
is not a function but a generator that must be replaced by the synthesizer with
a linear expression over its arguments and the minrepeat construct repeats its
argument statement minimum number of times (with different holes) such that
the sketch becomes satisfiable.

Instead of solving for the primality test and the square root simultaneously, we
can write a model of the sqrt function to express its main properties. In general,
a model calls an uninterpreted function and then asserts some properties of
the return value(s), which corresponds to the post-conditions of the modeled
function. The model allows us to break the problem into two sub-problems: 1)
we need to solve the main sketch using the model in place of the more complex
square root function, 2) we need to solve for the details of the square root
function under the constraint that it behaves according to the model. Note that
in addition to establishing the post-conditions, the model also expresses the fact
that when called twice with the same input, msqrt will produce the same value.
For this example the property is not very important because the function sqrt is
only invoked once. The post-condition fully constrains the output for any input,
so the model is said to be fully specified.

398 R. Singh et al.

harness void fastPrimalityCheck(int p){

// all primes are of form 6k±1 except 2,3

bit isPrime = false;

if(p>??){

isPrime = true;

// repeat minimally with different holes

// check divisibility by 2 or 3

minrepeat{if(p%?? == 0) isPrime = false;}

// minimize loop bound: l1(
√

l2(p))/n
int bnd = linexp(sqrt(linexp(p))) / ??;

optimize(bnd,p);

for(int i=??; i < bnd; ++i){

minrepeat{

if(p % linexp(i) == 0) isPrime = false;}

}

}

assert isPrime==checkPrimalityLinear(p);

}

int msqrt(int i) models sqrt{

int rv = sqrtuf(i);

if(i<=0){

assert rv == 0;

}else{

assert rv*rv <= i;

assert (rv+1)*(rv+1)>i;

}

return rv;

}

(a) (b)

Fig. 1. (a) A sketch harness using the sqrt function to find the fast primality check
algorithm(en.wikipedia.org/wiki/Primality_test) that requires much lesser than √

p
divisibility checks, (b) a model for the sqrt function encoding the square root property

2.2 Example 2: Big Integer Multiplication

Models don’t have to be fully specified; in many cases, only a handful of proper-
ties of a function are relevant to synthesize a piece of code. As an example, con-
sider an application that requires big-integer multiplication; Section 5 describes
a couple of such functions we have explored, one of which is taking derivatives of
polynomials with big-integer coefficients. For all of these experiments, we were
interested in synthesizing implementations that used the Karatsuba algorithm
for big-integer multiplication, whose details we also wanted to synthesize as was
done in [25].

Without models, solving the sketch requires reasoning about the main func-
tion and the big integer multiplication in tandem. However, to reason about
the polynomial derivative function, we only need to know that multiplication is
commutative, and the zero property of multiplication (a number times zero is
equal to zero). We describe those properties in the model in Figure 2(b). Just like
with sqrt, the model breaks the problem into two independent sub-problems,
but there are important differences between the msqrt model and the mmul model.
The mmul model is under-specified, so there may be many functions that satisfy
it. This means that when synthesizing karatsuba, the constraint that the solu-
tion is represented by the model must be combined with additional constraints
that ensure that it is indeed implementing big-integer multiplication. Also, the
model uses min and max to canonicalize the input so that mmul(a,b) will call the

Modular Synthesis of Sketches Using Models 399

harness void main(int[n] x1, int[n] x2){

...

t = mul(x1, x2);

}

int[n] mul(int[n] x1, int[n] x2){

// karatsuba algorithm

...

}

int[n] mmul(int[n] x1, int[n] x2)

models mul{

int[n] xa = min(x1, x2);

int[n] xb = max(x1, x2);

int[n] rv = muluf(xa, xb);

if(x1 == 0 || x2==0){

assert rv == 0;

}

return rv;

}

(a) (b)

Fig. 2. (a) A sketch harness using the mul function that uses the karatsuba algorithm
for multiplying two integers represented by integer arrays, and (b) a model for the mul

function encoding the commutativity and zero properties

uninterpreted function with the same arguments as mmul(b,a) and therefore the
model will be commutative.

Both the multiplication and the square root model use the same basic mecha-
nisms, but as we will see they interact very differently with the counterexample
guided inductive synthesis algorithm Cegis. One of the challenges addressed by
our work is to define new general algorithms that work efficiently for both fully
specified and partially specified models with combinations of interpreted and
uninterpreted functions.

3 Problem Definition

A sketch is a function with missing code fragments marked by placeholders;
however, all sketches can be represented as parametrized functions Sk[c](in) or
simply Sk(c, in), where the parameter c controls the choice of code fragments
to use in place of the unknowns. The role of synthesizer is therefore to find a
value of c such that for all inputs in ∈ E in a given input space E, the assertions
in the sketch will be satisfied. In some cases, we may also want to assert that
the sketch is functionally equivalent to a separately provided specification. This
definition comes from [27], and using this definition as a starting point, we can
formalize our support for function models.

Figure 3(a) shows a canonical representation of the models supported by our
system. A model M is defined to be a 3-tuple M ≡ (α, fu, Pmodel), where α
denotes the canonicalization function that canonicalizes the input to the model
before passing it to the uninterpreted function, fu denotes an uninterpreted func-
tion whose output rv is the output of the model, and Pmodel(rv, inmodel) denotes
a predicate that establishes properties of the return value with respect to the
input. The predicate Pmodel encodes the function’s post-condition. We assume
that models do not have explicit preconditions as they can be added using ad-
ditional if statements inside the Pmodel predicate, and they do not add much to
the formalism.

400 R. Singh et al.

FModel(inmodel) models forig{
/* canonicalization function */

x = α(inmodel);
/* uninterpreted function */

rv = fu(x);
/* post-condition */

assert Pmodel(rv, inmodel);

return rv;

}

harness void Main(in){

c1 = ??; // unknown control

/* arbitrary computation */

t1 = h(in, c);

/* original function call */

t2 = forig(t1);
/* sketch assertion */

assert Pmain(t2, in, c);

}

forig(in){
c2 = ??;

· · ·
}

(a) (b)

Fig. 3. (a) A simple canonical model for a function forig, and (b) a sketch function
Main using the function forig

Example 1. For the sqrt function model in Figure 1, the uninterpreted function
fu is sqrtuf, the canonicalization function is the identity function α(i) = i, and
the predicate is Pmodel ≡ (i ≤ 0→ rv = 0)∧ (i > 0→ rv2 ≤ i∧ (rv+1)2 > i). For
the big integer multiplication model in Figure 2, the uninterpreted function fu
is muluf, the canonicalization function is α(x1, x2) = (min(x1, x2), max(x1, x2)),
and the predicate is Pmodel ≡ (x1 = 0 ∨ x2 = 0)→ rv = 0.

We now formalize the problem in terms of a stylized sketch shown in Fig-
ure 3(b) which uses a function forig for which a model will be provided. In gen-
eral, sketches can have a large number of unknowns, but in our stylized function,
we use the variable c to represent the set of unknown values that the synthesizer
must discover. The function h(in, c) represents an arbitrary computation on the
inputs to the main function to generate the inputs to the model. The unknown
values may flow to the forig function, but as far as that function is concerned,
they are just another input. The function forig itself may have additional un-
knowns, but the model cannot. In the constraint formulas, we will use forig(in, c)
to denote the fact that the unknown values in forig will also be discovered by
the synthesizer. The correctness of the overall function is represented by a set of
assertions which can be represented by a predicate Pmain(t2, in, c), which can be
expanded to Pmain(forig(h(in, c), c), in, c). Without loss of generality, we assume
that the main function includes a single call to forig, but our actual implementa-
tion supports multiple calls to forig. Also, in real sketches, the assertions can be
scattered throughout the function, but this stylized sketch function will illustrate
all the key issues in supporting models.

Now, to compute the value of unknown parameter c from the sketch, we need
to solve the following two constraints.

Modular Synthesis of Sketches Using Models 401

1. Correctness of main under the model (Correctness constraint)

∃c1∀in∀fu Pmodel(rv, inmodel)→ Pmain(rv, in, c1) (1)

where inmodel ≡ h(in, c1) and rv ≡ fu(α(inmodel)). The constraint establishes
that we want to find unknowns c1 to complete the sketch such that for any
function fu, if the function satisfies the assertions in the model, on a given
input, then the assertions inside main will also be satisfied.

2. Adherence of the original function to the model (Adherence constraint)

∃c2∃fu∀x Pmodel(fu(α(x)), x) ∧ fu(α(x)) = forig(x, c2) (2)

The constraint establishes that there exists a function fu that satisfies the
assertions on all valid inputs (α(x)), and that has an equivalent input-output
relationship with the original function forig.

As the following theorem explains, finding c1 and c2 that satisfy the two con-
straints above is equivalent to finding a solution to the original sketch problem.

Theorem 1. If both Correctness constraint (Eq. 1) and Adherence constraint
(Eq. 2) are satisfied, then

∃c1, c2.∀in.Pmain(forig(h(in, c1), c2), in, c1)

Proof. Since the Adherence constraint (Eq. 2) is satisfied, we can use the second
conjunct fu(α(x)) = forig(x, c2) to substitute fu(α(x)) with forig(x, c2) in the
first conjunct of Eq. 2 to obtain

∃c2∀x Pmodel(forig(x, c2), x) (3)

Since the Correctness constraint (Eq. 1) holds for all fu, it should hold for the
fu in the solution of the Adherence constraint, and therefore fu(α(inmodel)) can
be substituted with forig(inmodel, c2) in Eq. 1 to obtain:

∃c1, c2∀in Pmodel(forig(inmodel, c2), inmodel)→ Pmain(forig(inmodel, c2), in, c1) (4)

In the above constraint (Eq. 4), we know the left hand side of implication
holds from Eq. 3, therefore the right hand side of implication should also hold,
i.e. ∃c1, c2∀in Pmain(forig(inmodel, c2), in, c1) holds where inmodel ≡ h(in, c1).

4 Solving Correctness and Adherence Constraints

In previous work [24], we have used a counterexample guided inductive syn-
thesis (Cegis) approach to solve the doubly quantified constraints that arise
in synthesis. Given a constraint of the form ∃c. ∀in. Q(in, c), Cegis solves an
inductive synthesis problem of the form ∃c. Q(in0, c) ∧ Q(in1, c) · · · ∧ Q(ink, c),
where {in0 · · · , ink} is a small set of representative inputs. If the equation above
is unsatisfiable, the original equation will be unsatisfiable as well. If the equation

402 R. Singh et al.

provides a solution, we can check that solution by solving the following equation
∃in ¬Q(in, c). The algorithm, shown in Figure 4, consists of two phases: synthesis
phase and verification phase. The algorithm first starts with a random assign-
ment of inputs in0 and solves for the constraint ∃c Q(in0, c). If no solution exists,
then it reports that the sketch can not be synthesized. Otherwise, it passes on the
solution c to the verification phase to check if the solution works for all inputs us-
ing the constraint ∃in ¬Q(in, c). If the verifier can’t find a counterexample input,
then the sketch Sk(c) is returned as the desired solution. Otherwise, the verifier
finds a counterexample input in1 which is then added to the synthesis phase. The
synthesis phase now solves for the constraint ∃c Q(in0, c) ∧ Q(in1, c). This loop
between the synthesis and verification phases continues until either the synthesis
or the verification constraint becomes unsatisfiable. The algorithm returns “no
solution” when the synthesis constraint becomes unsatisfiable whereas it returns
the sketch solution when the verification constraint becomes unsatisfiable.

Synthesis Phase Verification Phase NO

YES

Fig. 4. The CounterExample Guided Inductive Synthesis Algorithm (Cegis)

4.1 Limitations of Cegis for the Correctness constraint

We can apply the same Cegis approach to solve the Correctness constraint in
Eq. 1, but as several authors [11,33] have pointed out, the Cegis algorithm tends
to perform poorly when there are strong assumptions in the sketch that depend
on the values of the unknown control parameters. The problem is that when the
verifier finds a counterexample, it is relatively easy for the inductive synthesizer
to avoid the problem by changing the assumptions rather than by correcting the
problem. To illustrate this issue, consider the example in Figure 5.

harness void main(in){

int j = in + c1;
int t = msqrt(j*j);

assert t == in + c2;
}

Fig. 5. A simple msqrt example

The example is artificial, but it illustrates
an effect that happens in the primality check
example as well. The example has two un-
known integer values, c1 and c2, and one can
easily see that as long as c1 and c2 are equal,
the program will be correct. In this case, a
counterexample from the verifier would in-
clude the value of in, as well as a function sqrtuf. Now, suppose that the Cegis
algorithm starts with an initial guess of c1 = 3 and c2 = 6. The verifier can
immediately produce the following counterexample: in = 2, sqrtuf = (25 →
5, else → 7). The function sqrtuf in the counterexample evaluates to 5 when
the input is 25, and to 7 otherwise. In this case, the strong sketch assumption

Modular Synthesis of Sketches Using Models 403

(the model assertion) t∗t ≤ (in+c1)∗(in+c1)∧(t+1)∗(t+1) > (in+c1)∗(in+c1)
depends on the value of the control parameter c1. The problem now is that for
any value of c1
= 3, the sqrtuf function in the counterexample will fail the model
assertions. Say the synthesizer picked a value c1 = 4, then the model assertion
Pmodel ≡ 7 ∗ 7 ≤ (2 + 4) ∗ (2 + 4) becomes false. The synthesizer can easily pick
a value for c1
= 3 that makes the model assertions Pmodel false, and therefore
vacuously satisfy the correctness condition Pmodel → Pmain. Therefore, the Cegis
loop needs to perform O(2n) iterations before converging to the desired solution,
where n is bound on the number of bits in the input integer in.

A previously proposed solution to this problem has been to identify that some
inputs are actually dependent on other inputs, and should therefore not be a part
of the counterexample, but instead the values of the dependent inputs should
be existentially quantified [11]; i.e. they should be chosen angelically to use the
terminology of [3,6]. In this case, for example, that approach would suggest that
the sqrtuf function should not be part of the counterexample, since it is fully
determined by the assertions in the model and the values of in and c1. Following
this approach, the inductive synthesis problem would then be

∃c, fu0 , · · · , fuk
. Q(c, in0, fu0) ∧ · · · ∧ Q(c, ink, fuk

) (5)

where Q(c, in, fu) ≡ Pmodel(fu(α(h(in, c))), h(in, c)) ∧ Pmain(fu(α(h(in, c))), in, c).
Note that here we have replaced the implication in the correctness constraint
with the conjunction, enforcing that the angelically selected fui values always
satisfy the model assertions Pmodel. The function fu is no longer part of the
counterexample, since it is fully defined by the assertions from the values of
input in and unknown control c. This approach has an implicit assumption that
there exist functions fui that satisfies Pmodel for corresponding inputs.

However, a big problem with this approach is that it may fail to converge in
some cases. This happens in cases when the predicates in the model do not fully
constrain the function, or they constrain it fully on only some of the inputs. For
example, this is the case with the big integer multiplication example, where the
predicate only constrains the function when one of the inputs is zero. Consider
the scenario where for a given value of unknown ci and an input ini, there are two
functions fu and f ′

u that both satisfy the model assertions Pmodel, but only fu sat-
isfies the main assertions Pmain, i.e. Q(ci, ini, fu) is satisfiable whereas Q(ci, ini, f

′
u)

is unsatisfiable. Since the synthesizer is solving the existential (angelic) problem
in Eq. 5, it will satisfy the equation by selecting the function fu for ini and
ci. However, the verifier needs to ensure that the completed sketch satisfies the
correctness predicate for all functions fu, and it will produce a counterexample
(ini, f

′
u) for the given control value ci. Since the synthesizer ignores the function

f ′
u of the counterexample and only considers the input ini, this algorithm as a

result goes into an infinite loop and does not converge.

404 R. Singh et al.

4.2 Our Algorithm Cegis+

Our algorithm Cegis+ combines the benefits of the angelic approach while also
ensuring that it converges in all cases. For the inductive synthesis phase, we use
the following constraint:

Definition 1 (Inductive synthesis constraint)

let y = h(ini, c), x = α(y) in

∃c, fu0 , · · · , fuk

∧
(ini,fcexui

)

let t = ite(Pmodel(f
cex
ui

(x), y), fcexui
(x), fui(x)) in

Pmodel(t, y) ∧ Pmain(t, ini, c)

where ite(c, a, b) is the standard if-then-else function such that ite(true, a, b) =
a and ite(false, a, b) = b. The functions fcexui

are obtained from the verifier
counterexamples, and the functions fui are determined angelically.

The key idea behind this approach is that if the function from the counterex-
ample satisfies the model assertions in the synthesis phase, then the synthesis
constraint will use the counterexample function in the model. This will often
be the case when the assertions in the model are under-constrained (weak), as
is the case in the big integer multiplication example. On the other hand, if the
assertions in the model are strong, as is the case with the square root model,
the counterexample function will be ignored, and instead the synthesizer will use
one of the angelically determined functions. The verification phase still solves
the same correctness constraint in Eq. 1. The soundness of our algorithm follows
from the soundness of the Cegis and angelic algorithms. We now show that
Cegis+ algorithm always converges.

Theorem 2. Assuming there exists a function fu that satisfies the model as-
sertions for all inputs, the Cegis+ algorithm is guaranteed to converge to the
solution of correctness constraint in Eq. 1.

Proof. Since all sketches are solved with a bounded size on inputs, the set of
possible counterexamples (in, fcexu) ∈ IN ×FU is bounded where input in and
function fcexu take values from the finite sets IN and FU respectively. In each
iteration of the Cegis+ algorithm a new counterexample (in, fcexu) is added. The
only case for the algorithm to iterate forever is when the inductive synthesizer can
produce a c that fails for one of the previously found counterexamples (ini, fcexui

)
(i.e. it ignores the fcexui

value and selects the angelic value fui instead) and the
verifier generates the counterexample (ini, fcexui

). This can’t happen, because our
synthesis constraint only ignores the counterexample function when the model
assertion Pmodel(f

cex
ui

(x), y) becomes false and therefore (ini, f
cex
ui

) cannot be a
valid counterexample as the implication Pmodel → Pmain will be true vacuously.

Modular Synthesis of Sketches Using Models 405

4.3 Solving the Adherence Constraint

Once we know that the main function is correct under the model, we need to
show that the original function actually matches the behavior promised by the
model. The adherence of model to the original function can be established by
the following constraint:

∃c ∃fu ∀x. Pmodel(fu(α(x)), x) ∧ fu(α(x)) = forig(x, c) (6)

This constraint looks similar to the standard doubly quantified constraint
usually solved by Cegis, but one crucial difference is that it contains an exis-
tentially quantified function. The Z3 SMT solver [33] uses two main approaches
to get rid of these kinds of uninterpreted functions; one is to treat assignments
of the form ∀x.f(x) = t[x] as macros and rewrite all occurrences of f(x) to t[x]
in the formula. We can use this technique to eliminate fu from the first part of
the equation above, but the equality fu(α(x)) = forig(x, c) cannot in general be
treated as a macro because of the presence of α. Another approach used by Z3
and inspired by Sketch is to ask the user to provide a template for fu that allows
it to do existential quantification exclusively over values instead of over func-
tions. However, in our case we can do a lot better than that by taking advantage
of the specific form of the constraints and the fact that we do not actually care
about what fu is; we only care to know that it exists.

We can efficiently solve the Adherence constraint in Eq. 6 by instead solving
the following equivalent constraint:

∃c∀x Pmodel(forig(x, c), x) ∧ ∀x1, x2 α(x1) = α(x2)→ forig(x1, c) = forig(x2, c)
(7)

The constraint states that the original function should satisfy the model con-
straints for all input values x, and if two inputs x1 and x2 cannot be distinguished
by the canonicalization function α then the original function forig should also
produce the same outputs on the two inputs. This equation does not involve
any uninterpreted functions of any kind, and can be solved efficiently by the
standard Cegis algorithm because the left hand side of the implication does not
depend on the unknown values c.

Theorem 3. The constraint in Eq. 7 is equivalent to the Adherence constraint
in Eq. 6.

Proof. It is easy to see that the Adherence constraint (Eq. 6) implies the con-
straint in Eq. 7. If forig does not satisfy the assertions in the model, then it can
not be equal to fu(α(x)). Also, if there are two inputs that cannot be distin-
guished by α, but for which forig produces different outputs, then it would not
be possible to find an fu such that fu(α(x)) equals forig.

The converse is a little trickier. We have to show that if Eq. 7 is satisfied,
then the Adherence constraint will be satisfied as well. The key is to show that
for a given value of c if ∀x1, x2. α(x1) = α(x2)→ forig(x1, c) = forig(x2, c), then
∃fu∀x fu(α(x)) = forig(x, c). Let fu(t) be a function computed as follows:

406 R. Singh et al.

fu(t) =

{
forig(x1, c) if ∃x1. α(x1) = t
0 Otherwise

Now, we have to show that such an fu is well defined and satisfies ∀xfu(α(x)) =
forig(x, c). Consider two values x1 and x2 such that α(x1) = α(x2) = t, then
α(x1) = α(x2) → forig(x1, c) = forig(x2, c) gives us forig(x1, c) = forig(x2, c). So
the function fu(t) returns the same value for both x1 and x2 and is therefore
well defined. The function fu satisfies the constraint ∀xfu(α(x)) = forig(x, c) by
definition.

A final point to note is that if a function forig satisfies the Adherence constraint
for a given model, then it must be true that there exists an fu such that the
model satisfies its assertions for all inputs, which was one of the assumptions of
the algorithm to solve the Correctness constraint.

5 Evaluation

We now present the evaluation of our algorithms on a set of Sketch benchmark
problems. All these benchmark problems consists of sketches that use complex
functions such as integer square root, big integer multiplication, sorting (ar-
ray, topological) etc. In our evaluation, we run each benchmark problem for 20
runs and we present the median values for the running times and the number
of iterations of the synthesis-verification loop. The experiments were run (for
parallelization) on virtual machines with physical cores using Intel Xeon L5640
2.27GHz processors, each virtual machine comprising of 4 virtual CPUs (2 phys-
ical cores) and 16 GB of RAM.

5.1 Implementation and Benchmarks

We have implemented our algorithms for solving the Correctness and Adherence
constraints on top of the open-source Sketch solver. Our benchmark problems
can be found on the Sketch server1. A brief description of the set of sketch
benchmarks that we use for our evaluation is given below.

– calc-toposort: A function for evaluating a Boolean DAG using topological
sort function. A more detailed case study is presented in Section 6 for this
benchmark.

– bsearch-sort: A binary search algorithm to find an element in an array that
uses the sort function.

– gcd-n-nums: An algorithm to compute the gcd of n numbers that uses the
gcd function.

– lcm-n-nums: An algorithm to compute the lcm of n numbers that uses the
lcm function.

– matrix-exp: An algorithm to compute matrix exponentiation using the ma-
trix multiplication function.

1 http://sketch1.csail.mit.edu/Dropbox/models/experiments/

http://sketch1.csail.mit.edu/Dropbox/models/experiments/

Modular Synthesis of Sketches Using Models 407

– polyderiv-mult: An algorithm to compute the derivative of a polynomial
whose coefficients are represented using big integer representation and that
uses karatsuba multiplication.

– polyeval-mult-exp: An algorithm to compute the value of a polynomial on a
given value that uses the karatsuba multiplication and exponentiation func-
tions.

– power-root-sqrt: An algorithm to compute the 2kth integer root of a number
using the integer square root function.

– primality-sqrt: An algorithm to check if a number is prime that uses the
integer square root function.

Experimental Setup. All our benchmarks include a larger main function sketch
which calls another function forig which we would like to model and perform
modular synthesis efficiently. In most of the cases, the inner function forig is a
sketch which comes with an imperative specification f-spec and a declarative
model f-model. We perform our experiments based on the strength of the models:

1. If f-model enforces strong constraints (fully specifying the function, e.g. the
sqrt model) then we use f-model to synthesize both main and forig. We
compare this with synthesis of forig with the imperative f-spec and then
using f-spec or the synthesized forig function to synthesize main.

2. If f-model enforces weak constraints (partially specifying the function e.g.
the mult model) then we will have to fallback to synthesizing forig using
f-spec in any case. So, we don’t show the time for this synthesis process
and simply compare the median times for synthesis of main using f-model,
f-spec or synthesized forig.

5.2 Scaling Sketch Solving Using Models

We first show the need of using function models for solving large complex
sketches. The last columns in Table 1 and Table 2 show the time required by the
Sketch solver to synthesize the main function using the synthesized code for
inner function forig, which involves solving two sketch harnesses. As we can see
from the tables, most of these sketches either timeout because of overshooting
the memory limits or by going over the timeout limit, which we set to 15 min-
utes for all the benchmark runs except the calc-toposort benchmark for which
we use a 5 hour limit. We observed that even when we let these sketches run
for a longer time, they often run out of memory and do not terminate. Other
alternative options to solve such complex sketch problems is to synthesize the
function forig using its imperative specification f-spec, and then synthesize the
harness function using f-spec. The middle column(s) in Table 1 and Table 2
(f-spec) report the time taken to synthesize the main function using f-spec. We
observe that this cleaner separation allows some of the harness functions to be
synthesized, but it typically takes a very long time. Some of these benchmarks do
not terminate when we use more complex functions, e.g. when we use merge sort
(instead of bubble sort) for the sorting function. The first columns in Table 1 and

408 R. Singh et al.

Table 2 (Using f-model) show the results of using function models for solving
main or both of these sketches. We observe a big improvement in synthesis times
of sketches for cases in which they depend on only some partial property of forig
and in cases where the models are exponentially succinct. For example, for the
matrix-exp benchmark, the sketch harness only needs to know the exponentia-
tion property of multiplication. For some benchmarks such as primality-sqrt,
the synthesis times are quite similar to the synthesis time of the second approach
because in this case the function model expresses the complete property of the
sqrt function, and the constraints generated by the model are almost equal in
size to the constraints generated by the linear square root search. We note that
in all the benchmarks, the model based solving is always faster than the chained
synthesis (Synthesizing main using synthesized forig) and in most cases, it is also
better than or as good as using the imperative specification f-spec.

Table 1. The sketch solving times for three approaches in the presence of a strong
model: i) using models (f-model) ii) using imperative specification f-spec, and iii)
Synthesis of forig using f-spec and main using synthesized forig. The × values in the
table entries denote timeout (> 15 mins), *timeout for calc-toposort set to 5 hours.

Benchmark
Solving Time (in s) for Synthesis of main

Using f-model Using f-spec Using synthesized forig
main forig Adh. Total main forig Total main forig Total

calc-toposort 246.5 - 1974.6* 2221 × - × × - ×
gcd-n-nums 2.4 7.1 0.4 9.9 8.4 11.7 20 1.7 11.7 13.4
lcm-n-nums 1.5 17.2 0.4 19.2 × 30.2 × × 30.2 ×

power-root-sqrt 1.04 93.7 0.3 95.1 × 57 × × 57 ×
primality-sqrt 438.1 64.9 0.3 503.4 302.9 37.8 340.7 × 37.8 ×

Table 2. The sketch solving times for three approaches in the presence of a weak
model: i) using models (f-model) with adherence check, ii) using imperative specifica-
tion f-spec, and iii) synthesis of main using synthesized forig. The × values in the table
entries denote time-out (> 15 mins).

Benchmark Solving Time (in s) for Synthesis of main using
f-model + Adherence f-spec synthesized forig

bsearch-sort 8.45 0.87 9.32 29.2 83.265
matrix-exp 17.14 64.2 81.34 × ×

polyderiv-mult 5.61 0.9 6.51 12.601 ×
polyeval-mult-exp 2.6 0.9 3.5 8.657 10.644

5.3 Comparison with CEGIS and Angelic Synthesis

In this experiment, we compare the performance of our Cegis+ algorithm with
that of Cegis and the angelic synthesis algorithm on two metrics: 1) the solv-
ing time and 2) the number of synthesis-verification iterations. We expect the
Angelic algorithm to perform poorly on benchmarks where the function models
are under-constrained and similarly we expect the Cegis algorithm to perform

Modular Synthesis of Sketches Using Models 409

1

10

100

1000

Ru
nn

in
g

tim
e

(in
 se

co
nd

s)

Benchmarks

CEGIS+ Angelic CEGIS

Fig. 6. The solving times of the three algorithms: Cegis+, Angelic, and Cegis on the
benchmark problems

0
10
20
30
40
50
60

Nu
m

be
r o

f I
te

ra
tio

ns

Benchmarks

CEGIS+

ANGELIC

CEGIS

Fig. 7. The number of synthesis-verification iterations performed by the Cegis+, An-
gelic, and Cegis algorithms on the benchmark problems

poorly on benchmarks that are over-constrained. Figure 6 shows the logarithmic
graph of running times of the three algorithms on our benchmarks. As expected,
we see two benchmarks where the Angelic algorithm times out (set to 15 min-
utes) whereas the Cegis algorithm times out on two different benchmarks. The
Cegis+ algorithm solves each of the problem within 440 seconds each and in
general has a faster or comparable performance on problems where other algo-
rithms don’t timeout. Figure 7 shows the logarithmic graph of the number of
synthesis-verification iterations performed by each one of the algorithms on the
benchmark problems. The Cegis+ algorithm performs lesser number of iterations
than the Cegis algorithm for all benchmarks and performs lesser iterations than
the Angelic algorithm on all but two benchmarks.

410 R. Singh et al.

6 Case Study: Boolean DAG Calculator

We present a case study of using function models for synthesizing a calculator
that interprets a circuit representing a Boolean DAG (directed acyclic graph).
As shown in Figure 8, the interpreter has two main components: a calculator
and a parser, with auxiliary functions like cmain that just calls calc and parse,
and test that is the test harness.

int[n] mtopo(int n, int[2][n] parent)
models toposort {

int[n] sorted = topo_uf(n, parent);
for (int i=0; i<n; i++) {

int u = sorted[i];
// node id in sorted must be valid

assert u>=0 && u<n;
for (int j=0; j<=i; j++) {

int v = sorted[j];
// sorted contains no duplicated node ids

if (i<j) { assert u != v; }
// if u occurs after v, u cannot be v’s parent

assert u != parent[v][0] && u != parent[v][1];
}

}
}

bit[n] calc(int n, int[2][n] parent, int[n] opr) {
int[n] sorted = toposort(n, parent);
bit[n] result;

for (int i=0; i<n; i++) {
int u = sorted[i];
minrepeat { if (opr[u] == ??) {

result[u] = {| ?? | !result[parent[u][0]] |
result[parent[u][0]] || result[parent[u][1]]|
result[parent[u][0]] && result[parent[u][1]]|};

} }
}
return result;

}

int NOT = 2, OR = 3, AND = 4;

void parse(int n, int[3][n] input,
ref int[2][n] parent, ref int[n] opr){

// input is an array of 3-tuples
// of the form {Operator,Src1,Src2}.
// parse converts it to separate parent
// and opr, and sets unused parent[u][j]
// to -1. parse is also synthesized, using
// minrepeat, holes, and unknown choices.
}

bit[n] cmain(int n, int[3][n] input){
int[2][n] parent;
int[n] opr;
parse(n, input, parent, opr);
return calc(n, parent, opr);

}

harness void test(int n, int[3][n] input){
// test for execution safety
cmain(n, input);

// test for functional correctness
assert cmain(5,{{1},{0},{AND,1,3},

{OR,0,4},{NOT,1}}) == {1,0,0,1,1};
// a few more test cases, omitted here

}

Fig. 8. The sketch for the Boolean DAG calculator

The calc function takes as input a DAG that defines a Boolean circuit, and
calculates the value of every Boolean node: the DAG is represented in an internal
representation consisting of an array opr that defines the Boolean operator at
each node (we encode the CONST 0 and 1, NOT, OR, and AND operators using
integer values), and an array parent that denotes the source operands of each
node’s operator, i.e. parent[u][j] stores the node id of node u’s j-th operand.
We assume at most 2 operands for each operator for simplicity and in the case
where a node u has fewer than 2 operands, some parent[u][j] will be set to −1.
The output of calc is result, a bitvector of size n, where result[u] stores the
calculated value of node u.

We first need to get a topological order of the DAG to calculate the node
values. The simplest imperative toposort function (omitted here) is too complex
for the solver to reason about, but the declarative model of toposort (mtopo) is

Modular Synthesis of Sketches Using Models 411

simple and solver-friendly. The main part of calc is for calculating each node’s
value according to the node operator and is based on the previously calculated
node values. This calculation is usually performed using a “big switch” (or several
if statements). The cases for different operators are very similar: depending on
the operator, fetch the values of different number (can be 0) of parents, and
calculate the result, which are tedious to write. Here calc relies on synthesis to
reduce this burden (see the minrepeat block): it abstracts the common structure
of all cases and leaves the differences to unknown constant choices, which are
solved by the synthesizer. The use of synthesis also allows the function to adapt
to small changes in its requirements. For example, if the programmer decides
to no longer support OR because it is redundant with AND and NOT, the
synthesizer can adjust the function accordingly without the need to modify the
code. Similarly, new operators can be added or encoding of existing operators
can be modified just as easily.

The parse function takes as input the more readable format of the DAG
(where the operator and operands for each node are grouped together as a 3-
tuple), and converts it to the internal representation used by calc. It needs to
copy the right number of operands from input to parent, and set the remaining
parent values to −1 depending on the kind of operator, which we specify as
choices to be synthesized. The body of parse (omitted here) is also sketched
with unknown choices to solve similar to calc.

An interesting question in this case is how to provide a specification. The test

function is a harness testing two aspects of the program: execution safety (for
any input the program should execute without any assertion failure, array out of
bounds error, or reading uninitialized value error) and functional correctness (for
a set of known inputs the program should produce the known correct outputs).
The two aspects together are sufficient for the Sketch solver to determine all the
unknown constants.

As we can see from Table 1 and Figure 6, the use of function models enable
the synthesis for this complex program. Without the model, the solver timed out
after 5 hours and couldn’t synthesize the program; whereas with the model, it
solves the program in about 5 minutes (less than 40 minutes even after adding
the adherence checking time). We can also see that the Cegis+ algorithm is
much faster than Cegis because the inputs to the function model mtopo are
significantly influenced by the unknown holes in parse, and Cegis+ performs
slightly better than the pure angelic model.

7 Related Work

The idea of using function models for synthesis is very related to the work on
component-based synthesis and is inspired from modular reasoning techniques
used in verification. The work on efficiently solving QBF (Quantified Boolean
Formulas) is also related to our technique of solving Adherence constraints. We
briefly describe some of the related work in each of these areas.

412 R. Singh et al.

Component-Based Synthesis: The work on component-based synthesis con-
siders the problem of synthesizing larger systems using components as building
blocks, which is a central motive for our work of introducing function models in
Sketch. The closest related work to ours is that of synthesizing loop free pro-
grams using a library of components [11]. This work assumes that all library com-
ponents have complete logical specifications and it employs a constraint-based
synthesis algorithm similar to the angelic algorithm for solving the Correctness
constraint in the synthesis phase. Recently this approach has been applied for
synthesizing efficient SIMD implementation of performance critical loops [1]. As
we have observed for many benchmark problems, often times a partial specifica-
tion of the library component suffices for synthesizing the correct client code. In
the presence of partial function specifications (under-constrained specifications),
the angelic algorithm may not converge and is inefficient, whereas the Cegis+
algorithm efficiently converges to the solution for both partially-specified and
fully-specified function models. The work on LTL synthesis from libraries of
reusable components [15] assumes that the components are specified in the form
of transducers (finite state machines with outputs). Our work, on the other hand,
considers the problem of functional synthesis and uses constraint-based synthesis
algorithms.

Efficient QBF Solving: Efficient solving of Quantified Boolean Formulas (QBF)
has been a big research challenge for a long time and the constraints generated
by Sketch are too large for current state-of-the-art QBF solver to handle [24].
Recently, word-level simplifications (inspired from automated theorem proving
and model finding techniques based on sketches) have been proposed to han-
dle quantified bit-vector formulas in an SMT solver [33]. We can also use this
technique to solve the Adherence constraint, but it would require us to provide
function templates for the unknown uninterpreted function. Our reduction al-
lows the Cegis algorithm to efficiently solve the constraint without the need of
a function template.

Compositional Verification: The idea of using function models for synthesis
is inspired from modular verification techniques used for model checking [8]. This
idea of modular reasoning using pre-conditions and post-conditions of functions
is widely used today in many verification tools such as DAFNY [14] and MAGIC [7]
to enable verification of large complex systems. These Assume-guarantee rea-
soning based techniques applies the divide-and-conquer approach to reduce the
problem of analyzing the whole system into verification of individual compo-
nents [18,30]. For verifying individual components, it uses assumptions to capture
the context the component makes about its environment and uses guarantees as
properties that will hold after the component execution. It then composes the
assumptions and guarantees to prove properties about the whole system. Our
function models apply these ideas in the context of software synthesis.

Program Synthesis: Program synthesis has been an intriguing research ques-
tion from a long time back [16,17]. With the recent advances in SAT/SMT
solvers and computational power, the area of program synthesis is gaining a

Modular Synthesis of Sketches Using Models 413

renewed interest. It has been used successfully in various domains such as syn-
thesizing efficient low-level code [26], data-structures [23], string transforma-
tions [9,10], table lookup transformations [20] and number transformations [21]
from input-output examples, implicit declarative computations in Scala [13],
graph algorithms [12], multicore cache coherence protocols [31], automated grad-
ing of programming assignments [22], automated inference of synchronization
in concurrent programs [32], and for solving games on infinite graphs [2]. We
believe our technique can complement the approaches used in many of these
domains.

8 Conclusion

In this paper, we presented a technique to perform modular synthesis in Sketch
using function models. This technique enables solving of sketches when they call
complex functions and when the correctness of the main harness function de-
pends on a partially interpreted version of the complex function (which we call
models). We show that both the Cegis and the angelic algorithm are inefficient
and potentially incomplete, and we present a complete and terminating algo-
rithm to efficiently solve sketches with all kinds of function models. On the basis
of promising preliminary results, we believe that this technique will prove very
useful in using Sketch for synthesizing complex and large synthesis problems.

Acknowledgments. We thank Sanjit Seshia and anonymous reviewers for their
valuable feedback.

References

1. Barthe, G., Crespo, J.M., Gulwani, S., Kunz, C., Marron, M.: From relational
verification to simd loop synthesis. In: PPoPP (2013)

2. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based
approach to solving games on infinite graphs. In: POPL (2014) (to appear)

3. Bodík, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N., Barman, S., Ro-
darmor, C.: Programming with angelic nondeterminism. In: POPL (2010)

4. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92.
Springer, Heidelberg (2002)

5. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg (1994)

6. Celiku, O., von Wright, J.: Implementing angelic nondeterminism. In: Tenth Asia-
Pacific Software Engineering Conference (2003)

7. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in c. In: ICSE, pp. 385–395 (2003)

8. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16 (1991)

9. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: POPL (2011)

414 R. Singh et al.

10. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. CACM (2012)

11. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: PLDI (2011)

12. Itzhaky, S., Gulwani, S., Immerman, N., Sagiv, M.: A simple inductive synthesis
methodology and its applications. In: OOPSLA (2010)

13. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional synthesis. In:
PLDI (2010)

14. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

15. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. In: de Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009)

16. Manna, Z., Waldinger, R.: Synthesis: Dreams => program. IEEE Transactions on
Software Engineering 5(4), 294–328 (1979)

17. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst. 2(1), 90–121 (1980)

18. McMillan, K.L.: A compositional rule for hardware design refinement. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 24–35. Springer, Heidelberg (1997)

19. Seshia, S.A.: Sciduction: combining induction, deduction, and structure for verifi-
cation and synthesis. In: DAC, pp. 356–365 (2012)

20. Singh, R., Gulwani, S.: Learning semantic string transformations from examples.
PVLDB 5 (2012)

21. Singh, R., Gulwani, S.: Synthesizing number transformations from input-output
examples. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
634–651. Springer, Heidelberg (2012)

22. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for in-
troductory programming assignments. In: PLDI (2013)

23. Singh, R., Solar-Lezama, A.: Synthesizing data structure manipulations from sto-
ryboards. In: SIGSOFT FSE (2011)

24. Solar-Lezama, A.: Program Synthesis By Sketching. PhD thesis, EECS Dept., UC
Berkeley (2008)

25. Solar-Lezama, A.: Program sketching. STTT 15(5-6) (2013)
26. Solar-Lezama, A., Rabbah, R., Bodik, R., Ebcioglu, K.: Programming by sketching

for bit-streaming programs. In: PLDI (2005)
27. Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Combina-

torial sketching for finite programs. In: ASPLOS, pp. 404–415 (2006)
28. Srivastava, S., Gulwani, S., Chaudhuri, S., Foster, J.S.: Path-based inductive syn-

thesis for program inversion. In: PLDI, pp. 492–503 (2011)
29. Srivastava, S., Gulwani, S., Foster, J.: From program verification to program syn-

thesis. In: POPL (2010)
30. Stark, E.W.: A proof technique for rely/guarantee properties. In: Maheshwari, S.N.

(ed.) FSTTCS 1985. LNCS, vol. 206, pp. 369–391. Springer, Heidelberg (1985)
31. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M.K.,

Alur, R.: Transit: specifying protocols with concolic snippets. In: PLDI, pp. 287–
296 (2013)

32. Vechev, M., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchronization.
In: POPL. ACM, New York (2010)

33. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified
bit-vector formulas. Formal Methods in System Design 42(1), 3–23 (2013)

Synthesis with Identifiers�,��

Rüdiger Ehlers1,2,3, Sanjit A. Seshia1, and Hadas Kress-Gazit2

1 University of California at Berkeley, Berkeley, CA, United States
2 Cornell University, Ithaca, NY, United States

3 University of Kassel, Germany

Abstract. We consider the synthesis of reactive systems from specifications with
identifiers. Identifiers are useful to parametrize the input and output of a reactive
system, for example, to state which client requests a grant from an arbiter, or the
type of object that a robot is expected to fetch.

Traditional reactive synthesis algorithms only handle a constant bounded range
of such identifiers. However, in practice, we might not want to restrict the number
of clients of an arbiter or the set of object types handled by a robot a priori. We
first present a concise automata-based formalism for specifications with identi-
fiers. The synthesis problem for such specifications is undecidable. We therefore
give an algorithm that is always sound, and complete for unrealizable safety spec-
ifications. Our algorithm is based on computing a pattern-based abstraction of a
synthesis game that captures the realizability problem for the specification. The
abstraction does not restrict the possible solutions to finite-state ones and captures
the obligations for the system in the synthesis game. We present an experimental
evaluation based on a prototype implementation that shows the practical applica-
bility of our algorithm.

1 Introduction

Automatically synthesizing reactive systems from their specifications is an ambitious,
yet worthwhile challenge. The applicability of synthesis technology ranges from rapid
prototyping to specification debugging, which improves system designer productivity
and helps to find incorrect assumptions or forgotten requirements at an early stage in a
system development process.

Traditionally, the input and output signals of the systems that are computed in re-
active synthesis are purely boolean. If we are not interested in synthesizing hardware,
but rather software, this view is often not justified. For example, in a mutual exclusion
protocol, we might be getting requests for accesses to a shared resource from a group of
clients whose size is unknown a-priori. A robot that satisfies some mission specification
on the other hand might need to deliver a large variety of objects. In both cases, we are
dealing with identifier values that form part of the input or output of a reactive system.

� This work was partially supported by NSF ExCAPE CCF-1139025/1139138. The first author
was also supported by the European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) / ERC grant agreement no. 259267.

�� A full version of this paper, with appendices and missing proofs, is available at the authors’
homepages.

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 415–433, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

416 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

q0 q1

q2 q3

true

rf /a := ri

¬gf ∨ gi �= a

gf
gf

true

Fig. 1. An example specification (in form of a universal one-weak automaton) for a simple mu-
tual exclusion (mutex) protocol with the input variables rf (signaling that request is issued) and
ri (representing the identity of the request) and the output variables gf (signaling that a grant
is given) and gi (for the identity of the grant). The variables ri and gi hold values from the do-
main of identifiers, whereas rf and gf are boolean. The automaton models that all requests must
eventually be answered by a corresponding grant, and no two grants may be given in successive
computation cycles. Accepting states are doubly-circled. As the automaton branches universally,
it has to accept along all possible runs for a word to be accepted. Along a transition from q0 to q1,
we assign a value to variable a that captures that a request with id a = ri has been issued. In state
q1, a run then waits until the request is answered by a grant, at which point it ends. States q2 and
q3 ensure that no two grants may be given in successive transitions. All infinite runs for a word
must be accepting for the word to be contained in the language of the automaton. Any implemen-
tation satisfying this specification is infinite-state, as requests may come in faster than they can
be answered. Yet, the specification is realizable as there is no time bound on the answering time.

For the mutual exclusion protocol, the identifiers represent client numbers, whereas for
the robot example, they encode the types of the objects that the robot has to deliver.

In this paper, we present an approach to synthesize reactive systems from specifi-
cations with identifier variables. We present a specification formalism that allows the
concise representation of requirements for systems that have identifier input and output
variables. By combining universal branching in word automata with identifier variables,
we obtain a powerful, yet semantically simple way of describing specifications for such
systems. Figure 1 shows an example of such a specification. Automata with universal
branching are well-studied in the scope of reactive synthesis as they are a simple, yet
expressive, specification model for reactive synthesis algorithms, and at the same time
do not blow up under conjunction [10,12]. This is highly desirable as practical specifi-
cations describe sets of properties that a system under design all need to fulfill, which
are thus connected by conjunction.

The synthesis algorithm that we propose for such specifications exploits the concise-
ness of our formalism, as it can handle the identifiers in specifications in a symbolic
way. The algorithm is sound, but not complete, as the synthesis problem from speci-
fications with identifiers is undecidable. Additionally, our algorithm is always able to
detect unrealizable safety specifications.

The core idea of our algorithmic solution is to build a pattern-based abstraction of
an infinite realizability checking game in which the winning strategies represent correct
implementations. The patterns describe constraints over run points, i.e., combinations
of states in the universal specification automaton that we can be in (along with the cor-
responding variable valuations) at the same time. In this manner, we reduce dealing with

Synthesis with Identifiers 417

the infinite concrete realizability game to solving a finite abstract realizability game. In
the abstract game, the system player makes promises about how it can control the evo-
lution of a play in the concrete game. In order to compute the possible transitions in the
abstract game, we solve a finite-step subgame between an environment player (that sets
the next input to the system) and a system player (that sets the next output of the system)
in which the system player tries to prove that it can keep its promises. We apply a solver
for quantified boolean formulas (QBF) with free variables (ALLQBF) in order to find a
compact representation of all moves of the two players in the abstract realizability game
that allow the system player to win the finite-step subgame. Solving the abstract real-
izability game can then be performed using a classical generalized Büchi game solving
algorithm [4]. By starting with a small set of patterns, and gradually letting this set grow
whenever the abstract game is lost by the system player, we can balance the precision
of the abstract game against the computational burden of building it. Often, a small set
of patterns suffices, and we exploit this fact in our construction.

The implementations synthesized with our approach are not necessarily finite-state.
For example, for the specification given in Figure 1, any implementation satisfying it
needs to be infinite-state, and our synthesis algorithm finds one. This distinguishes our
approach from classical reactive synthesis methods and classical abstraction-based so-
lution methods for infinite games [7], which can only find finite-state implementations.
An implementation that is the outcome of our synthesis approach uses queues as pri-
mary datatype to store information about obligations to be fulfilled. As an example, for
the specification in Figure 1, the queue would be used to store all requests not having
been served yet. While an infinite-state strategy can surely not be exactly implemented
with actual hardware, our synthesized implementations use the available memory in a
conservative manner, and are thus implementable in practice for input sequences that
do not enforce excessive memory usage.

We start by describing our specification modeling framework in Section 2, followed
by a theoretical analysis of the corresponding synthesis problem in Section 3. Then, we
show how to synthesize from specifications with identifiers with a sound algorithm in
Section 4. This algorithm is also guaranteed to detect unrealizable safety specifications.
We give some experimental results on a prototype implementation of our approach in
Section 5 and conclude with a summary in Section 6.

1.1 Related Work

The benefit of abstracting from concrete data values is well-known in the scope of veri-
fication. Wolper [15] defines the notion of data-independence, which intuitively means
that the control flow of a program only depends on the equalities of the data items han-
dled by the program. He shows how data-independence eases the verification of a large
class of properties. His idea is integral to our synthesis approach as all implementations
we compute are data-independent.

Previous work on synthesizing systems with infinite input and output domains only
considered specification languages that did not permit connecting the values from the
infinite domain over time, but rather only allowed local comparisons in every time step.
Cheng and Lee [5] present a synthesis approach for cyber-physical systems in which
linear-time temporal logic (LTL) as specification logic is extended to allow comparisons

418 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

of continuous variables such as sensor values as literals. Tabuada [13] considers similar
specifications and describes techniques to synthesize systems that not only meet their
specification, but do so in a way that is robust to pertubations of the input or output
values.

The problem of synthesizing systems with infinite input and output domains is re-
lated to solving games with an infinite state space and synthesizing arbitrarily scalable
systems. Dimitrova and Finkbeiner [6] discuss the solution of infinite incomplete-in-
formation games. They present an abstraction-refinement approach that can find finite
winning strategies in such games if these exist. Their approach is not suitable for real-
izable specifications that have no satisfying finite-state implementation.

Walukiewicz considers the problem of solving parity games over a push-down struc-
ture [14]. Winning strategies in such games can be infinite-state, just like in our setting.
As push-down games extend the expressible specification by non-regular properties
rather than allowing an infinitely-sized input/output alphabet, they are not applicable in
the settings dealt with in this paper.

Attie and Emerson describe methods to synthesize arbitrarily scalable systems [1].
Starting with a specification, they propose to synthesize a pair of processes that can then
be instantiated as often as needed, and the composition of these processes still satisfies
the original specification. As the number of allowed instantiations is not bounded, there
is no bound of the state space of the product process. Their composed processes can
deadlock in some situations, which is undesirable. Jacobs and Bloem [8] consider the
same problem for ring architectures of processes. They show that task to be undecidable
for specifications in linear-time temporal logic (LTL), but give a sound semi-algorithm.
In contrast to our synthesis algorithm, all of these approaches to synthesize arbitrarily
scalable systems cannot deal with specifications that always need an infinite number of
states in their implementation regardless of the number of process instantiations, and
can also not deal with input/output alphabets with an infinite domain.

2 Modeling Parametrized Specifications

Basics: In this work, we consider reactive systems with data, for which the data do-
mains for all input and output signals are either boolean or identifiers. Our reactive
system thus has an input signal set I = IB 4 II that consists of boolean input signals
IB and signals for reading identifiers II , and an output signal set O = OB 4 OI that
can be decomposed in the same manner. We call (IB , II ,OB,OI) the interface of a
reactive system. We denote by ID the (infinite) set of identifiers; however, we note that,
for the scope of this paper, it is not relevant to fix a concrete domain ID, as we consider
equality checks as the only operation on them. In our examples, we always use integers
for simplicity. The system runs in discrete time steps, called computation cycles, for an
indefinite number of steps, which we abstract from by considering infinite runs of the
system. Such a run is formally given as a wordw = w0w1w2 . . ., where for every i ∈ IN,
we havewi ∈ IS×OS for the input assignment set IS = (II → ID)×(IB → B) and
the output assignment set OS = (OI → ID)× (OB → B). For example, the following
word represents a run of a reactive system for the specification in Figure 1:

Synthesis with Identifiers 419

w =

⎛⎜⎜⎝
rf �→ false
ri �→ 0
gf �→ false
gi �→ 0

⎞⎟⎟⎠
⎛⎜⎜⎝
rf �→ true
ri �→ 5
gf �→ true
gi �→ 5

⎞⎟⎟⎠
⎛⎜⎜⎝
rf �→ true
ri �→ 3
gf �→ false
gi �→ 0

⎞⎟⎟⎠
⎛⎜⎜⎝
rf �→ false
ri �→ 0
gf �→ true
gi �→ 3

⎞⎟⎟⎠ . . . (1)

Formally, we can specify the behavior of a reactive system by a function f : IS+ →
OS that maps input histories to an output to produce next. If for a word w, we have that
for all i ∈ IN, f(w0|IS w1|IS . . . wi|IS) = wi|OS , then we say that w is a run of f .

Specifications: Given some reactive system interface (IB , II ,OB,OI), a specifica-
tion is a language L ⊆ (IS × OS)ω. Given some reactive system behavior function
f : IS+ → OS, we say that f satisfies L if all runs of f are contained in L. The
realizability problem for a language L is to check for the existence of such a behavior
function f , and the synthesis problem is to obtain a representation of such a function f
(if it exists).

Universal semi-one-weak automata for specifications: To represent specifications over
words of infinite length (and an infinite number of identifiers to choose from) in a
finitely-representable way, we use universal semi-one-weak automata with identifier
variables. Formally, for some system interface (IB , II ,OB,OI), such an automaton is
given as a tuple A = (Q,S, δ, qinit , F), where Q is a finite set of states, S : Q→ 2Var

is a scoping function that describes which variables are defined in which states for some
domain of identifier variables Var, qinit ∈ Q is the initial state such that S(qinit) = ∅,
F is a set of accepting states, and δ is a finite set of transitions.

Every transition is of the form (q, C,A, q′), where q ∈ Q is a source state, q′ is
the target state, C is a set of conditions, and A is a set of assignments. A condition is
either of the form v1
= v2, v1 = v2, b = true, or b = false for some b ∈ IB 4 OB

and v1, v2 ∈ (S(q) 4 II 4 OI). An assignment is of the form (v, u), where v ∈ Var,
v ∈ S(q′) \S(q), and u ∈ II 4OI ; intuitively, u is copied into variable v. For a transi-
tion to be valid, we require that S(q′) = S(q)4{v ∈ Var | ∃t ∈ II 4OI : (v, t) ∈ A},
and every variable may only occur in A once. Along a sequence of transitions in the
automaton, every variable may only be assigned once, and the aim of introducing a
scoping function into the automaton definition is to make explicit which variables are
defined in which states.

The automata that we are concerned with in this paper are semi-one-weak, i.e., are
like weak automata for all accepting states, and are one-weak for all non-accepting
states, which we also call rejecting states in the following. Formally,A is weak if we can
partitionQ into a finite number of subsets that are partially ordered by some comparator
≤Q such that every subset contains only accepting states or only non-accepting states,
and for every transition (q, C,A, q′) ∈ δ, for Kq being the partition element that q
is in, and Kq′ being the partition element that q′ is in, we have Kq ≤Q Kq′ . For our
semi-one-weak automata, we furthermore require that every rejecting state is one-weak,
i.e., it is the only element in its partition. Informally, this means that the only looping
paths in the automaton that contain a rejecting state consist solely of self-loops in the
rejecting state.

420 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

Words w = w0w1 . . . ∈ (IS × OS)ω induce runs in the automaton, where every
point in the run is a combination of a state ofA that the run is in, and a variable valuation
for the variables in the scope of the state. Formally, every run point is thus an element of
Π = {(q, f) ∈ Q×(Var⇀ ID) | domain(f) = S(q)}, and we say that some sequence
π = π0π1 . . . πn ∈ Π∗ is a finite run if π0 = (qinit , ∅) and for all i ∈ {0, . . . , n − 1},
we have (πi, wi, πi+1) ∈ δΠ , and that some sequence π = π0π1 . . . ∈ Πω is an infinite
run if π0 = (qinit , ∅) and for all i ∈ IN, we have (πi, wi, πi+1) ∈ δΠ . In both cases,
the relation δΠ ⊆ Π × (IS × OS) × Π describes the possible transitions in a run
on a semantic level. It is defined to consist of all tuples ((q, f), x, (q′, f ′)) such that
there exists some automaton transition (q, C,A, q′) such that for all c ∈ C, we have
(f, x) |= c, and f ′ = f ∪ {(v �→ x(m)) | (v,m) ∈ A}. We say that a run of A is
accepting if for some q ∈ F , there are infinitely many indices i such that πi = (q, f)
for some variable assignment f or if the run is finite. We say that A accepts a word w
if all runs for w are accepting.

To simplify the presentation, we also represent semi-one-weak automata with IDs
graphically as shown in Figure 1. Accepting states (i.e., those in F) are drawn doubly-
circled. Transitions are depicted as arrows, labeled by the conditions and actions. For
example, the arrow from state q0 to q1 in the figure is formalized as (q0, {rf = true},
{(a, ri)}, q1), whereas the self-loop on state q1 actually represents two transitions,
namely (q1, {gf = false}, ∅, q1) and (q1, {gi
= a}, ∅, q1).

3 An Analysis of the Synthesis Problem

We start our analysis of the synthesis problem for specifications with identifiers on a
theoretical level. After some basic definitions, we define synthesis games and estab-
lish determinacy of the games. Finally, we derive the undecidability of the synthesis
problem for specification with identifiers.

3.1 Basic Definitions

Let w = w0w1 . . . ∈ (IS × OS)ω be a word and A = (Q,S, δ, qinit , F) be an au-
tomaton over IS × OS . We can arrange all runs π that correspond to w and A in a
run tree. Formally, such a run tree is given as a tuple 〈T, τ〉 with a prefix-closed set T
and a function τ : T → Π that maps every tree node to a state and a variable valuation
at this state. Figure 2 shows a graphical representation for a run tree for the automa-
ton from Figure 1 and the example word in Equation 1. We obtain 〈T, τ〉 from A by
letting T be the smallest subset of Π∗ that contains (qinit , ∅) and such that for every
π0π1 . . . πn ∈ T , we have that π0π1 . . . πnπn+1 ∈ T for precisely those πn+1 ∈ Π
with (πn, wn, πn+1) ∈ δΠ . For all π0π1 . . . πn ∈ T , we set τ(π0π1 . . . πn) = πn.

We say that a run tree is accepting if for every infinite sequence π = π0π1 . . . ∈ Πω,
if for all i ∈ IN, we have π0π1 . . . πi ∈ T , then there exist infinitely many i ∈ IN such
that for τ(π0π1 . . . πi) = (q, f), we have q ∈ F . By definition, for a word, there exists
an accepting run tree if and only if the word is accepted.

Synthesis with Identifiers 421

q0 q0

q2

q1, {a 	→ 5}
q0

q1, {a 	→ 5}
q1, {a 	→ 3}

q0

q1, {a 	→ 5}

q0

q2

. . .

. . .

. . .

. . .

Fig. 2. An example run tree, growing from left to right

3.2 Synthesis Games

A commonly used formalism to study the synthesis problem are two-player games.
Formally, a game is defined as a tuple G = (V 0, V 1, Σ0, Σ1, E0, E1, vinit ,F). We
have two players, called player 0 and player 1. Every player p has a set of vertices V p,
a set of actions Σp, and an edge function Ep : V p × Σp → V (1−p). Without loss of
generality, we assume that the initial position vinit is an element of V 0. For the scope of
this paper, the winning condition F is defined as a set of subsets of the edges of player
1, i.e., F ⊆ 2V

1×Σ1

.
In a synthesis game, we declare one player to be the system player, whereas the other

player is the environment player. The system player tries to win the game according to
the winning condition F , whereas the environment player tries to prevent this.

During the course of the play, the two players alternate in making their moves. They
do so by choosing from their respective sets of actions. Afterwards, the position in the
game is updated according to the player’s edge function, and the play continues. Since
the edge functions are required to be total, the play of the game never ends. During the
course of the play, the moves of the two players can be collected into their decision
sequence ρ = ρ00ρ

1
0ρ

0
1ρ

1
1ρ

0
2 . . ., in which for every i ∈ IN and p ∈ {0, 1}, we have

ρpi ∈ Σp. The corresponding play of the game represents the sequence of positions
visited when the two players choose their actions as described in ρ. Formally, a play
π = π0

0π
1
0π

0
1π

1
1π

2
0 . . . corresponding to ρ is defined as π0

0 = vinit and for every i ∈ IN
and p ∈ {0, 1}, we have π1−p

i+p = Ep(π
p
i , ρ

p
i). We say that a play is winning for player

1 if for all sets of X ∈ F , player 1 chooses edges in X infinitely often, i.e., there are
infinitely many indices i ∈ IN such that (π1

i , ρ
1
i) ∈ X . Such a winning condition is

typically called transition-based generalized Büchi for games in which V0 and V1 are
finite.

Any of the two players in the game can play a strategy. Formally, a strategy for
player p ∈ {0, 1} is a function fp : (Σ1−p)∗ → Σp. We say that a decision sequence
ρ = ρ00ρ

1
0ρ

0
1ρ

1
1ρ

0
2 . . . is in correspondence to some strategy fp if for all i ∈ IN, we have

ρpi = fp(ρ1−p
0 ρ1−p

1 . . . ρ1−p
i−1+p). If for some strategy fp, all decision sequences that are

in correspondence to fp induce plays that are winning for player p, then we say that fp

is a winning strategy for player p. We also say that player p wins the game whenever it
has a winning strategy.

The fact that strategies in games and implementations of systems with identifiers
look very similar is no coincidence, as we want to use games to solve synthesis

422 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

problems – we build games such that the winning strategies for the system player in the
games are in fact the implementations that we are searching for. Starting from a uni-
versal semi-one-weak automatonA = (Q,S, δ, qinit , F), taking player 1 as the system
player, and calling player 0 the environment player, we build a game G = (V 0, V 1, Σ0,
Σ1, E0, E1, vinit ,F) such that Σ0 = IS and Σ1 = OS . We furthermore define:

V 0 = 2Π

V 1 = V0 × IS
E0(v, x) = (v, x) for all v ∈ V 0, x ∈ Σ0

E1((v, x), y) = {(q′, f ′) ∈ Π | ∃(q, f) ∈ v, ((q, f), (x, y), (q′, f ′)) ∈ δΠ}
for all v ∈ V 0, x ∈ Σ0, y ∈ Σ1

vinit = {(q0, ∅)}

F =
⋃

(q,f)∈(Q\F)×(Var→ID)

{{(X, x, y) ⊆ 2Π × IS ×OS |

(q, f) /∈ X ∨ ((q, f), (x, y), (q, f)) /∈ δΠ}}

In this game, every position in V 0 intuitively describes a set of run points in the run tree,
and E0 andE1 ensure that whenever the two players construct some prefix decision se-
quence ρ = ρ00ρ

1
0ρ

0
1ρ

1
1 . . . ρ

0
kρ

1
k, then for v being the position reached in the game along

a play for this sequence, v is precisely the set of run points that are at level k in the run
tree for a word starting with (ρ00, ρ

1
0)(ρ

0
1, ρ

1
1) . . . (ρ

0
0, ρ

1
0)(ρ

0
k, ρ

1
k). Thus, we can intu-

itively read off the complete run tree for a decision sequence from its induced play. The
winning condition F then characterizes the set of run trees for which along no branch
we eventually get stuck in a run point for a rejecting state. This ensures that precisely the
decision sequences that have winning plays in the game are accepted by the specifica-
tion automaton, and thus the game can be called the synthesis game forA. Note that we
used the semi-one-weakness of our specification automaton and the fact that variable
values never change along a run of the automaton in the definition of the winning condi-
tion. Without these facts, the winning condition would need to trace the history of a run
point in order for the winning plays in the game to represent the traces that satisfy the
specification from which we built the game. The winning condition could not be simply
concerned with the edges that are taken infinitely often along a play in the game then.

Lemma 1. Let A be a specification automaton over some interface (IB, II ,OB ,OI),
and G be a game built from A and the interface according to the definitions above.
If and only if G is winning for player 1, there exists an implementation with interface
(IB , II ,OB,OI) all of whose runs are in the language described by A. Furthermore,
the winning strategies for player 1 in G are such implementations.

Determinacy of synthesis games: An important question in game theory is whether
a class of games is determined, i.e., whether any game in the class admits a winning
strategy for one of the players. By the connection between semi-one-weak automata
with identifiers and their corresponding games established by Lemma 1, determinacy
of all games of the form described above implies that our synthesis problem is actually

Synthesis with Identifiers 423

well-posed: for every specification, there is either an implementation, or we can (theo-
retically) prove that none exists.

Martin [11] showed that every two-player game for which the winning plays for one
of the players form a Borel set is determined. This argument is not directly applicable
to the type of games built here, as the set of Borel sets is only closed under countable
unions/set intersections, but as the identifier domain is infinite, the set of positions in
synthesis games can be non-countable. However, note that any identifier value used as
input or output of the two players that did not yet occur in the prefix decision sequence
in a game always has the same effect on whether a play is going to be winning or not.
Thus, we can restrict both players to use fresh identifiers in a certain order (e.g., in
increasing order when using integer identifiers) without changing any property of the
game, except for the fact that in every position, the two players now only have a finite
set of possible moves. This makes the set of positions in the game countable and it can
then be shown that the winning plays for any of the players is a Borel set.

Undecidability of synthesis from semi-one-weak automata with identifiers: Despite
the simplicity of our specification framework for systems with identifiers, its synthe-
sis problem is unfortunately undecidable. Intuitively, the reason is that we can translate
a Turing machine description to a specification that is unrealizable if and only if the Tur-
ing machine halts on the empty input tape – the environment in this context provides a
sequence of identifiers that serve as addresses on the tape, and the system is required to
output the sequence of Turing tape computations along with the Turing machine state.
By requiring that an accepting Turing machine state must never be reached, we connect
the realizability problem with Turing machine acceptance.

Theorem 1. Realizability checking for specifications expressed as semi-one-weak uni-
versal automata with identifiers is undecidable.

4 Synthesis Algorithm

As the realizability problem for specifications represented as semi-one-weak universal
automata with identifier variables is undecidable, we can only rely on sound, but in-
complete, methods to perform synthesis for such specifications. The main idea pursued
in the following is to build a finite game that abstracts from details in the synthesis
games defined in Section 3.2. The fact that the only data type we consider in this paper
are identifiers comes to our rescue at this point, as the single operation that needs to be
supported for them is checking for equality. To characterize a situation in the game, it
thus suffices to state the equalities of the variable valuations in different run points by
which a game position is labeled. We combine this idea with sound overapproximation
of game situations to ensure the correctness of the computed implementations.

4.1 Patterns

Let A be a universal automaton with identifiers, and G be the game built from A ac-
cording to the construction from Sect. 3.2. If for a position v ∈ V0, changing the initial

424 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

q0 q1 q2

true

true/a := ri

¬gf ∧ ¬ge

gf ∧ ¬ge ∧ gi �= a

true

ge/a := ri

Fig. 3. Example specification for an interface (IB , II ,OB ,OI) with IB = ∅, II = {ri}, OB =
{ge, gf}, and OI = {gi}

position to v leads to the game being losing for the system player, then v is called a bad
position, as once the game reaches v in a play, the system player has no strategy to win.
Note that the definition of the games considered here makes sure that if some position
v is a bad position, then some other position v′ that we can obtain by taking a bijective
function g : ID → ID, and replacing every identifier i in v by g(i), is also a bad posi-
tion, as the concrete values of the identifiers do not matter in our setting, and only their
equivalences are of importance. This observation gives rise to the idea of abstracting
positions into patterns.

Consider the example specification in Figure 3. In the game that is built according to
the construction from Sect. 3.2 from the specification, the position {(q0, ∅), (q1, {a �→
1}), (q1, {a �→ 2})} is losing for the system player. This can be seen from the fact that
from that position, either gf or ge have to be set to true by the system player in order
to eventually leave the run points (q1, {a �→ 1}) and (q1, {a �→ 2}), with q1 being
rejecting. Since choosing ge = true would lead to the transition from q0 to q2 being
taken, and choosing gf = true would lead to taking the transition to q2 as gi cannot be
1 and 2 at the same time, we cannot avoid transitioning to q2, from where we reject a
suffix run of the automaton. By the fact that we could replace the concrete identifiers by
other values that keep the relationship between the items, and obtain an equally losing
position, we call P = {(q0, ∅), (q1, α1), (q1, α2)} a bad pattern, as every position that
represents an instantiation of this pattern (by substituting the variables α1 and α2 by
concrete, distinct identifiers values) is losing for the system player.

Note that bad patterns describe sufficient conditions for losing a game. If P is a
bad pattern in a game, then the pattern tells us that any position for which we find an
instantiation of the bad pattern in its run point set is losing. This way, for example,
also the position {(q0, ∅), (q1, a �→ 12), (q1, a �→ 42), (q1, a �→ 123)} is losing, as a
bad pattern matches a subset of its run points. This stems from the fact that positions
are characterized by the run points for runs in a universal automaton, and the more
combinations we have, the more properties does the suffix decision sequence have to
fulfill in order for the overall decision sequence to be accepted by the automaton.

4.2 Abstract Games

To solve the synthesis problem for a universal semi-one-weak specification automa-
ton A = (Q,S, δ, qinit , F) with identifiers, we take the concrete synthesis game G
built from the specification according to Sect. 3.2, and build an abstract game GA from
G that is finite, and thus can be solved by practical game solving algorithms. Every

Synthesis with Identifiers 425

position in the abstract game is labeled by a set of forbidden patterns. The abstract po-
sition then represents all concrete game positions for which we cannot instantiate any
forbidden pattern in the run points by which the concrete game position is labeled. In
every abstract position, we require the system player to have suitable next moves for
every corresponding concrete position. Thus, if the system player can win the game, we
know that the specification is realizable.

Patterns can be arbitrarily large, as they can have an arbitrary number of elements.
To obtain a finite number of game positions with this idea, we only take patterns from
a finite base set of patterns M into consideration. We can, for example, define M
to be the set of all patterns with ≤ b elements for some b ∈ IN. With a restricted
base set of patterns, our game is only approximate. To achieve the soundness of a
synthesis approach based on this idea, we have to ensure that the approximation does
not restrict the environment player in any way, and can only put the system player in a
disadvantage, as we will do below.

Having only a finite number of positions however does not automatically make the
game finite. In fact, the action sets in G are also infinite. As a remedy, in our abstract
game, the two players make abstract decisions for their identifier and boolean signals.
We use an abstraction that is both simple and powerful: the environment player chooses
a subset of the specification automaton transitions as its move, while the system player
declares the next forbidden patterns and the states for which it wants to make progress.

The idea here is to let the two players announce the effect of their choice of moves in
the synthesis game rather than giving concrete identifier values, i.e., which automaton
transitions are enabled by the move of the environment, and what the successor pattern
set is. This idea reduces the two player’s decisions to a finite domain.

Recall that for a transition (q, C,A, q′) ∈ δ to fire, all constraints in C have to be
fulfilled. We call a transition semi-enabled (by the environment player) for some choice
of boolean and identifier input signal valuations if all constraints over the input signals
are satisfied. For an environment player’s move to be legal from a position v in the
abstract game GA, there has to exist some position in G that satisfies all of the constraints
of the patterns by which v is marked and some identifier input signal valuation such that
the transitions chosen by the player are semi-enabled by the input signals.

After the environment player has made its move, it is the system player’s task to (1)
choose a set of successor patterns and (2) declare for which rejecting states it wants to
perform progress on leaving them. We say that a state is left at a point in the run of the
automaton if either the run is not in that state at the point considered, or the state’s self-
loop is not taken. Consider for example the excerpt from the synthesis game depicted in
Figure 4 that we built from the specification in Figure 1. The system player, who owns
the left-most position in the figure, can enforce to leave run point (q1, {a �→ 3}) by
choosing gf ∧ gi = 3 as the next move, and it can enforce to leave run point (q1, {a �→
5}) by choosing gf ∧ gi = 5. Thus, it can declare to be able to make progress on
leaving (any run point for) state q1 and to transition to a position in which the patterns
{(q1, {a �→ α1}), (q1, {a �→ α2})} and {(q3, ∅)} cannot be instantiated.

The system player has to play conservatively, i.e., choose its move while taking into
account every concrete position that satisfies the constraints imposed by the patterns
in v and any of the environment player’s concrete input signal values for which the

426 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

. . .

. . .

({(q0, ∅), (q1, {a 	→ 3}), (q1, {a 	→ 5})},
{rf 	→ false, ri 	→ 123})

{(q0, ∅), (q1, {a 	→ 3}), (q2, ∅)}

{(q0, ∅), (q1, {a 	→ 5}), (q2, ∅)}

{(q0, ∅), (q1, {a 	→ 3}), (q1, {a 	→ 5})}

gf ∧ gi = 3

gf ∧ gi = 5

¬gf ∧ gi = 4

Fig. 4. An excerpt from a concrete synthesis game. Positions of player 0 are drawn as ellipses,
while the position of player 1 is denoted as a rectangle.

environment player’s chosen transition set is valid. In all of these possible cases, there
has to be some concrete move of the system player that ensures that the resulting succes-
sor position in the concrete game satisfies the patterns declared by the player, and at the
same time, progress can be performed by leaving any run point for the states declared.

Let us now formalize GA using these ideas. The specification automaton A is given
for some interface (IB , II ,OB,OI), and we have a finite set of base patterns M. A
pattern is a set of elements of Θ, where Θ = Q × (Var ⇀ {αi}i∈IN) is the set of
pattern atoms. Without loss of generality, we assume that for every pattern atom (q, f),
the domain of f is S(q), and for all P ∈ M, the set {i ∈ IN | ∃(q, f) ∈ P, e ∈
S(q) : f(e) = αi} is of the form {0, 1, . . . , j} for some j ∈ IN. Formally, we define
GA = (V 0

A , V
1
A, Σ

0
A, Σ

1
A, E

0
A, E

1
A, v

init ,F) with the following properties (using the
function Post as a placeholder to be explained below):

V 0
A = 2M ∪ {⊥,�}
V 1
A = 2M ×Σ0

A

Σ0
A = 2δ

Σ1
A = 2M × 2Q\F

E0
A(v,X) = (v,X) for all v ∈ 2M, X ∈ Σ0

A

E1
A((v,X), (YP , YD)) = Post(v,X, YP , YD) for all (v,X) ∈ V 1

A, (YP , YD) ∈ Σ1
A

F = {V 1
A × 2M ×Hq | q ∈ (Q \ F),

Hq = {Q′ ⊆ Q \ F | q ∈ Q′}}
vinit =M\ {∅, {(q0)}}

The special positions � and ⊥ are declared to be winning/losing for the system player,
respectively, so that no successors positions of them need to be defined. All the work
in updating the position in the game is deferred to the function Post. Evaluating this
function is done in multiple steps. The first step is to check if the environment/input
player (player 0) chose a valid move, i.e., if there exists a concrete position that is
described by v for which the input player can semi-enable X . Otherwise, the move
makes no sense, and we transition to position �, which is a sink (i.e., has no outgoing
transitions) and represents that player 0 has made a faulty move.

Then, the Post operator checks the system player’s move. As the system player de-
clares which patterns should not be instantiable in the next concrete position and along

Synthesis with Identifiers 427

which run points it can promise progress, we move to position ⊥ whenever the system
player is promising too much. In particular, the system player should be able to keep
the promise for all position/concrete input combinations for which the environment
player’s move is valid. In all of these cases, there has to exist some concrete output that
leads to a position that does not allow to instantiate any of the promised patterns. At the
same time, the system player should be able to make progress with respect to any of the
promised run points without violating one of these promised patterns. More formally,
the Post function is defined as follows:

– We have Post(v,X, YP , YD) = � if there does not exist some P ⊆ Π and x ∈
II × IB such that:
• no pattern of v can be instantiated in P , and
• X is the set of transitions that are semi-enabled by P and x.

– We define Post(v,X, YP , YD) = ⊥ if for every P ⊆ Π and x ∈ IS such that
• no pattern of v can be instantiated in P , and
• X is the set of transitions that are semi-enabled by P and x,

we do not have that for every run point πD = (q, f) ∈ P with q ∈ YD, there
exists some y ∈ OS such that:
• no pattern in YP can be instantiated in {π′ ∈ Π | ∃π ∈ P : (π, (x, y), π′) ∈
δΠ}, and

• we have that {π′ ∈ Π | (πD, (x, y), π′) ∈ δΠ} is empty.
– We have Post(v,X, YP , YD) = YP in all other cases.

Theorem 2. Let A be a specification for some interface (IB , II ,OB,OI), and GA be
the abstract game with initial state vinit built fromA. If GA is winning for player 1 from
vinit , then there exists an implementation f : IS∗ → OS such that all words w that
are runs of f are accepted by A.

Proof. To prove the claim, we show how f can be implemented from a strategy in
GA that is winning for player 1. We describe f as a program that maintains two data
structures: (1) the set of run points of A for the prefix of the decision sequence w
observed so far, and (2) a queue of run points over non-accepting states in which run
points for non-accepting states are queued. The implementation always keeps the set up-
to-date and uses the queue for scheduling which run points of non-accepting states are
to be left next. By cycling through all of them in the queue, it is ensured that we never
get stuck in one of these run points along w, so that w is accepted by A. Additionally,
f traces the current position p in GA.

Let f ′ be a strategy for player 1 to win GA from vinit . Our implementation f works
as follows: Whenever the implementation obtains a new next input x ∈ IB×II , it com-
putes the set of transitions X that the input x semi-activates from the current position
p. Let (YP , YD) be the move that f ′ performs for X from p. The implementation then
computes a concrete output that leads to leaving the first run point in the queue for a
state in YD. By the definition of Post, it is made sure that we can always find a concrete
output such that additionally, the successor run point set is allowed by YP . Note that
this computation can be performed in finite time, as we are only concerned with finite
sets.

As f ′ is winning, this means that for all non-accepting states q, we infinitely often
have q ∈ YD along the play. Thus, every run point for a non-accepting state is eventually
left, and for a semi-one-weak automatonA, this means that w is accepted by A. ��

428 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

4.3 Computing the Transitions in the Abstract Games

While the abstract games described above only have a finite number of positions and
thus can be analyzed by standard algorithms for generalized Büchi game solving [4],
we only shifted the problem of dealing with an infinite number of positions in the re-
alizability game to dealing with sets P ⊆ Π of run points with an unbounded size
in the definition of Post. To effectively compute Post in a practical realizability game
building algorithm, we have to reduce reasoning about these sets to efficiently decidable
problems. Note that if we manage to only reason about sets P of a bounded size, then
this already suffices – as only equality and inequality of identifier values matter, we can
then simply enumerate all possible equivalence relations between the identifier values.

So it remains to reduce reasoning about such sets P of unbounded size to reason-
ing about a bounded number of identifier values. First of all, consider checking if
Post(v,X, YP , YD) = � holds. We can restrict our search for P to sets of cardinal-
ity |X |, as we only need at most one run point per transition in order to semi-enable it,
and having more run points only makes it harder to ensure that no pattern in v can be
instantiated in P . In fact, we can even restrict our search to having precisely one run
point (q, f) for every transition in X such that the transition starts from q.

Testing if Post(v,X, YP , YD) = ⊥ holds while only quantifying over finite sets is
a bit more difficult. We apply the following idea in order to avoid having to reason
over very large sets P in order not to sacrifice soundness. We again consider sets P of
cardinality |X | as above, and require that for every concrete input x ∈ IS such that
X is the set of transitions activated from P and for every run point (q, f) in P with
q ∈ YD, there exists a concrete output y ∈ Y such that the run point (q, f) is left under
(x, y). Additionally, we quantify over all run point sets P ′ of size bmax , where bmax is
the largest size of a pattern in M, and require that from the concrete position P ′, we
do not reach a position through (x, y) in which some pattern in YP can be instantiated
if P ∪ P ′ does not violate a pattern in v and if not more than |X | transitions are semi-
enabled from P ∪ P ′ for X . The idea here is that the system player has to come up
with a move that allows leaving any possible run points for the non-accepting states
declared in YD and that is robust with respect to adding more run points. In a sense, we
hide certain run points from the system player, but the system player knows already the
patterns that cannot be instantiated in the current concrete position. This allows us to
quantify only over sets of size bmax in P ′. If the system player can choose y such that
adding more “surprise” run points does not let it exceed YP after the next transition,
then the system player has shown that it can make a robust next choice to hold the
progress promise YD and the successor position promise YP after the current round.
We only need to consider at most bmax predecessor run points for this check as for no
pattern, we need more than bmax run points before a transition in order to violate it
after a transition. By letting player 1 fix its choices before the “surprise” run points are
chosen, we only have to quantify over elements in P ′ once for any possible pattern in
YP that can potentially be instantiable in the concrete game position after the transition.

As a summary, we use the following finite-step game for testing if
Post′(v,X, YP , YD) = ⊥ holds, where Post′ denotes the approximate version of
Post implementing the ideas from above:

Synthesis with Identifiers 429

1. First, the environment player chooses some run points P (one for each element in
X) and concrete input x such that x semi-enables the transitions in X .

2. Then, the environment player chooses some run point (q, f) ∈ P with q ∈ YD
along which the system has to make progress (only if YD
= ∅).

3. It is then the system player’s turn to choose some concrete output y that leads to
leaving the run point chosen by the other player (if any). The environment player
wins if this is not possible.

4. Finally, the environment player picks bmax additional run points P ′. If any pattern
of YP can be instantiated in {π′ ∈ Π | ∃π ∈ P ∪ P ′ : (π, (x, y), π′) ∈ δΠ} while
no pattern in v is instantiable in P ∪P ′ andX semi-enables the transitions in X for
x from P ∪ P ′, the environment player wins. Otherwise the system player wins.

4.4 Applying an (ALL)QBF Solver for Efficient Reasoning in Practice

After we have reduced computing the Post′ function (i.e., our approximate version
of Post) to a problem over finitely many elements in the previous subsection, it
makes sense to discuss how to compute Post′ in practice. Observe that testing iff
Post′(v,X, YP , YD) = ⊥ holds for some values of v, X , YP , and YD is the most
difficult step and can be formulated as the finite-step game given above. This fact sug-
gests that using a solver for quantified boolean formulas (QBF) is reasonable. We can
encode the boolean input and output variables in x and y as simple boolean values.
For the identifiers involved in the finite-step game, let C = {c0, c1, . . . , cn} be the
set of identifier variables in the run points and input and output signals involved, and
c0, c1, . . . , cn be the order in which they are introduced. We reserve a family of boolean
variables {eij}ci,cj∈C as an equality matrix between them that represents which iden-
tifier variables point to the same identifier. As equality is an equivalence relation, the
matrix {eij}ci,cj∈C must represent such a relation. We assign the task to keep the matrix
representing an equivalence relation to the two players in the finite-step game; when-
ever a player introduces a new variable ck for 0 ≤ k ≤ n in the game, the player must
assign values to {eik, eki | 0 ≤ i ≤ k} such that {eij}i,j∈{0,...,k} is still an equivalence
relation.

We encode the QBF instance from the point of view of the system player that asks if
for some given v and X , there exists some choice for YP and YD such that the system
player wins the finite-step game explained above. This has the advantage that we can
model YP and YD using free variables and apply an ALLQBF [2] solver to compute
a boolean formula g that represents all valuations of the free variables that make the
quantified boolean formula satisfied. From g, we can then easily enumerate all Pareto-
optimal moves using a satisfiability (SAT) solver. We call a valuation of YP and YD
Pareto-optimal if no element can be added to YD and no element can be added to YP
such that the resulting valuation of the free variables in the QBF instance is still a model
of it. Note that for building the abstract realizability game GA, we only have to consider
the Pareto-optimal choices of the system player as playing non-optimal moves does not
help the system player in any way.

For computing the possible values for X that do not let the environment
player lose the finite-step game from some position v (i.e., computing whether
Post′(v,X, YP , YD) = � holds for arbitrary YP and YD), we can apply the same

430 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

equality matrix encoding. However, this time, we only need a SAT solver as there is
no quantifier alternation. Again, we only enumerate the Pareto-optimal choices, i.e., the
largest elements X that avoid having Post′(v,X, YP , YD) = � .

4.5 Completeness for Unrealizable Safety Specifications

Assume that the specification we are concerned with is of safety type, i.e., all rejecting
states in the specification automaton have an unconstrained self-loop. As the (concrete)
synthesis game is determined, this means that for every unrealizable such specification,
there is some number k such that the environment has already won after k steps, and
there is only a finite set of positions that might be visited before that. If we add enough
patterns to distinguish all of these positions from all respective other positions, then
after analyzing the abstract game, we can see that all positions visited before losing
the game (i.e., before entering some rejecting state) only characterize one concrete po-
sition each. From this fact we can infer that the specification under concern is in fact
unrealizable. Thus, by adding a post-solution abstract game analysis step to check if all
abstract positions only represent one concrete position each, the algorithm can always
detect unrealizable safety specifications.

5 Experimental Results

We implemented our synthesis approach, without the extensions of Sect. 4.5, in a pro-
totype implementation written in Python, using the SAT solver PICOSAT V.957 [3] and
the ALLQBF solver GHOSTQ 0.85 [9] as solving engines. As there is no other syn-
thesis tool for infinite-state systems to compare against, in our evaluation, we focus on
showing the applicability of our techniques on an example of practical relevance.

Case study: We synthesize a controller to let a robot automatically deliver menu items
in a restaurant to guests who ordered them. We partition the floor of the restaurant into a
set of regions Z and define the neighborhood relation of regions in the restaurant by an
adjacency relation R ⊆ Z × Z . The robot can move between adjacent regions in every
computation cycle, and pick up or deliver a food item. Food is always picked up from
the same region zpickup (i.e., the kitchen), where we assume a tray with prepared food
that is continuously replenished to be located. The first customer orders specific food
items, while the other one just requests any food item to be delivered. Figure 5 depicts
the setting.

For our reactive system, we have as interface (IB , II ,OB,OI) with IB = {rorder1,
rorder2}, II = {f}, OB = {mz | z ∈ Z} ∪ {deliver}, and OI = {pickup}. The
specification has the following constraints:

– At every point in time, the robot is only in one regionmz , and if the region changes
from one cycle to the next one, the predecessor and successor regions are connected
by R.

– Whenever food item i is ordered by customer 1 (i.e., we have f = i and rorder1
= true), then eventually, the robot picks up food item i from zpickup and does not
deliver it until it is in region 4 (i.e.,m4 = true) at which point it should deliver it.

Synthesis with Identifiers 431

Table

Kitchen
zpickup = z6

z0

z1

z2

z3

z4

z5

Fig. 5. A restaurant scenario with seven zones and two clients. The robot starts in zone z0.

– The robot always picks up a food item of kind pickup when entering the kitchen.
– The robot must deliver a food item before entering the kitchen again. Deliveries

may only take place in regions with customers.
– Whenever customer 2 orders food, then a food item is eventually brought to region

2.
– The robot does not deliver a food item to customer 1 that has not been ordered.
– New orders by a customer are ignored if there are orders by the same customer

that have not yet been fulfilled.

We consider one variant of the scenario with the second customer being present, and
one variant without that customer. In both cases, around 70 transitions are needed to
model the respective scenario.

In addition to the robot scenario, we also considered the mutex protocol from Figure
1 and the example specification from Figure 3.

Results: Table 1 shows the experimental results for building the abstract games. The
computation times were obtained on an Intel i5-3230M 2.60GHz computer running an
x64-version of Linux. The actual game solving process of the abstract games always
took less than 0.1 seconds.

As pattern sets, we always start with all patterns of size at most 1. For the robot waiter
scenario, we find the resulting abstract games to be losing for the system player. An
analysis of the scenario reveals that the reason is that we have a state q1c that disallows
the robot to deliver a menu item to customer 1 that is different to the one previously
stored. This state has the task to check that only ordered menu items are delivered. It
is entered whenever a menu item is ordered while no request is yet unfulfilled. When
entering the state, the menu item requested is stored into the (single) variable in its
scope. If we are in this state with two different run points, then there is no menu item
that the robot can deliver. However, this is a situation that cannot occur during a play
in the concrete synthesis game. By adding the pattern {(q1c , α0), (q

1
c , α1)}, this is taken

into account in the abstract game and the setting becomes realizable. This modified
pattern set is denoted as “1+” in Table 1.

432 R. Ehlers, S.A. Seshia, and H. Kress-Gazit

Table 1. Result table for the prototype implementation of our synthesis approach

Benchmark: 1-client 2-client Mutex Example from
robot waiter robot waiter Figure 3

States: 17 19 4 3
Transitions: 68 72 7 6
Max. pattern

1 1+ 1 1+ 1 1 2 3
size considered:
Time to build 19m 25m 19m 28m 1.08s 0.6s 1.3s 4.5s

abstract game: 10.2s 35.5s 11.5s 50.0s
Number of positions

174 216 209 255 10 6 4 4
in abstract game:
Number of edges

658 792 966 1152 14 7 4 4
in abstract game:

Realizable: ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓

For the mutex protocol, taking all patterns of size at most 1 suffices. On the other
hand, the example specification from Figure 3 is not found to be realizable with the
patterns of size at most one. Thus, we also considered all patterns of size up to 2 (and
additionally 3), where we removed patterns that are equivalent to other patterns in the set
(such as, e.g., {(q1, α1), (q2, α2)} when {(q1, α2), (q2, α1)} is also present). Starting
with a maximum pattern size of 2, the specification is found to be realizable.

It can be seen that the robot waiter scenario can be tackled by our approach, despite
the large number of transitions in its specification automaton. While at first, this may
seem surprising (after all, the number of different moves for the environment player
in the abstract game is exponential in the number of automaton transitions), this suc-
cess can be attributed to the idea to only enumerate the Pareto-optimal moves and use
SAT and ALLQBF solvers as efficient reasoning engines, which reduces the size of the
abstract game and the computation times.

6 Conclusion and Outlook

In this paper, we presented the first synthesis approach for specifications with identifier
variables that is capable of deriving infinite-state implementations for cases in which
these are actually needed. For showing the practical feasibility of our approach, we
applied it to a robot waiter scenario. Our work can be seen as one of the first steps
towards solving the problem of reactive synthesis with data constraints. We focused on
identifiers as data type here, as these are relatively simple to handle, and thus suitable for
one of the first examinations of the reactive synthesis problem with data. We conjecture
that our modeling framework, i.e., universal semi-one-weak automata, remains useful
when extending the data domain, as the model is both simple and powerful.

Our prototype implementation uses off-the-shelf SAT and (ALL)QBF solvers and
employs a simple equivalence-matrix-based approach to deal with the identifiers in this
context. We conjecture that there is still a lot of room for improvement, e.g., by opti-
mizing the QBF encoding and using a special (ALL)QBF solver that is tuned towards

Synthesis with Identifiers 433

finding only the Pareto-optimal variable valuations. Also, a counter-example guided
abstraction refinement approach to pattern selection might be suitable.

This work was driven by investigating the class of specifications that can be sup-
ported in a practical synthesis algorithm working over an infinite data domain. Thus,
the specification class and the solution algorithm are carefully aligned. It would be in-
teresting to examine how the specification class can be further extended (such as by
loosening the semi-one-weakness requirement). Additionally, it would be useful to de-
velop a suitable specification logic from which the universal automata can be efficiently
generated.

References

1. Attie, P.C., Emerson, E.A.: Synthesis of concurrent systems with many similar processes.
ACM Trans. Program. Lang. Syst. 20(1), 51–115 (1998)

2. Becker, B., Ehlers, R., Lewis, M., Marin, P.: ALLQBF solving by computational learning. In:
Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 370–384. Springer,
Heidelberg (2012)

3. Biere, A.: Picosat essentials. JSAT 4(2-4), 75–97 (2008)
4. Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: Seidl, H. (ed.)

FOSSACS 2007. LNCS, vol. 4423, pp. 153–167. Springer, Heidelberg (2007)
5. Cheng, C.H., Lee, E.A.: Numerical LTL synthesis for cyber-physical systems. CoRR

abs/1307.3722 (2013)
6. Dimitrova, R., Finkbeiner, B.: Abstraction refinement for games with incomplete informa-

tion. In: FSTTCS, pp. 175–186 (2008)
7. Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-guided control. In: Baeten,

J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 886–902. Springer, Heidelberg (2003)

8. Jacobs, S., Bloem, R.: Parameterized synthesis. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 362–376. Springer, Heidelberg (2012)

9. Klieber, W., Janota, M., Marques-Silva, J., Clarke, E.: Solving QBF with free variables. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 415–431. Springer, Heidelberg (2013)

10. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)

11. Martin, D.A.: A purely inductive proof of Borel determinacy. In: Recursion theory, Sympo-
sium on Pure Mathematics, pp. 303–308 (1982)

12. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T., Higashino,
T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488. Springer, Heidelberg
(2007)

13. Tabuada, P.: Verification and Control of Hybrid Systems. Springer (2009)
14. Walukiewicz, I.: Pushdown processes: Games and model-checking. Inf. Comput. 164(2),

234–263 (2001)
15. Wolper, P.: Expressing interesting properties of programs in propositional temporal logic. In:

POPL, pp. 184–193. ACM Press (1986)

Synthesis for Polynomial Lasso Programs

Jan Leike1 and Ashish Tiwari2,	

1 University of Freiburg, Germany
leike@informatik.uni-freiburg.de
2 SRI International, Menlo Park, CA

ashish.tiwari@sri.com

Abstract. We present a method for the synthesis of polynomial lasso
programs. These programs consist of a program stem, a set of transitions,
and an exit condition, all in the form of algebraic assertions (conjunc-
tions of polynomial equalities). Central to this approach is the discovery
of non-linear (algebraic) loop invariants. We extend Sankaranarayanan,
Sipma, and Manna’s template-based approach and prove a complete-
ness criterion. We perform program synthesis by generating a constraint
whose solution is a synthesized program together with a loop invariant
that proves the program’s correctness. This constraint is non-linear and
is passed to an SMT solver. Moreover, we can enforce the termination of
the synthesized program with the support of test cases.

1 Introduction

There have been significant advances in automating program verification, and
even extending the verification techniques to perform automated synthesis of
correct programs. Often, automation is achieved using appropriate abstract do-
mains for analysis. The choice of abstract domains is governed by the class of
program fragments being analyzed. In this paper, we are interested in programs
that perform some numerical computation. For reasoning about such programs,
the theory of polynomial ideals has proven to be an excellent abstract domain
because of two reasons. First, there is a nice correspondence between subsets of
the program state space and polynomial ideals (as established in the field of al-
gebraic geometry), and second, there are effective algorithms for computing with
polynomial ideals. In this paper, we will use the abstract domain of polynomial
ideals for reasoning about polynomial lasso programs.

In our terminology, a polynomial lasso program consists of an assertion de-
scribing program states before loop entry, an assertion describing program states
after loop termination and a set of transitions corresponding to the branches in
the loop body. All involved assertions are algebraic; that is, conjunctions of
polynomial equalities.

� Supported in part by the National Science Foundation grant SHF:CSR-1017483 and
by DARPA under contract FA8750-12-C-0284. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the funding agencies.

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 434–452, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

leike@informatik.uni-freiburg.de
ashish.tiwari@sri.com

Synthesis for Polynomial Lasso Programs 435

Our approach for analysis of such polynomial lasso programs is not based on
iterative fixpoint computation. Instead, we use the constraint-based approach,
also known as template-based approach, for directly finding fixpoints using con-
straint solving. This way we avoid convergence issues of iterative fixpoint meth-
ods. Our starting point is a method presented by Sankaranarayanan, Sipma and
Manna [1]. Despite its obvious incompleteness, the method is often successful
in verifying programs. Why is this method “complete in practice”? We answer
the question here by presenting a first completeness criterion for this method.
For this purpose, we have to extend the original invariance criteria in [1] and
generate a new and refined invariance condition.

Our interest here is not just on the verification problem, but also on the syn-
thesis problem. Specifically, taking inspiration from recent work on synthesis of
programs by completing partial program “sketches” [2,3], we start with a poly-
nomial lasso program that contains parameters (variables to be synthesized) and
a post condition. The goal is to find values for the parameters that result in a
correct program. We solve the synthesis problem by generating a synthesis con-
straint—a constraint whose solution provides a valuation for the parameters.
Additionally, the constraint’s solution also supplies values that define an induc-
tive loop invariant for the synthesized polynomial lasso program. This invariant
constitutes as proof that the synthesized program is in fact correct with respect
to the given post condition. Thus, we simultaneously synthesize the program
and its proof of correctness. There is one caveat though: if variables that are
critical to termination have parameterized updates, then the synthesized lasso
program might not be terminating. To solve this problem, we use a finite number
of test cases that specify input variable assignment, output variable assignment
and a sequence of loop transitions. These test cases are used to strengthen the
synthesis constraint so that the undesirable solutions are eliminated.

The template-based approach reduces the synthesis problem and the loop in-
variant discovery problem into an ∃∀ constraint: the template variables and the
synthesis variables are existentially (∃) quantified, whereas the program vari-
ables are universally (∀) quantified [3]. We use the theory of polynomial ideals
to (conservatively) eliminate the inner ∀ quantifier. The resulting formula is
our synthesis constraint – an (existentially quantified) conjunction of non-linear
algebraic equalities – which is solved by an off-the-shelf non-linear SMT solver.

We demonstrate that the template-based approach on polynomial ideals ab-
stract domain can be used to successfully synthesize polynomial lasso programs.
However, the approach has certain limitations. First, it cannot handle inequali-
ties. Polynomial ideals logically correspond to conjunctions of polynomial equali-
ties. Now, inequalities can be encoded as equalities, but algorithms on polynomial
ideals (that compute canonical Gröbner basis) do not lift easily to reasoning about
the encoded inequalities [4]. For handling inequalities, one could use semialgebraic
sets as the abstract domain, and then use algorithmsbased on either cylindric alge-
braic decomposition [5] or thePositivstellensatz [6,7,4], but we leave that for future
work.

436 J. Leike and A. Tiwari

A second issue is the size of the synthesis constraint. Non-linear solvers scale
very poorly with increasing number of variables and the synthesis constraint
(generated by the synthesis process) can be large and tends to be non-linear.

The final issue is related to the completeness of our approach. Incompleteness
arises due to the use of templates, and also due to the use of polynomial ideal
theory rather than the theory of reals. We address the latter issue in section 5.
For the former issue, we just have to use polynomial templates with sufficiently
large degree bounds. In our examples, a general template of degree two or three
was sufficient, but the size of generic template polynomials grows exponentially
with their degree.

2 Related Work

The automatic discovery of polynomial invariants for imperative programs has
received a lot of attention in recent years. Müller-Olm and Seidl generate in-
variant polynomial equalities of bounded degree by backwards propagation [8].
This can be seen as an extension to Karr’s algorithm [9], which uses only linear
arithmetic. Seidl, Flexeder and Petter apply the backwards-propagation method
to programs over machine integers, i.e., programs whose variables range over the
domain ZZ2w [10].

Rodŕıgues-Carbonell and Kapur use an iterative approach based on forward
propagation and fixed point computation on Gröbner bases over the lattice of
ideals to generate the ideal of all loop invariants [11,12].

Colón combines the two aforementioned approaches by doing the fixed point
computation on ideals with linear algebra [13]. He introduces the notion of
pseudo-ideals to ensure termination of the fixed point computation while re-
taining the expressiveness of generated invariants.

Polynomial program invariants can also be derived without using Gröbner
basis computations [14]. Cachera et al. use backwards analysis and variable sub-
stitution on template polynomials for an incomplete approach.

The constraint solving approach that generates invariant polynomial equali-
ties using templates was proposed by Sankaranarayanan, Sipma and Manna [1].
Invariant generation is a central ingredient to our synthesis method, so we want
the invariant generation process to be as complete as possible. Therefore we ex-
tend their approach by using a more general condition for the invariant (see also
Remark 2) that enables us to state a completeness criterion.

Polynomial lasso programs have also received some attention regarding the
analysis of their termination properties. Bradley, Manna and Sipma use finite
difference arithmetic to compute lexicographic polynomial ranking functions for
polynomial lasso programs [15].

All the aforementioned papers consider the verification (or the invariant gener-
ation) problem. In this paper, inspired by recent work on program synthesis [2],
we also consider the synthesis problem. Our work can be considered a more
formal approach to Colón’s method [16] that uses non-linear constraint solv-
ing to instantiate program schemata (parameterized programs augmented with
constraints). Our approach relies on algebraic methods instead of heuristics.

Synthesis for Polynomial Lasso Programs 437

Finally, Srivastava et al. [17] describe a big-picture program synthesis algo-
rithm from scaffolds. These scaffolds consist of pre- and postconditions, a pro-
gram flow template, and bounds on the number of variables and the number
of local branches. For the synthesis condition, all control flows of the template
program are unfolded and constraints are generated with respect to invariants
and ranking functions ensuring the program’s correctness and termination. This
constraint is then proven by a specialized external method and our algorithm
can be used as one of these external methods.

3 Preliminaries

Let V be a set of variables, V = {x1, . . . , xn}. The variables of the ‘next state’ are
denoted by the corresponding primed variables V ′ = {x′1, . . . , x′n}. Having both
primed and unprimed variables in an expression enables stating a relationship
between two states.

For the set of real numbers IR, let IR[V] denote the ring of polynomials in the
variables V with coefficients from IR. A subset I ⊆ IR[V] is an ideal if (a) 0 ∈ I,
(b) f + g ∈ I for all f, g ∈ I, and (c) h · f ∈ I for all f ∈ I and h ∈ IR[V]. For a
set of polynomials P = {p1(V), . . . , pk(V)}, the ideal 〈P 〉 generated by P is

〈P 〉 = 〈p1, . . . , pk〉 =
{ k∑

i=1

qi(V)pi(V)
∣∣∣ q1, . . . , qk ∈ IR[V]

}
.

Note that if all polynomials in P evaluate to 0 at any point in IRn, then all
polynomials in 〈P 〉 will also evaluate to 0 at that point.

By the Hilbert Basis Theorem, every ideal I has a finite set of generators.
Moreover, for a fixed ordering on the monomials (such as total degree lexico-
graphic ordering induced by any precedence relation on the variables), there is a
finite “canonical” set of generators of I called a Gröbner basis. A Gröbner basis
G = {g1, . . . , gk} for I has the following properties [18].

1. G is computable in DOUBLE-EXPSPACE from a set of generators of I (Buch-
berger’s Algorithm).

2. For all p ∈ IR[V], the result of division of p on G, denoted NFG(p), is unique
and does not depend on the order in which the division steps are performed.

3. For all p ∈ IR[V], NFG(p) = 0 iff p ∈ I.

For example, if P = {xy − 2, x2 − 4} and we use the precedence x 5 y, then
G = {x− 2y, y2− 1} is a Gröbner basis for the ideal 〈P 〉. Division of p on G can
be performed by replacing x by 2y and replacing y2 by 1 in p repeatedly. The
result NFG(x

2 + y2 − 5) of division of x2 + y2 − 5 on G is 0, and hence we can
conclude that x2 + y2 − 5 ∈ 〈P 〉.

Definition 1 (Radical Ideal). An ideal I is a radical ideal if fm ∈ I implies
f ∈ I for every m ∈ IN.

Given an ideal I, note that the set {f | ∃m ∈ IN : fm ∈ I} is a (radical) ideal.

438 J. Leike and A. Tiwari

Definition 2 (Algebraic Assertion). An algebraic assertion ϕ(V) (or just
ϕ) over the set of variables V is a formula of the form

∧m
i=1 pi(V) = 0 where

each pi ∈ IR[V] for 1 ≤ i ≤ m.

An algebraic assertion
∧m

i=1 pi(V) = 0 generates an ideal 〈ϕ〉 = 〈p1, . . . , pm〉.
We will use ϕ to denote the formula as well as the set of polynomials {p1, . . . , pm}
in the formula. An assertion ϕ can be interpreted in the theory IR of reals or in
the theory C of complex numbers. A valuation is a mapping from variables to
values (in the set of real numbers or the set of complex numbers). A polynomial
in IR[V] evaluates to a value (in IR or C) for a given valuation for V .

Theorem 1 (Zero Polynomial Theorem). A polynomial p ∈ IR[V] is zero
for all possible valuations ν : V → IR if and only if all of its coefficients are zero.

Lemma 1. Let ϕ be an algebraic assertion over V and p ∈ IR[V] a polynomial.
If p ∈ 〈ϕ〉, then IR |= ϕ(V)→ p(V) = 0.

Theorem 2 (Hilbert’s Nullstellensatz [18]). Let ϕ be an algebraic assertion
and p ∈ C[V] a polynomial. If 〈ϕ〉 is a radical ideal and C |= ϕ(V)→ p(V) = 0,
then p ∈ 〈ϕ〉.

Lemma 2. Let p, s ∈ IR[V] and 〈ϕ〉 ⊆ IR[V] be an ideal. Then, p ∈ 〈s, ϕ〉 if and
only if there is a polynomial t ∈ IR[V] such that p− t · s ∈ 〈ϕ〉.

Proof. Let 〈ϕ〉 = 〈p1, . . . , pk〉. By definition, p ∈ 〈s, ϕ〉 iff there are t, t1, . . . , tk ∈
IR[V] such that p = ts +

∑
i tipi. This is equivalent to p − ts =

∑
i tipi, which

holds iff p− ts ∈ 〈ϕ〉. ��

Similar to the definition by Sankaranarayanan et al., we introduce template
polynomials as a means for finding polynomials with certain properties. In our
definition the template coefficients can be non-linear polynomials. For the math-
ematical details regarding template polynomials, see [1].

Definition 3 (Template Polynomial). Let A and V be two disjoint sets of
variables. A template polynomial or template over (A, V) is a polynomial with
variables V and coefficients from IR[A]. A template is said to be a linear template
if all of its coefficient polynomials are linear.

Template polynomials will be denoted by upper case Greek letters. Given a
degree bound d, the generic template polynomial Ψ over (A, V) of total degree
d is given by

Ψ(V) =
∑
|γ|≤d

aγV
γ

where γ ∈ IN#V is a multi-index and A = {aγ | γ ∈ IN#V } are template variables.

Definition 4 (Semantics of Templates). For a set of template variables A,
an A-valuation is a map α : A → IR. This map can be naturally extended to a
map α̃ : IR[A][V]→ IR[V] that replaces every occurrence of an a ∈ A by α(a).

Synthesis for Polynomial Lasso Programs 439

4 Polynomial Lasso Programs

We define the syntax and semantics of polynomial lasso programs. We also de-
fine inductive invariants for such programs. Henceforth, semantic entailment, |=,
should always be interpreted as in the theory IR of reals.

Definition 5 (Polynomial Lasso Program). A polynomial lasso program
L = (V, stem, T , exit) consists of

– a set of variables V ,

– an algebraic assertion stem over V called the program stem,

– a set of transitions T , where each transition τ ∈ T is an algebraic assertion
over V ∪ V ′,

– and an algebraic assertion exit over V , called the exit condition.

A transition τ is said to be deterministic if it can be written in the form∧
j

hj(V) = 0 ∧
∧
i

x′igi(V)− fi(V) = 0,

where every x′i ∈ V ′ occurs exactly once and ¬exit |= gi(V)
= 0. For every i
and j, the polynomial hj is called guard and the polynomial x′igi(V) − fi(V)
is called update: fi is its numerator and gi its denominator. The polynomial
lasso program L is called pseudo-deterministic if all its transitions τ ∈ T are
deterministic.

Lassos with solely deterministic transitions can have overlapping guards, hence
the choice of transitions may be non-deterministic even in a pseudo-deterministic
polynomial lasso program. Due to the nature of imperative languages, pseudo-
deterministic lassos possess a specific interest to us.

Definition 6 (Semantics of a Lasso Program). Let L = (V, stem, T , exit) be
a polynomial lasso program. An execution of L is a (potentially infinite) sequence
σ = ν0ν1 . . . where νi : V → IR is a valuation on the variables V such that

1. ν0 |= stem
2. For all i ≥ 0 there is a τ ∈ T such that τ(νi, νi+1).

3. νi |= exit iff it is the last element in σ.

Example 1 (Running example). Consider the imperative program and its lasso
representation L shown in Figure 1. L is a pseudo-deterministic lasso program
since τ is a deterministic transition with the two update polynomials y′ − y + 1
and s′ − s− x0 and no guards. An execution of L is σ = ν0ν1 where

ν0: x0 �→ 3 y0 �→ 1 y �→ 1 s �→ 0,
ν1: x0 �→ 3 y0 �→ 1 y �→ 0 s �→ 3.

440 J. Leike and A. Tiwari

procedure product (x0 , y0) :
s := 0 ;
y := y0 ;
while (y �= 0) :

s := s+ x0 ;
y := y − 1 ;

return s ;

Lasso program L = (V, stem, T , exit):

V = {x0, y0, y, s},
stem ≡ s = 0 ∧ y = y0,

τ ≡ y′ = y − 1 ∧ s′ = s+ x0,

exit ≡ y = 0,

T = {τ}

Fig. 1. An example imperative code and its representation as a polynomial lasso pro-
gram (see Example 1). The program performs a multiplication by repeated addition.

Definition 7 (Correctness). Let L = (V, stem, T , exit) be a polynomial lasso
program and let post be an algebraic assertion over V . The lasso L is said to be
(partially) correct with respect to the post condition post if for every finite exe-
cution σ of L, the last valuation in σ is a model of post. L is totally correct with
respect to post if it is partially correct with respect to post and it is terminating,
i.e., there are no infinite executions of L.

Definition 8 (Invariant). Let L = (V, stem, T , exit) be a polynomial lasso pro-
gram. A polynomial p ∈ IR[V] is called an (inductive) invariant of a transition
τ ∈ T if

1. stem |= p(V) = 0 and
2. p(V) = 0 ∧ τ(V, V ′) ∧ ¬exit |= p(V ′) = 0.

The polynomial p is called an (inductive) invariant of L if it is an invariant of
all transitions τ ∈ T .

It is easily shown by means of induction that if p is an invariant of a lasso L,
then for every execution σ of L and every valuation ν ∈ σ, we have ν |= p = 0.

Example 2. Example 1 calculates the product s of the two input values x0 and y0
by repeated addition. The polynomial lasso program L is partially correct with
respect to the post condition s = x0y0 and it is easy to check that s+x0y−x0y0 =
0 is an invariant of L.

5 Polynomial Loop Invariants

In this section, we extend the approach for discovering loop invariants for poly-
nomial lasso programs introduced by Sankaranarayanan, Sipma and Manna [1].
We define a weakened form of what they call polynomial consecution. We prove
that under some restrictions, this is a complete approach for invariants over the
complex numbers. The results established in this section will then be applied to
program synthesis in section 6.

The first lemma relieves us in certain cases from the potentially very expen-
sive computation of a Gröbner basis for the loop transitions. Specifically, for a

Synthesis for Polynomial Lasso Programs 441

deterministic transition τ , division by the Gröbner basis of τ is equivalent to
substitution of the primed variables according to the update statements.

Lemma 3. Let τ be a deterministic transition with at most one guard polyno-
mial h and updates x′i− fi(V) that have denominator 1. If x′i 5 xj in the mono-
mial ordering for all i and j, then the set G = {h(V)} ∪ {x′i− fi(V) | 1 ≤ i ≤ n}
is a Gröbner basis of the ideal 〈τ〉.

For the remainder of this paper, let L = (V, stem, T , exit) be a fixed pseudo-
deterministic polynomial lasso program. We will now define a sufficient, and
under some assumptions also necessary, condition for a template polynomial to
be an invariant of L.

Definition 9 (Invariance Condition). For each transition τ ∈ T , let qτ be
any common multiple of the denominators of the update statements of τ . (In
particular, qτ can be the product of all denominators.) Let Ψ be a template poly-
nomial over (A, V) of total degree d. Let s(V) be the generator of exit if it has
only one generator and 1 otherwise. The invariance condition IC(L, Ψ) of L for
Ψ is the conjunction of

NFstem(Ψ(V)) = 0, and

NFτ (qτ (V)d · s(V) · Ψ(V ′)) = Φτ (V) · Ψ(V), for all τ ∈ T ,

where the polynomials Φτ are generic template polynomials over (Bτ , V) whose
degrees are bounded by the result of the division NFτ (qτ (V)d · s(V) · Ψ(V ′)) and
Bτ are new disjoint sets of template variables.

The variables V and V ′ are universally quantified in the invariance condition,
whereas the variables A and (Bτ)τ∈T are existentially quantified. By the Zero
Polynomial Theorem 1, the equations in the invariance condition hold for all
valuations on V ∪ V ′ if and only if all the coefficients of the polynomials are
identical to zero. Therefore the variables V and V ′ can be removed from the
invariance condition yielding a constraint on the variables A and (Bτ)τ∈T .

Remark 1. The invariance condition is designed to allow completeness in a wide
variety of cases. We provide some intuition for its components below, but for
details the reader is referred to the proof of Theorem 4.

– The result of the division NFτ (qτ (V)d · s(V) · Ψ(V ′)) may not yield Ψ(V),
but rather some multiple of Ψ(V). Hence, we have the generic template
polynomial Φτ in the invariance condition.

– If an update statement, say x′igi− fi, in τ contains a nontrivial denominator
gi, then we may not be able to remove x′i from Ψ(V ′) by division on τ . Since
every monomial in Ψ(V ′) contains at most d primed variables, therefore
multiplying Ψ(V ′) with the polynomial qτ (V)d guarantees that division by
τ will eliminate all primed variables.

– When the exit condition s(V) = 0 holds, we do not need Ψ to be inductive.
Hence, we use the product Ψ(V ′) · s(V), which encodes that Ψ holds in the
next state or the exit condition is satisfied.

442 J. Leike and A. Tiwari

– If the exit condition is generated by more than one polynomial, we cannot
use this trick for all generators, thus loosing completeness. For simplicity, we
set s = 1 in those cases, but selecting one of the exit condition’s generators
as s will make the condition more complete (but also more complex).

Remark 2. The invariance condition in Definition 9 is more general than the con-
dition used by Sankaranarayanan et al. [1]. They use the following inductiveness
property:

NFτ (Ψ(V
′))− λ · NFτ (Ψ(V)) = 0,

where λ is a real-valued variable. This not only restricts Φτ to a template of
degree 0, it also omits the additions we have discussed in Remark 1.

Example 3. In order to state the invariance condition for Example 1, we first fix
a template polynomial Ψ over V . The general second-degree template polynomial
over V is the following.

Ψ(V) = a0x
2
0 + a1y

2
0 + a2y

2 + a3s
2 + a4x0y0 + a5x0y + a6x0s

+ a7y0y + a8y0s+ a9ys+ a10x0 + a11y0 + a12y + a13s+ a14

The invariance condition IC(L, Ψ) is given by the following equations.

0 = a0x
2
0 + (a1 + a2 + a7)y

2 + (a4 + a5)x0y + a10x0 + (a11 + a12)y + a14

0 = (a0 + a3 + a6 − ba0)x
2
0y + (a1 − ba1)y

2
0y + (a2 − ba2)y

3 + (a3 − ba3)ys
2

+ (a4 + a8 − ba4)x0y0y + (a5 + a9 − ba5)x0y
2 + (a6 + 2a3 − ba6)x0sy

+ (a7 − ba7)y0y
2 + (a8 − ba8)y0ys+ (a9 − ba9)y

2s

+ (a10 + a13 − a9 − a5 − ba10)x0y + (a11 − a7 − ba11)y0y

+ (a12 − 2a2 − ba12)y
2 + (a13 − a9 − ba13)ys+ (a14 − ba14)y

Here, Φτ (V) = b · y is the generic template polynomial over Bτ = {b} of degree
0 multiplied with y, the generator of exit (for simplicity of presentation, we
abstained from using a generic template polynomial for Φτ). By Theorem 1,
these two equalities yield 21 equations which are linear after assigning a value
to b. The assignment α : A ∪Bτ → IR given by the following table is a solution
to the invariance condition IC(L, Ψ).

b a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14
α 1 0 0 0 0 −1 1 0 0 0 0 0 0 0 1 0

This yields the loop invariant α̃(Ψ) = s+ x0y − x0y0 from Example 2.

Theorem 3 (Soundness). If α : A ∪
⋃

τ∈T B → IR is an assignment for the
template variables that is a solution to the invariance condition IC(L, Ψ), then
α̃(Ψ) is an invariant of L.

Proof. NFstem(α̃(Ψ)) = 0, hence α̃(Ψ) ∈ 〈stem〉, and therefore stem |= α̃(Ψ) = 0
according to Lemma 1. By the premise,

qτ (V)d s(V) α̃(Ψ)(V ′)− α̃(Φτ)(V) α̃(Ψ)(V) ∈ 〈τ〉

Synthesis for Polynomial Lasso Programs 443

for all τ ∈ T , therefore qτ (V)ds(V)α̃(Ψ)(V ′) ∈ 〈τ, α̃(Ψ)(V)〉 by Lemma 2, and
from Lemma 1 follows

τ(V, V ′) ∧ α̃(Ψ)(V) = 0 |= qτ (V)d · s(V) · α̃(Ψ)(V ′) = 0.

Since qτ is a common multiple of denominators of updates in τ and ¬exit holds
before any transition τ , it follows that ¬exit |= qτ (V)
= 0 by Definition 5. With
¬exit |= s(V)
= 0 we conclude that

τ(V, V ′) ∧ α̃(Ψ)(V) = 0 ∧ ¬exit |= α̃(Ψ)(V ′) = 0. ��

A criterion for the method’s completeness is given by the following theorem.
The Nullstellensatz is applicable only when one considers the theory of complex
numbers, which in general admits a proper subset of loop invariants. Further-
more, the Nullstellensatz demands all involved ideals be radical ideals [18].

Theorem 4 (Completeness in C). Let L = (V, stem, T , exit) be a polynomial
lasso program with the complex loop invariant1 p ∈ IR[V]. If α : A → IR is
a valuation such that α̃(Ψ) = p, then α can be extended to a solution to the
invariance condition if the following additional premises are met.

1. The lasso L is pseudo-deterministic.
2. The ideal 〈stem〉 and the ideal 〈p〉 are both radical ideals.
3. The ideal 〈exit〉 is generated by a single polynomial s ∈ IR[V].
4. The guard h = 0 of each transition τ ∈ T is equivalent to True (i.e., h is 0).
5. The monomial ordering 5 is lexicographic and x′i 5 xj for all i, j.

Proof. The polynomial p is a loop invariant of L, so by Definition 8,

stem |=C p(V) = 0 and (1)

p(V) = 0, τ(V, V ′),¬exit |=C p(V ′) = 0 for all τ ∈ T . (2)

The ideal 〈stem〉 is a radical ideal by Premise 2, so according to
Hilbert’s Nullstellensatz, Equation (1) implies p ∈ 〈stem〉; and hence, α satisfies
the first part of the invariance condition (IC).

To prove that α can be extended to satisfy the second part of IC, note that
Equation (2), combined with Premise 3, yields

p(V) = 0, τ(V, V ′) |=C s(V)p(V ′) = 0.

Using the Nullstellensatz, for some positive number k, we have(
qτ (V)ds(V)p(V ′)

)k ∈ 〈p, τ〉.
Since h is 0, normalizing by τ is equivalent to replacing primed variables using
the update expressions in τ , and hence,

s(V)kr(V)k ∈ 〈p, τ〉, where r(V) := NFτ (qτ (V)dp(V ′))

1 The assertions of Definition 8 hold in the theory of the complex numbers.

444 J. Leike and A. Tiwari

Note that r(V) has no prime variables since Premise 5 ensures all prime variables
are greater with respect to the monomial ordering5 than the unprimed variables.
Therefore, s(V)kr(V)k ∈ 〈p, τ〉 ∩ IR[V]. Now, there are two cases.
(Case 1): 〈p, τ〉 ∩ IR[V] = 〈p〉. Then, it follows that s(V)kr(V)k ∈ 〈p〉. Since 〈p〉
is a radical ideal, we can infer s(V)r(V) ∈ 〈p〉 and hence NFτ (qτ (V)ds(V)p(V ′))
is a multiple of p. Hence, second part of IC is satisfied.
(Case 2): 〈p, τ〉 ∩ IR[V]
= 〈p〉. This is possible only if some multiple of the
denominators rewrites to 0 by p. Hence, p = 0 implies s(V) = 0 (since s
= 0
implies that denominators are nonzero). Since 〈p〉 is a radical ideal, it follows
s ∈ 〈p〉, and hence s(V)r(V) ∈ 〈p〉 — as in (Case 1) above. ��

It is important to emphasize that the generic template polynomial for the
invariant must have a sufficiently large degree to be able to specialize to the
loop invariant. This is presumed in the completeness statement. We will now
discuss the other premises of Theorem 4.

Premise 1 ensures that the division of Ψ(V ′) on a transition τ removes all
primed variables, since we multiplied with qτ (V)d in the invariance condition.
Premise 2 is a requirement by Hilbert’s Nullstellensatz. In order to write a dis-
junction of exit and a polynomial equality as a product, exit must have a single
generator; this is stated in Premise 3. We will discuss relaxing Premise 4 below.
Finally, Premise 5 assures that primed variables are eliminated first, leaving only
unprimed variables in appropriate cases. This is relevant because the right hand
side Φτ (V) · Ψ(V) in the invariant condition contains only unprimed variables.

Remark 3. We can generalize the completeness result to also include the case
when guards of transitions are nontrivial and when a conjunction p1 = 0∧p2 = 0
is an inductive invariant, but neither p1 = 0 nor p2 = 0 by itself is an inductive
invariant. This requires generalizing the second part of the invariance condition.
Let Ψ1 and Ψ2 be the templates whose instantiation gives p1 and p2 respectively.
Then, for all τ in T , and for i = 1, 2,

NFτ (qτ (V)d · s(V) · Ψi(V
′)) = Φ1(V) · Ψ1(V) + Φ2(V) · Ψ2(V) + Φ3(V) · hτ (V)

Note that Φ1, Φ2, Φ3 are different templates for different τ ’s and different i’s. As
before, the degrees of the templates are bounded by the degree of the left-hand
side, and d is the total degree of Ψi. In the completeness theorem, we can now
drop Premise 4, but replace Premise 2 by the following generalization:

2 The ideal stem, and for all τ , the ideals 〈p1, p2, hτ 〉, where hτ = 0 is the
guard of τ , are radical ideals. Moreover, {p1, p2, hτ} is a GB of 〈p1, p2, hτ 〉.

The proof of the new completeness claim is a natural generalization of the proof
of Theorem 4 above. ��

Besides the five restrictions of Theorem 4, completeness does not extend to
the field of real numbers due to the requirements of Hilbert’s Nullstellensatz.
The underlying problem is illustrated by the following example.

Synthesis for Polynomial Lasso Programs 445

Example 4. The formula ϕ ≡ x21 + x22 = 0 has x1 = x2 = 0 as its only solution
over the reals. However, x1, x2 /∈

〈
x21 + x22

〉
, although

〈
x21 + x22

〉
is a radical ideal

and ϕ |=IR x1 = 0, x2 = 0.

Alternatively, we could formulate our results using real radical ideals [19].
Because the invariance condition in general is a non-linear constraint, solving

it might be very difficult. General approaches for solving non-linear constraints
have worst case space requirements that are doubly exponential in the size of
the input. However, non-linear constraint solving is an active field of research
and recently there have been some promising efforts to take the practical cases
away from their DOUBLE-EXPSPACE worst-case complexity bound [20].

Another approach for solving the invariance condition stems from the ob-
servation that the invarianc condition becomes linear if an assignment for the
template variables (Bτ)τ∈T is given. One could use heuristics to find this assign-
ment. For instance, practical experience suggests that if a solution to a variable
b ∈ Bτ is λb ∈ IR, then the factor (b − λb) occurs somewhere in the invariance
condition. Using factors in the former form as an initial guess for the variables
(Bτ)τ∈T linearizes the equations and thus enables quick discovery of a solution
in some cases.

In the special case that Φτ (V) := λ is degree 0 (also called constant con-
secution), λ can be found as an eigenvalue of an appropriate transformer con-
structed by interpreting bounded degree polynomials as finite-dimensional vector
spaces [21].

6 Synthesis

The technique for finding a loop invariant using the invariance condition estab-
lished in the previous section will now be used for program synthesis. Given a
polynomial lasso program, some transition updates can be parameterized by re-
placing them with template polynomials. The synthesis process will try to find a
valuation of these template variables while respecting some post condition. The
following definition formalizes this concept.

Definition 10 (Synthesis Problem). A synthesis problem S = (C,L, post)
consists of

– a set of synthesis variables C,
– a polynomial lasso program L = (V, stem, T , exit) where stem and τ ∈ T

contain template polynomials over (C, V), and
– a post condition in form of an algebraic assertion post over V .

A solution to the synthesis problem S is a valuation α : C → IR such that
the lasso Lα = (V, α̃(stem), α̃(T), exit) is partially correct with respect to the post
condition post.

Example 5. Transforming L from Example 1 to L′ by changing the transition τ
to

y′ = y − 1 ∧ s′ = c1x0 + c2y0 + c3y + c4s+ c5

446 J. Leike and A. Tiwari

gives rise to a synthesis problem S = (C,L′, post) for C = {c1, c2, c3, c4, c5} and
post ≡ s = x0y0. A solution to S is α : c1 �→ 1, c2 �→ 0, c3 �→ 0, c4 �→ 1, c5 �→
0 since Lα = L and L is partially correct with respect to post according to
Example 2.

Our approach for solving the synthesis problem is based on the technique from
the previous section. We will prove the partial correctness of the synthesized lasso
program. The following lemma states that synthesized polynomial lasso program
will be partially correct.

Lemma 4 (Synthesis Solution). Let S = (C,L, post) be a synthesis problem,
α : C → IR be a valuation on the synthesis variables, and let p be an invariant
for Lα. If p = 0 ∧ exit |= post, then Lα is partially correct with respect to post,
i.e., α is a solution to S.

Proof. Let σ = ν0 . . . νk be a finite execution of Lα. According to the assumption,
p is an invariant of Lα, so by Definition 8, νi |= p = 0 for all 0 ≤ i ≤ k. By
Definition 6, νk |= exit, therefore νk |= p = 0∧exit. According to the assumption,
this implies νk |= post, which proves the correctness of Lα. ��

To find a valuation for the synthesis variables, we define a synthesis condition.
The synthesis condition will constrain the synthesis variables so that existence
of a loop invariant p that implies the post condition is guaranteed; that is,

p = 0 ∧ exit |= post. (3)

If post =
∧

i posti = 0, then the above is implied by posti ∈ 〈p, exit〉 by Lemma 1.
However, computing the Gröbner basis with respect to a template polynomial for
p is extremely inefficient and potentially involves a huge number of case splits.
But according to Lemma 2, we can equivalently write

posti − tp ∈ exit, (4)

for some unknown t ∈ IR[V]. This enables us to rewrite (3) in a way that only
involves computing the Gröbner basis for non-template polynomials.

Example 6. Let S be the synthesis problem from Example 5. We use the loop
invariant p = s + x0y − x0y0 from Example 2 in Lemma 4 to show that α is a
solution to S by checking

s+ x0y − x0y0 = 0 ∧ y = 0 |= s = x0y0,

or instead that for t = 1,

(s− x0y0)− t(s+ x0y − x0y0) ∈ exit.

Definition 11 (Synthesis Condition). Let S = (C,L,
∧m

i=1 posti(V)=0) be a
synthesis problem, let Ψ be a template polynomial over (A, V) and for all 0 ≤
i ≤ m, let Ωi be a template polynomial over (Di, V). The synthesis condition,
SC(S, Ψ, {Ωi | 0 ≤ i ≤ m}), of S is the formula

IC(L, Ψ) ∧
∧
i

NFexit(posti(V)−Ωi(V)Ψ(V)) = 0

Synthesis for Polynomial Lasso Programs 447

Following the same argument as for the invariant condition, the synthesis
condition simplifies to a conjunction of non-linear equations in the variables A∪
C∪(

⋃
τ∈T Bτ)∪(

⋃m
i=1Di). Utilizing an SMT solver, a solution to this constraint

can be obtained that is then used to instantiate the template polynomials in the
loop invariant and polynomial lasso program. According to the next theorem,
this yields a correct program instance.

Motivated by Example 6, we may set Ωi = 1 in the synthesis condition.
In this case the constraint NFexit(posti(V) − Ψ(V)) = 0, the synthesis condi-
tion’s constraint corresponding to the post condition, is linear. Using this ob-
servation we can use linear methods to eliminate some variables from the con-
straint system, thus simplifying it. The same trick also applies to the constraint
NFstem(Ψ(V)) = 0 in the invariance condition if the program stem does not
contain any synthesis variables C.

Because the coefficients of some of the polynomials in L contain template
variables, special care must be taken when computing a Gröbner basis for stem or
τ ∈ T . Every division by some term containing a variable demands a case split on
whether this term evaluates to zero. One way of circumventing this problem is to
compute a Gröbner basis where the underlying algebraic structure for polynomial
coefficients is the ring of parameter polynomials IR[A]. This requires a slightly
modified division algorithm [22,23].

Theorem 5 (Synthesis Soundness). If α : A∪(
⋃

τ∈T Bτ)∪C∪(
⋃

iDi)→ IR
is an assignment for the template variables that models the synthesis condition,
then Lα is partially correct with respect to the post condition post and α̃(Ψ) is
an invariant of Lα.

Proof. By Theorem 3, α̃(Ψ) is an invariant of Lα. By definition, posti(V) −
α̃(Ωi)(V)α̃(Ψ)(V) ∈ 〈exit〉, therefore posti ∈ 〈α̃(Ψ), exit〉 for all i according to
Lemma 2. By Lemma 1, α̃(Ψ) ∧ exit |= posti for all i, hence α̃(Ψ) ∧ exit |= post.
Lemma 4 ensures that this implies that Lα is partially correct. ��

The synthesis process is not complete, even when the restrictions of Theorem 4
hold. The reason for this is the polynomial t in (4): we are using templates Ωi

for t, but a priori we have no upper bound on the degree of t. In practice, a
template of degree 0 might be sufficient, as in our examples (see section 8).

7 Termination

A solution to the synthesis problem guarantees partial correctness of the synthe-
sized program; however, termination is not guaranteed. Even if the synthesized
program terminates, it might be highly inefficient, going through unnecessarily
many loop iterations.

Example 7. If one extends L′ from Example 5 to L′′ by changing τ to

y′ = c6y + c7 ∧ s′ = c1x0 + c2y0 + c3y + c4s+ c5

448 J. Leike and A. Tiwari

this yields a synthesis problem S′ = (C′, L′′, post) with C′ = C∪{c6, c7}. Possible
solutions to S′ include the valuations αλ : c1 �→ λ, c2 �→ 0, c3 �→ 0, c4 �→ 1, c5 �→
0, c6 �→ 1, c7 �→ −λ for all λ ∈ IR.

If λ is small, the program needs more iterations for the same input, and if λ
is zero, Lα will not terminate at all.

In order to address this, the synthesis condition can be augmented with a series
of test cases, predefined input-output pairs that explicitly state the transitions
required to compute them.

Definition 12 (Test Case). Let (C,L, post) be a synthesis problem where L =
(V, stem, T , exit) is a pseudo-deterministic polynomial lasso program containing
template variables C. A test case t = (ν0, ν, τ1 . . . τk) consists of two V -valuations
ν0 and ν corresponding to the initial and final state respectively such that ν |=
exit, as well as a finite sequence of transitions τ1, . . . , τk ∈ T . A solution α to a
synthesis problem S is said to adhere to the test case t if, for νi = τi◦ . . .◦τ1(ν0),
the sequence σ = ν0ν1 . . . νk is an execution of Lα and νk = ν.

Lemma 5. Let S = (C,L, post) be a synthesis problem with solution α and let
t = (ν0, ν, τ1 . . . τk) be a test case. If

ν0 |= α(stem), (5)

ν = α(τk) ◦ . . . ◦ α(τ1)(ν0), (6)

νi
|= exit for 0 ≤ i ≤ k − 1, and (7)

νk |= exit (8)

then Lα adheres to the test case t.

Proof. σ = ν0ν1 . . . νk for νi = α(τi) ◦ . . . ◦ α(τ1)(ν0) is by construction an
execution of Lα according to Definition 6. From (6) follows that νk = ν. ��

If we add the equations (5), (6), (7) and (8) to the synthesis condition for
every given test case, then by Lemma 5 any solution to these constraints will
yield a solution to S that adheres to the test cases.

Example 8. Consider the synthesis problem S′ from Example 7. The execution
σ from Example 1 gives rise to the test case t = (ν0, ν1, τ), which by Lemma 5
adds the following additional constraints on the synthesis condition.

1 = 1

0 = 0

0 = 1c6 + c7

3 = 3c1 + 1c2 + 1c3 + 0c4 + c5

1
= 0

0 = 0

The valuation α1 is the only one of the valuations αλ given in Example 7 that
models these two equations (however, it is not the only possible solution). Lα1

is a terminating lasso program for positive integers y0.

In theory, if it is possible to synthesize a terminating program, then there
exists a finite set of test cases that will guarantee that a terminating lasso is
synthesized.

Synthesis for Polynomial Lasso Programs 449

Theorem 6. Let S = (C,L, post) be a synthesis problem. If there is a solution
α to S such that Lα is terminating then there is a finite set of test cases Σ such
that any solution β of S which adheres to all test cases t ∈ Σ is terminating.

Proof. Let Σ = {t0, t1, . . .} be the test cases to all possible executions of Lα,
and assume Σ is infinite (otherwise there is nothing to show). Each test case
t ∈ Σ corresponds to a polynomial assertion over the variables C by (5) and
(6). This assertion constrains possible assignments of C. For every i ≥ 0, let
Σi = {t0, . . . , ti} ⊂ Σ be an ascending chain of finite subsets of Σ and let Ii
be the ideal generated by the assertions from the test cases of Σi. It is clear
that Σi ⊂ Σi+1, and hence Ii ⊆ Ii+1. By the Ascending Chain Condition [18],
the ascending chain of ideals I0 ⊆ I1 ⊆ . . . must become stationary for some
integer k, meaning Ik = Ii for all i ≥ k. This implies that the finite set of test
cases Σk corresponds to the same ideal as Σi for i ≥ k and hence they have the
same solution (set of assignments) for C. As a consequence, any solution β to S
adhering to the test cases from Σk will enforce that σ is an execution of Lβ iff
it is an execution of Lα. ��

While Theorem 6 assures that under any circumstances, a finite set of test
cases Σ suffices to force a useful solution from the synthesis problem, no upper
bound to the cardinality of Σ is given.

In theory, this provides us with two powerful approaches of generating polyno-
mial lasso programs, given an a priori bound on the number of program variables
V . Both involve creating a polynomial lasso program with generic template poly-
nomials as updates and guards.

1. Specify a (large) number of test cases. Ideally, these test cases can be au-
tomatically generated in some sophisticated way that ensures that they are
not too redundant.

2. Provide a post condition and a complexity guess. Using the complexity guess,
a terminating skeleton of the synthesis problem is generated using counter
variables. The post condition provides a statement regarding the program’s
purpose.

Needless to say, both approaches create very large synthesis conditions that are
unlikely to be handled automatically by present-day non-linear solvers, but this
can change, especially for small program fragments, as technology develops.

8 Experimental Evaluation

We implemented our method in Haskell and used nlsat [20]2 to solve the non-
linear constraints. To evaluate the practicability and scalability of our method,
we ran it on a few selected examples which are listed in Table 1 together with a
short description. Each example translates to a pseudo-deterministic polynomial
lasso program.

2 As implemented in z3 version 4.3.1. http://z3.codeplex.com/

http://z3.codeplex.com/

450 J. Leike and A. Tiwari

Table 1. Example programs used to perform verification and synthesis experiments
described in Table 2

name description

product multiplication of two integers by repeated addition (see Figure 1 and
Example 1)

productS product with synthesis of one update statement (see Example 5)
productSY product with synthesis of the loop body, including the termination-

critical variable y (see Example 7)
product2 product with reciprocal y
product2S product2 with synthesis of one update statement
gcd lcm greatest common denominator and least common multiple of two in-

tegers [1]
gcd lcmS gcd lcm with synthesis of two update statements
div mod integer division with remainder [24]
div modS div mod with synthesis of the complete loop body with linear updates
root2 integer square root [24]
root2S root2 with synthesis of the stem and one update statement
squareS square of an integer synthesized from a terminating skeleton with

linear assignments
cubeS cube of an integer synthesized from a terminating skeleton with linear

assignments

Table 2. Experimental results showing the time required to verify/synthesize various
example programs, along with the size of the non-linear constraints solved in the process

name #C deg #A #vars #tc constraints time (s) solver time (s)

product 0 2 15 20 0 0.55 0.02
productS 5 2 15 25 0 1.47 0.01
productSY 7 2 15 27 2 3.39 0.02
product2 0 3 35 50 0 39.23 128.24
product2S 5 3 35 55 0 200.20 24.46
gcd lcm 0 2 28 42 0 11.85 0.02
gcd lcmS 10 2 28 52 0 17.01 0.01
div mod 0 2 15 16 0 0.62 0.01
div modS 10 2 15 26 5 10.03 0.03
root2 0 2 15 25 0 2.80 4.52
root2S 9 2 15 34 0 3.80 0.02
squareS 6 2 10 20 0 0.56 0.00
cubeS 14 3 35 54 0 90.88 41.05

Table 2 contains the experiment’s results. We list the program name together
with the number of synthesis variables (#C), the degree of the loop invariant’s
generic template polynomial (deg), the number of its template variables (#A), the
total number of variables in the generated constraint (#vars), the number of test
cases used (#tc), the time to generate the constraint in seconds (constraints time)
and the running time of the SMT solver in seconds (solver time). Our test system
was a computer with eight AMD Opteron 8220 2.80GHz CPUs and 32GB RAM.

Synthesis for Polynomial Lasso Programs 451

While the synthesis process is very fast for small examples, the non-linear
constraint solver becomes the bottleneck in medium-sized problems (product2,
product2S and cubeS use generic templates of degree 3): solving non-linear
constraints scales poorly with the number of variables involved. Test cases might
help mitigate this issue by significantly reducing the solution space.

9 Conclusion

We presented a method for synthesizing polynomial programs. This method is
based on the discovery of non-linear loop invariants that prove the program’s
correctness. We generate a synthesis condition, a non-linear constraint whose
solution is the synthesized polynomial lasso program and a loop invariant. We
extended existing methods for non-linear invariant generation and provided a
completeness criterion (Theorem 4). If we synthesize update statements of vari-
ables that occur in the exit condition, termination becomes a concern. We showed
that we can utilize a finite set of test cases to restrict the solution space to ter-
minating lassos (Theorem 6).

Using a benchmark of small examples, we showed that our method is appli-
cable for the synthesis of small programs, as well as parts of medium-sized ones.
A resource bottleneck is the non-linear constraint solver. As the solving of non-
linear constraints is an active area of research, we expect that our technique will
become more effective as non-linear solvers improve.

We assumed that the programs’ variables take values in the set of reals IR,
but since Gröbner bases are computable over rings [22,23], our method can also
be applied to the integers ZZ or the finite ring of machine integers ZZ2w (see also
[10]). Future work could also consider the question of how this method can be
improved to handle inequalities.

Acknowledgements. We would like to thank the anonymous reviewers for
their valuable feedback.

References

1. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant genera-
tion using Gröbner bases. In: POPL (2004)

2. Solar-Lezama, A., Tancau, L., Bod́ık, R., Saraswat, V., Seshia, S.: Combinatorial
sketching for finite programs. In: ASPLOS (2006)

3. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: PLDI (2011)

4. Tiwari, A.: An algebraic approach for the unsatisfiability of nonlinear constraints.
In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 248–262. Springer, Heidelberg
(2005)

5. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic de-
compostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183.
Springer, Heidelberg (1975)

452 J. Leike and A. Tiwari

6. Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry.
Math. Ann. 207 (1974)

7. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems.
Mathematical Programming Ser. B 96(2) (2003)

8. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process.
Lett. 91(5) (2004)

9. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6,
133–151 (1976)

10. Seidl, H., Flexeder, A., Petter, M.: Analysing all polynomial equations in Z2w . In:
Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 299–314. Springer,
Heidelberg (2008)

11. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial loop in-
variants: Algebraic foundations. In: ISSAC. ACM (2004)

12. Rodŕıguez-Carbonell, E., Kapur, D.: Program verification using automatic gener-
ation of invariants. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407,
pp. 325–340. Springer, Heidelberg (2005)

13. Colón, M.A.: Polynomial approximations of the relational semantics of imperative
programs. Sci. Comput. Program. 64(1) (2007)

14. Cachera, D., Jensen, T., Jobin, A., Kirchner, F.: Inference of polynomial invariants
for imperative programs: A farewell to Gröbner bases. In: Miné, A., Schmidt, D.
(eds.) SAS 2012. LNCS, vol. 7460, pp. 58–74. Springer, Heidelberg (2012)

15. Bradley, A.R., Manna, Z., Sipma, H.B.: Polyranking for polynomial loops (2005)
16. Colón, M.A.: Schema-guided synthesis of imperative programs by constraint solv-

ing. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp. 166–181. Springer,
Heidelberg (2005)

17. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: POPL 2010, pp. 313–326 (2010)

18. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer (1991)

19. Neuhaus, R.: Computation of real radicals of polynomial ideals – ii. Journal of
Pure and Applied Algebra 124(1-3), 261–280 (1998)

20. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012)

21. Rebiha, R., Matringe, N., Moura, A.V.: Endomorphisms for non-trivial non-linear
loop invariant generation. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.)
ICTAC 2008. LNCS, vol. 5160, pp. 425–439. Springer, Heidelberg (2008)

22. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. American
Mathematical Society (1994)

23. Bachmair, L., Tiwari, A.: D-bases for polynomial ideals over commutative noethe-
rian rings. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 113–127. Springer,
Heidelberg (1997)

24. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)

Policy Iteration-Based Conditional Termination

and Ranking Functions

Damien Massé

Univ. de Brest, UMR 6285, Lab-STICC, F-29200 Brest, France
damien.masse@univ-brest.fr

Abstract. Termination analyzers generally synthesize ranking functions
or relations, which represent checkable proofs of their results. In [23],
we proposed an approach for conditional termination analysis based on
abstract fixpoint computation by policy iteration. This method is not
based on ranking functions and does not directly provide a ranking rela-
tion, which makes the comparison with existing approaches difficult. In
this paper we study the relationships between our approach and ranking
functions and relations, focusing on extensions of linear ranking func-
tions. We show that it can work on programs admitting a specific kind
of segmented ranking functions, and that the results can be checked by
the construction of a disjunctive ranking relation. Experimental results
show the interest of this approach.

1 Introduction

Many approaches have been proposed to prove that a program terminates. Most
techniques rely on the construction of ranking functions [13,24] or ranking rela-
tions as transition invariants [25]. Ranking functions and relations, like invariants
in safety analysis, offer a checkable result, not directly related to the technique
used to construct them. Similarly, a conditional termination analysis [7], i.e. an
analysis which determines the set of terminating states, is expected to return
not only the a set of terminating states, but an associated ranking function or
relation.

In [23], we proposed to use policy iteration techniques in order to analyze
conditional termination. Policy iteration (or strategy iteration) [10,19] has been
developed as an alternative to the classical widening/narrowing techniques used
for safety analysis by abstract interpretation on numerical programs. Applied
on conditional termination, it can be used to compute, using linear optimization
algorithms, an overapproximation of the (potentially) non-terminating states,
hence proving the termination of the other states. However, it does not directly
provide any ranking function or relation.

In this paper, we examine the relationships between our approach and ranking
functions synthesis. We focus especially on disjunctive linear ranking relations
and segmented linear ranking functions. We show the construction of a disjunc-
tive ranking relation from the analysis, as well as the existence of a segmented

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 453–471, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

454 D. Massé

linear ranking function. Reciprocally, we show that programs admitting some re-
stricted form of segmented ranking function can be analyzed by policy iteration.
We complete these results by a practical experiments on a prototype analyzer.

2 Notations

Let x = (x1, . . . , xn) be a tuple of n variables. We denote any element of Rx

either by (x1 = v1; . . . ;xn = vn) or as a column vector v =

⎛⎜⎝ v1
...
vn

⎞⎟⎠ of Rn. When

used as a matrix block, x represents the column vector

⎛⎜⎝ x1
...
xn

⎞⎟⎠. Linear forms on

Rx are denoted either as a expression (c1x1 + . . . + cnxn) or as a row vector
(c1 . . . cn). Similarly, m× n-matrices M ∈ Rm×n may be denoted as a m-tuple
of linear forms on Rx. Given a matrix M , we denote by MT its transpose.

3 Affine Programs and Semantics

3.1 Programs

For the sake of simplicity, we consider in this paper programs with only one
program point. Hence, x being the set of (real) variables, a program is a pair
(I,T) where I ⊆ Rx is the set of initial states, and T ⊆ ℘ (Rx × Rx) describes
the transitions, each transition defining a relation between the values of the
variables before and after the transition.

Since we are interested in affine programs, I and T will be defined by linear
constraints, that is:

1. I is a set of linear constraints on x

2. Each transition of T is described as a set of linear constraints on x,x′ where
x′ represents the variables after the transition.

In our framework, I can be used to compute an overapproximation of the
reachable states. However, for simplicity we will assume that all states are reach-
able, and I will not be used.

Example 1. We consider the program A of Fig 1. T = {t1, t2} is represented
with:

t1 :

⎛⎜⎜⎝
−1 0 0 0
0 −1 0 0
−1 −1 1 0
0 1 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝
a
b
a′

b′

⎞⎟⎟⎠
≤
≤
=
=

⎛⎜⎜⎝
0
0
0
−1

⎞⎟⎟⎠

Policy Iteration-Based Conditional Termination and Ranking Functions 455

Program A:

1: while a ≥ 0 do
2: a ← a+ b
3: if b ≥ 0 then
4: b ← −b− 1
5: else
6: b ← −b
7: end if
8: end while

Program B:

1: while x ≤ 100 do
2: if (*) then
3: x ← −2x+ 2
4: else
5: x ← −3x− 2
6: end if
7: end while

Fig. 1. Two affine programs. a and b are integer variables, x is a real variable, and (*)
is a non-deterministic choice.

t2 :

⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
−1 −1 1 0
0 1 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝
a
b
a′

b′

⎞⎟⎟⎠
≤
≤
=
=

⎛⎜⎜⎝
0
−1
0
0

⎞⎟⎟⎠
Note that we replace b < 0 by b ≤ −1 in the representation, since b is an integer
variable. Our approach deals mainly with real variables, and using strict con-
straints (or floating-point computations) requires technical considerations which
are outside the scope of this paper.

In the following, we will represent a transition as a pair (Q, q) where Q is a
matrix and q is a vector such that the associated constraints are:

Q

(
x
x′

)
≤ q

When the program has only one transition, the program is called a Linear
Simple Loop (LSL). Termination of Linear Simple Loop is well known to be
a decidable problem (at least for linear assignments) [29]. However, deciding
conditional termination of LSL is more complex [4], and not always possible [16].

3.2 Concrete Semantics

To each program P is associated a transition relation τ ⊆ Rx×Rx. This relation
can be used to construct a trace-based semantics to prove termination [12].
However, we propose to use here a state based backward semantics:

Proposition 1. The set S of states starting an infinite execution trace is equal
to:

S = gfpλY.pre(Y)

where pre ∈ ℘ (Rx)→ ℘ (Rx) is the predecessor predicate transformer:

pre(Y) = {v ∈ Rx | ∃v′ ∈ Y, (v,v′) ∈ τ}

=
⋃

(Q,q)∈T

{v ∈ Rx | ∃v′ ∈ Y,Q
(

v
v′

)
≤ q}

456 D. Massé

If Y is a polyhedron characterized with a set of linear constraints Ax ≤
c, pre(Y) is a union of polyhedra, which can be computed using libraries like
Apron [21]. However, even if pre(Y) is computable, S is not computable, since
the fixpoint computation may not terminate.

As seen in [12], it is well-known that a ranking function can be defined from
the iterates of the pre operator:

Proposition 2. Let (Si)i∈O be the iterates of gfpλY.pre(Y) (i.e. S0 = Rx,
Si+1 = pre(Si) and, for all limit ordinal l, Sl = ∩i<lSi). Then the function r
defined on Σ \ S by:

∀x ∈ Σ \ S, r(x) = min{i ∈ O|r /∈ Si}

is a ranking function over Σ \ S:

∀x ∈ Σ \ S, ∀y ∈ Σ, x→ y =⇒ (y /∈ S ∧ r(y) < r(x))

However, computing (or approximating) S may not give the successive
iterates.

3.3 Abstraction and Abstract Semantics

The template polyhedral abstraction[27] is a parametric sub-abstraction of the
classical polyhedral abstraction, where the linear constraints used must belong
to a template. In practice, the template is a matrix T ∈ Rm×n. Each row of
T represents a linear form of program variables. The matrix T defines an ab-
straction of ℘ (Rn), where an abstract element ρ is a element of TT = R

m
where

R = R ∪ {−∞,+∞}.. The concretization function is defined as:

γT (ρ) = {v ∈ Rn | Tv ≤ ρ}

Note 1. In the following, we may consider T as a matrix or as a set of m linear
forms. For any ρ ∈ TT , we will denote by [ρ]f the component of ρ associated to
f ∈ T .

In the context of this abstraction, the best abstract transformer pre� = αT ◦

pre ◦ γT is computable:

Lemma 1. With ρ ∈ TT , the component of pre�(ρ) associated to f satisfies

[pre�(ρ)]f = max(Q,q)∈T[�(Q, q)��]f (ρ) with:
– If

{x|∃x′,
(

Q
0 T

)(
x
x′

)
≤
(
q
ρ

)
} = ∅,

then [�(Q, q)��]f = −∞.
– otherwise,

[�(Q, q)��]f = min{λ(qTρT)|λ ≥ 0 ∧
(
QT 0

T

)
λ =

(
fT

0

)
}

Policy Iteration-Based Conditional Termination and Ranking Functions 457

Hence pre�(ρ) can be computed by solving m.|T| linear programs. However,
the classical Kleene iterations (with widening and narrowing operators) can only
be used to approximate the abstract semantics S� = gfppre� with the following
restrictions:

1. Using a dual widening operator can only be used to find an underapproxi-
mation of the abstract semantics [11], which is not sound since our abstract
semantics is an overapproximation of the concrete semantics1.

2. Using n steps of a narrowing operator would only find states terminating
after at most n iterations.

Thus we need to use policy iteration to compute S�.

4 Policy Iteration

Policy or strategy iteration [10,18,19] is a method to compute the least (or
greatest) fixpoint of specific classes of monotonic operators. It can be seen as an
adaptation of the classical Newton’s method in the sense that the operator σ is
approximated (w.r.t. a policy selection) by a policy σ0 where the fixpoint of σ0
is computable. A new policy is selected to approximate σ around the fixpoint of
σ0, and the process iterates until a global fixpoint is reached.

The application of policy iteration to the computation of greatest fixpoints
has been presented in [23]. Although this section extends slightly the framework
by not restricting transitions to assignments, the results are similar.

4.1 Policy Selection

Theorem 1. Given a transition t = (Q, q), [�t��]f is the minimum of two func-
tion ψt and [φt]f where:

– ψt is monotonic and its image is in {−∞,+∞};
– [φt]f is the minimum of a finite number of affine expressions (with positive

coefficients) on ρ.

Example 2. For t1 in program A, and T = (−a,−a− b), we have:

ψt1(ρ) = +∞
[φt1]−a(ρ) = −1 + ρ−a−b

[φt1]−a−b(ρ) = min(−1 + ρ−a−b, ρ−a)

Theorem 2. Let t be a transition, and ρ ∈ R
m
. The value of ψt(ρ) and, if

ψt(ρ) = +∞, the affine expression for which φt(ρ) is minimal can be computed
by solving the following linear program:

max{f.x|∃x,x′,
(

Q
0 T

)(
x
x′

)
≤
(
q
ρ

)
}

1 The overapproximation being necessary to prove termination.

458 D. Massé

σ ← (+∞) � Initial policy
ρ ← (+∞) � Initial fixpoint: �
while Φ(ρ) �= ρ do � Stop if fixpoint is reached

for all f ∈ T do
if [Φ(ρ)]f < [ρ]f then � Change [σ]f only if it is not optimal for ρ

[σ]f ← min-policy of [Φ]f such that [σ]f (ρ) = [Φ]f (ρ)
end if

end for
ρ ← gfp≤ρσ � Compute the next fixpoint for the policy

end while

Fig. 2. Policy iteration algorithm for greatest fixpoint computation. This algorithm
computes gfpΦ using min-policies: each policy component [σ]f is given by a choice
between the min-terms of [Φ]f .

If this linear program is infeasible, then ψt = −∞, otherwise, ψt = +∞ and φtf
can be directly constructed from the optimal dual solution.

Given a current policy σ and its fixpoint ρ, the new policy σ′ is constructed
as follows : [σ′]f = maxt∈T[σ

t]f where [σt]f = −∞ if ψt(ρ0) = −∞, and [σt]f is
an affine expression of [φt]f (ρ0) which is minimal for ρ0 otherwise.

Proposition 3. The policy selection process constructs a new policy for which
each component is the maximum of affine expressions.

Example 3. For program A, if the current post-fixpoint is (ρ−a = 0, ρ−a−b = 0),
the policy selection process gives:

[σ1]−a(ρ) = max(ρ−a−b − 1, ρ−a − 1)

[σ1]−a−b(ρ) = max(ρ−a, ρ−a−b − 1)

In the program, this policy expresses the fact that, if after an iteration the
constraints −a ≤ u ≤ 0 and −a − b ≤ v ≤ 0 are satisfied, then before the
iteration, the constraints −a ≤ max(u − 1, v − 1) and −a − b ≤ max(u, v − 1)
are satisfied.

In general, we will write the policy as a system of equations over the compo-
nents of ρ, e.g.:

ρ−a = max(ρ−a−b − 1, ρ−a − 1)

ρ−a−b = max(ρ−a, ρ−a−b − 1)

4.2 Policy Iteration Result

Theorem 3 ([23]). Following the algorithm of policy iteration presented Fig. 2,
the new fixpoint ρl of each policy σl is computable by solving two linear programs.
Furthermore, the algorithm terminates and gives the abstract fixpoint S�.

Policy Iteration-Based Conditional Termination and Ranking Functions 459

Note 2. Although the algorithm of Fig. 2 starts with σ0 = (+∞), we can adapt
it to start from any post-fixpoint.

Example 4. Figure 3 shows the results of the analyzes of programs A and B.
The initial policy ((+∞)) is omitted. For both programs, Step 1 gives just the
translation of the termination condition of the loop. Step 2 gives the equivalent
of one more iteration. However, in Step 3, the relations between variables in the
equation system enables to jump directly to the fixpoint. This jump is equivalent
to ω iterations in the greatest fixpoint computation. Note that the analysis proves
the termination of program A from every initial state. For program B, it proves
that the programs terminates from x > 1.6 ∨ x < −1.2, which is the best result
we can get with a polyhedral abstraction (x = 1.6 and x = −1.2 being both
non-terminating states). However, it does not give the exact set of terminating
states (e.g. one can check that this program terminates from any integer).

Step Policy Fixpoint

1
ρ−a = 0 −a ≤ 0
ρ−a−b = +∞

2
ρ−a = max(0, ρ−a − 1) −a ≤ 0
ρ−a−b = ρ−a −a− b ≤ 0

3

ρ−a = max(ρ−a−b − 1,

∅ρ−a − 1)
ρ−a−b = max(ρ−a,

ρ−a−b − 1)

Step Policy Fixpoint

1
ρx = 100

x ≤ 100
ρ−r = +∞

2
ρx = 100 x ≤ 100
ρ−x = max((ρx − 2)/2, −x ≤ 49

(ρx + 2)/3))

3

ρx = max((ρ−x + 2)/2, x ≤ 1.6
(ρ−x − 2)/3)

ρ−x = max((ρx − 2)/2, −x ≤ 1.2
(ρx + 2)/3))

(Prog. A) (Prog. B)

Fig. 3. Results of the policy iteration process on program A with the template T =
(−a,−a− b) and program B with the template T = (−x, x)

5 Relationships with Ranking Functions

The policy iteration process computes the exact abstract semantics of the pro-
gram. Proposition 2 states that this fixpoint entails the existence of a ranking
function based on the iterates of the fixpoint, but does not give the form of the
ranking function (or relation). In order to compare this approach with other
existing methods, we need to make this ranking function explicit, or at least
precise the kind of ranking relations a program must satisfy to be successfully
analyzable by policy iteration. Since we use linear templates, linear ranking func-
tions and their derivatives (piecewise linear ranking functions and disjunctive lin-
ear ranking relations) are the most interesting candidates to compare with our
approach.

460 D. Massé

5.1 Ranking Functions and Relations

Linear Ranking Function. Linear ranking functions are commonly used to
prove termination of simple programs.

Definition 1 (Ranking function). If Σ is a set of states, S a subset of Σ,
and τ ⊆ Σ×Σ a transition relation, a ranking function over S is defined by an
ordered set (O,≺) and a function r : S → O such that ≺ is a well-founded order
and:

∀σ ∈ S, σ τ→ σ′ ⇒ σ′ ∈ S and r(σ′) ≺ r(σ)

If τ represents the transition relation induced by a program P , the existence
of a ranking function over S shows that the program terminates from any state
in S.

The ranking relation T (r) ⊆ S × S generated by a ranking function r is the
well-founded relation defined as T (r) = {(σ1, σ2) | r(σ2) ≺ r(σ1)}. If r is a
ranking function for τ over S, then T (r) satisfies:

τ ⊆ T (r) ∪ (Σ \ S)×Σ

We may use ordinals (O, <) as well-founded sets. However, since our approach
deals with real values, we will denote by ≺ on a subset of R, any well-founded
suborder of < on this subset.

Definition 2 (Linear ranking function). A ranking function r on (O,≺) is
linear if O is a subset of R, ≺ is a sub-order of < on O, and r is linear.

Segmented Linear Ranking Functions. The domain of segmented ranking
functions is presented in [30] to infer termination properties on programs. Its
analysis produces piecewise-segmented ranking functions to infer sufficient con-
ditions on programs. The domain is parametrized by two numerical abstract
domains for the partitioning of the environment and for the values of the func-
tion. The prototypes used intervals for the partitioning and affine forms for the
functions, but it should be possible to use other linear constraints (maybe tem-
plates) for the partitioning (which should be costly). We propose to call this
instantiation of the domain segmented linear ranking functions.

Definition 3 (Segmented linear ranking function). Let S ⊆ Rm and τ a
transition relation on Rm, a ranking function r : S → O on S is segmented
linear if it can be defined by a n-uplet (S1, r1), . . . , (Sn, rn) where:

– {Si}1≤i≤n is a partition of S, and each Si is a polyhedron;

– for all i, ri is defined on Si and r = ri on Si.

– all the ri are linear.

Policy Iteration-Based Conditional Termination and Ranking Functions 461

Disjunctive Linear Ranking Relations. An alternative to ranking functions
are disjunctive ranking relations, defined as a finite union of ranking relations
T = T1 ∪ . . . ∪ Tn. Although T may not be itself a ranking relation, a transi-
tion relation τ is well-founded if and only if its non-reflective transitive closure
τ+ is included in a disjunctive ranking relation (which is then called a transi-
tion invariant [25]). This approach is widely used to prove termination, using
model-checking procedures to check the inclusion in transition invariants [22,8].
Of course, disjunctive ranking functions can be used to prove conditional
termination:

Lemma 2. Let P a program with a transition relation τ ⊆ Σ × Σ. Then P
terminates from all states in S if and only if there exists a disjunctive ranking
relation T = T1 ∪ . . . ∪ Tn such that:

τ+ ⊆ T ∪ (Σ \ S)×Σ

In [5], Chen et al. proposed to infer disjunctive ranking relations for linear
simple loops (LSLs), where each ranking relation Ti is (by construction) based
on a linear ranking function. More precisely, Ti = T (ri) such that there exists a
polyhedral partition (P1, . . . , Pk) of R

n where:

– ri is linear over P1;
– ri is constant over P2, . . ., Pk and its values are always strictly lower than

the elements of ri(P1).

We will call these relations disjunctive linear ranking relations.
Before considering the ranking functions induced by the policy iteration algo-

rithm, we examine the relationships between disjunctive ranking relations and
segmented ranking functions. Disjunctive linear ranking relations are strictly
more powerful than segmented linear ranking functions: any segmented linear
ranking function induces a disjunctive linear ranking relation, but the converse
is not true.

Theorem 4. Let τ ⊆ Σ × Σ and r a segmented linear ranking function for τ
over S, defined by the n-uplet (S1, r1), . . ., (Sn, rn). For all 1 ≤ i ≤ n, we define
Ti : S × S as:

Ti = T (ri) ∪ (Si × (S \ Si))

Then τ+ ⊆ T1 ∪ . . . ∪ Tn ∪ (Σ \ S)×Σ.

Example 5. Program A admits a segmented linear ranking function r defined as:

r(a, b) =

⎧⎪⎪⎨⎪⎪⎩
0 if a < 0
1 if a ≥ 0 and a+ b < 0
2a+ 2 if a ≥ 0 and b ≥ 0
2(a+ b) + 3 if a+ b ≥ 0 and b < 0

The partition contains four sets. The disjunctive ranking relation allows any
transition between two different sets, but only decreasing transitions (w.r.t. the
local ranking function) inside one set. While not well-founded, it is the union of
well-founded relations and includes the transition closure of τ .

462 D. Massé

The disjunctive ranking relation does not give any information about the
relations between the elements of the partition, therefore it can prove the ter-
mination of programs which do not admit a segmented linear ranking function.

Example 6. The program

1: while x ≥ 0 do
2: x← x+ y
3: if y ≥ 0 then
4: y ← y − 1
5: end if
6: end while

terminates and admits a disjunctive ranking relation defined by the ranking
functions:

ρ0 =

{
x if y ≤ −1 and x ≥ 0
−1 if x < 0, or y > 0

ρ1 =

{
y if y > 0
0 if y ≤ 0

However, a segmented ranking function would need to be quadratic when y > 0.

5.2 Policy Iteration and Ranking Relations

Our goal is to link the results of the policy iteration analysis with the existence
of disjunctive ranking relations or segmented ranking functions. Since the pol-
icy iteration analysis gives an overapproximation of the non-terminating states,
there exists a ranking function or relation on the complement, which should be
related to the template used.

Example 7. For program B, the policy iteration analysis (with T = (x,−x))
proves that the program terminates from x > 1.6 or x < −1.2. A ranking
function r should be defined on] −∞,−1.2[∪]1.6,+∞[. Since |x| increases at
each iteration, r should be increasing on]−∞,−1.2[(with limx→−1.2 r(x) = ω)
and decreasing on]1.6,+∞[(with limx→1.6 r(x) = ω). Hence, on]−∞,−1.2[, x
is a ranking function, whereas −x is a ranking function on]1.6,+∞[. Note that
the value −1.2 is given by ρ−x and 1.6 by ρx. Therefore, it appears that the
partial ranking functions are related to the negation of the template elements.

In general, we shall prove that if the policy iteration analysis shows that A is
a set of terminating states:

1. A disjunctive linear ranking relation can be defined on A, of which the rank-
ing relations are directly related to the template (Theorem 5).

2. We can also find on A a segmented linear ranking function r, with template-
related restrictions of the domains of the subfunctions. To represent these
restrictions, we shall describe r as a min-defined segmented ranking function,
i.e. as a minimum of functions with overlapping domains (Definition 4).
Furthermore, we prove the converse of this result, i.e. the existence of a

Policy Iteration-Based Conditional Termination and Ranking Functions 463

segmented linear ranking function satisfying these restrictions on A implies
that the policy iteration analysis can prove conditional termination on A
(Theorem 6).

By Theorem 3, we know that the policy iteration process returns the exact
abstract semantics of the program, defined as S� = gfp αT ◦ pre ◦ γT . The
iterates of this fixpoint are elements of the template abstract domain. Hence we
can expect a potential ranking relation to be closely related to the template linear
forms. Theorem 5 formalizes this idea and shows that the programs directly
admits a disjunctive linear ranking relation on the terminating part:

Theorem 5. Let T be a template with m linear forms f1, . . . , fm over Rx, and
A� an abstract element of TT . If gfpλX.(pre�T (X)) = A�, then there exists m
ranking relations R1, R2, . . ., Rm on Rx \ γT (A�) satisfying the conditions (C1)
and (C2) defined as follows:

(C1) For all i, there exists a well-founded suborder ≺i of < on R such that:

∀(v1,v2) ∈ Rn \ γT (A�), (v1,v2) ∈ Ri ⇐⇒ −fiv2 ≺i −fiv1

(C2) R1 ∪ . . . ∪Rm is a disjunctive ranking relation for τ over Rn \ γT (A�):

τ+ ⊆ (R1 ∪ . . . ∪Rm) ∪ γT (A�)× Rn

Furthermore, with (pre�T)
k denoting the k-th iterate of the operator pre�T starting

from Rn, we can construct ≺i as:

u ≺i v ⇐⇒ ∃k ∈ O, u < −[(pre�T)k]fi ≤ v

This theorem proposes well-founded orders ≺i based on sets of iterates, which
are not easy to use. We shall examine the problem of finding simpler orders in
Sect. 5.3.

Example 8. We can prove the termination of program A with the template T =
(−a,−a−b). The associated relations R1 and R2 can be defined on R2 as follows:

((a, b), (a′, b′)) ∈ R1 iff a′ ≺ a

((a, b), (a′, b′)) ∈ R2 iff a′ + b′ ≺ a+ b

where
u ≺ u′ ⇐⇒ a < 0 ≤ b ∨ 0 ≤ a+ 1 ≤ b

We can see that R1 and R2 are generated by the functions a and a+ b.

Example 9 shows that the converse of Theorem 5 does not hold:

Example 9. The program seen in Example 6 admits a disjunctive ranking relation

T (ρ0) ∪ T (ρ1) with ρ0 = x and ρ1 = y

464 D. Massé

with the well-founded order ≺ defined as a ≺ b ⇔ a < 0 ≤ b ∨ a + 1 ≤ b.
However, analyzing the program with the template T = (−x,−y) gives just
the condition x ≥ 0 for potential non-termination, because the next iterate in
the concrete domain gives the constraint x + y ≥ 0 which is not translated in
the abstract domain.

Theorem 5 presents a disjunctive linear ranking relation of which the com-
ponents are based on the policy iteration analysis. As we saw on Example 6,
this does not prove the existence of a segmented linear ranking function. Two
difficulties arise when we try to construct a segmented ranking function from
the policy iteration analysis.

First, the domains of the subfunctions must partition the terminating states,
whereas each well-founded order of Theorem 5 is defined on the whole domain.
We circumvent the problem by including the possibility of overlapping domains.
In this case, the value of the r is defined as the minimum of the values of the
underlying functions.

Definition 4 (Min-defined segmented ranking functions). Let Σ be a set
of states, S a subset of Σ and τ a transition relation on Σ, a ranking function
r : S → O on S (where O ⊆ R) is min-defined segmented if it can be defined by
a n-uplet (S1, r1), . . . , (Sn, rn) where:

1.
⋃

1≤i≤n Si = S,

2. and ∀σ ∈ S, r(σ) = minσ∈Si ri(σ) (where min is the minimum with respect
to the total order <).

Furthermore, r is min-defined segmented linear if all ri are linear.

Of course, any min-defined segmented ranking function can be transformed
to a segmented ranking function by restricting the domain of the subfunctions.
However, using them makes the following theorem much easier to present, as the
domain of each subfunction becomes independent of the others subfunctions.

The second difficulty is the relationships between the values of different sub-
functions. The easiest approach is to consider intermediate functions ϕ:

Theorem 6. Let A� ∈ TT . Then gfpλX.(pre�T (X)) .� A� if and only if there
exists a min-defined segmented ranking function r = mini∈{1,...,m} ri : Rn \
γT (A

�)→ O such that for all i:

(C3) Dom(ri) = {v ∈ Rn | [A�]fi < fiv}
(C4) ∀i, ri(v) = ϕi(−fiv) where ϕi is a monotonic function from]−∞,−[A�]fi [
to O.

Proof (sketch). Let’s consider the iterates (A�
k) of pre

�
T starting from (+∞). We

define ri(v) as the maximal ordinal k such that fiv ≤ [A�
k]fi . One can easily check

that this ordinal exists (if v ∈ Dom(ri)), that ri is monotonic w.r.t. −fiv, and
that r is a ranking function. Reciprocally, if a ranking function r satisfy (C3) and

(C4), then we prove by transfinite induction that for all v ∈ γT (A
�
k), r(v) ≥ k.

The limit case is a consequence of the co-continuity of γT . For the successor case,

Policy Iteration-Based Conditional Termination and Ranking Functions 465

let us suppose that there exists v ∈ γT (A�
k+1) = γT ◦ αT (pre(γT (A

�
k))) such that

r(v) < k + 1 (for example, ri(v) ≤ k). Then there exists v′ ∈ pre(γT (A
�
k)) such

that fiv
′ ≥ fiv, hence ri(v

′) is defined by (C3) and r(v′) ≤ ri(v
′) ≤ ri(v) ≤ k

by (C4). Since v′ ∈ pre(γT (A
�
k)), there must be a successor v′′ of v′ in γT (A

�
k)),

which by induction hypothesis must satisfy r(v′′) ≥ k, which contradicts the
fact that r is a ranking function.

Example 10. Example 5 gives a segmented ranking r function for program A,
which can also be min-defined:

r(a, b) = min(r−a(a, b), r−a−b(a, b))

with r−a (resp. r−a−b) depending only on a (resp. a+ b):

r−a(a, b) =

{
0 if a < 0
2a+ 2 if a ≥ 0

r−a−b(a, b) =

{
1 if a+ b < 0
2(a+ b) + 3 if a+ b ≥ 0

Theorem 6 shows the form of a potential ranking function for the set of ter-
minating states found by the policy iteration algorithm. Also, it gives a com-
pleteness result by describing the programs analyzable with a specific template
as any program admitting a min-defined segmented ranking function satisfy-
ing these conditions. Since linear ranking functions satisfy them, we can deduce
that programs admitting linear ranking functions can be proved to terminate by
policy iteration (with an appropriate template):

Corollary 1. If a program admits a linear ranking function r, then a policy
iteration analysis with a template T including −r can prove its termination.

Conditional termination with a linear ranking function, however, is more com-
plicated since condition (C3) make strong assumptions on the domain of the
ranking function.

Example 11. The program

1: while x ≥ 0 do
2: x← x+ y
3: end while

admits x as a linear ranking function when y < −1. However, an analysis with the
template (−x,−y) cannot give any result of the form A� = (x >= 0, y >= −1)
because the domain of the ranking function associated to x should be all the
states satisfying x < 0. More generally, while the set of non-terminating states
is (x >= 0, y >= 0), we can prove that no template can give this result.

On the other hand, with an initial constraint of the form y ≤ −ε < 0, the
analysis proves the termination of the program.

466 D. Massé

5.3 On the Well-founded Relations

Theorem 5 proposes well-founded relations ≺i defined from (infinite) sets of iter-
ates of the abstract computation. However, relations found in the literature are
generally defined directly. For example, a common order used in linear ranking
functions is ≺ε (with ε > 0) defined as:

a ≺ε b ⇐⇒ a+ ε ≤ b

Such an order is useful because checking a ≺ε b is easier, and because it shows
the evolution of the states towards termination.

In this section we study the possibility of constructing theses kinds of orders
(not based on infinite sets) from the analysis. Our first step is consider the
sequence of policies. This sequence constructs a finite and decreasing chain of
p+ 1 fixpoints ρ0 = (+∞), . . . , ρp. Projecting this chain to the i-th component
gives a decreasing sequence ρi0 = +∞, . . . , ρip. As a result, any couple (a, b) where

a < −ρik ≤ b can be included in ≺i. Hence we can construct ≺i as:

≺i = ≺i,1 ∪ ≺i,2 ∪ . . . ∪ ≺i,p

∪]−∞,−ρi1[× [−ρi1,+∞[∪ . . . ∪]−∞,−ρip[×[−ρip,+∞[
(1)

where each≺i,k is associated to the k-th policy and only defined on [−ρik−1,−ρik[.

Example 12. With program B, we need two well-founded orders ≺x and ≺−x

on R. Since the successive fixpoints (for the linear form x) gives x ≤ 100 and
x ≤ 1.6 (cf. Fig. 3), we may construct ≺x as:

a ≺x b⇔ a < −1.6 ≤ b

or a < −100 ≤ b

or (a, b) ∈ [−100,−1.6[∧ a ≺x,3 b

or (a, b) ∈]−∞,−100[∧ a ≺x,1 b

where ≺x,1 (resp. ≺x,3) is a well-founded suborder of < on] −∞,−100[(resp.
[−100,−1.6[).

Finding an order for each policy is difficult. Let’s restrict ourselves to the case
of a LSL. The policy is described as a system of affine equations, and the next
fixpoint as the limit of a sequence (νk) of the form:

ν0 = ρj

νk+1 = Aνk +B

where A is a nonnegative matrix. Then we have νk−1 − νk = Ak(ν0 − ν1)
(where ν0 − ν1 is also nonnegative). Using [20, Sect. 9.3], we get the following
proposition:

Proposition 4. Let P be a LSL, and ρ0, . . . , ρp the sequence constructed by
policy iteration on P , ρik−1 and ρik the i-th component of ρk−1 and ρk. Then

there exists a well-founded order ≺i,k for equation (1) and a integer d > 0 such
that:

Policy Iteration-Based Conditional Termination and Ranking Functions 467

– if ρk = −∞,

∃ε > 0, (≺i,k)d ⊆≺ε where a ≺ε b⇔ a+ ε ≤ b

– otherwise:

∃h > 1, (≺i,k)d ⊆≺h,−ρi
k

where a ≺h,−ρi
k
b⇔ (−ρik − a) ≥ h(−ρik − b)

In this proposition, (≺i,k)d =≺i,k◦ . . . ◦≺i,k is the d-th power of ≺i,k. Note that
≺ε or ≺h,−ρi

k
are well-founded orders on [−ρik−1,−ρik[, which implies that ≺i,k

is a well-founded order.
This proposition does not directly give ≺i,k, but it shows that decreasing

sequences decreases (at least) on average linearly when ρk = −∞ and geomet-
rically (from the upper bound) when ρk is finite. Although this results is not
proven on the general case, we expect the progressions to be similar in most
cases.

Example 13. Continuing the previous example, we consider ≺x,1 on]−∞,−100[
and ≺x,3 on [−100,−1.6[. The first policy (associated to ≺x,1) returns the next
fixpoint after one iteration. Hence we can just define ≺x,1= ∅.

The third policy (associated to ≺x,3) converges with a geometric rate. The
order ≺x,3 can be defined as:

u ≺x,3 u′ ⇐⇒ (−1.6− u) ≥ 4(−1.6− u′)

Concretely, this results shows that from an initial value x > 1.6, the value of
x (when x > 0) diverges from 1.6 at a geometric rate.

6 Experiments

6.1 Template Selection

A prototype analyzer implementing the policy iteration algorithm was developed,
using VPL2 to handle exact polyhedral and linear programming operations. Since
our analysis use the template polyhedral domain, selecting a correct template was
an issue. However, overapproximating the greatest fixpoint enables a progressive
refinement of the template: any fixpoint computed with a template can be used as
a starting post-fixpoint with another template. Based on this idea, the following
heuristics was implemented:

1. first, a few backwards steps in the general polyhedral domain is computed;
2. then the actual linear constraints are used as a basis for the template and

the abstract fixpoint is computed for this template;
3. the process can be iterated from the new post-fixpoint, alternating between

backward direct iterations and policy iterations. Since every intermediate
result is a safe approximation, we can stop anytime, or if the fixpoint is
reached.

2 http://verasco.imag.fr/wiki/VPL

http://verasco.imag.fr/wiki/VPL

468 D. Massé

This heuristics can be compared to existing techniques for invariant analyses
which uses partial traces to specialize the abstract domain [3,28]. In the worst
case, the analysis gives the same result as a classical narrowing, returning an
approximation of the states which do not terminate after n loop iterations. In
the best case, it gives the abstract greatest fixpoint in the (general) polyhedral
domain, which may not be the exact set of non-terminating states.

Example 14. In the terminating program (from [9]):

1: while x
= 0 do
2: if x > 0 then
3: x← x− 1
4: else
5: x← x+ 1
6: end if
7: end while

the decreasing iterations in the polyhedral domain stabilizes immediately at
] − ∞,+∞[. The problem can be solved by using several program points (or,
similarly, state partitioning) to separate the cases x > 0 and x < 0.

6.2 Results

LSL Test Suite. First, we used the LSL test suite proposed by Chen et al.[5].
This suite has 38 LSL loops, of which 12 are non-terminating, 7 are terminating
with linear ranking functions, and 19 are terminating with non-linear ranking
functions. Our prototype analyzed the whole test suite in 0.5 second. The results
are summarized on Table 1. Terminating LSLs with a linear ranking function
are all proved to terminate (although our heuristics does not guarantee this).
Terminating LSLs without a linear ranking function are proved to terminate
most of the time, yet our analyzer failed in 6 cases whereas Chen et al.’s algo-
rithm, which is specifically designed to prove termination on LSLs, failed only
twice. Interpreting the results of non-terminating LSLs is harder since this test
suite was not designed for conditional termination analysis. For 2 LSLs, our ap-
proach managed to find the exact set of terminating states, something which
was not possible with only narrowings. For 3 LSLs, the greatest fixpoint is di-
rectly reached by a few iterations in the polyhedral domain. Finally, for the other
programs, the PI techniques does not refine the decreasing iteration sequence.

Table 1. Experiment results

LSL test suite[5]

Programs Results

38 LSLs

Terminating : 26
Linear r.f.: 7 Termination proved: 7

Non-linear r.f.: 19 Termination proved: 13

Non-terminating : 12
Exact semantics with PI: 2

Exact semantics with narrowing: 3
No improvement: 7

Policy Iteration-Based Conditional Termination and Ranking Functions 469

These results show that our approach is quite fast and can find complex
termination properties, but not as efficient as a technique specifically designed
for linear simple loops.

Other Programs. To our knowledge, no test suite exists for termination anal-
ysis (or conditional termination) on general programs. Hence we tested some
examples given on previous works. The analyzes were fast and sometimes suc-
cessful. However, several cases failed to give interesting results. We identified
two main causes.

1. The iterates in the polyhedral domain stabilize after a few iterations, as
in Example 14. This problem is directly related to the use of polyhedral
abstractions.

2. Termination (or interesting conditional termination) requires the use of lex-
icographic ordering [9]. Our approach seems to be more suited to prove
termination when the ranking relations are interlinked than when they form
a lexicographic order. This is especially interesting as other approaches (lim-
ited to termination analysis) are specifically designed for lexicographic or-
dering [9,2]. Hence our approach can be used in complement to those.

For both problems, partitioning the set of states should improve the results.

7 Conclusion

This paper has described how policy iteration can be used to find conditional ter-
mination properties. The analysis is fast and the result can be precise, although
it relies heavily on the abstract domain used. To improve the analysis, we plan
to investigate the application of dynamic trace partitioning [26] for conditional
termination. Another possibility would be to extend the policy iteration frame-
work to other abstract domains such as the generalized template domain [6] or
quadratic templates [1].

Acknowledgements. The author thanksD.Monniaux, L.Gonnord and S. Putot
as well as the anonymous referees for their comments and suggestions.

References

1. Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite
relaxation to compute accurate numerical invariants in static analysis. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 23–42. Springer, Heidelberg (2010)

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, Mar-
tel (eds.) [15], pp. 117–133

3. Amato, G., Parton, M., Scozzari, F.: Deriving numerical abstract domains via
principal component analysis. In: Cousot, Martel (eds.) [15], pp. 134–150

470 D. Massé

4. Bozga, M., Iosif, R., Konečný, F.: Deciding conditional termination. In: Flana-
gan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 252–266. Springer,
Heidelberg (2012)

5. Chen, H.Y., Flur, S., Mukhopadhyay, S.: Termination proofs for linear simple loops.
In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 422–438. Springer,
Heidelberg (2012)

6. Colón, M.A., Sankaranarayanan, S.: Generalizing the template polyhedral domain.
In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 176–195. Springer, Heidelberg
(2011)

7. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko,A., Sagiv,M.: Proving conditional
termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 328–340.
Springer, Heidelberg (2008)

8. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,
Heidelberg (2005)

9. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61.
Springer, Heidelberg (2013)

10. Costan, A., Gaubert, S., Goubault, É., Martel, M., Putot, S.: A policy iteration
algorithm for computing fixed points in static analysis of programs. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer,
Heidelberg (2005)

11. Cousot, P.: Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis, analyse sémantique de programmes
(in French). Thèse d’État ès sciences mathématiques, Université Joseph Fourier,
Grenoble, France (March 21, 1978)

12. Cousot, P., Cousot, R.: An abstract interpretation framework for termination.
In: Conference Record of the 39th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Philadelphia, PA, January 25-27,
pp. 245–258. ACM Press, New York (2012)

13. Cousot, P.: Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In: Cousot (ed.) [14], pp. 1–24

14. Cousot, R. (ed.): VMCAI 2005. LNCS, vol. 3385. Springer, Heidelberg (2005)
15. Cousot, R., Martel, M. (eds.): SAS 2010. LNCS, vol. 6337. Springer, Heidelberg

(2010)
16. Dai, L., Xia, B.: Non-termination sets of simple linear loops. In: Roychoudhury, A.,

D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 61–73. Springer, Heidelberg
(2012)

17. De Nicola, R. (ed.): ESOP 2007. LNCS, vol. 4421. Springer, Heidelberg (2007)
18. Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy iteration

on relational domains. In: De Nicola (ed.) [17], pp. 237–252
19. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration.

In: De Nicola (ed.) [17], pp. 300–315
20. Hogben, L.: Handbook of Linear Algebra, 1st edn. Discrete Mathematics and Its

Applications. Chapman & Hall/CRC (2007)
21. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static

analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

22. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination anal-
ysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

Policy Iteration-Based Conditional Termination and Ranking Functions 471

23. Massé, D.: Proving termination by policy iteration. Electr. Notes Theor. Comput.
Sci. 287, 77–88 (2012)

24. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear
ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

25. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE
Computer Society (2004)

26. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5) (2007)

27. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Cousot (ed.) [14], pp. 25–41

28. Seladji, Y., Bouissou, O.: Fixpoint computation in the polyhedra abstract domain
using convex and numerical analysis tools. In: Giacobazzi, R., Berdine, J., Mas-
troeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 149–168. Springer, Heidelberg
(2013)

29. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)

30. Urban, C.: The abstract domain of segmented ranking functions. In: Logozzo, F.,
Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 43–62. Springer, Heidelberg
(2013)

Widening for Control-Flow

Ben Hardekopf1, Ben Wiedermann2, Berkeley Churchill3, and Vineeth Kashyap1

1 University of California, Santa Barbara
{benh,vineeth}@cs.ucsb.edu

2 Harvey Mudd College
benw@cs.hmc.edu

3 Stanford University
bchurchill@cs.stanford.edu

Abstract. We present a parameterized widening operator that determines the
control-flow sensitivity of an analysis, i.e., its flow-sensitivity, context-sensitivity,
and path-sensitivity. By instantiating the operator’s parameter in different ways,
the analysis can be tuned to arbitrary sensitivities without changing the abstract
semantics of the analysis itself. Similarly, the analysis can be implemented so that
its sensitivity can be tuned without changing the analysis implementation. Thus,
the sensitivity is an independent concern, allowing the analysis designer to design
and implement the analysis without worrying about its sensitivity and then easily
experiment with different sensitivities after the fact. Additionally, we show that
the space of control-flow sensitivities induced by this widening operator forms
a lattice. The lattice meet and join operators are the product and sum of sensi-
tivities, respectively. They can be used to automatically create new sensitivities
from existing ones without manual effort. The sum operation in particular is a
novel construction, which creates a new sensitivity less precise than either of its
operands but containing elements of both.

1 Introduction

A program analysis designer must balance three opposing characteristics: soundness,
precision, and tractability. An important dimension of this tradeoff is control-flow sensi-
tivity: how precisely the analysis adheres to realizable program execution paths. Exam-
ples include various types of path sensitivity (e.g., property simulation [9] and predicate
abstraction [2]), flow sensitivity (e.g., flow-insensitive [3] and flow-sensitive [13]), and
context sensitivity (e.g., k-CFA [26] and object sensitivity [20]). By tracking realizable
execution paths more precisely, the analysis may compute more precise results but also
may become less tractable. Thus, choosing the right control-flow sensitivity for a par-
ticular analysis is crucial for finding the sweet-spot that combines useful results with
tractable performance.

We present a set of insights and formalisms that allow control-flow sensitivity to be
treated as an independent concern, separately from the rest of the analysis design and
implementation. This separation of concerns allows the analysis designer to empirically
experiment with many different analysis sensitivities in a guaranteed sound manner,
without modifying the analysis design or implementation. These sensitivities are not
restricted to currently known strategies; the designer can easily develop and experiment

K.L. McMillan and X. Rival (Eds.): VMCAI 2014, LNCS 8318, pp. 472–491, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Widening for Control-Flow 473

with new sensitivities as well. Besides allowing manual exploration of potential new
sensitivities, we also describe a mechanism to automatically create new sensitivities,
based on the insight that the space of control-flow sensitivities forms a lattice. The
meet and join operators of this lattice can be used to construct novel sensitivities from
existing ones without requiring manual intervention.

Key Insights. Our key insight is that control-flow sensitivity is a form of widening, and
that we can exploit this to separate control-flow sensitivity from the rest of the analy-
sis. This paper describes control-flow sensitivity as a widening operator parameterized
by an equivalence relation that partitions states according to an abstraction of the pro-
gram’s history of computation. This widening-based view of control-flow sensitivity
has both theoretical and practical implications: it generalizes and modularizes existing
insights into control-flow sensitivity, and provides the analysis designer with a method
for implementing and evaluating many possible sensitivities in a modular way.

A common technique to formalize control-flow sensitivity is to abstract a program’s
concrete control flow as an abstract trace (i.e., some notion of the history of computation
that led to a particular program point). There are many ways to design such an abstrac-
tion, including ad-hoc values that represent control-flow (e.g., the timestamps of van
Horn and Might [28]), designed abstractions with a direct connection to the concrete
semantics (e.g., the mementoes of Nielson and Nielson [21]), and calculated abstrac-
tions that result from the composition of Galois connections (e.g., the 0-CFA analysis
derived by Midtgaard and Jensen [18]). Existing formalisms are also tied to the notion
of abstraction by partitioning [8]: the control-flow abstraction partitions the set of states
into equivalence relations, the abstract values of which are merged.

Our formalisms follow this general approach (tracing and partitioning). However,
prior work starts from a subset of known control-flow approximations (e.g, context-
sensitivity [14,21,27], 0-CFA [18], or various forms of k-limiting and store value-based
approximations [15,23]) and seeks to formalize and prove sound those specific control-
flow approximations for a given analysis. In addition, most prior work calculates a
series of Galois connections that leads to a specific (family of) control-flow sensitiv-
ity. In contrast, our work provides a more general view that specifies a superset of the
control-flow sensitivities specified by prior work and exposes the possibility of many
new control-flow sensitivities, while simplifying the required formalisms and enabling
a practical implementation based directly on our formalisms. As such, our work has
similar goals to Might and Manolios’ a posteriori approach to soundness, which sepa-
rates many aspects of the precision of an analysis from its soundness [19]; however, our
technique relies on a novel insight that connects widening and control-flow sensitivity.

Contributions. This paper makes the following specific contributions:

– A new formulation of control-flow sensitivity as a widening operator, which gener-
alizes and modularizes existing formulations based on abstraction by partitioning.
This formulation leads to a method for designing and implementing a program anal-
ysis so that control-flow sensitivity is a separate and independent component. The
paper describes several requirements on the form a semantics should take to enable
separable control-flow sensitivity. Individually these observations are not novel;

474 B. Hardekopf et al.

in fact, they may be well-known to the community. When collectively combined,
however, they form an analysis design that permits sound, tunable control-flow ap-
proximation via widening. (Section 2)

– A novel way to automatically derive new control-flow sensitivities by combining
existing ones. Our results follow from category theoretic constructions and reveal
that the space of control-flow sensitivities forms a lattice. (Section 3)

– An in-depth example that applies our method to a language with mutable state and
higher-order functions, creating a tractable abstract interpreter with separate and
tunable control-flow sensitivity. We describe several example trace abstractions that
induce well-known sensitivities. We also illustrate our example with an accompa-
nying implementation, available in the supplemental materials.1 (Section 4)

2 Separating Control-Flow Sensitivity from an Analysis

In this section, we describe how to use widening to separate control-flow sensitivity
from the rest of the analysis and make it an independent concern. We first establish our
starting point: an abstract semantics that defines an analysis with no notion of sensitiv-
ity. We then describe a parameterized widening operator for the analysis and show how
different instantiations of the parameter yield different control-flow sensitivities. Fi-
nally, we discuss some requirements on the form of semantics used by the analysis that
make it amenable to describing control-flow sensitivity. The discussion in this section
leaves the exact language and semantics being analyzed unspecified; Section 4 provides
a detailed concrete example of these concepts for a specific language and semantics.

2.1 Starting Point

This subsection provides background and context on program analysis, giving us a start-
ing point for our design. Nothing in this subsection is novel, the material is adapted from
existing work [6]. For concreteness, we assume that the abstract semantics is described
as a state transition system, e.g., a small-step abstract machine semantics; Section 2.4
will discuss more general requirements on the form of the semantics. The abstract se-
mantics is formally described as a set of states ς̂ ∈ Σ� and a transition relation between
states F � ⊆ Σ� × Σ�. The semantics uses a transition relation instead of a function to
account for nondeterminism in the analysis due to uncertain control-flow (e.g., when
a conditional guard’s truth value is indeterminate, and so the analysis must take both
branches). The set of states forms a latticeL� = (Σ�,�,�,�). We leave the definition of
states and the transition relation unspecified, but we assume that any abstract domains
used in the states are equipped with a widening operator.2

The program analysis is defined as the set of all reachable states starting from some
set of initial states and iteratively applying the transition relation. This definition is

formalized as a least fixpoint computation. Let F̊ �(S)
def
== S ∪ F �(S), i.e., a relation that

is lifted to remember every state visited by the transition relation F �. The analysis of a

1 http://www.cs.ucsb.edu/˜pllab, under the Downloads link.
2 If the domain is a noetherian lattice then the lattice join operator is a widening operator.

http://www.cs.ucsb.edu/~pllab

Widening for Control-Flow 475

program P is defined as �P��
def
== lfp

Σ
�
I
F̊ �, i.e., the least fixpoint of F̊ � starting from an

initial set of states Σ�I derived from P.

The analysis �P�� is intractable, because the set of reachable states is either infinite
or, at the least, exponential in the number of nondeterministic transitions made during
the fixpoint computation. The issue is control-flow—specifically, the nondeterministic
choices that must be made by the analysis: which branch of a conditional should be
taken, whether a loop should be entered or exited, which (indirect) function should be
called, etc. The analysis designer at this point must either (1) bake into the abstract
semantics a specific strategy for dealing with control-flow; or (2) ignore the issue in the
formalized analysis design and use an ad-hoc strategy in the analysis implementation.

Our proposed widening operator is a means to formalize control-flow sensitivity in a
manner that guarantees soundness, but does not require that a sensitivity to be baked into
the semantics. On a practical level, it also allows the analysis designer to experiment
with many different sensitivities without modifying the analysis implementation.

2.2 Widening Operator

Our goal is to limit the number of states contained in the fixpoint, while still retain-
ing soundness. We do so by defining a widening operator for the fixpoint computation,
which acts on entire sets of states rather than on individual abstract domains inside
the states. This widening operator: (1) partitions the current set of reachable states into
disjoint sets; (2) merges all of the states in each partition into a single state that over-
approximates that partition; and (3) unions the resulting states together into a new set
that contains only a single state per partition. The widening operator controls the perfor-
mance and precision of the analysis by setting a bound on the number of states allowed:
there can be at most one state per partition. Decreasing the number of partitions can
speed up the fixpoint computation, thus helping performance, but can also merge more
states together in each partition, thus hindering precision.

Formally, the widening operator for control-flow sensitivity is parameterized by a
(unspecified) equivalence relation ∼ on abstract states. Given a widening operator �
on individual abstract domains, our new widening operator �� is defined as:

�� ∈ P(Σ�) × P(Σ�)→ P(Σ�)

A �� B =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

�
ς̂∈X
ς̂

∣
∣
∣
∣
∣

X ∈ (A ∪ B)
/∼
⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

where for a set S the notation S/∼ means the set of partitions of S according to equiv-
alence relation ∼, and the widening operator � on individual abstract domains is used
to merge the states in each resulting partition into a single state. Note that if the number
of partitions induced by ∼ is finite, then the number of states in each partition is also
finite because we apply the widening operator at each step of the fixpoint computation.

Theorem 1 (widening). If the number of partitions induced by ∼ is finite, then �� is a
widening operator.

476 B. Hardekopf et al.

Proof. Follows from the definition of a widening operator [7].

We now lift the transition relation F � in a similar fashion as before, except instead

of using set union we use our widening operator:
�F �(S)

def
== S �� F �(S). Then the

control-flow sensitive abstract semantics is defined as �P���
def
== lfp

Σ�I

�F �.
Even though we have not specified the equivalence relation that parameterizes the

widening operator, we can still prove the soundness of the analysis. Informally, because
the widening operator merges the states within each partition using � , the reachable

states using
�F � over-approximate the reachable states using F̊ �. Thus, the control-flow

sensitive abstract semantics is sound with respect to the original abstract semantics:

Theorem 2 (soundness)

γ(�P��) ⊆ γ(�P���)

Proof. We must show that (1) the least fixpoint denoted by �P��� exists; and (2) it
over-approximates �P��.

1. The existence of the fixpoint follows from part 2 of the definition of a widening
operator as given by Cousot and Cousot [7, def. 9.1.3.3].

2. That the widened fixpoint over-approximates the original fixpoint follows from part
1 of the definition of a widening operator as given by Cousot and Cousot [7, defs.
9.1.3.1–9.1.3.2].

2.3 Control-Flow Sensitivity

It remains to show how our widening operator determines the control-flow sensitivity
of the analysis. The determining factor is how the states are partitioned, which is con-
trolled by the specific equivalence relation on states ∼ that parameterizes the widening
operator. The question is, what constitutes a good choice for the equivalence relation?
For Theorem 1 to hold, it must induce a finite number of partitions, but what other
characteristics should it have? Our goal is tractability with a minimal loss of precision;
this means we should try to partition the states so that there are a tractable number of
partitions and the states within each partition are as similar to each other as possible (to
minimize the information lost to merging).

A reasonable heuristic is to partition states based on how those states were computed,
i.e., the execution history that led to each particular state. The hypothesis is that if two
states were derived in a similar way then they are more likely to be similar. This heuristic
of similarity is exactly the one used by existing control-flow sensitivities, such as flow-
sensitive maximal fixpoint, k-CFA, object-sensitivity, property simulation, etc. These
sensitivities each compute an abstraction of the execution history (e.g., current program
point, last k call-sites, last k allocation sites, etc.) and use that abstraction to partition
and merge the states during the analysis.

Therefore, the widening operator should partition the set of states according to their
control-flow sensitivity approximation:

ς̂1 ∼ ς̂2 ⇐⇒ πτ̂(ς̂2) = πτ̂(ς̂2)

Widening for Control-Flow 477

where each state contains an abstract trace τ̂ describing some abstraction of the ex-
ecution history, and πτ̂(ς̂) projects a state’s abstract trace. This definition causes the
widening operator to merge all states with the same trace, i.e., all states with the same
approximate execution history. The widened analysis can be defined without specifying
a particular abstract trace domain; different trace domains can be plugged in after the
fact to yield different sensitivities.

Trace Abstractions. We have posited that control-flow sensitivity is based on an ab-
straction of the execution history of a program, called a trace. This implies that the
trace abstraction is related to the trace-based concrete collecting semantics, which con-
tains all reachable execution paths, i.e., sequences of states, rather than just all reachable
states. An abstract trace is an abstraction of a set of paths in the concrete collecting se-
mantics. For example, a flow-sensitive trace abstraction records the current program
point, abstracting all paths that reach that program point. A context-sensitive trace ab-
straction additionally records the invocation context of the current function, abstracting
all paths that end in that particular invocation context (e.g., as in Nielson and Nielson’s
mementoes [21]). Different forms of context-sensitivity define the abstract “context”
differently: for example, traditional k-CFA defines it as the last k call-sites encountered
in the concrete trace; stack-based k-CFA considers the top k currently active (i.e., not yet
returned) calls on the stack; object sensitivity considers abstract allocation sites instead
of call-sites; and so on.

We note that it is not necessary for the trace abstraction to soundly approximate
the concrete semantics for the resulting analysis to be sound. The trace abstraction is
a heuristic for partitioning the states; as long as the number of elements in the trace
abstraction domain is finite (and hence the number of partitions enforced by the widen-
ing operator is finite), the analysis will terminate with a sound solution. In fact, it isn’t
strictly necessary for ∼ to be based on control-flow at all—exploring other heuristics
for partitioning states would be in interesting avenue for future work.

2.4 Semantic Requirements

To benefit from widening-based control-flow sensitivity, an abstract semantics must
satisfy certain requirements. To abstract control, the analysis must be able to introduce
new program execution paths that over-approximate existing execution paths. To make
this possible, we argue that there should be some explicit notion in the program seman-
tics of the “rest of the computation”—i.e., a continuation. When the analysis abstracts
control, it is abstracting these continuations. The explicit control-flow representation
can take a number of possible forms. For example, it could be in the form of a syn-
tactic continuation (e.g., if a program is in continuation-passing style then the “rest of
the computation” is given as a closure in the store) or a semantic continuation (e.g.,
the continuation stack of an abstract machine). Since the abstract states form a lattice,
any two distinct states must have a join, and (according to our requirement) this joined
state must contain a continuation that over-approximates the input states’ continuations.
Thus, by joining states the analysis approximates control as well as data.

Some forms of semantics do not meet this requirement, including various forms pro-
posed as being good foundations for abstract interpretation [16,24,25]. For example,

478 B. Hardekopf et al.

big-step and small-step structural operational semantics implicitly embed the continu-
ations in the semantic rules. Direct-style denotational semantics similarly embeds this
information in the translation to the underlying meta-language. This means that there
is no way to abstract and over-approximate control-flow; the analysis must use what-
ever control-flow the original semantics specifies (or, alternatively, use ad-hoc strate-
gies baked into the analysis implementation to silently handle control-flow sensitivity).
Some limited forms of control-flow sensitivity may still be expressed when the anal-
ysis takes care to join only those states that already have the same continuation (e.g.,
flow-sensitive maximal fixpoint), but many other forms (e.g., k-CFA or other forms of
context-[in]sensitivity) remain difficult to express.

3 Relating and Combining Sensitivities

One of the goals of this work is to make it easier for analysis designers to experiment
with new trace abstractions. To this end, it would be useful to systematically create new
trace abstractions from existing ones and to understand how trace abstractions relate to
one another.

An obvious way to combine trace abstractions into a new form of control-flow sensi-
tivity is to take their product.3 Given two trace abstractions, one constructs their product
by taking the cartesian product of the corresponding sets and defining the update func-
tion to act pairwise on the resulting tuple. A less obvious method of combining trace
abstractions is to take their sum. This is a novel way to create new control-flow sensi-
tivities that has not been presented before. Think of a trace abstraction as allowing the
analysis to decide whether two abstract states computed during the analysis should be
joined. Informally, the product of two trace abstractions joins two states only if both
traces agree that the states should be joined, whereas the sum of two trace abstractions
joins two states if either trace determines that the states should be joined.

In the next section, we describe how to construct the sum of two traces. We then show
that sum and product are the join and meet operations of a lattice of control-flow sensi-
tivities. This construction suggests new control-flow sensitivities that could be used in
practice and also enables a fully automated exploration of control-flow sensitivities that
complements manual exploration. The supplementary material contains an implemen-
tation of the product and sum operators described here, as part of the implementation
of the example abstract semantics described in Section 4.

3.1 Sums of Trace Abstractions

While the product of two traces is obvious, constructing the sum is unintuitive. We
formally define a trace abstraction as a (unspecified) finite set Θ�, a distinct element
1 ∈ Θ� that acts as an initial trace for the analysis, and a trace update function τupdate :
(Σ� × Θ�) 1 → Θ� that specifies how the trace changes at each statement transition
in the abstract semantics. The pair (Θ�, τupdate) is the object we call a trace abstraction.

3 Another interesting combination to explore would be the reduced product, however it is not in
general possible to automatically derive the reduced product of two domains [7, §10].

Widening for Control-Flow 479

When discussing multiple trace abstractions we use ΘX , τX , and 1X to denote the Θ�,
τupdate, and initial trace for each trace abstraction X.

A naı̈ve attempt to construct the sum would use the disjoint union of the trace ab-
stractions’ underlying sets. However, this attempt fails because each trace abstraction
has a unique initial trace, and thus the disjoint union does not constitute a valid trace
abstraction. To create a valid sum X + Y from trace abstractions X and Y, we must cre-
ate a new set ΘX+Y whose initial trace 1X+Y ∈ ΘX+Y “agrees” with both 1X and 1Y , in a
sense that we formalize below. The sum transition function τX+Y must also “agree” with
both τX and τY , in the same sense. The central insight behind the sum construction is to
construct an equivalence relation between elements of ΘX and ΘY , and let the elements
of ΘX+Y be the corresponding equivalence classes. Then 1X+Y and τX+Y agree with the
individual trace abstractions X and Y if they produce equivalence classes that contain
the same elements that would have been produced by X and Y individually. It remains to
describe how the analysis creates these equivalence classes: they cannot be constructed
before the analysis begins, rather the analysis constructs them dynamically (i.e., as it
executes) in the following way.

Definition 1. Let X and Y be trace abstractions and ς̂ be an abstract state. Inductively
define an equivalence relation ∼ on the disjoint unionΘX ΘY by taking the symmetric,
reflexive and transitive closure while applying the following rules:

1X ∼ 1Y

i, j ∈ {X,Y} a ∈ Θi b ∈ Θ j a ∼ b

τi(ς̂, a) ∼ τ j(ς̂, b)

The sum X + Y has underlying set ΘX+Y = (ΘX ΘY)/∼, i.e., the set of equivalence
classes of ΘX ΘY according to ∼. The equivalence relation is defined by construction
so that τX and τY will always agree on which equivalence class of τ̂Xτ̂Y to transition to.
We now define the disjoint union transition function τX+Y . For τ̂ ∈ ΘX , let [τ̂] denote the
equivalence class of τ̂ in ΘX+Y . The function τX+Y is defined as follows: for any ς̂ ∈ Σ�
and [τ̂] ∈ ΘX+Y , pick some τ̂′ ∈ ΘX so that τ̂′ ∈ [τ̂]. Then τX+Y (ς̂, [τ̂]) = [τX(ς̂, τ̂′)]. The
equivalence relation ensures this is well defined for any valid choice of τ̂′. By symmetry,
the same applies to τ̂ ∈ ΘY .

The essence of this definition is that it causes the following diagram to commute,
making τX and τY agree with τX+Y :

Σ� × ΘX 1
(ς̂,x) �→ (ς̂,[x])

1 �→1 ��

τX

��

Σ� × ΘX+Y 1
τX+Y

��

Σ� × ΘY 1

(ς̂,[y])←� (ς̂,y)
1←�1��

τY

��

ΘX [·]
�� ΘX+Y ΘY[·]

��

X + Y is a trace abstraction that is less precise than both X and Y individually, but
still contains some information from both. When implemented, the definition of the
equivalence relation is unknown until runtime, where it is incrementally discovered by

480 B. Hardekopf et al.

the analysis. Initially, the relation is the one forcing 1X ∼ 1Y . At each iteration of the
fixpoint calculation the functions τX and τY are computed, and the results are used to
discover more equivalences.

From another perspective, one can also view a trace abstraction X as a finite automa-
ton with a set of automaton states ΘX , a transition function τX , and an initial point 1X .
The input alphabet is the set Σ�. We were surprised to discover that, from this perspec-
tive, our definition of summing trace abstractions corresponds exactly to a widening
operator on finite automata described by Bartzis and Bultan [4]. Their operator was de-
signed to provide a “less precise” finite automaton that accepts a larger language than
both of its inputs.

3.2 Trace Abstractions Form a Lattice

The sum and product operations described above are dual to each other in a special way:
they are the join and meet operations of a lattice. The lattice partial order is based on
the precision of the trace abstractions. Using the notation from the previous section, we
say that a trace abstraction X is more precise than Y (written as X ≤ Y) if there exists a
relation on the corresponding automata satisfying certain properties.

Definition 2. X ≤ Y if there is a relation R ⊂ Y × X such that

1. (1Y ,1X) ∈ R
2. (y, x) ∈ R implies for all ς̂ ∈ Σ�, (τY(ς̂, y), τX(ς̂, x)) ∈ R
3. R is injective, meaning (y, x) ∈ R and (y′, x) ∈ R implies y = y′.

The relation R forces Y and X to behave in the same way, but also requires that X has
“more” members than Y. It can be likened to an injective function. The relation ≤ is a
preorder; by implicitly taking equivalence classes it becomes a partial order. Intuitively,
X < Y corresponds to the intuition “X is strictly more precise than Y”, in every way
of measuring it. Members of the same equivalence class correspond to families of trace
abstractions that provide exactly the same precision.

Theorem 3. The space of trace abstractions form a lattice, where sum corresponds to
join and product corresponds to meet.

Proof. The proof follows from elementary results in category theory, order theory and
our definitions. The details are given in the supplementary materials.

Use of Category Theory. Category theory provides useful constructions that apply in
general settings. We arrived at our construction of the sum operator and the lattice of
sensitivities via category theory, because they were non-obvious without this perspec-
tive. We used category theory to derive the definition for sums of trace abstractions and
prove the theorems elegantly, and we suspect it can be used to achieve further insights
into combining sensitivities. In our supplementary material we detail how we used it to
arrive at our results.

Widening for Control-Flow 481

4 Analysis Design Example

In this section, we give a detailed example of how to build an abstract interpreter with
separate and tunable control-flow sensitivity. Our example picks up in the middle of
the design process: an analysis designer has formally defined an abstract semantics
that is amenable to defining control-flow sensitivity (cf. Section 2) and the semantics
has been proven sound with respect to a concrete semantics.4 We show how to extend
this analysis to support tunable control flow and how to easily and modularly tune the
control-flow sensitivity of the resulting analysis. The supplementary material contains
an implementation of this example analysis written in Scala.

4.1 Syntax

Figure 1 gives the syntax of a small but featureful language. It contains integers, higher-
order functions, conditionals, and mutable state. As discussed in Section 2.4, tunable
control-flow sensitivity requires an explicit representation of a program’s control. For
this example we chose to make control-flow explicit in the program syntax, hence we
use continuation-passing style (CPS). We assume that the CPS syntax is the result of a
CPS-translation from a programmer-facing, direct-style syntax.

n ∈ Z x ∈ Variable ⊕ ∈ BinaryOp 	 ∈ Label

L ∈ Lam ::= λ−→x . S
T ∈ Trivial ::= [n1..n2] | x | L | Tl ⊕ Tr

S ∈ Serious ::= let x = T in S | set x = T in S | if T St Sf | x(
−→
T)

Fig. 1. Continuation-passing style (CPS) syntax for the example language. Vector notation de-
notes an ordered sequence. The notation [n1..n2] denotes nondeterministic choice from a range of
integers, e.g., to simulate user input.

As usual for CPS [22], expressions are separated into two categories: Trivial and
Serious. Trivial expressions are guaranteed to terminate and to have no side-effects;
Serious expressions make no such guarantees. Functions take an arbitrary number of
arguments and can represent either user-defined functions from the direct-style program
(modified to take an additional continuation parameter) or the continuations created by
the CPS transform (including a halt continuation that terminates evaluation). We assume
that it is possible to syntactically disambiguate among calls to user-defined functions,
calls to continuations that correspond to a function return, and all other calls. All syn-
tactic entities have an associated unique label 	 ∈ Label; the expression ·	 retrieves this
label (for example, the label of Serious expression S is S).

4.2 Original Abstract Semantics

The original abstract semantics defines a computable approximation of a program’s be-
havior using a small-step abstract machine. Figure 2a describes the semantic domains

4 For reasons of space we omit the concrete semantics and soundness proof; neither are novel.

482 B. Hardekopf et al.

(for now, ignore the boxed elements5). An abstract state consists of a set of Serious
expressions S (which represents the set of expressions that might execute at the current
step), an abstract environment ρ̂, and an abstract store σ̂. Because the language is dy-
namically typed, any variable may be an integer or a closure at any time. Thus, abstract
values are a product of two abstractions: one for integers and one for closures.6 Integers
are abstracted with the constant propagation lattice Z� = Z∪{�Z� ,⊥Z�}, and closures are
abstracted with the powerset lattice of abstract closures. The analysis employs a finite
address domain Address� and a function alloc to generate abstract addresses; we leave
these elements unspecified for brevity.

Figure 2b describes the semantic function η̂, which abstractly interprets Trivial ex-
pressions. Literals evaluate to their abstract counterparts, injected into a tuple. Variable
lookup joins all the abstract values associated with that variable. Figure 2c describes
the abstract semantics of Serious expressions. In the rule for function calls, we use the

notation
−→
T to mean the sequence of argument expressions, Ti to mean a particular ar-

gument expression, and [−−−−−−→pi → qi] to mean each pi maps to its corresponding qi. Note
the sources of non-determinism: An if statement may lead to multiple states (i.e., when
the condition’s abstract value is not precise enough to send the abstract interpretation
down only one branch). A function call also may lead to multiple states (i.e., when
evaluating the function’s name leads to a set of closures, each of which is traced by the
abstract interpretation). The semantics employs weak updates: when a value is updated,
the analysis joins the new value with the old value. It is possible under certain circum-
stances to strongly update the store (by replacing the old value instead of joining with
it), but for simplicity our example always uses weak updates.

The full analysis is defined as the reachable states abstract collecting semantics of
Serious evaluation: �S�� = lfp

Σ
�

I
F̊ �. This analysis is sound and computable, however it

is still intractable because the set of reachable states grows exponentially with the num-
ber of nondeterministic branch points. To make this analysis tractable requires some
form of control-flow sensitivity.

4.3 Tunable Control-Flow Sensitivity

We now extend the abstract semantics for our language to express tunable control-
flow sensitivity. As described in Section 2, we extend the definition of abstract states
to include a trace abstraction domain τ̂ ∈ Θ�. We leave the trace abstraction domain
unspecified; the specific instantiation of the trace abstraction domain will determine the
analysis control-flow sensitivity.

We make three changes to the abstract semantics of the previous section to integrate
trace abstractions into the semantics; these are represented by the boxed elements in
Figure 2. First, we add the trace abstraction domain to the abstract state definition.
Next, we modify F � to operate on this new domain. This change gives the trace update
mechanism access to all the data needed to compute a new abstract trace. Finally, we

5 All unboxed elements define the original abstract semantics. Boxed elements describe the ex-
tensions that support parameterized control-flow sensitivity; they are described in Section 4.3.

6 For brevity, we omit error-handling semantics and sometimes omit one part of the tuple, when
the meaning is clear from the context (e.g., when interpreting Serious values in Figure 2c).

Widening for Control-Flow 483

n̂ ∈ Z� ⊕̂ ∈ BinaryOp� τ̂ ∈ Θ�

ς̂ ∈ Σ� = P(Serious) × Env� × Store� × Θ� (abstract states)
ρ̂ ∈ Env� = Variable→ P(Address�) (environments)
σ̂ ∈ Store� = Address� → Value� (stores)

ĉlo ∈ Closure� = Θ� × Env� × Lam (closure values)
v̂ ∈ Value� = Z

� × P(Closure�) (abstract values)
F � ∈ P(Σ�)→ P(Σ�) = Figure 2c (transition function)

(a) Abstract semantic domains.

η̂ ∈ Trivial × Env� × Store� × Θ� → Value�

η̂([n1..n2], ρ̂, σ̂, τ̂) = 〈α([n1..n2]), ∅〉
η̂(x, ρ̂, σ̂, τ̂) =

⊔

â ∈ ρ̂(x)

σ̂(â)

η̂(λ−→x . S, ρ̂, σ̂, τ̂) = 〈⊥
Z� , {〈 τ̂ , ρ̂, λ−→x . S〉}〉

η̂(Tl ⊕ Tr, ρ̂, σ̂, τ̂) = η̂(Tl, ρ̂, σ̂, τ̂) ⊕̂ η̂(Tr, ρ̂, σ̂, τ̂)

(b) Abstract Trivial evaluation.

Si ∈ S where S′ ρ̂′ σ̂′ τ̂′

let x = T in Sb �T� = v̂ Sb ρ̂[x �→ â′] σ̂ � [â′ �→ v̂] τstmt(ς̂, Sb)

set x = T in Sb �T� = v̂ ∧ ρ̂(x) =
−→̂
a Sb ρ̂ σ̂ � [

−−−−−→
âi �→ v̂] τstmt(ς̂, Sb)

if T St Sf
�T� � {0̂,⊥

Z� } St ρ̂ σ̂ τstmt(ς̂, St)

�T� � 0̂ Sf ρ̂ σ̂ τstmt(ς̂, Sf)

x(
−→
T)

�Ti� = v̂i ∧ Sc ρ̂c[
−−−−−−→
yi �→ â′i] σ̂ � [

−−−−−−→
â′i �→ v̂i] τcall(ς̂, ĉlo)〈 τ̂c , ρ̂c, λy . Sc〉

︸���������������︷︷���������������︸

ĉlo

∈ �x�

(c) Abstract transition function F �, where �·� = η̂(·, ρ̂, σ̂, τ̂) and a fresh address â′ is given by
alloc. Given a current state ς̂ = 〈S, ρ̂, σ̂, τ̂〉, the transition function yields a set of new states
F �(ς̂) = 〈{S′}, ρ̂′, σ̂′, τ̂′〉.

Fig. 2. A standard abstract semantics over a simple abstract value domain (constant- and closure-
propagation). The boxed elements indicate what extensions are necessary for this semantics to
support parameterized control-flow sensitivity.

484 B. Hardekopf et al.

extend abstract closures to contain an abstract trace. Intuitively, a closure’s abstract
trace corresponds to the trace that existed before a function was called. Any analysis
that tracks calls and returns (e.g., stack-based k-CFA) can use this extra information to
simulate stack behavior upon exiting a function call by restoring the trace to the point
before a function was called.

The analysis designer tunes control-flow sensitivity by specifying an abstract trace
domain and a pair of transition functions that generate new abstract traces:

τ̂ ∈ Θ�
τstmt ∈ Σ� × Serious→ Θ�
τcall ∈ Σ� × Closure� → Θ�

The abstract trace domain summarizes the history of program execution. The abstract
trace transition function τstmt specifies how to generate a trace when execution transi-
tions between two program points in the same function. The abstract trace transition
function τcall specifies how to generate a trace when execution transitions across a func-
tion call. The program analysis is defined as the widened reachable states abstract col-

lecting semantics, �S��� = lfp
Σ�I

�F �, where the equivalence relation ∼ is the one given

in Section 2.3.
The precision and performance of the analysis depend on the particular choice of

trace abstraction for control-flow sensitivity. In the remainder of this section, we present
six illustrative examples.

Flow-Insensitive, Context-Insensitive Analysis. In a flow-insensitive analysis, any
Ser-ious expression can execute after any other Serious expression, regardless of where
those expressions appear in the program. Rather than compute separate solutions for
each program point, the analysis computes a single solution for the entire program. Us-
ing our method, the analysis designer can specify flow-insensitive analysis by making
the Θ� domain a single value, so that all states will necessarily have the same abstract
trace and hence belong to the same partition.

Algorithm 1. Flow-insensitive, context-insensitive

τ̂ ∈ Θ� = 1

τstmt(,) = 1

τcall(,) = 1

Flow-Sensitive (FS), Context-Insensitive Analysis. A flow-sensitive analysis executes
statements in program-order, computing a single solution for each program point. The
analysis designer can specify flow-sensitive analysis by making theΘ� domain the set of
program labels and updating the trace at each step to be the current program point. The

Widening for Control-Flow 485

abstract semantics at each step collects all states at the same program point and joins
them together, constraining the maximum number of abstract states to be the number
of program points. In the dataflow analysis community this is called the flow-sensitive
maximal fixpoint analysis (MFP).

Algorithm 2. Flow-sensitive, context-insensitive

τ̂ ∈ Θ� = Label

τstmt(, S) = S	

τcall(, 〈 , , λy . Sc〉) = S	c

FS + Traditional k-CFA Analysis. Traditional k-CFA [26] is a context-sensitive anal-
ysis that keeps track of the last k call-sites encountered along an execution path and
uses this callstring to distinguish information at a given program point that arrives via
different routes. At each function call, the analysis appends the call-site to the call-
string and truncates the result so that the new callstring has at most k elements. The
analysis designer can specify flow-sensitive k-CFA by making the Θ� domain contain
a tuple of the current program point and the callstring (as a sequence of labels). The
first element of the tuple tracks flow-sensitivity; the second element of the tuple tracks
context-sensitivity. Note that the current callstring is left unmodified when returning
from a call (i.e., calling the continuation that was passed into the current function); thus
the callstring does not act like a stack.

Algorithm 3. Flow-sensitive, k-CFA

τ̂ ∈ Θ� = Label × Label�

τstmt(〈 , , , τ̂〉, S) = 〈S	, π2(τ̂)〉
τcall(〈S, , , τ̂〉, 〈 , , λy . Sc〉) = 〈S	c, τ̂′〉

where τ̂′ =

⎧
⎪⎪⎨
⎪⎪⎩

first k of (S	 :: π2(τ̂)) if S ∈ UserCalls

π2(τ̂) otherwise

Flow-Sensitive, Stack-Based k-CFA Analysis. In dataflow analysis, k-CFA is usually
defined as having a stack-like behavior: upon returning from a function call, the current
callstring is discarded and replaced by the callstring that held immediately before mak-
ing that function call (in effect, the callstring is “pushed” when entering a function and
“popped” when exiting the function). The analysis designer can achieve this behavior
by modifying τcall to detect continuation calls that correspond to function returns and to

486 B. Hardekopf et al.

replace the current callstring with the callstring held in the return continuation’s closure.
The CPS transformation guarantees this callstring to be the one that held immediately
before the current function was called.

Analysis Example 4. Flow-sensitive, stack-based k-CFA

τ̂ ∈ Θ� = Label × Label�

τstmt(〈 , , , τ̂〉, S) = 〈S	, π2(τ̂)〉
τcall(〈S, , , τ̂〉, 〈τ̂c, , λy . Sc〉) = 〈S	c, τ̂′〉

where τ̂′ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

first k of (S	 :: π2(τ̂)) if S ∈ UserCalls

π2(τ̂c) if S ∈ ReturnKont

π2(τ̂) otherwise

FS + k-allocation-site Sensitive Analysis. Object-sensitivity [20] is a popular form of
context-sensitive control-flow sensitivity for object-oriented languages. We do not have
objects in our example language, but as noted elsewhere [27] object-sensitivity should
more properly be termed allocation-site sensitivity—it defines a function’s context in
terms of the last k allocation-sites (i.e., abstract addresses) rather than callstrings. Under
the assumption that every function call uses a variable as the first argument, the analysis
designer can employ a form of allocation-site sensitivity by using that variable’s address
to form the abstract trace. The value self refers to the address of the call’s first argument.
In an object-oriented language, this argument always corresponds to the receiver of a
method (i.e., the self or this pointer).

Analysis Example 5. Flow-sensitive, k-allocation-site sensitive

τ̂ ∈ Θ� = Label × Address�
�

τstmt(〈 , , , τ̂〉, S) = 〈S	, π2(τ̂)〉
τcall(〈S, , , τ̂〉, 〈τ̂c, , λy . Sc〉) = 〈S	c, τ̂′〉

where τ̂′ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

first k of (self :: π2(τ̂)) if S ∈ UserCalls

π2(τ̂c) if S ∈ ReturnKont

π2(τ̂) otherwise

Property Simulation Analysis. A more unusual form of control-flow sensitivity is Das
et al.’s property simulation [9]. Property simulation relies on a finite-state machine

Widening for Control-Flow 487

(FSM) that describes a higher-level notion of execution trace—for example, an FSM
whose states track whether a file is open or closed, or whether a lock is locked or un-
locked. The analysis transitions this FSM according to the instructions it encounters. At
a join point in the program (e.g., immediately after the two branches of a conditional)
the analysis either merges the execution state or not depending on whether the FSMs
along the two paths are in the same FSM state. The analysis designer can specify prop-
erty simulation by makingΘ� be a tuple that contains the current program point and the
current state of the FSM. The FSM is updated based on an API (e.g., for file or lock
operations) so that τcall will transition the FSM accordingly.

Analysis Example 6. Flow-sensitive, property-sensitive

τ̂ ∈ Θ� = Label × FSM

τstmt(〈 , , , τ̂〉, S) = 〈S	, π2(τ̂)〉
τcall(〈S, , , τ̂〉, 〈τ̂c, , λy . Sc〉) = 〈S	c, δFSM(S, π2(τ̂))〉

5 Related Work

In abstract interpretation, there is a relatively small but dedicated body of research on
trace abstraction and on formalizing control-flow sensitivity as partitioning. What dis-
tinguishes our work from most prior efforts is a different focus: prior work focuses on
the integration of control-flow abstractions into an existing analysis; our work focuses
on the separation of control-flow abstractions from an existing analysis, so that it is
easier for analysis designers to experiment with different control-flow sensitivities. In
this section, we discuss the implications of these differences. Broadly, no prior work
has couched control-flow sensitivity in terms of a widening operator based on abstrac-
tions of the program history, which permits a simpler, more general, and more tunable
formulation of control-flow sensitivity.

A Posteriori Soundness. Our work is most similar to Might and Manolios’ a pos-
teriori soundness for non-deterministic abstract interpretation [19], which also seeks
to separate the aspects of an analysis that affect its precision from those that affect its
soundness. Both techniques achieve this separation by introducing a level of indirection,
although the mechanisms are different. Our technique uses an equivalence relation that
partitions abstract states. Might and Manolios’ uses an abstract allocation policy that
can dynamically allocate the resources that determine how to partition abstract states.
We accomplish soundness by leveraging the soundness of widening. Might and Mano-
lios accomplish soundness via their technique of an a posteriori proof: their abstract
allocation policies induce a non-deterministic abstract semantics that can be shown to
produce sound analysis results, even though the abstract semantics do not conform to
the traditional simulation of the concrete semantics. Our work also re-formulates one
of Might and Manolios’ insights: that most control-flow (or heap-allocation) approx-
imations are already sound because they add only extra information to the analysis.

488 B. Hardekopf et al.

A particular strength of Might and Manolios’ work is that it makes it easy to express
sound, adaptable analyses. A particular strength of our work is that it makes it easy to
declaratively describe many forms of analyses and to systematically combine them. It
is not clear whether the two techniques are equally expressive, nor whether they are
equally useful in practice. An interesting line of research would be to explore how well
each technique is suited to the practical discovery, design, and implementation of pre-
cise analyses and how the two techniques might compete with or complement each
other.

Trace Partitioning. Our work is similar in some respects to the trace partitioning work
by Mauborgne and Rival [15,23], which itself builds on the abstraction-by-partitioning
of control-flow by Handjieva and Tzolovski [11]. Trace partitioning was developed in
the context of the Astrée static analyzer [5] for a restricted subset of the C language, pri-
marily intended for embedded systems. Mauborgne and Rival observe that usually ab-
stract interpreters are (1) based on reachable states collecting semantics, making it diffi-
cult to express control-flow sensitivity; and (2) designed to silently merge information at
control-flow join points7—what in dataflow analysis is called “flow-sensitive maximal
fixpoint” [12]. They propose a method to postpone these silent merges when doing so
can increase precision; effectively they add a controlled form of path-sensitivity. They
formalize their technique as a series of Galois connections.

Mauborgne and Rival describe a denotational semantics-based analysis that can use
three criteria to determine whether to merge information at a particular point: the last k
branch decisions taken (i.e., whether an execution path took the true or false branch);
the last k while-loop iterations (effectively unrolling the loop k times); and the value of
some distinguished variable. These criteria are guided by syntactic hints inserted into
a program prior to analysis; the analysis itself can choose to ignore these hints and
merge information regardless, as a form of widening. This feature is a form of dynamic
partitioning, where the choice of partition is made as the analysis executes. Our sum
abstraction (Section 3.1) is another form of dynamic partitioning.

The analysis described by Mauborgne and Rival requires that the program is
non-recursive; it fully inlines all procedure calls to attain complete context-sensitivity.
Because the semantics they formulate does not contain an explicit representation of con-
tinuations, there is no way in their described system to achieve other forms of context-
sensitivity (e.g., k-CFA, including 0-CFA, i.e., context-insensitive analysis) without
heavily modifying their design, implementation, and formalisms (cf. our discussion
in Section 2.4). Because our method seeks more generality, it can express all of the
sensitivities described by Mauborgne and Rival.

Predicate Abstraction. Fischer et al. [10] propose a method to join dataflow analy-
sis with predicate abstraction using predicate lattices to gain a form of tunable intra-
procedural path-sensitivity. At a high level these predicate lattices perform a similar
“partition and merge” strategy as our own method. However, our method is more gen-
eral: we can specify many more forms of control-flow sensitivity due to our insights

7 By which they mean that the abstract semantics say nothing about merging information, but
the implementation does so anyway.

Widening for Control-Flow 489

regarding explicit control state. One can consider their work as a specific instantiation
of our method using predicates as the trace abstraction. On the other hand, Fisher et al.
use predicate refinement to automatically determine the set of predicates to use, which
is outside the current scope of our method. In order to do the same, our method would
need to add a predicate refinement strategy.

Context Sensitivity. There are several papers that describe various abstract interpreta-
tion-based approaches to specific forms of context sensitivity, including Nielson and
Nielson [21], Ashley and Dybvig [1], Van Horn and Might [28], and Midtgaard and
Jensen [17,18]. Nielson and Nielson describe a form of context-sensitivity based on
abstractions of the history of a program’s calls and returns [21]. Although this formula-
tion is separable, it is not as general as the one described in this paper. For example, it
cannot capture calls and returns in obfuscated binaries (which may contain no explicit
calls and returns); to capture such behavior, a different formulation similar to property
simulation is required [14]. Our parameterized, widening-based approach we describe
is general enough to capture either of these formulations (and many more).

Ashley and Dybvig [1] give a reachable states collecting semantics formulation of
k-CFA for a core Scheme-like language; they instrument both the concrete and abstract
semantics with a cache that collects CFA information. The analysis as described in the
paper is intractable (i.e., although it yields the same precision as k-CFA, the number of
states remains exponential in the size of the program). Ashley and Dybvig implement
a tractable, flow-insensitive version of the analysis independently from the formally-
derived version, rather than deriving the tractable version directly from the formal
semantics.

Van Horn and Might [28] also give a method for constructing analyses, using an
abstract machine-based, reachable states collecting semantics of the lambda calculus.
Their analysis includes a specification of k-CFA. An important contribution of their
paper is a technique to abstract the infinite domains used for environments and semantic
continuations using store allocation (this is an alternative we could have used for our
example analysis in Section 4 instead of CPS form). As with Ashley and Dybvig, the
analysis as described in their paper does not directly yield a tractable analysis. Van Horn
and Might describe a tractable version of their analysis (not formally derived from the
language semantics) that uses a single, global store to improve efficiency, but disallows
flow-sensitive analysis because it computes a single solution for the entire program.

Midtgaard and Jensen [17] derive a tractable, demand-driven 0-CFA analysis for a
core Scheme-like language using abstract interpretation. Their technique specifically
targets 0-CFA, rather than general k-CFA. They employ a series of abstractions via
Galois connections, the composition of which leads to the final 0-CFA analysis. In a
later paper, Midtgaard and Jensen derive another 0-CFA analysis to compute both call
and return information [18]. Our example semantics of Section 4 bears a resemblance
to Midtgaard and Jensen’s (and to van Horn and Might’s machine construction), but
our goals differ. Our example illustrates how to achieve a sound analysis with arbitrary
control-flow sensitivity, without having to derive the soundness for each sensitivity.

490 B. Hardekopf et al.

6 Conclusions and Future Work

We have presented a method for program analysis design and implementation that al-
lows the analysis designer to parameterize over control-flow abstractions. This sepa-
ration of concerns springs from a novel theoretical insight that control-flow sensitivity
is induced by a widening operator parameterized by trace abstractions. Our method
makes it easier for an analysis designer to specify, implement, and experiment with
many forms of control-flow sensitivity, which is critical for developing new, practical
analyses. Our perspective on the space of trace abstractions as a category also enabled
new insights into automatically constructing and combining trace abstractions in novel
ways to achieve new forms of control-flow sensitivity. Our future work involves explor-
ing these ideas further, for example, using combinatorial optimization to explore the
vast space of possible trace abstractions. Additionally, our method applies not only to
control-flow but to any property of a program that can be abstracted and that might be
useful to partition the analysis state-space.

Acknowledgments. We are grateful to Matt Might, Jan Midtgaard, David van Horn,
and Yannis Smaragdakis for their helpful advice and discussions. We are also grateful
to the anonymous VMCAI reviewers for their feedback. This work was supported by
NSF CCF-1117165.

References

1. Ashley, J.M., Dybvig, R.K.: A practical and flexible flow analysis for higher-order languages.
ACM Transactions on Programming Languages and Systems (TOPLAS) 20(4) (July 1998)

2. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate abstraction of
C programs. In: ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI (2001)

3. Banning, J.P.: An efficient way to find the side effects of procedure calls and the aliases of
variables. In: ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
(1979)

4. Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 321–333. Springer, Heidelberg (2004)

5. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The
ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer,
Heidelberg (2005)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL (1977)

7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: ACM SIG-
PLAN Symposium on Principles of Programming Languages, POPL (1979)

8. Cousot, P., Cousot, R.: Invited Talk: Higher Order Abstract Interpretation (and Application to
Comportment Analysis Generalizing Strictness, Termination, Projection, and PER Analysis
of Functional Languages), invited paper

9. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in polynomial time.
In: ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI (2002)

Widening for Control-Flow 491

10. Fischer, J., Jhala, R., Majumdar, R.: Joining dataflow with predicates. In: European Software
Engineering Conference (2005)

11. Handjieva, M., Tzolovski, S.: Refining static analyses by trace-based partitioning using con-
trol flow. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 200–214. Springer, Heidelberg
(1998)

12. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Informatica 7
(1977)

13. Kildall, G.A.: A unified approach to global program optimization. In: ACM SIGPLAN Sym-
posium on Principles of Programming Languages, POPL (1973)

14. Lakhotia, A., Boccardo, D.R., Singh, A., Manacero, A.: Context-sensitive analysis of obfus-
cated x86 executables. In: ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM (2010)

15. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static analyzers.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer, Heidelberg (2005)

16. Metayer, D.L., Schmidt, D.: Structural operational semantics as a basis for static program
analysis. ACM Computing Surveys 28, 340–343 (1996)

17. Midtgaard, J., Jensen, T.: A calculational approach to control-flow analysis by abstract in-
terpretation. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 347–362.
Springer, Heidelberg (2008)

18. Midtgaard, J., Jensen, T.P.: Control-flow analysis of function calls and returns by abstract
interpretation. Information and Computation 211, 49–76 (2012)

19. Might, M., Manolios, P.: A posteriori soundness for non-deterministic abstract interpreta-
tions. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 260–274.
Springer, Heidelberg (2009)

20. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to analy-
sis for Java. ACM Transactions on Software Engineering and Methodology (TOSEM) 14(1)
(January 2005)

21. Nielson, F., Nielson, H.R.: Interprocedural control flow analysis. In: Swierstra, S.D. (ed.)
ESOP 1999. LNCS, vol. 1576, pp. 20–39. Springer, Heidelberg (1999)

22. Reynolds, J.C.: Definitional interpreters for higher-order programming languages. In: ACM
Annual Conference (1972)

23. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 29(5) (August 2007)

24. Schmidt, D.A.: Natural-Semantics-Based abstract interpretation. In: Mycroft, A. (ed.) SAS
1995. LNCS, vol. 983, pp. 1–18. Springer, Heidelberg (1995)

25. Schmidt, D.A.: Abstract interpretation of small-step semantics. In: Dam, M. (ed.) LOMAPS-
WS 1996. LNCS, vol. 1192, pp. 76–99. Springer, Heidelberg (1997)

26. Shivers, O.: Control-Flow Analysis of Higher-Order Languages, or Taming Lambda. Ph.D.
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,
technical Report CMU-CS-91-145 (May 1991)

27. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: understanding object-
sensitivity. In: ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL (2011)

28. Van Horn, D., Might, M.: Abstracting abstract machines. In: ACM SIGPLAN International
Conference on Functional programming, ICFP (2010)

Author Index

Acuña, Vicente 322
Aminof, Benjamin 262
Apinis, Kalmer 21
Aravena, Andrés 322

Barrett, Clark 142
Bloem, Roderick 1
Bozga, Marius 242

Chang, Bor-Yuh Evan 137
Chatterjee, Krishnendu 78
Churchill, Berkeley 472

De Angelis, Emanuele 182
Doyen, Laurent 78
Drăgoi, Cezara 161

Ehlers, Rüdiger 415
Esparza, Javier 222

Faymonville, Peter 357
Ferrara, Pietro 302
Filiot, Emmanuel 78
Finkbeiner, Bernd 357
Fioravanti, Fabio 182
Fu, Zhoulai 282

Godskesen, Jens Chr. 98
Gustafsson, Jan 59
Gustavsson, Andreas 59

Hardekopf, Ben 472
Henzinger, Thomas A. 161
Hoang, Kevin 376

Iosif, Radu 242

Jacobs, Swen 262
Jezequel, Löıg 222

Kashyap, Vineeth 472
Khalimov, Ayrat 262
Kini, Dileep 118
Konečný, Filip 242
Könighofer, Robert 1

Kress-Gazit, Hadas 415
Krosnick, Rebecca 395

Leike, Jan 434
Lisper, Björn 59
Lopes, Nuno P. 203

Maass, Alejandro 322
Massé, Damien 453
Miné, Antoine 39
Monteiro, José 203

Peled, Doron 357
Pettorossi, Alberto 182
Proietti, Maurizio 182

Raskin, Jean-François 78
Romano, Anthony 337
Rubin, Sasha 262

Schwarz, Martin D. 21
Seidl, Helmut 21
Seidl, Martina 1
Seshia, Sanjit A. 415
Siegel, Anne 322
Singh, Rishabh 395
Singh, Rohit 395
Solar-Lezama, Armando 395
Song, Lei 98

Tiwari, Ashish 434

Veith, Helmut 161
Viswanathan, Mahesh 118
Vojdani, Vesal 21

Wang, Chao 376
Wang, Wei 142
Widder, Josef 161
Wiedermann, Ben 472
Wies, Thomas 142

Xu, Zhilei 395

Zhang, Lijun 98
Zufferey, Damien 161

	Preface
	Organization
	Keynote Talks
	Table of Contents
	SAT-Based Synthesis Methods for Safety Specs
	1 Introduction
	2 Preliminaries
	3 Synthesis from Safety Specifications
	3.1 Standard Attractor-Based Synthesis Approach

	4 Learning-Based Synthesis Approaches
	4.1 Learning-Based Synthesis Using a QBF-Solver
	4.2 Learning-Based Synthesis Using SAT-Solvers
	4.3 Utilizing Unreachable States
	4.4 Parallelization

	5 Direct Synthesis Methods
	5.1 Template-Based Synthesis Approach
	5.2 EPR Reduction Approach

	6 Experimental Results
	6.1 Implementation
	6.2 Benchmarks
	6.3 Results
	6.4 Discussion

	7 Summary and Conclusion
	References

	Precise Analysis of Value-DependentSynchronization in Priority Scheduled Programs
	1 Introduction
	2 OSEKModel
	3 Inter-procedural Analysis of Flags
	3.1 Intra-interrupt Flag Analysis

	4 Simple Analysis of Flags
	5 Precise Analysis of Flags
	5.1 Data Race Analysis

	6 Experimental Results
	7 Related Work
	8 Conclusion
	References

	Relational Thread-Modular Static ValueAnalysis by Abstract Interpretation
	1 Introduction
	2 Rely-Guarantee in Abstract Interpretation Form
	2.1 Programs and Transition Systems
	2.2 Monolithic Concrete Semantics
	2.3 Thread-Modular Concrete Semantics

	3 Retrieving Existing Analyses
	3.1 Flow-Insensitive Abstraction
	3.2 Non-relational Interference Abstraction
	3.3 Unbounded Thread Instances

	4 Relational Interferences
	4.1 Invariant Interferences
	4.2 Monotonicity Interference
	4.3 Trace Abstractions
	4.4 Lock Invariants
	4.5 Weakly Consistent Memories

	5 Experimental Results
	6 Conclusion
	References

	Timing Analysis of Parallel SoftwareUsing Abstract Execution
	1 Introduction
	2 Abstract Execution for Sequential Programs
	3 Related Work
	4 PPL: A Parallel Programming Language
	5 Abstractly Interpreting PPL
	6 Analyzing PPL Programs Using Abstract Execution
	7 Example Analysis
	8 Conclusions and Future Work
	References

	Doomsday Equilibria for Omega-Regular Games
	1 Introduction
	2 Doomsday Equilibria for Perfect Information Games
	3 Complexity of DE for Perfect Information Games
	4 Complexity of DE for Imperfect Information Games
	5 Conclusion
	References

	Bisimulations and Logical Characterizationson Continuous-Time Markov Decision Processes
	1 Introduction
	2 Preliminaries
	2.1 Continuous-Time Markov Decision Processes
	2.2 Paths, Uniformization, and Measurable Schedulers
	2.3 Continuous Stochastic Logic

	3 Bisimilarity and CSL Equivalence
	3.1 Strong Bisimulation
	3.2 Weak Bisimulation
	3.3 Determining 2-step Recurrent CTMDPs

	4 Bisimilarity and CSL
	Equivalence
	4.1 CSL
	4.2 Strong Bisimulation
	4.3 Weak Bisimulation

	5 Relation to MDPs and CTMCs
	5.1 Relation to (Weak) Bisimulation for MDPs
	5.2 Relation to (Weak) Bisimulation for CTMCs

	6 Conclusion and Future Work
	References

	Probabilistic Automatafor Safety LTL Specifications
	1 Introduction
	2 Preliminaries
	2.1 Finite State Probabilistic Monitors
	2.2 Safety Specifications
	2.3 Automata over Infinite Words
	2.4 Communication Complexity

	3 Monitors for Safe-LTL
	3.1 Strong Monitors
	3.2 Weak Monitors

	4 Monitors for LTL(G)
	4.1 Weak Monitors
	4.2 Robust Monitors

	5 Conclusion
	References

	Refuting Heap Reachability
	References

	Cascade 2.0
	1 Introduction
	2 System Design
	2.1 The Control File

	3 Memory Models
	3.1 Flat Memory Model
	3.2 Burstall Memory Model
	3.3 Partition Memory Model
	3.4 Evaluation

	4 Reasoning about Linked Data Structures
	4.1 Theory of Reachability in Linked Lists
	4.2 Linked Lists in Cascade

	5 Related Work
	6 Conclusion
	References

	A Logic-Based Frameworkfor Verifying Consensus Algorithms
	1 Introduction
	2 Fault-Tolerant Distributed Algorithms in the HO-Model
	3 Verification of Distributed Algorithms
	4 Consensus Verification Logic
	4.1 Graph-Based Representation of States
	4.2 Syntax and Semantics

	5 A Semi-decision Procedure for Implications
	5.1 Reducing Entailment Checking in
	5.2 Semi-decision Procedure for Unsatisfiability
	5.3 Completeness
	5.4 Discussion

	6 Evaluation
	7 Related Work
	References

	Verifying Array Programsby Transforming Verification Conditions
	1 Introduction
	2 Constraint Logic Programs on Arrays
	3 Transformation Rules for CLP(Array) Programs
	4 Generating Verification Conditions via Specialization
	5 A Transformation Strategy for Verification
	6 Experimental Evaluation
	7 Related Work and Conclusions
	References

	Weakest Precondition Synthesisfor Compiler Optimizations
	1 Introduction
	2 Preliminaries
	3 Illustrative Example
	4 The Algorithm
	4.1 PSyCO
	4.2 SynthWP
	4.3 GeneralizeWP
	4.4 MinimizeCore
	4.5 Discussion

	5 Evaluation
	6 Related Work
	6.1 Precondition Synthesis
	6.2 Compiler Correctness

	7 Conclusion
	References

	Message-Passing Algorithms for the Verificationof Distributed Protocols
	Introduction
	1 Definitions and Notations
	2 Message-Passing Algorithms
	2.1 Formal Description of an MPA for LTSs

	3 Local Verification of Distributed Protocols on Trees
	3.1 Safety
	3.2 Liveness

	4 Experimental Evaluation
	4.1 Raymond’s Mutual Exclusion Protocol
	4.2 The Pragmatic General Multicast Protocol

	Conclusion
	References

	Safety Problems Are NP-complete for Flat IntegerPrograms with Octagonal Loops
	1 Introduction
	2 Preliminary Definitions
	3 The Reachability Problem for Flat Counter Machines
	4 Periodic Relations
	5 Flat Counter Machines with Periodic Loops
	6 The Periodicity of Tropical Matrix Powers
	7 Difference Bounds Relations
	7.1 Zigzag Automata
	7.2 Paths Recognizable by Zigzag Automata
	7.3 The Complexity of Acceleration for Difference Bounds Relations

	8 Octagonal Relations
	8.1 The Complexity of Acceleration for Octagonal Relations

	9 Conclusions and Future Work
	References

	Parameterized Model Checkingof Token-Passing Systems
	1 Introduction
	2 Definitions and Existing Results
	2.1 System Model (Direction-Unaware)
	2.2 System Model (Direction-Aware)
	2.3 Indexed Temporal Logics
	2.4 Parameterized Model Checking Problem, Cutoffs, Decidability

	3 Method for Proving Existence of Cutoffs
	4 Existence of Cutoffs for k-indexed CTL∗d\X
	5 Cutoffs for k-index CTL∗\X and Concrete Topologies
	6 There Are No Cutoffs for Direction-Aware Systems
	7 Extensions
	8 Related Work
	9 Summary
	References

	Modularly Combining Numeric Abstract Domains with Points-to Analysis,and a Scalable Static Numeric Analyzer for Java
	1 Introduction
	1.1 Organization of the Paper

	2 Analysis Interfaces
	2.1 Static Numeric Analysis
	2.2 Pointer Analysis

	3 Combining Points-to and Numeric Analysis: Intuition
	4 The Language and Its Concrete Semantics
	5 TheAbstractDomain
	5.1 Transfer Functions
	5.2 Join and Widening
	5.3 Constraint System with a Flow-Insensitive Points-to Analysis

	6 Experiments
	7 Related Work
	8 Conclusion
	References

	Generic Combination of Heap and ValueAnalyses in Abstract Interpretation
	1 Introduction
	1.1 Overview of the Framework

	2 Language
	3 Concrete Domain and Semantics
	3.1 Standard Domain and Semantics
	3.2 Split Domain

	4 Abstract Domain and Semantics
	4.1 Abstract Domain
	4.2 Concretization Function
	4.3 Substitutions
	4.4 Semantics
	4.5 Reduction
	4.6 Interface of the Value and the Heap Analysis

	5 Instances
	5.1 Pointer Analysis
	5.2 TVLA-Based Shape Analysis
	5.3 Numerical Domains

	6 Related Work
	7 Conclusion
	7.1 Future Work

	References

	Modeling Parsimonious Putative RegulatoryNetworks: Complexity and Heuristic Approach
	1 Introduction
	2 Arc Minimal Subgraphs
	3 Minimum Weight Subgraphs
	4 Subgraphs with Minimum Weight Paths
	5 An Illustrative Example
	6 Conclusion
	References

	Practical Floating-Point Tests with Integer Code
	1 Introduction
	2 Related Work
	3 Soft Floating-Point
	3.1 Floating-Point Operations
	3.2 Binary Symbolic Executor
	3.3 Runtime Libraries

	4 Operation Integrity
	4.1 Gathering Test Cases
	4.2 Cross-Checking for Consistency: Interpreter
	4.3 Cross-Testing for Underspecification Bugs
	4.4 Common Pitfalls
	4.5 Coverage

	5 Floating-Point SMT Solvers
	6 Bugs in Linux Programs
	7 Conclusion
	References

	Monitoring Parametric Temporal Logic
	1 Introduction
	2 Parametric Temporal Logic
	3 Offline Measuring
	4 Online Measuring is Hard
	5 Online Measuring in Logarithmic Space
	5.1 Deterministic PLTL
	5.2 Unambiguous PLTL

	6 Experiments
	7 Conclusions
	References

	Precisely Deciding Control State Reachabilityin Concurrent Traces with Limited Observability
	1 Introduction
	2 Preliminaries
	3 Polygraph Based Causality Analysis
	3.1 From Input Trace
	3.2 From Error Condition
	3.3 Resolving the Polyedges to Detect Cycles

	4 Generalizing the Algorithm to k Threads
	4.1 From 2 Threads to 3 Threads
	4.2 Heuristics for Resolving the Remaining Polyedges
	4.3 Generalizing the Resolution Rule for
	4.4 The Overall Flow

	5 Applying the New Algorithm to CDSR Model
	6 Running Examples
	7 Experiments
	8 Related Work
	9 Conclusions
	References

	Modular Synthesis of Sketches Using Models
	1 Introduction
	2 Motivating Examples
	2.1 Example 1: Square Root for Primality Testing
	2.2 Example 2: Big Integer Multiplication

	3 Problem Definition
	4 Solving Correctness and Adherence Constraints
	4.1 Limitations of Cegis for the Correctness constraint
	4.2 Our Algorithm
	4.3 Solving the Adherence Constraint

	5 Evaluation
	5.1 Implementation and Benchmarks
	5.2 Scaling Sketch Solving Using Models
	5.3 Comparison with CEGIS and Angelic Synthesis

	6 Case Study: Boolean DAG Calculator
	7 Related Work
	8 Conclusion
	References

	Synthesis with Identifiers
	1 Introduction
	1.1 RelatedWork

	2 Modeling Parametrized Specifications
	3 An Analysis of the Synthesis Problem
	3.1 Basic Definitions
	3.2 Synthesis Games

	4 Synthesis Algorithm
	4.1 Patterns
	4.2 Abstract Games
	4.3 Computing the Transitions in the Abstract Games
	4.4 Applying an (ALL)QBF Solver for Efficient Reasoning in Practice
	4.5 Completeness for Unrealizable Safety Specifications

	5 Experimental Results
	6 Conclusion and Outlook
	References

	Synthesis for Polynomial Lasso Programs
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Polynomial Lasso Programs
	5 Polynomial Loop Invariants
	6 Synthesis
	7 Termination
	8 Experimental Evaluation
	9 Conclusion
	References

	Policy Iteration-Based Conditional Terminationand Ranking Functions
	1 Introduction
	2 Notations
	3 Affine Programs and Semantics
	3.1 Programs
	3.2 Concrete Semantics
	3.3 Abstraction and Abstract Semantics

	4 Policy Iteration
	4.1 Policy Selection
	4.2 Policy Iteration Result

	5 Relationships with Ranking Functions
	5.1 Ranking Functions and Relations
	5.2 Policy Iteration and Ranking Relations
	5.3 On the Well-founded Relations

	6 Experiments
	6.1 Template Selection
	6.2 Results

	7 Conclusion
	References

	Widening for Control-Flow
	1 Introduction
	2 Separating Control-Flow Sensitivity from an Analysis
	2.1 Starting Point
	2.2 Widening Operator
	2.3 Control-Flow Sensitivity
	2.4 Semantic Requirements

	3 Relating and Combining Sensitivities
	3.1 Sums of Trace Abstractions
	3.2 Trace Abstractions Form a Lattice

	4 Analysis Design Example
	4.1 Syntax
	4.2 Original Abstract Semantics
	4.3 Tunable Control-Flow Sensitivity

	5 Related Work
	6 Conclusions and Future Work
	References

	Author Index

