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Preface

This volume contains the papers presented at the 10th European Workshop
on Public Key Infrastructures, Services and Applications (EuroPKI 2013) held
during September 11–12, 2013 in conjunction with ESORICS 2013 in Egham,
U.K.

The workshop received 20 submissions. Each submission was subjected to a
thorough review by at least three Program Committee members and external
reviewers. The papers were evaluated on the basis of their significance, novelty,
and technical quality. Reviewing was double-blind meaning that the Program
Committee was not able to see the names and affiliations of the authors, and
the authors were not told which Committee members reviewed which papers.

These proceedings contain the 11 accepted publications and the presentation
paper by the invited speaker Fabio Martinelli.

We wish to thank everyone who contributed toward the success of the work-
shop: the authors of submitted contributions, the program chairs and the Pro-
gram Committee for their efforts in reviewing and discussing the submissions
under tight time constraints. We are also very grateful to all other ESORICS
2013 organizers whose work ensured a smooth organizational process.

December 2013 Sokratis Katsikas
Isaac Agudo



Organization

Program Chairs

Sokratis Katsikas University of Piraeus, Greece
Isaac Agudo University of Malaga, Spain

Publicity Chair

Christopher Dadoyan University of Piraeus, Greece

Program Committee

Lejla Batina Radboud University Nijmegen,
The Netherlands

Carlos Blanco Bueno Universidad de Cantabria, Spain
David Chadwick University of Kent, UK
Sherman S.M. Chow Chinese University of Hong Kong, Hong Kong
Paolo D’Arco University di Salerno, Italy
Sabrina De Capitani Di

Vimercati DTI - Universita degli Studi di Milano, Italy
Carmen Fernandez Gago University of Malaga, Spain
Simone Fischer-Huebner Karlstad University, Sweden
Sara Foresti DTI - Universita degli Studi di Milano, Italy
Steven Furnell University of Plymouth, UK
Dimitris Geneiatakis University of Piraeus, Greece
Stefanos Gritzalis University of the Aegean, Greece
Peter Gutmann University of Auckland, New Zealand
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Partial Model Checking for the Verification
and Synthesis of Secure Service Compositions�

Fabio Martinelli and Ilaria Matteucci

IIT-CNR, Pisa, Italy
firstname.lastname@iit.cnr.it

Abstract. Security is one of the main aspects of Web Services composition. In
this paper we describe a logical approach based on partial model checking tech-
nique and open system analysis for the verification and synthesis of secure service
orchestrators. Indeed through this framework we are able to specify a system with
a possible intruder and verify whether the whole system is secure, i.e., whether
the system satisfies a given temporal logic formula that describes a correct behav-
ior (security property). Moreover we are able to define an orchestrator operator
able to orchestrate several services in such a way to guarantee both functional and
security requirements.

Keywords: Synthesis of Functional and Secure Processes, Secure Service Com-
position, Partial Model Checking, Cryptography, Process Algebras, Quantitative
Security.

1 Introduction

In the last decades, the research on several aspects of service composition made a great
step further. In particular, several frameworks have been developed in order to compose
services in order to satisfy requirements and constraints imposed by a user. The Service
Oriented Computing (SOC) investigates on new approach for building software appli-
cations by composing and configuring existing services. Services are software compo-
nents developed to be re-usable, which expose their definition and which are accessible
by third parties. Web Services are the most promising class of services, export their de-
scription and are accessible through standard network technologies, e.g., SOAP, WSDL,
UDDI, WS-BPEL, WS-Transaction, etc.. Web Service Composition combines existing
services, available on the web, to provide added-value services featuring higher level
functionalities. Every functionality of a service network depends on how the services
compose each other. Service composition can be made in two ways, as a choreogra-
phy or through an orchestration. Choreography identifies the end-to-end composition
between two services by mainly considering cooperation rules, e.g., the sequence of
the exchanged messages and their content. Orchestration deals with the composition of
multiple services in terms of the business process they generate.

� Work partially supported by the EU project FP7-257930 Aniketos: Ensuring Trustworthiness
and Security in Service Composition and by the EU project FP7-256980 Nessos: Network of
Excellence on Engineering Secure Future Internet Software Services and Systems.

S. Katsikas and I. Agudo (Eds.): EuroPKI 2013, LNCS 8341, pp. 1–11, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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The pervasiveness of web services increases the necessity for consumers to access
and use them in a secure way. A service composition is secure whether it satisfies a
certain security property. A security property is a statement that specifies acceptable
executions of the system. Indeed, the composition of services presents a lot of chal-
lenges in term of security. For instance, services cannot be able to directly communicate
one another because they use different cryptographic protocols. It is also possible that
different services provide the same functionality but in a different way and one could fit
better than an other to the customer functional and security requirements. Furthermore,
the distributive nature of web service makes the importance of having some machinary
to guarantee security very important. Consumers should require strong guarantees that
their security policies are satisfied. Unfortunately, Service Oriented Computing is ad-
verse to most techniques of control and analysis which, usually, require the direct access
to either execution or implementation.

In this paper we focus on orchestration. In particular we show our approach for
verification and synthesis of secure service composition using a secure and functional
orchestrator. Indeed, we consider the research line of verification and synthesis of secure
systems using partial model checking [1]. Hence, we describe our approach and we also
show the tools we have developed in order to verify and generate secure cryptographic
orchestrators:

– Verification of security properties by partial model checking through the
PaMoChSA tool;

– Synthesis of orchestrators by partial model checking through an extended version
of PaMoChSA, the PaMoChSA 2012 version.

The paper is organized as follows. Next section recalls some background notions
about process algebra, cryptography and partial model checking function. Section 3 in-
troduces our approach base on the open system paradigm for the specification, analysis,
and synthesis of a service composition system. In particular, in this section we focus on
the verification framework, while in Section 4 we describe our extension of the frame-
work to automatically synthesize of cryptographic orchestrators that allow services to
communicate in both functional and secure way. Furthermore, we present a possible
strategy to evaluate and rank different orchestrators according to cost of orchestrator
execution. Section 5 discusses some related work about the verification and synthesis
of secure service composition. Finally Section 6 concludes the paper.

2 Background Notions

In this section we briefly recall some notions about Crypto-CCS [2,3], a variant of
the CCS process algebra [4] that allows to deal with cryptography, and partial model
checking function [1] that allows to partially evaluate the behaviour of the considered
system.

2.1 Crypto-CCS in a Nutshell

Crypto-CCS is a variant of CCS [4], endowed with cryptographic primitives. A model
defined in Crypto-CCS consists of a set of sequential agents able to communicate by
exchanging messages (e.g., data manipulated by the agents).
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A
.
= 0 | c!m.A | c?x.A | [m1 · · ·mn �r x]A;A1

where m1, . . . ,mn,m are closed messages or variables, x is a variable and c is an
element of the set Ch of channels. Informally, the Crypto-CCS semantics used in the
sequel is: 0 denotes a process that does nothing; c!m.A denotes a message m sent over
channel c and then behave as A; c?x.A denotes a message m received over channel c
which replaces the variable x and then behave as A; [m1 · · ·mn �r x]A;A1 denotes
an inference test that a process may use to check whether message m is derivable from
premises m1, . . . ,mn; the continuations in positive and negative cases are A (where
m replaces x), or A1, respectively. Deduction is the message-manipulating construct
of the language, responsible for its expressive power. In particular, it allows to model
asymmetric encryption. Let y be a key belonging to an asymmetric pair of keys. We
denote by y−1 the correspondent complementary key. If y is used for encryption, then
y−1 is used for decryption, and vice versa. Given a set of messages φ, then message
m ∈ D(φ), the set of deduced messages, if and only if m can be deduced from the rules
modelling public key cryptography.

The control part of the language consists of compound systems:

S
.
= S1 ‖ S2 | S\L | Aφ

Informally,S1 ‖S2 denotes the parallel composition ofS1 and S2, i.e.,S1 ‖ S2 performs
an action if either S1 or S2 does. A synchronization (or internal) action, denoted by τ , is
observed wheneverS1 and S2 can perform two complementary send and receive actions
over the same channel;S\L prevents actions whose channels belong to the set L, except
for synchronization. Aφ is a single sequential agent whose knowledge is described by
φ.

2.2 Partial Model Checking

Partial model checking is a technique that relies upon compositional methods to provide
properties of concurrent systems [1].

The intuitive idea underlying the partial model checking is the following: let ϕ be
a formula expressing a certain consumer’s requirement (see [3,5] for some logical lan-
guages), then proving that E‖F satisfies ϕ is equivalent to prove that F satisfies a
modified specification ϕ = ϕ//E

, where //E is the partial evaluation function for the
parallel composition operator. Hence, the behavior of a component has been partially
evaluated and the requirements are changed in order to respect this evaluation.

We give the following main result:

Lemma 1. Given a process E‖F and an equational specification ϕ we have:

E‖F |= ϕ iff F |= ϕ//E

A lemma similar to the previous one holds for each process algebra operator.
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3 Verify Communication Protocols in Service Communication

In order to guarantee security in service composition, we aim to verify and automati-
cally synthesize (see next section) an orchestrator process able to coordinate the com-
munication among several services in a secure and functionally correct way.

Given the sensitive nature of a cryptographic protocol, one can imagine the presence
of a hostile adversary trying to interfere with the normal execution of the protocol in
order to achieve some advantage. To this aim, hereafter, we assume the Dolev-Yao threat
model which has been widely accepted as thread model for cryptographic protocols.
This threat model assumes that:

– All communications are visible by the attacker, i.e., an attacker can receive any
message transmitted through the network.

– The attacker can alter, forge, replay or drop any message.
– The attacker can reroute messages to another principal.
– The attacker can be a principal or an outsider. This means that an attacker can be a

legitimate user of the network and thus in particular he is able to initiate communi-
cation with any other principal or to act as a receiver to any principal.

Due to the unpredictable behaviour of the possible attacker, this can be seen as an
unspecified component of the system under investigation, i.e., as a black-box. Hence,
we model as an open system following the approach proposed in [6,2,7,3]. A system
is open if it has some unspecified components. We want to make sure that the system
with this unspecified component works properly, e.g., fulfills a certain property. Thus,
the intuitive idea underlying the verification of an open system is the following:

An open system satisfies a property if and only if, whatever component is substituted to
the unspecified one, the whole system satisfies this property.

Whatever the unspecified term is, it is appealing that the resulting system works prop-
erly, e.g., satisfies a consumer’s requirement.

According to these premises, using Crypto-CCS we can model the service composi-
tion as follows:

For every component X S‖X |= ϕ (1)

where X stands for the possible attacker, S is the system under examination, consisting
of several services composed in parallel through the ‖ parallel-composition operator,
ϕ is a logic formula expressing the customer requirement. It roughly states that the
propertyϕ holds for the system S, regardless of the component (i.e., intruder, malicious
user, hostile environment, etc.) which may possibly interact with it.

Our aim is to reduce such a verification problem as in Formula (1) to a validity
checking problem. To obtain this, we apply the partial model checking techniques.

We have:
∀X S‖X |= ϕ iff X |= ϕ//S

(2)

In this way we have found the sufficient and necessary condition on X , expressed by a
logical formula ϕ//S

, so the whole system S‖X satisfies ϕ.
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Several results exist about the decidability of such problems for temporal logic and,
for the more interesting properties, like several safety properties (“nothing bad hap-
pens”), the validity problem of the formula obtained after the partial evaluation may
be solved in linear time in the dimension of the formula itself. Another advantage of
the partial model checking technique is that it is not necessary to find the most general
intruder and prove its attack capabilities.

3.1 PaMoChSA: The Partial Model Checking Security Analyser

The development of the theory has lead to the implementation of a partial model checker
namely the Partial Model Checking Security Analyser [8], for short, PaMoChSA,
through which it is possible to analyse distributed systems. As usual, only systems with
finite computations will be investigated. This is possible since:

1. the operational language used to specify protocols does not allow recursion;
2. the messages are of a fixed structure;
3. a finite number of parties and sessions running the protocol are considered;
4. even if the attacker is allowed to generate fresh messages, their structure is subject

to the same constraints mentioned above.

It is worth noticing that, though maintaining the analysis over a finite number of parties
and sessions, the absence of attacks over a particular system running the protocol does
not guarantee that there are no attacks on larger systems running the same protocol.

The PaMoChSA tool needs the following set of inputs: i) the protocol specification;
ii) the security property to be checked; iii) the initial knowledge of the intruder. When
developing the theory, the operational language Crypto-CCS has been used for spec-
ifying the protocols. The PaMoChSA tool takes as input the protocol description, the
secret, i.e., the message that has not to be disclosed to a possible intruder, and the initial
knowledge of the possible intruder. The tool gives as output the possible attacks if any,
or states the absence of attacks.

4 Synthesis of Functional and Secure Orchestrators

Moving on along this line of research, we wonder what we could do if the verification
tool reveals the presence of attacks. In this case, we extend this line of research area
based on partial model checking, logic languages and satisfiability, in order to synthe-
size an orchestrator process able to i) combine several services and provide an unified
interface that satisfies a consumer’s request and ii) guarantee that the composite service
is secure. Hereafter, from a functional perspective, we concentrate on successful service
completion, and from a security perspective, we concentrate on the secrecy property.

Indeed, let us assume that each service in the composition is not able to communicate
with the others for accomplishing the consumer’s requirements, i.e., the set of channels
over which Si is able to communicate does not intersect the set of channels over which
Sj is able to communicate, for each pair Si and Sj in S. We may wonder if there
exists an orchestrator O that, by communicating with the services in S and assuming
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any unspecified component X , guarantees that the overall system satisfies the required
security property, i.e.,

∃O ∀X S‖O‖X |= ϕ

Let mF be a message that denotes the end of a service execution, φO be the knowl-
edge of the orchestrator, and φX be the knowledge of the attacker.

The synthesized orchestrator process is consider functional and secure because it is
able to:

– Functional: combine several services in such a way that mF falls into the orches-
trator’s knowledge φO . This implies that all services have successfully terminated
their execution. We consider the formula ϕT for this property.

– Secure: guarantee that the composite service is secure by checking that the secret
message m does not belong to φX . We consider the formula ϕsec for this property.

Let us consider the process (S‖OφO‖XφX ). No matter what the behaviour of X is,
we require that this process satisfies both functional and security requirements. It is
worth noticing that in this case there are two components whose behaviour is unknown:
the orchestrator O and the intruder X .

One issue is to decide if there exists an orchestrator O such that, for all the possi-
ble behaviours of X , after the computation of maximal length γ(max), mF is in the
knowledge of O and m is not in the knowledge of X .

∃OφO∀XφX (S‖OφO‖XφX ) |= ϕT ∧ ϕsec (3)

An important aspect is how to automatically synthesize the orchestrator. We can use
partial model checking to simplify Equation 3 by partially evaluating the formula ϕT ∧
ϕsec with respect to the behaviour of S.

Proposition 1. Let S be a system and OφO and XφX two sequential agents, where φO

and φX are finite sets representing the knowledge of O and X . If mi, i = 1, . . . , n, are
secret messages and mF is the final one, we have:

(S‖OφO‖XφX ) |= ϕT ∧ ϕsec

iff
OφO‖XφX |= (ϕT ∧ ϕsec)//ns, S

This result identifies the necessary and sufficient conditions that the orchestrator, inter-
acting with every possible X , must satisfy in order to guarantee that the final message
mF is delivered correctly without any disclosure of information to X .

However, the presence of the universal quantifier on X makes the formula ϕT =
∀γ(max) : mF ∈ KφO

O,γ(max) not satisfiable, since X can always interfere with the
normal execution of S getting the overall system stuck, so that the final message mF is
not delivered.

However, still keeping the intuition behind Equation 3, we can weaken the property
to the conjunction of the following properties:

A1. When there is not an intruder, the orchestrator always drives the services to correct
termination.
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A2. When there is an intruder, no matter what actions it takes, it is not able to learn
the secret m.

Now we need to determine whether it is possible to determine an orchestrator O satis-
fying this weaker assumption. Decidability comes from the following proposition.

Proposition 2. Given a system S, and two finite sets φO and φX , it is decidable if
∃OφO s.t. ∀XφX

A1 (S‖OφO) \ L |= ϕT

A2 (S‖OφO‖XφX ) \ L |= ϕsec

In A1, we are assuming that the attacker X is the empty process, with an empty
initial knowledge φX .

According to Proposition 1, we can apply the partial model checking techniques to
A1 and A2 obtaining:

A1′ OφO |= (ϕT )//ns,S
A2′ (OφO‖Xφ) |= (ϕsec)//ns,S

Hence, since the formulas in A1 and A2 are finite, the application of the partial model
checking, in conjunction with the usage of some satisfiability procedure allows us to
synthesize an orchestrator, whenever it exists.

4.1 PaMoChSA 2012: Tool Description

The tool PaMoChSA2012 [5] is an extension of the original PaMoChSA tool briefly
recalled in Section 3.1. It is able to automatically synthesize a functional and secure
orchestrator starting from the description of services. The algorithm implements the
two formulas of Proposition 2. It can be more intuitively explained as path-finding in
a state graph. In principle, the behaviour of an orchestrator is a tree. However, since
the system and the orchestrator are assumed to be deterministic, such a tree has an
equivalent description in terms of all its paths. The input of PaMoChSA2012 are the
same of PaMoChSA plus the initial knowledge of an orchestrator.

A practical way to account for possible attacks is to build the state graph in such a
way that additional transitions are present, simulating eavesdropping and manipulation
of messages by the intruder. Thus, whenever a service can receive a message from the
orchestrator, then it evolves and it can also be instantiated with all messages of the same
type that can be deduced from the knowledge of the intruder KX . Likewise, whenever
the service can send a message to the orchestrator, the knowledgeK ′

O of the orchestrator
can also be augmented with all the messages of the same type that can be deduced from
KX . This machinery implements the ability of X to interfere with communications
between the orchestrator and the system.

Finally, the knowledge of the intruder is always augmented with the messages that
are exchanged between the orchestrator and the system, unless the used channel is in H .
Rationale is that the intruder can eavesdrop such communications in order to acquire
new information.
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4.2 A Selection Strategies of the Best Orchestrator

The proposed approach is able to synthesize functional and secure orchestrators able
to orchestrate a given set of services. We present several strategies for ordering the set
of orchestrator processes obtained through the PaMoChSA2012 tool by evaluating the
orchestrators according to some aspects that can me modelled as a metric. In particular,
several aspects, as cost, QoS, and also the degree of security, can be formalised using
semirings, as done in [9].

Definition 1. A semiring K = (K,+, ∗,0,1) consists of a set K with two binary
operations+, ∗, and two constants 0,1, such that + is associative, with neutral element
0; ∗ is associative, with neutral and absorbing elements 1,0; ∗ distributes over +.

Every semiring is endowed with a partial order that intuitively indicates a notion of
preference. This allow us to order the synthesized orchestrators they are evaluated ac-
cording to one of the chosen measures. Let us consider the semiring of cost, KC =
〈R+

0 ,min,+,+∞, 0〉. Using this semiring we are able to evaluate the cost of each or-
chestration strategy by associating a cost to each action the orchestrator performs.

As we are dealing with run-time orchestration, we work with traces, or paths, of the
orchestrator processes.

A path is a sequence (a1, k1) · · · (an, kn), and we call T (A) the set of paths rooted
in A. Given a path (a1, k1) · · · (an, kn), we define its label l(t) = a1 · · · an, and its
run weight |t| = k1 ∗ . . . ∗ kn ∈ K . Finally, the valuation of a process A is given by
�A� =

∑
{t∈T (A)} |t|.

Hence, we are able to compare different orchestrator processes.

Definition 2. Given a process S, an orchestrator O2 is better than an orchestrator O1

with respect to S, if and only if �O1‖S� ⊆ �O2‖S�.

This definition does not directly depend on the semiring used to quantify the con-
trolled target, and it is therefore possible to use the same definition to say that an or-
chestrator is better than another one with respect to any other measure. Note that since
each individual trace can be represented as a target, O1 ⊆ O2 implies that the valuation
of O1 should be lower than that of O2 for every possible trace.

In some cases, orchestrators can be incomparable. However, other dimensions can
easily be included within our framework, with the intuition that the more accurate is
the quantification of the composed system, the more informed is the security designer
to choose an orchestrator.

5 Related Work

Several works deal with a possible modeling of orchestrators by process algebras, see
e.g., [10,11,12,13,14] or by automata [15]. In [16,17] the authors have developed a static
approach to deal with the composition of web services problem by the usage of plans.
By the way, only some of these take into account also security aspects in the service
composition procedure. In particular they use a distributed, enriched λ-calculus for de-
scribing networks of services. Both, services and their clients, can protect themselves,
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by imposing security constraints on each other’s behavior. Then, service interaction re-
sults in a call-by-property mechanism (see [18]), that matches the client requests with
services. Our approach treats the problem of the automatic composition of services by
also considering cryptographic primitives. Indeed, our approach permits us to synthe-
size orchestrators that are able to encrypt and decrypt messages in order to guarantee
also secrecy and privacy properties.

In [23] the authors introduce COWS, calculus for orchestration of web services, as a
new foundational language for service oriented computing. In order to facilitate the use
of model-checking techniques to business analysts, the authors of [24] created a model-
checking plugin for SAP NetWeaver Business Process Management. This plugin
support the verification of secrecy properties with a push of a button and the subsequent
visualization of possible attack traces. However, since this plugin is intended as a design
tool, the designer is left with the task to solve possible flaws in the business process. Our
approach, on the other hand, automatizes the generation of secure orchestrators which
are guaranteed to preserve the given secrecy properties.

There are some papers proposing compositional approaches to the synthesis of con-
trollers, able to dynamically enhance security, depending on some runtime behaviour of
a possible attacker, e.g., [25,26]. The current work extends the existing research line on
the synthesis of secure controller programs [25] with the introduction of cryptographic
primitives. Also, it tries to simplify the approach in [27] for the synthesis of deadlock-
free orchestrators that are compliant with security adaptation contracts [28]. Compared
to [27], this new approach loses the ability to specify fine-grained constrains in the de-
sired orchestration but, on the other hand, there is no need to design and adaptation
contract.

Similarly, our approach to synthesis differs from the one in [29], where automatic
composition of services under security policies is investigated. Work in [29] uses the
AVISPA tool [30] and acts in two stages: first, it derives a protocol allowing compo-
sition of some services; then, some desired security properties are implemented. The
latter step uses the functionality of AVISPA and, for the former step, the desired com-
position is turn into a security property, so that AVISPA itself can be used to derive
an “attacker”which actually is the orchestrator. The AVANTASSAR tool [31] extends
the AVISPA tool. Indeed, the AVANTSSAR Platform is an integrated toolset for the
formal specification and automated validation of trust and security of service-oriented
architectures and other applications in the Internet of Services.

In [32], Li et al. present an approach for securing distributed adaptation. A plan is
synthesized and executed, allowing the different parties to apply a set of data transforma-
tions in a distributed fashion. In particular, the authors synthesize “security boxes”that
wrap services, providing them with the appropriate cryptographic capabilities. Secu-
rity boxes are pre-designed, but interchangeable at run time. In our case the orchestra-
tor is synthesized at run time and is able to cryptographically arrange secure service
composition.

6 Conclusion

In this paper we present our framework based on partial model checking for guar-
anteeing security in web service composition. In particular, we exploit cryptographic
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protocols analysis for checking that the communication among different services hap-
pens in a secure way. Furthermore, we extend the same framework for synthesizing an
orchestrator process able to manage the communication among services by using also
cryptographic primitives. We also enrich this approach by presenting a possible strategy
to evaluate and ranking different orchestrators processes in order to chose the best one
for accomplishing the customer request.
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Abstract. Sanitizable signatures allow for controlled modification of
signed data. The essential security requirements are accountability, pri-
vacy and unlinkability. Unlinkability is a strong notion of privacy. Namely,
it makes it hard to link two sanitized messages that were derived from
the same message-signature pair. In this work, we strengthen the stan-
dard unlinkability definition by Brzuska et al. at PKC ’10, making it ro-
bust against malicious or buggy signers. While state-of-the art schemes
deploy costly group signatures to achieve unlinkability, our construction
uses standard digital signatures, which makes them compatible with ex-
isting infrastructure.

We construct a sanitizable signature scheme that satisfies the strong
notion of perfect unlinkability and, simultaneously, achieves the strongest
notion of accountability, i.e., non-interactive public accountability. Our
construction is not only legally compliant, but also highly efficient, as the
measurements of our reference implementation show. Finally, we revisit
the security model by Canard et al. and correct a small flaw in their
security definition given at AfricaCrypt ’12.

1 Introduction

Sanitizable signature schemes (SanSigs), introduced by Ateniese et al. [3], enable
a designated party, the sanitizer, to alter a signed document in a controlled way.
The sanitizer (holding its own sanitizer secret) can generate a new, yet valid,
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original document. In particular, let the message m consists of � blocks, i.e.,
m = (m[1], . . . ,m[�]), where � ∈ N and m[i] ∈ {0, 1}∗. Then, the sanitizer is
only able to modify those blocks m[i] that the signer defined as admissible.
Sanitization thus yields a new message-signature pair (m′, σ′), where σ′ is a
valid signature for m′ under the signer’s public key pksig and m′ is equal to m
on all non-admissible blocks.

Motivation. Malleable signatures of this kind seem to bear an inherent risk:
a semi-trusted party is allowed to change signed data and thus a signer gives
up control over the statements that are produced in its name. However, when
carefully implemented, delegation of signing rights turns out to be very useful
for a variety of application scenarios, ranging from sanitizing medical records to
secure routing and blank signatures [3,9,22,23]. Another application scenario is
access control for databases. In any larger company, but in particular in banks
and hospitals, access policies are inherent in day-to-day operations [39]. Com-
pliance rules in banks actually enforce the separation of different sectors, and
likewise, hospitals host large databases of sensitive data that must not be ac-
cessed by anybody. The reception desk personnel in a hospital, for example,
must not be able to access medical data of a patient, while the accountant of
the hospital, in turn, must not learn personally identifying details of the patient.
On the other hand, integrity of the database is crucial for both, hospitals and
banks, and besides appropriate read-and-write policies [39], one might aim for
the cryptographic protection of, say, patient records and have them digitally
signed by the treating personnel. The accountant and the receptionist then both
access different parts of an authenticity protected record. Hence, some entries in
the signed record need to be sanitized while keeping a valid signature over the
rest of the record. Whereas standard signatures do not allow for such modifi-
cations, sanitizable signatures enable to implement privacy-friendly access and
integrity verifiability simultaneously. In particular, using sanitizable signatures,
the database can operate without repeated interaction with the signer (the med-
ical personnel). In a bank, interaction with the signer might even be disallowed,
e.g., due to money laundering policies. To sum up, we aim for signatures that
allow for controlled modification of different parts of a signed document without
interaction with the original signer.

Sanitizable signatures usually strive for strong privacy guarantees to hide the
removed sensitive information. The strongest notion of privacy is unlinkability,
which we review next. In the hospital database example, we derive two dif-
ferent sanitized documents from the original patient’s record, as we removed
different parts from the same signed patient record to create a version for the
accountant and another one for the reception desk personnel. A secure solution
must prevent inferring information about the original record by combining the
two sanitized documents, as this would violate the patient’s privacy concerns as
well as data-protection regulations such as HIPAA [15]. Thus, in such applica-
tion domains [10], it is important for sanitizable signatures schemes to achieve
unlinkability.
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A digital signature on a document usually provides a legal value of evi-
dence [34]. For example, in a hospital, the medical personnel sign their entries in
the database and can be held accountable for those later, i.e., the signature allows
for identifying the doctor or nurse that generated an entry. For SanSigs there are
two different options for accountability: interactive accountability involves the
signer and allows an authority to trace back the origin of a message-signature
pair, while the scheme itself might be transparent, i.e., the origin of a signature
is hidden from third-parties1. The alternative is a non-interactive public form
of accountability [11] where third-parties can identify immediately whether the
medical record was sanitized or not without interaction with the signer. As ob-
served by Pöhls and Höhne [34], current legislation only attributes a high value
of evidence to sanitizable signature if any subsequent change can be detected,
which is incompatible with the property of transparency. Formally, Brzuska et
al. show how to achieve public accountability in the absence of transparency,
as the two are mutually exclusive [11]. In turn, privacy and a public, i.e., non-
interactive, form of accountability can be achieved simultaneously, as Brzuska
et al. [11] show. We continue this line of practical research and strengthen the
privacy by achieving perfect unlinkability with standard primitives.

Challenges and Contributions. In a nutshell, our scheme addresses the fol-
lowing challenges: (1) Strong privacy guarantees, namely perfect unlinkability
and perfect privacy, (2) a high legal value of evidence through non-interactive
public accountability, (3) compatibility with existing public key infrastructures
(PKI) for standard signatures, (4) performance restrictions for economic applica-
bility. From a practitioner’s point of view, having a legally recognizable and ex-
tremely efficient scheme is essential for deployment of a signature scheme [35,36].
Our scheme is based on the ideas given in [9,11]. It extends their work in the
aforementioned points. Essentially, we achieve stronger privacy and account-
ability properties with simpler building blocks. Moreover, we are also able to
consider unlinkability and strengthen the original definition from Brzuska et al.
from PKC’10 [10] to be more robust against malicious or buggy signers, as well
as corruption of the signer’s key. Interestingly, the new definition turns out to be
more compact than the original one, as the oracles that use the signer’s secret
key can now be simulated by the adversary. Hence, the Sign and the Proof oracle
of [10] are not required anymore. We also correct a small flaw in the security
definition of unlinkability in the multi-sanitizer setting given by Canard et al.
at AfricaCrypt ’12 [13]. There, the LoRSanit-oracle does not check whether both
inputs are valid message-signature pairs and whether the requested modification
is admissible. Thus, as we show, the original definition is not achievable. Finally,
we show how to switch on-the-fly between unlinkability and linkability.

Techniques. The first sanitizable signature scheme [3] was based on chameleon
hashes [28] that were applied per each admissible block. However, their construc-
tion allowed for mix-and-match attacks. Later schemes had to find a collision
1 Third-parties here meaning other than signer or sanitizer.
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m[fix]

m[2] m[6] m[7]

m[adm]

m[1] m[3] m[4] m[5] m[8]

σfix ← DSSign(sksig, (0,m[fix],adm, pksan))

σFULL ← DSSign(sksig/sksan, (1, m, pksan, pksig))

Fig. 1. Blocks 2,6,7 of m are fixed and together with pksan and adm signed by signer
(σFIX). The complete message m is signed by either the signer or the sanitizer (σFULL).

on each admissible blocks, not only those modified [8]. Thereby, the sanitizing
process was linear in the number of admissible blocks. Some later construc-
tions [10,9,11] were based on a different paradigm. The idea is to use two sig-
natures (see Fig. 1); one to sign the fix part of m, i.e., m[fix], we sometimes
call this the “inner signature”, and another one to sign the admissible parts,
i.e., m[adm], together with the fixed parts, often called the “outer signature”.
The inner signature is produced by the signer of the signature scheme, while
the outer signature can be produced by either one, the signer or the sanitizer.
Using different signature types as inner and outer signature yields different prop-
erties of the sanitizable signature scheme. For instance, Brzuska et al. [10] use
a group signature for the outer signature. The anonymity of the group signa-
ture makes signatures of the signer and the sanitizer indistinguishable, and the
non-frameability/traceability property of the group signature scheme assures an
interactive form of accountability. In turn, in [9] and [11], the authors use stan-
dard signature schemes also for the outer signature. The scheme becomes very
efficient; it is not transparent anymore, but it still enjoys privacy [9,11] and
a non-interactive public form of accountability [11], thus complying with legal
standards. As transparency is sometimes seen as a stronger notion of privacy,
one might feel that one has to compromise, as one cannot obtain a strong no-
tion of accountability and a strong notion of privacy simultaneously. We show
that this is actually not the case. As the inner signature scheme, we use a de-
terministic signature scheme and prove that the scheme satisfies both, a public,
non-interactive version of accountability and a statistical notion of unlinkabil-
ity, the strongest notion of privacy. At the same time, we maintain high effi-
ciency and compatibility with existing public-key infrastructure, as our scheme
only requires a constant number of standard building block operations. Our
construction is even less complex than the ones given in [41], as we do not
deploy labels. This makes our scheme applicable for use on Smart Cards [35],
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embedded devices like routers, or other devices which do not have as much
processing power. All of these requirements are of paramount importance to
make SanSigs used in practice.

State-of-the-Art and Related Work. Malleable signatures scheme have
gained a lot of attention in the past few years. They were studied in several
flavors, for example, redactable signature schemes [16,25,32,33,40], sanitizable
signatures with several extensions [9,12,18,22,27,30,36,42] and combinations of
both approaches [24]. Moreover, the integrity protection of structured data, such
as in [7,29,37,38], has equally been studied in the recent past. All schemes aim
at the same goal: allowing for controlled modification of signed data to preserve
privacy, while retaining authentication of origin and integrity protection against
uncontrolled, i.e., unauthorized, modifications. In this paper, we focus on sani-
tizable signatures, as introduced by Ateniese et al. [3]. They also introduced the
aforementioned security properties for sanitizable signatures, namely privacy,
immutability, accountability, transparency and unforgeability. These were later
formalized and extended by Brzuska et al. [8,10]. Their framework has been ex-
tended to multi-sanitizer environments by Canard et al. [13]. We work within the
original framework for a single signer and a single sanitizer and show in Sect. 4
how to modify our scheme to the multi-user setting from [13].

The stronger notion of statistical unlinkability for redactable signature schemes
was introduced by Ahn et al. at TCC ’12 [1], and even stronger notions have been
discussed recently in [4,5,19]. Neither of these notions has been considered in the
context of sanitizable signatures yet, and we address this gap. The schemes for
quoting substrings [1,4,5] are tailored towards achieving both, statistical trans-
parency and statistical unlinkability. This ambitious goal comes at the price
of weakening the unforgeability property to selective unforgeability in the case
of [1]. Additionally, none of the mentioned schemes is accountable. By trading in
transparency, our construction does not only achieve stronger notions of unlink-
ability and accountability, but also the standard adaptive unforgeability notion
instead of selective unforgeability. In the context of sanitizable signatures, the
notion of unlinkability captures that two sanitized messages cannot be linked
to having the same original message-signature pair. For group signatures [17],
in turn, the unlinkability definition corresponds to the anonymity of the signer,
which is usually called transparency in the context of sanitizable signatures. The
different nomenclature is maybe best explained by the fact that discussions in
the area of malleable signatures are message-centered, while the way of think-
ing in the area of group signatures is more signer-centered—after all, the word
“group” refers to a group of signers, not to a group of messages. To avoid con-
fusion due to the historical evolution of the properties’ names in the two areas,
we stress that the present paper uses the nomenclature as introduced in [10].
Another related concept are proxy signatures [31]. However, they allow for del-
egating signing rights entirely, while sanitizable signatures allow for altering a
specific signed message.
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2 Security Models

2.1 Syntax and Notation

For a message m = (m[1], . . . ,m[�]), we call m[i] ∈ {0, 1}∗ a block, while the spe-
cial symbol “,” /∈ {0, 1}∗ denotes a uniquely reversible concatenation of strings.
The special symbol ⊥ /∈ {0, 1}∗ denotes an error or an exception. The follow-
ing nomenclature is adapted from Brzuska et al. [8], who address a setting of
single signers and sanitizers. We also elaborate in Sect. 4 on how to extend our
construction for multi-sanitizer environments as described by Canard et al. [13].

Definition 1 (Sanitizable Signature Scheme). Any SanSig consists of at
least seven efficient, i.e., PPT algorithms. In particular, let SanSig := (KGensig,
KGensan, Sign, Sanit,Verify,Proof, Judge), such that:

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys, a private key and the
corresponding public key, based on the security parameter λ:

(pksig, sksig) ← KGensig(1
λ) (pksan, sksan) ← KGensan(1

λ)

Signing. The Sign algorithm takes as input the security parameter λ, a mes-
sage m = (m[1], . . . ,m[�]), m[i] ∈ {0, 1}∗, the secret key sksig of the signer,
the public key pksan of the sanitizer, as well as a description adm of the
admissibly modifiable blocks. In detail, adm contains a set of indices of the
modifiable blocks and the overall number � of blocks in m, to guard against
length-altering attacks. The Sign algorithm outputs the message m and a
signature σ (or ⊥, indicating an error):

(m,σ) ← Sign(1λ,m, sksig, pksan,adm)

Sanitizing. The algorithm Sanit takes a message m = (m[1], . . . ,m[�]), where
m[i] ∈ {0, 1}∗, a signature σ, the security parameter λ, the public key pksig of
the signer and the secret key sksan of the sanitizer. It modifies the message m
according to the modification instruction mod, which contains pairs (i,m[i]′)
describing the index i and the blocks new value m[i]′. We use the shorthand
notation of m′ ← mod(m) to denote that the modification instructions were
successfully applied to create the modified m′ from m. Note, mod could also
be empty, i.e., m′ = m is generally possible. Sanit calculates a new signature
σ′ for the modified message m′ ← mod(m). The Sanit algorithm outputs m′

and σ′ (or possibly ⊥ in case of an error).

(m′, σ′) ← Sanit(1λ,m,mod, σ, pksig, sksan)

Verification. The algorithm Verify outputs a decision d ∈ {0, 1} verifying the
correctness of a signature σ for a message m = (m[1], . . . ,m[�]), m[i] ∈
{0, 1}∗ with respect to the public keys pksig and pksan and the security pa-
rameter λ:

d ← Verify(1λ,m, σ, pksig, pksan)
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Proof. The algorithm Proof takes as input the security parameter, the secret
signing key sksig, a message m = (m[1], . . . ,m[�]), m[i] ∈ {0, 1}∗ and a sig-
nature σ as well a set of (polynomially bounded) additional message-signature
pairs {(mi, σi) | i ∈ N} and the public key pksan. The Proof algorithm outputs
a string π ∈ {0, 1}∗ (or ⊥, indicating an error):

π ← Proof(1λ, sksig,m, σ, {(mi, σi) | i ∈ N}, pksan)

Judge. The algorithm Judge takes as input the security parameter, a message
m = (m[1], . . . ,m[�]), m[i] ∈ {0, 1}∗ and a valid signature σ, the public
keys of the parties and a proof π. The Judge algorithm outputs a decision
d ∈ {Sig, San,⊥} indicating whether the message-signature pair has been
created by the signer or the sanitizer (or ⊥, indicating an error):

d ← Judge(1λ,m, σ, pksig, pksan, π)

We require that for every SanSig the usual correctness properties hold. That
is, for every genuinely created message-signature pair created by the Sign al-
gorithm, the Verify algorithm outputs 1 with overwhelming probability. From
every message-signature pair with a positive verification result, the Sanit algo-
rithm produces again a message-signature pair for which the Verify algorithm
outputs 1 with overwhelming probability. The latter is recursive, i.e., sanitized
message-signature pairs can be sanitized again. For every genuinely generated
value of the proof π, the Judge algorithm outputs the correct party, i.e., Sig or
San, with overwhelming probability. For more details on the definition of correct-
ness, refer to [8]. In case of a SanSig with non-interactive public accountability,
the Proof algorithm always returns ⊥, and Judge correctly decides upon such an
empty proof (π = ⊥) with overwhelming probability.

We write m[adm] for the uniquely reversible concatenation of the admissible
blocks and m[fix] for the uniquely reversible concatenation of the fixed blocks
in the order of appearance in m. Note, we do not attach any labels to the
blocks as done in [41]. We require the public key to be efficiently derivable
from its corresponding secret key. Additionally, we require that adm is always
correctly recoverable from any valid signature σ, which accounts for the findings
by [21].

2.2 Security of Sanitizable Signatures

We present an extended security model based on [8]. It covers the basic ideas
and features of a SanSig.

Definition 2 (Privacy). A sanitizable signature scheme SanSig is private, if

for any efficient algorithm A the probability that the experiment PrivacySanSigA (λ)
given in Fig. 2 returns 1, is negligibly close to 1

2 (as a function of λ). Here, the
adversary must be able to decide which input was chosen by the LoRSanit. The
oracle signs and sanitizes the data itself.
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Experiment PrivacySanSigA (λ)

(pksig, sksig) ← KGensig(1
λ)

(pksan, pksan) ← KGensan(1
λ)

b ← {0, 1}
a ← ASign(sksig,··· ),Sanit(··· ,sksan)

Proof(sksig,··· ),LoRSanit(··· ,sksig,sksan,b)(pksig, pksan)
where oracle LoRSanit on input of:
m0,i,mod0,i, m1,i,mod1,i,admi

if mod0,i �⊆ admi, return ⊥
if mod1,i �⊆ admi, return ⊥
if mod0,i(m0,i) �= mod1,i(m1,i), return ⊥
let (mi, σi) ← Sign(mb,i, sksig, pksan,admi)
return (m′

i, σ
′
i) ← Sanit(mi,modb,i, σ, pksig, sksan)

return 1, if a = b

Fig. 2. Privacy

Experiment TransparencySanSigA (λ)

(pksig, sksig) ← KGensig(1
λ)

(pksan, sksan) ← KGensan(1
λ)

b ← {0, 1}
a ← ASign(sksig,··· ),Sanit(··· ,sksan)

Proof(sksig,··· ),Sanit/Sign(··· ,sksig,sksan,b)(pksig, pksan)
where oracle Sanit/Sign for input mi,modi,admi

let (mi, σi) ← Sign(1λ,mi, sksig, pksan,admi),
compute (m′

i, σ
′
i) ← Sanit(mi,modi, σi, pksig, sksan)

if b = 1:
compute (m′

i, σ
′
i) ← Sign(m′

i, sksig, pksan,admi)
finally return (m′

i, σ
′
i).

return 1 if a = b and A has not queried
any (mi, σi) output by Sanit/Sign to Proof.

Fig. 3. Transparency

Experiment UnlinkabilitySanSigA (λ)
(pksig, sksig) ← KGensig(1

λ)

(pksan, pksan) ← KGensan(1
λ)

b ← {0, 1}
a ← ASign(sksig,··· ),Sanit(··· ,sksan)

Proof(sksig,··· )LoRSanit(··· ,sksan,sksig,b)(pksig, pksan)
where oracle LoRSanit on input of:
m0,i,mod0,i, σ0,i,m1,i,mod1,i, σ1,i

//adm needs to be recoverable from all σ
if adm0,i �= adm1,i, return ⊥
if mod0,i �⊆ adm0,i, return ⊥
if mod1,i �⊆ adm1,i, return ⊥
if mod0,i(m0,i) �= mod1,i(m1,i), return ⊥
if Verify(1λ, m0,i, σ0,i, pksig, pksan) �= 1 or

Verify(1λ,m1,i, σ1,i, pksig, pksan) �= 1, return ⊥
return (m′, σ′) ← Sanit(mb,i,modb,i, σb,i, pksig, sksan)

return 1, if a = b

Fig. 4. Unlinkability by Brzuska et al.

Experiment UnlinkabilityExSanSigA (λ, n,m)
(PK,SK) ← Setup(1λ, n,m)
b ← {0, 1}
(m0,mod0, σ0,m1,mod1, σ1, j0, j1, st) ← A(∗)

ch (PK)
let (m′, σ′) ← Sanit(mb, σb,SK[jb],modb,PK)
let (ORI, IORI, πORI) ← FindOri(m′, σ′

b, oskORI,PK)
if IORI = 0 or (IORI = (Sig, iORI) and iORI ∈ CU) or
j0 ∈ CU or j1 ∈ CU or
Judge(m′, σ′

b, (ORI, iORI, πORI),PK) = 0, return ⊥
let b∗ ← A(∗)

gu (m
′, σ′

b, st)
if (m′, σ′) was queried to SigOpen, return ⊥, else b∗

Fig. 5. Unlinkability by Canard et al.

Experiment SUnlinkabilitySanSigA (λ)

(pksan, sksan) ← KGensan(1
λ)

b ← {0, 1}
a ← ASanit(··· ,sksan),LoRSanit(··· ,sksan,b)(pksan)

where oracle LoRSanit on input of:
m0,i,mod0,i, σ0,i,m1,i,mod1,i, σ1,i, pksig,i
//adm needs to be recoverable from all σ
if adm0,i �= adm1,i, return ⊥
if mod0,i �⊆ adm0,i, or mod1,i �⊆ adm1,i, or mod0,i(m0,i) �= mod1,i(m1,i), return ⊥
if Verify(1λ,m0,i, σ0,i, pksig,i, pksan) �= 1 or Verify(1λ,m1,i, σ1,i, pksig,i, pksan) �= 1, return ⊥
return (m′, σ′) ← Sanit(mb,i,modb,i, σb,i, pksig,i, sksan)

return 1, if a = b

Fig. 6. Strengthened Unlinkability

Definition 3 (Transparency). A sanitizable signature scheme SanSig is trans-
parent, if for any efficient algorithm A the probability that the experiment
TransparencySanSigA (λ) given in Fig. 3 returns 1, is negligibly close to 1

2 (as a
function of λ). Here, the oracle either directly signs the expected output message
(b = 1) or signs the input and then sanitizes it to the expected output (b = 0).
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Please note, in accordance with Brzuska et al. [8], we require that modi ⊆
admi is true. We check this for all queries to the above oracles as otherwise
a trivial attack vector exists. In particular, if modi �⊆ admi yields that Sanit
outputs ⊥ then this is easily distinguishable from a “fresh” signature.

Definition 4 (Strengthened Unlinkability following Brzuska et al.). A
sanitizable signature scheme SanSig is unlinkable, if for any efficient algorithm A
the probability that the experiment SUnlinkabilitySanSigA (λ) given in Fig. 6 returns
1 is negligibly close to 1

2 (as a function of λ). Here, the adversary has to guess
which of the two inputted message-signature pairs was chosen to be sanitized.

Compare our new definition of unlinkability in Fig. 6 with the original definition
of [10] depicted in Fig. 4. We altered the LoRSanit oracle so that it does not
specify the signer by having a fixed signer key pksig. In turn, now, the adversary
chooses pksig. Intuitively, this captures that unlinkability holds as long as the
sanitizer is honest, even if the signer happens to be dishonest. One might argue
that a malicious signer can always break any privacy or unlinkability property, as
it knows which messages it signed and thus, it can always recover the originally
signed message. However, there exist intermediary stages, for example, if the
signer is buggy, uses weak randomness, or loses its secret key. In these cases,
our definition turns out to be robust, i.e., even if the signer loses its secret
key, unlinkability and therefore privacy are preserved. In a sense, we cover the
equivalent of forward secrecy for the case of key exchange: there, previous sessions
remain secure when long-term secrets are lost [14].

Actually, we even achieve a stronger notion of secrecy than key exchange can
attain. Unlinkability is even preserved when the signer loses his secret key before
signing the message and even when using some form of “bad” secret key specified
by the adversary. In Def. 4, there are no signing and proof oracles—the reason
is that the adversary can now simulate those by itself. We now prove that our
new notion of unlinkability is strictly stronger than the original one by Brzuska
et al. [10].

Theorem 1. Any strongly unlinkable SanSig is also unlinkable. The converse is
not true.

Proof. Let SanSig be a strongly unlinkable sanitizable signature scheme. We
prove via reduction that SanSig is also unlinkable. Let A be an adversary against
the unlinkability of SanSig. Using A, we can construct an adversary B against
the strong unlinkability of SanSig as follows. In the beginning of the game, B
relays the sanitizer’s public key to A and runs the key generation algorithm of
the signer and returns the signer’s public key pksig to A. The signer’s secret key
is used to answer all queries that A makes to Sign and Proof. The remaining
queries are queries to the Sanit oracle, which B simply relays, and queries to the
LoRSanit oracle which B prepends with the signer’s public key pksig and queries
to its own LoRSanit oracle. In the end, A returns a bit that B returns as well.
As the simulation is perfect, B’s advantage against strong unlinkability is as big
as A’s advantage against unlinkability.
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We now separate the two unlinkability notions by constructing a (contrived)
scheme that fulfills the security requirements of the original security model by
Brzuska et al. [10] but is insecure in our new model.

Let SanSig = (KGensig,KGensan, Sign, Sanit,Verify,Proof, Judge) be a secure
sanitizable signature scheme. To obtain a counterexample, we adjust the scheme
as follows:

– KGen′sig works as KGensig, except that it appends a 1 to the public key
returned by KGensig

– KGen′san works as its original counterpart
– Judge′, Sign′, and Verify′ work as their original counterparts, but cut of the

last bit of pksig
– Sanit′ is the same as Sanit with one exception: if pksig ends with a 0, it

proceeds as normal, while cutting of the last bit of pksig. Otherwise, it outputs
the original signature and message, instead of sanitizing it.

Our stronger attacker, that can choose pksig by running KGen′sig, now wins by
replacing the trailing 1 with a 0. However, the scheme is fully secure in the
original definition where an attacker was not able to influence pksig. Here, it
does not matter, if the keys are indistinguishable. All other properties are not
affected and are inherited from the original SanSig. Note, this scheme is also still
correct as the message-signature pair left untouched by the modified Sanit′ still
verifies, while also mod1(m1) = mod2(m2) yields.

As our stronger notion of unlinkability implies the original notion of unlinkability,
all known implications still hold. In particular, our strengthened unlinkability
also implies privacy [10].

Definition 5 (Unlinkability by Canard et al.). A sanitizable signature
scheme SanSig is unlinkable, if for any efficient algorithm A the probability
that the experiment UnlinkabilityExSanSigA (λ) given in Fig. 6 returns 1 is negligibly
close to 1

2 (as a function of λ). The basic idea is that an adversary has to guess
which message-signatures pair from the two inputs was chosen to be sanitized.

For self-containment, we introduce the notation of the complete multi-sanitizer
framework and refer to Canard et al. [13] for a complete discussion. We have a
choose-then-guess adversary, which state is denoted as st. The algorithms and
oracles are defined as follows:
(1) Setup(1λ, n,m) is the instance generator, where n denotes the amount of
signers, while m denotes the number of sanitizers. Hence, PK contains all public
keys, while SK contains all private keys. The adversary A also gains access to
sanitization, sign, proof and all “opening” oracles:
(2) FindOri returns the index of the original signer. If the message has been
sanitized, FindOri returns 0, as “no signer exists”. It requires the opening key
oskORI.
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Experiment PubaccountabilitySanSigA (λ)
(pksig, sksig) ← KGensig(1

λ)

(pksan, sksan) ← KGensan(1
λ)

(pk∗,m∗, σ∗, π∗) ← ASign(·,sksig,·,·)
Sanit(...,sksan)

(pksig, pksan)

Let (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
be the queries to and from oracle Sign
return 1 if

∀i : (pk∗,m∗) �= (pksan,i,mi), and

Verify(1λ,m∗, σ∗, pksig, pk
∗) = 1, and

Judge(1λ,m∗, σ∗, pksig, pk
∗,⊥) = Sig

Let (mj ,modj , σj , pksig,j) and (m′
j , σ

′
j)

be the queries to/from oracle Sanit
return 1 if:

∀j : (pk∗,m∗) �= (pksig,j ,m
′
j), and

Verify(1λ,m∗, σ∗, pk∗, pksan) = 1, and
Judge(1λ,m∗, σ∗, pk∗, pksan,⊥) = San

return 0

Fig. 7. Non-Interactive Public Account-
ability

Experiment ImmutabilitySanSigA (λ)
(pksig, sksig) ← KGensan(1

λ)

(pk∗san,m
∗, σ∗) ← ASign(sksig,··· ),Proof(sksig,··· )(pksig)

let (mi,admi, pksani) and σi, i = 1, 2, . . . , q
denote the queries to Sign
return 1, if:

Verify(1λ, m∗, σ∗, pksig, pk
∗
san) = 1, and

for all i = 1, 2, . . . , q we have:
pk∗san �= pksan,i, or
m∗[ji] �= mi[ji], where ji /∈ admi

shorter messages are padded with ⊥

Fig. 8. Immutability

(3) CU denotes the set of corrupted participants, i.e., all signers and sanitizers
which secret key is known to the adversary. The adversary can gain access to
the secret keys by using an implicit Corrupt oracle.
(4) Judge works as in our original definition, while it accounts for multiple signer,
and sanitzers resp., and allows “partial” openings. In particular, it gets an addi-
tional parameter ORI. It outputs the index of the original signer, if the message
has not been sanitized. See [13] for a complete discussion.

Our main observation is that it is crucial for the left-or-right oracle to check the
validity of both signatures before proceeding. Else, the definition is not satisfiable
and would not be satisfied by the scheme in [13]. The problem is that the left-or-
right oracle receives two message-signature pairs and will sanitize one of them. If
one of the signature is empty, then the sanitizing algorithm is unable to produce
a valid signature because else, the sanitizer would be able to break immutability.
Thus, if the adversary gives a valid message-signature pair to the oracle and a
pair of a message and an empty (and thus invalid) signature, then in one case,
the oracle returns ⊥, and in the other case, the oracle returns a valid answer.
Thus, the adversary can distinguish the two cases.

Definition 6 (Non-Interactive Public Accountability). A sanitizable sig-
nature scheme SanSig is non-interactive public accountable, if for an empty proof
π = ⊥, and for any efficient algorithm A the probability that the experiment
PubaccountabilitySanSigA (λ) given in Fig. 7 returns 1 is negligible (as a function of
λ). The basic idea is that an adversary, i.e., the sanitizer or the signer, has to
be able to make the Judge decide wrongly on an empty proof π = ⊥. Note, Proof
always returns ⊥ and therefore is not an oracle here.

Definition 7 (Immutability). A sanitizable signature scheme SanSig is im-
mutable, if for any efficient algorithm A the probability that the experiment
ImmutabilitySanSigA (λ) given in Fig. 8 returns 1, is negligible (as a function of
λ). The basic idea is, that an adversary is not able to modify non-admissible
blocks, even if it is able to choose the sanitizer key pair.
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Definition 8 (Secure SanSig). We call a SanSig secure, if it is unlinkable,
immutable and non-interactive publicly accountable.

Note, unlinkability implies privacy, while non-interactive public accountability
implies accountability [11] and therefore also unforgeability [8]. Recall the fol-
lowing separation by Brzuska et al. [10], which also applies for our strengthened
unlinkability definition, as the latter implies the original definition of unlinkabil-
ity in [10], as we have already proven.

Theorem 2 (Unlinkability � Transparency). There exists a scheme which
is unlinkable, but not transparent.

3 Efficient Perfectly Unlinkable SanSig

We introduce the building blocks used in the construction and then give a formal
algorithmic description of our construction.

3.1 Building Blocks

This section introduces the required building blocks for our construction. We
require a deterministic signature scheme, unforgeable under chosen message at-
tacks (UNF-CMA). Let DS = (DSKGen,DSSign,DSVerify) be such a signature
scheme. Deterministic means, that signing identical messages leads to identi-
cal signatures, if signed with the same secret key sk. We want to emphasize
that every unforgeable signature scheme can be transformed into a strongly un-
forgeable and also deterministic scheme using several transformations [6,20]. An
example for a standardized deterministic signature scheme is “RSASSA-PKCS-
v1 5-SIGN” [26].

3.2 Algorithmic Description

Our scheme is inspired by the constructions given in [9] and [11]. It achieves un-
forgeability, immutability, non-interactive public accountability, perfect privacy,
perfect unlinkability and sanitizer- and signer-accountability. Therefore, it meets
all legal and the essential cryptographic requirements.

Construction 1 (Secure SanSig). Let DS = (DSKGen,DSSign,DSVerify) be a
deterministic and unforgeable signature scheme. Define the sanitizable signature
scheme SanSig = (KGensig,KGensan, Sign, Sanit,Verify, Judge) as follows:

Key Generation: Algorithm KGensig generates on input of the security pa-
rameter λ a key pair (pksig, sksig) ← DSKGen(1λ) of the underlying signature
scheme DS, and algorithm KGensan for input λ analogously returns a pair
(pksan, sksan) ← DSKGen(1λ).
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Signing: Algorithm Sign on input m ∈ {0, 1}∗, sksig, pksan, adm and computes

σfix ← DSSign(sksig, (0,m[fix],adm, pksan)),

σfull ← DSSign(sksig, (1,m, pksan, pksig))

using the underlying signing algorithm. It returns:

(m,σ) = (m, (σfix, σfull,adm))

Sanitizing: Algorithm Sanit on input of message m, (maybe empty) modifi-
cation instructions mod, a signature σ = (σfix, σfull,adm), keys pksig and
sksan, first checks that mod is admissible according to adm and that σfix is a
valid signature for message (0,m[fix],adm, pksan) under key pksig. If not, it
stops and outputs ⊥. Else, it generates the modified message m′ ← mod(m)
and computes

σ′
full ← DSSign(sksan, (1,m

′, pksan, pksig))

and outputs (m′, σ′) = (m′, (σfix, σ
′
full,adm)).

Verification: Algorithm Verify on input of a message m ∈ {0, 1}∗, a signa-
ture σ = (σfix, σfull,adm) and public keys pksig, pksan first checks that σfix

is a valid signature for message (0,m[fix],adm, pksan) under key pksig by
checking that DSVerify(pksig, (0,m[fix],adm, pksan), σfix) = 1. Second, it re-
turns 1, if: DSVerify(pksig, (1,m, pksan, pksig), σfull) = 1 or DSVerify(pksan,
(1,m, pksan, pksig), σfull) = 1. This declares the entire signature as valid.
Otherwise it returns 0.

Proof: The Proof algorithm always returns ⊥
Judge: Judge on input of m,σ, pksig, pksan and ⊥ parses σ as (σfix, σfull,adm)

and outputs Sig, if:

DSVerify(pksig, (1,m, pksan, pksig), σfull) = 1

It returns San, if:

DSVerify(pksan, (1,m, pksan, pksig), σfull) = 1

If none verifies, it returns ⊥.

Theorem 3 (Our construction is secure.). If the underlying signature
scheme DS is UNF-CMA and deterministic, then our construction is immutable,
perfectly unlinkable, perfectly private, non-interactive publicly accountable (and
therefore signer-/sanitizer accountable and also unforgeable [8,11]), i.e., secure.

The proof is delegated to Appendix A.

4 Extensions: Multiple Sanitizers and Selective Linkability

We deploy a deterministic, strongly unforgeable signature scheme to obtain un-
linkability. In the following, we show that by replacing the signature scheme
for the fixed blocks with certain other types of signature schemes, one obtains
interesting additional features, which have not been considered yet. In this sec-
tion, we extend our scheme to cope with multiple sanitizers and allow for more
fine-grained control.
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Multiple Sanitizer and Speed-Up. Our construction can be modified to
work in the multi-sanitizer framework [13]. In particular, the signer can add a
public key pksan,i for each sanitizer i. Our simple yet effective alteration once
again demonstrates the generality of the underlying basic idea and its broad
applicability. Additionally, all mentioned modifications impact the performance
of the scheme only lightly, as they require only a constant number of additional
steps per sanitizer. To improve the speed of the multi-sanitizer verification pro-
cedure, one can append a hint on the required public key to the signature. This
small improvement allows skipping the need to iterate through all public keys in
σfix. This also holds when considering only one sanitizer and one signer. For a
meaningful definition of unlinkability in the multi-sanitizer case, we require that
only one sanitizer acts as the sanitizer in the unlinkability experiment, while we
also require that the sanitizers are fixed. The latter is in conjunction with [13].
To enhance anonymity for the sanitizers, one can also use a group signature
scheme for the sanitizers. As the original signer still uses a normal signature
scheme, the signatures are clearly distinguishable and therefore remain legally
recognized, following the reasoning of [34]. In certain scenarios, the weakened
unlinkability definition still suffices, if it is obvious in the practical application
which entity has generated the signature.

Signer Selected Linkability by Strongly Unforgeable Signatures. A
strongly unforgeable signature scheme is an unforgeable signature scheme, where,
additionally, it is hard to generate new signatures for previously signed
messages [2]. If the signature generation of a strongly unforgeable scheme is
randomized, then signatures for a message are not unique which harms unlinka-
bility in our construction. Thus, if we de-randomize the linkable scheme by using
a PRF [20] to generate the randomness for the signing algorithm determinis-
tically from the input message, then the signer is able to make that signature
unlinkable. In detail, we consider the PRF -key as part of sksig. Then, if two
signatures are designated to be unlinkable, the used randomness is determin-
istically generated by applying the PRF on a digest of the fixed part of the
message that is generated using a collision-resistant hash function. On the other
hand, if the used randomness is not generated using the PRF , the resulting san-
itized documents can be linked. Overall, the PRF-de-randomized scheme allows
the signer to decide whether signed messages shall be linkable or unlinkable. It
remains to establish formally that these properties hold.

Sanitizer Selective Linkability by Randomizable Signatures. As al-
ready proposed by Brzuska et al., re-randomizable signatures are also suitable
to achieve unlinkability [10]. Interestingly, here, a dual observation to the PRF -
case applies. Namely, the sanitizer gets to choose whether a sanitized message
shall be linkable to the original one or not. Note, this feature comes with the
caveat that the signer relies on good randomness added by the sanitizer. If the
sanitizing process is carried out by a weak or only partially trusted device, one
might prefer to opt against re-randomizable signatures and use deterministic
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Table 1. Median runtime of our scheme; � is the number of blocks; All in ms

KeyGen Sign Sanit of 25% of � Verify Detect

�
��λ
�

100/1k/10k 100 1k 10k 100 1k 10k 100 1k 10k 100 1k 10k

2.048 Bit 1,934 22 24 26 13 14 17 1 1 4 1 2 5

4.096 Bit 16,280 149 150 149 78 79 84 4 4 8 5 5 9

ones, as proposed in our construction. On the other hand, it allows the signer to
delegate the decision to enable linkability for certain messages to the sanitizer.

5 Performance Measurements

To demonstrate practical usability, we implemented our construction. All tests
were performed on an Intel T8300 Dual Core @2.40 GHz and 4 GiB of RAM,
running Ubuntu Version 12.04 LTS (64 Bit) and Java version 1.7.0 03. For all
tests, we applied our algorithms to messages with 100, 1, 000 (1k) and 10, 000
(10k) blocks. For any block count, we decided to fix the amount of admissible
blocks to 50%, and we sanitized always 50% of the admissible blocks, i.e., 25%
of all blocks. We took the median of 100 runs. We used one possible choice
for a deterministic signature scheme, namely “RSASSA-PKCS-v1 5-SIGN” [26].
We utilized a single thread to calculate the signatures. Obviously, paralleliza-
tion, e.g., by using CRT, will yield significant performance improvements. The
results of our measurements in Tab. 1 show that our scheme keeps a very high
performance. The source code is available upon request.
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34. Pöhls, H.C., Höhne, F.: The role of data integrity in EU digital signature legislation
— achieving statutory trust for sanitizable signature schemes. In: Meadows, C.,
Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 175–192. Springer,
Heidelberg (2012)
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A Security of Our Construction

The security proofs of our construction follow the ideas of [9] and [11]. From [8,9,11]
we yield that non-interactive public accountability, as defined in [11], already im-
plies sanitizer accountability, signer accountability and unforgeability. Moreover,
unlinkability implies privacy [9]. Thus, it suffices to prove that Construction 1 is
immutable, non-interactive publicly accountable and unlinkable.

Proof (of Th. 3). To increase the readability, we prove each property on its own.

– Unlinkability. For two messagesm0 and m1 with identical fixed parts m[fix],
the signatures σ0

fix and σ1
fix over this part are identical, as we use a determin-

istic signature scheme. Moreover, the signatures σ0
full and σ1

full, depending
on the modifiable message parts, are not used as input for the sanitizing
process. Thus, we are perfectly unlinkable and perfectly private.

– Immutability. Assume towards contradiction that Construction 1 is not im-
mutable. In particular, let A be an efficient adversary against immutability.
We construct an adversary B against the underlying signature scheme. The
adversary B embeds the keys of the signature scheme as the signer’s public
keys. It then answers A’s queries to the signing oracle by running the algo-
rithm as described in Construction 1, except for signature generation under
the signer’s key, where B queries its signing oracle instead of computing
them itself. The simulation is perfect. When A returns (m∗, pk∗san, σ

∗), then
B returns ((0,m[fix],adm, pksan), σfix) as a forgery. We now prove that B is
successful in attacking the underlying signature scheme, if A is.

Following our definition, A wins, if it can output a tuple (m∗, σ∗, pk∗san)
such that Verify(m∗, σ∗, pksig, pk

∗
san) = 1 and pk∗san �= pksan,i for all i queries

to the signing oracle or ∃i, j, ji /∈ adm : m∗[ji] �= mi[ji].

(i) If pk∗san �= pksani, then (0, ∗, ∗, pk∗san) is fresh.
(ii) If ∃i, j, ji /∈ adm : m∗[ji] �= mi[ji], then (0,m[fix]∗,adm, pk∗san) is fresh.

These cases are equal to the attack cases for forgeries of the underlying signa-
ture scheme. Thus, B’s success probability is equal to A’s success probability.

– Non-Interactive Public Accountability. LetA be an efficient adversary against
non-interactive public accountability. We construct another efficient adver-
sary B against the unforgeability of the underlying signature scheme DS
as follows. B gets as input a public key pk and flips a coin b. If b = 0, it
sets pksig := pk and runs DSKGen to generate (pksan, sksan). If b = 1, it sets
pksan := pk and runs DSKGen to generate (pksig, sksig). To simulate the ora-
cles for A, the algorithm B runs the algorithms Sign and Sanit according to
the specification with the exception that whenever a signature is generated
under the secret key sk corresponding to pk, B does not generate the signa-
ture itself. Instead, B queries its signing oracle and passes the result to A.
Eventually, the adversary A outputs a triple (pk∗,m∗, σ∗). We distinguish
between two cases, a malicious sanitizer attack and a malicious signer attack.
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With probability 1
2 the simulation was done for the correct case, as in both

cases, the output distributions of B’s simulation are identical.

Malicious Sanitizer
B returns ((0,m[fix]∗,adm, pk∗san), σfix). As m[fix]∗ is fresh, the signing
oracle has never signed a message of the form (0,m[fix],adm, ∗).
Malicious Signer
B returns ((1,m∗, pksan, pk

∗
sig), σfull). As m

∗ is fresh, the signing oracle has
never signed a message of the form (1,m∗, ∗, ∗).
Analysis
Thus, the overall success probability of B is exactly 1

2 the success probability
of A. ��



Revocation and Non-repudiation:

When the First Destroys the Latter

Johannes Braun1, Franziskus Kiefer2, and Andreas Hülsing1

1 TU Darmstadt, Germany
{jbraun,huelsing}@cdc.informatik.tu-darmstadt.de

2 University of Surrey, United Kingdom
f.kiefer@surrey.ac.uk

Abstract. Electronic signatures replace handwritten signatures in elec-
tronic processes. In this context, non-repudiation is one of the most de-
sired properties – yet in practice it cannot be provided by the signature
schemes themselves. Therefore, additional mechanisms in the underlying
public key infrastructure are required. In this work, we present a formal
treatment of that issue. We extend the formal model for public key infras-
tructures by Maurer introducing transitions to make it dynamic. We use
the extended model to evaluate the relationship between non-repudiation
and revocation and prove that backdated revocation always destroys the
non-repudiation property. We prove that forward secure signatures can
be used to maintain non-repudiation, rendering the costly use of time-
stamping – as required by all existing solutions – superfluous. We also
show how to realize this in practice, introducing a new index reporting
protocol. Moreover, we show how this protocol can be used to support
detection of malicious key usage, thereby improving the overall security
of electronic signing. Besides, the index reporting protocol allows for a
convenient realization of pay per use models for certificate pricing.

1 Introduction

Over the past few years, the importance of eBusiness and eGovernment has been
steadily growing. More and more processes are handled online without physical
interaction. To guarantee for authenticity and non-repudiation in such processes,
electronic signatures are used. Moreover, many countries allow to replace hand-
written signatures by electronic signatures and consider these as legally binding
[17]. This allows to transfer many processes to the digital world that formerly
required a media disruption, e.g. in many countries applying for a bank account.
However, there is a fundamental difference between handwritten and electronic
signatures. While handwritten signatures are naturally bound to a single person,
the binding between electronic signatures and a person is artificial and thus frag-
ile. The private key, required to generate signatures, can be applied by anyone
who knows it or has access to it, without any possibility to distinguish which
signature has been generated by whom. Thus, electronic signatures can only
provide authenticity and non-repudiation as long as the private signature key is
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only applicable by a single person. While for authentication exclusive applicabil-
ity during signature generation is only checked once, for use-cases that require
non-repudiation it must be provable as long as the signature is of any interest. In
many cases, non-repudiation must be preserved for ten years and more by law.
So far, this problem was never approached using a formal analysis. We make
up for this omission. Namely, we present a formal treatment of the problem of
preserving non-repudiation in practice. Additionally, we show how this problem
can be solved more efficiently than today.

The binding between a specific key and a person is realized by a (hierarchical)
Public Key Infrastructure (PKI). In a PKI the binding between the signer’s iden-
tity (e.g. a name) and his public key is established using certificates, issued (i.e.
signed) by a Certification Authority (CA). This CA is also responsible for a re-
vocation of the certificate in case of a key compromise. This is necessary, as there
does not exist any usable and perfect protection of the secret key. However, it is
necessary to protect the secret key in a way that a key compromise can be detected
and that the key is protected at least until it is revoked. For this reason secure stor-
age devices like smart cards should be used. In case of legally binding signatures
a secure storage device is even required by law in most countries. But even secure
storage devices can not guarantee perfect security. The device can be stolen or get
lost. While these devices can be assumed to protect the secret key for short time
span they should not be assumed to protect the key for a long time period, i.e.
years, if an adversary has direct access. The progress in cryptanalysis, especially
in the field of side-channel attacks, periodically proves such assumptions wrong.
Anyhow, as revocation exists, the secure storage device only has to protect the
secret key until the key compromise is detected and the key is revoked.

To summarize, the binding between key and a person is only temporary, ter-
minated either by expiry of the certificate or revocation. And this is where the
non-repudiation property, which is guaranteed by the electronic signature in the-
ory fails in reality if there are no additional measures. As compromise is possible,
a key owner can simply claim that his key was compromised, ascribing the gen-
eration of signatures to an adversary and thereby repudiating valid signatures.

To prevent such a repudiation attack, a chronological order of events is re-
quired and must be considered during signature validation. A signature should
then be verified as valid, if it was generated before a key compromise. In practice,
the actual result of a signature validation does not only depend on the verifica-
tion result of the candidate signature but also on the validation model. Validation
models for hierarchical PKIs define, which certificates in the certificate chain of
the candidate signature have to be valid at which time for a successful valida-
tion. The current Internet standard for certificate validation, namely the shell
model [9], cannot be used for legally binding signatures, as it does not take the
order of events into account [3,7] and hence a signature becomes invalid if any
certificate in the chain is expired or revoked. The chain model (cf. Section 2.1)
in contrast is applicable as it takes into account the chronological order of events
and allows to verify a signature as valid, if all signatures in the certificate chain
and on the document were generated before the corresponding certificate was
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revoked or expired. The crux of implementing the Chain model is to establish
this provable chronological order of events.

Common signature schemes do not provide inherent properties to determine
and prove the chronological order of generated signatures. Today’s solution is
to apply an indirection and use time-stamps generated by trusted third parties
– an inefficient approach with plenty of disadvantages (see Appendix A). We
propose a new solution using forward secure signature schemes (FSS) which
have chronological ordering as an inherent property. But some challenges remain,
namely how to establish a before and after relation between signature generation
and revocation in the face of dishonest end-entities aiming at repudiating their
own signatures. A similar approach was presented in [18], yet, problems like
compromise detection and key update scheduling remain open. Furthermore,
non-repudiation is established at the end of a time period and not directly when
a verifier obtains a signature.

Contribution. Based on Maurer’s formal model for PKI [15] and its extensions
[14,5], we establish a generalized and dynamic PKI model, in which a before and
after relationship between two events can be described. This allows us to describe
non-repudiation, which was not possible in previous models. We show, that non-
repudiation strictly requires the prevention of backdated revocation, proving
equivalence of the two. We evaluate the problems with backdated revocation and
discuss different methods to prevent it. We evaluate our model on the approach
of trusted time-stamps in Appendix A.

We present a new solution to establish a provable chronological order of events
based on FSS, called Sign & Report, and prove that it can be used to achieve
non-repudiation. Besides that we show how the proposed solution allows for a
complementary security mechanism to detect key compromises. We also present
a practical realization of the Sign & Report approach. Its core is an index re-
porting protocol, which allows monitoring of key usage by a TTP. Compared
to the current approach of trusted time-stamps, with our approach we save one
online step, do not need an independent infrastructure and save the signature
generation and validation of the time-stamps. Furthermore, this allows for pay
per use signatures besides the targeted core functionalities.

2 Security Model

In this section we propose a new extension to the formal security model intro-
duced by Maurer in [15]. This extension allows to model revocation and formally
define the notion of non-repudiation by using transitions between states. In this
work we are only concerned with malicious end-entities. For the sake of simplic-
ity, we thus do not consider attacks against CAs. One might for example use [7]
to handle these. Hence we assume CAs to be trustworthy and non compromised.

2.1 Formal PKI Model

In [15] Maurer introduced a formal security model for public key infrastructures
later extended by Marchesini et al. [14] and Bicakci et al. [5]. We build our
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model upon [14] as they introduce a smooth notion of how to handle time. We
generalize their model in the sense that we do not depend on real time, but allow
any indexing that admits a chronological ordering. This still includes the usage of
real time information for indexing. While all former models are static, meaning
they model one snapshot of a PKI, we introduce transitions between snapshots
of the PKI, making the model dynamic. We further extend the model of [14],
adding an explicit definition of revocation handling and end-entity signatures.
This allows us to discuss non-repudiation using our model.

For simplicity, we only model relations starting from Sub-CAs that sign end-
entity certificates. Thus, we assume trust in these Sub-CAs without considering
how this trust is established. As we are only concerned with malicious end-
entities, this fulfills our needs. It is straight forward to extend our model and
proofs to the case of a hierarchical PKI. We also drop those parts of former
models used to model a web of trust.

We model a PKI as View of a potential user at a specific time t. A user’s View
is a set of statements. We define six different statements. Trust expresses the
trust in a (Sub-)CA, obtained according to the higher hierarchy or by explicitly
trusting this CA. Cert says that the user has seen an end-entity certificate of the
respective person. If a user has seen a certificate once, it remains in her view.
The same holds for Signature and Revoc, which model that a user has seen a
document signature or revocation information, respectively. Furthermore, there
are two different Valid statements, which model that a user is convinced of the
validity of an end-entity’s certificate Cα,β,γ,ε or document signature Sζ,η,δ. These
two Valid statements can be inferred from other statements, using inference rules
defined later. As we allow transitions between Views, every View is indexed with
a time t ∈ N. Note that indices used inside statements might be independent
from the indices of the views. We write Viewt for the View at time t and View if
no specific t is needed.

Definition 1 (Statements). Let CA denote a (Sub-)CA, A an end-entity’s
identity, D a document and I a (time) interval. A Viewt = {stmt1, . . . , stmtn}
at point in time t consists of n ∈ N statements stmti. There exist the following
six statements:

Trust(CA, I) denotes the belief that, during the interval I, CA is trustworthy
for issuing certificates, i.e. models the axiomatic trust in (Sub-) CAs.

Cert(CA,A, i, I) denotes the fact that CA has issued a certificate for A at index
i, which, during I, binds A’s public key to the certificate.

Signature(A, D, i) denotes the fact that A has signed a document D at index i.

Revoc(CA, Cα,β,γ,ε, i) denotes the fact that CA has revoked the certificate
Cα,β,γ,ε, represented by statement Cert(α, β, γ, ε), at index i.

Valid(Cα,β,γ,ε, i) denotes the belief that certificate Cα,β,γ,ε is valid at evaluation
index i.

Valid(Sζ,η,δ) denotes the belief that signature Sζ,η,δ, represented by statement
Signature(ζ, η, δ), is valid.
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A statement is valid if and only if it is in the View or can be derived from it
using one of the inference rules defined below.

Fig. 1. Chain Model. Signature Generation at Ts,
Signature Verification at Tv. Vertical arrows show
the point in time used for validation of the superor-
dinate certificate.

Signature Validation. We
will now define the inference
rules we use to validate sig-
natures, i.e. derive valid for
a Signature. The rules depend
on the used certification path
validation model. As men-
tioned in the introduction, we
use the chain model shown
in Fig. 1 instead of the cur-
rent Internet standard (shell
model). This allows us to
exploit the chronological or-
dering of signatures as e.g.
provided by FSS. In the chain model all signatures in the chain are validated
at the time of their generation, meaning revocation and certificate validity is
checked for that time. To describe the shell model to analyze other scenarios,
different inference rules have to be defined. For a detailed discussion of validity
models see e.g. [3,7].

Definition 2 (Inference Rules). Statements can be derived from an existing
Viewt according to the following rules:

Certificate Validity. ∀ CA,A, ir ≤ iv, ic ∈ I1, iv ∈ I2 : Trust(CA, I1),
Cert(CA,A, ic, I2), (¬Revoc(CA, CCA,A,ic,I2, ir)) � Valid(CCA,A,ic,I2 , iv)

Signature Validity. ∀ CA,A, D, is ∈ I2 :
Valid(CCA,A,ic,I2 , is), Signature(A, D, is) � Valid(SA,D,is)

Note, to extend the model to certificate chains of arbitrary length, one simply
considers certificates as signed documents while processing the chain, and derives
the validity accordingly.

So far our model is static. To allow the definition of non-repudiation we in-
troduce transitions between Views. The transitions model that new information
enters a users View in form of certificates, signatures or revocation information.
Besides that, a user might trust a new (Sub-)CA.

Definition 3 (Time & Transitions). Let Viewt be the View at time t and

Viewt trans−−−→ Viewt+1 denote the transition from Viewt to Viewt+1. Let CA denote
a (Sub-)CA, A an end-entity’s identity, D a document and I an interval. We
allow the following four transitions between Views:

– Viewt sign(A,D,i)−−−−−−−→ Viewt+1 adds Signature(A, D, i) to View.

– Viewt issue(CA,A,i,I)−−−−−−−−−−→ Viewt+1 adds Cert(CA,A, i, I) to View.



36 J. Braun, F. Kiefer, and A. Hülsing

– Viewt trust(CA,I)−−−−−−−→ Viewt+1 adds Trust(CA, I) to View.

– Viewt revoke(CA,Cα,β,γ,ε,i)−−−−−−−−−−−−−→ Viewt+1 adds Revoc(CA, Cα,β,γ,ε, i) to View.

Please note that derived statements are temporary. After a transition between
two views, the inference rules are used again, to obtain the full set of statements.
With View we denote the set of all statements that can be inferred from View.
So, if stmt ∈ Viewt it does not have to be the case that stmt ∈ Viewt′ for t �= t′.
For example, if a certificate gets revoked, Valid might be inferable beforehand
but not after Revoc has been added to the View.

2.2 Non-repudiation

In this work we assume adversaries that try to break the non-repudiation prop-
erty and to which we refer as repudiation adversaries. The goal of such an ad-
versary is to retroactively invalidate a signature, validly generated by herself.
The adversary has access to the corresponding key pair, including the secret key
and the certificate. The adversary might also have different other key pairs and
certificates, possibly issued by other CAs. We give the classic non-repudiation
definition [12] in our model. This allows a more precise analysis of repudiation
adversaries.

Definition 4 (Non-Repudiation). A PKI offers non-repudiation if the fol-
lowing implication is always true, even in presence of a malicious end-entity
that might sign arbitrary messages, request new certificates and ask any CA to
revoke any of her certificates at anytime.

∀ i, t ≤ t′ : Valid(SA,D,i) ∈ Viewt ⇒ Valid(SA,D,i) ∈ Viewt′ .

We briefly discuss the implications of this definition. The left part of the impli-

cation – Valid(SA,D,i) ∈ Viewt implies that

{Signature(A, D, i),Trust(CA, I1),Cert(CA,A, ic, I2)} ⊆ Viewt

with ic ∈ I1, i ∈ I2 according to the previously given inference rules and

definitions. Furthermore, Revoc(CA, CCA,A,ic,I2 , ir) �∈ Viewt for all I2 � ir ≤
i. In other words, three things must be in Viewt: (i) trust in the certification
authority CA that issued the end-entity certificate for the document signing
entity A, (ii) the certificate of A that has been issued while CA has been trusted,
(iii) a signature on the verified document D that has been issued by the end-
entity A while his certificate has been valid, i.e. was not revoked or expired. The
right part of the implication only differs in the time of inference of the Valid
statement. Thus, everything above must hold for all future points in time t′.

Accordingly, the goal of the adversary is to produce a valid document signature
Signature(A, D, i) such that there exists a point in time t′ where the signature
is verified as invalid, after it has been verified as valid. Therefore, we define
backdated revocation and show, that its prevention implies non-repudiation and
vice versa in the chain model.
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Definition 5 (Backdated Revocation). Let Viewt be the View at time t and
Viewt+1 denote the view after a transition. According to the revocation transition,
backdated revocation is defined as:

Viewt revoke(CA,CCA,A,ic,I ,ir)−−−−−−−−−−−−−−−−→ Viewt+1, if ∃ Viewt∗ � Valid(SA,D,is), with t∗ ≤
t ∧ is ≥ ir.

Theorem 1 (Non-Repudiation ⇔ No Backdated Revocation). A PKI
offers non-repudiation according to Definition 4 if and only if it does not allow
backdated revocation according to Definition 5.

Proof. ⇐: If there was a successful repudiation attack, then there must ex-

ist two Views Viewt ⊇ {Valid(SA,D,is),Trust(CA, I1),Cert(CA,A, ic, I2)} and

Viewt′ ⊇ {Trust(CA, I1),Cert(CA,A, ic, I2),Revoc(CA, CCA,A,ic,I2 , ir)}, with

t ≤ t′, ir ≤ is. As Valid(SA,D,is) is contained in Viewt, it can not contain
Revoc(CA, CCA,A,ic,I2 , ir). Hence, Revoc(CA, CCA,A,ic,I2 , ir) must have been
added later, which exactly corresponds to Definition 5.
⇒: If the PKI allows backdated revocation, the adversary is allowed to ask CA

to add Revoc(CA, CCA,A,ic,I2 , ir) with ir ≤ is to the Viewt′ . ��

3 Enabling Non-repudation

Theorem 1 directly shows the impossibility to achieve non-repudiation if back-
dated revocation is allowed. Hence, a PKI that offers non-repudiation must not
allow backdated revocation. However, when considering the facets of backdated
revocation there are different security goals that contradict each other. This con-
flict needs to be resolved, and is discussed in the following.

Contradicting Security Goals. We have learned from our formal model, that
there is no way to guarantee non-repudiation in case backdated revocation is al-
lowed. On the other hand, backdated revocation is required in certain scenarios,
namely whenever it is possible that the signature key might get compromised
and maliciously used without being noticed immediately by the key owner. For
example consider a classical setup for digital signatures where the private key is
stored on the user’s machine (e.g. PC). Here, the detection of a key compromise
may take some time in which the adversary who stole the key may already have
generated signatures. The phase between key compromise and the observation
of the compromise (followed by the revocation) is called gray phase. The gray
phase in this case however can be very long, such that it is clearly impossible to
prohibit backdated revocation. This is because backdated revocation is required
to invalidate the signatures generated by the adversary before the compromise
detection.

Thus, in order to be able to prohibit and subsequently prevent backdated
revocation, scenarios with a (possibly large) gray phase must be excluded or
the gray phase must be eliminated by technical means. Therefore, in scenarios
that require non-repudiation, the secret key has to be protected in a way that
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prevents unnoticed compromises. A common solution that allows for a minimal
gray phase is to store keys on smart cards, trusted platform modules (TPM)
etc. Private keys are not extractable from these devices and can only be used
when the according secret, e.g. PIN, is known. This allows for the assumption
of “immediate” key compromise detection and subsequently the prohibition of
backdated revocation in the sense that an adversary is not able to immediately
crack the additional secret (e.g. PIN) and thus use the stolen key before the key
compromise, i.e. disappearance of the key storage device, is detected. Note, that
in Section 5 we show how our solution supports immediate compromise detec-
tion for end-entities. This further justifies the assumption of a marginal gray
phase. In general, backdated revocation is not necessary when the gray phase is
marginal.

How to Prevent Backdated Revocation.With the aforementioned it is suffi-
cient and legitimate to prohibit backdated revocation. Nevertheless, the question
remains how to enforce the prohibition in practice, i.e. how to implement our
model. We stick to the PKI setting and hence we assume, that the CA as TTP is
the only entity that can revoke certificates. Therefor it must be possible for the
CA to ensure that the revocation only invalidates signatures that were not as-
sumed to be valid before. This can either be done by explicitly defining the views
V iewt and binding each signature, as well as the revocation, to a certain view,
using a globally visible and unique index t for views and signatures. Or second,
to define V iewt implicitly by maintaining a local chronological order among the
signatures made with one key using a local immutable index. By binding the
revocation to the current index, it is correctly linked into the chronological or-
der of the signatures. Note, that this requires the responsible CA to know the
correct current local index.

The first approach is followed by the application of time-stamps, using real
time as the global index. The time-stamps are generated by TTPs called Time-
Stamping Authorities (TSA). This approach is widely accepted to be correct but
also comes with a lot of inefficiencies. To evaluate our model, we proof that the
time-stamping approach allows to implement our model s.th. the resulting PKI
provides non-repudiation. The proof can be found in Appendix A together with
a discussion of its inherent inefficiencies.

For our new solution we use the second approach of local indexing, which
can be realized using forward secure signature schemes. This is described in the
following section.

4 Sign and Report

In this section, we propose our solution applying local indexing to enforce non-
repudiation using forward secure signature schemes (FSS). It does not have the
disadvantages and inefficiencies of the TSA approach (cf. Appendix A). Further-
more, we show how compromise detection for end-entities can easily be incorpo-
rated to prevent gray periods.
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As some reader might not be familiar with the concept of FSS, we first infor-
mally recall the related definitions and discuss some properties of such schemes
more detailed. For a formal treatment we refer the reader to [4]. We will not
discuss the definitions regarding traditional signature schemes like existential
unforgeability under chosen message attacks (EUF-CMA). Here we refer the
reader to [11]. Forward security can only be achieved using key evolving signa-
ture schemes, which will be explained first. Afterwards, we show how to imple-
ment the PKI model using FSS, such that backdated revocation can efficiently
be prevented.

Key Evolving Signature Schemes. Once generated, a key pair remains un-
changed for the whole lifetime, in a traditional signature scheme (SIG). In con-
trast, the secret key sk changes over time, while the public key pk remains the
same, in a key evolving scheme (KES). More specific, the lifetime of a key pair
is split into several time-periods, say T . The number of time-periods T becomes
a public parameter of a KES and is taken as an additional input by the key gen-
eration algorithm. The key generation algorithm outputs (sk0, pk), where sk0
is the first secret key. In contrast to SIG, a KES has an additional key update
algorithm, which updates the secret key at the end of each time period. The sign
algorithm takes as an additional input an index of a time-period. This index also
becomes part of the signature and is therefore also available for the verify algo-
rithm. Finally, if a user generates a valid key pair and the key update algorithm
is called at the end of each time-period, then a signature generated with the
current secret key and the index of the current time period can be verified by
any user with the corresponding public key.

Forward Secure Signature Schemes. A forward secure signature scheme
(FSS) is a KES that provides the forward security property. The main idea be-
hind forward security is that even after a key compromise all signatures created
before should remain valid. The forward security property guarantees, that an
adversary that is allowed to launch a chosen message attack for each time-period
and learns the secret key of an adaptively chosen time-period i is unable to pro-
duce a valid forgery for time-period j < i. Note that forward security implies
the standard notion of EUF-CMA extended to the case of KES. To make use of
the forward security property in practice, a certificate is revoked from the index
of the current time period onwards instead of revoking the complete certificate
[7] in the case of key compromise.

Defining the Time Periods for FSS. One issue with FSS in practice is how
the key update algorithm is triggered. It can either be called manually by the
user, scheduled to run at the end of the time period, or be part of the signature
algorithm, depending on the way the time periods are defined. Time periods can
be defined in terms of time, e.g. one time period corresponds to one day, or the
number of created signatures, i.e. a time period ends after the key was used to
create a certain number of signatures. In the first case, the key update algo-
rithm must be triggered periodically. This can only be automated on systems
that have an internal clock and that are running each time an update is necessary.
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On smart cards, which are the common place to store end-entity signature keys,
a manual update is required. This seems impractical. As an on-time key update
is required to preserve forward security, real time based time periods are prob-
lematic in practice. FSS schemes based on the number of generated signatures do
not have these problems. Key update can be performed automated, based on a
counter contained in the key holding device. Yet, in this case, the key indices are
not linked to real time, which complicates correct revocation in practice as the
index at the time of compromise must be known. However, our solution shows
that this is achievable compared to the key update problem. Thus, we consider
FSS where the periods are based on the number of signatures, namely an FSS,
that evolves the key after each signature generation, as e.g. XMSS [8].

Sign and Report. We now show how to use a FSS, where a key update is
performed after each signature, to implement a PKI according to our model,
that efficiently prevents backdated revocation. If we used an FSS with real time
based key update, the implementation would be straight forward, similar to the
time-stamping approach. As we use an FSS where the key update occurs after
each signature because of the discussed drawbacks of real time based key up-
dates, things are a bit different. The validity periods of certificates, as well as
the time interval for the trust relation are now described on the basis of indices.
In general, these intervals will be [0, T − 1] for a key pair with T time periods.
The indices used in Cert, Signature, Revoc and Valid statements correspond to
key indices. For the first two types of statements, it is the current index of the
key pair used to generate the signature. For the Revoc statement, it is the index
starting from which on a key pair is revoked and for the last one it is the index
at which revocation is checked. The indices of the views use real time. Please
note that it is possible to additionally use real time validity periods, if this is
required, e.g. for business purposes.

To prevent backdated revocation in such a PKI, a revocation must include
the current index of an end-entity’s key pair. Therefore the responsible CA must
know this current index and be able to verify the correctness of this index. To
achieve this, we define a Sign & Report approach for FSS.

Definition 6 (Sign & Report PKI). A Sign & Report PKI implements the
model defined in Section 2 replacing the abstract indices and intervals as de-
scribed above. Let R denote a trusted third party in the PKI, e.g. a CA, which
is responsible (and exclusively able) to issue the revocation of an end-entity A’s
certificate CCA,A,ic,I, when requested by A. Whenever A generates a signature,
the used key index i∗ is reported to R that stores i∗. On input of revocation request
by A, R publishes Revoc(CA, CCA,A,ic,I , i

∗ + 1).

We next show that a Sign & Report PKI provides non-repudiation, assumed
that the index reporting is secure.

Theorem 2 (Sign & Report PKIs provide non-repudiation). A Sign &
Report PKI as defined above provides non-repudiation according to Definition 4.

Proof. If the index reporting is implemented in a secure way, i.e. it is not possible
for an end-entity to manipulate the reporting, backdated revocation is efficiently
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prevented. This is the case, because the index used for revocation is greater than
any index used by this end-entity before. The non-repudiation property follows
from Theorem 1. ��

Key Compromise Detection. The Sign & Report PKI makes it easily possible
to monitor key usage and support end-entities in the detection of malicious
key usage and subsequent revocation. Therewith, the justification for immediate
revocation can be strengthened. The detection is made possible as, different from
the TSA approach, for each end-entity a specific TTP is responsible.

Definition 7 (Sign & Report PKI with Compromise Detection). A Sign
& Report PKI with Compromise Detection is a Sign & Report PKI as defined in
Definition 6 with the additional measure, that R requests a reconfirmation from
A using an independent channel, whenever a new key index i∗ is reported. R

only accepts the new index if the reconfirmation succeeds. Otherwise, R publishes
Revoc(CA, CCA,A,ic,I , i

∗)

5 Implementing Sign and Report

In this section we present a practical implementation of the Sign & Report
approach from above. More specifically we show how to securely implement the
index reporting, as everything else is straight forward. Note that we apply an
FSS, namely XMSS, that evolves the key after each signature generation. Thus,
each signature is directly linked to a unique index. We also present extensions
that allow protection from undetected key access and a pay per use pricing model
for certificates. As discussed before, we assume that the private key is stored on a
smart card and therefore can assume immediate revocation (cf. Section 3). With
this preliminary, we define an online protocol to prevent backdated revocation.

Index Reporting Protocol. The basic idea of Sign & Report is that the
current index is reported to the CA (or some TTP that maintains the revocation)
immediately after signature generation. This requires an online step, yet seams
reasonable, as most of today’s computers are nearly always online. Thereby, the
CA is enabled to keep track of the signing index and prevent the key owner
from backdated revocation and repudiation of signatures. Thereby, it does not
matter who reports the index, the verifier or the signer itself and this might be
chosen depending on the specific application. In the first case, reporting can be
performed in one combined step during online revocation status checking and
would reflect the natural ambition of the verifier to obtain non-repudiation. The
second case is desirable when the verifier is offline. However, then the signer
needs to be able to prove the reporting. This can be realized by a validity token
obtained from the CA and additionally serving as a proof for the absence of a
revocation. Thus, additional revocation checking is made obsolete.

Figure 2 shows the protocol for the second case, but the adaptation to the
first is straight forward. After signature generation (step (a)) the signature is
sent to the CA (step (b)). The CA checks the signature for validity (step(c))
and generates a validity token for the signature index to confirm the logging.
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CA Signer Verifier

(a) σ = Sign(sk,m)

(b)
σ←−

(c) If Verify(pk, σ) and
pk is not revoked:
generate proof π

(d)
π−→

(e)
σ,π−→

(f) If Verify(σ,m) and
(g) Verify(π): accept

Fig. 2. Index Reporting Protocol

Herein, the signature verification ensures, that the report and confirmation of
wrong index information is prevented. The token is sent back to the signer and
subsequently transmitted (together with the signature) to the verifier (steps (d)-
(e)), who can now validate the signature and the token.

By the index, the validity token is bound to a specific signature. Thus, it can
be used for all future verifications without further online requests. Additionally,
due to the forward security, the token for a certain index i can serve as a validity
token for all preceding indices. Thus, if several signatures have to be validated,
the logging request can be aggregated to only one, by requesting the token for
the highest index.

The validity token can be realized as public key - index pair signed by the CA.
One drawback of such a signed validity token is that the signature on the token
has to be validated in addition to the validation of the end-entity signature.
Furthermore, the size of the token is not optimal and signature generation is
computationally complex. We propose to apply the Merkle tree variant of the
Novomodo system [16] to generate the validity token (cf. Appendix B for details).

Incorporation of Compromise Detection. In the index reporting proto-
col, the issue of compromise detection and the prevention of gray periods can
be addressed by adding an additional reconfirmation procedure for signature
generation. Before confirming the logging of the index, the CA can request a
reconfirmation from the key owner. A possibility to do so is to apply mobile
transaction numbers as known from eBanking or similar to the usage presented
in [6]. This helps to detect malicious key usage, as the key owner is informed
about key usage via an independent channel. By additionally sending the docu-
ment itself to the CA, the signed document could be sent back and displayed on
a smartphone for verification. Therewith, undetected usage of the key is signifi-
cantly less probable, and even cases where e.g. the smart card is left unwatched
for a certain time period and malicious key usage does not necessarily involve
the observed loss of the card can be detected.

Efficiency. Besides cutting down on the maintenance of an additional and in-
dependent TSA infrastructure and the overhead of time-stamp validation, our
approach saves one online request considering the whole process from signature
generation to verification. While in the TSA approach the time-stamp and the
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revocation status need to be requested, one online request, namely the index
logging request, is sufficient in our approach.

6 Conclusion

In this work we showed how to extend the existing formal models for a PKI
such that it becomes possible to describe the non-repudiation property. Using
our model, we proved that non-repudiation is achieved, if and only if backdated
revocation is prevented (assuming CAs are trustworthy and the used crypto-
graphic algorithms are secure). The main improvement of our model is that it is
dynamic. It might also be useful in analyzing other properties of PKIs. Further-
more, we showed how to realize our model using FSS. We presented an index
reporting protocol to implement this new approach. It has some clear advantages
compared to today’s solutions regarding computation costs and storage. Further-
more, it allows for a convenient integration of an additional reconfirmation step
to detect compromises and improve the overall security. Besides that, the index
reporting approach allows for another interesting application we shortly want to
mention, namely the realization of a pay per use pricing model. This is possible,
as the CA is enabled to monitor the frequency of key usage. Thus, the costs for
a certificate can be spread over the whole key lifetime, therewith the costs to get
a certificate can be lowered significantly. This might on the one hand help to de-
crease the initial barrier of buying a certificate for end-entities that rarely apply
electronic signatures. On the other hand revenues for the CAs are generated at
the time when the efforts arise for the management of certificates.

While Sign & Report improves the performance of document signatures it
still requires one online step per signature, i.e. the signer has to communicate
with a TTP during signature creation (This step can be shifted to the verifier,
but it remains one online step per signature). We were unable to get rid of this
costly step. Hence the question arises if it is possible at all to prohibit backdated
revocation by using an “offline” solution, namely a solution where the end-entity
does not report information about each signature to a TTP? As we assume the
signer as well as the verifier to be potentially malicious, neither of them can be
trusted. A trusted device in possession of the signer or verifier can also not be
trusted, as it might in the long term be possible to tamper with or it might
get destroyed. In both cases, i.e. using a local or a global index, the indexing –
especially the order – and the linking between indices and signatures must be
immutable. Furthermore, using local indexing the CA must be able to obtain
the correct current value of the index used by the user in case of a revocation.
Given these constraints it seems impossible to us to solve this problem without an
online step. At least with existing techniques we see no solution to this challenge.
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A Application of Time-Stamping Authorities

To evaluate our model, in this section we show that the common approach of
time-stamping allows to implement a PKI that provides non-repudiation. To
implement a PKI according to the above model using time-stamping, a trusted
third party called Time-Stamping Authority (TSA) adds a trusted time to each
signature. This can be implemented in different ways [1,2,13]. The most common
one is to sign the signature together with a time-stamp. The signature time of
a document signature as well as the issuance time of a certificate are given by
a time-stamp. Validity periods of certificates are defined by the issuing CA and
the time interval for the trust statement is defined by the user (or according
to the certificates of higher levels in the hierarchy). Both are defined in terms
of real time. If a CA is asked to revoke a certificate, it uses the current time
as revocation index. All views are also bound to real time. So all indices and
intervals are directly linked to real time and an order is defined according to the
calendar.

Definition 8 (Sign & Stamp PKI). A Sign & Stamp PKI implements the
above model using the real time for all indices and intervals. In a Sign & Stamp
PKI, every signature is time-stamped by a trusted third party called time-stamping
authority (TSA). If a CA is asked to revoke a certificate, it uses the current time
as revocation index.

In a Sign & Stamp PKI times in statements and Views have a strictly monotonic

increasing order, e.g. a signature generated at time t can not be in a Viewt′ with
t′ < t. As revocations always include the current time, backdated revocation is
impossible (recall that we assume the used signature schemes to be perfectly
secure). The following theorem follows immediately from Theorem 1 and the
fact that a Sign & Stamp PKI prevents backdated revocation.

Theorem 3 (Sign & Stamp PKIs provide Non-Repudation). A Sign
& Stamp PKI according to Definition 8 provides non-repudiation according to
Definition 4.

Disadvantages of the TSA Approach. We have seen that the TSA approach
enables non-repudiation. Yet, it comes with many disadvantages. First, the setup
and maintenance of an additional and independent TSA infrastructure and the
trustworthiness of the TSAs to apply the correct date and time is required. Sec-
ond, it introduces overhead during signature generation (for the online request
and generation of the proof of existence) and during validation (for the proof
validation). Third, storage overhead is introduced, i.e. time-stamps or MACs
must be stored, in addition to the signature itself, or a huge amount of transient
keys must be managed. Database based approaches require the central storage of
all issued signatures. And fourth, time-stamps relying on electronic signatures
themselves face the same problems concerning compromise and expiration as
common electronic signatures do. That is, upon the compromise of a TSA or
any superordinate CA, the issued time-stamps become invalid and the proof of
existence is lost. On the other hand, database based approaches solely rely on
the security of the central database.
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B Validity Tokens Using Novomodo

Instead of using hash chains as in the basic Novomodo system [16] one can use
Merkle hash trees. This significantly improves the verification time. To realize the
validity tokens, the root of a Merkle tree with T leaves (where T is the number
of periods, the respective key pair is valid for) is included into the certificate.
If the certificate is valid in period i, the CA releases the leaf at position i and
the siblings on the path to the root. QuasiModo trees [10] allow even smaller
trees and on average shorter paths to the tree root by using interior nodes, yet
for standard Merkle trees highly efficient traversal methods are available [8].
The validity tokens of the revocation tree can be generated in a pseudorandom
fashion, comparable to the approach used for XMSS key generation [8]. An
application of the hash function gives us the leaves from which the Merkle tree
is computed. Furthermore, the tree traversal algorithm from [8] can be used to
evenly split the computational effort over all periods. To prevent delays, a certain
number of validity tokens can be precomputed and stored, reducing the effort to
a table lookup during the online request.
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Abstract. Zero-knowledge proofs of knowledge are now used in numer-
ous applications and permit to prove the knowledge of secrets with many
(complex) properties. Among them, the proof that a secret lies in a given
interval is very useful in the context of electronic voting, e-cash or anony-
mous credentials. In this paper, we propose new contributions to the
practical use of these so-called range proofs, for which several types of
methods exist. We first introduce a variant of the signature-based method
which allows the prover to avoid pairing computations. We also give sev-
eral improvements to the solution based on the multi-base decomposition
of the secret. We finally make the first complete comparison between all
existing range proofs. This permits to prove that our methods are use-
ful in many practical cases. This also allows service designers to decide
which method is the best to use in their case, depending on their prac-
tical needs and constraints on the size of the interval, the power of the
verifier and the prover, etc.

Keywords: Range proof, set membership proof, binary decomposition,
signature based method.

1 Introduction

In the authentication context, zero-knowledge proofs of knowledge (ZKPK) are
largely used e.g. to prove the possession of some secrets corresponding to a
discrete logarithm [35], of a representation [32] or the equality of secrets [17]. In
some particular cases, the prover may need to show that her underlying secrets
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verify some additional properties. In this paper, we focus on the so-called range
proofs which permit to prove, in a zero-knowledge way, that a secret lies in a
given and public interval.

Range proofs are useful in many cryptographic applications. E-cash and multi-
coupon systems [12,13] sometimes require to prove that the secret counter j of
already spent coins is not greater than the number J of withdrawn coins. It is
also very useful for anonymous credential systems [11] where a user may have
to prove e.g. that her unrevealed age is greater than a public threshold. They
are also used in the context of electronic voting [26,3], where the voter needs to
prove that her secret vote belongs in the set of all possible candidates. In this
case, we generally speak of set membership proofs (instead of range proofs).

The first proposals [9,16] for ZKPK of a secret lying in a specific interval were
very efficient but they only prove the membership to a slightly larger interval
than expected. In this paper, we focus on exact range proofs. There now exists
many possibilities to design such exact range proof and we are today able to
clearly describe the fundamental advantages and drawbacks of each family.

The first type of method, introduced by Boudot [8], uses some mathematical
properties of positive integers such as its decomposition in a sum of squares.
This method was later refined by Lipmaa [27] and next by Groth [24] to obtain
a very efficient exact method where time and space complexities are independent
of the secret size. The main drawback of these methods is the need for a group
of unknown order, which implies to manipulate bigger variables. Thus these
methods are more adapted for the case of big secrets. Recently, one proposal of
non-interactive proof, secure in the standard model, has been proposed in [15],
based on such kind of method.

The second family [4,19,36,28] uses the decomposition of the secret in a
(multi)-base. Bellare and Goldwasser [4] have been the first to use the binary
decomposition of the secret x to design a range proof in an interval of the form
[0, 2k[. Later, Schoenmakers [36] has proposed a more general solution which
permits to prove that x ∈ [a, b], using twice the method for range proofs in
[0, 2k[. Lipmaa et al. [28] have next presented a range proof for an interval [0, b],
based on the work from Damgård and Jurik [19]. This method uses the multi-
base decomposition of the secret x in the multi-base b, which is a generalization
of the above binary decomposition. From this initial multi-base decomposition
solution [28], there are several ways to design a solution for a more general inter-
val [a, b]. The first one is to use the Schoenmakers [36] technique which requires
to use twice the range proof in [0, b]. The second one, considered in [28], exploits
a generalization of the multi-based decomposition in order to directly obtain a
characterization that x lies in an interval [a, b]. The result is very efficient since
the time and space complexities are related to the size of the secret “plus one”
(and not twice the size of the secret if one uses the Schnoenmakers’ technique).

More recently, Camenisch et al. proposed in [10] a new way to treat set mem-
bership and range proofs, based on an initial work from Teranishi and Sako [38].
This work has been refined by Chaabouni et al. in [14]. The main idea is that
a designated authority produces public signatures on each element of the set
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Φ (resp. interval [a, b]). The proof of knowledge of e.g. a secret x ∈ Φ (resp.
x ∈ [a, b]) consists in proving the knowledge of a (public) signature on the secret
x (which is possible only if x belongs to the interval) without revealing x nor
the used signature. They next use the u-ary representation of the secret and the
technique in [36] to improve the complexity of the final range proof, even if the
number of signatures to be published should be equal to u.

From a practical point of view, it seems very hard to know which solution to
choose since it may depend on the size of the secret, the size of the interval or the
space (and time) complexity of the needed parameters (generation). Indeed, the
size of the secret is important for the complexity of the second and third families
of solutions, while they are not relevant for the square decomposition method.
On the contrary, when a secret is small, the fact that one needs to use a group
of unknown order for this latter method can be an important disadvantage.

As we are living in a world where more and more cryptographic computations
are done inside a device with restricted computational capabilities, such as a
smart card or a mobile phone, we think that:

1. it is essential to clearly know which method should be used, depending on
the constraints, so as to optimize the obtained efficiency;

2. the improvement of these methods is very important to achieve maximum
efficiency. As it seems difficult to improve the asymptotic complexities of
these existing methods, it remains either to find new methods, or to improve
existing ones at the constant factor level.

Regarding the first item, we propose in this paper the first complete study
on all existing range proof methods. We thus compare the prover and verifier
time complexities, the space complexity, the size of the public key and the time
complexity of the setup phase. We then show that this is currently not possible
to say that one solution is always the best one. A similar study has already been
done in [10] but they do not consider the Lipmaa-Asokan-Niemi method [28],
and they do not study, for example, the complexity from the verifier’s side.

Regarding the second item, we first improve the Camenisch et al. signature
based solution [10]. We also consider a new way to use the Lipmaa et al. [28]
ideas, based on the multi-decomposition of the secret.

This paper is organized as follows. Section 2 gives the outlines of our study
and introduces some useful tools. In Sections 3 and 4, we respectively present
our new signature-based set membership and multi-base decomposition based
range proofs. Before concluding, we give a complete efficiency analysis of all the
existing range proofs, including our two new methods, in Section 5.

2 Notations and Useful Tools

Roughly speaking, a zero knowledge proof of knowledge (ZKPK) is an interactive
protocol during which an entity proves to a verifier that he knows a set of secret
values α1, . . . , α� verifying a given relation R without revealing anything else.
Such a proof is denoted Pok(α1, . . . , α� : R(α1, . . . , α�)) in the following.
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Let Φ be a public discrete set and x ∈ Φ the studied secret which is com-
mitted in Com. Our aim in this paper is to construct a non-interactive zero-
knowledge proof of knowledge, using the Fiat-Shamir heuristic and the random
oracle model [21,34], that the committed integer x lies in the set Φ. Such a proof
is generally called "set membership proof". We also consider in this paper the
special case of "range proof" where Φ consists in the range {a, a+1, . . . , b−1, b},
for a, b ∈ N, denoted [a, b].

As these proofs are related to an interactive version [21], our new methods
are also relevant in this case. In fact, the main difference between the two cases
is for the complexity study, where the size of the parameters (in particular the
size of the challenges) can be different in each case.

We consider, except when explicitly mentioned, that we are working on an
elliptic curve, and we use the multiplicative notation. More precisely, let G be a
group corresponding to an elliptic curve E/Fp over Fp, where p is a prime integer.
Let q be a prime divisor of the group order and let E have embedding degree k
with respect to q. The used commitment scheme is a Pedersen commitment [33].
The secret x is then committed as Com = gxhr, where r ∈R Z

∗
q .

2.1 Some Zero-Knowledge Proofs of Knowledge

In this paper, ZKPK are constructed over a cyclic group G = 〈g〉 either of
prime order q or of unknown order. A ZKPK should be complete (a valid
prover is accepted with overwhelming probability), sound (a false prover should
be rejected with overwhelming probability) and zero-knowledge (no informa-
tion about the secret are revealed). We will use the following constructions:
proof of knowledge of a discrete logarithm [35]: Pok(α : y = gα); proof of
knowledge of a representation [32]: Pok(α1, . . . , αq : y = gα1

1 . . . g
αq
q ); proof of

equality of discrete logarithms [17]: Pok(α : y = gα ∧ z = hα); proof of the
“or” statement [18] (proof of knowledge of one representation among k ones):
Pok({αij ; j ∈ Ji} :

∨k
i=1 Ci =

∏
j∈Ji

g
αij

j ) and plaintext equivalence test [25].
From Com = gxhr, the predicate (x = 1) (resp. (x = 0)) can be proven, in a

zero-knowledge manner, by Pok(r : Com/g = hr) (resp. Pok(r : Com = hr)).
As a consequence, the predicate (x = 1 ∨ x = 0) is related to the proof of
knowledge Pok(r : Com/g = hr ∨Com = hr).

Remark 1. Pok(r : Com/g = hr) proves that Com = ghr and thus that x = 1.
Consequently, this proof of knowledge is not zero-knowledge regarding x (but
w.r.t. r). Nevertheless, Pok(r : Com/g = hr ∨Com = hr) ensures this property
as anybody is able to learn if x equals 0 or 1. The only information given by this
proof is that x is a bit, which will be always publicly known in the following.

2.2 Boneh-Boyen Signatures with(out) Pairings

Boneh and Boyen have proposed in [7] a short signature scheme (BB for short),
secure under the q-SDH assumption [7], for which it is possible to prove the
knowledge of a signature on a message, without revealing the signature nor the
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message. On input a secret key y and a generator g of a group G = E/Fp of
prime order q, the signature of a message m ∈ Zq is obtained by computing σ =
g1/(y+m). Given a bilinear pairing e, a signature σ of m is valid if e(σ, Y gm) =
e(g, g), where Y = gy. The ZKPK of such a signature is Pok(m, r, s : Com =
gmhr∧e(T, Y ) = e(T, g)xe(g, g)s), assuming that T = σs is known to the verifier.

Our aim in the next section is to provide a set membership proof which does
not ask the prover to perform pairing computations. This implies to use a sig-
nature scheme which (i) provides a ZKPK of a signature on a message, without
revealing the message nor the signature and (ii) does not need a pairing compu-
tation to verify such signature.

Boneh-Boyen signature without pairings. Let G be a cyclic group with
prime order q where the Decision Diffie-Hellman (DDH) problem is assumed to
be hard and g̃ and g1 two random generators of G. The signer’s private key is
y ∈ Z∗

q and the corresponding public key is Y = g̃y.

The signature on a message m is first the value A = g
1

y+m

1 computed as for
the initial scheme. This implies that Ay = g1A

−m. Then since we work in a
group G not equipped with a pairing, the signer has to additionally prove that
the signature on m is valid, which is done by generating a ZKPK π that the
discrete logarithm of (g1A−m) in the base A is equal to the discrete logarithm
of Y in the base g̃: Pok(y : Y = g̃y ∧Ay = g1A

−m). Finally, the signature on m
is valid iff the proof π is valid.
Theorem 1. The BB without pairing scheme is existentially unforgeable under
a weak chosen message attack under the q-Strong Diffie-Hellman assumption, in
the random oracle model.

Proof (sketch). Under the q-Strong Diffie-Hellman assumption, and given a mes-

sage m, it is impossible to find a A such that A = g
1

y+m

1 which is not given to
the signing oracle, as proved in [7]. Moreover, in the random oracle model, the
signature of knowledge π is unforgeable [21,34], which concludes the proof. ��

2.3 A Threshold Cryptosystem

Our signature-based scheme relies on a threshold version of a semantically secure
cryptosystem with homomorphic property, such as El Gamal [20]. Let G be a
cyclic group of order q where the DDH problem is hard. The public key is
composed of the elements (g̃, z = g̃x) with g̃, z ∈ G and the corresponding
private key is formed by x ∈ Zq. The El Gamal ciphertext of a message m ∈ G is
(C1 = g̃r, C2 = mzr), where r ∈ Zq is a random number. The decryption of the
ciphertext (C1, C2) is obtained through the computation of m = C2/(C

x
1 ). The El

Gamal cryptosystem is semantically secure under the DDH assumption. It is also
homomorphic regarding the multiplication: Enc(m1)·Enc(m2) = Enc(m1 ·m2).

Moreover, in a threshold version [23], the El Gamal public key and its cor-
responding private key are cooperatively generated by n parties; though, the
private key is shared among the parties. In order to decrypt a ciphertext, a
minimal number of t out of n parties is necessary.
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3 Our New Signature-Based Set Membership Proof

In this section, we present a new set membership protocol that bears some sim-
ilarities with the protocol proposed by Camenisch et al. [10]. Yet, our set mem-
bership proof does not use pairings and is thus computationally more efficient,
as we will see in Section 3.3. As a consequence, our proposal may be preferred
whenever a range proof has to be implemented in e.g. a smart card which does
not naturally implement a pairing. Finally, our solution implies that the verifier
owns a decryption key and is consequently more relevant in the case of electronic
voting [26,3] where the (set of) verifier(s) owns such key to open ballots.

3.1 Signature Based Characterization

The idea of using the signatures of all the integers in a public interval is due to
Teranishi and Sako [38] and next used in [10] by Camenisch et al.. More recently,
Chaabouni et al. [14] have proposed a more efficient variant in the case of a range
proof only. The signature based characterization is the following one.

Lemma 1. Let a, b, x be three integers. For all k ∈ [a, b], let σk = Sign(k) be a
signature on the value k using the secret key of a designated authority. Let Σ be
the set of all σk. Then, x ∈ [a, b] if and only if ∃σ ∈ Σ such that σ = Sign(x).

The authors of [38,10] propose to use BB short signatures [7] which, as said in
Section 2.2, permits to prove the knowledge of a couple (message, signature)
without revealing the message nor the signature. Camenisch et al. [10] refine
this method by using the u-ary representation of the secret x. Then a proof that
each digit of x in base u belongs to the interval [0, u[ is realized. This method
requires to publish less signatures than the initial method. Then, they use [36]
for the general interval [a, b].

We introduce in the following a new signature-based range proof, based on the
work in [10], which does not ask the prover to compute pairings. The basic idea
is that the verifier V first sends to the prover a signature of every elements in
the set Φ. Thus, the prover P picks a signature σ on the particular element s to
which Com is a commitment. Then, he “encrypts” this signature and performs
a proof of well-formedness. The verifiers (a threshold of them) then use their
private keys to check whether the ciphertexts encrypt a valid signature or not
(but without decrypting the corresponding ciphertexts). Note that two recent
results [1,40] use a conceptually similar trick to make a proof of validity of a BB
signature (yet, both still use pairings).

3.2 The Protocol in Details

Participants and Notation. Let Com = gxhr be a commitment on x, where
g, h ∈ G = E/Fp and r ∈R Zq. The prover, denoted P , picks a valid signature
A on the committed element x. The verifiers are denoted as a set V , e.g. the set of
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talliers in a voting scheme1. They share an El Gamal private key V̂ correspond-
ing to a public key V . They also share the private key y associated to the BB
signature without pairing public key Y . Finally, we denote EV [m] the El Gamal
encryption of a message m computed with the public key V , and D

̂V [m] the El
Gamal decryption of m computed with the private key V̂ .

Setup of the public parameters. This phase takes place before any set
membership proof in order to establish the parameters, and especially the four
generators g̃ g1, g2, g3 ∈ G. Then, the verifiers V collaborate to generate the
encryption (resp. signature) public key V (resp. Y = g̃y) and its corresponding
private key V̂ (resp. y). The resulting key V̂ (resp. y) is not known by the ver-
ifiers individually. Each verifier Vi knows only a share vi (resp. yi) of this key.
Their corresponding public key is denoted by Vi = gvi (resp. Yi = g̃yi).

After generating their keys, the verifiers are ready to issue the signatures of
each element of the set Φ. The verifiers might generate the signatures in a thresh-
old fashion by means of a scheme similar to [39].

The signature-based set membership protocol. After having computed
a commitment Com on her secret x, the prover, denoted P , picks a valid BB
without pairing signature (A, π) on the particular element x, with A = g

1
y+x

1 . She
next selects a random f ∈ Z

∗
q and computes B = Af . Then, she generates the

tuple (B,EV [B
f−1

], EV [B
xf−1

], Π) = (B, EV [A], EV [A
x], Π) which is in the

following denoted = (B, C, D, Π). Within this tuple, the ciphertext EV [B
f−1

]

is an encryption of the signature A = g
1

y+x

1 on the message x. The value Π is a
non-interactive zero-knowledge proofs which contains the following elements.

– (Π1) A proof that P knows the plaintext related to the ciphertext C =

EV [B
f−1

] = (C1, C2). In particular, P has to prove that she knows the
representation of C2 in the bases B and V using Okamoto’s protocol [32].

– (Π2) A proof that P knows the plaintext related to the ciphertext D =

EV [B
xf−1

] = (C3, C4). Especially, P has to prove that she knows the repre-
sentation of C4 in the bases B and V using Okamoto’s protocol [32].

– (Π3) A proof that P knows the representation of Com in the base g and h.
– (Π4) A proof that the discrete logarithm of C4 in the base C2 is equal to the

discrete logarithm of Com in the base g using a variant of the discrete log
equality test owing to Chaum and Pedersen [17].

In the end, Π = Pok(α, β, θ, δ, λ, μ, ε : C = (g̃α, BβV α) ∧D = (g̃δ, BθV δ) ∧
Com = gλhμ ∧ C4 = Cλ

2 V
ε). Finally, the prover sends (B, C, D, Π) to the

verifier, along with Com.

Verification. The verification phase corresponds to the following.
1 In most e-voting systems, the voter has to prove that his choice belongs to the set

of valid candidates [26].
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1. V check that B �= 1 and that all proofs in Π are valid and abort if one of
these verifications fails.

2. V verify whether the tuple (B,EV [B
f−1

], EV [B
xf−1

], Π) encrypts a valid
signature A on a message x (i.e: satisfy the relation Ay+x = g1) as follows.

(a) V execute a Plaintext Equivalence Test [25] in order to check that C is
not an encryption of 1. For this, V cooperatively select a random number
α ∈ Z

∗
q and compute Cα. Then, they cooperatively decrypt Cα. If the

decryption result is equal to 1, then C is an encryption of 1. Otherwise,
the result will be a random number and this indicates that the encrypted
plaintext is different from 1. V abort if this verification fails.

(b) V next cooperatively compute EV [B
f−1

]y = EV [B
yf−1

] thanks to their
secret keys yi. Then, they use the El Gamal homomorphic property to
obtain EV [A

y+x] = EV [B
yf−1+xf−1

] = EV [B
yf−1

] · EV [B
xf−1

]. Finally,
from EV [B

yf−1+xf−1

], the public parameter g1 and the El Gamal homo-
morphic property, they deduce E = EV [B

yf−1+xf−1

g−1
1 ]=EV [A

y+xg−1
1 ].

(c) In order to identify whether E encrypts a valid signature, V execute a
Plaintext Equivalence Test [25]. Thus, they determine whether E is an
encryption of the ciphertext 1 (valid signature) or not (invalid signature),
as done before for C.

3.3 Comparison with Related Work

We now compare our new signature based set membership solution with the one
in [10]. First, our scheme requires a cooperative verification between at least two
actors. In the case of an interactive set membership proof, these two actors can
be the verifier and the prover. We here argue that the prover will not decrypt
the ciphertexts if she does not want to, thus the scheme is secure. In the case of
e-voting, a committee of persons is generally responsible of the tally to avoid that
single bullet can be decrypt. This committee might be used as well to perform
the cooperative verification.

In Table 1, we use as a basic operation, for our efficiency comparison, the
multiplication in the basic field2 Fp. In a nutshell, a multi-exponentiation with
l terms, using the Shamir’s trick, necessitates |q| 253

2l+1−1
2l multiplications in Fp.

Using the results given in [2], a bilinear pairing e : G1 ×G2 −→ GT necessitates
(|q| − 1)

(
3(k − 1)k2 + 2k + 23

)
= (|q| − 1)P(k) multiplications in Fp, where k is

the degree of the extension field and P(k) = 3(k − 1)k2 + 2k + 23.
Our solution is then more efficient than Camenisch et al. one [10]. More pre-

cisely, with |q| = 256 and k = 6, the prover’s time complexity in our case is
better by a factor of 2. Moreover, the prover does not have to evaluate a pairing,
which can ease the development of our solution in restricted devices. Regarding
verifier’s time complexity, our solution is better for a number of verifiers lv < 4.

2 Following [5], if one would like to use the multiplication in G as a basis for the
comparison, one should have to remove a factor 25|q|

2
from our complexities.
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Table 1. Efficiency comparison of signature-based set membership proofs

Method Prover’s Verifier’s Space Size of
time complexity time complexity complexity public key

(multiplication in Fp) (multiplication in Fp) (in bits) (in bits)
Signature

(
125
3

+ P(k)
)|q| (

1025
24

+ P(k)
)|q| 2|G|+ |GT | (3 + |Φ|)|G|

based [10] +(36− P(k)) +P(k) +4q +|GT |
Our 1975

12
|q|+ 6

(
375
2
|q|+ 57

)
lv 12|G| + 8|q| 2lv|G|+ 6|G|

method +3|Φ||G| + 2|Φ|q

4 Our New Multi-base Decomposition Range Proof

In this section, we give our new method to prove that a secret value x belongs to
a given public interval [a, b], based on the multi-base decomposition of the secret
x and the bound a in the multi-base b. We next compare a and x by using a
generalization of a result due to Fischlin [22]. We also take advantage of the fact
that both the prover and the verifier know the value a: if the most significant
digits of a are equal to 1, then this is necessarily the case for the corresponding
digits of every secret x ∈ [a, b]. Thus, without compromising the secrecy of x, we
can reveal these digits by simply opening the corresponding commitments. We
finally exploit some boolean logic results to obtain one of the most efficient range
proof method for small secrets. The whole protocol for proving that a committed
secret value x belongs to a given public interval [a, b] is given in Section 4.5. The
other intermediate protocols of this section are only given to better understand
our ideas.

4.1 Multi-base Decomposition

In [28], Lipmaa et al. use the following characterization to prove that one secret
is in [0, v]. We call this characterization the multi-base decomposition.

Lemma 2 (Multi-base decomposition). Let v and x be positive integers and
let � = �log2 v�. Then, x ∈ [0, v] if and only if x =

∑�
i=0 vixi where for all

i ∈ [0, �], xi ∈ {0, 1} and vi = �(v + 2�−i)/2�−i+1�. In this case, we write
x = [[x0, . . . , x�]]v.

As a direct consequence of this lemma, v = [[1, . . . , 1]]v, which result can easily
be proven by contradiction. This lemma can next be used to design a ZKPK
that x ∈ [0, v] by committing each xi and next using the public vi to prove the
relation x =

∑�
i=0 vixi (see Section 4.2).

Uniqueness of the decomposition. For some value v, the decomposition of
an integer x is not unique. For example, for v = 10, we have v3 = 5, v2 = 3, v1 = 1
and v0 = 1. Then, the integer x = 6 can be written either [[0, 1, 0, 1]]v or
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[[1, 0, 0, 1]]v. However, our technique requires the uniqueness of the decompo-
sition, at least for the public bounds. For this reason, we define a determin-
istic decomposition algorithm MBDec which outputs a unique decomposition
for a given integer. This algorithm takes as input (x, v0, . . . , v�) and returns
x = [[x0, . . . , x�]]v. It first initializes m = x. Next, for i = � to 0, if m ≥ vi, it
states xi = 1 and modifies m := m − vi. Otherwise, it states xi := 0 and m is
not modified.

In the following, we always consider that this algorithm is used and, given a
base v and an integer x, we thus assume the uniqueness of the multi-base de-
composition of x in base v.

The Bit by Bit Characterization. The next characterization has been pro-
posed by Fischlin [22] in the case of the binary representation. We here present it
in the case of the multi-base decomposition of two different values. We compare
these two values thanks to their representations.

Lemma 3 (Bit-by-bit Lemma). Let v, a=[[a0, · · · , a�]]v and x=[[x0, · · · , x�]]v
be three positive integers. Then, a < x if and only if ∃i′ ∈ [0, �]/ai′ = 0, xi′ = 1
and ∀j > i′, aj = xj .

4.2 Focus on x ≤ b

We first focus on the case x ≤ b. This part of the proof is close to the ones
proposed in [19,28] which treat the case of a group of unknown order (see also
Remark 2 below).

The idea is to decompose the secret in a multi-base while considering the case
v = b (we will stay in that case for the rest of the paper). Indeed, if we denote
� = �log2 b�, the proof that x ≤ b is obtained using that x = [[x0, . . . , x�]]b. We
commit each xi and prove that (i) each xi ∈ {0, 1} and that (ii) the relation
x =

∑�
i=0 bixi holds. We here remember that each bi = �(b+ 2�−i)/2�−i+1� can

be computed by both the prover and the verifier, since b is publicly known. The
proof that x ∈ [0, b] is described as follows.

1. For all i ∈ [0, �], the prover randomly chooses ri ∈R Zq and sends Ci = gxihri

to the verifier.
2. Both the prover and the verifier can compute C̃ =

∏�
i=0 C

bi
i , which is equal

to gxh
∑�

i=0 biri iff the xi’s correspond to the multi-base decomposition of x
in base b. Let t =

∑�
i=0 biri.

3. Finally, the prover and the verifier play the following3 ZKPK

U1 = Pok

(
x, t, r0, . . . , r� : (C0 = hr0 ∨ C0/g = hr0) ∧ . . .

∧(C� = hr� ∨ C�/g = hr�) ∧ C̃ = gxht
)

Remark 2. In fact, one may think that we only prove that x =
∑�

i=0 bixi

(mod q). But, as the xi’s belong to {0, 1},
∑�

i=0 bixi ≤
∑�

i=0 bi = b < q, since

3 The second part of U1, related to C̃, proves that the relation x =
∑�

i=0 bixi holds.
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we consider, for obvious reasons, that 2� < q. Thus, x =
∑�

i=0 bixi, in Z. So,
this method is very efficient in a group of prime order but not so efficient in the
case of group of unknown order [19,28]. In this case, it remains to prove that the
equality holds in Z, e.g. by using a proof of knowledge of three integers α, β, γ
such that α = βγ, using as an example [19].

4.3 Treatment of the Most Significant Digits of a ≤ x

In the above method, we proved that the secret x can be represented in the
multi-base b. Due to Lemma 2, this permits to prove that x ≤ b. We now focus
on the case x ≥ a, considering the above method. We also represent a in the
multi-base b, that is, we have a = [[a0, . . . , a�]]b, since a < b. We now compare x
and a using their respective multi-base decompositions in base b, which permits
some simplifications.

As both the prover and the verifier know the value a, and thus its represen-
tation in the multi-base b, we can use a trick based on the following result.

Lemma 4. ∃!i0 ∈ [0, �]/ai0 = 0 ∧ ∀i > i0, ai = 1.

Proof. The existence is given by the fact that a �= b and the uniqueness is verified
assuming that the MBDec algorithm of Section 4.1 is used4. ��

This lemma says that some of the most significant digits of a, in multi-base b,
may be equal to 1. It also says that the first 0-bit of a is denoted i0. Thus, using
this lemma, and considering that both bi = ai = 1 for all i ∈ [i0 + 1, �] (see
Section 4.1 for the bi’s), we obtain that if x ∈ [a, b] then ∀i ∈ [i0 + 1, �], xi = 1.

The verifier knows a and b, thus the prover does not reveal any secret in-
formation if she simply opens the commitment on the xi, i.e. she reveals the
corresponding ri. This trick permits to save the corresponding part of the pred-
icate U1 (i.e.

∧�
j=i0+1

(
(xj = 0) ∨ (xj = 1)

)
). Thus, instead of proving x ≥ a,

the verifier and the prover should determine i0, and only focusing on the proof
that x̃ ≥ ã, where ã = [[a0, . . . , ai0 ]]b̃ and x̃ = [[x0, . . . , xi0 ]]b̃, with b̃ =

∑i0
i=0 bi.

Note that i0 only depends on a and b. Thus, it should be computed at the
creation of a and b, and may be considered as a public parameter.

4.4 Remaining Digits of a ≤ x

We now focus on the comparison between the values ã = [[a0, . . . , ai0 ]]b̃ and
x̃ = [[x0, . . . , xi0 ]]b̃. For this purpose, we use the bit-by-bit Lemma 3, which says
that a < x if and only if ∃i′ ∈ [0, �]/ai′ = 0, xi′ = 1 and ∀j > i′, aj = xj .

Study of the i-th digit. Under the fact that the verifier already knows a, we
thus have the following for the i-th digit of a.

4 This is always the case since the decomposition of a is done at the generation phase
by some trusted authorities.
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– If ai = 0, there are two cases. If xi = 0, we have to prove it and compare
the remaining digits of ã and x̃, using the same method. If xi = 1, we have
to prove it, which is enough to claim that a ≤ x.

As we want to prove in a zero-knowledge manner that a ≤ x, we have to
consider both cases (xi = 0 or 1), without revealing which statement is true.
For this purpose, we use an “or” statement. If we denote by B the statement
regarding the comparison between the remaining digits of a and x (in the
case xi = 0), this gives the predicate (xi = 1) ∨

(
(xi = 0) ∧B

)
.

– If ai = 1, by construction of the recursion, we necessarily have xi = 1. Then,
we have to prove it and to compare the remaining digits of ã and x̃ (from 0
to i − 1), using the same method. This gives the predicate (xi = 1) ∧B.

As the verifier knows the value a, she is able to decide whether the prover has
to perform the first type of proof or the second one. So we do not need to use
another “or” statement for both cases (ai = 0 and ai = 1).

The special case i′ = i0. By definition, ai0 = 0. We consequently necessary
fall in the first case, and we must prove that (xi0 = 1)∨

(
(xi0 = 0)∧B

)
, with B

the statement regarding the comparison between the i0 less significant digits of a
and x. We now remark that if this predicate is true, the verifier is convinced that
xi0 is a bit. Consequently, the prover has not to prove that (xi0 = 0 ∨ xi0 = 1)
in the first part of the proof, which slightly reduces the proof’s size.

Simplification of the first case. Regarding the first case (ai = 0), the
predicate (xi = 1) ∨

(
(xi = 0) ∧ B

)
can be further simplified. If we denote by

A the predicate (xi = 1), then the predicate (xi = 0) is ¬A (as it is proven in
the proof U1, given above, that xi is a bit). Moreover, as B is related to the
remaining digits of a and b, it does not contain any predicate on xi. Thus the
predicates A and B are independent. Finally, in our main proof, the predicate
B is never used again, while A is connected to the studied predicate by an “and”
statement between A ∨ (¬A ∧B) and A ∨ ¬A. As A ∨ ¬A is necessary true, we
obviously have A ∨ (¬A ∧B) = A ∨B.

Description of the main algorithm. Using these results, we can now de-
fine the FGreat algorithm which, on input {a0, · · · , ai}, outputs the logical
relation L which needs to be used to prove that x ≥ a. For this purpose,
it first states that L := ∅ if (ai = . . . = a0 = 0). Next, if (ai = 1) there
are two cases: either (i = 0) and it defines L := (x0 = 1) or it states that
L := (xi = 1)∧ [FGreat({a0, · · · , ai−1})] (which needs a recursive execution of
FGreat). Finally, if (ai = 1) then L := (xi = 1) ∨ [FGreat({a0, · · · , ai−1})].

In consequence, the prover should prove that the following predicate is true:

(xi0 = 1) ∨ [(xi0 = 0) ∧ FGreat({a0, · · · , ai0−1})] .
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4.5 Our Range Proof Protocol

Let b, a = [[a0, · · · , a�]]b and x = [[x0, · · · , x�]]b be three integers such that a < b
and x ∈ [a, b]. At the key generation phase, one has to first determine i0 such
that ai0 = 0 and ∀i > i0, ai = 1. It next executes the FGreat algorithm on
input {a0, · · · , ai0−1} in order to obtain L. During the main protocol, the prover
and the verifier follow the following steps:

1. for all i ∈ [0, �], the prover randomly chooses ri ∈R Zq and sends Ci = gxihri

to the verifier;
2. both the prover and the verifier can compute C̃ =

∏�
i=0 C

bi
i . Let t =∑�

i=0 biri;
3. for all i ∈ [i0 + 1, �], the prover reveals ri;
4. the prover and the verifier then play the following interactive ZKPK

Uf = Pok

(
x, t, r0, . . . , ri0 : C̃ = gxht ∧ (C0 = hr0 ∨ C0/g = hr0) ∧ . . . ∧

(Ci0−1 = hri0−1 ∨ Ci0−1/g = hri0−1) ∧
(
Ci0/g = hri0 ∨ (Ci0 = hri0 ∧ L)

))
.

5 Efficiency Comparison of Range Proof Methods

In this section, we compare the efficiency of both related work and our proposals
to decide which solution has to be used in which cases. Note that each proof
considers that the commitment on x has already been done and thus, this step
is not considered here. We also consider the setting given in Section 2.

We resume our main results in Table 2, in which we consider a security level
of 128, which corresponds to the following values: |q| = 256, |G| = 257, |GT | =
1542, lZn = 3248, le = ls = 160. Due to space limitation, the related complexities
will be detailed in the extended version of the paper (see Appendix A for some
preliminary materials). The value � corresponds to the size of the secret in bits.

Note that [14] does not appear in our comparison as its complexity is really
close to those of [10]. The more recent proposal [15] does not appear in this
comparison since its main contribution is to obtain a construction in the standard
model (and not in an idealized model as it is our case), but at the detriment of
the efficiency. Note finally that the proposal in [41] is broken (see [14]). We also
give some graphics, for which we use the captions given in Figure 1 (left part).

Verifier’s Complexity Comparison. The verifier’s efficiency comparison be-
tween existing methods is given in Figure 2 (on the left). For � > 25, it is clear
that signature-based solutions are the most interesting ones. When � is small,
� ≤ 5, then our new multi-based decomposition solution become the best one,
while the initial work from [28] is ideal when 5 < � ≤ 25.

Prover’s Complexity Comparison. The prover’s efficiency comparison be-
tween all methods is given in Figure 2 (on the right). Results are relatively
similar to the verifier’s ones, except for the breaking points. This time, signature
based solutions are the most interesting ones when � > 60, while ours is ideal
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Table 2. Time and space efficiency comparison

Method Prover’s Verifier’s Space Size of
time complexity time complexity complexity public key
(mod mul in G) (mod mul in G) (in bits) (in bits)

Binary [36] 12503� + 30636
14935� + 24532

3592� + 2568 2052−2133× 2−�

Multi-base [28] 9600� + 20800
7468� + 23201

1795� + 2565 256� + 1794
+533× 2−�

Square [27] 322� + 1.7× 107 322� + 9.87 × 106 2.5� + 40474 4082

Square [24] 1272� + 5.44× 106 644� + 5.68 × 106 4�+ 24647 5367

Signature5 [10] 17075k + 318852
1181k + 3210 × 2�/k 257× 2�/k

256k + 1796
+148302 +4365k + 6160

This paper 467�2 + 14068� 11202� + 2666
2564� − 768 �+ 770

+5467 +1066× 2−�

Fig. 1. Caption for graphic (on the left) and space’s (on the right) efficiency comparison
for different values of �

when � ≤ 3. Again, the initial multi-base decomposition scheme [28] is the best
one when 3 < � ≤ 60.

Space’s Complexity Comparison. We finally compare the space complexities
in Figure 1 (right part), with the conclusion that, again, our method is very
interesting when � ≤ 5. Next, for 5 < � ≤ 14, the double binary method [36,37]
is the most interesting one, while for 14 < � ≤ 24, one has to choose a signature-
based method. Finally, for � > 24 the square decomposition methods [27,24] are
the most efficient ones.

5 The range proof x ∈ [a, b] is done by using the u-ary representation of x and the
parameter k is such that uk < b < uk+1.
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Fig. 2. Verifier’s (on the left) and prover’s (on the right) efficiency comparison for
different values of �

Conclusions on the Efficiency. We proved that several existing range proof
methods are useful in practice. Indeed, it seems that for � ≤ 3, our new multi-base
decomposition method is the one to be chosen, while the Lipmaa-Asokan-Niemi
solution [28] is the best one for 5 < � ≤ 25 and signature-based methods are
more interesting when � > 60. Then, for 3 < � ≤ 5 and 25 < � < 60, the
choice should be done in accordance to the specificities of the system, regarding
the computational strength of both the prover and the verifier, and the flow
between them. Note that in some particular cases, our method becomes more
interesting. In fact, this strongly depend on the values a and b.

Acknowledgments. The work of the first and fourth authors has been partially
supported by the French ANR-11-INS-0013 LYRICS Project. We are grateful to
Céline Dulong for helpful discussions on the multi-base decomposition version,
and to anonymous referees for their valuable comments.

References

1. Acar, T., Chow, S.S.M., Nguyen, L.: Accumulators and U-prove revocation. In:
Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 189–196. Springer, Heidelberg
(2013)

2. Arene, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster computation of the tate
pairing. Cryptology ePrint Archive, Report 2009/155 (2009),
http://eprint.iacr.org/

3. Baudron, O., Fouque, P.-A., Pointcheval, D., Stern, J., Poupard, G.: Practical
multi-candidate election system. In: PODC, pp. 274–283 (2001)

4. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: ACM Conference on
Computer and Communications Security, pp. 78–91 (1997)

5. Bernstein, D.J., Lange, T.: Explicit-formulas database. In: EFD (2009),
http://www.hyperelliptic.org/EFD/

http://eprint.iacr.org/
http://www.hyperelliptic.org/EFD/


62 S. Canard et al.

6. Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography (1999)
7. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-

sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)
8. Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In:

Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer,
Heidelberg (2000)

9. Brickell, E.F., Chaum, D., Damgård, I.B., van de Graaf, J.: Gradual and verifi-
able release of a secret. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293,
pp. 156–166. Springer, Heidelberg (1988)

10. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 234–252. Springer, Heidelberg (2008)

11. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 56–72. Springer, Heidelberg (2004)

12. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In: Cramer, R.
(ed.) EUROCRYPT2005. LNCS, vol. 3494, pp. 302–321. Springer,Heidelberg (2005)

13. Canard, S., Gouget, A., Hufschmitt, E.: A handy multi-coupon system. In: Zhou,
J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 66–81. Springer,
Heidelberg (2006)

14. Chaabouni, R., Lipmaa, H., Shelat, A.: Additive combinatorics and discrete log-
arithm based range protocols. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 336–351. Springer, Heidelberg (2010)

15. Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant
communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199.
Springer, Heidelberg (2012)

16. Chan, A., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. In: Nyberg, K.
(ed.) EUROCRYPT1998. LNCS, vol. 1403, pp. 561–575. Springer,Heidelberg (1998)

17. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

18. Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

19. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

20. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

21. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

22. Fischlin, M.: A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–472.
Springer, Heidelberg (2001)

23. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

24. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482.
Springer, Heidelberg (2005)



New Results for the Practical Use of Range Proofs 63

25. Jakobsson, M., Juels, A.: Addition of elgamal plaintexts. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 346–358. Springer, Heidelberg (2000)

26. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
WPES 2005, pp. 61–70. ACM (2005)

27. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003)

28. Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer,Heidelberg (2003)

29. Lynn, B.: On the Implementation of Pairing-based Cryptosystems. PhD thesis,
Stanford University (2007)

30. Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)

31. European Network of Excellence in Cryptology II. Ecrypt2 yearly report on algo-
rithms and keysizes (2008-2009) (2009)

32. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993)

33. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

34. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13, 361–396 (2000)

35. Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

36. Schoenmakers, B.: Some efficient zero-knowledge proof techniques. In: Workshop
on Cryptographic Protocols (2001)

37. Schoenmakers, B.: Interval proofs revisited. In: Workshop on Frontiers in Electronic
Elections (2005)

38. Teranishi, I., Sako, K.: k-times anonymous authentication with a constant proving
cost. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 525–542. Springer, Heidelberg (2006)

39. Wang, H., Zhang, Y., Feng, D.: Short threshold signature schemes without random
oracles. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT
2005. LNCS, vol. 3797, pp. 297–310. Springer, Heidelberg (2005)

40. Yang, Y., Ding, X., Lu, H., Weng, J.: Self-blindable credential: Towards lightweight
anonymous entity authentication. Cryptology ePrint Archive, Report 2013/207
(2013), http://eprint.iacr.org/

41. Yuen, T.H., Huang, Q., Mu, Y., Susilo, W., Wong, D.S., Yang, G.: Efficient non-
interactive range proof. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609,
pp. 138–147. Springer, Heidelberg (2009)

A Complexity Tools

As we are considering that we work over an elliptic curve, the basic operation
we will use is the addition of points in the curve. Using ECRYPT II Recommen-
dations [31] with a security level of 128, the elements of Fp are typically 256-bits
integers. Thus, as it is necessary to store a point using the x-coordinate plus
additional one bit to know which y-coordinate is to be chosen [6], a point needs
257 bits to be stored. The integer q should also be chosen as a 256-bit integer.
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Modular Multiplication in Zn. As we are considering a security level of 128,
we need to use a 3248-bits RSA modulus, according to [31]. Using the bouncy-
castle Java implementation of modular multiplication and the point addition in
the secp-256r1 elliptic curve, we obtain that M3248 = 5.2A256 where M3248 is the
cost for the modular multiplication and A256 is the cost for the points addition.
Moreover, a point addition in an Edwards curve [5] (in our case a multiplication
in the group G) necessitates 12 multiplications in the base field Fp.

Use of Shamir’s Trick. We also recall that the computation of a represen-
tation c =

∏l
i=1 g

ei
i can be improved by the use of the well-known Shamir’s

trick, presented in [30]. Note that this technique is generic and consequently
also work for the elliptic curve case. In a nutshell, it is not necessary to compute
each modular exponentiation and multiply the results since c can be computed
globally. In most cases, this permits to save lots of computation. We thus con-
sider that the computation of c necessitates approximatively 2l+1−1

3×2l−1 times the
cost of a modular exponentiation modulo a q-bits integer. Note moreover that
this is a well-known result in the modular arithmetic theory that a modular
exponentiation with an exponent of size e modulo a n-bits number corresponds
to 3

2e modular multiplications modulo a n-bits number. We can conclude that
one multi-exponentiation with l terms necessitates b 2

l+1−1
2l

modular multiplica-
tions, where b is the greatest bit length of the ei’s. Regarding elliptic curves,
if we consider one scalar multiplication with a scalar of size e, then we have
S256 = 25e

2 m, using the results from [5] for Edwards curves, where S256 is the
cost for the scalar multiplication (equivalent to a modular exponentiation) and
m is the cost of multiplication in the base field Fp. This gives b 253

2l+1−1
2l

m for a
multi-scalar multiplication (equivalent to a multi-exponentiation) with l terms.

The Case of Pairings. It is today not an easy task to obtain the efficiency of
a pairing evaluation which can be used in our purpose. We have made the choice
of using the recent work from Arène, Lange, Naehrig and Ritzenthaler [2] on the
Tate pairing for Edwards curves, which is, to the best of our knowledge, the most
efficient pairing implementation. It is written in this paper that the evaluation
of the reduced Tate pairing, given by e : E(Fp)[q]×E(Fpk)/qE(Fpk) → μq where
μq ⊂ F

∗
pk denotes the group of q-th roots of unity, needs (|q|−1) iterations of one

point doubling and one point addition. If s denotes the cost of squaring in the
base field Fp and if M and S denote the costs of multiplication and squaring in
the extension field of degree k = 6, then the doubling step takes 1M+1S+(k+
6)m+ 5s while the mixed addition step needs 1M+ (k + 12)m. Assuming that
M = S and m = s, and, using [29], that M = (k − 1)k2m, we obtain that one
pairing evaluation P256 necessitates (|q|−1)(3(k−1)k2+2k+23) = 575(|q|−1),
for k = 6, multiplications in the base field. In the following, we consider the
pairing e : G1 × G2 → GT where G1 necessitates 256-bits elements, with an
order q of size 256 and GT needs to manipulate elements of size 1542 (with
k = 6). Note that using the above results, we obtain that P256 ≈ 46S256.
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Abstract. Secure end-to-end communication requires endpoint authen-
ticity. Authenticating an endpoint in large networks, that is assuring that
the other communication party is indeed who he or she claims to be, is
a non-trivial task. Currently, the adopted solution is to rely on trusted
third parties, who vouch for a certain host’s authenticity. Recent inci-
dents at renowned trusted third parties, as well as long standing prob-
lems, indicate a need for alternative solutions. We propose STUNT, a
system that helps users to assess a host’s authenticity by its trust re-
lationships with other hosts. Hosts operated by service providers have
to establish mutual trust relationships with other service providers to
appear trustworthy to a user. These trust relationships are both lim-
ited and expensive, and thus STUNT enforces careful trust decisions by
service operators. Clients are able to verify these trust relationships by
cryptographic means. The verified trust relationships are presented to
the users, to assist them with assessing the authenticity of the host. Ul-
timately, the trust decision rests with the user, leading to an individual,
self-maintained trust base. We believe that, given the right tools, peo-
ple are very well able to decide on a host’s authenticity, and describe a
possible technical concept to support informed decision-making.

Keywords: network, internet, SSL, authenticity, trust, proof of work.

1 Introduction

Secure communication over an untrusted network requires endpoint authenti-
cation. Currently, the most widespread approach to solving authenticity in a
large, heterogeneous network is using trusted third parties to vouch for the gen-
uineness of a host. These trusted third parties reside at the top of a hierarchic
structure, where upper-level entities vouch for the authenticity of entities be-
low, as described in the ITU-T X.509 [17] standard. The top-level trust entities
are root certificates, issued by trusted third parties, called certificate author-
ities, and have to be trusted by clients for any subordiniate authority or leaf
certificate to be considered trustworthy. Nowadays, software using this system
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typically comes with a predefined list of such trustworthy roots. According to the
Electronic Frontier Foundation’s SSL Observatory1, about 650 such certificate
authorities exist. The Microsoft Windows SSL root certificate member program
lists 353 trusted authorities as of December 2012 [22]. The question is, however,
why all users should trust this many authorities by default, without any prior
knowledge about or personal contact with them at all.

Criticism about X.509 was ever-present, but got stirred up to new heights
after recent incidents, such as the successful break-in into the Dutch certifi-
cate authority DigiNotar [16]. The ability to break into established certificate
authorities and thus create valid certificates for any desired domain gives at-
tackers incredible power. Such an attacker may be able to successfully mount
Man-in-the-Middle attacks, without users recognizing the attack, even though a
seemingly secure connection is used.

There are design issues that render the established system vulnerable as well.
The fact that each certificate authority can issue certificates for any arbitrary
domain, even ones that already got a certificate from another CA, poses another
problem. As Sotirov and Zusman put it once, it ends up in a ”race to the bottom”2

scenario, where a CAs security principles end up to be only as good as the
weakest principles of a CA present in the predefined trusted authorities of the
client. In addition to early alternatives such as KeyNote and PolicyMaker [6–
8], there are several recently proposed mitigation attempts for this, such as
CertLock [24], Public Key Pinning [13], TACK [21] or Certificate Transparency
[20], the latter three of which are Internet Engineering Task Force (IETF) drafts
currently under review. Nevertheless, even without considering problems such
as the complexity of proper revocation as well as certificate and certificate chain
validation [14,15], trust in the currently employed system seemed to deteriorate
during the last couple of years [2, 11, 12].

Therefore, we think that it is worth trying to find new solutions, which no
longer involve a third party to decide about what host is or is not trustworthy.
We do not think that these problems discussed above can be remediated without
proper user integration into the trust decision process. For example, the current
PKIX-based process hides all details of the trust decision from the user. This
approach is fragile, because if the automatic process fails, and the unaware and
unprepared user is called to intervene, there is a high probability that the user
is overstrained and will thus simply ignore the problem [5, 25, 26].

Putting regular users into the position of making an informed decision is
the crucial point of such a system, and we strive to create a recommendation-
based system that works with a concept that is already familiar from everyday
life. We propose STUNT, a system which enables the assessment of a host’s
authenticity for users by showing the surrounding network of trusting hosts. The
system is designed to be decentralized, without the need for a trusted third party.

1 http://www.eff.org/observatory
2 In their BlackHat 2009 talk called Breaking the Security Myths of Extended Valida-
tion SSL Certificates, http://www.blackhat.com/presentations/bh-usa-09/
ZUSMAN/BHUSA09-Zusman-AttackExtSSL-SLIDES.pdf

http://www.eff.org/observatory
http://www.blackhat.com/presentations/bh-usa-09/ZUSMAN/BHUSA09-Zusman-AttackExtSSL-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/ZUSMAN/BHUSA09-Zusman-AttackExtSSL-SLIDES.pdf
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The trust network is built in a way that cryptographically ensures that the shown
relationships are indeed meaningful and cannot be falsely claimed. STUNT is
based on the following design principles:

User-central. Users are the ones who decide whether a host is trustworthy or
not, and there exist individual trust bases per user or software component.

Trust Relationships. Trust relationships are an expression of confidence by
an entity, that the recipient is indeed what is claimed. The authenticity of
a host is assessed by its trust relationships. Users decide whether a certain
cluster of trusting hosts is reasonable or not. Trust relationships from users to
servers are unidirectional. Users trust hosts, not vice versa. Between servers
on the other hand, only mutual trust relationships exist.

Expensive Creation. Trust relationships between servers are intentionally ex-
pensive to create, as incentive for investing only in long-living relationships.
Furthermore, the number of trust relationships is limited, such that the indi-
vidual weight of a trust relationship is higher. Operators are thus encouraged
to choose their trustees carefully.

Cheap Verification. Users are able to verify the presented relationships on
the fly.

Risk-based Revocation Support. The system uses a whitelisting approach,
where no host is considered valid, except all of its trust relationships verify
correctly and are current. An active revocation scheme is embedded, which
requires continuous updates in predefined, risk-based intervals for a relation-
ship to be kept alive.

The Backfiring Principle. As far as possible, all attempts to misbehave shall
backfire at the initiator.

To allow for informed user decisions, the surrounding trust relationships are
presented to the user. Each node in that trust network represents another host
whose operators decided to trust the host in question. Therefore, exploring a
trust network is basically equivalent to checking references before trusting some-
one. This is a concept most people will be familiar with.

The system is built on the assumption that users already have at least a vague
idea about the host in question and its trust relationships when confronted with
the decision of trustworthiness. For example, if a user’s online banking site is
linked to other renowned institutes, this might be an indication that the host is
indeed trustworthy. If, however, one ends up assessing a host’s trustworthiness
and is presented with a network of only unknown hosts, the system is bluntly
telling the user that nothing about the host in question is known. The user is
then free to decide whether to browse the presented network deeper, until she
is able to make an informed decision. This decision could be to leave the host,
to not enter any account information, or to trust this host anyways. The latter
choice is risky and the corresponding risk has to be communicated via the user
interface. This is similar to known warnings about self-signed certificates and
similar occurrences.

We strive to avoid the problems outlined above by both a decentralized struc-
ture and user-based decision making. No entity is powerful enough to decide for
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someone else, and the influence gained by compromising an entity is limited to
its direct neighbors. Moreover, we expect this approach to be intuitively usable,
as it strongly resembles social interaction and everyday trust evaluations.

2 Related Work

The system is, to the best of our knowledge, a new approach to host authenticity
on large networks. However, it can be loosely compared to systems such as
Perspectives [28]. In Perspectives, a user can define a couple of notaries whom she
trusts and queries them for the certificate fingerprint of a host in question. The
host’s authenticity is thereby dependent on whether all notaries acknowledge
that fingerprint. Since the idea is to distribute notaries all around the world,
it gets very hard for an adversary to fake these responses. The Perspectives
prototype has been adopted in Convergence [27], a follow-up which aims at
becoming a ready-to-use implementation of the Perspectives idea.

Furthermore, the system is loosely inspired by PGP3, although with com-
pletely different internal workings. PGP supports transitivity using so-called
trusted introducers, which are basically the equivalent of certificate authorities
in an X.509 [17] world. There is no such counterpart in STUNT. Besides, there is
a clear distinction between users and service providers, for whom very different
rules apply.

In social and semantic web contexts, as well as in the context of autonomous
agents, many reputation-based trust systems have been proposed [3, 18]. Repu-
tation-based systems share the approach of determining a user’s or host’s trust-
worthiness by the people or systems who vouch for the instance in question.
We pursue a similar approach in the proposed system. Contrary to autonomous
systems, however, the users and service operators are an integral part of the
outlined system.

Web of Trust4 introduced a similar system for rating web pages on the Inter-
net. To assert the safety of a web site, judged by a few predefined and individu-
ally rated categories, users rate websites regarding a predefined set of categories.
Other users get aggregated votings as a guideline about the visited page’s safety.
STUNT is also based on a recommendation approach, but has a very differ-
ent reference system in place. Contrary to Web of Trust, the recommendations
are not voting-based. Instead, we use individual trust relationships for hosts to
appear trustworthy. Furthermore, the reference mechanism only allows mutual
trust relationships to ensure careful assertions. STUNT is best comparable to
checking recommendations one gets from partner companies or reference clients
before contracting with a previously unknown company.

3 System Design

The system design will be discussed in detail throughout this section, following
a brief overview about the underlying concepts. In STUNT, users trust hosts in

3 http://www.pgpi.org
4 http://www.mywot.com

http://www.pgpi.org
http://www.mywot.com
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a unidirectional way, while the publicly visible trust relationships between hosts
are mutual. The mutuality acts as an incentive to actually engage in trusts, as it
is a time-consuming, expensive and, to some extent, risky task. Figure 1 shows
such a sample trust network, where the relationships between hosts are publicly
visible and user-to-host trust is not.

Fig. 1. Schematic of user trust and between-host trust

The system is based on the cornerstones of user centrality, mutual and unidi-
rectional trusts, expensive relationship creation, cheap relationship verification,
risk-based revocation support and what we call the backfiring principle. Expen-
sive relationship creation is enforced by requiring both parties to compute what
BitCoin [23] calls a proof of work. A proof of work is a partial hash collision,
as introduced by Back in hashcash [4] and Juels in client puzzles [19]. The dif-
ficulty of the proof of work is dependent on the amount of the active trusts the
other involved party has, and increased by additional trusts, until trusting an
additional host is no longer economically viable. Verification of such a proof of
work is essentially one hash computation, and thus a very cheap operation.

Each STUNT-capable host has to keep track about any activity regarding the
trust relationships in an audit trail. The proof of work is bound to a certain
state in the audit trail, such that clients can assess whether the difficulty of the
proof of work was adequate, given the number of active trusts of the other party
at that time.

To ensure the freshness of an active relationship, periodic updates are sent in
intervals chosen by the parties themselves during their risk assessment. Clients
will only consider trust relationships as valid, when both the proof of work
verifies correctly and the relationship is proven to be recent. Therefore, revoking
an existing relationship means to stop sending further updates. The mutuality
of trust relationships between service providers is to account for the backfiring
principle. Misbehaving hosts harm themselves, because they will most likely have
their trust relationships dropped.

3.1 Components

The proposed system introduces an additional server service on service providers
as well as client-side code to allow for browsing the STUNT network and verify-
ing its validity. Service providers in this context are simply servers hosting web
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content. The system can be operated in a standalone mode, as well as in con-
junction with the existing CA infrastructure. In the standalone mode, a host’s
certificate is self-signed. There is no CA involved, since a host is solely identified
using the trust relationships as indicators for its authenticity. Alternatively, the
system can well be operated next to the common certificate authority-based way
of handling host authenticity. In this case, STUNT serves as an additional, inde-
pendent way of assessing a host’s authenticity. If operated standalone, STUNT
does not necessarily need common X.509 certificates as shared data structure.
However, X.509 certificates are assumed here to maintain compatibility to ex-
isting infrastructures. Regardless of the mode of operation, the STUNT service
shares the same certificate as the web server, which ties both instances together
and avoids rogue STUNT services, since clients can compare whether both given
certificates match.

The additional server component is needed to handle the network-related
operations, such as establishing or removing trust relationships, delivering the
current status and updating the trust commitments. It is merely a service on
top of a small local database that stores the relevant information, as explained
later on. On the client, a different, local database is maintained, which acts as
the local trust base and thus remembers the hosts users have already labeled
as trusted. An elementary prototype of the system has been implemented in
standard Java, using the standalone mode of operation. The proof-of-concept
implementation led to several interesting insights, which influenced the system
as described here.

3.2 Audit Trails

Service providers are forced to keep track of their STUNT-related activities in
an audit trail that is directly embedded into the system. This audit trail is
machine-readable and allows keeping track of current and former engagements.
It is merely a list of the actions initial setup, trust engagement attempt, trust
engagement success, trust engagement rejected and trust engagement revoked,
alongside the corresponding timestamp and involved host, if any.

Initial Setup. A simple entry indicating the setup of the audit trail.
Trust Relationship Attempt. An entry recording whenever a host attempts

to engage in a trust relationship with another host; to be appended by both
parties.

Trust Relationship Success. An entry confirming a successful trust relation-
ship establishment.

Trust Relationship Rejected. Records that the party receiving such an en-
gagement offer denied the request.

Trust Relationship Revoked. A message indicating that a party just nulli-
fied an existing trust.

The system-wide rule for audit trails is that for each attempted trust estab-
lishment, a subsequent reject or success message has to follow, before another
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attempt is possible. Further attempts, who interleave a currently processed re-
lationship attempt will be auto-denied. We use these audit trails later on to
re-count the number of active trusts for a given host at any point in time.

3.3 Keys

STUNT requires two key pairs, the SSL key pair for the SSL connection and
the STUNT key pair for signing elements in the protocol introduced in Section
3.4. If operated in standalone mode, a host’s SSL certificate will be self-signed,
because its authenticity is solely defined by the trust relationships. Regardless of
the mode of operation, both the STUNT signing key pair and the SSL key pair
have to be strongly bound together. Therefore, we include the public STUNT
signing key in the SSL certificate by means of a certificate extension, which
allows seamless distribution of the public key and separates key usage between
SSL and STUNT signatures. The STUNT key pair’s sole purpose is to sign
messages exchanged during the STUNT protocols and may not be used for a
different purpose.

3.4 Establishing Trust Relationships

In order to establish a trust relationship between two hosts, the protocol as
shown in Figure 2 has to be executed. This protocol is merely the technical re-
semblance of a strategically important task between the two companies. At a
certain level of importance, this may well involve setting up contractual agree-
ments, which include the fingerprints of the hosts involved as well as the chosen
update intervals.

Much of the responsibility of common certificate authorities gets shifted to
host operators. Instead of having a CA verify the authenticity of a requester,
it is now the operator’s duty to do so. The backfiring principle is acting as an
incentive to support careful choices, but the user interface additionally enforces
certain checks using a different channel. Before an operator can establish a trust
relationship, it is necessary to specify the target host’s certificate fingerprint,
as well as the negotiated update interval for trust commitments. If the target
host’s fingerprint matches, a request is sent. The recipient’s STUNT service
will notify the host operator of incoming requests. The protocol may as well
incorporate an auto-denial mode, with only a small window of opportunity in
which the service actually prompts the administrator to make a decision, and
otherwise auto-denies requests. A recipient who is notified of such a request has
to respond manually by accepting or denying it. If accepted, the recipient has
to enter the initiator’s certificate fingerprint, as well as the update interval.

The protocol itself is not secure against Man-in-the-Middle attacks. Both
parties have to ensure the other’s authenticity. Establishing such a relationship
is considered a seldom and business-critical event. Operators are thus encouraged
to exchange the certificate fingerprints using another channel, e.g. when setting
up a service-level agreement. Still, the protocol needs to be run on a SSL-backed
connection, using the exchanged fingerprints to ensure authenticity.
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Fig. 2. The trust engagement protocol

Suppose service B accepts the request, which is only possible if and only if the
window of opportunity is open, there is no second pending request, and the host
is not already trusted. In case of acceptance, a random challenge is generated to
guarantee the freshness of the computed proof of work. This challenge, as well
as the host’s current audit trail are sent in response, if the entered certificate fin-
gerprint matches. Service A fetches the response as well as service B’s certificate
and computes a token of trust for A and B. The unidirectional token of trust,
as sent from A to B, is defined as follows:

token of trustAB = (

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H(certA || certB || challenge || padding),
hash chain(audit trailB),

challenge,

padding,

update interval

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, σA(totAB))

σA(totAB) refers to the signature over the whole structure, signed by host A
using the corresponding STUNT signature key. certX refers to the certificate of
host X. H is a standardized, collision- and preimage-resistant hash function, for
example SHA-256.

The proof of work is the digest generated by H. Computing a token of trust is
thus a computationally expensive task of increasing difficulty. The input of H is
prefixed, and a padding that leads to the desired output hash has to be found.
The prefix consists of the certificates of both parties and the challenge that was
randomly generated to prove freshness. The party which computes the token
then has to find a padding, such that the resulting digest has n leading zeros,
where n is dependent on the other party’s number of currently active hosts. n
is adjusted by a predefined rule, to ensure that the problem’s difficulty is kept
within computationally feasible bounds for the number of desired maximum
hosts. Section 3.8 discusses this property in more detail. The more active trusts
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the other party has, the harder is the computation of the token, up to the
point where it gets computationally infeasible to add another trust relationship.
On the other hand, computing a token for a less-prominent partner is cheaper.
This property leads to increased workload when one wants to bond with an
already well-trusted node, but eases finding partners for new nodes, such as
newly founded companies, for example.

The token is bound to a host’s current state by including a hash chain over
that host’s current audit trail. A hash chain denotes the result of a successive
computation of a hash over a certain list of elements. For the audit trail, it would
mean to compute hashchain = H(... || H(entry2 || H(entry1))) over all audit
trail entries, including the timestamps, actions and involved hosts.

The generated token of trust consists of the proof of work, the hash chain
over the audit trail, the used padding, the originally given challenge and the
predefined update interval, as well as a signature over these fields. The informa-
tion in the token of trust allows clients to verify the correctness of the claimed
relationship. The challenge and padding allow to recompute the proof of work
to determine whether the problem was adequately difficult upon the trust rela-
tionship establishment.

A token of trust seals a unidirectional trust relationship from host A to host
B and is bound to the audit trail when it was created. Both sides’ tokens of
trust together are the expression of trust between the hosts’ operators. Upon
establishment, a token of trust is verified in the same way as in the client-side
verification procedure described in Section 3.6.

3.5 Revocation

STUNT uses an active, whitelisting-based revocation scheme. For a trust rela-
tionship to be valid, both a valid token of trust and a fresh trust commitment is
required. Trust commitments are messages sent to all directly trusted hosts in
the previously negotiated update interval t. A trust commitment, as sent from
A to B, looks as follows:

trust commitmentAB = σA(σA(token of trustAB), timestamp)

It is thus merely a message containing a timestamp of when the message was
created, the signature of the previously sent token of trust, and a signature over
the message itself. When receiving such a message, hosts store the latest com-
mitment message from the originating host and send it to clients upon request,
as discussed later on. For the trust relationship to be considered valid, the latest
trust commitment needs to be no older than t.

3.6 Client-Side Verification

Client-side verification differs, depending on whether the client already considers
the host in question as trusted or not. For new hosts, the verification works as
shown in the pseudocode of Listing 1.
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New Hosts. First of all, certain information has to be fetched from the host in
question. That is, the host’s certificate, its audit trail and the information about
all directly trusting hosts, referred to as neighbors. The certificates from both the
STUNT-service and the actual service to be used, e.g. the web server, are checked
for equality beforehand, which is omitted in Listing 1. Then, the verifier has to
fetch all neighbor certificates to be able to verify the token of trust signature
as returned from the host in question, given that the corresponding given trust
commitment is not outdated.

Algorithm 1. VERIFY NEIGHBORS(host)

1: host cert, audit trail ← GET CERTIFICATE AUDIT TRAIL(host)
2: neighbor info ← GET NEIGHBORS(host)
3: for all neighbor in neighbor info do
4: tt ← neighbor.trust token
5: neighbor cert ← FETCH CERTIFICATE(neighbor.IP)
6: tc ← neighbor.trust commitment
7: if not RECENT(tc.timestamp, tt.interval) then
8: return false // outdated commitment
9: end if
10: if not VERIFY TOKEN SIG(tt, neighbor.token signature, neighbor cert.kpub) then
11: return false // invalid token signature
12: end if
13: trusts ← RECOUNT ACTIVE TRUSTS(audit trail, tt.hashchain)
14: if trusts == -1 then
15: return false // invalid hash chain
16: end if
17: if not tt.proof of work == H(neighbor cert, host cert, tt.random, tt.challenge) then
18: return false // invalid proof of work
19: end if
20: if not LEADING ZEROS(tt.proof of work) == n then
21: return false // inadequate problem hardness
22: end if
23: if not tc.token signature == neighbor.token signature then
24: return false // commitment for wrong token
25: end if
26: if not VERIFY COMMITMENT(tc, neighbor cert.kpub) then
27: return false // invalid commitment signature
28: end if
29: end for

Afterwards, element-wise hash computation and concatenation is performed
on the given audit trail entries until the hash chain from the token of trust is
met. If it is never met, either the audit trail was modified or an invalid hash
chain was given. Otherwise, one is able to re-count the number of active trusts
until this very state, because all successful additions as well as all revocations
are recorded in the audit trail.

With that information, the verifier can recompute the proof of work using
both involved certificates, as well as the given random padding and challenge.
The resulting digest’s leading zeroes are then compared against the number
of active trusts at the time of trust establishment to verify whether an ade-
quately hard problem was solved during the token of trust creation. Finally, the
trust commitment is verified by checking the signature and comparing the token
signatures.
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The user is only presented with the trust relationships if these verifications
succeed. Otherwise, the client might abort prematurely and issue a warning. The
system’s purpose is thus to ensure that the presented information was indeed
created at the neighbor’s will and is not entirely made up. Whether or not users
decide that the presented cluster of nodes is reasonable and to be trusted is
decoupled from the system and might differ from one user to another.

Verification of these yet unvisited hosts consists of many steps. Nevertheless,
the individual steps are computationally cheap and the number of maximum
active trusts is bound by the proof of work complexity to some intentionally low
number, such that the total workload is considered negligible.

To support the claim of cheap verification, we simulated the verification pro-
cedure for newly visited hosts on a Google Nexus One mobile phone with a 1
GHz CPU and 512 MB of memory, using Android5 2.3 as operating system. The
verification of the immediate trust network of a host having 10 trust relation-
ships and an audit trail length of 100 entries takes not more than 132.85 ms
on average, using 100 iterations. We intentionally used an outdated, constrained
device, and desktop verification times are expected to be way below that value.
Furthermore, we assumed a scenario with a high number of incoming trust rela-
tionships (10), while we expect the regular case to have only 5-6 incoming trust
relationships to further exacerbate the complexity of the problem. Therefore, the
verification time solely depends on network delays, with the actual computation
time being negligible.

Subsequent Visits. Assessing whether or not a specific newly visited host will
be added to one’s personal trust base is considered a rare event, once the initial
trust base is established and contains typical, regularly visited hosts. In contrast,
ensuring that subsequent visits are indeed addressing the very same host might
occur much more frequently.

Adding a host to the personal trust base means to store its certificate, as well
as all given tokens of trust and commitment timestamps with the corresponding
neighbors and neighbor certificates in a local database. Assuming that the user
revisits a previously added host and that the last stored timestamp is outdated,
then the client fetches all recent commitments from the server. For each commit-
ment, the client checks whether it originates from a previously stored neighbor,
verifies the commitment signature, checks if the timestamp is recent and whether
or not the token signature matches the stored one. Thus, on subsequent visits it
is not necessary to connect to any neighbors. There are basically four cases that
might occur in this verification:

– The host’s state is exactly as it was upon accepting it. That is, all the given
information matches up with the local database. In that case, clients accept
the host without any further user interaction.

– The host established one or more new trusts with other hosts. Our approach
follows the logic that having more trusts expressed by others is a good thing.

5 http://android.com

http://android.com
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Therefore, the user is not disturbed. Instead, a small visual indication will
be shown, with the optional possibility to re-assess the new trust network.

– The host lost one or more of the trusted hosts since it was labeled as trusted
by the client. This is critical. For example, due to losing the trust relation-
ships because of a compromization. Hence, the client should interfere and
warn the user with details about the left nodes and why this might be a
problem.

– One or more of the involved hosts changed their certificate. Unfortunately,
this means that the stored information is invalidated and the host(s) have
to be re-assessed.

The storage overhead from adding this many hosts to the personal trust base is
negligible as well. We estimated the storage space required for 50 hosts, with each
host having 10 distinct trust relationships and all involved hosts using RSA key
lengths of 4096 bit. The proof-of-concept implementation uses a local SQLite6

database at the client to store the trusted hosts information. We consider having
50 manually asserted, trusted hosts a high estimate for a regular user. Still, it
takes no more than about 2.3 MB of storage space.

3.7 User Interface

One of the most important aspects of the system is the network explorer part of
the user interface. Figure 3 shows the network explorer view from the proof-of-
concept implementation, to give of an example on how such a browser might look
like. The central node is the one that the user is about to visit. The surrounding
nodes are hosts whose operators expressed their trust to the host in question.
Upon hovering over a node, the user is able to view the website or explore the
trust network deeper. After the user finished exploring the network and made up
her mind, she is able to select one or multiple nodes to be labeled as trusted. The
ability to add multiple hosts in one go is a convenience feature to minimize both
redundant evaluations and interfering the user. Note that trust relationships
are not transitive. Instead, already trusted hosts are visually indicated, such as
alice.local in the figure.

Fig. 3. STUNT network browser example

6 http://sqlite.org

http://sqlite.org


STUNT: A Simple, Transparent, User-Centered Network of Trust 77

Whether a user interface like this will lead to the desired results, or other
methods of presenting the information will be required is not yet determined
and will need an in-depth usability study. A desired result would be to get users
to really think about whether the presented network of trusted hosts makes sense
and is reasonable, without them getting annoyed.

3.8 Limiting Trusts

The number of active trust relationships is intentionally limited to a very small
number. The reason for employing a cost function instead of limiting the num-
ber of trusts to a domain-wide value, such as five hosts for example, is to
avoid fast switching of trust relationships and thus underline their long-term
nature.

The limitation per se serves two purposes, namely to keep such a trust rela-
tionship a scarce and thus valuable resource, and to allow users to comprehend
the whole cluster of directly connected hosts on first sight. Therefore, the idea is
to limit these direct connections to a value as low as about five hosts. Achieving
the desired number of maximum hosts is a matter of parametrizing the scaling
factor n, which defines how many leading zeros are required for the proof of work
at a certain state.

The proof of work computation is flexible and thus scalable. By altering the
starting offset and the rule for n, varying difficulties can be achieved. To give
an example, we assume a hash function with a preimage resistance strength
of 2digest length, such as the SHA family [9]. Furthermore, we assume a device
capable of performing 50 million hashes per second. To delimit the maximum
active trust relationships to five hosts, one example parametrization might look
as depicted in Figure 4.

The rule to increase the difficulty in this example is set as follows: n0 =
36, ni+1 = ni+i+1. Thus, the difficulty is increased dependent on an initial offset
and the number of already-active trust relationships. The highlighted datapoints
denote the required leading zeroes for five trusts. Using the assumptions above,
the proof of work computation would need up to 0.4, 0.8 and 3.1 hours for the
first three trust relationships, up to one day for the fourth one and up to 16 days7

for the fifth one. Since the complexity is increased with the number of already-
active trusts, a sixth trust relationship would then already require a proof of
work that takes up to 521 days to compute, which is far from reasonable from
an economic point of view.

Note that the number of required zeros is reduced again when revoking a trust
relationship, because there is a corresponding revocation entry.

7 These are upper bars, and one can always be lucky. However, even in the first case
with n0 = 36, given all possible output hashes, the probability to hit a correct hash
is about 1.46 · 10−11. For a 50% chance of getting a valid hash, half the time is
needed.
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Fig. 4. Proof of work sample parameterization

3.9 Trust Communities

Trust tokens and thus the trust relationships are bound to a certain audit trail
by the hash chain. While operators cannot alter an audit trail later on, nothing
prevents them from starting a second one from scratch. Maintaining several
audit trails lets operators increase and categorize their trust relationships. For
example, a company might operate one category containing reference clients
and another category containing suppliers, each limited to n hosts, where n
is computationally bound by the proof of work computation complexity. From
a user’s point of view, these categories could be specially highlighted in the
browser, or there might be filters in place, allowing users to explore only a
certain category.

4 Security Analysis

The following informal security discussion shows attack vectors regarding STUNT
and follows the adversary model by Dolev and Yao [10]. According to the model,
an adversary is assumed to have full network control, but no host itself is com-
promised. Several possible vectors for mounting Man-in-the-Middle (MitM) at-
tacks exist in this scenario, which are now discussed briefly. A successful MitM
attack allows adversaries to read and modify exchanged messages without be-
ing detected by either the client or the server involved. Impersonating the target
host without relaying the messages to the actual target is another possible ap-
proach, but treated as the same in this analysis, as there is no difference in how
this attack is mounted. In this analysis, we consider only server impersonation,
as STUNT is about authenticating server entities. Thus, an attacker has no gain
when impersonating a client. Since full network control is assumed, an attacker can
impersonate a server from both the clients’ and other servers’ perspective. For ex-
ample, impersonating a server from a client’s viewpoint is possible on public wifi
hotspots. However, it is also thinkable in a larger context, that entire companies
want to monitor their employees’ secure communication or countries eavesdrop on
citizens.
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It is important to remember that both a server’s STUNT- and webserver use
the same certificate for authenticating the communication. Therefore, an adver-
sary redirecting only the STUNT requests to some spoofed service will not go
unnoticed, as the certificates will no longer match. Hence, adversaries are forced
to spoof both services in conjunction. Furthermore, host operators are encour-
aged to take trust relationship decisions seriously. There is only a limited number
of possible mutual trust relationships, and establishing them is computationally
expensive and thus costly. Moreover, establishing a trust relationship needs an
agreement using a second communication channel, for example a contract.

Within this setting, we discuss two possible attacks, which we refer to as
replacing and remodeling.

Replacing. Full network control allows an attacker to impersonate a server
in the network. An additional server with the same DNS name as an existing
one can be introduced, and all client requests to the real host will be redirected
to the impersonated one. The impersonated server can then be used to lure
other operators into establishing trust relationships with it. Given that other
operators agree on these trust relationships, an adversary might be able to attach
a malicious node to the otherwise legitimate trust relationship network. Due to
the same DNS name, the maliciously introduced server replaces the original one.

There is also a weaker form of replacing, which works having only the server’s
link under control, whereas the client’s connection remains untouched. However,
it requires attackers to choose a new, available DNS name and can thus only
introduce new, seemingly trustworthy hosts.

The server operators are responsible for authenticating other servers, oth-
erwise it is theoretically possible for an adversary to gain trust relationships.
The system requires operators to take special care whom they trust. The expen-
sive creation and mutual nature of trust relationships emphasize the importance
of this decision. Whenever a host operator decides to trust another host, she
will receive the trust vice versa. There is only a limited amount of incoming
trust relationships, and adding an untrusted host backfires, because it reduces
the likeliness of being accredited as trustworthy by users. Since adding trusts
is expected to be a rare event, operators are asked to exchange the expected
fingerprints on a second channel, which counters rogue trust relationships. If the
attacker manages to set up such a seemingly trustworthy host with the same
DNS name, there would still be a warning if the attacked user has visited the
real host before. A warning is issued, because the presented and the previously
stored certificate from the original server would not match any more. Further-
more, such trust relationships are not expected to last for long, since the fraud
is likely to be detected soon.

Remodeling. Instead of getting other operators to establish a desired trust re-
lationship, an attacker might as well fake a network of a trusted server by adding
a number of self-established hosts. We call this remodeling, since the attacker
tries to copy an existing network of trust, or to create a similar one. This attack
requires only client-side networking control, but is a lengthy and expensive task
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due to the proofs of work. Furthermore, its success is highly dependent on the
user’s reaction, because it can not be known how much effort the user puts into
investigating the presented network. A remodeled trust network is assumed to
be very small, because each additional host to fake is computationally expensive
for the adversary. Since the user can browse the network infinitely deep, the
deception will eventually come to light. In the large-scale case of companies and
countries, such fake networks get more realistic. However, their use is limited,
which renders the expense/gain ratio very low. They will not last for long, be-
cause people typically visit hosts like their online banking not just once and from
different places. Their clients store the corresponding certificates and will thus
issue warnings as soon as a subsequent visit yields different fingerprints. More
people being affected means more gain for the attacker, but the faster it will be
detected.

Furthermore, to render this vector almost completely unusable, the system can
be used in conjunction with Perspectives [28], having notaries on various places
in the world monitor certificate fingerprints. An additional variant would be to
provide a tool which allows easy comparison of the presented trust network on
a desktop client to the one that is presented on the mobile device, which usually
uses a connection provided by an independent carrier.

5 Conclusion and Future Work

We propose and implement STUNT, a system that uses the concept of checking
references to determine a host’s trustworthiness in large-scale networks. STUNT
helps the user by modeling the concept of asking for references before interacting
with an unknown entity. While STUNT cryptographically ensures that no false
claims are made to fake references, ultimately the user decides whether to trust a
certain host. Given an intuitive and clear user interface, we believe that STUNT
supports accurate trust assertions.

STUNT encourages establishing meaningful trust relationships, because trust
relationships are an inherently limited, and expensive resource. Existing trust
relationships can be revoked in a timely manner, due to an active, risk-, and
whitelisting-based revocation scheme. Currently, no usability study has been
performed, but such a study on the usability and scalability of the proposed
system in large-scale environments would be an essential contribution. While
STUNT is still in its infancy, we consider STUNT a solid base for future, user-
centered solutions. We are confident STUNT will enable users to meaningfully
question a host’s authenticity, and it helps them maintaining an individual and
dynamic trust base.
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Université du Luxembourg,
Interdisciplinary Centre for Security, Reliability and Trust,
6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg,

Luxembourg
jean.lancrenon@uni.lu

Abstract. We study three-party, password-authenticated key exchange
protocols where the trusted third party has a high-entropy private key to
which corresponds a public key. In this scenario we can maintain the user-
friendliness of password authentication while provably achieving security
properties that ordinary password-authenticated key exchange protocols
cannot, namely resistance against key compromise impersonation and a
special form of internal state revealing. We define security models tailored
to our case and illustrate our work with several protocols.

Keywords: Password-authenticated key exchange, public-key cryptog-
raphy, provable security, simulation-based security, internal state.

1 Introduction

1.1 Password-Authenticated Key Exchange

2-PAKEs and 3-PAKEs. This article’s main focus is on the design and anal-
ysis of Password-Authenticated Key Exchange (PAKE) protocols. The goal of a
PAKE is for two users to perform a cryptographic Key Exchange (KE) that is
authenticated using each user’s knowledge of a password. In the two-party case
(2-PAKE), both users share the same password, and in the three-party case (3-
PAKE), each user shares its own password with a server (a trusted third party)
which aids in the exchange. We will be studying 3-PAKEs in which the server
also holds strong secret keying information to which corresponds a public key.
We call such protocols 3-PAKEs with server private keys, or 3-PAKE[spk]s.

Motivation and Challenges. The study of PAKEs is important because of the
ubiquity of passwords in everyday applications. In contrast to cryptographically
strong keys (e.g, symmetric and private or asymmetric and managed in a public-
key infrastructure), passwords are easy to handle thanks to their most prominent
property: they are typically low-entropy. However, this also makes brute force
password guessing feasible. Thus, PAKEs must be designed to resist dictionary
attacks : a well-constructed PAKE should allow at most one password to be
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tested per online attempt (online dictionary attack resistance), and its message
exchange should not leak any information on the password (Offline Dictionary
Attack - or OffDA - resistance).

Our Contributions, in a Nutshell. Most of the research done in the last
decade has provided provably secure 2-PAKEs; 3-PAKEs have been much less
studied. Most notably, there seems to be no proven secure 3-PAKE[spk]. We
propose to fill this gap by describing several security models and protocols proven
secure in these models.

Our work shows that adding a public/private key pair first makes protocol de-
sign much simpler, as it becomes possible to rely on simple, well-understood cryp-
tographic notions. Secondly, we exhibit protocols that enjoy desirable KE prop-
erties that are unobtainable in PAKEs that only use passwords. These properties
are resistance against key compromise impersonation and resistance against (a
special form of) internal state revealing. Third, none of these sacrifice usability.

1.2 Related Work

2-PAKEs. Bellovin and Merrit [6] were the first to consider dictionary attacks in
2-PAKEs, and the first to propose a solution, followed by Jablon [20]. Lucks [24]
gave formal definitions of OffDA resistance. Halevi and Krawczyk [18] and Bo-
yarsky [7] provided definitions and protocols for 2-PAKEs where one of the par-
ties is a server with strong keying information. Many other protocols have been
proposed, e.g. [1,4,8,10,11,22,13,14,17,19,23,21], most of them provably secure.
Bellare et al. [4] adapted to 2-PAKEs the now widespread indistinguishability-
based security model of [5]. Boyko et al. [8] did this with the simulation-based
models in [28] and [3]. In [1,11,22,13,14,17,23,21] are practical 2-PAKEs secure
without random oracles using Cramer and Shoup’s smooth projective hash-
ing [12], and assuming a Common Reference String (CRS). There are also the-
oretical results [15,16] showing that efficient but impractical secure 2-PAKEs
can be constructed with neither random oracles nor CRSs. Designing a practical
2-PAKE secure in the standard model with no CRS is an open problem.

3-PAKEs. The first to consider 3-PAKEs seem to be Steiner et al. [29]. They
require that the server only know the passwords. Similar protocols can be found
in [2,27,9,30,31]. In [2] the first security model for 3-PAKEs is defined following
the approach of [5,4], the most commonly used security model for 2-PAKEs is
strengthened, and a method to get 3-PAKEs from 2-PAKEs is proposed. Be-
sides [2] and [31], none of the cited works have formal security definitions. Other
solutions require the trusted server to hold a secret key of its own, e.g. [26,32].
Neither of these protocols have formal security proofs.

1.3 Organization of the Paper

In section 2 we explain why we think 3-PAKE[spk]s are worth considering. Next,
section 3 states the security properties we can expect of a 3-PAKE[spk] and
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gives an overview of the ideal-world simulation paradigm. Sections 4, 5, and 6
then respectively exhibit the static, password-adaptive, and password-and-state-
adaptive network adversary models, the latter two being each punctuated with
a protocol and some comments. Finally, section 7 concludes the paper. Proof
ideas and computational assumptions are in the appendix; the detailed proofs,
which are very long, are in the full paper.

2 Why 3-PAKEs with Server Private Keys?

2.1 Retaining User-Friendliness

In a 3-PAKE[spk], in addition to the users’ passwords, the trusted server T holds
strong, secret keying material skT to which corresponds a public key pkT avail-
able to each user. It is legitimate to wonder why a string like pkT is making an
appearance at the users’ end: after all, is not the whole point of using passwords
to get rid of such cumbersome data? The answer is that users will not have to
know it because since it is the same for every user, it can be hardwired into the
protocol specification. The application thus retains its user-friendliness.

This concept is not new in PAKE research. All practical 2-PAKEs that are
proven secure without random oracles use this hardwiring technique because
they rely on a Common Reference String (CRS) known to all users. A CRS
is basically a long public string that is generated in some secret manner. In
PAKEs, they tend to appear as public keys to public-key encryption schemes;
the ”secret” part is the decryption key which must be immediately destroyed,
for any entity that gets it can undermine the whole system undetected.

2.2 Proving Security without Idealized Assumptions

Aside from the work of Abdalla et al. [2], all known 3-PAKEs either lack a
security proof, or rely on idealized assumptions. In [2] the authors devise a way
to generically construct a 3-PAKE from a 2-PAKE and prove its security in the
sense that if the 2-PAKE is standard-model-secure, then so is the 3-PAKE. We
claim that given the current state-of-the-art in 2-PAKE research, our method for
obtaining 3-PAKEs secure in the standard model is a good, and possibly more
efficient, alternative. We reason as follows.

We already mentioned that all practical standard-model-secure 2-PAKEs use
a CRS. Some entity has to generate this CRS and be trusted to destroy the
corresponding secret. If we construct a 3-PAKE generically from a CRS-based
2-PAKE, the best-placed entity for this is the server, since it is already trusted
with all of the passwords. But then this server is also a very natural candidate
to trust with correctly using strong secrets, rather than discarding them. It is,
after all, a pity to not use the decryption key of a public-key encryption scheme.
Thus, it makes sense to return to considering 3-PAKE[spk]s.

The upshot is that if our starting point is having strong server secrets, protocol
design complexity drops significantly. We emphasize however that we are not
stating that in general protocol design, a CRS-based construction can be replaced
by a server with secret keys. Our reasoning is specific to 3-PAKEs.
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2.3 Simpler Practical Protocol Designs

The reason for using a public encryption key as the CRS in 2-PAKEs is that no
information on a password can be plucked from a semantically secure encryption
of it, thus avoiding OffDAs. The challenge then becomes finding a way for a
legitimate partner to exploit the ciphertext without decrypting. Subtle tools, e.g.
smooth projective hashing [12], can be used for this, but yield complex designs.

In contrast, we let the server use the secret key, so we can rely in a straight-
forward way on well-known, classic primitives. The protocols we propose have
users encrypt their passwords which can then be verified through decryption by
the server, and the server digitally signs messages for users, who can verify the
signatures. The only properties required of the primitives involve their level of
security, and nothing else.

Our protocols require at most six sent messages, including key confirmation.
Factoring in the additional security properties we can achieve, this is certainly
not excessive: four of the messages are used to authenticate users to the server
and vice-versa. The precise role of the other messages depends on the protocol.
We can compare this to an instantiation of Abdalla et al.’s scheme [2] with a
two-message 2-PAKE, and no key confirmation between any parties: this yields
seven messages sent.

2.4 Capturing More Security Properties

Finally, a good reason to consider 3-PAKE[spk]s is we can prevent more attacks.

Key Compromise Impersonation. In KE, Key Compromise Impersonation
(KCI) is said to occur if an attacker that gets a user’s long-term secret can
impersonate some other user to that user. 2-PAKEs cannot satisfy this property:
if an attacker has a user’s password, that attacker can always impersonate the
other holder of that password to that user. At least it cannot impersonate other
users to that user, as this requires compromising other passwords.

In a 3-PAKE, a user shares its password only with the server. If this password
is the only data that proves to a user that it is indeed speaking to the server,
then compromise of this password will allow the adversary to impersonate to
that user the server and any other user in the network at any time, which is the
worst KCI scenario possible.

We can thwart this however if the server authenticates itself to users via strong
secrets. This is interesting because it is reasonable to assume that any secret at
the server will be better protected than any password ever is (or will be) by a
user. Our protocols either heavily restrict (5.3) or eliminate (6.3) KCI.

Unerased State Revealing. KE research nowadays often considers security
notions based on revealing forms of internal state. The main idea is to let the
adversary obtain certain intermediate values during a protocol run, e.g. the
ephemeral randomness of [25], or the unerased internal state of [28].

This is rarely seen in PAKE research because any form of internal state re-
vealing yields trivial OffDAs. Thus, while some works do consider revealing state
(e.g. [1,10]), it includes password revealing by default.
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We show that a definition of resistance against Unerased Internal State (UIS)
revealing that does not disclose the password can be considered for 3-PAKE[spk]s
by exhibiting protocols for which this query does not lead to OffDAs. Our pro-
tocols both do this, although only one fulfills the security goal (6.3).

3 3-PAKE[spk]s and Ideal-World Simulation

In the next sections we adapt the simulation-style models of Shoup [28] and
Boyko et al. [8] to 3-PAKE[spk]s. We use their notations.

3.1 General System Description

The Users. The users, indexed by positive integers i, have identities IDi of some
fixed length. Each user i selects a private password pwi uniformly at random from
a dictionary D. D is a (possibly small) public set of strings of some fixed length.

The Server. Server T runs a server key generation algorithm KT once on input
security parameter 1η at the time the system is initialized to produce a pair
(pkT , skT ). T keeps skT secret and pkT is copied into the users’ specification.
The list {IDi, pwi}i is given to T , who also keeps the passwords secret.

Statement of Goals and Desirable Properties

Protocol goal At the end of a protocol run with i, i′, and T , either i and
i′ used as input their passwords pwi and pwi′ and key pkT to authenticate
themselves to T , and T used as input its secret skT to authenticate itself to
both users, in which case i and i′ should have computed a secret, random-looking,
shared session key SK, or the protocol is aborted by one of the parties.

Desired security properties In [2], dictionary attacks proper to 3-PAKEs
are identified: insider attacks in which registered users try to determine other
users’ passwords through protocol runs. We also take these into account.

Another security feature isolated in [2] is that of session key privacy with
respect to the server. We assume that T is at worst Honest-but-Curious (HbC),
i.e. that the only bad behavior T might have is eavesdropping. It is otherwise
trusted to carry out the protocol faithfully. In order to minimize the trust placed
in T , we require that T not be able to compute the session key established during
a protocol run. This separates three-party key exchange and distribution.

We will be considering network adversaries, which completely control all com-
munications between parties. HbC servers are treated in the full paper. As in [2],
these must be modeled separately: merging them does not make sense, for this
would amount to giving the network adversary all of the secret keys.

3.2 Ideal-World Simulation Methodology

We define security via the ideal-world simulation paradigm. Two computational
worlds are described. In the ideal world the protocol’s goals are ideally achieved
between all users in the presence of an adversary. Bad events here represent
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inevitable attacks on the service we are providing. In the real world, the protocol
is executed between users in the presence of an adversary who may disturb it
however he wishes according to the powers he is afforded. We say that security
is achieved if for any real-world adversary running against the protocol we can
construct an ideal-world adversary that behaves the same way.

Adversaries and Ring Masters. The adversary (M∗ in the ideal world,M in
the real world) plays against the ring master (RM∗ in the ideal world, RM in
the real world) whose task is to generate all of the necessary random values, and
to process operations the adversary asks to have performed. All adversaries are
assumed to be probabilistic and polynomial-time in security parameter η ∈ IN.

Transcripts. As the interaction progresses, a transcript (IW(M∗) in the ideal
world, RW(M) in the real world) logging the adversary’s actions is built.

Definition of Security. We are now ready to define security:

We say that a 3-PAKE[spk] is secure against network adversaries if
for every real-world network adversary M there exists an ideal-world
network adversary M∗ such that IW(M) and RW(M∗) are computa-
tionally indistinguishable.

The adversary is in both worlds allowed to have established session keys placed
in the transcript. In the real world, these are the real keys. In the ideal world they
will be random, independent strings. The security definition thus captures the
idea that correctly exchanged session keys cannot be efficiently told apart from
random strings. This is why when following the ideal-world simulation paradigm
the test query found in [5]-type models is unnecessary.

4 Static Network Adversaries

We first describe a model that captures statically corrupted users, i.e. parties
that are registered by the adversary with passwords of its choice. Our models’
main description is in this section; sections 5 and 6 just add operations. We state
what operations the adversary can ask of the ring master, explain what their
effects are, and with which string they are logged in the transcript. Operation
names are in bold; paragraphs in italics contain additional notes.

4.1 The Static Ideal World

Static network adversary M∗ may ask ring master RM∗ to do the following.

Initialize Server. M∗ starts the game by formally invoking the server con-
trolled by RM∗. It carries the index 0.

String logged in the transcript: (”initialize server”, 0)

Initialize User, i, IDi. M∗ chooses an identity bitstring IDi with which to
initialize i. IDi should not have been used before for another user, or for a ”set
password” operation (see below). Also, a password pwi is chosen uniformly at
random from D and assigned to i outside of the adversary’s view.
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Transcript: (”initialize user”, i, IDi)
M∗ may invoke new honest players with their own passwords.

Set Password, ID, pw. M∗ specifies an identity ID that has not previously
been assigned to a user and associates to this string a password pw of its choice.

Transcript: (”set password”, ID, pw)
This query allows M∗ to put into play registered users it controls.

Initialize User Instance, (i, j), roleij , PIDij.M∗ asks to have user i initialize
an instance j of that user. M∗ gives (i, j) a role roleij ∈ {open, connect}, and
a partner identity PIDij . If PIDij was not given to an honest user, we require
that a ”set password” operation on PIDij has already been performed.

Transcript:
(
”initialize user instance”, (i, j), roleij, P IDij

)
This operation allows M∗ to activate many different KEs for a given user.

During such an exchange, a user may either be waiting for its partner to connect
to it, or may be expected to connect to its partner.

Initialize Server Instance, (0, k), PIDS0k. M∗ asks to have an instance
k of the server initialized, on input a pair of partner identities PIDS0k =
(OID0k, CID0k). OID0k is the opening partner identity and CID0k is the con-
necting partner identity. These should be distinct, at least one of them is assigned
to a user, and both must have passwords. Note that the server assigns to OID0k

the role open and to CID0k the role connect.
Transcript:

(
”initialize server instance”, (0, k), P IDS0k

)
This allows M∗ to invoke server instances. Naturally, this server expects to

be relaying messages between two specific users.

Terminate User Instance, (i, j)
Transcript:

(
”terminate user instance”, (i, j)

)
Terminate Server Instance, (0, k)

Transcript:
(
”terminate server instance”, (0, k)

)
Test Instance Password, i, (0, k), pw. M∗ inputs a user i, a not yet termi-
nated server instance (0, k) with IDi ∈ {OID0k, CID0k}, and a password pw.
It receives in return whether or not pw = pwi. This is allowed only if (0, k) has
not completed an exchange (see below). We also make the restriction that this
operation can only be done once on input i, (0, k), pw. We will say that a
password was successfully guessed if it has been the target of a successful ”test
instance password” operation. If the operation says the guess is incorrect, we
will say that it failed.

This operation leaves no record in the transcript.
This lets M∗ test password guesses at the server. No such tests target users

because we explicitly forbid impersonating the server; this reflects it holding a
private key that network adversaries do not have access to. This formally excludes
protocols that use the passwords to authenticate the server to users.

Notice that if M∗ tries a guess on one end of the server instance, it still
has the possibility to attempt a guess at the other end of this same
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instance. Thus, there are scenarios where M∗ could run two ”test instance
password” operations on one initialized instance. This cannot happen in [8].

Exchange Completed, (0, k). M∗ specifies a not yet terminated server in-
stance (0, k) and indicates that it has completed its role in the exchange. This
requires that no failed ”test instance password” operation was conducted on
(0, k) targeting a component of PIDS0k that is assigned to an initialized user.

Transcript:
(
”exchange completed”, (0, k)

)
M∗ may stipulate when a server instance has served its purpose in an ex-

change. Accordingly, it can only occur if both password checks have passed.

Start Session, (i, j). M∗ specifies a not yet terminated user instance (i, j) and
asks that a session key be given to it. (i, j) gets a connection assignment :

• Open for Connection from (i′, j′) through (0, k). For this we require
PIDij = IDi′ for some initialized user i′, roleij = open, (i′, j′) to have been
initialized, PIDi′j′ = IDi, rolei′j′ = connect, (0, k) to have been initialized, and
PIDS0k = (IDi, IDi′). RM∗ selects a session key SK∗

ij uniformly at random;
we now say that (i, j) is open for connection from (i′, j′) through (0, k).

There are not too many prerequisites for an instance to be open for connec-
tion from another instance, because we authorize implicit authentication. In this
case, the user that is the last to send a message can very well have only received
replayed material. The resulting session key should still be uncomputable by the
adversary. The server instance is required to mirror the fact that before comput-
ing a session key, the opening instance must be sure that its partner has been
authenticated, which can only be done through the server.

• Connect to (i′, j′) through (0, k). This requires PIDij = IDi′ for some
initialized user i′, roleij = connect, (i′, j′) to have been opened for connection
from (i, j) through (0, k), and (0, k)’s exchange to have been completed after
(i′, j′) has been initialized. RM∗ sets SK∗

ij ← SK∗
i′j′ .

For one instance to connect to another, there are more requirements. Both
users must have had their passwords checked, so the server’s exchange must
have been completed. Also, the connecting instance must have been initialized
before the partner was opened for connection and the server has completed its
exchange.

• Exposed through (0, k). If roleij = open (resp., connect), this is allowed
if (0, k) has PIDS0k = (IDi, P IDij) (resp., (0, k)’s exchange has been completed
with PIDS0k = (PIDij , IDi)), and either PIDij is not the identity of a user,
or PIDij is the identity of a user whose password was successfully guessed, or
pwi was successfully guessed. In this case, M∗ specifies SK∗

ij .

This lists the conditions that must be met for an instance to be sharing a key
with M∗. Either its partner is a statically corrupted user, or it is a user whose
password was guessed, or its own password was guessed. The connection still
needs to have gone through a server instance with appropriate partner identities,
since M∗ cannot impersonate the server. Note that these rules do not forbid
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opening or connecting users even if a password has been guessed; an honest
exchange can occur even if the adversary knows a password.

Conservative vs. liberal exposure: [28] describes two different exposure
rules. The liberal rule is the one above while the conservative rule stipulates
that exposing (i, j) is not allowed if only pwi was guessed. Security under
one or the other provides different guarantees. This distinction is absent from [8]
because it only makes sense when the communicating parties have different
long-term keys, which is not the case for 2-PAKEs.

We finally require that connection assignments be efficiently computable from
the transcript up to the current ”start session” operation. This reflects the fact
that a rule is in place to determine how conversations match (how this is done is
not relevant to the ideal service, but is crucial for concrete protocols) and forces
uniqueness of connection assignments.

Transcript:
(
”start session”, (i, j)

)
Reveal Session Key, (i, j). M∗ specifies an unexposed user instance (i, j) that
holds a session key, and receives SK∗

ij .

Transcript:
(
”reveal session key”, (i, j), SK∗

ij

)
This models session key leakage; it should not affect the security of new keys.

Impl, string. M∗ simply adds a string to its transcript. This is to make sure
that the transcripts cannot be distinguished because of a difference in syntax.
Also, these operations provide information to compute connection assignments.

Transcript: (”impl”, string)

This completes our description of the ideal world adversary’s actions.

4.2 Some Further Explanations

Dictionary Attacks. Testing a password can only be done once per password
held by a server instance, and is the only way to verify guesses, so online trials
are indeed limited to one per one of the two passwords at a given instance.
Since testing is not allowed after a complete exchange, OffDAs are also avoided.
Finally, the server can be between an honest user and a corrupted one, covering
insiders.

Key Compromise Impersonation. Observe the difference between the liberal
and conservative rules: the first allows KCI, the second does not. Prot1 (5.3) is
secure under the liberal rule, and Prot2 (6.3), under the conservative one.

Remarks. Despite authorizing implicit authentication, we do not need the ”dan-
gling” assignments of [8]. These are used because mutual authentication for 2-
PAKEs is equivalent to key confirmation since there is no way for one party
to verify the other’s password message by message. 3-PAKE[spk]s do not suffer
from this: our protocols do actually perform message-by-message authentication.

As in [8], passwords are incorporated in the ideal world. Otherwise, we would
have to account for the adversary’s non-negligible advantage in guessing pass-
words online: security would be defined by asking that IW(M∗) andRW(M) be
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”only negligibly more distinguishable than No

#D”, where No is the number of real-
world online guesses. This is arguably more elegant because in the ideal service
of any KE, the authentication process is irrelevant: entities that authenticate
correctly by whatever means end up sharing a key, and otherwise do not.

4.3 The Static Real World

Now we describe a real static network adversary M’s queries.

Initialize Server. M starts the game by invoking T , identified with index 0.
(pkT , skT ) is generated by RM, pkT is given to M, and RM will run T .

Transcript: (”initialize server”, 0) and (”impl”, ”server public key”, pkT )

Initialize User, i, IDi. M chooses an identity IDi for i. IDi should not have
been used before for another user or a ”set password” operation. A password
pwi is chosen uniformly at random from D outside of M’s view.

Transcript: (”initialize user”, i, IDi)

Set Password, ID, pw. M specifies an identity ID that has not already been
attributed to a user, and a password pw.

Transcript: (”set password”, ID, pw)

Initialize User Instance, (i, j), roleij, PIDij.M initializes (i, j), with roleij ∈
{open, connect} and a partner PIDij , which must have a password.

Transcript:
(
”initialize user instance”, (i, j), roleij, P IDij

)
Initialize Server Instance, (0, k), PIDS0k. M initializes (0, k) on input
PIDS0k = (OID0k, CID0k). OID0k is the opening partner and CID0k �=
OID0k is the connecting one. One at least is a user, and both have passwords.

Transcript:
(
”initialize server instance”, (0, k), P IDS0k

)
Deliver User Message, (i, j), InMsg. (i, j) must be initialized. M specifies
an incoming message InMsg which (i, j) processes according to the protocol.
(i, j) produces an outgoing message OutMsg and reports its status statusij ∈
{accept, continue, reject} to M. If (i, j) accepts, it generates a session key SKij

and halts. If it continues, it has not generated a key yet and is expecting another
message. If it rejects, it terminates without generating a key.

Transcript:
(
”impl”, ”message”, (i, j), InMsg,OutMsg, statusij

)
If the instance accepts, add

(
”start session”, (i, j)

)
.

If the instance rejects, add
(
”terminate user instance”, (i, j)

)
.

This lets M actively interfere in protocol runs by, e.g. interleaving them,
injecting messages of its own, or forwarding messages as intended.

Deliver Server Message (0, k), InMsg. (0, k) must be initialized. M specifies
an incoming InMsg which is treated according to the protocol. The status0k ∈
{accept, continue, reject} is reported, and an outgoing OutMsg is produced. If
(0, k) accepts, it has delivered all of the messages it expects to and halts. If it
continues, it is waiting for another message. If it rejects, it terminates.

Transcript:
(
”impl”, ”message”, (0, k), InMsg,OutMsg, status0k

)
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If the instance accepts, add
(
”exchange completed”, (0, k)

)
.

If the instance rejects, add
(
”terminate server instance”, (0, k)

)
.

Reveal Session Key, (i, j). M specifies a previously initialized user instance
(i, j) that has accepted. It receives the session key SKij .

Transcript:
(
”reveal session key”, (i, j), SKij

)
Adversary Coins. When M halts, the last transcript log is

Transcript: (”impl”, ”adversary coins”, coins)
where coins holds all of M’s random choices during the interaction.

5 Password-Adaptive Network Adversaries

We now add a ”reveal password” operation to model password leakage outside
of the protocol, through e.g. password mismanagement. The adversary can thus
dynamically corrupt users, allowing us to capture user forward secrecy. We then
describe Prot1, a protocol secure in this sense under the liberal exposure rule.
We only show how the basic model is altered.

5.1 The Password-Adaptive Ideal World

Reveal Password, i. M∗ specifies user i, and receives pwi from RM∗. We
shall say that user i’s password has been revealed. Also, from now on we say that
i’s password is known if it has been revealed or successfully guessed.

Transcript: (”reveal password”, i, pwi)

A Modification of the Rules for Exposing. When a ”start session” oper-
ation is performed on (i, j) with roleij = open (resp., connect), (i, j) may be
exposed through (0, k) if (0, k) has been initialized with PIDS0k = (IDi, P IDij)
(resp., (0, k)’s exchange has been completed with PIDS0k = (PIDij , IDi)), and
either PIDij is not the identity of an initialized user, or PIDij is the identity
of a user whose password is known, or pwi is known. As in section 4, this is
liberal exposure. To get conservative exposure, remove the condition ”or pwi

is known”.

5.2 The Password-Adaptive Real World

Reveal Password, i. M specifies a user i and receives pwi. The terminology
introduced above carries over to the real world.

Transcript: (”reveal password”, i, pwi)

5.3 Prot1

Let G be a group of prime order q, g be a generator of G, Enc := (KE , E ,D) be
a public-key encryption scheme, and Sig := (KS ,S,V) be a public-key signature
scheme. Run KE(1

η) to get (pkE , skE) and KS(1
η) to get (pkS , skS). Set skT :=
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(skE , skS) and pkT := (pkE , pkS). Finally, let {Hn}n be a family of universal
hash functions, mapping into {0, 1}2� for � ∈ IN. (q and � depend on η.) Prot1
runs as follows. ”Randomly” means ”uniformly at random”.

1) A chooses exponent x ∈ ZZq randomly, computes X ← gx, computes cipher-
text cA ← EpkE (X, pwA, IDA, IDB), and sends cA to T ;

2) T decrypts cA and checks A’s password. It chooses a hash index n randomly,
computes σT 1 ← SskS (X,n, IDA, IDB), and sends (X,n, IDA, IDB, σT 1) to B;
3) B verifies the signature. It chooses y randomly, computes Y ← gy, computes
cB ← EpkE (X,Y, n, pwB, IDA, IDB), and sends cB to T ;

4) T decrypts cB and checks B’s password and the values X and n. T computes
σT 2 ← SskS (X,Y, n, IDA, IDB), and sends (Y, n, IDA, IDB, σT 2) to A;

5) A verifies the signature. It computes master key MKA ← Hn(Y
x), and then

parses it into two equal-length bitstrings SKA and κA. SKA is the session key,
and κA is the confirmation code. κA is sent to B;
6) B computes master key MKB ← Hn(X

y), parses it into two strings SK and
κB of length �. If κB �= κA, B stops. Otherwise, B sets SKB ← SK.

Theorem 1. If Enc is IND-CCA-2-secure, Sig is EU-ACMA-secure, and the
DDH assumption holds in G, Prot1 is secure under liberal exposures against
password-adaptive network adversaries.

Definitions of IND-CCA-2-security, EU-ACMA-security, and the DDH as-
sumption, and an idea of how the proof is carried out are in the appendix.
We show how Prot1 fails against KCI.

One example involves A, B, and two server instances, (T , 1) and (T , 2). Steps
1) to 4) are done between A, B, and (T , 1). A has chosen X = gx, (T , 1) has
chosen n1, B has chosen Y = gy, and a message with (Y, n1) is on its way to A,
and caught by M. M replays to (T , 2) the first message A sent, so (T , 2) chooses
n2. Next, M uses pwB to compute a third message c encrypting (X,V, n2), where
V is an element that depends on X and Y1. c is sent to (T , 2), which computes
a fourth message that is sent to A, which computes SKA||κA ← Hn2(V

x). If A
starts using, and M gets, SKA, M gets Hn2(V

x). B is then at risk because the
assumptions made on G and {Hn}n do not imply that Hn1(g

xy) is incomputable
in this case since V is a function of X and Y . Thus M could compute the code
B expects. In the end, M does impersonate A to B, but M has to work a lot
beyond knowing pwB. Remember, revealing pwB is sufficient for liberal exposures
of B in the ideal model ; this does not mean that it is sufficient in practice.

Slight variations of this attack are the only KCIs possible against Prot1 so
it seems reasonable to state that Prot1 does heavily mitigate KCI.

6 Password-and-State-Adaptive Network Adversaries

We further enhance the model by granting the adversary the power to corrupt
user instances in the following sense: upon corruption, a user instance’s Unerased



What Public Keys Can Do for 3-PAKEs 95

Internal State (UIS) is revealed. This models storage of ephemeral data in in-
secure memory (see [28]). Revealing internal state is not often considered for
PAKEs since it leads to immediate OffDAs. This is not the case here precisely
because we have server private keys. It is however crucial that certain random
bits be erased as soon as they have served their purpose.

Our goal is this: if a user instance’s UIS alone is revealed, that instance’s
session key, and at most one other instance’s session key, is compromised.

Section 6.3 describes Prot2, which is provably secure in this model. Prot1
is insecure in this sense. (But see section 6.4.)

6.1 The Password-and-State-Adaptive Ideal World

Corrupt Instance, (i, j). (i, j) should not be terminated and should not have
started a session. If (i, j) has been the target of this operation, we shall simply
say that (i, j) has been corrupted. This terminology applies in the real world (de-
scribed below) as well. During the execution, an instance that has been corrupted
is either unbound or bound. Upon corruption, it starts out unbound.

Transcript:
(
”corrupt ”, (i, j)

)
A Further Modification of the Rules for Exposing. We first allow (i, j) to
be exposed if it has been corrupted. This is the relaxed exposure rule. If (i, j) was
already connected using the special connection rule defined below, it remains so.

Next, if there exist (0, k) and (i′, j′) such that (i, j), (i′, j′), and (0, k) have
matching roles and partners, (i, j) may be exposed if (i′, j′) is corrupted and
unbound. (i′, j′) then becomes bound. This is the special exposure rule.

A Special Premature Connecting Rule. Let (i, j) have the role connect,
and let (i′, j′) and (0, k) be such that (i′, j′) is open for connection from (i, j)
through (0, k). If (i, j) is corrupted and unbound, we allow the adversary to
prematurely connect (i, j) to (i′, j′) through (0, k). In this case, M∗ receives
SKi′j′ , and (i, j) becomes bound. This is the special connection rule.

The mechanism enforcing the fact that at most one additional instance is
compromised solely due to a corruption is the attribution of the ”bound” or ”un-
bound” status to a corrupted instance. Intuitively, if in the course of a simulation
a user instance must absolutely be exposed but its natural partner instance is al-
ready bound, the logic of the protocol should imply that a relevant password is
known to the adversary, thereby allowing an ordinary exposure to take place.

6.2 The Password-and-State-Adaptive Real World

Corrupt Instance, (i, j). M specifies an initialized and not yet terminated
user instance, and recovers all unerased internal state of that instance.

Transcript:
(
”corrupt”, (i, j)

)
and

(
”impl”, ”internal state”, (i, j), IntStij

)
Revisiting Dictionary Attacks. The comments made in section 4.2 still apply
here. Ideally, corrupting user instances has no effect on an adversary’s ability to
test password guesses beyond the one or two online impersonations that can be
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performed on a server instance. This accurately captures the idea that dictionary
attacks are not aided by UIS revealing. But this is just a definition; it does not
show how a protocol concretely achieves this... (See the next paragraph.)

6.3 Prot2

The setup is the same as for Prot1, except that the Hn map into {0, 1}�, and
the server selects nonces of some length depending on η. Prot2 runs as follows.

1) A selects x randomly, computes X ← gx, and sends (X, IDA, IDB) to T ;

2) T selects a nonce N randomly, and sends (X,N, IDA, IDB) to B;
3) B selects y and n randomly, computes Y ← gy and MKB ← Hn(X

y),
erases y, and computes cB ← EpkE (1, X, Y, n,N, pwB, IDA, IDB). It erases
the randomness used to compute cB, and sends cB to T ;

4) T decrypts cB and checks pwB and the random values N and X . It computes
σT 1 ← SskS (1, X, Y, n,N, IDA, IDB), and sends (Y, n,N, σT 1) to A;

5) A checks the signature σT 1. It computes SKA ← Hn(Y
x), erases x, and

computes cA ← EpkE (2, X, Y, n,N, pwA, IDA, IDB). It erases the random-
ness used to compute cA and sends cA to T ;

6) T decrypts cA, checks pwA, and checks the random values X , Y , n, and N .
It computes σT 2 ← SskS (2, X, Y, n,N, IDA, IDB), and sends σT 2 to B;
7) B checks the signature σT 2. It sets SKB ← MKB.

Theorem 2. If Enc, Sig, and G are as in theorem 1, Prot2 is secure under
conservative exposures against password-and-state-adaptive network adversaries.

Proof ideas are in the appendix. Since the theorem holds under the conserva-
tive exposure rule, Prot2 fully avoids KCI. What about UIS revealing?

Revisiting Dictionary Attacks Again. UIS is basically ”whatever informa-
tion is needed for an instance to continue its computations”. Everything else –
as specified in the protocol description above – is erased as soon as it is no longer
needed. In particular, what (say) A needs to hold on to after sending its first
protocol message is its exponent x, otherwise it cannot compute the session key.
What it does not need to hold on to is the randomness used in the public-key
encryption performed to compute the fifth protocol message in step 5). Hence
this randomness is erased and therefore off limits to the UIS revealing. But the
fact that the encryption is randomized is exactly what protects the password,
even if the other parts of the plaintext are known to the attacker. This is the
very definition of semantic security.

It is worth contrasting this with the situation in CRS-based 2-PAKEs that are
standard-model-secure and that use smooth projective hashing. Such protocols
also protect the password with public-key encryption. Recall that decryption
in this setting is impossible; nobody even has the decryption key. Now, this
problem is circumvented using the smooth projective hashing mechanism. But
this is where the catch lies in terms of internal state: for the mechanism to work,
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the parties need to hold on to the randomness used for encryption, and it becomes
UIS. Thus, revealing UIS causes trivial dictionary attacks.

Replaying Stale Data. As for the security goal that we aim to achieve with UIS
revealing, it is indeed reached by this protocol intuitively because the random
group elements of both instances are bound to both passwords. In particular,
if an adversary who gets the exponent x of an originator wants to successfully
replay X = gx in a protocol run, it can only do so through knowledge of the
originator’s password because the fifth protocol message contains an encryption
of the new responder’s fresh group element. A stale message cannot therefore
simply be replayed.

6.4 Unerased Internal State in Prot1

We return briefly to Prot1 to see what happens to it under UIS revealing.
Note that it certainly does not fulfill the security goal, for if the exponent x

chosen by A is revealed to adversaryM, M can replay the first protocol message
to many new server instances communicating with many other B instances and
compute the correct session key and confirmation code each time, without M
ever needing to reveal pwA or pwB.

However, notice that even though the desired goal defined in case of UIS re-
vealing is not achieved, UIS revealing still fails to open the protocol to dictionary
attacks, for the same reason as in the case of Prot2: no reasonable definition of
UIS for Prot1 will contain the encryption’s random bits.

7 Conclusions and Future Work

We made a (theoretical and practical) case for considering 3-PAKE[spk]s. We
proposed a hierarchy of security models to accommodate them, and exhibited
protocols that fit in (parts of) this hierarchy. In the process, we were able to
make what we believe to be a sensible definition of security against internal
state revealing that does not trivially break password security.

Several directions should be explored from here. First, the models could be
extended to accommodate arbitrary password distributions. It has already been
argued for instance in [8] and [11] that simulation-based security models are
well suited to do this. Second, the models can be enhanced to capture server
forward secrecy, in the sense that compromise of the server’s long-term secret key
should not damage past-established session keys. It is highly likely that Prot1
and Prot2 can be proven secure in this sense. Third, considering UC-security
(see [11]) for 3-PAKE[spk]s would be fruitful. Fourth, it may be possible to
consider queries that reveal erased state by demanding that a subset of random
bits remains hidden. Admittedly, practical scenarios which would lead to this
kind of attack may be somewhat rare, but it is still worth exploring in an effort
to continue refining provable security for KE.
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A Computational Assumptions and Security Notions

DDH and Entropy Smoothing. Let g generate group G of prime order q.
The Decisional Diffie-Hellman (DDH) assumption states that given (g, gx, gy),
gxy and gz are computationally indistinguishable when x, y, and z are chosen
randomly. Combining it with the entropy smoothing of hash family {Hn}n, the
assumption becomes: given (g, gx, gy, n), Hn(g

xy) and R are computationally
indistinguishable, where x, y, hash index n, and R ∈ {0, 1}� are chosen randomly.

IND-CCA-2-Secure Encryption. A public-key encryption scheme (K, E ,D)
has indistinguishable encryptions against adaptive chosen-ciphertext attacks if
every probabilistic polynomial-time (PPT) adversary M has negligible (in η)
advantage in the following game. M receives pk as input, where (pk, sk) ←
K(1η). M first makes decryption queries on ciphertexts of its choice: it outputs
any string c and receives in return m ← Dsk(c). Next it outputs two equal-
length messages (m0,m1). Then, b ∈ {0, 1} is chosen randomly, and M receives
c′ ← Epk(mb). M now makes more decryption queries, excluding the challenge

c′. Finally, M outputs a bit b̂. M’s advantage is
∣∣IP[b̂ = b]− 1

2

∣∣.
EU-ACMA-Secure Signing. A public-key signature scheme (K,S,V) has ex-
istentially unforgeable signatures against adaptive chosen-message attacks if ev-
ery PPT adversaryM has negligible advantage in the following game.M receives
pk as input for (pk, sk) ← K(1η). It then makes signature queries on messages
of its choice: it outputs any message m and receives σ ← Ssk(m). Finally, M
outputs a pair (m′, σ′). M’s advantage is IP

[
(m′, σ′) ← M(pk)

]
, where σ′ is a

valid signature on m′ and m′ was never the input to a signature query.

B Indications on Security Proofs

M∗ is built from M by having M∗ play the role of RM for M, using its
interactions with RM∗ to answer M’s requests. We give indications on: 1) how
passwords are treated and the exact role the encryption scheme plays and 2)
how real-world message deliveries are translated into ideal-world events.

Dealing with Passwords. First, M∗ needs to answer message deliveries with-
out the users’ passwords, because RM∗ assigns passwords outside of M∗’s view.
To get around this, whenever a user encrypts a message, M∗ encrypts a dummy
password instead. By the encryption’s security, M cannot tell the difference.

Next, M∗ keeps track of which messages are from users, and which are from
M, so M∗ can then tell which of these should be translated into password
guesses. For example, if M has a message from M delivered to a server ex-
pecting something from user i, M∗ first decrypts this message and obtains a
password pw. M∗ then asks RM∗ if pw = pwi, and answers the message deliv-
ery accordingly. Notice that M∗ learns pwi if and only if M does.
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Third, we indicate why encryption must be IND-CCA-2-secure. It is well-
known that this is equivalent to it being non-malleable (under adaptive attacks),
and non-malleability is required here because encryption does not just hide the
password: it also non-malleably binds it to the users’ random choices.

Connection Assignments and UIS Revealing. Here is a sample of the
reasoning used for theorem 2. Instances that output the first message get the role
open since they compute the key first. The others get the role connect. Let (i, j)
have the role open and suppose it accepts a fourth message. By the security of
the signature and the uniqueness of the nonce N , a unique (0, k) with PIDS0k =
(IDi, P IDij) has output a fourth message on input (1, X, V,m,N, IDij, P IDij),
where X was chosen for (i, j), and V and m are a group element and hash index.
(0, k) must also have received (i, j)’s first message. Suppose PIDij = IDi′ for
some user i′. If the third message received by (0, k) was honestly generated by an
instance, it is unique, and of the form (i′, j′) for PIDi′j′ = IDi. Also, V and m
were correctly chosen for (i′, j′). If neither (i, j) nor (i′, j′) has been corrupted,
M∗ asks RM∗ to start (i, j)’s session, and (i, j) is open for connection from
(i′, j′). RM∗ assigns to (i, j) a session key SKij chosen randomly. If M asks to
reveal SKij, M∗ forwards this request to RM∗, and SKij is returned to M.
Suppose now that M corrupts (i′, j′) before it receives any sixth message. M∗

cannot respond to this with Hm(Xv) (where v = logg(V )), as it is inconsistent
with SKij. So, (i

′, j′) connects to (i, j) with the special connection rule, RM∗

hands SKi′j′ ← SKij to M∗, and M∗ gives MKi′j′ ← SKi′j′ to M.
This is just a sample. Complete and rigorous proofs (which are very lengthy

for both theorems) are in the full version of the paper.
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Abstract The new electronic passport stores biometric data on a con-
tactless readable chip to uniquely link the travel document to its holder.
This sensitive data is protected by a complex protocol called Extended
Access Control (EAC) against unlawful readouts. EAC is manifold and
thus needs a complex public key infrastructure (PKI). Additionally EAC
is known to suffer from unsolved weaknesses, e.g., stolen (mobile) pass-
port inspection systems due to its missing revocation mechanism. The
paper at hand seeks for potential approaches to solve these shortcom-
ings. As a result we present an evaluation framework with special focus
on security and scalability to assess the different candidates and to give
a best recommendation. Instead of creating new protocols, we focus on
solutions, which are based on well-known protocols from the Internet
domain like the Network Time Protocol (NTP), the Online Certific-
ate Status Protocol (OCSP), and the Server-based Certificate Valida-
tion Protocol (SCVP). These protocols are openly standardised, widely
deployed, thoroughly tested, and interoperable. Our recommendation is
that the EAC PKI would benefit most from introducing NTP and OCSP.

1 Introduction

Travel documents have become a natural part of travelling into foreign countries
for citizens. The best known and most frequently used travel document is the
passport. According to [7] the passport is the basic official document, which
denotes a person’s identity and citizenship and provides an assurance for the
state of transit or destination that the holder can return to the state of issuance.
For international operability passports are specified by the International Civil
Aviation Organisation (ICAO), who sets the standards for all its contracting
states.

1.1 Context

The ePassport is a new passport with capabilities for biometric identification
with the help of a contactless integrated circuit chip. It is intended to achieve a
new level of travel document security, by a strong bond between the electronic
Machine Readable Travel Document (eMRTD) and its holder [7]. Passengers
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will, besides the security advantages, profit from faster border control clearance
times, because of the possible automation of the border control. However the
storage of biometric data and the wireless interface of the chip lead to security
concerns, e.g., the leakage of personal data. The European Union (EU) addresses
these worries by implementing an additional security protocol called Extended
Access Control (EAC) [3], which aims at protecting the citizen’s sensitive data
by only granting access to authorised parties as defined by the issuing country.

1.2 Motivation

EAC is on the one hand very powerful and can satisfy nearly all security and
privacy demands. On the other hand, however, it requires a very complex public
key infrastructure (PKI) to ensure the authenticity and authorisation of inspec-
tion systems [6, 8]. We call this public key infrastructure the Verifying PKI. As
of today the Verifying PKI does not have a mechanism for revocation. To limit
the value of a stolen inspection system the issued inspection system certificates
have a very short validity period, usually only one day. This creates an enormous
effort with respect to both generation of key pairs/certificates and their distribu-
tion, because currently every inspection system needs a new certificate everyday,
for each country that issues an EAC enabled eMRTD.

In addition to the complexity of the key generation and certificate distribution,
an attacker may abuse a stolen inspection system for two main reasons: first, the
certificate is valid for its entire validity period and cannot be revoked. Second
the eMRTD does not have an accurate time source. Thus in general the eMRTD
is not able to detect an expired certificate, which extends the possible attack
period. Introducing a reliable revocation system would not only make EAC more
secure, but also would lower the burden for creating certificates with extremely
short validity periods.

The complexity of the Verifying PKI and the obvious inadequacies of the EU
EAC protocol are the starting point of the paper at hand. Finding and evalu-
ating possible solutions for the shortcomings of EAC are the main goals of this
paper. Although EAC and its Verifying PKI is used within the European Union,
there is no discussion about the aforementioned drawbacks in the standardisa-
tion documents. Although the scientific community identified some weaknesses
and came up with solution candidates (e.g., [4, 6, 15, 17]) there is no evaluation
of the candidates and thus no best recommendation. Additionally if a solution
is given, it is self-created instead of using well-established standards.

1.3 Results and Contributions

Our first contribution is to extend the discussion of [6,15] and to highlight the two
main shortcomings of the EU EAC, namely the missing revocation mechanism
of inspection systems and the absence of an accurate time source of an eMRTD.
We then discuss the resulting potential risks. In order to strengthen EAC we
present solution candidates. In addition to previously proposed enhancements
of the community (e.g., [6]), we introduce two promising approaches: first, as
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an authentic and precise time source the Network Time Protocol (NTP, [13])
is proposed together with the Online Certificate Status Protocol (OCSP, [9])
as lightweight revocation mechanism. Second the Server-based Certificate Val-
idation Protocol (SCVP, [11]) is assessed, which transfers the certificate chain
validation, the time acquirement, and the revocation check to an external server.
In contrast to existing proposals using these proven Internet standards is also a
design choice with the future in mind, because the next generation of smart card
technology will be able to directly communicate via TCP/IP [18]. As with all
new technologies this feature will at first be solely available in high-end smart-
cards. In compliance with Moore’s law TCP/IP will in the near future become
available in cheap mass-produced bulk smartcards. This can be justified simply
because TCP/IP is widely adopted in a variety of other domains and will provide
a huge gain of comfort and interoperability.

In order to come up with our best recommendation for an actual practical
use, we develop an assessment methodology with a special focus on security,
scalability, and standardisation. We evaluate the candidates against our weighted
criteria. We also evaluate our proposal against the most promising, self-created
approach from the current scientific community, the Hoepman protocol [6] The
final outcome is that the Verifying PKI would benefit most from introducing
NTP and OCSP. Assuming an online connection of the inspection system with
a sufficient bandwidth is reasonable due to the pervasiveness of UMTS/LTE.
Hence even mobile terminals may implement our solution.

1.4 Organisation of This Paper

The rest of the paper is organised as follows: Section 2 summarises related con-
tributions, places our work in the context of these papers, and demonstrates
the gap in existing research, which is filled by our work. After presenting the
related work, Section 3 describes the status quo of the security infrastructure
of eMRTDs. Then Section 4 explains the shortcomings of the current security
protocols and presents potential solutions of these weaknesses. We develop our
weighted assessment methodology in Section 5, evaluate the solution candidates
against our list of criteria, and compare the results with the Hoepman protocol.
Finally, Section 6 concludes our paper and points to future work.

2 Related Work

This section summarises related contributions, places our work in the context of
these papers, and demonstrates the gap in existing research, which is filled by
our work.

Moses [15] gives in his white paper from Entrust a comprehensive view on
the weaknesses of the current Verifying PKI and proposes a workaround. In-
stead of revoking the certificates and providing a real-time clock, he proposes
to compensate this deficiency with strong confidential storage and restriction of
using the reader’s private key to authorised operators, e.g., due to a storage of
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the private key in the back office. His self-assessment of this solution is ’brittle,
because there is no way to recover when it goes wrong’. In contrast our solution
also works if the terminal’s private key has already been compromised. [15] states
that the absence of a real-time clock makes revocation ineffective. We agree with
this statement and will only evaluate solutions that provide a real-time clock and
revocation.

Hoepman et al. [6] present weaknesses and propose security improvements for
a variety of eMRTD protocols. Relevant for our paper are only the proposed
improvements for EAC. Hoepman et al. [6] sketch an idea of a self-invented on-
line terminal authentication (Hoepman protocol) and define certain boundary
conditions (e.g., resistance to replay attacks). The proposed protocol is actually
very similar, to one of our proposals, the SCVP protocol (see Section 4.2). It also
delegates the actual terminal authentication to a trusted third-party. However,
in contrast to our SCVP proposal the Hoepman protocol separates the terminal
access rights from the terminal certificates. Although this is a promising ap-
proach, which provides real-time revocation, it suffers from two drawbacks: first,
there is no detailed specification of the mechanism. Second it is a new protocol,
which has to be investigated thoroughly. Our solution candidates, however, are
based on well-known and well-established Internet standard protocols that have
been proven useful in other domains for a long time. Additionally Hoepman et
al. [6] do not provide an assessment methodology to evaluate solution candid-
ates. Nevertheless we will evaluate the Hoepman online terminal authentication
, because in our opinion it is currently the most promising, self-created approach
from the scientific community.

Vaudenay and Vuagnoux [21] report the weaknesses of EAC and describe
certain attack scenarios, but do not propose improvements for EAC.

Chaabouni and Vaudenay [4] introduce the idea to have identity checks when
leaving a domestic country to have more frequent clock updates. To provide
certificate revocation they propose a reputation-based trust mechanism where a
threshold authentication proof is created by a collaboration of a certain num-
ber of neighbour terminals. The proposed additional identity check does indeed
shorten the possible attack period, but it does not completely solve the prob-
lem, because during a long vacation an eMRTD’s date is still not up-to-date.
A reputation-based revocation system solves the problem of a single stolen ter-
minal, but the authors present no detailed analysis how to integrate such a
revocation system in the eMRTD infrastructure. An attacker still has the op-
tion to steal a sufficient number of terminals and compromise them to exceed
the threshold for the authentication proof. We propose solutions that provide a
real-time date and revocation independent of the number of stolen terminals by
an attacker.

Pasupathinathan et al. [17] present a self-made protocol called On-Line Secure
E-Passport Protocol (OSEP Protocol). The authors claim to solve weaknesses
of EAC. The OSEP protocol drops the access control flexibility of EAC and a
terminal sends private information from the eMRTD to the country’s embassy.
In contrast to Pasupathinathan et al. [17] we think that both facts raise privacy
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concerns: a terminal, which needs access to the document holder’s name stored
on the chip, should not automatically get access to the sensitive fingerprints.
Furthermore countries, which may track travellers through their embassies, is a
show-stopper for any travelling privacy. Comparable to [6] we do not think that
another self-made protocol is needed where no practical experience data exists
how the protocol performs in practice. We also do not consider it realistic that
the EU will drop EAC, because of a practically untested protocol. With these
characteristics, the OSEP protocol disqualifies itself and we will not evaluate it
against our proposals and the Hoepman protocol.

3 Verifying Public Key Infrastructure

This section introduces the purpose and hierarchy of the Verifying PKI. It has its
own distinctive purpose. Without an additional mechanism there is no limitation
who is allowed to read out the chip’s data, if a third party gets hold of the
physical document, regardless whether the document was handed over willingly,
or an attacker obtained physical possession without the bearer’s approval. To
limit the access to the sensitive biometric data only to selected authorities, a
PKI is needed to grant and validate the access rights of the inspection systems,
the so-called Verifying PKI. It is well described in [19].

The evaluation of the access rights and validation of the authenticity from
the terminal certificates has to be done by the eMRTD chip itself. Therefore the
Verifying PKI uses card-verifiable certificates [14] to speed up the process. This
process is called Terminal Authentication which is part of EAC.

Country A Country BCVCA CVCA

DV DV DV DV

Terminal Terminal Terminal Terminal

SPOC SPOC

eMRTD eMRTD eMRTD eMRTD

Fig. 1. The Verifying PKI and SPOC
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The Verifying PKI structure can be seen in Fig. 1 on the facing page. The
hierarchy of the PKI is as follows. Every country has a Country Verifying Cer-
tificate Authority (CVCA) which holds a self-signed certificate. The CVCA’s
task is to certify Document Verifiers (DV) by signing their certificates with the
CVCA Private Key. A CVCA does not only sign domestic DV certificates, but
also foreign DV ones to grant access for other member states to the eMRTD is-
sued by the CVCA’s state. Therefore a DV needs one certificate for each country
that issues an eMRTD with EAC. There can be multiple DVs for every country.

As trust point the CVCA certificate of the issuing country is stored on every
eMRTD chip with EAC support. Below the DV hierarchy level is the level of
the terminals with their terminal certificates also called inspection system cer-
tificates. Terminals which need access to the sensitive data of eMRTDs from
different countries need a certificate for each country granted by their DV.

For issuing the terminal certificates the DV does not need to contact every
country itself, but instead every country maintains a so-called Single Point of
Contact (SPOC), which is responsible for transnational communications and
cross-border certifications. Each country that issues an eMRTD with EAC sup-
port or wants to read an eMRTD needs its own SPOC.

4 Shortcomings of Verifying PKI and Solution
Candidates

In Section 4.1 we first address the shortcomings of the Verifying PKI, i.e. the
missing revocation mechanism and the missing time source for an eMRTD. Once
we have identified the drawbacks we discuss in Section 4.2 solution candidates
to improve the Verifying PKI.

4.1 Shortcomings of the Current EU EAC Implementation

Although the new protocols specified by the EU EAC standard [3] are soph-
isticated and thus enhance the security of former protocols, the current EAC
standard still offers two unsolved weaknesses. They are linked to the new Verify-
ing PKI and the associated Terminal Authentication. First, the eMRTD has no
access to a precise and authentic time source, so it can not accurately validate
if a terminal certificate is still valid. Instead a pseudo clock mechanism is used,
which is described below. The second problem is that a certificate once issued
stays valid until the expiration date no matter what happens.

As announced above the missing time source is replaced by a pseudo clock
mechanism, which works as follows:

The eMRTD stores a date TeMRTD in an internal register which gets updated
during the Terminal Authentication. Initially TeMRTD is set during the chip
personalization to the personalization date.

During the Terminal Authentication the eMRTD reads the “Expiration date”
TCert,Expiration field from all certificates and validates that TCert,Expiration is
not before TeMRTD.
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After every successful Terminal Authentication the eMRTD chip reads all
certificates from the chain and checks which got the latest “Effective Date”
TCert,Effective field, which is the equivalent of the “Not Before” field from X.509
certificates. If TCert,Effective > TeMRTD then TeMRTD is set to TCert,Effective

and stored in the internal register [3] [19].

TeMRTD

attack period

TCert,Expiration TNow

Fig. 2. Timeframe for attack

The problem which arises is that the eMRTD chip can only detect a past
TCert,Expiration value if it is used often, because then TeMRTD is relatively ac-
curate. Nevertheless an eMRTD chip can not be sure if a terminal certificate is
really still valid, because if TeMRTD ≤ TCert,Expiration < TNow the eMRTD will
not detect an expired certificate. The possible attack period is shown in Fig. 2.
So for a successful attack the attacker must already have a valid certificate and
he can expand the time period in which his terminal can read biometric data.
This only works if the eMRTDs chip gets no accurate time update from another
terminal.

Possible reasons why the eMRTD got no clock might be explained from the
problems that arise if you try to integrate a clock into an eMRTD, e.g. the
missing power source.

4.2 Solution Candidates to Introduce Revocation

As of today, the Verifying PKI neither supports CRLs nor OCSP [2]. Although
the reason is not given in [2] we believe that it is due to the missing external
connection of the eMRTD and memory restrictions on the eMRTD. Computing
power increases through progress and the next generation of smart cards will
support TCP/IP, therefore these are no more obstacles [18].

Common Certificate Revocation Lists (CRL) [10] will not be discussed, be-
cause they can grow arbitrary large after some time [20,23] and parsing through
a big revocation list might also take unnecessary long for the eMRTD chip [23].
Their overhead makes them unattractive for low-power devices as the eMRTD.

In the following subsections we present potential solution candidates to in-
troduce a revocation mechanism to the Verifying PKI and discuss the practical
feasibility, respectively. Our starting point are protocols, which are standardised
for the Internet domain and thus thoroughly investigated.

OCSP. The Online Certificate Status Protocol (OCSP) provides an alternat-
ive to CRLs [9]. Besides real-time status OCSP provides the benefit of lower
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bandwidth usage per request and no storage requirement compared to a CRL.
A drawback is that the OCSP responder has to be available all the time [23].

Using OCSP as revocation mechanism in the Verifying PKI delivers many be-
nefits over traditional CRLs. The eMRTD chip does not need additional internal
memory for storing the list, the download size is smaller and simultaneously
the eMRTD chip does not need to process an entire list of CRL entries. The
eMRTD chip can get a direct response if the certificate has been revoked or is
valid depending on its regular expiration date. Even so [4] has a different focus it
favours OCSP to improve EAC. A time source is still needed, because the OCSP
responder does not check the validity period of the certificate, but instead if it
has been revoked and with the OCSP extension CertHash [1] also if the certific-
ate has really been issued by the CVCA. In our use case the validity period of the
certificates will be verified by the eMRTD as part of Terminal Authentication
and the OCSP responder should only send the status "good" or "revoked". The
"unknown" status is prohibited.

SCVP. The Server-Based Certificate Validation Protocol (SCVP) in contrast
to OCSP provides a server based full validation of a certificate, with optional
revocation [11]. The complete certificate path creation, validation and check for
revocation is done by an SCVP server. If the client trusts the server it can
delegate nearly the complete PKI overhead to the SCVP server. This enables
the use of a PKI for low-end devices. To check the validity status of a certificate
the SCVP server uses either CRLs or OCSP. SCVP is not widely used yet, but
has been tested on smart cards [16]. SCVP provides authenticity and integrity of
the request and response messages, but does not ensure confidentiality. However,
the SCVP standard suggests to use the Transport Layer Security Protocol (TLS)
if confidentiality is needed [12].

An eMRTD chip with support for the SCVP would not only benefit from
the features of OCSP, but would also no longer depend on a clock. SCVP mes-
sages would be signed by the CVCA (or a dedicated SCVP service) and SCVP
also provides measures against replay attacks. Despite the need for a transport
protocol between inspection system and eMRTD chip, because of the missing
Internet connection, SCVP seems to be the best solution in view of benefit and
created effort at a first glance.

4.3 A First Conclusion

For a revocation it is mandatory that the eMRTD chip can securely communic-
ate with a trusted home server. This is not possible without extra infrastructure
to handle the requests and the willingness of the inspection system to play the
role as a network bridge between the Internet and the current simple smart
card communication protocols. Due to the availability of UMTS or LTE this
assumption even holds for mobile inspection systems. Mobile inspection systems
without Internet access can fall back to the validation of the physical security
features, face recognition or a manual validation with the picture printed on the
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data page. OCSP and SCVP both provide good solutions if the infrastructure
obstacles (i.e., the high availability demands) can be handled. Both protocols
effectively solve the problem of stolen terminals and their efficiency has been
proven in other domains. The classical CRL is not suitable for the EAC revoca-
tion, because of the low-power eMRTD chip.

5 Evaluation of the Solution Candidates

This section introduces an evaluation scheme and applies it to the two solution
candidates from Section 4. After the evaluation the candidates are evaluated
against the Hoepman protocol [6] in Section 5.8. The two solution candidates
NTP together with OCSP (from now on referred to as NTP+OCSP) and SCVP
both theoretically provide a solution to the given requirements, but can be eval-
uated differently against the following criteria. The criteria are mostly based on
the well-known Software Engineering non-functional requirements [22].

Table 1. Evaluation Ratings

criterion NTP+OCSP SCVP

Security (replay & man-in-the-middle attack) + +
Convenience & Acceptability (border check time, privacy) ◦ +
TCO (hardware, software, reusability) ◦ -
Scalability (network load, home server load) + ◦
Reliability & Availability (complexity, points of failure) ◦ ◦
Feasibility (economical) + -

Security is the first criterion which the candidates are evaluated against. This
criterion consists of the resistance against certain attacks like replay attacks, and
man-in-the-middle attacks.

Convenience and Acceptability are the next criteria which reflect the end user’s
benefits and drawbacks which the respective solution provides.

The Total Cost of Ownership (TCO) is a criterion which not only depends on
the new technology needed to provide the services, but also on the reusability of
existing IT structures.

If another country wants to introduce a new technology and therefore the
global number of users changes dramatically, then Scalability is the criterion
which considers this.

The fifth criteria are Reliability and Availability which rate the dependence
on other systems and if the systems are loosely coupled or if they heavily rely
on other components.

Feasibility is the last criterion which also includes how likely it is that a certain
technology will be integrated into an eMRTD.

Some criteria are not independent e.g. the scalability can influence the avail-
ability and therefore the user’s acceptance and so on.



Towards a More Secure and Scalable Verifying PKI of eMRTD 111

In the eMRTD domain we consider Security and Scalability the most im-
portant criteria. On the one hand security is an absolute must, because of the
embedded biometric data and on the other hand scalability is very important,
because in tourist seasons the passengers boarding airplanes can increase drastic-
ally and smooth operation of inspection systems must still be ensured. Therefore
Security and Scalability will weight double for the final score.

For every criterion the candidates are rated positive (+), neutral (◦) or neg-
ative (-) and for the final rank the individual ratings get points, these are then
summed up to receive an end result.

5.1 Security

In this section both candidates are evaluated for potential weaknesses against
common security attacks like replay attacks, and man-in-the-middle attacks.

The first item is the resistance against replay attacks. NTP, OCSP and SCVP
all provide nonce support to individually link the unique request/response pairs,
by default or via a protocol extension. The lightweight OCSP profile [5] should
not be used, because it removes the nonce in favour of better scalability which is
achieved by response pre-production and response message caching. To prevent
replay attacks unique request/response pairs are essential.

Next topic is the resistance against man-in-the-middle attacks. NTP, OCSP
and SCVP support the use of digital signatures for authenticity and therefore
prevent man-in-the-middle attacks. Independent of the supported mechanisms,
there is no direct use case for a man-in-the-middle attack, because confidentiality
is no security goal, due to the fact that all time information and the revocation
status are not considered confidential. A possible attack would be an Imperson-
ation Attack in which the attacker tries to make the client believe that he is a
legitimate server. This attack is also prevented by the same mechanisms as the
man-in-the-middle attack.

A general security concern might be the introduction of TCP/IP itself, be-
cause it might open new attack vectors to the eMRTD. This can easily be mitig-
ated by only allowing a one to one connection between the inspection system and
the eMRTD with exactly one open socket. So with this careful design decision
both protocols will provide a higher security increase than potential TCP/IP
flaws a security decrease. TCP/IP is needed by OCSP and SCVP. Therefore
this will not influence the rating.

From a security point the two candidates have no significant weaknesses. On
the one hand the fact that NTP+OCSP consist of two different protocols whose
services must be provided by two different daemons, even if they are running
on the same server, provide two potential weak points and SCVP only one.
On the other hand could the independence of both services also be treated
positive, because it might be harder for an attacker to disturb both services. So
this depends on the actual implementation and should not influence the rating.
Therefore both candidates get a positive security rating.
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5.2 Convenience and Acceptability

The user’s convenience directly influences the acceptance of a certain technology.
So a criterion must be how the new protocols influence the average border check
time. A main benefit from the new protocols is better data privacy for the
biometric data stored on the eMRTD.

The solution candidate’s influence, on the border check processing time, shall
be the first item for evaluation. The NTP+OCSP solution has the disadvantage
that it can only lengthen the eMRTD evaluation, because the EAC verifying
card-verifiable certificate chain must still be validated by the chip and the ad-
ditional steps for time acquisition and the certificate revocation cost additional
time irrespective of how much. The SCVP solution can make the evaluation
process shorter, require the same amount of time or even could take longer.

For SCVP the certificate chain validation itself will take a shorter time, be-
cause the SCVP server has more computation power than a small smart card
microprocessor. Two new potential time additions come to the verifying process
on the SCVP server compared to current verification on the eMRTD. These are
the acquisition of an accurate time and the certificate revocation mechanism.
Both can be done independent of the certificate verification if NTP and auto-
matic CRL download is used by the server. If OCSP is used by the server it
would negatively influence the validation time and therefore a CRL should be
preferred. We expect the SCVP validation process to be faster than on the chip
and the only variable remaining is the transmission of the request and response.

Calculating an exact transmission time is not possible, because it depends on
at least the bandwidth and the distance to the home SCVP server.

The next item of consideration shall be how the data privacy benefits from
the solution candidates. NTP+OCSP and SCVP both provide the same bene-
fit that expired terminal certificates will always be rejected and that stolen or
compromised terminal certificates can be revoked effectively. Both mechanisms
provide the same benefit, but one question is if the protocols could leak private
information or enable tracking of the document holder. Neither NTP, OCSP nor
SCVP send travel document specific data to the home server. NTP does not
send any privacy relevant data at all and OCSP/SCVP send only data identi-
fying the inspection system to the home server. Therefore the only negligible
privacy concern is that the home server’s operator could learn that one of the
country’s million passports is currently presented to the terminal. The operator
is not able to identify the document holder any further and therefore we do not
consider this a privacy risk.

So all protocols only provide a benefit and pose no risk to the document
holder’s data privacy.

Both solution candidates can provide convenience for the users and therefore
boost their acceptance. NTP+OCSP provides all the benefits that SCVP does,
but can only slow down the border check handling therefore it gets a neutral
rating and SCVP a positive rating.
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5.3 Total Cost of Ownership (TCO)

This chapter focuses on the expense necessary for the solution candidates. First
the necessary new hard- and software will be assessed. Furthermore it is import-
ant which components of the already existent system can be reused or integrated
directly or indirectly for example after a firmware update.

NTP, OCSP and SCVP have a relatively equal impact on the eMRTD PKI
and inspection system structure. The eMRTD chip is not upgradeable via a
firmware update, so only the next generation of eMRTDs could support the new
protocols. If the current chip is powerful enough to perform all three protocols
is hard to tell, but all of them have already been implemented on a regular
smart card [16]. The current eMRTD chip is powerful enough to validate card-
verifiable certificate chains, so it should be powerful enough to handle a time
stamp package and an OCSP response or an SCVP response. Also neither of the
protocols need any additional persistent storage space. So the financial impact on
the eMRTD itself should be minimal from a hardware perspective. The software
has to be changed of course to support the new protocols.

The next items to evaluate are the changes necessary to the inspection sys-
tems. The necessary modifications for the inspection systems operating system
should be patchable with a new firmware. So only development costs occur, but
no hardware upgrade costs. For NTP+OCSP and SCVP an Internet connection
is necessary to communicate with the respective home server. The inspection
system must already communicate with its DV and this DV must communicate
with its country’s SPOC. So some sort of network connection should already be
present. Upgrading the broadband connection for the inspection system might
be necessary as well as an upgrade for the SPOC to handle real time requests.

The last item for potential upgrade costs is at the home server. NTP+OCSP
and SVCP need some sort of home server for every issuing country with a con-
nection to the country’s SPOC. The server must provide an NTP server and
an OCSP responder or an SCVP server. To provide authenticity and integrity
all three protocols support the use of digital signatures. The generation of the
signatures could be accelerated by using Hardware Security Modules (HSM).
Standard CPUs are also needed to handle the protocol request and the certific-
ate chain creation and revocation for OCSP.

Even without exact figures SCVP and NTP+OCSP can be compared. On
the one hand NTP+OCSP cost two HSM runs for digital signature generation
because they are two stand-alone protocols and SCVP only one, but on the other
hand SCVP needs more CPU time for the certificate chain building, revocation
and verification, than NTP+OCSP for a revocation and system clock lookup.

The bandwidth consumption of NTP+OCSP and SCVP should be minimal
for both. NTP+OCSP might have higher development costs for the eMRTD chips
software, the inspection system software and the SPOC’s software. The devel-
opment costs should be minimal compared to the required hardware costs for
the home server. As already mentioned above, NTP+OCSP might require more
HSM signing runs and less CPU power, then SCVP. For the actual NTP+OCSP
specification it could be considered to drop the internal signatures and instead
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sign both responses together in one big response block. With such an optimisa-
tion only the CPU time remains, which is much higher per SCVP request than
per OCSP request. So NTP+OCSP gets a neutral ranking and SCVP a negative
ranking for the TCO, because of the higher CPU time costs.

5.4 Scalability

Scalability describes the system’s behaviour if the requirements on supported
user clients change drastically. The increased input can influence the perform-
ance, because of higher resource requirements which depend on the complexity
of the entire system. One criterion to evaluate is the load per request, which
directly influences the system’s scalability. The load on the home server and on
the network between inspection system and home server can be differentiated.

To compare the network load of NTP+OCSP with the one from SCVP it must
be taken into consideration that the protocols will most likely be implemented
in a more lightweight form. The NTP network impact is minimal and therefore
only OCSP and SCVP shall be compared. All certificates must be checked for
revocation in case of OCSP. In case of SCVP all certificates need verification.
The requests could contain all necessary certificates or just the serial numbers
of the certificates which would result in a lower network usage.

For OCSP the serial number is always enough, because even if the OCSP
responder does not know the associated certificate for the serial number, the
certificate revocation status is considered good.

For SCVP a serial number certificate look up must always provide a result,
because otherwise no verification of the complete chain is possible. The SCVP
server can be easily provided with the CVCA certificate because it is present in
the same country. The DV certificate’s signing requests are all handled by the
SPOC which shall also be connected to the SCVP server. Therefore an automatic
supply of DV certificates should also be possible without requiring major effort.
One problem however lies in the acquisition of the terminal certificates. They are
created by the DV, for every terminal, on a daily basis and the serial number
remains unknown for the SCVP server. So for SCVP the terminal certificate
must be sent entirely instead of just the serial number.

SCVP would have a higher average bandwidth usage than NTP+OCSP. For
the TCO scoring, it was already estimated that SCVP would have a higher CPU
load per request. Therefore NTP+OCSP gets a positive rating and SCVP a
neutral one.

5.5 Reliability and Availability

Reliability and the linked availability are influenced by the solution candidates
complexity and the resulting points of failure. A terminal not supporting the
protocols or even a broken terminal always breaks the regular border control
procedure and is out of scope for this evaluation. NTP+OCSP and SCVP need
an Internet connection to communicate with the home server. If the connection
fails, all three protocols will not work. They also need the verifying country and
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issuing country SPOC to be online at all times. Both are points of failure as well
as the home server of the issuing country. On the home server runs the NTP and
OCSP daemon or the SCVP daemon to process the requests from the eMRTD.
All of these are potential points of failure.

One small difference here is that for NTP+OCSP two daemons could stop
working and for SCVP only one, but again the purpose of NTP and OCSP is
independent, so one service still running from two could also be considered as a
better circumstance than a complete breakdown of a single service.

NTP+OCSP and SCVP have no big difference in their points of failure. It
could be argued that the tasks of SCVP are more complicated and more prone
to error, but this would involve potential implementation errors which are out
of scope. Both candidates heavily rely on external systems and therefore both
get a neutral rating.

5.6 Feasibility

Feasibility for the solution candidates can be divided into technical feasibility,
financial feasibility, economical feasibility and the basic conditions concerning
the existing infrastructure.

From a technical perspective all solution candidates are possible. NTP, OSCP
and SCVP were implemented for some research projects on smart cards and can
therefore be considered as technical feasible on the eMRTD chip.

The financial part was already evaluated in, Section 5.3 therefore this shall
not have an impact on the feasibility evaluation. The economical feasibility shall
be the matter at hand. NTP+OCSP and SCVP both extend the European EAC
mechanism and provide effectively the same benefit. Financial factors aside both
candidates require a certain amount of development effort. NTP+OCSP are two
protocols, but do not automatically lead to the doubled development effort,
because the protocols are older, simpler and most likely more common to the
developers for the implementation on a smart card. What sets the difference is
that NTP and OCSP could be more or less directly implemented on a smart
card with little or no development effort for the home server. SCVP in the
eMRTD would need an implementation with a single request response pair and
the missing access to the terminal certificates for the home server would enlarge
the request or require more effort for the DVs. That is why NTP+OCSP are
considered more likely with this simple analysis than SCVP.

SCVP needs a more complicated home server, the protocol would have to be
adjusted and would create more burden for the DVs. Therefore NTP+OCSP
gets a positive rating and SCVP a negative rating.

5.7 Evaluation Result

Table 1 on page 110 shows a summary of the solution candidates evaluation
results and Table 2 on the following page presents the final results. The posit-
ive rating gets two points, the neutral rating one point and the negative rating
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Table 2. Points and Result

criterion NTP+OCSP SCVP

Security (x2) 4P 4P
Convenience & Acceptability 1P 2P
TCO 1P 0P
Scalability (x2) 4P 2P
Reliability & Availability 1P 1P
Feasibility 2P 0P
Point Sum 13P 9P
Final Rank 1 2

zero points. Additionally the points for Security and Scalability will be doubled.
NTP+OCSP ranks first with 13 points and SCVP second with 9 points. So the
recommended solution by our evaluation is NTP+OCSP.

5.8 Hoepman Protocol Ranking

In this section we evaluate the Hoepman protocol [6] (see Section 2) against our
solution candidates.

Our evaluation favoured NTP+OCSP over SCVP, which is very similar to
the Hoepman protocol. So to get a picture if the Hoepman protocol is more
attractive than our winner, we assess if there are criteria in which it is stronger
than SCVP, and if this difference is sufficient to rank better than NTP+OCSP.

For the Security criterion the Hoepman protocol only defines resistance to
replay attacks as a boundary condition, but this should not be a practical prob-
lem, because comparable to SCVP this could be achieved with a unique re-
quest/response pair by nonce support.

The results for Convenience & Acceptability and TCO are also comparable to
those of SCVP.

What makes the difference between the Hoepman protocol and SCVP are
the criteria Scalability, Reliability & Availability, and Feasibility, because it is a
new, self-made protocol without any practical experience from use in other do-
mains. Therefore it is unrealistic to be as optimized as SCVP, a well-established
Internet standard, for scalability, reliability, and availability. Also the dynamic
access control is theoretically a nice feature, but it makes the home server even
more complicated, which again badly influences scalability and the feasibility of
introducing this mechanism.

In conclusion with the current specification [6] the Hoepman protocol will
perform worse than SCVP, and therefore is in any case less attractive for the
eMRTD domain, than NTP+OCSP.
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6 Conclusion and Future Work

This paper presented weaknesses and possible solutions for the current EU EAC
implementation for eMRTDs. The problems of the missing accurate time and the
linked terminal certificate revocation were explained and shown how they can
be solved. A winner was found in the form of NTP with OCSP. [4] also favours
OCSP and states that an authentication proof involving the home CVCA would
be the ultimate trust mechanism for EAC. Nevertheless a great amount of new
infrastructure would be needed for NTP, OCSP or SCVP.

For future work both solutions could be optimized to become more attractive
by merging NTP and OCSP into one protocol without violating the standards,
or striping possible unnecessary overhead from SCVP.

Another topic for future discussion is the creation of an OCSP extension to
carry the terminal access rights instead of encoding them into the terminal certi-
ficates. Either to override the access rights of a valid certificate or to completely
outsource the access rights to the real-time OCSP. Which would be similar to
the Hoepman protocol [6], but based on proven Internet standards.

For a look in the future to see if our solution might become reality in a fourth
generation of eMRTDs it depends on the specific future requirements of EAC,
and if the effort for the terminal certificate revocation and the precise validation
time can be justified.
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Abstract. We extend the idea of Restricted Identification deployed in the per-
sonal identity documents in Germany. Our protocol, Mutual Restricted Authenti-
cation (MRI for short), is designed for direct anonymous authentication between
users who belong to the same domain (called also a sector). MRI requires only
one private key per user. Still there are no limitations to which domain a user may
belong and the domains are not fixed in advance. This enables an implementation
of MRI when a strictly limited secure memory is available (like for smart cards).
MRI guarantees that a user has exactly one identity within a domain, while the
identities from different domains of the same user are not linkable. The main
difference between RI and MRI is that for MRI the privacy of both participants
are protected, while in case of RI the terminal is fully exposed. The protocol is
efficient, extremely simple (in particular, it outperforms RI) and well suited for
an implementation on resource limited devices such as smart cards.

Keywords: personal ID document, Restricted Identification, privacy, simultabil-
ity, authentication, AKE.

1 Introduction

In pervasive systems one of the key issues is identifying and authenticating digital arte-
facts. This concerns all electronic identity documents but also other devices like smart-
phones, tablets, and identification tokens. So we have to talk about an electronic-ID
(e-ID for short). In some cases the same e-ID has to play different roles in different sub-
systems – called from now on domains – and use a different identity in each domain.
Unless necessary, an e-ID device should not use linkable identities in different domains.
E.g., professional and private roles should be strictly separated.

For technical and usability reasons wireless communication will play a dominant
role for communication with e-ID devices. So protecting information exchange against
eavesdroppers becomes a key issue. Information on membership of, and identity in, a
domain should also be protected. Moreover, tough rules on personal data protection
and social sensitivity in countries like UK and Germany make it necessary to guarantee
effective protection.

Today, most e-ID systems do not hide the identity of at least one party. This is the
case for machine readable travel documents (that is, electronic passports and personal
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identity documents) and so the terminals must be trusted. However, if e-ID devices wish
to interact directly, privacy of both sides should be protected.

Domains and Restricted Identification. The idea of separating activity areas was
implemented first in the Austrian Bürgerkarte - this system is based on the passwords
computed with a symmetric algorithm from the citizen’s personal number.

The next step was development of the nPA, the new German personal identity docu-
ment. Restricted Identification (RI for short) protocol [1], allows an nPA to use a single
private key to authenticate against any terminal. Each nPA uses its private key to com-
pute its domain specific identifiers. The key feature of RI is unlinkability: two terminals
from two different domains cannot determine if they are interacting with the same nPA
or with two different nPA’s. However, within a single domain all actions of an nPA must
be attributed to the same anonymous identity.

The protocol from nPA requires a prior execution of the Terminal Authentication
(TA) protocol, during which the terminal signs with its private key a nonce provided by
the nPA. Thereby the transcript of communication can be used as an undeniable proof
of interaction with the terminal. Therefore, this protocol is not suitable for the case of
peer-to-peer communication between e-IDs.

Design Goals. In this paper we develop Mutual Restricted Identification protocol
(MRI) that expands RI [1].

MRI is fully simultable, i.e. each side of the protocol can compute a transcript of
communication that is indistinguishable from the transcripts obtained from real com-
munications. This resolves the problem stated above, no participant can use a com-
munication transcript as a proof against a third party. MRI provides unlinkability for
activities in different domains, just as in case of RI. MRI is symmetric regarding oper-
ations performed by both sides of the protocol. This feature has a positive impact on
implementation costs and flexibility. MRI is is resilient to leakages – in many scenarios
revealing ephemeral keys does not disclose the session keys (which is not true for nPA).
This also concerns forward security: revealing long-term secrets does not reveal the
session keys. MRI is slightly more efficient than RI. Therefore, it is well suited feasible
for smart cards implementation (which has been also confirmed by an implementation
on Java Cards).

Previous Work. There are many papers on authenticated key exchange (AKE). The
AKE protocols secure in the Canetti-Krawczyk (CK) model [2], guarantee that the
adversary cannot distinguish established keys from random values, as long as some
session secrets (ephemeral keys) are not leaked. In [3] Krawczyk proposed a vari-
ant of CK and proved that the HMQV protocol (a hashed version of MQV from [4])
achieves so called weak perfect forward security (wPFS), resilience to key compro-
mise impersonation (KCI) attacks and revealing the ephemeral keys of a single party.
The extended Canetti-Krawczyk model (eCK) was proposed in [5] to capture combina-
tions of static and ephemeral keys corruptions (apart from the obvious ones that break
security by definition), including revealing both ephemeral keys or both static keys.
NAXOS [5], NAXOS+ [6], and CMQV [7] were shown to be secure in eCK model.
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The KEA+ protocol [8] was shown to be secure in a model weaker that eCK that allows
revealing the long-term key of at most one of the parties.

In the above mentioned protocols each party has prior knowledge on the ID of the
other party, or the identifiers are sent during a protocol execution. The later case may
lead to privacy violations, thus identity hiding was concerned in the papers [9,10,11,12].
Deniability, as an additional feature was achieved in the PACE|AA protocol [13]. In this
protocol each party can create transcripts of protocol runs with the same probability
distributions as for the transcripts coming from the real protocol executions. Deniability
of SKEME and partial deniability of SIGMA were discussed in [14].

From the above mentioned protocols based on DH key exchange (without pairings)
none fully satisfied the required goals:

– the following protocols are not deniable: NAXOS, NAXOS+, JFKi, JFKr, SIGMA,
– the following protocols are not identity hiding: MQV,HMQV,CMQV,
– the following protocols use prior knowledge of the partner’s ID: KEA+, NAXOS,

NAXOS+, SKEME.

On the other hand the protocols [10] and [11] are based on pairings, and it is not clear
how could they be adjusted for restricted identification.

The Restricted Identification protocol has its variant called ChARI, which redefines
initial steps and eliminates so called group keys shared by many e-IDs. The price paid
is a slight loss of efficiency and the use of separate certificates, whitelists or blacklists
for domains. Below we present an efficiency comparison for RI, ChARI and MRI:

Table 1. Efficiency comparison for RI protocols

protocol exponentiations exponentiations communication number of private
on a smart card on terminal rounds keys on a smart card

RI [1] 2 + 2 2 + 1 3 2
ChARI [15] 2 + 2 3 + 1 3 1

MRI (this paper) 3 3 2 1

2 Mutual Restricted Identification

Below we use a cyclic group G of a prime order q where the Discrete Logarithm Prob-
lem is hard.

Domains. Two users can authenticate themselves if they belong to the same domain.
On the other hand, a user may belong to any number of domains. For a domain S there is
a uniquely defined generator gS ∈ G used by all users. gS must be derived in a way that
the discrete logarithm of gS1 with respect to gS2 is unknown for any domains S1, S2,
S1 �= S2. For instance, we can use a hash function mapping the legal names to G, that
is, gS = H(S).
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Table 2. Mutual Restricted Identification protocol

Alice Bob
xA - private key xB - private key
yA = gxA - public key yB = gxB - public key
certA - certificate for yA certB - certificate for yB

OPTIONAL SETUP

recompute g recompute g
yA := gxA - set public key yB := gxB - set public key
fetch certA and check yA fetch certB and check yB

MAIN PROCEDURE

choose a at random choose b at random
hA := H(a|0) hB := H(b|0)
cA := yhA

A

cA−−−−−−−−−→ cB := yhB
B

cB←−−−−−−−−−
K := cB

xAhA K := cA
xBhB

KA := H(K|1), KB := H(K|2) EncKA
(a,certA)−−−−−−−−−→ KA := H(K|1), KB := H(K|2)

reject if cA �= y
H(a|0)
A or certA invalid

reject if cB �= y
H(b|0)
B or certB invalid

EncKB
(b,certB)←−−−−−−−−−

Ks := H(K|3) Ks := H(K|3)

Initialization. The protocol is described on Fig. 2. Note that some initial steps are
omitted: such as negotiating the encoding format, the communication parameters, the
algorithms and group used, etc. This stage must be based on a temporal ad hoc identity
and there must be a very limited number of behavior profiles during this phase in order
to eliminate identification.

In the following description we assume that the communication is within domain S
with the generator gS = g. The certificates for the public keys of, respectively, Alice
and Bob in the domain S will be denoted by certA and certB .

Protocol Idea. The first part of the protocol is deriving the master session key K by
the Diffie-Hellman protocol based on the values cA and cB . At this stage the identities
of the participants are not revealed. At the first look it may appear that derivations of K
depend on the participants’ identities. However, cA and cB are in fact equal to gxAhA

and gxBhB , and as hA and hb are in some sense “random”, so are xAhA and xBhB

modulo q.
Note that the key K depends on the domain parameter g = gS . Indeed, if A uses

g and B uses a different key g′, then A derives (cB)xAhA = (g′)xBhBxAhA , while B
derives (cA)xBhB = gxAhAxBhB . So the results are different.

The master key K is used to get a number of keys by applying a hash function
with different parameters. We follow a frequent practice to yield “independent” keys by
hashing a shared secret expanded with different parameters.
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The second stage of the protocol is communicating the values a and b. The purpose
is the following: knowing the session key by A is an evidence of knowledge of the
discrete logarithm of cA with respect to g. So, as A knows the discrete logarithm of cA
with respect to yA, we conclude that A may easily derive the discrete logarithm of yA
with respect to g. Thereby after terminating the protocol execution in an accepting state
we may conclude that A knows the secret key xA.

Note that while cA is “random”, finding a such that cA = yhA

A is infeasible, if cA
has not been computed in this way. Indeed, possibility of deriving hA would break the
Discrete Logarithm Problem. Namely, we would challenge the adversary with cA = gr

for r chosen at random, get back h such that yhA = cA, and then derive yA = gr/h.
Encrypting a and b has two goals. First, it protects identity information from an

eavsdropper. Second, verification is possible only if the recipient knows the decryption
key, and therefore has been participating in the whole interaction.

3 Security Assumptions

Definition 1 (DDH Assumption). Let G be a cyclic group of a prime order q′. The
Decisional Diffie-Hellman Problem (DDH Problem) is hard for G if there is no prob-
abilistic polynomial-time algorithm ADDH that with a non-negligible probability dis-
tinguishes between the distributions D0 = (g̃, g̃α, g̃β, g̃γ) and D1 = (g̃, g̃α, g̃β, g̃αβ),
where α, β, γ are chosen at random from {1, . . . , q′ − 1}. That is, for any probabilistic
polynomial-time algorithm ADDH the adversary’s advantage

Adv(ADDH) = |Pr[ADDH(D1) = 1]− Pr[ADDH(D0) = 1]|

is at most εDDH for a negligibly small εDDH.
The Computational Diffie-Hellman Problem (CDH Problem) is to derive gαβ given gα

and gβ . If the DDH Problem is hard, then there is no efficient algorithm solving the
CDH Problem.

In order to model requirements for a hash function we use the notion of correlated-
input secure hash functions [16].

Definition 2. A hash function H is correlated-input secure if for a random r and
any Boolean circuits C1, . . . , Cn there is no adversary such that given H(C1(r)), . . . ,
H(Cn−1(r)), it distinguishes between H(Cn(r)) and a random R of the same length
with a non-negligible probability within realistic time.

For the encryption function we use the Ideal Cipher Model, closely related to Ran-
dom Oracle Model.

Definition 3. In the Ideal Cipher Model encryption is modelled by an oracle O that
holds a table T storing triples (m, k, c), where m stands for a plaintext, k stands for an
encryption key, and c stands for a ciphertext. Initially, T is empty.

Given a query Encrypt(m,k), the oracle O checks if there is an entry of the form
(m, k, c) in T . If yes, then O responds with c. Otherwise, O chooses c′ at random, but
different from all z such that there is an entry (h, k, z) in T . Then O responds with c′

and inserts (m, k, c′) in T .



124 L. Hanzlik et al.

Given a query Decrypt(c,k), the oracle O checks if there is an entry of the form
(m, k, c) in T . If yes, then O responds with m. Otherwise O chooses m′ at random, but
different from all z such that there is an entry (h, k, z) in T . Then O responds with m′

and inserts (m′, k, c) in T .

4 Privacy Issues

Proofs of Interaction. One of the key privacy problems is that a transcript of a protocol
can be used by a communicating party or by an eavesdropper to prove that an interac-
tion with a certain party has occurred. This provides motivation to solutions based on
the Zero-Knowledge Proof principle, where an interaction can be perfectly simulated
and therefore is useless for proving anything. The paper [17] states this property more
explicitly as simultability of protocol executions.

Proposition 1. B (respectively, A) can generate a proof consisting of all data trans-
ferred during an alleged execution of the MRI protocol together with all internal values
used by B (A) without any interaction with A but with exactly the same probability
distribution as for the real interactions.

Proof. B creates a fake transcript by performing all steps on behalf of A and B. The
only difference is that B does not attempt to derive K as it is done by A. However, this
is unnecessary, since B can compute K using its own procedure.

Creating a fake transcript by A is similar. ��

Another possibility is that an eavesdropper holding neither xA nor xB presents an in-
teraction transcript. Potentially, it can contain some data that cannot be created without
involvement of A or B – in this case we have a proof that either this is a real transcript
or a simulated one created by either A or B. However, if we may assume that A and B
are honest, then we get a proof of interaction between A and B. Below we show that
there is no such a danger for the MRI protocol.

Proposition 2. In the Ideal Cipher Model under the DDH Assumption, given a tran-
script of an interaction consisting of cA, cB , Enc1 and Enc2, it is infeasible to identify
the protocol participants. More precisely, the advantage of the adversary to win the
following game is negligible: for arbitrary participants A0, B0 and A1, B1:

– the challenger chooses a bit u at random,
– the challenger presents a record T consisting of the messages exchanged between

Au, Bu during a real execution of the MRI protocol,
– the adversary responds with u′. He wins if u′ = u.

Proof. The original game can be formalized as follows:

Game 0.
choose u, a, b at random
hA := H(a|0), hB := H(b|0), cA := yhA

Au
, cB := yhB

Bu

K := gxAuxBuhBhA , KA := H(K|1), KB := H(K|2)
E1 := EncKAu

(a, certAu), E2 := EncKBu
(b, certBu)

u′ := A(cA, cB, E1, E2)
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The encryption operations above are understood as calls to the encryption oracle O.
Now we replace the encryption results with random variables:

Game 1.
choose u, a, b at random
hA := H(a|0), hB := H(b|0), cA := yhA

Au
, cB := yhB

Bu

K := gxAuxBuhBhA , KA := H(K|1), KB := H(K|2)
choose E1 and E2 at random and inform oracle O about them
u′ := A(cA, cB, E1, E2)

In Game 1 we simply reverse the order of operations concerning encryption oracle.
Instead of asking O during an encryption we create the values and demand to include
these values in the table kept by O. This may lead to conflicts with already existing
values and thereby to a fault event. However, this is very unlikely.

In Game 1 the adversary gets 4 values that are uniformly distributed. However, these
values are entangled by entries that exist in the table of the encryption oracle O. Dis-
closing these relations is possible only after asking the oracle O with the key KA or
KB . Assume that this is possible with a non negligible probability. We show that then
we would be able to solve the DDH Problem. Indeed, for a given instance (g, C,D,Z)
we play Game 1 with yA0 = C, yB0 = D, and observe the queries to O. If any key
equals H(ZhAhB |1) or H(ZhAhB |2), then we have an indication that (C,D,Z) is a
Diffie-Hellman triple. ��

Passive Adversary and Linking Attempts

Definition 4 (passive adversary privacy model). We assume that A1, . . . , Ak can
communicate within domains S1,. . . , Su. During the time period considered, the ad-
versary observes t interactions, say T1, . . .Tt, and participates itself in some number
of interactions T (at arbitrary time moments). The adversary knows the participants
A1, . . . , Ak and their public keys for each domain. An elementary event in the prob-
ability space Ω is a mapping that indicates for each transaction the communicating
parties and the domain used:

R : {T1, . . . , Tk} −→ {A1, . . . , Ak}2 × {S1, . . . , Su}
A priori knowledge of the adversary is a probability distribution π on Ω.

The probability distribution π on Ω models the knowledge resulting from the real
conditions. E.g. if the transmission times of Ti and Ti+1 overlap, then usually we may
conclude that the participants of Ti and Ti+1 are different.

Definition 5 (attack model for the passive adversary). Let D be the list of all mes-
sages exchanged during some protocol executions observed by the adversary. We con-
sider the distributions π and π|D (the probability distribution π conditioned by the data
D observed). We say that the protocol is secure against linking, if the distributions π
and π|D do not differ in a non-negligible way. That is, given a sample drawn from dis-
tribution π or π|D, the adversary has no non-negligible advantage to guess whether
the sample has been drawn from π or π|D.
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Definition 5 says that the data sent by the protocol does not add substantial new
knowledge for determining who is talking with whom. Note also that π might be arbi-
trary, as real conditions and users’ behavior is hard to predict. In particular, we are not
making the artificial assumption that π is the uniform distribution.

Unlinkability - Sketch of the Proof. The security of the MRI protocol against linking
follows from similar considerations as in the proof of Proposition 2. However, now
within the game we take into account all interactions, each game concerns choice of
participants as well as domain used, and the adversary is given all transcripts.

Before we proceed let us introduce the following concept. For a pair of participants
A and B holding the public keys yA = gxA

S , yB = gxB

S for a domain S we define their
hidden public key as gxAxB

S .

Proposition 3. Given the hidden public key gxAxB

S for A and B and domain S, one can
generate transcripts of an interaction between A and B within S with exactly the same
probability distribution as for the real interactions.

Proof. The fake transcripts are created by following exactly the operations of A and
B from the description of the protocol. The only exception is computing the key K
(as neither xA nor xB is available). However, one can compute K using the equality
K = (gxAxB

S )hAhB . ��
Obviously, ability of the adversary to distinguish between distributions π and π|D

from Definition 5 can only increase, if for each pair of participants A and B and each
domain the adversary learns the hidden public key gxAxB

S . From now on we assume that
the adversary knows the hidden public key for each pair of participants and domain.

Assume that the adversary applies algorithm A to break privacy. The overall strategy
to show that advantage of A is negligible is as follows:

We consider behavior A separately for different cases. A case is determined by fixing
the value of R. (Note that according to our assumptions, the probabilities of cases may
differ.) However, if we succeed to show that in each case we can replace the transcripts
by random transcripts with a negligible change of behavior of A, then A may skip the
input regardless of the case.

Now consider a case C, and assume that the last interaction Tk is between the partic-
ipants A and B. Then we consider two kinds of inputs to A: the original transcripts and
the transcripts with the last interaction Tk replaced by four random messages. As in the
proof of Proposition 2 we show that the behavior of A cannot differ non-negligibly for
these two kinds of inputs. Assume conversely that A behaves in a different way. Then
we use it to build a distinguisher between the random transcripts and the transcripts
between participants A and B. Indeed, given a transaction T which is either random or
between A and B, we build a case for A, by adding transcripts T1, . . . , Tk−1 where the
participants of the interactions are indicated by C. Creating the transcripts is possible
due to Proposition 3.

We proceed in the same way, in each phase we replace the next Ti by random tran-
scripts and we argue that the behavior of A cannot change in a non-negligible way.
Finally we are left with random transcripts, but A behaves almost in the same way as
for the original inputs for the case C.
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Finally notice that after these transformations A works on the same sets of random
inputs with the same probability distribution. Hence A may skip the actual input and
generate random transcripts by itself. It follows directly that A does not distinguish
between π and π|D. Thereby we get the following result:

Theorem 1. Assuming the Ideal Cipher Model and hardness of the Decisional Diffie-
Hellman Problem, the MRI protocol is secure against linking.

5 AKE Security of the MRI Protocol

For security of the session key we follow the model originating from [18] and extended
by many authors. The model is based on the principle that if one of the legitimate
participants (not necessarily both!) enters an accepting state with a session key Ks, then
it should be infeasible for the adversary to derive Ks. In an accepting state a participant
A not only holds the session key but also the identifier of the accepted session and the
identity of the other participant B with whom A believes to share Ks.

The adversary A fully controls the communication channel between any participants
A and B. This means that if a message is sent from A to B (or conversely), then A
may prevent the delivery, may modify the message, or deliver a message of its choice.
Moreover, A may deliver a message when no message is sent.

Security Game. We confine ourselves to the case when there are participants A and
B holding private keys xA, xB . A controls all other users and holds their private and
public keys. A may obtain the ephemeral keys used by A and B except for the session
attacked. The attack consists of the following phases:
Phase 1: a number of times the protocol is executed between A and B as well as be-
tween A or B and the participants controlled by A. For each of these interactions A
may demand revealing the ephemeral values.
Phase 2: A and B execute the protocol. A can manipulate any message transmitted,
but cannot ask for ephemeral values.
Phase 3: If neither A nor B enters an accepting state, then A looses. If A (respectively,
B), terminates in an accepting state, it chooses a bit b at random. Then A obtains either
the session key Ks kept by A (if b = 0), or a random key R (if b = 1).
Phase 4: it is executed exactly as Phase 1.

Finally, A answers b and wins, if b = b.
Note that inability to distinguish between the session key and a random key witnesses

that no substantial property of the session key can be deduced by A.

5.1 Security Proof

We gradually simplify the attack scenario without substantial changes of adversary’s
advantage. The initial attack game is described in Sect. 5. The core property of authen-
tication is presented by the following lemma:
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Lemma 1. Assume that CDH Problem is hard. Let y be a element such that discrete
logarithm of y with respect to g is unknown. Let c be chosen at random. Then it is infea-
sible to provide an element c′ and (K, a) such that K is a solution for CDH Problem
for c and c′ and simultaneously c′ = ya.

Proof. Assume conversely that it is possible to present such (K, a). Then we show that
it would be able to solve CDH Problem. Given an instance (u, v) of CDH choose r
at random and set y := vr. Then choose r′ at random and set c := ur′ . In this way
we derive a random instance of the problem concerned in Lemma 1. According to the
current assumption derive c′ and (K, a). So K = CDH(ur′ , c′), where CDH(α, β)
stands for the solution of CDH Problem for α and β. However, c′ = ya so K =
CDH(ur′ , ya) = CDH(ur′ , vra) = CDH(u, v)r

′ra. Since we know r, r′ and a, we can
get CDH(u, v). ��

Corollary 1. Under the same assumptions as in Lemma 1 it is infeasible to create
EKA(a, certA) where KA=H(K|3), K=CDH(c, c′), and c′=y

H(a)
A .

Proof. According to Ideal Cipher Model, creating the correct ciphertext is possible only
if KA and a are given. According to the correlated-input secure hash, deriving KA with
a non-negligible probability requires usingK . So, gettingEKA(a, certA) yields (K, a),
which is infeasible by Lemma 1. ��

Reducing Phases 1 and 4. One can eliminate all correct interactions between either
A or B and a participant controlled by A from Phases 1 and 4. Indeed, according to
Proposition 1 A can generate transcripts of these interactions with exactly the same
probability distribution. The next step is to reveal to the adversary gxAxB as it can
only increase the advantage of A. However, by Proposition 3 this enables to generate
transcripts of correct interactions between A and B with exactly the same probability.
Thereby, during Phases 1 and 4 only interactions corrupted by the adversary are left.

Now, let us consider an interaction between B (or A) and D (run by A) in Phase 1
or 4, and initiated by D. As D deviates from the protocol, authentication of D fails and
B (or A) sends no second message. So the only message sent by the honest party is the
random element cB , and this can be easily simulated.

The case of an interaction initiated by an honest user, say A, with D controlled by A,
is more complicated. There are two subcases: the first is that D can solve CDH Problem
for cA and cD. This case can be perfectly simulated by A: it chooses a, and proceeds
as described by the protocol apart from derivation of K which is done according to
the subcase assumption. In the other case, the adversary becomes the ciphertext E1 =
EncKA(a, certA). However, since A cannot derive K , we can replace KA by a random
key using correlated-input secure hash assumption. Then, according to the Ideal Cipher
Model we can replace the ciphertext E1 with a random string of the same length.

Attacking Interactions between A and B. The only interactions in Phases 1 and
4 that are left are interactions between A and B corrupted by A. As A controls the
communication channel, we may assume that the following messages are exchanged
(the elements with an overline come from A):
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– between A and A: cA, cB , E1, E2

– between A and B: cA, cB , E1, E2

We consider a number of cases depending on the behavior of A.

Case 1: A cannot derive CDH(cA, cB).
In this case A gets a ciphertext E1 obtained with an unknown key KA. According to
the Ideal Cipher Model assumption, A cannot get any information about the plaintext
or transform it a controlled way. So essentially the adversary may either use E1 = E1

or to ignore E1 when constructing E1. In the first case B will accept it provided that
cA = cA and CDH(cA, cB) = CDH(cA, cB), that is when cA = cA and cB = cB . In
the second case B will not accept E1 with a high probability. So we have two cases:

– up to the third step, the execution of the protocol is not disturbed by the adversary,
– there are some modifications by the adversary, but B rejects after getting E1 and

the ciphertext E1 can be replaced by a random string.

Consequently, performing the last step (delivery of E2) can be done either according to
the protocol or simulated by A (as B is silent).

If the whole protocol is executed without modifications of A, then it can be elimi-
nated from Phases 1 and 4, as already observed. So in all cases we can eliminate such
interactions from Phase 1 and 4.

Case 2: A can derive CDH(cA, cB).
It means in particular that cB �= cB . In this case the answer E1 from A can be simu-
lated by A, as cA can be generated by an oracle as yaA. Consequently, by Lemma 1 the
adversary A cannot create E1 that is accepted by B.

Nevertheless, A can continue interacting with A. However, in this case providingE2

and accepting it by A occurs with a negligible probability only. Indeed, the only input
from B is a random element cB which can be simulated.

We conclude that it is possible to simulate the interaction in this case and that neither
B nor A enters an accepting state.

Phase 2. We are left with a game consisting of Phases 2 and 3. First we consider the
case that B enters an accepting state. This means that E1 corresponds to cA received
by B and cB sent by B. According to the Ideal Cipher Model this may occur with a
non-negligible probability only if E1 has been created with the key KA as computed
by B. Indeed, the plaintext contains certA, which is fixed, so a different key for the
same ciphertexts would lead to a plaintext not containing certA. (Also a can be checked
against yA and cA.)

The presence of the correct a witnesses that E1 originates from a party that used the
same cA as received by B. On the other hand, to get KA it is necessary to use K , apart
from a negligible probability. In turn, deriving K = cxAhA

B for known (but random) cB ,
known hA, and yA, but without xA is equivalent to solving CDH Problem for cB and
yA. As we assume that the DDH Problem is hard, this is infeasible. So B can assume
that E1 have been created by a party holding the key xA, that is by A. It means that cA
originates from A.

Now, let us argue why adversary A cannot distinguish between the right session key
and a random key. Note that all messages sent by A and B correspond to a correct
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protocol execution (maybe the last message from B to A is not delivered correctly).
Then we may reveal the values of a, b, KA, KB , and refer to correlated-input secure
hash function condition, where the random parameters used by the circuits are xA, xB .

The same argument can be applied to cover the case that A enters an accepting state.

6 Leaking Ephemeral Keys

Ephemeral values may be implemented in a less secure way than long-time secret keys.
Therefore it is necessary to consider consequences of revealing them. In particular, the
attack may be performed against A that interacts with B which is controlled by an
adversary. We draft here two cases:

Attempt to Learn xA or xB . We concern the extreme case that the adversary is
getting a, b as well as the private key xB and attempts to learn xA. However, in this
case the messages exchanged between A and B can be perfectly simulated according
to Sect. 4. So any attack executed in this way can be performed off-line with the same
effect. In turn, the off-line attack can be used as an attack against the Discrete Logarithm
Problem: we choose at random the values a, b, xB , derive a protocol description and
run the off-line adversary on these data.

Attempt to Learn a Session Key. Assume that we are given a transcript of an interac-
tion consisting of cA, cB, E1, E2 and a and b used for this interaction. Ability to learn
anything on the session key is described by the following game:

Game 0.
choose a, b at random, hA :=H(a|0), hB :=H(b|0), cA :=yhA

A , cB :=yhB

B

K := gxAxBhBhA , KA := H(K|1), KB := H(K|2)
E1 := EncKA(a, certA), E2 := EncKB (b, certB)
choose u at random
if u = 0, then R := H(K|3), otherwise choose R at random
u′ := A(a, b, E1, E2, R, yA, yB)

The adversary wins, if u′ = u.
Below we consider a modified version of this game, where E1 and E2 are generated

in a different way.

Game 1.
choose a, b at random, hA :=H(a|0), hB :=H(b|0), cA :=yhA

A , cB :=yhB

B

K := gxAxBhBhA , KA := H(K|1), KB := H(K|2)
choose E1 and E2 at random
choose u at random
if u = 0, then R := H(K|3), otherwise choose R at random
u′ := A(a, b, E1, E2, R, yA, yB)

A difference between Game 0 and Game 1 may be observed only if A asks the
encryption oracle O a query containing KA or KB . Then decrypting E1 or E2 may
yield wrong results (in the Game 1, O does not know a and b, so with a high probability
it will choose the plaintext inconsistently). However, if A may generate KA or KB
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with a non-negligible probability, then we can construct a distinguisher for the DDH
Problem, just as in the proof of Proposition 2.

Now let us clean up by eliminating parameters unused by the adversary or random.
Thereby we get the following game:

Game 2.
choose a, b at random, hA :=H(a|0), hB :=H(b|0), K :=gxAxBhBhA

choose u at random
if u = 0, then R := H(K|3), otherwise choose R at random
u′ := A(a, b, R, yA, yB)

Now, it is easy to see that Game 2 could be directly used for solving the DDH Prob-
lem: given a candidate triple (U, V, Z), we choose a, b, r1, r2 at random, put yA := U r1 ,
yB := V r2 and R := H(Zr1r2hAhB |3). Then we give a, b, R, yA, yB to A. (Note that
r1, r2 are used to randomize the input.)

Note that if Z is random, then R created as above is not a random value, but a
hash value of a random value. However, any difference in behavior of A in case of
random R and R := H(Zr1r2hAhB |3) for a random Z would lead to a procedure that
distinguishes the values of the formH(S|3) from the random strings of the same length.
For correlated-input secure hash functions this is impossible.

The above argument can be extended to the case when we have a number of interac-
tions betweenA andB and the corresponding ephemeral keys. In this case we formulate
the following game for k interactions:

Game 0’.
choose ai, bi at random, hi,A := H(ai|0), hi,B := H(bi|0), for i ≤ k,

ci,A := y
hi,A

A , ci,B := y
hi,B

B , for i ≤ k,
Ki := gxAxBhi,Bhi,A , for i ≤ k,
Ki,A := H(Ki|1), Ki,B := H(Ki|2), for i ≤ k,
Ei,1 := EncKi,A(ai, certA), Ei,2 := EncKi,B (bi, certB), for i ≤ k,
choose u at random, choose S at random
if u= 0, then Ri := H(Ki|3), otherwise Ri := H(Shi,Bhi,A |3), for i ≤ k
u′ := A(a1, . . . , ak, b1, . . . , bk, E1,1 . . . , Ek,1, E1,2 . . . , Ek,2, R1, . . . , Rk)

After making essentially the same transformations we get a proof for the following
theorem:

Theorem 2. Assume that H is a correlated-input secure hash function and that the
DDH Problem is hard. Then, in the Ideal Cipher Model it is infeasible to derive any in-
formation on the session keys of MRI given the messages exchanged and the ephemeral
keys a, b used for these interactions.

7 Forward Security

Another problem we have to concern is that at some moment the private key xA is
disclosed. This may occur due to physical attack with techniques unknown at the time
of the system deployment. In this scenario the adversary has no access to the ephemeral
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keys – as they should be stored in a volatile memory or erased after usage. So the attack
scenario can be described by the following game:

Game 0.
choose a, b at random, hA := H(a|0), hB := H(b|0)
cA := yhA

A , cB := yhB

B

K := gxAxBhBhA , KA := H(K|1), KB := H(K|2)
E1 := EncKA(a, certA), E2 := EncKB (b, certB)
choose u at random
if u = 0, then R := H(K|3), otherwise choose R at random
u′ := A(xA, xB , E1, E2, R)

The adversary wins if u′ = u. Following almost exactly the same argument as in
the proof of Theorem 2 we get the following result (in fact, the results holds also under
assumption of semantic security):

Theorem 3. Assume that H is a correlated-input secure hash function and that Deci-
sional DDH Problem is hard. Then in the Ideal Cipher Model it is infeasible to derive
any information on the session key of MRI executed between A and B, given the mes-
sages exchanged and the private keys xA, xB .

7.1 Malicious Implementations

If a protocol is implemented in a black box device, then a user is exposed to malicious
implementations that behave like the original protocol – no procedure based on the reg-
ular output may detect any difference – but a party holding appropriate secret (not stored
in the device) gets access to private data of the user (see kleptographic attacks, e.g. [19]).
The key mechanism of kleptographic attacks is to use a pseudorandom parameter that
can be derived by the device (from its internal values) and the attacker (from the previous
output of the device and the secret of the attacker). As an authentication protocol cannot
be deterministic it seems that there is always room for such an attack.

Let us discuss shortly susceptibility of the MRI protocol to such attacks. As the long
time secrets xA are used for exponentiations only, xA can be implemented in ROM with
no access to other operations. In particular, for ROM it is impossible to manipulate the
code. The code for the remaining parts of MRI may be included e.g. in a smart card
applet, where manipulations are much easier. Nevertheless, at worst the applet may
serve as an oracle for computing values dxA , where the numbers d are given. This may
slightly ease a cryptanalytic attack against xA, but not expose xA directly.

The other target of the adversary is to derive a session key. Note that leaking the
ephemeral value a (or hA) without xA does not enable to derive a session key: given
cB and hA we still need xA to obtain K = chAxA

B . So the leakage must be more
complicated than just based on malicious way of computing hA.

Finally, we have to be aware that MRI, like any other protocol with pseudorandom
values, enables a limited hidden channel. Simply, in order to leak a short bit string
κ = k0k1 . . . km we leak a few bits in each cA. Namely, the malicious implementation
chooses a until H(Y hA) has k0 . . . km as leading bits. If Y = gz and z is held by the
adversary, then κ can be recomputed from H(czA). On average, 2m trials are necessary,
so m cannot be large, especially for smart cards.
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Abstract. The steadily growing number of certification authorities (CAs)
assigned to the Web Public Key Infrastructure (Web PKI) and trusted
by current browsers imposes severe security issues. Apart from being
impossible for relying entities to assess whom they actually trust, the
current binary trust model implemented with the Web PKI makes each
CA a single point of failure. In this paper, we present the concept of
trust views to manage variable trust levels for exactly those CAs actu-
ally required by a relying entity. This reduces the set of trusted CAs
and minimizes the risk to rely on malicious certificates issued due to CA
failures or compromises.

1 Introduction

The Web PKI is one of the largest and most important cryptographic systems.
The core of the Web PKI is the ecosystem of CAs that are responsible for the
issuance and the maintenance of SSL certificates. These certificates are issued
to web service providers and are used in the SSL/TLS protocols. Thus, the Web
PKI enables authentication of web servers and subsequently the establishment
of secure connections between web browsers and services like e-banking or e-
commerce, where privacy, confidentiality, and integrity are often indispensable.

However, the Web PKI fails in many points to provide the desired security [7,9,
10]. One serious problem is that the Web PKI does not scale with the enormous
size of the Internet. For the sake of interoperability (i.e., as much legitimate
web service certificates as possible should be verifiable) the number of CAs,
which are fully trusted by default in current browsers and operating systems,
has continuously been growing over the past. Currently, there are approximately
1.500 trusted CAs [6]. As each of these trusted CAs can sign certificates for any
web service or domain, trusting a single malicious CA, i.e., one that is in fact
not trustworthy, can break the whole Web PKI’s security. An adversary, who is
in possession of a fake certificate that was issued by one of the trusted CAs, can
potentially intercept the complete communication between any Internet user and
the certified web server without the user even noticing the attack. Thus, with
each additional CA, the risk of trusting a malicious or defective CA increases.
Several security incidents in the last time clearly show that this is more than
just a hypothetical threat [5, 9, 11, 12].
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Blacklisting CAs or revoking malicious certificates are the reactions to security
incidents. However, as these mechanisms are reactive, they have an inherent delay
exposing the users at risk until the detection of the threat. As explained, the
risk grows proportional to the number of CAs a user trusts.

In this paper, we propose a new approach to reduce this risk by reducing the
number of trusted CAs to those that are really required by the users. Recent
experiments with browser histories of different users have shown that on average,
a user only depends on a small subset of CAs. The size of which lies in the
range of 10% of the CAs available and trusted by default in the Web PKI [1].
Additionally, among the trusted CAs, we introduce variable trust levels to enable
more fine grained trust decisions. According to the value-at-stake, a trust level
might be sufficient or not to consider a connection to a web service as secure.

To achieve this, we present the concept of trust views that serve as a local and
user dependent knowledge base for trust decisions. We present the mechanisms
for the establishment and the management of the trust view. We implement
learning processes and define decision rules by employing computational trust
models. The real trustworthiness of CAs is approximated by a subjective proba-
bilistic trust value. Our approach allows an adaptation to the requirements of the
user and automated trust decisions based on defined decision rules. Our system
focuses on applicability, thus it only uses data which is already available or is
collected over time. However, our system is open to be extended with additional
information sources.

The paper is organized as follows. Section 2 describes the Web PKI and our se-
curity model. In Section 3 we introduce computational trust and present related
work. Afterward, in Section 4 we present the trust view concept. We describe
challenges and how a trust view is modeled. Then we describe the initialization
mechanisms for trust views and give the relevant algorithms for trust validation
and the update of the trust views. In Section 5 we evaluate our approach and
discuss limitations. We end with a conclusion and future work in Section 6.

2 Web PKI and Security Model

2.1 The Web PKI

Secure Internet connections between web browsers and web servers in general
rely on public key cryptography to authenticate web servers and establish session
keys. Public key cryptography requires the knowledge of key pairs: a private key
that is only known to the owner of the key pair (in our case a web server) as
well as a public key, which must be known to everyone who wants to establish
a secure connection to the owner of the associated private key. A public key is
bound to an identity via a digital certificate according to the X.509 standard [4].
Whenever a relying entity contacts a web server and successfully establishes an
SSL/TLS connection using the public key in the web server’s certificate, the
relying entity can be sure that the web server knows the private key matching
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the public one. As the certificate binds the public key to an identity, the relying
entity can be sure about the authenticity of the web server.

As it is impossible to exchange certificates directly between all web servers
and all browser users (the relying entities), the Web PKI uses a hierarchical but
tightly interwoven structure of CAs that digitally sign certificates. If a certificate
is signed by a trusted CA, the authenticity of a web server that employs the cer-
tificate is transitively trusted. The Web PKI has a set of Root CAs. Their public
keys are usually distributed within trusted lists called root stores, along with
operating systems and browsers. The Root CAs act as basis for the whole PKI.
Root CAs sign certificates for subordinate CAs (Sub CAs) which themselves sign
certificates for other Sub CAs and web servers. This way, a hierarchical struc-
ture is created. The chain of certificates starting with a Root CA’s certificate
and ending with a web server’s certificate is called certification path. The pro-
cess of checking the certification path for correctness and validity is called path
validation [4].

For a relying entity, in order to be convinced of the key legitimacy of a public
key k, namely to be convinced whether a public key k in a certificate belongs
to the identity contained in the subject field of the certificate, two things are
required [20,23,33]. First, the relying entity must be convinced of the key legit-
imacy of the CA’s key that was used to sign the certificate. Second, the relying
entity must trust the CA to issue trustworthy certificates which is called issuer
trust in the CA.

In the Web PKI, issuer trust and key legitimacy are binary. Any certificate
signature that can be verified using the root store is absolutely trusted. Although
CAs achieve different qualities of service, this is currently not reflected within
trust decisions. Different CAs implement different schemes to verify identities of
the key owners they sign certificates for and employ different security mechanism.
But, for example, a certificate containing a superficially verified identity appears
to be as trustworthy as a certificate where the contained identity was checked
thoroughly.

2.2 Security Model

In the model exist two entities e1 and e2. e1 establishes an SSL/TLS connection
to e2. The problem is to decide if the connection is trustworthy for e1.

A connection is trustworthy for e1 if the public key k of e2 that was used in
the SSL/TLS connection establishment is trusted by e1 to be a valid public key
of e2. This requires:

1. e1 has a valid certificate C that binds k to e2.
2. e1 trusts in the issuer of C.

Requirement 1 is a standard PKI issue. To fulfill requirement 1, e1 needs to
have a certification path p = (C1, ..., Cn) such that

1. Cn=C
2. p passes path validation
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Requirement 2 is fulfilled if p additionally passes trust validation. Explicit trust
validation is not incorporated in the current deployment of the Web PKI. We
show how this can be realized with the concept of trust views and explain how
this enables to reduce the number of actually trusted CAs and therewith the risk
of relying on maliciously issued certificates. We first introduce computational
trust and present related work.

3 Computational Trust and Related Work

3.1 Computational Trust

Computational trust is a means to support users in making decisions under
uncertainty, e.g., under incomplete information. Jøsang defines decision trust
in [19]:

Decision trust is the extent to which a given party is willing to
depend on something or somebody in a given situation with a
feeling of relative security, even though negative consequences
are possible.

Starting from recommendations, experiences from previous interactions, and
context-related indicators of trustworthiness, computational trust models cal-
culate an approximation for the quality of future interactions. For this paper,
the CertainTrust trust model by Ries [26] is used. CertainTrust was extended
with CertainLogic, a set of operators to combine CertainTrust opinions. These
operators are similar to those of propositional logic, but consider the inherent
uncertainty of CertainTrust opinions.

CertainTrust can handle two ways of expressing trust-related information:

– The experience space collects results from interactions as binary experiences,
i.e., an interaction was either positive or negative.

– The opinion space uses a triple (t, c, f) to express an opinion oS about a
statement S. The value t ∈ [0; 1] represents the trust in the correctness
of the statement, while the certainty c ∈ [0; 1] represents the probability
that t is a correct approximation. c scales with the amount of information
(for example, the number of collected experiences): the more information
available, the more reliable is the approximation. Finally, f ∈ [0; 1] defines a
context-specific, initial trust value in case no information was collected, yet.
This parameter serves as a baseline and represents systemic trust.

There exists an ambilateral mapping between the experience space and the
opinion space by parametrizing a Bayesian probability density function with the
amount of positive and negative experiences. For details, see [25]. In this paper,
trust information is collected in the experience space but the opinion space is
used to combine trust statements about different CAs. Opinions can be updated
with newly collected positive or negative experiences by mapping the opinion
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into the experience space, adding the new experience to either the number of
positive or negative experiences and mapping those back to the opinion space.

There are several operators to combine different opinions. From two opinions
about two independent statements a combined opinion about the statement re-
garding the truth of both input statements is computed with the AND-Operator
of CertainLogic [26]:

Definition 1 (CertainLogic AND-Operator). Let A and B be independent
statements and the opinions about these statements be given as oA = (tA, cA, fA)
and oB = (tB, cB, fB). Then, the combined opinion on the statement regarding
both A and B is defined as follows:

oA ∧ oB = (tA ∧ tB , cA ∧ cB, fA ∧ fB) with

cA∧B = cA + cB − cAcB−
(1− cA) cB (1− fA) tB + cA (1− cB) (1− fB) tA

1− fAfB

if cA∧B = 0: tA∧B = 0.5

if cA∧B �= 0: tA∧B =
1

cA∧B
(cAcBtAtB+

cA(1− cB)(1 − fA)fBtA + (1− cA)cBfA(1 − fB)tB
1− fAfB

)

fA∧B =fAfB

The CertainLogic AND-Operator is commutative.

From opinions, an expectation can be computed. It represents the expectation
for future behavior. In CertainTrust, the expectation of an opinion oA is defined as

E(oA) = tA · cA + fA(1− cA)

Herein, with increasing certainty (which means that a larger amount of experi-
ences is available), the influence of the initial trust f ceases.

3.2 Related Work

The multitude of problems and disadvantages of the currently deployed Web
PKI is described by well known researchers [7,9,10]. Monitoring of the Web PKI
reveals its enormous size and shows that indeed malpractices are common [6,14].

Many attempts exist to circumvent the problems imposed by possible CA
failures and thus to enhance Internet security. Certificate pinning (e.g., [8, 24])
means that relying entities store certificates of formerly accessed websites. Based
on the trust on first use approach, it implies that a possible adversary must
be present during the first connection establishment to the website. Unfortu-
nately, this either implies that each CA is trusted equally in case a new web
page is accessed or that the trust decision is transferred to the relying entity
requiring it to have PKI expertise. Also, the approach suffers from the problem
how and when to allow pinned certificates to be exchanged (e.g. due to certifi-
cate expiry). Notarial solutions [2,16,21] maintain databases containing formerly
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observed certificates and can be queried to reconfirm the authenticity of a specific
certificate, sometimes also involving consensus decisions of several independent
notary servers. In this approach, trust is deferred from the CAs to a majority
of notaries. Central instances come with availability and scalability problems.
Also, privacy protection issues and delays due to the communication overhead
are clear disadvantages.

The enhancement of PKI with trust computation has been proposed by many
researchers. The CertainTrust model and CertainLogic [26] used by us are equiv-
alent to the Beta Reputation System and Subjective Logic, both by Jøsang et
al. [17, 18], as these models both rely on binary experiences that are combined
using a Bayesian approach with beta probability density functions. A survey
on different trust models that rely on this computational approach and similar
ones can be found in the surveys by Jøsang et al. [19] and Ruohomaa et al. [27].
Jøsang proposes an algebra for trust assessment in certification chains in [20] but
mainly addresses trust networks similar to PGP [33]. Huang and Nicol [15] also
define another trust model for trust assessment in PKI. Both approaches require
trust values recommended by the intermediates to evaluate trust chains. Such
recommendations are in general not included within commercial certificates and
we do not expect any entity to pay for a certificate that includes a low trust
value. Different certificate classes like domain validated (DV) or extended vali-
dation (EV) can be indicators for such trust values, but in our opinion these are
not sufficient for trust evaluation.

Other researchers base trust evaluation in CAs on their policies and the adher-
ence to those [3, 29]. This requires policy formalization [3, 29, 31] for automated
processing. Such formalized policies are not provided by the CAs, and are in
general far to complex to be evaluated by the relying entities. Therefore, such
approaches require technical and legal experts to process policies [30].

Our solution builds on the techniques of previous works, however there are
several fundamental differences. We combine different mechanisms and use them
as building blocks to solve separate subproblems. The novelty thereby is to lo-
cally and user-specific limit the number of trusted CAs to those the user actually
requires. Different from pure pinning and notarial solutions the CAs in this user-
specific set have different trust levels and might even be fully trusted depending
on the context. Thus our solution does not require an additional check of each
(new) certificate and provides a trade-off between overhead and solely relying on
CAs. While we make use of established computation models for trust evaluation,
we base it on local experiences of the user instead of using recommendations of
trust values within certificates or the evaluation of certificate policies and expert
opinions. Thus, our system can work autonomously and only requires notarial
reconfirmation, when not enough local experience has been collected so far. Fur-
thermore, the management of local experiences guarantees, that independent
from the CA’s global reputation it is not trusted without an additional check, if
the CA has never been observed by the user before. This aims at also protecting
the user from malfunctions of CAs that in general follow good security practices
but are actually irrelevant for the user.
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4 Trust View and Trust Validation

The purpose of establishing a trust view is to enable explicit trust validation
thereby locally reducing the number of trusted CAs on a per-user level. The
differences in the trust needed for different applications are considered during
trust validation. For example, there is a difference in the trust needed to visit a
search engine and the trust needed to supply an online-shopping web site with
your credit card information.

4.1 Challenges

The set of CAs required by a user is not fixed but changes over time. The
challenge herein is to establish and manage a trust view in a dynamic way. We
identified the following constraints for dynamically updating the set of trusted
CAs as well as assigning trust levels to them:

1. Minimal user involvement: an informed assessment of the quality of a
CA’s certification processes is beyond the capabilities of the average Internet
user [13, 28].

2. Incomplete information on CA processes: data on the quality of a CA’s
certification process might be incomprehensible or not available at all.

3. Incomplete information on user requirements: in general, the web
services that a user will contact in the future are unknown and therefore
also the required CAs to verify the certificates of such web services.

4.2 The Trust View

For trust validation, entity e1 has a trust view View. The trust view is the local
knowledge base of e1 and contains all previously collected information about
other entities and their keys. It is built incrementally during its use for trust
validation. The trust view of e1 consists of:

– a set of trusted certificates
– a set of untrusted certificates
– a set of public key trust assessments

The trusted certificates are all certificates that have previously been used to es-
tablish a trustworthy connection to another entity. The untrusted certificates are
those certificates, for which the connection was evaluated untrustworthy. Fur-
thermore, there is one public key trust assessments for each pair of (public key ,
CA name) that was contained in a previously evaluated certification path. A
trust assessment represents all information collected for the respective pair dur-
ing prior trust validations.

A public key trust assessment TA is a tuple (k, ca, S, okl, oit), where

– k is a public key.
– ca is the name of a certification authority.
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– S is a set of certificates for k. The subject of these certificates is ca. This
set contains all the certificates with subject ca and public key k that have
previously been verified by e1.

– okl is an opinion. It represents the opinion of e1 whether k belongs to ca
(key legitimacy of k).

– oit is an opinion. It represents the trust of e1 in ca to issue trustworthy
certificates (issuer trust in ca, when using k).

In order to decide whether the connection to entity e2 is trustworthy, entity e1
runs the trust validation algorithm (cf. Section 4.4).

4.3 Initialization of Trust Assessments

A trust assessment TA = (k, ca, S, okl, oit) is initialized whenever a pair
(public key ,CA name), for which there is no trust assessment in the trust view
View, is observed within a CA certificate C. We assume that a root store is
available during initialization. Then, TA is initialized as follows:

– k = public key

– ca = CA name

– S = {C}
– okl = (1, 1, 1) if the CA is a Root CA, else okl = unknown.

– oit = (0.5, 0, 0.5) if no prior information is available about the issuer trust
of the CA. Else if for 1 ≤ i ≤ n there are trust assessments TAi ∈ View with
Ci ∈ Si, where the issuing CA of Ci is equal to the issuing CA of C, then
f = (

∑n
i=1 E(oit,i))/n and oit = (0.5, 0, f).

The key legitimacy is set to complete (okl = (1, 1, 1)) for Root CA keys as
these keys are confirmed via the root store. For other CA keys, key legitimacy is
computed during trust validation as long as key legitimacy is unknown. During
the evolution of the trust view, key legitimacy may be changed to complete as
soon as enough evidence has been collected. We discuss this in Section 4.5.

The issuer trust oit = (0.5, 0, 0.5) reflects that no experiences have been col-
lected and that the CA may either be trustworthy or not. If the new CA is
certified by a CA that certified several other CAs, for which experiences have
already been collected, we use the average over the expectations of the respec-
tive issuer trusts for initialization. The reason is that a CA evaluates a Sub CA
before signing its key, and thus these Sub CAs are assumed to achieve a similar
level of issuer trust, like a stereotype.

Optimally, further information is collected for initialization. Our system is
open for such extensions. Further information can be gathered from policy eval-
uation as, e.g., proposed by Wazan et al. [29, 30]. A drawback of this approach
is its need for some kind of expert or expert system to evaluate the certificate
policies and practice statements, because these documents cannot be processed
automatically at the time being. So far, no such services are available in practice.
Yet, given such additional data, it can be mapped into an opinion and integrated
into the initialization process.
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Bootstrapping
Despite the fact that an entity will often access the same services and see the same
CAs repeatedly [1], it takes a certain time until enough experiences are collected
such that the system may operate autonomously. Therefore, a bootstrapping pro-
cedure is required to face possible delays and usability problems due to the involve-
ment of additional validation services (cf. Section 4.4 for details). A possibility for
such a bootstrapping procedure is to scan the browsing history. From the history,
the services that are accessed via https can be identified and the respective certi-
fication paths can be downloaded. The paths can then be used to bootstrap the
trust view. This initial bootstrapping is only to be performed once and afterward,
the system can mainly fall back on the collected experiences.

4.4 Trust Validation

We now describe the trust validation algorithm. It takes a trust view of entity
e1 and a certification path for the certificate of entity e2 as input and computes
the key legitimacy of e2’s key to decide whether a connection established with
e2’s key is to be considered trustworthy. The decision depends on the security
criticality of the application that is to be secured by the connection from e1 to
e2. The information available in the trust view may not be sufficient to complete
the trust validation. In such a case, validation services are used as a fall back
mechanism. We present the detailed algorithm in the following:

Input:

– The certification path p = (C1, ..., Cn)
– The trust view View of e1
– A security level l ∈ [0; 1] for Cn. l is selected by e1 and represents the security

criticality of the application that is to be secured by the connection from e1
to e2.

– A required certainty rc ∈ [0; 1]. rc is selected by e1 and represents on how
much previous information the decision must be based to be accepted.

– A list of validation services VS = (vs1, ..., vsj) with outputs
Ri = vs i(C) ∈ {trusted, untrusted, unknown}, 1 ≤ i ≤ j on input of a
certificate C.

Output: R ∈ {trusted, untrusted, unknown}
The algorithm proceeds as follows:

1. If Cn is a trusted certificate in View then R ← trusted
2. If p contains a certificate that is an untrusted certificate in View then R ←

untrusted
3. If Cn is not a certificate in View then

(a) For 1 ≤ i ≤ n − 1 set ki to the public key in Ci and cai to the subject
in Ci.

(b) Initialize the trust assessments for pairs (ki, cai) for which there is no
trust assessment in View (as described in Section 4.3). Store the new
trust assessments in the list TL.
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(c) For 1 ≤ i ≤ n − 1 set okl,i to the key legitimacy of ki and oit,i to the
issuer trust assigned to ki in View.

(d) Set h = {max(i) : okl,i = (1, 1, 1)}
(e) Compute okl,n = (t, c, f) = oit,h ∧ oit,h−1 ∧ · · · ∧ oit,n−1

(f) Compute the expectation exp = E(okl,n)
(g) If exp ≥ l then R ← trusted
(h) If exp < l and c ≥ rc then R ← untrusted
(i) If exp < l and c < rc then

i. For 1 ≤ i ≤ j query validation service vs i for Cn and set Ri =
vs i(Cn).

ii. Set Rc = cons(R1, ..., Rj) to the consensus on (R1, ..., Rj), then R ←
Rc.

(j) Update View. (See Section 4.5 for details.)
4. Return R

According to previous works [20,23,33], the key legitimacy of a key is computed
as the key legitimacy of the CA’s key in conjunction with the issuer trust in
the CA : okl = okl,CA ∧ oit,CA. The computation of the key legitimacy based on
a certification path with length greater than one follows directly from chaining
this rule and the fact that the key legitimacy of the first key kh in the path is
okl,h = (1, 1, 1). Such a key always exists as this holds at least for Root CA keys.
Thus, okl,n = (t, c, f) = oit,h∧oit,h−1∧· · ·∧oit,n−1 as for the CertainLogic AND
operator holds if oA = (1, 1, 1) then oA ∧ oB = oB .

Security Levels
e1 assigns security levels to classes of applications according to their value-at-
stake (cf. [29] for a similar approach). A security level is a real number between 0
and 1. The higher the security level is, the higher is the required key legitimacy
for a connection to be evaluated trustworthy. The assignment of security levels
is a subjective process and relies on the risk profile of e1, which is out of scope of
this paper. General examples for security levels could be 0.99 for online banking,
0.9 for e-government applications, and 0.6 for social networks. Note, that as the
trust validation requires the security level as input, the determination of the
class of application is required. While an automated solution, for example, one
based on content filtering (as also used to detect phishing sites [32]) or based on
analyzing the type of entered data (cf. [22]) is desirable, this is out of scope of
this work. In any case, the security level can be indicated by the entity, e.g., by
using a visual slide control as part of the browser’s user interface.

Validation Services
A certification path containing previously unknown CAs results in a low trust
value. On the one hand this is intended, as it leads to the rejection of keys certi-
fied by unknown CAs. However, this is not necessarily due to malicious behavior,
but due to the lack of information. Thus, whenever the key legitimacy is too low
to consider a connection trustworthy, and the certainty is below a threshold rc
which is set by e1, validation services like notary servers (cf. Section 3.2) are
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queried to reconfirm a certificate. If a certificate is reconfirmed to be authentic,
the connection is considered trustworthy. If the validation services reply with
unknown, i.e., it is unclear if the certificate is trustworthy or not, the algorithm
outputs unknown. Only in this case, the user is asked for a decision.

As the lack of expertise makes user involvement problematic, the ’unknown´
case needs to be avoided whenever possible by the use of an adequate set of
validation services. Further research on additional information sources and the
optimization of the use of validation services is due to future work. Yet, given
sufficiently support, involving the user for decision making might be a viable
approach, for example, when a bank provides his customers with further infor-
mation about their certificates.

4.5 Trust View Update

New information needs to be incorporated into the trust view to be available
during future trust validations. Based on the output of the trust validation, either
positive or negative experiences are collected for the involved trust assessments.
Herein, it is important that only strictly new information is collected. Therefore,
it is checked if a certificate, which is contained in the considered certification
path, is evaluated for the first time based on the state of the trust view. We
present the detailed algorithm in the following:

Input:

– A certification path p = (C1, ..., Cn)
– A trust view View
– An output of the trust validation R
– A list of new trust assessments TL
– A list of validation services VS = (vs1, ..., vsj) with outputs

Ri = vs i(C) ∈ {trusted, untrusted, unknown}, 1 ≤ i ≤ j on input of a
certificate C.

Output: The updated trust view.

The algorithm proceeds as follows:

1. If R = unknown then return View
2. For 1 ≤ i ≤ n− 1 set ki to the public key in Ci, set cai to the subject in Ci

and set TAi = (ki, cai, Si, okl,i, oit,i) to the corresponding trust assessments.
3. If R = trusted then

(a) For 1 ≤ i ≤ n− 1 do
i. If Ci /∈ Si add Ci to Si

ii. If (i = n − 1) or (TAi+1 ∈ TL) or (Ci+1 /∈ Si+1) then update oit,i
with a positive experience.

iii. If TAi ∈ TL then add TAi to View.
(b) Add Cn to View as trusted certificate.
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4. If R = untrusted then
(a) Set h = {max(i) : TAi /∈ TL or the consensus cons(vs1(Ci), ..., vsj(Ci))

= trusted}.
(b) For 1 ≤ i ≤ h− 1 do

i. If Ci /∈ Si add Ci to Si

ii. If (TAi+1 ∈ TL) or (Ci+1 /∈ Si+1) then update oit,i with a positive
experience.

iii. If TAi ∈ TL then add TAi to View
(c) If Ch /∈ Sh add Ch to Sh

(d) If TAh ∈ TL then add TAh to View
(e) If Ch+1 is not an untrusted certificate in View then update oit,h with a

negative experience.
(f) Add Ch+1 to View as untrusted certificate.

5. Return View

Example
An exemplary evolution of the trust view is shown in Figure 1. It visualizes the
experience collection process. Root CAs are denoted with R-CA, Sub CAs with
S-CA. The arrows represent observed certificates.

(a) The system obtains the chain R-CA1 → S-CA1 → EE1. The certificate of
EE1 is accepted. A positive experience is added to each involved CA.

(b) The chain R-CA1 → S-CA2 → EE2 is obtained. The certificate of EE2 is
accepted. A positive experiences is added to each involved CA.

(c) The chain R-CA1 → S-CA2 → EE3 is obtained. The certificate of EE3 is
rejected. A negative experience is added to S-CA2. However, the certification
R-CA1 → S-CA2 was approved during prior observations, thus no negative
experience is added to R-CA1.

(d) The chain R-CA2 → S-CA3 → EE4 is obtained. The certificate of EE4 is
rejected. Thus, the certificate R-CA2 → S-CA3 must be checked. Assuming
its reconfirmation, a negative experience is added to S-CA3, while a positive
experience is added to R-CA2.

(e) The chain R-CA1 → S-CA2 → S-CA3 → EE5 is obtained. The certificate
of EE5 is accepted. A positive experience is added to S-CA2 and S-CA3. R-
CA1 → S-CA2 was evaluated during prior observations, no new experience
is added.

Fixing the Key Legitimacy
Different from the issuer trust, which might change over time, key legitimacy
theoretically is constant once it is approved. From that point on, the issuer trust
in superordinate CAs is of no further relevance. To consider this fact in the trust
validation, key legitimacy is set okl = (1, 1, 1) as soon as enough evidence for the
key legitimacy of a trust assessment is available. The question is, when enough
evidence is available. One approach is to set the key legitimacy based on the
number of positive experiences, or on the number of certificates contained in the
trust assessment. To determine the best approach is due to future work.
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Fig. 1. Evolution of the trust view

Cleaning the Trust View
To prevent a continuous growth of the trust view and to allow the adaptation to
current requirements (e.g., changing browsing behavior), a removal mechanism
is integrated. A trust assessment TA is removed from the local trust view after a
fixed time period has been passed since TA was last used within trust validation.
The length of this time period can be implemented as a system parameter, e.g.,
one year. The determination of the optimal parameter setting is due to future
work.

5 Evaluation

To evaluate our concept, we first summarize the attacker model: First, we assume
the user system not to be compromised in the sense, that an attacker cannot
manipulate the trust view. Attacking user systems is out of scope of this paper.
Second, we assume, that CAs themselves are in general not malicious on purpose.
However, a CA’s key can be used by an attacker to issue malicious certificates
by compromising the CA’s key, compelling the CA or by a CA failure, i.e. when
the CA issues a certificate to an entity without properly checking the entity’s
identity. We further assume that once the malicious certificate is detected, coun-
termeasures are taken like revocation and blacklisting of the certificate.

Attacking a CA does not end in itself but aims at attacking secure connections
between users and web servers. In general the attacker either aims at a specific
user group, i.e. he tries to eavesdrop, monitor or manipulate the communication
of a specific group of people or the attacker aims at a specific service, i.e. he tries
to attack the communication with a specific web server.
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5.1 PKI Attacks

There are two cases, when a user obtains a certificate. Either, trust validation
succeeds. In this case, the user solely relies on the CA system. Yet it implies, that
the user has seen the certificate before, or the user has sufficiently many good
experiences with the involved CAs. The requirements thereby increase with the
security criticality of the application. Or, trust validation fails, in this case the
validation services are queried to reconfirm the certificate. Given the certificate
is trustworthy, the first case will occur most of the times (users in general stick to
a limited set of CAs [1] as they repeatedly access the same services, and mostly
web servers stick to the same CA when renewing their certificates). Thus, it
is acceptable to have costly reconfirmation procedures as e.g. querying several
independent notaries, and we may assume, that the validation services do not
jointly provide false reconfirmations. This implies, that the attacker must com-
promise a CA which has a high reputation in order to be successful. However,
this leads to several disadvantages for the attacker:

If he wants to attack a specific user group he must compromise a CA, with
a high trust level in each of the user’s trust views, otherwise the attack will
be detected as the certificate is checked with the validation services by those
users where trust validation fails. As the trust views are user-specific and not
publicly visible, it is hard to identify such a CA trusted by all the users and it
is questionable if the attacker can even manage to compromise that CA. Thus,
the group of users where an attacker would be successful is reduced to a smaller
group, which is unknown to the attacker and furthermore, the time span where a
successful attack is possible is reduced due to the increased probability of being
detected. The disadvantages for the attacker thereby grow with the number of
the applications he tries to attack and their respective security levels. An attacker
might also try to attack several CAs, but besides the increased difficulty to attack
more than one CA at a time, he is not able to distinguish which user is to be
attacked with which malicious certificate.

If the attacker aims at a specific service, he has the same problem of identifying
a CA which is sufficiently trusted by all attacked users in order not to trigger
the validation services and thus risking a fast detection. Besides that, users that
used the service before have pinned the web server’s certificate, which further
increases the probability of a detection. The CA with which the attacker certainly
has the highest success probability, is the CA that issued the certificates for the
web server in the past. Again, it is in question, if the attacker can manage to
compromise a specific CA.

In summary, this shows, that by the use of trust views an attacker can hardly
employ accidental CA failures. The possible damage is reduced due to the lim-
itation of the number of attackable users, while the attacker has a limited and
unspecific choice of CAs. Furthermore, the damage a possible CA compromise
may cause, highly depends on the CAs visibility in the certification business,
which is a much more natural setting than each existing CA being equally criti-
cal. Furthermore, it becomes easily detectable which CAs need especially strong
protection.
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5.2 Attacks on Computational Trust

The trust views of the users govern when validation services are to be queried.
Thus, attackers can try to attack the computational trust model in order to
improve their success probability when employing a malicious certificate. The
aim in this case is to disturb the correct functioning of the trust based decision
processes. We discuss the standard attacks on computational trust, and how
they apply to our system.

Whitewashing: This means, an entity (in our case a CA) re-appears in a sys-
tem under a new identity to get rid of negative reputation. In our scenario this
implies a CA that issued many incorrect certificates in the past. However, for a
CA to re-appear in the system under a new identity and with a new key, there
are significant hurdles. The CA’s key needs to be certified by another CA which
is already part of the Web PKI, or the CA needs to be incorporated into trusted
root stores in order to pass path validation. Thus, whitewashing is prevented
by standard mechanisms like audits or the required approval by a non-malicious
CA, which a malicious CA is not likely to pass without essential changes in its
processes and structure. This on the other hand can then justify such a white-
washing of the trust values. After re-appearing, before being trusted by users,
the CA needs to demonstrate trustworthiness by correctly issuing certificates,
which also requires to be chosen as a CA by web page operators.

Sybil attacks: A sybil attack means, that an attacker of a reputation system
forges or controls other entities to produce many good ratings for a certain
entity. Yet, such an attack has only limited relevance to our system as there are
no unauthenticated entities that provide recommendations. An adversary could
mount a sybil-like attack by attacking the underlying validation services in order
to maliciously reconfirm certificates by a certain malicious CA and thus falsely
improve the reputation of that CA. Yet, in this case, the attacker can directly
exploit the malicious reconfirmation and therewith annul the trust evaluation.
This shows the importance of the security of the underlying validation services.
However, a successful attack requires both, the compromise of a CA and of the
several validation services.

Exploiting slow trust adaptation: Such an attack means, that the good rep-
utation of a CA can be exploited by an attacker, as it takes some time before
the CA’s good reputation is adapted when a sudden incident changes the CA’s
trustworthiness. Our system does not prevent such attacks. Thus, a CA that is
used by many web pages and that built up a good reputation is a major goal
for attackers. However, the possible loss of the good reputation and their pub-
lic visibility provides strong incentives to such heavyweight CAs to put strong
protection mechanisms in place.

In summary, for an attacker to benefit from attacks on the trust model, long
term planning is required. Furthermore, additional mechanisms must engage
which the attacker cannot influence or control, as for example web page operators
must actually employ a CA in order that the CA becomes visible and trusted
within the users’ trust views.
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5.3 Limitations

While trust views can significantly lower the risk of relying on a malicious CA,
local experiences are no guarantee for correctness. Trust views do not protect
CAs from being compromised. If a CA, for which many positive experiences were
collected, suddenly fails, the relying entity may still falsely rely on a malicious
certificate issued by such a CA. Yet, a CA compromise only threatens those
entities, that trusted in the CA before the compromise, which limits the benefit
for attackers. On the other hand it is also possible, that a connection is falsely
evaluated not to be trustworthy, which relies in the nature of basing decisions
on incomplete information.

Furthermore, trust in the key legitimacy of a service provider’s key is differ-
ent from the trustworthiness of the service provider itself (which, for example,
comprises the quality of the web page and its contents provided by the service
provider). The latter is not addressed by the trust view concept and requires
additional mechanisms like the Web of Trust1 or commercial web page ratings2.
However, such mechanisms require authentication, which is achieved via authen-
tic public keys.

6 Conclusion and Future Work

We have presented the concept of trust views. The trust view maintains a min-
imal set of trusted CAs and furthermore assigns different ratings to each CA,
such that trust decisions can be made depending on the context. Thus, the risk of
relying on a malicious certificate can be governed by the assignment of adequate
security levels to the applications. This enables more restrictive trust decisions
for critical applications like e-banking, where security is more important and less
restrictive rules for less security critical applications. These rules can be adapted
to the relying entity’s risk profile.

Due to the user-specific reduction of the total number of trusted CAs, the
possible attack surface for CA attacks that threaten the respective entity is
reduced. Compromises and misbehavior of CAs that are not included in the trust
view have no effect as such certificates always require additional reconfirmation
and are untrusted when in doubt. CAs that have often been observed—and most
probably will also often be observed in the future—achieve higher issuer trusts
than CAs that are barely observed. This provides a trade-off between trusting in
(a limited set of) CAs and the costly reconfirmation of certificates. Additionally,
privacy problems are mitigated as validation services are only queried in rare
cases and not for every connection establishment, which allows user profiling in
the long run. Furthermore, the load for validation services such as notary servers
is reduced. The application of certificate pinning, i.e. storing trusted certificates,
further mitigates the threat of relying on malicious certificates for previously

1 https://www.mywot.com/
2 e.g., Norton SafeWeb https://safeweb.norton.com/ or McAfee SiteAdvisor
http://www.siteadvisor.com/

https://www.mywot.com/
https://safeweb.norton.com/
http://www.siteadvisor.com/
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accessed services and prevents repeated reconfirmations. On the other hand,
trust validation allows the automated exchange of stored certificates. Considering
the user involvement, which is known to be problematic, the trust view concept
also allows a fine grained steering: the user is only involved when the local
knowledge and the data of the validation services is not sufficient for a decision.
Thus, the total number of warnings is reduced and mainly limited to highly
security sensitive services, which addresses the problem of warning fatigue.

Currently, we are working on the implementation of the presented concept.
Challenges follow from the configuration adjustment to adapt an individual trust
view to the needs of it’s owner and to balance the system parameters. Thereby,
the reduction of false decisions plays an important role. Furthermore, we will
realize possible extensions. The model allows to combine local information with
expert recommendations based on different indicators of trustworthiness or rec-
ommendations from other users. Challenges are the prevention of false or mali-
cious recommendations and the authentication of the recommenders.

Besides that, a trust view allows to detect anomalies, like the unanticipated
exchange of a locally stored certificate. We aim at making this local knowledge
applicable for compromise detection.
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Abstract. We observe that current mainstream digital signature
schemes are complex and inconvenient for end users. We group the main
problems related to these schemes and propose a new approach, cen-
tered on the needs of the end user. The new model is a redesign of the
overall signature process, discarding certificates and the X509 PKI in
favor of simple structures and natural trust relationships modeled on
conventional handwritten signatures.

Keywords: Digital signature, user-centric, usability, notary, notariza-
tion, long-term maintenance, trust.

1 Introduction

Digital signatures are an essential technology in enabling the shift from paper
to paperless environments. The use of electronic documents brings substantial
gains in terms of efficiency and savings. This has led several countries to create
specific legislation regarding the legal validity of digital signatures and electronic
documents. Examples include the United States [1,2], the European Union [3]
and Brazil [4]. These legislations have favored digital signatures schemes reliant
on Public Key Infrastructures (PKIs), especially the X509 [5] PKI model.

Unfortunately, PKIs have well known deficiencies. Ellison and Schneier warn
in [6] about the main risks of PKI from a security perspective. Lopez et al.
describe in [7] the main technical, economical, legal and social reasons that
led to failures in the employment of PKI in different areas. Current real-world
business demands have to be adapted and constrained to work within the PKI
model [8]. Digital signature schemes are no exception.

In our country there are two large hierarchical PKIs. One is an educational
PKI [9] managed by universities and research institutions and used as a test bed
for technology development. The other one is the national PKI [10], run by the
government. It was established in an effort to promote the nationwide use of
digital signatures. Therefore, it’s main purpose has been supplying the digital
certificates needed for signing electronic documents. However, a decade later,
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digital signatures are mostly in use within governmental institutions and private
companies. Their use for personal purposes remains negligible.

One important factor for the limited adoption of digital signatures is the
acquisition cost of certificates and cryptographic devices. In contrast to paper
documents and handwritten signatures, the use of digital signatures is only cost-
effective in environments with high signature volumes. However, other aspects
like the challenges for long-term signature preservation and the overall complex-
ity of the signature process play an even bigger role.

From our experience, we have concluded that, currently, the apparatus nec-
essary to create a digital signature is far too complex and inconvenient for the
end user. Moreover, the model in place does not adequately reflect the natural
interactions and trust relationships between users. We provide more details to
corroborate this claim in Section 2.

Therefore, we propose a different approach to digital signatures, one that
is centered on the user’s necessities. Objectively, a user shall be able to cre-
ate a digital signature easily and quickly, without the requirement of any prior
registration process. Additionally, it shall be possible for a user to assure the
trustworthiness of a signature later, with the help of a trusted third party of his
choosing. Our approach also improves the long-term signature maintenance and
provides a natural trust model based on the relationships established between
entities.

The approach is inspired by the handwritten signature model used in the
countries that practice the Civil Law Tradition [11]. Nevertheless, the main con-
cept, i.e., applying a personal mark to a document and having a third party or
government official authenticate the mark when needed, can also be observed
in other cultures. The Japanese culture, where seals (Hanko or Inkan) replace
handwritten signatures, is such an example.

This paper is structured as follows. In Section 2 we analyze the main problems
concerning the use of digital signatures in conjunction with X509 PKIs. Next,
in Section 3 we present the related work. Then, in Section 4 we present our
user-centric digital signature scheme. In Section 5 we analyze how our proposal
addresses the problems described in Section 2 and how it compares to related
work. Finally, in Section 6 we draw our conclusions and discuss possibilities for
future work.

2 Problems

To create a hand-written signature, one simply draws his personal graphic mark
on the paper document. Then, depending on the purpose of that document or on
the trust relationship between the signatory and the receiver of the document, a
third party authentication may be required. In other words, if the receiver does
not trust the signatory, he may require a trusted third party attestation to the
link between the graphic mark and the identity of the signatory. The attestation
is known as notarization, since it is normally performed by a notary.
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A digital signature also identifies the signatory of a document. But this iden-
tity is only reliable if the validity of the signatory’s public key can be verified.
This is achieved with the use of digital certificates, which are issued by trusted
parties called Certification Authorities (CAs). A CA authenticates public keys
and key holders, and signs certificates asserting that a public key indeed belongs
to who claims to have the corresponding private key. A CA signs certificates for
either end users or other CAs. The infrastructure to support the use of certifi-
cates is called Public Key Infrastructure (PKI) [12].

In contrast to handwritten signatures, the authenticity provided by a digital
signature is not everlasting. This is because the trustworthiness of the corre-
sponding public key and the security of cryptographic algorithms are not ev-
erlasting. A public key is trustworthy as long as the corresponding certificate
is valid. The validity of a certificate ends when: (i) the validity period defined
by the issuing CA ends or (ii) the issuing CA revokes the certificate. The cryp-
tographic algorithms necessary to create digital signatures become insecure as
computer power and cryptanalytic techniques evolve.

The extension of authenticity beyond the lifetimes of certificates and crypto-
graphic algorithms requires the use of timestamps. Since timestamps are signed
objects, their authenticity fades out too. Additionally, the authorities issuing the
timestamps also have to be trusted. In the end, everlasting authenticity requires
an endless use of timestamps, an ever-increasing number of trusted entities and
an ever-growing accumulation of cryptographic evidence (certificates, revocation
statuses and timestamps).

Furthermore, while the prerequisites for a conventional signature do not ex-
ceed a regular pen and a piece of paper, a digital signature requires the possession
of a digital certificate. To obtain a digital certificate one normally has to follow
a registration process at a Registration Authority (RA), which then contacts
a CA to issue the certificate. Depending on the service provider, this process
can take days. In addition, the concept of the certificate could be compared to a
driver’s license. One gives the permission to drive and the other to sign electronic
documents, except for the fact that you should not really need a license to sign
something, nor should you need to buy a new one after a couple of years.

Then there is the problem of key storage. The certificate is tied to a specific
private key that has to be stored in some type of cryptographic device or as
an encrypted file. Therefore, if it is in a device, you have to carry that specific
device with you all the time, or foresee the moment in which you will have to
sign something. If it is stored in a computer, you will only be able to generate
signatures from that computer.

Finally, there is the discrepancy in the notion of trust in the real world and the
one imposed by certificates. Normal trust relationships are bilateral. They are
established over time, in a slow fashion, and are based on experiences. Neverthe-
less, this relationship can be rapidly destroyed. On the other hand, certificates
require unilateral trust in a third party (i.e. the CA) and the trust in a given
certificate is imposed, without the existence of prior experiences [7]. Additionally
the trust relationship with the third party cannot be terminated.
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Given this prospect, we enumerate four main problems:

Problem 1. The older the document signature, the higher the storage and pro-
cessing overhead. The reason is that: (i) the accumulation of cryptographic ev-
idence requires an ever-increasing storage space, and (ii) the validation of the
document signature requires, in turn, the validation of the signature of each
accumulated cryptographic evidence.

Problem 2. Trusting in former trusted parties is an issue. A party that was
trusted in the past may disappear, leaving no data for future signature verifiers
to assess the party’s trustworthiness. It may also be the case that the party does
not fulfill the necessary requirements in the future [13].

Problem 3. The complexity and design characteristics of the current digital sig-
nature scheme make the signature generation inconvenient for end users. More-
over, both signatory and receiver need to be aware of the factors that affect the
authenticity of a signature in the long-term. The absence of such awareness can
result in losses for one or both parties in the event of a signature invalidation.

Problem 4. The notion of trust provided by certificates is not the same as the
notion of trust in the real world which is based on relationships and experiences
made over time [7].

3 Related Work

Improving the techniques used for maintaining the authenticity of document’s
signatures in the long-term has been the focus of many proposals found in the
literature. Many of those rely on a trusted third-party to certify a particular
aspects of a signature, thus being characterized as forms of notarization. The
Cumulative Timestamps technique, proposed in [14] and [15], is such a case.
It has become a prominent technique for extending the lifespan of a digital
signature. Although ultimately impractical, as shown in Section 2, it is currently
the strategy recommended in digital signature standards like CAdES [16] and
XAdES [17].

Cumulative Notarizations [13] is a similar proposal. In this approach a notary
certifies the authenticity of a signature or the authenticity of previous notariza-
tions once they near the end of their validity period. Problem 1 is addressed
because only the cryptographic evidence related to the last notarization is kept.
The proposal also addresses Problem 2 because trust is shifted from one no-
tary to another notary at each new notarization. Thereby former trusted parties
become irrelevant.

In contrast, in the Optimized Certificate [18] proposal, only cryptographic
evidence is certified by the trusted third-party. The idea here is that the cryp-
tographic evidence is sent to, and verified by, a special purpose certification
authority. Next, the authority issues an optimized certificate which replaces all
cryptographic evidence. An optimized certificate is a smaller digital certificate
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containing the same identity data as the original signatory certificate, but its
validity is restricted to the moment of emission. This certificate also serves as a
timestamp. Optimized certificates can also be renewed once the cryptographic
algorithms used in their emission are close to becoming insecure. The proposal
addresses both Problems 1 and 2. Nevertheless, it is impractical since certificate
substitutions are prevented in current advanced electronic signature formats.

Finally, Vigil et al. propose in [19] the use of Notarial Authorities (NAs) as
the central part of a new type of PKI, designed for documents signatures. It is
called Notary Based PKI (NBPKI). In the NBPKI, the trusted parties assert
if a document’s signatory certificate is valid to verify a particular document
signature at a certain date and time. Document signatories and NAs generate
their key pairs and sign their own X.509 certificates. Signatories register their
certificates at Registration Authorities (RA). A document’s signatory certificate
is only trustworthy if notarized. A verifier submits the document signature and
the signatory’s certificate to an NA. The NA checks the validity status of the
certificate with one or more RAs. If the certificate is currently valid, the NA
returns a signed assertion of the validity of the certificate and the existence of the
document signature at the current date and time. The verifier has only to trust
in the issuing NA’s public key. The maintenance of document signature consists
of replacing the current assertion by a new assertion. The NBPKI properly
addresses Problems 1 and 2. Problem 3 is partially addressed.

4 User-Centric Digital Signatures

A user-centric digital signature scheme means that the signature scheme is de-
signed to best suit the needs of the end user. It is an attempt at a redesign, from
the ground up, of the overall digital signature process. The scheme is inspired by
the conventional handwritten signature model practiced in most of Europe and
Latin America. Nonetheless, other cultures can relate to it as well. Therefore,
the entities involved, as well as the interactions between them, are intended to
be familiar to most users.

The goal of the proposal is in empowering the end users, namely the Signatory
and the Receiver (hereinafter called Verifier) of a given signed document. This
means that the users are the ones who choose the requirements of a specific
signature, based on the relevance of the signed document. Likewise, they choose
who to trust and for which purposes.

In the most basic form, the signature process consists of the signatory signing
a document with his private key and passing the document along to the veri-
fier. At this point, the verifier has no guarantee on the signature’s authenticity.
Therefore, he resorts to a third party (i.e., a Notary) of his trust to authenti-
cate the signature. In practice, either the signatory or the verifier can obtain
the signature authentication (hereinafter called notarization) from the selected
notary. But it is in the verifier’s right to choose which notary shall be used. The
signatory also has to register his attributes and his public key at that notary’s
establishment if he hasn’t previously.
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The notarization consists of the notary’s signature upon the original signature
and the current date and time. In the case of Full Notarizations (cf. Definition
2), the signed document is also encompassed. Thus, a notarization serves as both
an assertion of authenticity and a timestamp. As a result, if compared to the
X509 PKI, a Notary combines characteristics of both Registration, Certification
and Time Stamp Authorities (RA, CA and TSA respectively).

The remainder of this section starts with the description of the entities in-
volved (Section 4.1) and the assumptions that ground the proposal (Section 4.2).
Next, we present our definitions (Section 4.3) and procedures (Section 4.4).

4.1 Entities

The proposal is comprised of four entities: end users, namely the Signatory and
the Verifier; the Notary and the Scheme Operator.

Signatory: The Signatory is a user that creates a signature for a given docu-
ment. He is responsible for generating his own key pair and for registering the
public key at a notary establishment.

Notary: The Notary is a trusted party. He is responsible for user enrollment, i.e.,
registering users’ attributes and public keys, and for issuing notarizations. Each
notary has a physical office for enrollment and an online autonomous notarization
service. Notaries are listed as Trusted Service Providers (TSPs) in the Trusted-
service Status List (TSL) [20].

Scheme Operator: The Scheme Operator is the body responsible for the man-
agement and publication of the TSL. This task may be embodied, for example,
by a government agency or a specific department within an organization. In order
to be listed in the TSL, TSPs will have to be assessed. The criteria and methods
used in this evaluation may vary depending on legislation and organizational
policies.

Verifier: The Verifier is the end user interested in assessing the authenticity
(the origin can be identified), the integrity (the content has not been altered)
and chronological proof of existence1 of a given signed document.

4.2 Assumptions

The proposed scheme is grounded on the following assumptions:

Assumption 1. The Notary is a trusted entity within the socio-economic sys-
tem, either on a national or organizational level. He must abide by laws and
regulations concerning a regular notary service [13].

1 Also known as proof of existence, this property provides the date and time at which
an object existed[21]
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Assumption 2. Notary establishments are well distributed geographically. End
Users should be able to perform enrollment or key pair substitution procedures
within the same city or organizational unit.

Assumption 3. The notary establishment has a Secure Storage to store End
Users’ data, signed documents and notarizations. This storage must offer in-
tegrity, authenticity and secrecy guarantees upon stored content. It should also
be properly equipped with backup contingencies. Additionally, its security must
be independent of the security of the Notary’s key pair.

4.3 Definitions

Definition 1. A Signature is a tuple S = (h,A, pk, σ), where h is the hash of
the signed document, A is a set of the signatory’s attributes where A �= ∅, pk
is the signatory’s public key, σ is the signatory’s signature on the concatenation
h||A||pk, using his private key sk.

Definition 2. A Full Notarization is a tuple FN = (id, v, y, f, t, nk, δ), where
id is a unique identifier for FN , v > 0 is the current version of the notarization,
y is the hash of the concatenation D||S, where D is the signed document and
S is the signature (cf. Definition 1), f is the time of the first notarization, i.e.,
v = 1, t is the time when δ was created, nk is a unique identifier for the Notary’s
public key, δ is the Notary’s signature on the concatenation id||v||y||f ||t||nk. For
v = 1, f = t.

Definition 3. A Partial Notarization is a tuple PN = (id, v, y,W, f, t, nk, δ),
where id is a unique identifier for PN , v > 0 is the current version of the
notarization, y is the hash of the concatenation h||S, where h is the hash of
the signed document and S is the signature (cf. Definition 1), W is a set of
instances of h using different hash algorithms where |W | = v, f is the time of
the first notarization, i.e., v = 1, t is the time when δ was created, nk is a
unique identifier for the Notary’s public key, δ is the Notary’s signature on the
concatenation id||v||y||W ||f ||t||nk. For v = 1, f = t.

4.4 Procedures

Notary Management: Notary management refers to the tasks performed by
the Scheme Operator and it is basically comprised of notary registration and
service status changes.

A Notary is responsible for generating his own key pair. Even so, key size and
employed algorithms must comply with the Scheme Operator’s requirements.

The Scheme Operator registers a Notary by listing him as a Trusted Service
Provider (TSP) in the Trusted-service Status List (TSL). He also includes the
Notary’s public key as the service digital identity and sets the service status as
“in accordance”. The Scheme Operator may later change the service status if
needed. Examples of such situations include a temporary suspension or a service
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revocation. In the latter case, the Notary has to generate a new key pair and
provide the new public key to be included in the TSL.

A Notary’s key pair has no fixed validity period. Nonetheless, the Scheme
Operator may arbitrarily revoke his accordance status at any moment. This
generally occurs if the Notary’s private key is compromised or if the crypto-
graphic algorithms used in key pair generation become insecure. There is also
the possibility of the Scheme Operator enforcing a periodical key pair renewal
policy.

In the event that a Notary ceases his operations, the service status is changed
to “revoked” or “not renewed”. In this case, all the stored data regarding the
notarizations he performed must be absorbed by another Notary.

Notary assessment, as well as TSL implementation and management are
subject to local legislation and/or organizational policies. Nonetheless, existing
norms [20] should be respected.

User Management: The user management is performed by the Notary and is
comprised of user enrollment and registration updates.

The Notary starts the enrollment process by verifying the documentation
presented by the user. He then collects the user’s public key and attributes.
Attributes may range from personal information like name, date of birth and
driver’s license number to professional information like roles within an organi-
zation and so on. They may contain any other information that the user judges
useful, as long as the proper documentation to back it up is provided. The Notary
also requires from the user a proof of possession of the private key.

A user registration is updated if there are changes in the attributes or if the
key pair needs to be substituted. A key pair substitution occurs if the user’s
private key is compromised or if the cryptographic algorithms used in its gen-
eration are no longer secure. In case of key compromise, the Notary suspends
new notarizations for that key as soon as notified by the user. In case of aging
algorithms, new notarizations are suspended for all keys generated with those
algorithms. Notarizations are resumed with the registration of a substitute key
pair. The Notary may also require key pair substitutions periodically or based
on the amount of times a key has been used.

The user is allowed to keep multiple keys registered at the same time. Addi-
tionally, he can define restrictions on the number of times a specific key can be
used.

Signature: The signature process input is composed of the signatory’s private
key and the result of the message digest calculation process. This message digest
is calculated on the concatenation of the following elements: the content message
digest, h, a set containing the signatory’s attributes, A, and the signatory’s pub-
lic key, pk. A may optionally be composed of just a subset of the signatory’s
attributes based on their relevance to the content being signed. The result-
ing signature value, σ, and the signed elements together compose the signature
container S:
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S = (h,A, pk, σ)

The signatory may use a key pair previously generated or generate a new
one at signing time. For the signature to be notarized, the related public key
must first be registered at the chosen notary establishment. Once registered,
thi key may be used multiple times, i.e., future notarizations don’t require new
registrations.

Notarization: The notarization is basically a third-party signature that en-
compasses the signed document, the signature and the current date and time.
It serves as both an assertion of validity and a timestamp. As such, it endorses
the identity and/or the attributes claimed by the signatory and attests to the
existence of the signature prior to a determined point in time.

A Notarization can be either a Full Notarization or a Partial Notarization.
The full notarization follows the protocol below:

U −→ N : (D,S)

N −→ U : (id, v, y, f, t, nk, δ)︸ ︷︷ ︸
FN

A user requests a notarization for a signature sending both the signature,
S, and the signed document, D, to the Notary. The Notary first identifies the
signatory based on the public key present in the signature. If this key belongs to
an enrolled user, he checks the claimed attributes and verifies the signature using
the user’s public key. If the verification is successful a notarization is generated.

The first step to generate the notarization container is the calculation of the
content message digest, y, composed of the signed document and the signature.
Next, the Notary generates a unique identifier, id. Then, he adds the notarization
version, v, which in this case must be 1, and the current time, t. Since this is the
first notarization on this signature, i.e., v = 1, f receives the same value as t.
Additionally, the Notary’s public key identifier, nk, is included in the container.
At last, a signature encompassing all previous elements is generated with the
Notary’s private key. The signature value δ is also included in the notarization
container. Before returning the notarization to the user, the Notary saves it along
with the signed document and the signature in his storage.

A Partial Notarization, in turn, is a notarization where the Notary does not
have access to the content of the signed document. It follows the protocol below:

U −→ N : (h, S)

N −→ U : (id, v, y,W, f, t, nk, δ)︸ ︷︷ ︸
PN

When requesting a partial notarization, the user sends the document’s mes-
sage digest, h, along with the signature, S, to the Notary. The Notary proceeds
basically the same way as in a Full Notarization apart from the following excep-
tions:
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– He does not verify the mathematical correctness of the signature. This would
require possession of the signed document;

– He uses h instead of the signed document in the content message digest, y,
calculation;

– He includes the set with the signed document’s message digests, W , in the
notarization container. At this point W is composed of only one element, h;

– Before returning the notarization to the user, he saves only the signature
and the notarization in his storage.

Partial Notarizations are better suited for situations where secrecy is required,
or for documents with temporary relevance. Maintaining the the authenticity of
a partial notarization in the long-term requires the user to be aware of the
security status of the cryptographic algorithms involved. This is because the
user is supposed to renew the notarization before any of the algorithms becomes
insecure.

It should be noted that either one of the users, signatory or verifier, can
request a notarization for a signature. The Notarization renewal procedure is
described later in this Section.

Signature Validation: To be considered trustworthy, a signature must be
mathematically and semantically correct. The mathematical correctness is guar-
anteed if the signature is valid under the signatory’s public key. The semantic
correctness is ensured if the binding between the signatory’s public key and his
attributes was valid when the signature was created. This binding is attested by
the notarization, therefore the latter must also be mathematically and semanti-
cally correct. Mathematical correctness is guaranteed if the notarization is valid
under the Notary’s public key. Semantic correctness is ensured if the Notary’s
service was in accordance when the notarization was created and continues to
be so at the time the end user’s signature is verified.

Given a signature S and a full notarization FN (Definitions 1, 2), the signa-
ture validation process is composed of the following steps:

1. Notary validation: The verifier uses the public key identifier, nk, from the
notarization to check if the correspondent key identifies a Trusted Service
Provider in the TSL and if its current service status is “in accordance”.
1.1 (OPTIONAL) Personal trusted list check : The verifier uses the public

key identifier, nk, to check if the Notary is present on his personal trusted
parties list.

2. Notarization validation: The verifier verifies the mathematical correctness
of the signature value, δ, using the signed document, D, the signature, S,
and the signed elements in FN along with the Notary’s public key extracted
from the TSL as input.

If both validations are successful, the signature is considered trustworthy.
There is no need to verify the mathematical correctness of signature value, σ,
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in S since this verification was already performed by the Notary during the
notarization process.

When verifying a signature S with a partial notarization PN (Definitions 1,
3), the signature validation process is comprised of steps 1 and 2 as before and
these additional steps:

3. Hash collision detection: The verifier calculates digests of the signed docu-
ment and compares them to the digests in field W . This prevents collision
attacks.

4. User Signature validation: The verifier verifies the mathematical correctness
of the signature value, σ, using the signed document, D, and the signed
elements in S along with the signatory public key, pk, as input.

If all validations are successful the signature is considered trustworthy.

Notarization Renewal: Notarization renewals are necessary when: (i) the
Notary’s accordance status is revoked or (ii) the used cryptographic algorithms
are no longer secure or are about to become insecure. In other words, semantic
correctness can no longer be asserted.

There are slight differences between the renewal processes for Full Notariza-
tions and Partial Notarizations. The full notarization renewal follows the proto-
col below:

U −→ N : id

N −→ U : (id, v, y, f, t, nk, δ)︸ ︷︷ ︸
FN

A user requests a notarization renewal by sending the notarization identifier,
id, to the Notary. The Notary fetches the related notarization along with the
signature and the signed document from his storage. He then calculates the
content message digest, y, composed of the signed document and the signature.
Next, he generates a new notarization container using the same values from the
original instance for id and f . In addition, he increments the notarization version,
v, and includes the current time, t, and current Notary public key identifier, nk.
Finally, the Notary signs all previous elements with his private key and includes
the signature value, δ, in the notarization container. Before returning it to the
user, he also substitutes the notarization in his storage.

The partial notarization renewal follows the protocol below:

U −→ N : (hn, id)

N −→ U : (id, v, y,W, f, t, nk, δ)︸ ︷︷ ︸
PN

When requesting a partial notarization renewal the user sends the document’s
new message digest, hn, and the notarization identifier, id, to the Notary. The
Notary fetches the related notarization and the signature from his storage. He
then verifies if there is at least one document message digest in W that is still
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secure, i.e., the cryptographic algorithm used is still secure. This verification pre-
vents intentional collision for the signed document. If the verification succeeds,
the Notary renews the notarization. The rest of the renewal process follows the
same steps as for the full notarization, except for two details:

– He uses hn instead of the signed document in the content message digest, y,
calculation;

– He includes hn in the signed document’s message digests set, W ;

It is important to note that a Full Notarization can be renewed at any point,
even after the cryptographic algorithms become insecure. A Partial Notarization,
on the other hand, must be renewed while the cryptographic algorithm used in
the message digest calculation is still secure. Additionally, it is the verifier’s
responsibility to request notarization renewals.

5 Analysis

In Section 3 we established that Problems 1 and 2 were already addressed in the
Cumulative Notarization [13], Optimized Certificate [19] and NBPKI[19] propos-
als. However, Problem 3 is only partially addressed in the NBPKI and Problem 4
stands untouched. In the remainder of this section we analyze how our proposal
addresses all four problems. We also describe the additional advantages of the
proposed scheme. Lastly, we present implementation considerations.

Problem 1: The long-term maintenance of notarized signatures is less costly
than that of conventional digital signatures. Additionally, the signature valida-
tion process is simplified. We demonstrate this with the following example:

Let’s consider 3 distinguished scenarios: (a) A basic single level PKI. This
PKI has a single CA issuing certificates for the users and a single TSA issuing
timestemps; (b) A multi-level PKI composed of a Root CA with one CA and one
TSA under it, in the second level; (c) A notary issuing partial notarizations (c.f.
Definition 3) for signatures. Additionally, let’s consider that in both (a) and (b)
the validity period of timestamps is 5 years and, due to algorithm obsolescence,
the notarizations in (c) have to be renewed every 15 years.

In (a), the initial cryptographic evidence needed to preserve the validity of
the signature in the long-term is composed of: timestamp, signatory certificate,
CA certificate, TSA certificate and signatory certificate revocation status. Then,
every 5 years a new timestamp and TSA certificate are added to the package.
In (b), the initial cryptographic evidence is composed of timestamp, signatory
certificate, CA certificate, TSA certificate, Root CA certificate and revocation
statuses for signatory and CA certificates. Every 5 years a new timestamp and
TSA certificate are added to the package, plus the previous TSA certificate
revocation status. In (c) the only cryptographic evidence stored by the user is a
single notarization. It is substituted every 15 years.
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Figure 1 illustrates the amount of cryptographic evidence accumulated in each
scenario over a period of 40 years. It shows a linear increase in the amount of
evidence stored in scenarios (a) and (b), while in scenario (c) only one notariza-
tion has to be accounted for. As this notarization is renewed, its size increases
because the size of cryptographic material (keys and message digests) increases
over time. Nonetheless, the storage space needed in (c) is substantially smaller
than in scenarios (a) and (b). The comparison in Figure 1 is also applicable for
the signature validation process. Since every cryptographic evidence is a signed
object, the verifier has to check the mathematical correctness of every object.
Therefore the validation process in scenario (c) is substantially simplified.
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Fig. 1. Cryptographic evidence per signature

For the purpose of simplicity we did not take into account possible storage
optimization2.

Problem 2: The compromise of the notary’s private key (which is indicated by
the TSL), or the obsolescence of cryptographic algorithms, are reasons for the
verifier to renew the notarization. In either case, he only has to trust the notary’s
key used to sign the last notarization in the signature validation process. Old
trusted parties are no longer required in the validation process.

Problem 3: The proposed signature scheme is designed so that a simple or
occasional use becomes easy and requires little knowledge. This is illustrated by
the example below.

2 A TSA certificate has a validity period after which a new certificate with a new key
pair must be issued. If more than one timestamp is issued by a TSA for the same
signature during the lifetime of a certificate, this certificate only needs to be stored
once.
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Let’s take the example of a father and a son. The father gives his son a car,
but keeps it registered in his own name. Some time after, the son moves to a
new city taking the car along. One day, the son receives an excellent offer for
the car, but it is only valid for that day. In this case he needs a proxy document
signed by his father in order to transfer the car ownership, but, due to the time
constraint, mailing the document is not an option.

Now, assuming the father has no prior experience with digital signatures, let’s
apply a hypothetical implementation of our proposal: The father goes to a com-
puter and starts by downloading the signer software (or accessing a web-based
version). He then selects the proxy document, fills in his name, selects the nearest
notary establishment (or the one he normally uses for handwritten signatures)
in the list provided by the software and clicks “sign”. The software then shows
him a code to be written down (or printed) and instructions to go to the no-
tary establishment to complete enrollment. Once at the notary establishment,
he presents his personal documents and the code he received to the notary. Back
home, the father accesses the signer software, selects the signed document and
clicks “notarize”. He then only needs to fill in his son’s email address and click
“send”.

In this process, many things happened without the father being aware of
them. First, the software has downloaded the latest TSL version. Then, when
the father clicked on sign, a keypair for single use was generated, the signature
was created, an enrollment request with the public key was sent tho the notary’s
online service and it, in turn, sent back a proof of possession challenge encrypted
with this public key. Next, the signer software decrypted the challenge with the
private key and showed the resulting code to the father. When the father clicked
“notarize”, the signature was sent to the notary service, which automatically
verified it, notarized it and sent it back. Finally, the private key used in the
process was destroyed, eliminating any need for further key management and
revocation.

Since the signature verifier in this example will be the government employee
responsible for overseeing vehicle ownership transfers, any notary recognized by
the government, i.e., present in the TSL, will do.

The key point in this example is that the user is able to sign a document
easily, without having to learn about certificates, new authorities, or even that
he has a cryptographic key. In other words, the complexity is hidden within the
applications. Arguably, something similar could be achieved for the signature
process with PKI, but then the user would have to learn about the inner details
later in order to understand why his signature has lost its validity after some
time.

In the case of more experienced users, or ones with a regular need for digital
signatures, the model enables them to use the same key multiple times, and even
register multiple keys for different purposes and with restrictions on the number
of times a key is used. Small business are such an example. They may establish
who are the notaries in which each of their main clients and suppliers trusts
and then register keys at those notary establishments. In small towns where
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there is only one notary the scenario becomes even simpler. Another possible
application is to register a single use backup key for emergencies. For example, a
user has a “frequent-use” key registered and the private key is stored in his home
computer. Then, while traveling overseas, he has to sign something urgently. In
this case he can use the backup key that he carries encrypted with a password
in his cellphone. Therefore, only the one notarization will be generated and the
private key can be destroyed.

In regards to signature maintenance, the use of the Full Notarization (Def-
inition 2) provides the easiest maintenance. Verifiers don’t need to be aware
of the security of the algorithms used in the signature process because a full
notarization can be renewed at any point. Software performing a signature val-
idation can even request a notarization renewal without prompting the user.
Partial Notarizations (Definition 3) have to be renewed before cryptographic
algorithms become insecure. Thus, the end user has to be more aware of the un-
derlying complexity of the process than with the full notarization. Nevertheless,
this renewal process could be automatically managed by specialized archiving
software, as long as it stays online all the time to get updates on the security of
the algorithms and to request renewals from the notaries.

Problem 4: Trust in the PKI has a boolean characteristic. Either you trust
the Root CA, and by consequence everything that is under it, or you don’t
trust it. Our proposal, on the other hand, enables different degrees of trust for
different entities. Therefore, the user is able to directly relate trust and risk. For
example, a construction company may have an internal policy in which it accepts
signatures on contracts for small projects notarized by any notary listed on the
TSL. But signatures on contracts with its big suppliers have to be notarized by a
specific notary with which the company has long lasting business relation. This
notary specializes in digital signature notarization, employing, therefore, staff
and security technologies equivalent to a large Certification Authority.

This trust model is closer to the real-world trust model, based on existing
relationships and experiences. If the proposal is implemented within a closed
organization, there already exists a trust relationship between the user and the
organization constituted by an employment contract or membership agreement.
If it is implemented on a nationwide scale, the user may choose to trust any
notary recognized by the government (listed in the TSL), or he may trust only
specific notary’s with which he has prior experience or which posses an impecca-
ble reputation. And he may also trust one notary in favor of another for distinct
purposes depending on the risk of financial losses involved with the document.

In general, the key difference in the proposed approach is that trust is no
longer an imposition, but a choice.

5.1 Additional Advantages

Notarized digital signatures offer some additional advantages if compared to tra-
ditional signatures relying on X509 PKIs. We describe these advantages below:
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Effective Key Revocation: Once the user requests the revocation of his key
pair, the Notary immediately stops issuing notarizations for signatures made
with that key pair. In other words, no more authentic signatures are generated.
Meanwhile, certificate based signatures can still be generated after the certificate
is revoked. The revocation effectiveness, in this case, depends on everybody
getting the updated certificate revocation status and applying it correctly in the
signature validation, which is hard to guarantee.

Dynamically Specifiable Signatory Attributes: The signatory attributes,
i.e., A (Definition 1), contained in each signature can be chosen specifically by
their relevance to the content and/or goal of signed document. For example, some
kinds of documents could require only the signatory name while others would
require numbers and addresses or even authorization data like organizational
role and membership status.

5.2 Implementation Considerations

Assumptions 2 and 3 bring some cost considerations and implementation chal-
lenges that we discuss below.

A notary establishment requires some office space, extra staff in case of high
demand and specific equipment, including servers, cryptographic devices, storage
solutions and contingency equipment. In countries with the civil law tradition,
these establishments are already in place and accordingly staffed. Therefore,
only additional equipment and training are required there. In countries where
there is no such infrastructure, or if the proposal were to be employed within a
closed environment, i.e., a private company, the impact would be bigger. Never-
theless, the establishment of a X509 PKI also requires a substantial investment.
And a Registration Authority also has to distribute offices to serve the pub-
lic. Additionally, the level of security requirements for Certification Authorities
is related to their importance, i.e., the security in a CA at the bottom of the
hierarchy tends to be milder in contrast to a Root CA. The same applies to
notary establishments. The larger the operation coverage and the number or
clients or the kinds of business these clients operate in, the higher the demand
for security.

In regards to the storage solution, although secure storage may be challenging
to implement, as existing notary establishments start to migrate to a paperless
environment it is natural to expect that they will have to acquire such capa-
bilities anyway. Other services performed by notaries also require documents
to be kept for long periods and in a safe manner. The same applies to courts,
governmental institutions and corporations. Additionally, the level of security of
the stored data can be a marketing advantage. Vigil et al. survey in [22] the ex-
isting approaches for long-term archiving in regards to authenticity, integrity
and proof of existence. Approaches for long-term confidentiality are covered
in [23].
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6 Conclusions

Digital signature schemes reliant on X509 PKIs are complex and inconvenient for
end users. Long-term signature maintenance is costly, both in terms of storage
and processing power. Furthermore, the trust model required by these schemes
does not relate to the way trust relationships are normally established.

We address all these problems by redesigning, from the ground up, the entire
digital signature process. This proposal is centered on the end user, making the
signatory and the verifier free to define the requirements of a particular signature
and to establish their own trust relationships. This comes in contrast to tradi-
tional digital signature schemes with a top down approach, where requirements
and trust are imposed. In comparison to current digital signatures, our model
comes closer to the conventional signature practices culturally established in a
large part of the world.

The adoption of this proposal requires the elaboration of a new set of stan-
dards, the implementation of new software solutions and a revision of the legal
aspects of digital signatures. This requires a great effort, but it is the view of the
authors that this will bring better results than continuing to mend a complex
infrastructure that was proposed for a different reality than our current one.

Future work includes the implementation of application prototypes for a test
environment, followed by the conduction of an efficiency and usability evaluation
with real users as a proof of concept.
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Abstract. Intrusion detection systems produce alert sets of low qual-
ity. Many post-processing methods have been proposed to make alert
sets more meaningful to security analysts. Relevant research has to deal
with an important task; implementing proposed methods and carrying
out required experiments. In this paper we propose a platform which
can be used as a test-bed for conducting intrusion detection alerts post-
processing research. All the standard functionality is already implemented
for the user, as she has to implement only the core logic of her method.
Additionally the platform offer important reuse and evaluation capabil-
ities. Finally we use the platform to implement a previous method of
ours, in order to test its usefulness.

Keywords: intrusion detection, post-processing, platform, experiments.

1 Introduction

A lot of research has been focused on post-processing of intrusion detection
alerts in recent years. Intrusion detection systems usually produce alert-sets of
low quality. These alert-sets are characterized by their enormous size, which is
disproportional to the size of the relevant protected systems, their high rate
of false positives and false negatives and their inconsistency in regards to the
real attack plan committed. Researches have been recently working on this field
intensively and have proposed a lot of interesting methods that utilize ideas from
various science fields such as machine learning, data mining, fuzzy logic,time
series etc.
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These research efforts always include commonly used procedures such as read-
ing alerts or evaluating results. Apart from that, researchers usually implement
functionality they have already used in their previous work, while the most im-
portant problem is that comparison of experimental results is most of the time
a big issue.

If segments of the methodologies proposed were formally defined as compo-
nents, then they would be suitable for reuse. They could be reused by their
authors or even by others. Apart from that, standard evaluation components
could make the direct comparison of results easier and more elaborate.

This paper presents the development of a software platform, implemented in
Java, that enables researchers to implement the post-processing solutions they
have designed, as interconnected components. The platform contains well defined
models of all the standard functionality needed by researchers and provides it to
them as ready components. Additionally it offers to them a clear and easy way to
inject their methods in the solution. Emphasis has been given on the reusability
of solution’s parts, in order for the user to be able to reuse her methods or
distribute them to others. The evaluation part has also been standardized, in a
way that results of different implementations are directly comparable.

In [12] an intrusion detection alerts post-processing filter is proposed to reduce
false positives. The filter was developed in Java and consists of three algorithms,
each one of which produces a validity score for each alert. Afterwards the scores
produced for each alert are combined into one final score. The proposed platform
could be used to re-implement this filter. Three components that would simu-
late the functioning of the algorithms along with one component that would be
responsible for the fusion of the three scores could be created in the platform.
The implementation effort needed would be significantly lower, while altering
the final system or re-using parts of it would be very easy.

The remaining of the paper is structured as follows: In Section 2 we present and
briefly discuss related work. Section 3 discusses the actual problems that exist for
researchers trying to test their intrusion detection alerts post-processingmethods.
Section 4 presents the design concepts of our platform. Section 5 analyzes the im-
plementation of our platform,while Section 6 presents the results we have obtained
trying to use the platform to re-implement a previous method of ours.

2 Related Work

2.1 Post-processing Methods

In the past years many interesting alerts post processing solutions, have been
proposed, incorporating methods from various science fields. The most important
ones are analysed as follows:

In [14] authors discuss probabilistic alerts’ similarity. They define a similarity
calculation methodology. They try to aggregate alerts for which there is a rele-
vant match into meta-alerts. For each new alert, they compute similarity to all
existing meta-alerts. The alert is then merged with the best matching meta-alert,
as long as their similarity passes a threshold value.



172 G. Spathoulas, S.K. Katsikas, and A. Charoulis

In [1] an analytical description of alerts’ aggregation and correlation proce-
dures is given. Authors propose an architecture that consists of multiple detec-
tion probes, the outputs of which are fed to aggregation and correlation compo-
nents. In the aggregation phase the algorithm groups events together according
to certain criteria. The aim is to discard multiple identical alerts in sensor level.
In the correlation phase the algorithm creates correlation relationships between
related events according to explicit rules. Once events are in a relationship, they
are considered as part of the same attack and are processed together.

In [8] the motivation is to provide a framework for constructing attack sce-
narios through alert correlation, by using prerequisites and consequences of in-
trusions. The approach is based on the observation that alerts correspond to
different stages of an attack scenario, with the earlier stages preparing for the
later ones. Authors also developed an off-line tool on the basis of the formal
framework, which tries to correlate alerts, by combining post conditions with
prerequisites.

In [15] authors have implemented a complete system that tackles most aspects
of alerts’ post-processing and have conducted experiments on multiple data-sets
to prove the validity of their assumptions. Their system consists of numerous
components each responsible for a different task of post-processing. The alert-
set is serially propagated through these components to the exit of the system.
The system proposed is one of the most significant works in intrusion detection
post-processing and has been influential for many other researchers.

2.2 Relative Platforms

Authors of previous subsection’s work had to make important implementation
efforts in order to test their systems. Our platform provides them with the tools
to efficiently implement their post-processing methods. No similar platform, that
tests intrusion detection alerts post-processing methods, has been proposed in
literature. There are some systems presented in articles published in the early
days of intrusion detection research, that focus on testing the intrusion detection
systems themselves.

Authors in [10] and [9] propose a platform on which the user can create
scripts that simulate intrusive or normal behaviour, in order to test an intrusion
detection system. Then they systematically try to evaluate the performance of
the intrusion detection system in test by observing the detected intrusions.

In [16] the system proposed injects dummy intrusion network traffic into the
normal live traffic of a network. In this way a dataset for testing an intrusion
detection system is created, while normal traffic is as realistic as possible. More-
over the user can test any intrusion she wishes, without creating any real security
issues for the protected network.

In [7] signatures of Snort [11] network-based intrusion detection system are
used as input to an event stream generator that produces randomized synthetic
events that matches the input signatures. The resulting events stream is then
used to trigger a number of different intrusion detection systems and the results
are analyzed.
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It is obvious that these efforts are related to testing the actual intrusion detec-
tion systems. Our motivation is to provide researchers with an elaborate alerts
post processing methods development environment. There is no other system
proposed in bibliography, that shares the same motivation.

3 The Problem

Intrusion detection has been a very intensively researched area in recent years.
Many researchers work on this field and try to improve the quality of the results
obtained by intrusion detection systems. While others try to achieve this by
proposing improvements of the detection techniques, many researchers use post-
processing of the produced alerts. They try to extract valuable knowledge of the
security status of the system from the actual alert set.

Generally produced alert sets are of low quality. The most common problem
is high false positives rate. The percentage of false alerts, is usually so high that
it is hard to isolate the real alerts from false ones. Additionally the relevance
between events and alerts is not always obvious. A single event may produce
multiple identical instances of the same alert or it can produce many alerts that
differ in small subset of their fields. Generally alerts are usually in lower level
of complexity than the events that trigger them. All these factors contribute to
the low quality of the produced alert set.

In general reading alert sets is impractical as they contain thousands of alerts,
which are not all useful or they overlap, while many of them are false. The
motivation of researchers dealing with alert post-processing is to improve the
results obtained from the IDS in every possible way [6,3,17,13,2]. The main
concepts in post-processing of intrusion detection alerts are :

– False positives reduction (filtering)
– Aggregation
– Correlation
– Clustering
– Visualization

Many researchers are working in the field of post processing of intrusion de-
tection alerts, in order to enhance the produced alert-set. An important part of
their efforts is dedicated to implementing their methods and justifying their per-
formance with relative experiments. The main problems hindering these efforts
are :

Researchers have to implement a lot of standard functionality irrelevant to
their methods’ logic. They have to write code for reading the alert-set from the
intrusion detection system, transforming it to a format suitable for processing
or measuring their method’s performance in order to evaluate its efficiency.

Additionally if a researcher wants to extend or enhance a previous method
of hers, then she has to recode all the functionality present in her previous im-
plementation. While the functionality of the code will be similar, the researcher
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has to give a lot of attention to the changes needed to her existing code in order
to function properly in the new implementation.

An important issue comes up when comparing methods of different authors.
Their implementations vary along with the data they use or the evaluation meth-
ods they choose. This makes comparison problematic as different parameters in
each implementation may induce doubts on the validity of the comparison itself.
The reader finds it difficult to compare experimental results and conclude on
which of the proposed methods is most suitable for a post-processing task.

The main principle on which the proposed system is based is to enable re-
searchers to implement their methods in a more efficient and convenient way.
The development effort required should be much lower while researchers should
be given the opportunity to easily reuse or share their ideas.

4 Designing the System

The motivation behind this paper is to produce a platform, which will help the
researchers on implementing their methods. The main ideas behind designing
this platform were :

– Re-use of components implemented in previous methods
– Ready to use components for standard procedures (e.g. reading data from

IDS)
– Included alert sets for widely used cases (e.g. alert set produced by Snort

from DARPA [4],[5] datasets)
– Ready to use performance measuring components
– Ready to use visualization components

The system proposed enables researchers, in intrusion detection alerts post-
processing field, to test the methods they propose in an efficient way. The main
concept is that they should be able to develop components with one or more alert
sets as inputs and one alert set as output. They should then use a graphical
tool to connect these components (send ones output to another’s input). The
components along with the connections structure in which they are connected
make up a solution in our platform. In this way researchers will be able to build
sophisticated methods to improve the initial alert sets quality, with the minimum
effort.

The main building blocks of the solution are the components. There are
generic components that the user of the system may extend in order to achieve
the post-processing functionality she has designed. There are also special compo-
nents which are used to achieve specific functionality and the user is responsible
for setting their parameters.

The flow of alert sets or in other words the connections between the compo-
nents of the solution along with the details of each component are stored in an
XML file. The XML file contains all the required information about each of the
solution’s components.
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4.1 Abstract Solution Component

The user should implement the functionality she has designed. Our system pro-
vides her with all the infrastructure needed in order to start coding her logic.
Every other aspect of the problem besides logic of the method such as reading
data, sending data to other components, checking the validity of these data ex-
changes or measuring performance should be taken care of by our system. The
researcher should be focused only on implementing her methods.

The abstract solution component is a Java Class that contains all the required
characteristics that a component should have.

– Minimum number of inputs
– Maximum number of inputs
– List of accepted input types
– Output type
– Void execute() method that should be overridden by the Class implemented

by the user

The user has to develop her own Java Class for
for each of the custom components used, the user has to develop her own

Java Class which will extend the abstract solution component Class. The only
requirement for the custom Classes is to override the execute() method of the
abstract solution Class to implement the component’s logic.

4.2 Special Components

There are special components that are used to achieve specific tasks needed for
the experiments, such as reading data from an IDS source or measuring the
performance of the system.

IDSDataReader : The IDSDataReader component is responsible for reading
data (intrusion detection systems alerts) from a source and importing them into
the system. This component is specific for each possible case of input. Input
cases are characterized by two parameters; the IDS used and the format it keeps
its data in. For example a IDSDataReader component can be developed to read
data from a Snort installation that keeps data in a MYSQL database, while
another would be needed to read data from a Snort installation that keeps alerts
in a log file and a third one would be required to read data from a Bro IDS
installation.

IDSEvaluator : The IDSEvaluator is another special component responsible
for evaluating the performance of the solution proposed. The performance of
the solution can be measured in various ways, e.g. how many false positives
(alerts without a corresponding event) exist in the final alert set or how many
false negatives exist (events without a corresponding alert). The evaluation is
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committed upon data that represent the real events that have taken place, while
the alerts data-set was being collected. The format in which these data are fed
to the IDSEvaluator component has to be predefined. An example is the XML
format used by DARPA for the real events of DARPA data-sets.

4.3 Connecting the Components

After the researcher has implemented the required components, then the next
step is to combine them, in order to produce a solution. The user uses a graphical
interface to connect components, which is presented in Section 4.4. The system
stores the produced solution in an XML file. This file contains information about
each component such as :

– Id of the components
– Id’s of previous components (their output is connected to the component’s

input)
– Id’s of next components (the output of the component is connected to their

inputs)
– Map containing values of configuration variables of the component

A subsection of a solution XML file that refers to a specific component is
shown below :

<bean id=” id1 ” c l a s s=” component c las s ”>
<proper ty name=” pr ev i ous”>

< l i s t>
<r e f bean=” id2 ”/>

</ l i s t>
</ proper ty>
<proper ty name=”next ”>

< l i s t>
<r e f bean=” id3 ”/>
<r e f bean=” id4 ”/>

</ l i s t>
</ proper ty>
<proper ty name=”configMap”>

<map>
<entry key=”var1” va lue=”value1 ”/>
<entry key=”var2” va lue=”value2 ”/>

</map>
</ proper ty>

</bean>

This entry for the component with id1 defines that its input comes from the
output of the component with id2 and that its output is connected to the inputs
of components with id3 and id4. This is depicted in Figure 1.

The functioning of the specific component is configured by the configMap
property shown in the XML file that contains two configuration variables var1
and var2 along with the respective values.
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Fig. 1. The connections between components

4.4 Using the System

The proposed software contains a few initial components that implement meth-
ods we have developed in previous work of ours, which are enough for researchers
to get the system going. Our aim is to create a public library of components, to
which every researcher will be able to submit her components. If this library is
sufficiently populated then :

– Everyone will have a lot of ready to use components to experiment with
– Developers of well performing components, will receive the analogous recog-

nition
– Researchers will easily expand the work of others
– Comparison of the performance of different methods will be trivial

Of course every user is able to develop from scratch new components. As
mentioned in section 4 the user has to define the acceptable range for the number
of inputs, the accepted input types and the produced output type. The logic of
the users method has to be implemented in a method execute() which should
override an execute() method existing in the abstract component Class.

Then a graphical user interface, enables the user to create a structure of
components. Through a drag and drop procedure the user can place components
on the solution’s canvas and then connect them in serial or parallel manner. The
first component used has to be an IDataReader component, while the last should
usually be an IDataEvaluator component. The structure created can be saved
and loaded in the future. It can also be loaded in another installation of the
platform as long as the required components exist in it. The user can export her
components’ Classes and import to them to another installation of the platform.

The solution (structure of components) created by the user is implemented
as a directed graph of Java objects. Each component used is a node in this
graph. When the user executes her solution the nodes of the graph are visited
in a Breadth First Search (BFS) manner, beginning from the root of the graph.
The execute() method of each component is run, while BFS algorithm’s logic
ensures that no component’s execution is attempted, without first producing
the required input.
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5 Implementing the System

The platform has been developed in Java. In this section its main Classes are
analyzed. They are presented in three subsections relevant to the components of
the system, the data exchanged between these components and the user interface
of the system.

5.1 Components Classes

The main Class of the system is the AbstractSolutionComponent Class. Develop-
ers that want to create their own components must write Classes that implement
this Class. It contains all common functionality that components should have.
AbstractSolutionComponnet Class main properties are :

– An id field, which is unique and representative of each component
– A set of Java Lists of Alert objects, that contain input alert sets
– A Java List of Alert objects, that contain output alert set
– Two Java Lists that contain previous and next components respectively and

provide the means to create an interconnected diagram of components
– A boolean flag that shows if the component has been executed or not

The AbstractSolutioncomponent Class also has all the required methods, such
as getters and setters for it’s fields.

Every other implemented component’s Class inherits AbstractSolutioncom-
ponent Class . All the standard functions (input, output, etc) that a component
should contain are implemented in AbstractSolutioncomponent Class. The only
task that remains to the developer is override the execute() method and embed
into it the core logic of her method.

The execute() method of each component should read input alert-sets from the
inputAlertSet Lists, conduct the processing it has been designed to do and then
store the resulting AlertSet to the outputAlertSet List. Before the execution of
any other component which accepts this components output as input, the system
will copy the outputAlertSet List of this component to the other components
inputAlertSet Lists.

There is also an InitSolutionComponent Class, the objects of which are re-
sponsible for handling all the standard procedures for the solution. Reading data,
validating solutions or evaluating results is committed by cooperating with other
special Classes such as IDataReader, IdataEvaluator and InitializingComponent
interface. All these Classes are depicted in Figure 2.

5.2 Data Classes

Data that flows between the components is mainly Java Lists of Alert Class
objects. There is also an AlertId Class that relates alerts with their categories.
Apart from that another Class used is TrueEvent that holds data of real events
happened and is used by the IDataEvaluator Class. Figure 3 shows the relevant
part of the Class diagram.
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Fig. 2. Class Diagram of classes relevant components construction

Fig. 3. Class Diagram of classes relevant to data types used in the platform

The Alert Class holds data relevant to alerts such as the time-stamp, the
alert’s signature, source IP, destination IP etc. There is a special field in the Alert
Class, which holds a Java Map and is called properties. This can be utilized by
the user, in order to enhance the basic data type (simple alert) with meta-data.
For example a component can calculate a validity score for each alert. This score
can be attached to the alert itself, by including it in the properties map. The
next component that will accept the enhanced alert set as input will be able to
read and utilize this validity score.



180 G. Spathoulas, S.K. Katsikas, and A. Charoulis

AlertId Class relates alerts to their Classes by defining alert id to Class id rela-
tionships. This may be used by a component that needs attack class information
for its processing.

The TrueEvent Class holds data relevant to the true security events occurred.
Its objects contain information such as the time stamp, the duration and source
and destination IPs. This is used by the IDataEvaluator Class, in order to check
if the alerts of the finally produced alert-set are valid or not. If events, relevant
to an alert, exist in the List of TrueEvent objects then this alert is marked as
valid, otherwise it is marked as false.

5.3 User Interface Classes

Finally the third part of Classes of our platform enables the user to create her
solution with a intuitive graphical interface.

Fig. 4. Class Diagram of classes relevant to user interface

The main Class in this part of the platform is ConfigUI. This Class holds
all the information required for the graphical representation of the solution. Its
main properties are a list of all the components of the solution, a list of all the
required packages in an installation for the solution to work and the name of
the solution. All the required methods that enable the graphical user interface
to function, also exist in this Class.
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6 Testing the System

In order to test the system we have used it to re-implement a previous work
of ours. Then we compared the effort needed in both cases and highlighted the
qualitative advantages of using the proposed system.

In [12] we proposed a post-processing filter, to reduce false positives in network-
based intrusion detection systems. The filter consists of three components, the
functioning of which is based upon statistical properties of the input alert set.
The filter shown in Figure 5 was developed in Java for the purposes of the rele-
vant experiments that justified that it is able to drastically filter out false alerts.
There are three components; namely NRA, HAF and UFP. Each one produces
a score for each alert, which indicates the probability of this alert to be true.
Afterwards these three scores produced for each alert are combined into one final
score. A threshold is finally used to identify the alerts that will be rejected.

Fig. 5. The filter

The same filter has been developed by using the proposed system. We have
taken advantage of ready to use functionality such as reading alerts from Snort
and measuring the performance of the filter, as this functionality is implemented
by standard components of the system. We developed three components one for
each component of the original filter by inheriting the AbstractSolutionCompo-
nent Class. Additionally a component responsible for the fusion of the results
obtained by each component have been created.

As it was expected implementing the filter with the proposed system de-
manded marginally less lines of code and less effort from the developer. It has
been calculated that the lines of code needed to be written in the scenario of using
the system were approximately 40% of the lines of code in the original implemen-
tation of the filter. This mainly happened because the original implementation
was characterized by a lot of code redundancy. Parts of code, irrelevant to fil-
ters logic, appears multiple times throughout the initial implementation. This
code handled standard procedural functioning such as receiving an alert-set, ex-
porting an alert-set from a component, calculating false positives rate etc. This
functioning is already implemented in our system and the developer can focus
on writing code only for the logic of her method.

Moreover each component developed in our system is built independently of
the rest of the solution. This means that it can be easily moved out of the
solution, edited, replaced by another or even distributed to others. So if this
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method or part of it is needed to be used in a future work of ours, the procedure
of re-using it will be trivial.

Testing the platform has indicated that in practice it can be of great use
to researchers. It is capable of significantly reducing the effort they have to
put in to implement their methods. It also enables them to efficiently support
their ongoing research by easily expanding previous methods of theirs. Finally
it provides cooperation capabilities, as researches can effortlessly exchange their
methods in the format of ready-to-use components.

7 Discussion and Future Work

It is generally accepted that post-processing of alerts is a significant area of
intrusion detection research. All the authors proposing a relevant method have
to put a lot of effort on implementation, in order to prove their method’s validity.
The implementation part is always difficult and time consuming. There are no
tools, that can help researchers on this problem, so they have to manually code
everything.

Our platform, presented in this paper, fills this gap. We offer to researchers
ready to use functionality, the ability to reuse theirs or others older function-
ality and a standard evaluation environment that enables reliable comparisons
between different methods. Our test has demonstrated that using our platform
makes the implementation easier and less time-consuming.

Our platform is in its initial steps and future work can add value to its use
from researchers. A lot of attention has to be given on making users publish
their components. The true power of our platform is that it enables easy reuse
of previous methods. The researcher has to just import others’ components to
her installation to make use of them, so testing or extending others’ work is very
easy. So if researching community made their components available for public
use, then the community itself would benefit from an important repository of
ready to use components.

Apart from that, obliging users to write in Java is a limitation that should
be vanished. If a researcher has already implemented his methods in another
programming language (C or Matlab), she will not re-implement it in Java just
to make it public to others. We should implement a generic component in our
system that will be able to communicate with external software (functionality
implemented in other languages) and use it in terms of the solution designed in
our platform.

Finally, in order to accommodate functionality, that demands excessive pro-
cessing power, we should implement a second abstract component that will be de-
signed in parallel programming approach. A relevant hardware platform should
be chosen and a component that will execute different parts of its execute()
method on different processors available should be created. In this way the user
that has in her disposal the required hardware, will be able to exploit it in order
to implement and test a complicated, processing power demanding method.
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Abstract. In the area of Intrusion Detection (ID) games are being
played between potential attackers and the Intrusion Detection Systems
(IDSs) that protect the target systems of several attacks. More than a
few game models presented in the past have showed how much benefi-
cial Game Theory could be when incorporating with ID. In this research
work an ID game model is constructed and examined as a signaling game.
First, we construct the ID signaling game in an extensive form by defin-
ing the corresponding payoffs. Next, we represent it in a payoff matrix
as a normal form game. We examine then the solution of the game by
removing the dominated strategies. Finally, we compute all the equilibria
of the ID signaling game in pure and behavioral strategies. The results
give valuable explanations about how ID games are being played, what
are players’ choices and under which circumstances, and the amount of
uncertainty an ID game bears from its start point until the end.

Keywords: intrusion detection, insiders, game theory, signaling game.

1 Introduction

Attempting to model ID as a signaling game, we assume a User who has already
gained access to a Target System (TS) and starts using it, regardless whether he
is a legitimate user, a masquerader, a hacker, or a cracker. The method used to
get into the system, in cases where the User is not authorized, are not considered
here because it is covered by the area of Access Control in IT Security. In our
case, we care about users of the system we do not know whether they are going
to behave legitimately or illegally, accidentally or intentionally.

In signaling games players have no complete information and therefore they
exchange signals to play the game. A signal reflects private information a player
holds and its recipient encodes it in order to take an action.

Osborne and Rubinstein describe in [5] signaling games as Bayesian extensive
games with observable actions in a simple form. Likewise, we formulate, in the
next section, the interactions between a user of the system (normal or attacker)
and the IDS, as a signaling game.
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Assuming an Intrusion Detection System installed on a target system as a
second line of defense, there is a user of this system whose behavior is double
named, usually he acts normally, but, occasionally he acts illegally by breaching
the security policy of the system. Each time the user is acting, he sends a signal,
which is received by the IDS. The IDS decodes this signal as an attempt to
distinguish the action between normal and attacking. These interactions form a
signaling game with two players, the ”sender” (User) and the ”receiver” (IDS ).
The User is informed of the value of an uncertain parameter θ1, which is his
ability to commit a specific type of attack, while the IDS does not know it.
Similarly, the IDS has been designed to detect these types of attacks with an
expected detection rate of value θ1.

Then the User chooses an action, which will be received by the IDS, as a
message m is being transmitted from a sender to a receiver. The IDS observes
the action, but it cannot observe the value of the uncertain parameter θ1. Its
IDS’s turn to take an action a. There are three factors each player’s payoff
depends upon; the value of parameter θ1, the message m sent by the sender, and
the action a taken by the receiver [5].

We need to know how ID signaling games are being played, what players
choose to play, what players’ know when they choose an action, how much certain
they are concerning their choices and their beliefs of what the opponent knows,
in order to give directions and control such a game for the benefit of the IDS
and the TS.

The paper has been organized in sections. The construction of the proposed
signaling game model is illustrated in Section 2. The normal form of the ID
signaling game that models the interactions between players is constructed in
Section 3 and solved in Sections 4 and 5. We briefly review related works in
Sec. 6. Finally, in Section 7, we summarize our research work by evaluating the
model and its operation, and we give suggestions for future research directions.

2 Constructing the ID Signaling Game

The User will move in two ways, acting Legitimately (L) or acting Illegally (I).
The Target System is equipped with an Intrusion Detection System (IDS) ready
to play with this User. The IDS will decide to Prevent (P) the User further
using the TS, or to allow the User to Continue (C) working with it. To make
this decision, the IDS should conclude if the User is an enemy of the TS, i.e. an
Attacker, regardless he is an insider or an outsider who has stolen the identity
of a internal user of the system (masquerader) and gained access.

The IDS does not know for sure if the User is a Normal User or an Attacker.
This means that there is a simple probability distribution. Assuming that the
number of reported attacks is for example the 25% of the occurring events in
a Target System, then the IDS knows with probability 1

4 that the User is an
Attacker and with probability 3

4 that the User is a Normal User. Later on, this
number will be refined to reflect the actual number of attacks that take place
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in this specific Target System. This means that the proposed system will be self
tuning and adjustable to current data related to the Target System itself.

Examining the set of alternative circumstances, the IDS will prevent the User
if he is an Attacker and the Attacker will run off, because he was caught by the
IDS. But if the IDS prevents a Normal User from using the Target System,
then this Normal User might request justice, because a false positive alarm
has been raised against him unfairly. The IDS receives signals from the User,
and the decision whether he is a Normal User or an Attacker derives from the
examination of these signals.

2.1 Defining the Payoffs

The set of actions for every player is a compact subset of the Euclidean space
R2, and because it is finite, the game is a finite game. The set of profiles, corre-
sponding to the set of pure actions, is the combination of actions, one action for
each player, defined as the Cartesian product,

A ≡
∏

iεN Ai.

In the ID signaling game, the set of pure action profiles is defined by

A ≡ AUser ×AIDS = {(L,C), (I, C), (L, P ), (I, P )}.

The number of profiles that are elements of this set is k×m = 2× 2 = 4. We
indicate a member of a profile with (xi)iεN or simply (xi), where N is the set of
players N = {User, IDS}.

Next we specify players’ preference rankings over the action profiles. Each
player iεN ranges the action profiles from the most preferred to the least one.
A preference relation "i on the set A = xiεNAi for player i specifies a binary
relation, represented by a payoff function ui : A → R. The function u is a
continuous function, known also as von Neumann-Morgenstern utility function.
For two pure actions ai1 and ai2 of player i, ui(ai1) ≥ ui(ai2), whenever ai1 " ai2 .
The values of this function are called payoffs or utilities [5].

The utility functions UN for normal user and UA for attacker determine the
corresponding payoffs at each node of the extensive form game and at each cell
of the normal form game respectively. As for the utility function UIDS , we adjust
it to reflect all the preferences, when the opponent is either a Normal User or
an Attacker in a signaling game, as described in the sequel.

Because when playing with different users, the user type matters, we con-
sider the preferences of two different types of user players, a normal user and
an attacker, and the preferences of the IDS when playing with different user
players. Then, we construct the corresponding utility functions following Bin-
more’s method [1], to quantify the outcomes of the proposed game in a variety
of instances.
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Normal User’s Preferences. Interpreting the action profiles when the user
player is a normal user of a system, we consider the corresponding set of a Normal
User’s preferences, denoted by N . This set includes the following four items:

N = {N1,N2,N3,N4}

where,

N1 : A Normal User is acting legitimately and the IDS allows him to continue.
N2 : A Normal User is being prevented by the IDS although he is acting legiti-

mately.
N3 : A Normal User is acting illegally but the IDS allows him to continue.
N4 : A Normal User is being prevented by the IDS because he is acting illegally.

For a Normal User it is most desirable to act legitimately without preventions
and his next choice is to act illegally with no stops, because illegal actions are
not intentional. Similarly, he prefers the IDS to prevent his actions when these
are illegal rather than legitimate. Based on these lines of reasoning, the ranking
of these preferences from the less preferred to the most one gives the following:

N3 ≺ N1 and N2 ≺ N4.

In order to get Normal User’s preferences fully ordered, there is a need for
connection between these two relations. A Normal User most prefers N1 and his
worst choice is N2. Additionally, examining his preferences between N3 and N4,
a Normal User prefers N3 because he has no intention to harm the TS, so he
wants an uninterruptible use of it. This interpretation results into the following
chain of preferences:

N2 ≺ N4 ≺ N3 ≺ N1 (1)

From this set of preferences and the defined relations that reflect the ranking,
we will define the corresponding utility function for the Normal User. Suppose
that UN : {N1,N2,N3,N4} → R is the utility function of the Normal User. With
regard to his preferences, the worst action profile is N2. So, UN (N2) = 0. At
the other end, he mostly prefers N1. Therefore, UN (N1) = 1. Selecting anyone
between the other two preferences in the middle of the rank, we assign 1

2 utility to
the preference N4, that is, UN (N4) =

1
2 . Finally, because N3 is the intermediate

between N4 and N1, we define UN (N3) =
3
4 , by dividing the distance between

UN (N1) and UN (N4) with 2.
In this way, instead of having a ranking of encoded preferences as presented

in expression (1), we have real numbers to represent preference relations, very
handy for calculations. This is a more convenient representation when making
choices, where the criterion is the maximization of the utility function UN . Table
1 below summarizes in the second row the specified utilities for the Normal
User. The third row describes the corresponding utilities free of fractions, after
multiplying them by 4.
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Table 1. Normal User’s Utility Function

x N2 N4 N3 N1

UN (x) 0 1
2

3
4

1
4 · UN (x) 0 2 3 4

Attacker’s Preferences When the user player is an attacker, we consider in
a similar way the set of an Attacker’s preferences, denoted by A.

A = {A1,A2,A3,A4},

where,

A1 : An Attacker does not achieve his goals and he is not being detected.
A2 : An Attacker does not achieve his goals and he is being detected and stopped

by the IDS.
A3 : An Attacker achieves his goals without being detected.
A4 : An Attacker achieves his goals and is being detected and stopped by the

IDS.

As for an Attacker, the most preferable outcomes of the game might be those
where he is achieving his goals. Between being detected or not, he prefers the
second. In addition, he does not prefer to be prevented when acting legitimately,
but he prefers to continue. Ranking these preferences from the less preferred to
the most one, we get:

A2 ≺ A1 and A4 ≺ A3

To connect the above relations and find an ordered ranking of Attacker’s
preferences, we examine further his profile. Taking into account that because he
mostly prefers to achieve his goals no matter whether he will be detected or not,
he is dedicated to his goals. Therefore, the other two preferences will eventually
follow. This explanation results into the following ordered attacker’s preferences:

A2 ≺ A1 ≺ A4 ≺ A3 (2)

Similarly, we will define the corresponding utility function for the Attacker,
based on the set of preferences A and the defined preference relations. Suppose
that UA : {A1,A2,A3,A4} → R is the utility function of the Attacker. With re-
gard to his preferences, an Attacker dislikes action profile A2 and prefers mostly
A3. For this reason, we define UA(A2) = 0 and UA(A3) = 1, respectively. If we
select A1 as one intermediate between A1 and A4 which are left, we define its
utility as UA(A1) =

1
2 . Finally, we calculate UA(A4), following the same reason-

ing as we did before for the Normal User, and we define UA(A4) =
3
4 . In Table 2
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Table 2. Attacker’s Utility Function

x A2 A1 A4 A3

UA(x) 0 1
2

3
4

1
4 · UA(x) 0 2 3 4

below, the second row summarizes the defined utilities for the Attacker. The
third row describes the corresponding utilities free of fractions, after multiplying
them by 4.

In a case where an Attacker has another profile, the preference ranking would
be totally different. For example, if an Attacker is an internal attacker, an insider
of the Target System, then he mostly prefers not to be detected rather than
attacking. His preferences derive from the double role he plays, the mixture
between a Normal user and an Attacker too. In such a situation, the ranking of
his preferences might be as below:

A2 ≺ A4 ≺ A1 ≺ A3 (3)

IDS’s Preferences. The set of an IDS’s preferences is denoted by IDS and
includes eight items in a signaling game, as described in the sequel:

IDS = {IDS1, IDS2, IDS3, IDS4, IDS5, IDS6, IDS7, IDS8},

where,

IDS1 : The IDS allows a Normal User who is acting legitimately to continue.
IDS2 : The IDS prevents a Normal User who is acting legitimately to continue.
IDS3 : The IDS allows a Normal User who is acting illegally to continue.
IDS4 : The IDS prevents a Normal User who is acting illegally to continue.
IDS5 : The IDS allows an Attacker who is acting legitimately to continue.
IDS6 : The IDS prevents an Attacker who is acting legitimately to continue.
IDS7 : The IDS allows an Attacker who is acting illegally to continue.
IDS8 : The IDS prevents an Attacker who is acting illegally to continue.

Ranking these preferences from the most disliked to the most preferred one,
we get:

IDS7 ≺ IDS5 ≺ IDS2 ≺ IDS3 ≺ IDS1 ≺ IDS4 ≺ IDS6 ≺ IDS8 (4)

Next, we will define another utility function for the player IDS. Suppose that
UIDS : {IDS1, IDS2, IDS3, IDS4, IDS5, IDS6, IDS7, IDS8} → R is the util-
ity function for the IDS. The IDS has an aversion to preference IDS7, because
this is the worst case scenario for it that raises a false negative alarm. For this rea-
son, we define UIDS(IDS7) = 0. Furthermore, because it mostly prefers IDS8,
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we define UIDS(IDS8) = 1. Selecting between IDS3 and IDS1, which are inter-
mediate preferences, we decide to define UIDS(IDS3) =

1
2 . Next, because IDS4

is the intermediate between IDS3 and IDS8, we define UIDS(IDS4) =
3
4 , by

calculating the value of UIDS(IDS4) which is the middle between IDS3 and
IDS8, that is:

UIDS(IDS4) = UIDS(IDS3)+
UIDS (IDS8)−UIDS (IDS3)

2 = 1
2+

1− 1
2

2 = 1
2+

1
2

2 =
1
2 + 1

4 = 3
4 .

Calculating the utilities for IDS1 and IDS6 respectively, we get:

UIDS(IDS1) = UIDS(IDS3)+
UIDS(IDS4)−UIDS (IDS3)

2 = 1
2+

3
4−

1
2

2 = 1
2+

1
4

2 =
1
2 + 1

8 = 5
8 .

UIDS(IDS6) = UIDS(IDS4)+
UIDS (IDS8)−UIDS (IDS4)

2 = 3
4+

1− 3
4

2 = 3
4+

1
4

2 =
3
4 + 1

8 = 7
8 .

Finally, we calculate in a similar way the utilities for IDS5 and IDS2 as
described in the sequence:

UIDS(IDS5) = UIDS(IDS7) +
UIDS (IDS3)−UIDS(IDS7)

3 = 0+
1
2−0

3 =
1
2

3 = 1
6 .

UIDS(IDS2) = UIDS(IDS5)+
UIDS(IDS3)−UIDS (IDS5)

2 = 1
6+

1
2−

1
6

2 = 1
6+

2
6

2 =
1
6 + 1

6 = 2
6 = 1

3 .

In Table 3, we summarize the utilities defined for the IDS, in the second
row. The third row contains the corresponding utilities transformed into integer
numbers instead of fractions.

Table 3. IDS’s Utility Function in a Signaling Game

x IDS7 IDS5 IDS2 IDS3 IDS1 IDS4 IDS6 IDS8

UIDS(x) 0 1
6

1
3

1
2

5
8

3
4

7
8

1
24× UIDS(x) 0 4 8 12 15 18 21 24

Regarding the payoffs of this game on behalf of the User, if the IDS permits a
Normal User to Continue, then the Normal User gains 4 points when he is acting
Legitimately, and 1 point less, i.e. he gets 3 points when he is acting Illegally.
Moreover, if the IDS permits an Attacker to Continue, then the Attacker gains
2 points if he acts Legitimately and he doesn’t achieve his goals, and 4 points if
he acts Illegally and he achieves his goals.
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Similarly, if the IDS Prevents a Normal User to use the Target System, then
the Normal User gets no points (0 points) if he acts Legitimately and he gets
2 points if he acts Illegally, because he does not act by purpose. Likewise, if
the IDS Prevents an Attacker to use the Target System, then the Attacker gets
nothing if he acts Legitimately and 3 points if he acts Illegally.

As the User ’s payoffs start from 0 and goes to 4, the IDS ’s payoffs vary
between 0 and 24. There is a difference between the two payoffs’ scales, because
a Normal User has 4 payoffs, an Attacker another 4, whereas the IDS has 8
payoffs, since he might play the game with any of them, either the Normal User
or the Attacker.

Specifically, the IDS gains 15 points if it permits a Normal User who acts
Legitimately to Continue, and 12 points if it permits a Normal User to Continue
although he acts Illegally. In the case it permits an Attacker to Continue because
he acts Legitimately, the IDS gains only 4 points, because, this is a false negative
alarm. If it Prevents a Normal User to Continue although he acts Legitimately,
the IDS gets 8.

In addition, the IDS loses by getting no points at all, when it permits an
Attacker with Illegal actions to Continue. On the contrary, the IDS gains 18
points if it Prevents a Normal User from acting Illegally, 21 points if it Prevents
an Attacker from acting Legitimately, and finally, 24 points if it Prevents an
Attacker from acting Illegally.

Apparently, the ID game as a signaling game is not a zero-sum game, neither
a constant-sum game. An Attacker is pretty happy if he commits an attack
without being caught by the IDS (4 points), but he is a loser if the IDS detects
his intentions correctly and stops him before he achieves his goals (0 points).

In the same way, a Normal User is satisfied by using the Target System in
a Legitimate manner and nobody disturbs or stops him. But when the IDS
Prevents him unfairly from doing so, he is one hundred per cent a loser of the
game.

Conversely, the IDS maximum payoff is when it detects accurately an Attacker
who acts Illegally and stops him (24 points), that is, when the User also gets
some payoff (3 points), because he has already acted Illegally. Finally, the IDS
gets no payoff (0 points) when it leaves undetected an Attacker who acts Illegally
and permits him to Continue using the TS.

Figure 1 shows the extensive form of the ID game as a signaling game, drawn
by the GAMBIT tool [2].

Since the ID game starts with a Chance node, where there is a probability
p with which a User is a Normal User, and a probability 1 − p with which the
User is an Attacker, the game is an incomplete information game, because the
IDS does not know for sure what is the type of User it is interacting (playing)
with. This is the private information the User holds.

Incomplete information games were formulated and studied by John Har-
shanyi in 19671. They are amongst the most challenging games to be solved.

1 Harshanyi shares the 1994 Nobel Prize in Economics, together with John Nash and
Reihard Selten, mainly because of this formulation.
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Fig. 1. Intrusion Detection as a signaling game

They model strategic problems in which the players have no complete infor-
mation about each other’s preferences. They also have the potential to model
irrationality, as was shown in the famous ”gang of four” paper in 1982 (Kreps,
Milgrom, Roberts, and Wilson).

3 Constructing the Normal Form of the ID Signaling
Game

In the ID game there are two players, the IDS which protects the Target Sys-
tem and a User who uses the Target System. In reality, there are a number of
users who act on the Target System, but this is a more complicated setting.
We assume that player User has a binary choice between two actions: he can
either act Legitimately (L) or he can act Illegally (I ). These actions are the
signals sent to the IDS from the User. The IDS has also two actions, to Prevent
(P) the User using the Target System or to permit him to Continue (C ), be-
cause it decided that the signals come from an Attacker or from a Normal User
respectively.

The possible actions described above lead to the sets of strategies that cor-
respond to each player. Two capital letters are assigned to each strategy, the
first corresponds to an action when the User is a Normal User, and the second
corresponds to an action when the User is an Attacker. So, the User has four
strategies. First, he can act Legitimately regardless he is a Normal User or he is
an Attacker (LL). He can act Legitimately if he is a Normal User and Illegally
if he is an Attacker (LI ). He can act Illegally if he is a Normal User (acciden-
tally) and Legitimately if he is an Attacker (bluffing) (IL). Ultimately, he can
act Illegally no matter what he is (II ).

The IDS has four strategies too. It can Prevent the User whatever he is (in-
cluding false positives) (PP). It can Prevent the User if he is an Attacker and
allow him to Continue if he is a Normal User (CP). It can allow the User to
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Continue if he is an Attacker (false negatives) and Prevent the User if he is a
Normal User (false positives) (PC ). Finally, it can allow the User to Continue
regardless he is a Normal User or an Attacker (including false negative) (CC ). It
is remarkable that all these strategies encompass false alarms except the second
one which is the optimal case, to allow a Normal User to Continue and to
Prevent an Attacker. Besides, strategy PC seems irrational, but in fact, in this
case the IDS does not trust the signals it gets from the User.

The payoffs assigned to each strategy are summarized in Table 4 below, where
both cases of a Normal User or an Attacker are included. Rows correspond to
User ’s strategies and columns to the IDS ’s strategies.

Table 4. IDS’s Utility Function in a Signaling Game

PP CP PC CC

LL (0,8)/(0,21) (4,15)/(0,21) (0,8)/(2,4) (4,15)/(2,4)
LI (0,8)/(3,24) (4,15)/(3,24) (0,8)/(4,0) (4,15)/(4,0)
IL (2,18)/(0,21) (3,12)/(0,21) (2,18)/(2,4) (3,12)/(2,4)
II (2,18)/(3,24) (3,12)/(3,24) (2,18)/(4,0) (3,12)/(4,0)

Each cell includes a couple of payoffs pairs. The first pair corresponds to the
case of a Normal User and the second pair corresponds to the case of an Attacker.
The first number in each pair is User ’s payoff and the second is IDS ’s payoff. In
Figure 2 we zoom at the matrix for details.

Fig. 2. Details of the notation used in a cell of the payoffs matrix

Because the IDS knows with probability 1
4 that the User is an Attacker and

with probability 3
4 that he is a Normal User, the expected return to the players

should be calculated by adding the first half of the matrix multiplied by 3
4 and

the second half of the matrix multiplied by 1
4 . The calculations are given in the

sequence:
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4
·

⎛
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To avoid having payoffs in a fraction format, we multiply the above matrix
by 4, and we get the following final payoff matrix:

Table 5. Payoff Matrix for the ID Signaling Game

PP CP PC CC

LL 0,45 12,66 2,28 14,49
LI 3,48 15,69 4,24 16,45
IL 6,75 9,57 8,58 11,40
II 9,78 12,60 10,54 13,36

4 Removing Dominated Strategies

We first solve the ID signaling game by applying the domination criterion, which
says that a rational player should not use a dominated strategy. Binmore [1]
expresses the domination criterion by assuming two strategies s1 and s2 of a
player I and three strategies t1, t2, and t3 of a player II. Then we decide that
for player I, strategy s2 strongly dominates strategy s1 when
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π1(s2, t) > π1(s1, t) (5)

holds for all three values of player II ’s strategy t. Moreover, if the relation
between two strategies is ≥, then the one strategy weakly dominates the other.
In our game we express in algebraic terms the above criterion to check if it holds.
First, we consider that IL is dominated by II because:

[6,9,8,11] < [9,12,10,13]

Using this domination argument, we remove strategy IL from the payoff ma-
trix and the matrix changes to the following:

PP CP PC CC

LL 0,45 12,66 2,28 14,49
LI 3,48 15,69 4,24 16,45
II 9,78 12,60 10,54 13,36

Second, PC is dominated by PP because:

[45,48,78] > [28,24,54]

and thus we reduce the payoff matrix again by removing strategy PC. The
payoff matrix now has the following form:

PP CP CC

LL 0,45 12,66 14,49
LI 3,48 15,69 16,45
II 9,78 12,60 13,36

Third, LL is dominated by LI which can be expressed in algebraic terms as

[3,15,16] > [0,12,14]

So, the strategy LL is also out of the matrix and the payoff matrix turns into
the following:

PP CP CC

LI 3,48 15,69 16,45
II 9,78 12,60 13,36

Finally, strategy CC is dominated by strategy CP as

[69,60] > [45,36]
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Consequently, the above deletions lead to a smaller 2x2 matrix as shown in
Table 6.

Table 6. Reduced Payoff Matrix for the ID Signaling Game

PP CP

LI 3,48 15,69
II 9,78 12,60

Studying the resulting matrix, it makes sense that a Normal User can either
act Legitimately or Illegally, while an Attacker acts only Illegally. In addition,
we should check if there is a mixed strategy equilibrium. Consider that the
probability for player User of playing strategy LI is p, and the probability of
playing strategy II is 1 − p. Then, because the IDS ’s payoffs in strategies PP
and CP are 48 points in the LI strategy, 78 points in the II strategy, and 69
points in the LI strategy and 60 points in the II strategy respectively, we get
the following equation:

48p+ 78(1− p) = 69p+ 60(1− p) (6)

Solving Equation 6 to determine p, we get p = 18
39 which is very close to 0.5

($ 0.461538). The inference is that there is no Nash equilibrium for which player
User will decide to play the LI strategy. It sounds reasonable that an Attacker
will think about acting Illegally all the time and that a Normal User makes
mistakes2.

Similarly, consider that p′ is the probability that player IDS will choose strat-
egy PP, and 1− p′ is the probability player IDS will choose strategy CP. Then
the following equation must hold:

3p′ + 15(1− p′) = 9p′ + 12(1− p′) (7)

Solving Equation 7 to determine p′, we get p′ = 1
3 . Therefore, player IDS will

Prevent the User to Continue with probability 1
3 regardless he is a Normal User

or an Attacker. Furthermore, the IDS will let a Normal User to Continue and
Prevent an Attacker with probability 2

3 which is the most rational strategy.
It seems that player User is indifferent between strategy LI and strategy

II. Therefore, the results lead our reasoning to different approaches, as those
described in the following section.

5 Computing Equilibria in the ID Signaling Game

In a signaling game with two players, the one player knows something the other
doesn’t, that is, the one player holds information the other doesn’t, but he sends

2 A Normal User who is acting legitimately for a while, but at the next point of
time accidentally acts illegally, could be modeled with Selten’s ”Trembling-Hand
Equilibrium”.
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signals to give hints of this private information to the second player. When the
other player picks up the signal, then he decides upon this what action to take as
a response. The corresponding (assigned) payoffs show the winner and the loser
of the game. A signaling game usually admits more than one Nash equilibria.

The Intrusion Detection game described previously is an example of a signal-
ing game, because player User knows if he is a Normal User or an Attacker,
whereas the Intrusion Detection System doesn’t. In addition, the User sends
signals to the IDS by using the Target System, the IDS collects the events gen-
erated by this activity and decides whether to prevent or to allow the User to
continue using the TS, by judging if this activity belongs to a Normal User or
to an Attacker. In the Intrusion Detection game, Chance should start the game
by deciding if player User is a Normal User or an Attacker. Then, player IDS is
at the opposite side of the User and it might either Prevent the User or it might
allow the User to Continue using the TS. The IDS would Prevent the User if it
were aware that the User would damage the system, i.e. he is an Attacker, and
it would allow the User to Continue if it were aware that no damage would be
caused, i.e. he is a Normal User. Unfortunately, only the User knows for sure
that he is a Normal User or an Attacker. In other words, only the User knows
his type.

However, by using the TS, the User is sending a signal of Legitimate activity
when he is a Normal User, and a signal of Illegal activity when he is an Attacker.
To determine the type of signal that corresponds to each activity, i.e. to decode a
signal, we assume that the event reception module hosted by the IDS, collects the
lowest level functions of the operating system (e.g. system calls) and examines
their return values. If the return value of a function indicates that the User has
attempted a system violation, or a security relevant event has successfully taken
place, then an illegal activity is assigned with this. Otherwise, a legitimate action
has taken place.

On average, a Normal User will act Legitimately and an Attacker Illegally.
Nevertheless, aNormal User might act accidentally Illegally, because for instance
he is a novice and as such he makes mistakes (Selten’s trembling hand perfect
equilibrium). Likewise, an Attacker might act Legitimately as an attempt to
bluff so he can avoid detection, or because he is an insider, so he is authorized
for a number of activities, but he takes advantage of them to cause damage. In
conclusion, the User who sends a signal might confuse the IDS on purpose or
unintentionally.

In the next subsections, we follow Binmore’s reasoning for the quiche game [1]
and Gintis’s concepts [3], to solve the ID game by locating any Nash equilibria,
first in pure strategies and afterwards in behavioral strategies.

5.1 Locating Nash Equilibria in Pure Strategies

First, we examine the ID signaling game for Nash equilibria in pure strategies.
Assume that player IDS chooses strategy PP. Then, the best response for player
User is strategy IL, because it is reasonable to play with Legitimate actions if
he is a Normal User and to act Illegally if he is an Attacker, not bluffing since
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he will be caught anyway. Besides, the payoff matrix shows that he is loosing
less by playing IL than in any other choice. Considering the other way, if player
User chooses IL, then the best response for player IDS is again PP. Therefore,
the pair of strategies IL and PP is a Nash equilibrium.

Next, assuming that player IDS plays strategy PC, then player User plays
II as his best response. But reversing the argument, shows that, if player User
plays II, then player IDS plays PP and not PC, because his payoff is maximized
with PP (6 points instead of 1). So, there are no Nash equilibria in which player
IDS chooses strategy PC.

Similarly, if player User uses strategy LL, then player IDS ’s best reply is
strategy CP, whereas, if player IDS plays strategy CP, then player User will
choose either strategy LL or strategy IL as best reply, because their payoffs are
equal (5 points). Namely, it is undetermined what player User will do; he will
act Illegally or Legitimately in the case he is a Normal User? Still, player IDS
should counteract if player User acts Illegally and Prevents him from damaging
the TS. There is a point here that requires further consideration.

In certain environments, we care not only about information related to the
knowledge of the players, but also about information related to their beliefs. In
our case, we examine player IDS ’s beliefs after receiving a signal from player
User, i.e. collects an event from the TS generated by the User. It is coherent
for player IDS to allow the User to Continue using the TS, if it gets a signal of
Normal User, and to Prevent him if it gets a signal of Attacker from him. So,
the fact that player IDS chooses CP adds no more information. If the initial
probability that player User is a Normal User is p, and that he is an Attacker
is 1 − p, this remains unchanged. However, the payoffs lead player User to act
Legitimately when the probability of being a Normal User is higher. For that
reason, it is XL (i.e. IL or LL) the best reply to strategy CP. As a result, there
are no Nash equilibria in which player IDS chooses strategy CP.

Following the same reasoning, consider that player IDS uses strategy CC.
Consequently, player User will use one of the strategies LI or II, that is, it is
undetermined if a Normal User will act Illegally or Legitimately, whereas an
Attacker will definitely act Illegally because he will evade detection. Reversing
the case, if player User chooses LI, then the best response for player IDS is not
strategy CC but strategy CP (3 points instead of -2). The conclusion is that
there are no Nash equilibria when player IDS chooses strategy CC.

To end with the pure strategies, there is only one Nash equilibrium in pure
strategy IL for playerUser and strategy PP for player IDS. Verifying this finding,
the IDS Prevents a Normal User when he is acting Illegally either by purpose
or unintentionally, but it prefers also to Prevent an Attacker to continue using
the TS when he is acting Legitimately, because this legal activity might form
the first steps of a complete attack scenario.

Although a Nash equilibrium has been located in pure strategies, it is neces-
sary to look for other Nash equilibria in mixed strategies. Such a task is quite
difficult and complicated, but Nash has proved that every finite game has at
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least one Nash equilibria if mixed strategies are allowed [1]. In any case, we will
achieve valuable results upon completion.

In order to facilitate this work, one can replace mixed strategies by behavioral
strategies. In the next section, there is an explanation why this can be done, and
a description of the behavioral strategies search for Nash equilibria.

5.2 Locating Nash Equilibria in Behavioral Strategies

Perfect recall games are those where no player ever forgets any piece of informa-
tion that was once in his knowledge. Thus, the ID game is a perfect recall game.
In addition, Kuhn has proved the following theorem for perfect recall games [1]:

Kuhn’s theorem
Whatever mixed or behavioral strategy s that player i may choose in a
game of perfect recall, he or she has a strategy t of the other type with
the property that, however the opponents play, the resulting lottery over
the outcomes of the game is the same for both s and t.

With this theorem, Kuhn has proved that in perfect recall games, mixed
strategies and behavioral strategies are identical. Therefore, instead of searching
for Nash equilibria in mixed strategies, we will examine the behavioral strategies
of the ID game.

A behavioral strategy is a decentralized mixed strategy, that is, like a pure
strategy, it is clear for a player what action to take at each information set, but,
a probability is assigned to each action [1]. Based on this probability, a player
decides how to proceed the game.

In our game, for player User, a behavioral strategy must assign a probability
p with which the User will act Legitimately at the information set Normal User,
and a probability q with which player User will act Legitimately at the informa-
tion set Attacker. Correspondingly, the probability with which player User will
act Illegally at the information set Normal User is 1 − p, and the probability
with which player User will act Illegally at the information set Attacker is 1− q.

Similarly, considering player IDS ’s behavioral strategies, a probability r must
be assigned to the action Prevent at the information set Illegal Activity, and a
probability s to the action Prevent at the information set Legitimate Activity.
The probabilities 1 − r and 1 − s must be assigned to the action Continue, at
the information sets Illegal Activity and Legitimate Activity, respectively.

The established probabilities affect the initial probabilities with which the
game starts. In particular, we mentioned before that at the beginning of the
game, player IDS knows with probability 1

4 that player User is an Attacker,
and with probability 3

4 that he is a Normal User. This is said to be the player’s
prior probabilities for the events that the User is an Attacker or a Normal
User, respectively. Now, another piece of information is added to the IDS ’s
knowledge. It is the behavioral strategy (p, q), which represents the case of acting
Legitimately, whatever player User is (Normal User or Attacker). If player IDS
knows the probabilities p and q, because someone wrote them in a game theory
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book as Binmore says, it should update its beliefs about what player User is.
These new probabilities are called posterior probabilities, and the process we
follow from prior to posterior probabilities is called Bayesian updating.

Assuming that player User chooses to play strategy (p, q), the probability
that the upper branch will be followed and node (a) will be reached is 3

4 ∗ p
whereas the probability to reach the corresponding node (b) is 1

4 ∗ q. Thus, at
the information set Legitimate Activity, the posterior probability for player IDS
when the User is a Normal User, is

prob(User is Normal|User acts Legitimately) = prob(a)
prob(a)+prob(b) =

3
4 ∗p

3
4∗p+

1
4∗q

and when the User is an Attacker, is

prob(User is Attacker|User acts Legitimately) = prob(b)
prob(a)+prob(b) =

1
4∗q

3
4∗p+

1
4∗q

Analyzing player IDS ’s behavior first at the information set Legitimate Activ-
ity, we take into account that player IDS prefers to Prevent player User, when
the latter is an Attacker. Since the probability at the information set Legitimate
Activity is 3

4 ∗p for a Normal User and 1
4 ∗q for an Attacker, the IDS will Prevent

the User at this node of the game, if the following inequality holds:

1

4
q >

3

4
p ⇒ q > 3p (8)

On the other hand, player IDS will allow the User to Continue at the infor-
mation set Legitimate Activity, if the reverse inequality holds, that is,

q < 3p (9)

Finally, player IDS has no interest in choosing either to Prevent or to allow
the User to Continue, if the probabilities are equal, that is,

q = 3p (10)

Regarding the IDS ’s behavior at the information set Illegal Activity, the player
IDS will choose to Prevent the User from using the TS if the following inequality
holds:

1

4
(1− q) >

3

4
(1− p) (11)

Simplifying the inequality (11) we get

q > 3p− 2 (12)

Similarly, player IDS will allow the User to Continue at the information set
Illegal Activity, if the reverse inequality holds, that is,

q < 3p− 2 (13)
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Finally, player IDS has no interest in choosing either to Prevent or to allow
the User to Continue when his signals indicate Illegal Activity, if the probabilities
are equal, that is,

q = 3p− 2 (14)

When we examined the existence of Nash equilibria in pure strategies, we faced
the case of undetermined choices. In particular, we found that if player IDS plays
strategy CP, then player User will choose either strategy LL or strategy IL as
best reply, because their payoffs are equal (5 points). That is to say, we do not
know what player User will do at this node of the game. As a Normal User, he
will either act Illegally or Legitimately, and he is apathetic in choosing whichever
strategy. This was the reason we switched to behavioral strategies, in order to
determine all Nash equilibria. The equations (10) and (14) reveal such cases.

Assuming that the hypothesis (14) is true, then it is also true that

q < 3p (15)

So, the conclusion that derives from (15) is that, player IDS will allow the
User to Continue at the information set Legitimate Activity. Consequently, there
is no point for player User to act Legitimately when he is an Attacker, so he
will better decide to act Illegally. Besides, this might be closer to his aims and
temperament. Therefore, it should be 1 − q = 1, which results in q = 0. But
then probability p can be calculated by (14), that is p = 2

3 . As a result, there is
a Nash equilibrium with q = 3p− 2, when q = 0 and p = 2

3 .
To make it meaningful, player User will decide to act Legitimately with prob-

ability 2
3 if he is a Normal User, while he will definitely decide to act Illegally

with probability 1 if he is an Attacker. Moreover, player User will play Illegally
with probability 1

3 if he is a Normal User.
Furthermore, the following equation must hold when examining player IDS ’s

behavior at the information set Attacker :

(−2)r + 4(1− r) = 3− 2 (16)

Solving Equation 16 we get r = 1
2 . Consequently, the next equation must also

hold:

(−1)s+ 3(1− s) = 2− 1 (17)

Solving also Equation 17 we get s = 1
2 .

Likewise, at the information set Normal User, the following equation must
hold:

0r + 2(1− r) = 1− 1 (18)

Solving Equation 18 we get r = 1. Consequently, the next equation must also
hold:

(−1)s+ 2(1− s) = −1 + 0 (19)
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Solving also Equation 19 we get s = 1.
Decoding these findings, we realize that the IDS ’s behavior is indifferent

between Preventing an Attacker from acting either Illegally or Legitimately
(r = s = 1

2 ). In addition, it sounds strange that the IDS will Prevent a Normal
User to continue using the TS for sure, when acting either Illegally or Legiti-
mately. All these happen when assuming that initially player User is a Normal
User with probability 3

4 or an Attacker with probability 1
4 . If the initial proba-

bilities change, then the above results will be affected significantly. Specifically
the probability with which a Normal User acts Illegally (13 ) will be decreased, if
we decrease the initial probability 1

4 with which a User is an Attacker. This is
really high to be true.

Next, if the hypothesis (10) is true, then the inference is that player IDS
has no interest in deciding either to Prevent or to allow the User to Continue,
if the probabilities are equal. But from Inequality 15 we know that there is a
Nash equilibrium when q < 3p. Therefore, there is no way to have another Nash
equilibrium when q = 3p.

6 Related Work

Patcha and Park have modeled the interactions between the nodes of an ad hoc
network as an incomplete information game in [6] and [7]. They formulate a
signaling game between an attacker and a node of a MANET, where an IDS
is present to defend attacks. They use a more general perspective in their ap-
proach, they assume that a node might be either a regular node or a malicious
node/attacker, but they do not use the utility function nor payoffs calculated
by players’ preferences. Although their approach is interesting, it is not possi-
ble to get insights from the structure of players’ behavior in such a generalized
framework.

Among the most recent related works is described in [4]. Lin et.al. have used
signaling games to model specific attack-defense scenarios on confidentiality.
Their work assumes that an IDS is a defender and examines which strategies are
maximizing its payoffs when detection has been completed.

In [8] there is another signaling game for wireless sensor networks, in which
some nodes are malicious. An intrusion detection mechanism is proposed to assist
the selection of optimal strategies to defend these malicious nodes.

7 Conclusion

The proposed work provides a formulation of the ID game as a signaling game,
by examining players’ preferences and calculating the corresponding payoffs. The
construction of such a game requires the same elements to be specified, but the
game has a different method to be examined and solved. Our results show that
the problem of multiple NE and which one to choose appears again revealing
the uncertainty of how the game will be played in the future. Therefore, there is
a need for Nash equilibrium refinements, in order to choose one that might be
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selected. But also, the ID signaling game shows the need for defining new signals,
which will support its formulation and will give us a better understanding in the
interactions that take place between attackers and IDSs. Rather than trying
again to solve the problem of signal identification, we have chosen an approach
for behavioral detection, given that an IDS identifies with a certain accuracy a
user’s actions. This is the inherent uncertainty of an ID signaling game. Future
research directions include many users who act on the Target System, but this
is a more complicated setting.
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