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Abstract. Sanitizable signatures allow for controlled modification of
signed data. The essential security requirements are accountability, pri-
vacy and unlinkability. Unlinkability is a strong notion of privacy. Namely,
it makes it hard to link two sanitized messages that were derived from
the same message-signature pair. In this work, we strengthen the stan-
dard unlinkability definition by Brzuska et al. at PKC ’10, making it ro-
bust against malicious or buggy signers. While state-of-the art schemes
deploy costly group signatures to achieve unlinkability, our construction
uses standard digital signatures, which makes them compatible with ex-
isting infrastructure.

We construct a sanitizable signature scheme that satisfies the strong
notion of perfect unlinkability and, simultaneously, achieves the strongest
notion of accountability, i.e., non-interactive public accountability. Our
construction is not only legally compliant, but also highly efficient, as the
measurements of our reference implementation show. Finally, we revisit
the security model by Canard et al. and correct a small flaw in their
security definition given at AfricaCrypt ’12.

1 Introduction

Sanitizable signature schemes (SanSigs), introduced by Ateniese et al. [3], enable
a designated party, the sanitizer, to alter a signed document in a controlled way.
The sanitizer (holding its own sanitizer secret) can generate a new, yet valid,
signature for the modified document without interacting with the signer of the
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original document. In particular, let the message m consists of � blocks, i.e.,
m = (m[1], . . . ,m[�]), where � ∈ N and m[i] ∈ {0, 1}∗. Then, the sanitizer is
only able to modify those blocks m[i] that the signer defined as admissible.
Sanitization thus yields a new message-signature pair (m′, σ′), where σ′ is a
valid signature for m′ under the signer’s public key pksig and m′ is equal to m
on all non-admissible blocks.

Motivation. Malleable signatures of this kind seem to bear an inherent risk:
a semi-trusted party is allowed to change signed data and thus a signer gives
up control over the statements that are produced in its name. However, when
carefully implemented, delegation of signing rights turns out to be very useful
for a variety of application scenarios, ranging from sanitizing medical records to
secure routing and blank signatures [3,9,22,23]. Another application scenario is
access control for databases. In any larger company, but in particular in banks
and hospitals, access policies are inherent in day-to-day operations [39]. Com-
pliance rules in banks actually enforce the separation of different sectors, and
likewise, hospitals host large databases of sensitive data that must not be ac-
cessed by anybody. The reception desk personnel in a hospital, for example,
must not be able to access medical data of a patient, while the accountant of
the hospital, in turn, must not learn personally identifying details of the patient.
On the other hand, integrity of the database is crucial for both, hospitals and
banks, and besides appropriate read-and-write policies [39], one might aim for
the cryptographic protection of, say, patient records and have them digitally
signed by the treating personnel. The accountant and the receptionist then both
access different parts of an authenticity protected record. Hence, some entries in
the signed record need to be sanitized while keeping a valid signature over the
rest of the record. Whereas standard signatures do not allow for such modifi-
cations, sanitizable signatures enable to implement privacy-friendly access and
integrity verifiability simultaneously. In particular, using sanitizable signatures,
the database can operate without repeated interaction with the signer (the med-
ical personnel). In a bank, interaction with the signer might even be disallowed,
e.g., due to money laundering policies. To sum up, we aim for signatures that
allow for controlled modification of different parts of a signed document without
interaction with the original signer.

Sanitizable signatures usually strive for strong privacy guarantees to hide the
removed sensitive information. The strongest notion of privacy is unlinkability,
which we review next. In the hospital database example, we derive two dif-
ferent sanitized documents from the original patient’s record, as we removed
different parts from the same signed patient record to create a version for the
accountant and another one for the reception desk personnel. A secure solution
must prevent inferring information about the original record by combining the
two sanitized documents, as this would violate the patient’s privacy concerns as
well as data-protection regulations such as HIPAA [15]. Thus, in such applica-
tion domains [10], it is important for sanitizable signatures schemes to achieve
unlinkability.
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A digital signature on a document usually provides a legal value of evi-
dence [34]. For example, in a hospital, the medical personnel sign their entries in
the database and can be held accountable for those later, i.e., the signature allows
for identifying the doctor or nurse that generated an entry. For SanSigs there are
two different options for accountability: interactive accountability involves the
signer and allows an authority to trace back the origin of a message-signature
pair, while the scheme itself might be transparent, i.e., the origin of a signature
is hidden from third-parties1. The alternative is a non-interactive public form
of accountability [11] where third-parties can identify immediately whether the
medical record was sanitized or not without interaction with the signer. As ob-
served by Pöhls and Höhne [34], current legislation only attributes a high value
of evidence to sanitizable signature if any subsequent change can be detected,
which is incompatible with the property of transparency. Formally, Brzuska et
al. show how to achieve public accountability in the absence of transparency,
as the two are mutually exclusive [11]. In turn, privacy and a public, i.e., non-
interactive, form of accountability can be achieved simultaneously, as Brzuska
et al. [11] show. We continue this line of practical research and strengthen the
privacy by achieving perfect unlinkability with standard primitives.

Challenges and Contributions. In a nutshell, our scheme addresses the fol-
lowing challenges: (1) Strong privacy guarantees, namely perfect unlinkability
and perfect privacy, (2) a high legal value of evidence through non-interactive
public accountability, (3) compatibility with existing public key infrastructures
(PKI) for standard signatures, (4) performance restrictions for economic applica-
bility. From a practitioner’s point of view, having a legally recognizable and ex-
tremely efficient scheme is essential for deployment of a signature scheme [35,36].
Our scheme is based on the ideas given in [9,11]. It extends their work in the
aforementioned points. Essentially, we achieve stronger privacy and account-
ability properties with simpler building blocks. Moreover, we are also able to
consider unlinkability and strengthen the original definition from Brzuska et al.
from PKC’10 [10] to be more robust against malicious or buggy signers, as well
as corruption of the signer’s key. Interestingly, the new definition turns out to be
more compact than the original one, as the oracles that use the signer’s secret
key can now be simulated by the adversary. Hence, the Sign and the Proof oracle
of [10] are not required anymore. We also correct a small flaw in the security
definition of unlinkability in the multi-sanitizer setting given by Canard et al.
at AfricaCrypt ’12 [13]. There, the LoRSanit-oracle does not check whether both
inputs are valid message-signature pairs and whether the requested modification
is admissible. Thus, as we show, the original definition is not achievable. Finally,
we show how to switch on-the-fly between unlinkability and linkability.

Techniques. The first sanitizable signature scheme [3] was based on chameleon
hashes [28] that were applied per each admissible block. However, their construc-
tion allowed for mix-and-match attacks. Later schemes had to find a collision
1 Third-parties here meaning other than signer or sanitizer.
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m[fix]

m[2] m[6] m[7]

m[adm]

m[1] m[3] m[4] m[5] m[8]

σfix ← DSSign(sksig, (0,m[fix],adm, pksan))

σFULL ← DSSign(sksig/sksan, (1, m, pksan, pksig))

Fig. 1. Blocks 2,6,7 of m are fixed and together with pksan and adm signed by signer
(σFIX). The complete message m is signed by either the signer or the sanitizer (σFULL).

on each admissible blocks, not only those modified [8]. Thereby, the sanitizing
process was linear in the number of admissible blocks. Some later construc-
tions [10,9,11] were based on a different paradigm. The idea is to use two sig-
natures (see Fig. 1); one to sign the fix part of m, i.e., m[fix], we sometimes
call this the “inner signature”, and another one to sign the admissible parts,
i.e., m[adm], together with the fixed parts, often called the “outer signature”.
The inner signature is produced by the signer of the signature scheme, while
the outer signature can be produced by either one, the signer or the sanitizer.
Using different signature types as inner and outer signature yields different prop-
erties of the sanitizable signature scheme. For instance, Brzuska et al. [10] use
a group signature for the outer signature. The anonymity of the group signa-
ture makes signatures of the signer and the sanitizer indistinguishable, and the
non-frameability/traceability property of the group signature scheme assures an
interactive form of accountability. In turn, in [9] and [11], the authors use stan-
dard signature schemes also for the outer signature. The scheme becomes very
efficient; it is not transparent anymore, but it still enjoys privacy [9,11] and
a non-interactive public form of accountability [11], thus complying with legal
standards. As transparency is sometimes seen as a stronger notion of privacy,
one might feel that one has to compromise, as one cannot obtain a strong no-
tion of accountability and a strong notion of privacy simultaneously. We show
that this is actually not the case. As the inner signature scheme, we use a de-
terministic signature scheme and prove that the scheme satisfies both, a public,
non-interactive version of accountability and a statistical notion of unlinkabil-
ity, the strongest notion of privacy. At the same time, we maintain high effi-
ciency and compatibility with existing public-key infrastructure, as our scheme
only requires a constant number of standard building block operations. Our
construction is even less complex than the ones given in [41], as we do not
deploy labels. This makes our scheme applicable for use on Smart Cards [35],
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embedded devices like routers, or other devices which do not have as much
processing power. All of these requirements are of paramount importance to
make SanSigs used in practice.

State-of-the-Art and Related Work. Malleable signatures scheme have
gained a lot of attention in the past few years. They were studied in several
flavors, for example, redactable signature schemes [16,25,32,33,40], sanitizable
signatures with several extensions [9,12,18,22,27,30,36,42] and combinations of
both approaches [24]. Moreover, the integrity protection of structured data, such
as in [7,29,37,38], has equally been studied in the recent past. All schemes aim
at the same goal: allowing for controlled modification of signed data to preserve
privacy, while retaining authentication of origin and integrity protection against
uncontrolled, i.e., unauthorized, modifications. In this paper, we focus on sani-
tizable signatures, as introduced by Ateniese et al. [3]. They also introduced the
aforementioned security properties for sanitizable signatures, namely privacy,
immutability, accountability, transparency and unforgeability. These were later
formalized and extended by Brzuska et al. [8,10]. Their framework has been ex-
tended to multi-sanitizer environments by Canard et al. [13]. We work within the
original framework for a single signer and a single sanitizer and show in Sect. 4
how to modify our scheme to the multi-user setting from [13].

The stronger notion of statistical unlinkability for redactable signature schemes
was introduced by Ahn et al. at TCC ’12 [1], and even stronger notions have been
discussed recently in [4,5,19]. Neither of these notions has been considered in the
context of sanitizable signatures yet, and we address this gap. The schemes for
quoting substrings [1,4,5] are tailored towards achieving both, statistical trans-
parency and statistical unlinkability. This ambitious goal comes at the price
of weakening the unforgeability property to selective unforgeability in the case
of [1]. Additionally, none of the mentioned schemes is accountable. By trading in
transparency, our construction does not only achieve stronger notions of unlink-
ability and accountability, but also the standard adaptive unforgeability notion
instead of selective unforgeability. In the context of sanitizable signatures, the
notion of unlinkability captures that two sanitized messages cannot be linked
to having the same original message-signature pair. For group signatures [17],
in turn, the unlinkability definition corresponds to the anonymity of the signer,
which is usually called transparency in the context of sanitizable signatures. The
different nomenclature is maybe best explained by the fact that discussions in
the area of malleable signatures are message-centered, while the way of think-
ing in the area of group signatures is more signer-centered—after all, the word
“group” refers to a group of signers, not to a group of messages. To avoid con-
fusion due to the historical evolution of the properties’ names in the two areas,
we stress that the present paper uses the nomenclature as introduced in [10].
Another related concept are proxy signatures [31]. However, they allow for del-
egating signing rights entirely, while sanitizable signatures allow for altering a
specific signed message.
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2 Security Models

2.1 Syntax and Notation

For a message m = (m[1], . . . ,m[�]), we call m[i] ∈ {0, 1}∗ a block, while the spe-
cial symbol “,” /∈ {0, 1}∗ denotes a uniquely reversible concatenation of strings.
The special symbol ⊥ /∈ {0, 1}∗ denotes an error or an exception. The follow-
ing nomenclature is adapted from Brzuska et al. [8], who address a setting of
single signers and sanitizers. We also elaborate in Sect. 4 on how to extend our
construction for multi-sanitizer environments as described by Canard et al. [13].

Definition 1 (Sanitizable Signature Scheme). Any SanSig consists of at
least seven efficient, i.e., PPT algorithms. In particular, let SanSig := (KGensig,
KGensan, Sign, Sanit,Verify,Proof, Judge), such that:

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys, a private key and the
corresponding public key, based on the security parameter λ:

(pksig, sksig) ← KGensig(1
λ) (pksan, sksan) ← KGensan(1

λ)

Signing. The Sign algorithm takes as input the security parameter λ, a mes-
sage m = (m[1], . . . ,m[�]), m[i] ∈ {0, 1}∗, the secret key sksig of the signer,
the public key pksan of the sanitizer, as well as a description adm of the
admissibly modifiable blocks. In detail, adm contains a set of indices of the
modifiable blocks and the overall number � of blocks in m, to guard against
length-altering attacks. The Sign algorithm outputs the message m and a
signature σ (or ⊥, indicating an error):

(m,σ) ← Sign(1λ,m, sksig, pksan,adm)

Sanitizing. The algorithm Sanit takes a message m = (m[1], . . . ,m[�]), where
m[i] ∈ {0, 1}∗, a signature σ, the security parameter λ, the public key pksig of
the signer and the secret key sksan of the sanitizer. It modifies the message m
according to the modification instruction mod, which contains pairs (i,m[i]′)
describing the index i and the blocks new value m[i]′. We use the shorthand
notation of m′ ← mod(m) to denote that the modification instructions were
successfully applied to create the modified m′ from m. Note, mod could also
be empty, i.e., m′ = m is generally possible. Sanit calculates a new signature
σ′ for the modified message m′ ← mod(m). The Sanit algorithm outputs m′

and σ′ (or possibly ⊥ in case of an error).

(m′, σ′) ← Sanit(1λ,m,mod, σ, pksig, sksan)

Verification. The algorithm Verify outputs a decision d ∈ {0, 1} verifying the
correctness of a signature σ for a message m = (m[1], . . . ,m[�]), m[i] ∈
{0, 1}∗ with respect to the public keys pksig and pksan and the security pa-
rameter λ:

d ← Verify(1λ,m, σ, pksig, pksan)
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Proof. The algorithm Proof takes as input the security parameter, the secret
signing key sksig, a message m = (m[1], . . . ,m[�]), m[i] ∈ {0, 1}∗ and a sig-
nature σ as well a set of (polynomially bounded) additional message-signature
pairs {(mi, σi) | i ∈ N} and the public key pksan. The Proof algorithm outputs
a string π ∈ {0, 1}∗ (or ⊥, indicating an error):

π ← Proof(1λ, sksig,m, σ, {(mi, σi) | i ∈ N}, pksan)

Judge. The algorithm Judge takes as input the security parameter, a message
m = (m[1], . . . ,m[�]), m[i] ∈ {0, 1}∗ and a valid signature σ, the public
keys of the parties and a proof π. The Judge algorithm outputs a decision
d ∈ {Sig, San,⊥} indicating whether the message-signature pair has been
created by the signer or the sanitizer (or ⊥, indicating an error):

d ← Judge(1λ,m, σ, pksig, pksan, π)

We require that for every SanSig the usual correctness properties hold. That
is, for every genuinely created message-signature pair created by the Sign al-
gorithm, the Verify algorithm outputs 1 with overwhelming probability. From
every message-signature pair with a positive verification result, the Sanit algo-
rithm produces again a message-signature pair for which the Verify algorithm
outputs 1 with overwhelming probability. The latter is recursive, i.e., sanitized
message-signature pairs can be sanitized again. For every genuinely generated
value of the proof π, the Judge algorithm outputs the correct party, i.e., Sig or
San, with overwhelming probability. For more details on the definition of correct-
ness, refer to [8]. In case of a SanSig with non-interactive public accountability,
the Proof algorithm always returns ⊥, and Judge correctly decides upon such an
empty proof (π = ⊥) with overwhelming probability.

We write m[adm] for the uniquely reversible concatenation of the admissible
blocks and m[fix] for the uniquely reversible concatenation of the fixed blocks
in the order of appearance in m. Note, we do not attach any labels to the
blocks as done in [41]. We require the public key to be efficiently derivable
from its corresponding secret key. Additionally, we require that adm is always
correctly recoverable from any valid signature σ, which accounts for the findings
by [21].

2.2 Security of Sanitizable Signatures

We present an extended security model based on [8]. It covers the basic ideas
and features of a SanSig.

Definition 2 (Privacy). A sanitizable signature scheme SanSig is private, if

for any efficient algorithm A the probability that the experiment PrivacySanSigA (λ)
given in Fig. 2 returns 1, is negligibly close to 1

2 (as a function of λ). Here, the
adversary must be able to decide which input was chosen by the LoRSanit. The
oracle signs and sanitizes the data itself.
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Experiment PrivacySanSigA (λ)

(pksig, sksig) ← KGensig(1
λ)

(pksan, pksan) ← KGensan(1
λ)

b ← {0, 1}
a ← ASign(sksig,··· ),Sanit(··· ,sksan)

Proof(sksig,··· ),LoRSanit(··· ,sksig,sksan,b)(pksig, pksan)
where oracle LoRSanit on input of:
m0,i,mod0,i, m1,i,mod1,i,admi

if mod0,i �⊆ admi, return ⊥
if mod1,i �⊆ admi, return ⊥
if mod0,i(m0,i) �= mod1,i(m1,i), return ⊥
let (mi, σi) ← Sign(mb,i, sksig, pksan,admi)
return (m′

i, σ
′
i) ← Sanit(mi,modb,i, σ, pksig, sksan)

return 1, if a = b

Fig. 2. Privacy

Experiment TransparencySanSigA (λ)

(pksig, sksig) ← KGensig(1
λ)

(pksan, sksan) ← KGensan(1
λ)

b ← {0, 1}
a ← ASign(sksig,··· ),Sanit(··· ,sksan)

Proof(sksig,··· ),Sanit/Sign(··· ,sksig,sksan,b)(pksig, pksan)
where oracle Sanit/Sign for input mi,modi,admi

let (mi, σi) ← Sign(1λ,mi, sksig, pksan,admi),
compute (m′

i, σ
′
i) ← Sanit(mi,modi, σi, pksig, sksan)

if b = 1:
compute (m′

i, σ
′
i) ← Sign(m′

i, sksig, pksan,admi)
finally return (m′

i, σ
′
i).

return 1 if a = b and A has not queried
any (mi, σi) output by Sanit/Sign to Proof.

Fig. 3. Transparency

Experiment UnlinkabilitySanSigA (λ)
(pksig, sksig) ← KGensig(1

λ)

(pksan, pksan) ← KGensan(1
λ)

b ← {0, 1}
a ← ASign(sksig,··· ),Sanit(··· ,sksan)

Proof(sksig,··· )LoRSanit(··· ,sksan,sksig,b)(pksig, pksan)
where oracle LoRSanit on input of:
m0,i,mod0,i, σ0,i,m1,i,mod1,i, σ1,i

//adm needs to be recoverable from all σ
if adm0,i �= adm1,i, return ⊥
if mod0,i �⊆ adm0,i, return ⊥
if mod1,i �⊆ adm1,i, return ⊥
if mod0,i(m0,i) �= mod1,i(m1,i), return ⊥
if Verify(1λ, m0,i, σ0,i, pksig, pksan) �= 1 or

Verify(1λ,m1,i, σ1,i, pksig, pksan) �= 1, return ⊥
return (m′, σ′) ← Sanit(mb,i,modb,i, σb,i, pksig, sksan)

return 1, if a = b

Fig. 4. Unlinkability by Brzuska et al.

Experiment UnlinkabilityExSanSigA (λ, n,m)
(PK,SK) ← Setup(1λ, n,m)
b ← {0, 1}
(m0,mod0, σ0,m1,mod1, σ1, j0, j1, st) ← A(∗)

ch (PK)
let (m′, σ′) ← Sanit(mb, σb,SK[jb],modb,PK)
let (ORI, IORI, πORI) ← FindOri(m′, σ′

b, oskORI,PK)
if IORI = 0 or (IORI = (Sig, iORI) and iORI ∈ CU) or
j0 ∈ CU or j1 ∈ CU or
Judge(m′, σ′

b, (ORI, iORI, πORI),PK) = 0, return ⊥
let b∗ ← A(∗)

gu (m
′, σ′

b, st)
if (m′, σ′) was queried to SigOpen, return ⊥, else b∗

Fig. 5. Unlinkability by Canard et al.

Experiment SUnlinkabilitySanSigA (λ)

(pksan, sksan) ← KGensan(1
λ)

b ← {0, 1}
a ← ASanit(··· ,sksan),LoRSanit(··· ,sksan,b)(pksan)

where oracle LoRSanit on input of:
m0,i,mod0,i, σ0,i,m1,i,mod1,i, σ1,i, pksig,i
//adm needs to be recoverable from all σ
if adm0,i �= adm1,i, return ⊥
if mod0,i �⊆ adm0,i, or mod1,i �⊆ adm1,i, or mod0,i(m0,i) �= mod1,i(m1,i), return ⊥
if Verify(1λ,m0,i, σ0,i, pksig,i, pksan) �= 1 or Verify(1λ,m1,i, σ1,i, pksig,i, pksan) �= 1, return ⊥
return (m′, σ′) ← Sanit(mb,i,modb,i, σb,i, pksig,i, sksan)

return 1, if a = b

Fig. 6. Strengthened Unlinkability

Definition 3 (Transparency). A sanitizable signature scheme SanSig is trans-
parent, if for any efficient algorithm A the probability that the experiment
TransparencySanSigA (λ) given in Fig. 3 returns 1, is negligibly close to 1

2 (as a
function of λ). Here, the oracle either directly signs the expected output message
(b = 1) or signs the input and then sanitizes it to the expected output (b = 0).
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Please note, in accordance with Brzuska et al. [8], we require that modi ⊆
admi is true. We check this for all queries to the above oracles as otherwise
a trivial attack vector exists. In particular, if modi �⊆ admi yields that Sanit
outputs ⊥ then this is easily distinguishable from a “fresh” signature.

Definition 4 (Strengthened Unlinkability following Brzuska et al.). A
sanitizable signature scheme SanSig is unlinkable, if for any efficient algorithm A
the probability that the experiment SUnlinkabilitySanSigA (λ) given in Fig. 6 returns
1 is negligibly close to 1

2 (as a function of λ). Here, the adversary has to guess
which of the two inputted message-signature pairs was chosen to be sanitized.

Compare our new definition of unlinkability in Fig. 6 with the original definition
of [10] depicted in Fig. 4. We altered the LoRSanit oracle so that it does not
specify the signer by having a fixed signer key pksig. In turn, now, the adversary
chooses pksig. Intuitively, this captures that unlinkability holds as long as the
sanitizer is honest, even if the signer happens to be dishonest. One might argue
that a malicious signer can always break any privacy or unlinkability property, as
it knows which messages it signed and thus, it can always recover the originally
signed message. However, there exist intermediary stages, for example, if the
signer is buggy, uses weak randomness, or loses its secret key. In these cases,
our definition turns out to be robust, i.e., even if the signer loses its secret
key, unlinkability and therefore privacy are preserved. In a sense, we cover the
equivalent of forward secrecy for the case of key exchange: there, previous sessions
remain secure when long-term secrets are lost [14].

Actually, we even achieve a stronger notion of secrecy than key exchange can
attain. Unlinkability is even preserved when the signer loses his secret key before
signing the message and even when using some form of “bad” secret key specified
by the adversary. In Def. 4, there are no signing and proof oracles—the reason
is that the adversary can now simulate those by itself. We now prove that our
new notion of unlinkability is strictly stronger than the original one by Brzuska
et al. [10].

Theorem 1. Any strongly unlinkable SanSig is also unlinkable. The converse is
not true.

Proof. Let SanSig be a strongly unlinkable sanitizable signature scheme. We
prove via reduction that SanSig is also unlinkable. Let A be an adversary against
the unlinkability of SanSig. Using A, we can construct an adversary B against
the strong unlinkability of SanSig as follows. In the beginning of the game, B
relays the sanitizer’s public key to A and runs the key generation algorithm of
the signer and returns the signer’s public key pksig to A. The signer’s secret key
is used to answer all queries that A makes to Sign and Proof. The remaining
queries are queries to the Sanit oracle, which B simply relays, and queries to the
LoRSanit oracle which B prepends with the signer’s public key pksig and queries
to its own LoRSanit oracle. In the end, A returns a bit that B returns as well.
As the simulation is perfect, B’s advantage against strong unlinkability is as big
as A’s advantage against unlinkability.



Efficient and Perfectly Unlinkable Sanitizable Signatures 21

We now separate the two unlinkability notions by constructing a (contrived)
scheme that fulfills the security requirements of the original security model by
Brzuska et al. [10] but is insecure in our new model.

Let SanSig = (KGensig,KGensan, Sign, Sanit,Verify,Proof, Judge) be a secure
sanitizable signature scheme. To obtain a counterexample, we adjust the scheme
as follows:

– KGen′sig works as KGensig, except that it appends a 1 to the public key
returned by KGensig

– KGen′san works as its original counterpart
– Judge′, Sign′, and Verify′ work as their original counterparts, but cut of the

last bit of pksig
– Sanit′ is the same as Sanit with one exception: if pksig ends with a 0, it

proceeds as normal, while cutting of the last bit of pksig. Otherwise, it outputs
the original signature and message, instead of sanitizing it.

Our stronger attacker, that can choose pksig by running KGen′sig, now wins by
replacing the trailing 1 with a 0. However, the scheme is fully secure in the
original definition where an attacker was not able to influence pksig. Here, it
does not matter, if the keys are indistinguishable. All other properties are not
affected and are inherited from the original SanSig. Note, this scheme is also still
correct as the message-signature pair left untouched by the modified Sanit′ still
verifies, while also mod1(m1) = mod2(m2) yields.

As our stronger notion of unlinkability implies the original notion of unlinkability,
all known implications still hold. In particular, our strengthened unlinkability
also implies privacy [10].

Definition 5 (Unlinkability by Canard et al.). A sanitizable signature
scheme SanSig is unlinkable, if for any efficient algorithm A the probability
that the experiment UnlinkabilityExSanSigA (λ) given in Fig. 6 returns 1 is negligibly
close to 1

2 (as a function of λ). The basic idea is that an adversary has to guess
which message-signatures pair from the two inputs was chosen to be sanitized.

For self-containment, we introduce the notation of the complete multi-sanitizer
framework and refer to Canard et al. [13] for a complete discussion. We have a
choose-then-guess adversary, which state is denoted as st. The algorithms and
oracles are defined as follows:
(1) Setup(1λ, n,m) is the instance generator, where n denotes the amount of
signers, while m denotes the number of sanitizers. Hence, PK contains all public
keys, while SK contains all private keys. The adversary A also gains access to
sanitization, sign, proof and all “opening” oracles:
(2) FindOri returns the index of the original signer. If the message has been
sanitized, FindOri returns 0, as “no signer exists”. It requires the opening key
oskORI.
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Experiment PubaccountabilitySanSigA (λ)
(pksig, sksig) ← KGensig(1

λ)

(pksan, sksan) ← KGensan(1
λ)

(pk∗,m∗, σ∗, π∗) ← ASign(·,sksig,·,·)
Sanit(...,sksan)

(pksig, pksan)

Let (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
be the queries to and from oracle Sign
return 1 if

∀i : (pk∗,m∗) �= (pksan,i,mi), and

Verify(1λ,m∗, σ∗, pksig, pk
∗) = 1, and

Judge(1λ,m∗, σ∗, pksig, pk
∗,⊥) = Sig

Let (mj ,modj , σj , pksig,j) and (m′
j , σ

′
j)

be the queries to/from oracle Sanit
return 1 if:

∀j : (pk∗,m∗) �= (pksig,j ,m
′
j), and

Verify(1λ,m∗, σ∗, pk∗, pksan) = 1, and
Judge(1λ,m∗, σ∗, pk∗, pksan,⊥) = San

return 0

Fig. 7. Non-Interactive Public Account-
ability

Experiment ImmutabilitySanSigA (λ)
(pksig, sksig) ← KGensan(1

λ)

(pk∗san,m
∗, σ∗) ← ASign(sksig,··· ),Proof(sksig,··· )(pksig)

let (mi,admi, pksani) and σi, i = 1, 2, . . . , q
denote the queries to Sign
return 1, if:

Verify(1λ, m∗, σ∗, pksig, pk
∗
san) = 1, and

for all i = 1, 2, . . . , q we have:
pk∗san �= pksan,i, or
m∗[ji] �= mi[ji], where ji /∈ admi

shorter messages are padded with ⊥

Fig. 8. Immutability

(3) CU denotes the set of corrupted participants, i.e., all signers and sanitizers
which secret key is known to the adversary. The adversary can gain access to
the secret keys by using an implicit Corrupt oracle.
(4) Judge works as in our original definition, while it accounts for multiple signer,
and sanitzers resp., and allows “partial” openings. In particular, it gets an addi-
tional parameter ORI. It outputs the index of the original signer, if the message
has not been sanitized. See [13] for a complete discussion.

Our main observation is that it is crucial for the left-or-right oracle to check the
validity of both signatures before proceeding. Else, the definition is not satisfiable
and would not be satisfied by the scheme in [13]. The problem is that the left-or-
right oracle receives two message-signature pairs and will sanitize one of them. If
one of the signature is empty, then the sanitizing algorithm is unable to produce
a valid signature because else, the sanitizer would be able to break immutability.
Thus, if the adversary gives a valid message-signature pair to the oracle and a
pair of a message and an empty (and thus invalid) signature, then in one case,
the oracle returns ⊥, and in the other case, the oracle returns a valid answer.
Thus, the adversary can distinguish the two cases.

Definition 6 (Non-Interactive Public Accountability). A sanitizable sig-
nature scheme SanSig is non-interactive public accountable, if for an empty proof
π = ⊥, and for any efficient algorithm A the probability that the experiment
PubaccountabilitySanSigA (λ) given in Fig. 7 returns 1 is negligible (as a function of
λ). The basic idea is that an adversary, i.e., the sanitizer or the signer, has to
be able to make the Judge decide wrongly on an empty proof π = ⊥. Note, Proof
always returns ⊥ and therefore is not an oracle here.

Definition 7 (Immutability). A sanitizable signature scheme SanSig is im-
mutable, if for any efficient algorithm A the probability that the experiment
ImmutabilitySanSigA (λ) given in Fig. 8 returns 1, is negligible (as a function of
λ). The basic idea is, that an adversary is not able to modify non-admissible
blocks, even if it is able to choose the sanitizer key pair.
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Definition 8 (Secure SanSig). We call a SanSig secure, if it is unlinkable,
immutable and non-interactive publicly accountable.

Note, unlinkability implies privacy, while non-interactive public accountability
implies accountability [11] and therefore also unforgeability [8]. Recall the fol-
lowing separation by Brzuska et al. [10], which also applies for our strengthened
unlinkability definition, as the latter implies the original definition of unlinkabil-
ity in [10], as we have already proven.

Theorem 2 (Unlinkability � Transparency). There exists a scheme which
is unlinkable, but not transparent.

3 Efficient Perfectly Unlinkable SanSig

We introduce the building blocks used in the construction and then give a formal
algorithmic description of our construction.

3.1 Building Blocks

This section introduces the required building blocks for our construction. We
require a deterministic signature scheme, unforgeable under chosen message at-
tacks (UNF-CMA). Let DS = (DSKGen,DSSign,DSVerify) be such a signature
scheme. Deterministic means, that signing identical messages leads to identi-
cal signatures, if signed with the same secret key sk. We want to emphasize
that every unforgeable signature scheme can be transformed into a strongly un-
forgeable and also deterministic scheme using several transformations [6,20]. An
example for a standardized deterministic signature scheme is “RSASSA-PKCS-
v1 5-SIGN” [26].

3.2 Algorithmic Description

Our scheme is inspired by the constructions given in [9] and [11]. It achieves un-
forgeability, immutability, non-interactive public accountability, perfect privacy,
perfect unlinkability and sanitizer- and signer-accountability. Therefore, it meets
all legal and the essential cryptographic requirements.

Construction 1 (Secure SanSig). Let DS = (DSKGen,DSSign,DSVerify) be a
deterministic and unforgeable signature scheme. Define the sanitizable signature
scheme SanSig = (KGensig,KGensan, Sign, Sanit,Verify, Judge) as follows:

Key Generation: Algorithm KGensig generates on input of the security pa-
rameter λ a key pair (pksig, sksig) ← DSKGen(1λ) of the underlying signature
scheme DS, and algorithm KGensan for input λ analogously returns a pair
(pksan, sksan) ← DSKGen(1λ).
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Signing: Algorithm Sign on input m ∈ {0, 1}∗, sksig, pksan, adm and computes

σfix ← DSSign(sksig, (0,m[fix],adm, pksan)),

σfull ← DSSign(sksig, (1,m, pksan, pksig))

using the underlying signing algorithm. It returns:

(m,σ) = (m, (σfix, σfull,adm))

Sanitizing: Algorithm Sanit on input of message m, (maybe empty) modifi-
cation instructions mod, a signature σ = (σfix, σfull,adm), keys pksig and
sksan, first checks that mod is admissible according to adm and that σfix is a
valid signature for message (0,m[fix],adm, pksan) under key pksig. If not, it
stops and outputs ⊥. Else, it generates the modified message m′ ← mod(m)
and computes

σ′
full ← DSSign(sksan, (1,m

′, pksan, pksig))

and outputs (m′, σ′) = (m′, (σfix, σ
′
full,adm)).

Verification: Algorithm Verify on input of a message m ∈ {0, 1}∗, a signa-
ture σ = (σfix, σfull,adm) and public keys pksig, pksan first checks that σfix

is a valid signature for message (0,m[fix],adm, pksan) under key pksig by
checking that DSVerify(pksig, (0,m[fix],adm, pksan), σfix) = 1. Second, it re-
turns 1, if: DSVerify(pksig, (1,m, pksan, pksig), σfull) = 1 or DSVerify(pksan,
(1,m, pksan, pksig), σfull) = 1. This declares the entire signature as valid.
Otherwise it returns 0.

Proof: The Proof algorithm always returns ⊥
Judge: Judge on input of m,σ, pksig, pksan and ⊥ parses σ as (σfix, σfull,adm)

and outputs Sig, if:

DSVerify(pksig, (1,m, pksan, pksig), σfull) = 1

It returns San, if:

DSVerify(pksan, (1,m, pksan, pksig), σfull) = 1

If none verifies, it returns ⊥.

Theorem 3 (Our construction is secure.). If the underlying signature
scheme DS is UNF-CMA and deterministic, then our construction is immutable,
perfectly unlinkable, perfectly private, non-interactive publicly accountable (and
therefore signer-/sanitizer accountable and also unforgeable [8,11]), i.e., secure.

The proof is delegated to Appendix A.

4 Extensions: Multiple Sanitizers and Selective Linkability

We deploy a deterministic, strongly unforgeable signature scheme to obtain un-
linkability. In the following, we show that by replacing the signature scheme
for the fixed blocks with certain other types of signature schemes, one obtains
interesting additional features, which have not been considered yet. In this sec-
tion, we extend our scheme to cope with multiple sanitizers and allow for more
fine-grained control.
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Multiple Sanitizer and Speed-Up. Our construction can be modified to
work in the multi-sanitizer framework [13]. In particular, the signer can add a
public key pksan,i for each sanitizer i. Our simple yet effective alteration once
again demonstrates the generality of the underlying basic idea and its broad
applicability. Additionally, all mentioned modifications impact the performance
of the scheme only lightly, as they require only a constant number of additional
steps per sanitizer. To improve the speed of the multi-sanitizer verification pro-
cedure, one can append a hint on the required public key to the signature. This
small improvement allows skipping the need to iterate through all public keys in
σfix. This also holds when considering only one sanitizer and one signer. For a
meaningful definition of unlinkability in the multi-sanitizer case, we require that
only one sanitizer acts as the sanitizer in the unlinkability experiment, while we
also require that the sanitizers are fixed. The latter is in conjunction with [13].
To enhance anonymity for the sanitizers, one can also use a group signature
scheme for the sanitizers. As the original signer still uses a normal signature
scheme, the signatures are clearly distinguishable and therefore remain legally
recognized, following the reasoning of [34]. In certain scenarios, the weakened
unlinkability definition still suffices, if it is obvious in the practical application
which entity has generated the signature.

Signer Selected Linkability by Strongly Unforgeable Signatures. A
strongly unforgeable signature scheme is an unforgeable signature scheme, where,
additionally, it is hard to generate new signatures for previously signed
messages [2]. If the signature generation of a strongly unforgeable scheme is
randomized, then signatures for a message are not unique which harms unlinka-
bility in our construction. Thus, if we de-randomize the linkable scheme by using
a PRF [20] to generate the randomness for the signing algorithm determinis-
tically from the input message, then the signer is able to make that signature
unlinkable. In detail, we consider the PRF -key as part of sksig. Then, if two
signatures are designated to be unlinkable, the used randomness is determin-
istically generated by applying the PRF on a digest of the fixed part of the
message that is generated using a collision-resistant hash function. On the other
hand, if the used randomness is not generated using the PRF , the resulting san-
itized documents can be linked. Overall, the PRF-de-randomized scheme allows
the signer to decide whether signed messages shall be linkable or unlinkable. It
remains to establish formally that these properties hold.

Sanitizer Selective Linkability by Randomizable Signatures. As al-
ready proposed by Brzuska et al., re-randomizable signatures are also suitable
to achieve unlinkability [10]. Interestingly, here, a dual observation to the PRF -
case applies. Namely, the sanitizer gets to choose whether a sanitized message
shall be linkable to the original one or not. Note, this feature comes with the
caveat that the signer relies on good randomness added by the sanitizer. If the
sanitizing process is carried out by a weak or only partially trusted device, one
might prefer to opt against re-randomizable signatures and use deterministic
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Table 1. Median runtime of our scheme; � is the number of blocks; All in ms

KeyGen Sign Sanit of 25% of � Verify Detect

�
��λ
�

100/1k/10k 100 1k 10k 100 1k 10k 100 1k 10k 100 1k 10k

2.048 Bit 1,934 22 24 26 13 14 17 1 1 4 1 2 5

4.096 Bit 16,280 149 150 149 78 79 84 4 4 8 5 5 9

ones, as proposed in our construction. On the other hand, it allows the signer to
delegate the decision to enable linkability for certain messages to the sanitizer.

5 Performance Measurements

To demonstrate practical usability, we implemented our construction. All tests
were performed on an Intel T8300 Dual Core @2.40 GHz and 4 GiB of RAM,
running Ubuntu Version 12.04 LTS (64 Bit) and Java version 1.7.0 03. For all
tests, we applied our algorithms to messages with 100, 1, 000 (1k) and 10, 000
(10k) blocks. For any block count, we decided to fix the amount of admissible
blocks to 50%, and we sanitized always 50% of the admissible blocks, i.e., 25%
of all blocks. We took the median of 100 runs. We used one possible choice
for a deterministic signature scheme, namely “RSASSA-PKCS-v1 5-SIGN” [26].
We utilized a single thread to calculate the signatures. Obviously, paralleliza-
tion, e.g., by using CRT, will yield significant performance improvements. The
results of our measurements in Tab. 1 show that our scheme keeps a very high
performance. The source code is available upon request.

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. ePrint Report 2011/096 (2011)

2. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

3. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

4. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

5. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

6. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)



Efficient and Perfectly Unlinkable Sanitizable Signatures 27

7. Brzuska, C., et al.: Redactable Signatures for Tree-Structured Data: Definitions
and Constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
87–104. Springer, Heidelberg (2010)

8. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
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A Security of Our Construction

The security proofs of our construction follow the ideas of [9] and [11]. From [8,9,11]
we yield that non-interactive public accountability, as defined in [11], already im-
plies sanitizer accountability, signer accountability and unforgeability. Moreover,
unlinkability implies privacy [9]. Thus, it suffices to prove that Construction 1 is
immutable, non-interactive publicly accountable and unlinkable.

Proof (of Th. 3). To increase the readability, we prove each property on its own.

– Unlinkability. For two messagesm0 and m1 with identical fixed parts m[fix],
the signatures σ0

fix and σ1
fix over this part are identical, as we use a determin-

istic signature scheme. Moreover, the signatures σ0
full and σ1

full, depending
on the modifiable message parts, are not used as input for the sanitizing
process. Thus, we are perfectly unlinkable and perfectly private.

– Immutability. Assume towards contradiction that Construction 1 is not im-
mutable. In particular, let A be an efficient adversary against immutability.
We construct an adversary B against the underlying signature scheme. The
adversary B embeds the keys of the signature scheme as the signer’s public
keys. It then answers A’s queries to the signing oracle by running the algo-
rithm as described in Construction 1, except for signature generation under
the signer’s key, where B queries its signing oracle instead of computing
them itself. The simulation is perfect. When A returns (m∗, pk∗san, σ∗), then
B returns ((0,m[fix],adm, pksan), σfix) as a forgery. We now prove that B is
successful in attacking the underlying signature scheme, if A is.

Following our definition, A wins, if it can output a tuple (m∗, σ∗, pk∗san)
such that Verify(m∗, σ∗, pksig, pk

∗
san) = 1 and pk∗san �= pksan,i for all i queries

to the signing oracle or ∃i, j, ji /∈ adm : m∗[ji] �= mi[ji].

(i) If pk∗san �= pksani, then (0, ∗, ∗, pk∗san) is fresh.
(ii) If ∃i, j, ji /∈ adm : m∗[ji] �= mi[ji], then (0,m[fix]∗,adm, pk∗san) is fresh.

These cases are equal to the attack cases for forgeries of the underlying signa-
ture scheme. Thus, B’s success probability is equal to A’s success probability.

– Non-Interactive Public Accountability. LetA be an efficient adversary against
non-interactive public accountability. We construct another efficient adver-
sary B against the unforgeability of the underlying signature scheme DS
as follows. B gets as input a public key pk and flips a coin b. If b = 0, it
sets pksig := pk and runs DSKGen to generate (pksan, sksan). If b = 1, it sets
pksan := pk and runs DSKGen to generate (pksig, sksig). To simulate the ora-
cles for A, the algorithm B runs the algorithms Sign and Sanit according to
the specification with the exception that whenever a signature is generated
under the secret key sk corresponding to pk, B does not generate the signa-
ture itself. Instead, B queries its signing oracle and passes the result to A.
Eventually, the adversary A outputs a triple (pk∗,m∗, σ∗). We distinguish
between two cases, a malicious sanitizer attack and a malicious signer attack.
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With probability 1
2 the simulation was done for the correct case, as in both

cases, the output distributions of B’s simulation are identical.

Malicious Sanitizer
B returns ((0,m[fix]∗,adm, pk∗san), σfix). As m[fix]∗ is fresh, the signing
oracle has never signed a message of the form (0,m[fix],adm, ∗).
Malicious Signer
B returns ((1,m∗, pksan, pk

∗
sig), σfull). As m

∗ is fresh, the signing oracle has
never signed a message of the form (1,m∗, ∗, ∗).
Analysis
Thus, the overall success probability of B is exactly 1

2 the success probability
of A. 	
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