
Chapter 12
Nanocrystalline Apatite-Based Biomaterials
and Stem Cells in Orthopaedics
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Abstract Nanocrystalline apatite-based biomaterials and stem cells are emerging
research fields in orthopaedic surgery and traumatology that have the potential of
improving quality of life of the elderly and enhance health-related socio-economic
challenges. Nanocrystalline apatite-based biomaterials and especially calcium phos-
phate nano-biomaterials exploit new physical, chemical and biological properties
that have the possibility to increase surface area and improve tissue integration.
Stem cells of adult origin decrease inflammation, increase vascularity and are able
to replace degenerated tissue cells during the process of regeneration. The bone
is the only human tissue that regenerates. Musculoskeletal disorders including
osteoporotic fractures and osteoarthritis decrease quality of life in the elderly and
cause severe burden on economics. Nanocrystalline calcium phosphate bioceramics
have the ability to prevent or treat osteoporotic fractures when combined with stem
cells. These biomaterials may also be used for drug delivery purposes to treat bone
infections when combined with stem cell as they can assist in treating osteoarthritis.
Current research challenges are trying to overcome the toxicity and carcinogenesis
with these cells and nanomaterials. Long-term stability of these cells and materials
is another challenge for these materials. This chapter deals with nanocrystalline
calcium phosphate bioceramics and mesenchymal stem cells.
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12.1 Introduction

Medical materials also named as “biomaterials” are used alone or in combination
with cells and signalling molecules to engineer and regenerate missing or injured
tissues and organs [1]. Metals such as stainless steel, cobalt chromium and titanium
alloys and various ceramics and polymers were successfully used to replace
musculoskeletal tissues for decades. In fact, in early civilisations of Mesopotamia
and Egypt, medical materials called “implants” were used to restore missing teeth
and defects of bones. Material is the matter from which a thing is or can be
made, and a biomaterial is defined as a biological or synthetic substance which
can be introduced into body tissue as part of an implanted medical device or used
to replace an organ and/or bodily function. Nanomaterial is a material having
particles or constituents of nanoscale dimensions or one that is produced by
nanotechnology. Bioceramics are non-metallic synthetic grafts used to regenerate
and/or replace bones and joints [2–4]. Annually, 3–5 % of the world’s population
will have some form of medical implants inserted into their body. Fifty percent of
these implants are used to replace degenerated joints and restore fractured bones.
Although metals are the most commonly used implants, their longevity is limited
and they need to be revised due to loosening. Studies to improve metallic implants
mechanical and surface properties are advancing their clinical outcome. Particle
disease [5] however is a leading cause of total joint revision procedures with no
approved drug therapy to prevent or inhibit osteolysis. To prevent this disease, a
new quest has emerged to investigate the possibility of using non-metallic implants
including ceramics and polymers. Nanocrystalline apatite-based biomaterials were
developed for biomedical applications [6–8]. We have produced and characterised
various apatite-based biomaterials of micro- and nano-size to be used in bone
regeneration. We replaced trace amount of calcium with trace elements in some
of our formulations to better stimulate bone formation. This chapter covers our last
20 years of experience on apatite-based bioceramics and their interaction with cells
and tissues.

12.2 Production of Nanocrystalline Apatite-Based
Biomaterials

In the last 30 years, a class of oxidic inorganic compounds containing calcium and
phosphorus in their structure has evolved into a variety of synthetic bone substitutes
owing to the fact that the inorganic portion of the natural bone resembles closely the
hydrated calcium phosphate compound known as hydroxyapatite. This compound
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is commonly represented by the formula Ca10(HPO4)6(OH)2 and is referred to as
HAp in the literature. Chemically, the bone apatite is distinguished from synthetic
HAp by a deficiency of calcium in its constitution and incorporation of a variety of
ions such as NaC, KC, Mg2C, Zn2C, Sr2C, Si4C, F� and CO3

2– in trace quantities,
i.e. <1 %. These entities play important roles on the behaviour and the performance
of the skeletal bone.

The synthetic mineral HAp was found to possess a multitude of useful biological
properties which renders it as an indispensible material for replacement and repair
of the natural bone tissue in the human body. It has excellent biocompatibility and
bioactivity [9]. However, the resorption rate in the body is rather low. A second
calcium phosphate compound, known as tricalcium phosphate, designated as TCP,
also displayed desirable biological properties with faster resorption. Therefore, for
adjustable resorption and remodelling, HAp and TCP can be combined in a biphasic
composite with different proportions. The ratio of Ca to P in HAp is 1.67; this is very
close to that in the natural bone. The formula for TCP is 3CaO�P2O5, hence its Ca
to P ratio is lower.

Various techniques have been developed for synthesising calcium phosphate
compounds mentioned above. The methods for producing HAp or TCP, and their
combinations, results in fine ceramic powders with controlled chemical purity. The
powders are then used to manufacture customised grafting materials for specific
clinical applications. The grafts may be in the form of powder, granules or bulk
ceramics sintered following the compaction of the powder in a suitable die. In bulk
form, the sintered ceramic may be manufactured with desired pore architecture so
that it mimics the natural bone in the body. Recently, HAp and TCP combined with
biocompatible polymers are used for the production of various types of scaffolds.
Another potential application is the coating of the surfaces of metallic or ceramic
implants with thin layers of HAp or TCP in order to produce a biocompatible
interface between the implant and the soft tissue.

The chemical route for obtaining HAp or TCP powder is based on an acid-
base reaction which results in the precipitation of a solid precursor from aqueous
solution. For this purpose the solution of a calcium salt of known molarity is
combined by stirring with a solution containing phosphate ions of known strength
in a reactor under controlled temperature and pH conditions [10–13]. By observing
correct stoichiometry a solid precursor of the desired calcium phosphate compound
is formed. This slurry is aged and then the precursor is separated from the liquor
by centrifugal filtration and repeated washings. The cake so obtained is calcined
at temperatures above 700 ıC in order to arrive at the calcium phosphate powder
of interest. The formation of HAp or TCP throughout the chemical process can be
described by the following ionic reactions:

10Ca2C C 6PO4
3� C 2OH� ! Ca10.PO4/6.OH/2 (12.1)

3Ca2C C 2PO4
3� ! 3CaO � P2O5 (12.2)
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A novel approach in chemical synthesis of nanocrystalline HAp powder has
been reported [14] in which the application of microwave irradiation during the
process resulted in spherulitic HAp particles which exhibited long-term flow ability
even after 3 years of storage in non-hermetically sealed containers. Still another
novelty was the use of sol-gel technique for the synthesis of ultrafine HAp powders
[15–17]. In general, the amorphous precursors of the sol-gel route were found to
crystallise to HAp at lower temperatures, but the products suffered from carbonate
inclusions.

In a solid-liquid reaction approach [18, 19], the calcium phosphate compound
was synthesised by reacting a dilute phosphoric acid solution with an aqueous slurry
of Ca(OH)2, again under controlled temperature and pH. The resulting mass is then
dried by heating, and then the precursor was calcined in a muffle furnace to obtain
the CaP powder. The advantage of this process was that all participating ions were
preserved in the solid mass, minimising the compositional variations, but the powder
particle size would be coarser.

Although HAp possesses desirable biocompatibility, its medical applications
were reported to be limited due to poor mechanical properties and inefficacy in
its osseo-behaviour. For example, low tensile strength and low fracture toughness
have been the major causes which inhibited the use of HAp ceramics in load
bearing applications. One way of enhancing the strength and osseointegration
is to use siliconised HAp. Silicon (Si) was incorporated in the HAp structure
by partial replacement of the phosphorus as described in the following formula
[20, 21]:

Ca10.PO4/6�x.SiO4/x.OH/2�x (12.3)

In a review on the synthesis of silicon substituted HAp and ’-TCP [22], it was
reported that silicon tends to inhibit grain growth in CaP materials resulting in
finer microstructure, which constitute the basis for improved strength. In addition,
it has been found that silicon played a significant role on the bone and the cartilage
systems. The increased bioactivity and apposition were attributed to a number of
different factors such as transformation of the material surface to a biologically
equivalent apatite, increased solubility of the material and a more electronegative
surface, all encouraging enhanced biomimetic precipitation on the surface.

12.2.1 Combining with Trace Elements

The calcium phosphate powders and ceramics used in our bone substitution
studies included pure HAp, HApCTCP composites, Si- and/or Sr-doped HAp and
HApCwollastonite composites. As defined recently [23], we used the acid-base
reaction technique for manufacturing powders of HAp containing Si and trace
elements for biomedical purposes. The HAp powder modified with Si was produced
by partial substitution of trace elements for P in the molecular formula of HAp.
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The Si addition was made to the Ca(OH)2 slurry in the form of an organometallic
solution of Si known as TEOS. The formula of HAp modified by silicon was
Ca10(PO4)5�5(SiO4)0.5(OH)1.5. Trace elements were added to the Ca site of the HAp
in an amount of 250, 500 and 1,000 ppm. An equivalent amount of Ca was reduced
in the Ca(OH)2 suspension. The HAp powder which contained trace elements and
Si as co-dopants had 250, 500 and 1,000 ppm of trace element and 0.5 atom of Si in
the molecular formula.

Wollastonite is a calcium silicate compound formulated as CaSiO3. Wollastonite
has osteoconductive properties by its own [24]. Wollastonite was added to HAp in
order to produce HAp-wollastonite composites in this study. Synthetic wollastonite
was manufactured by the reaction of an intimate mixture of CaCO3 and SiO2

powders in accordance with the following reaction:

CaCO3 C SiO2 ! CaSiO3 (12.4)

This reaction was carried out at 1,250 ıC for a total duration of 72 h. The
formation of wollastonite was verified by X-ray diffraction (XRD) analysis.

A frit was introduced into HAp-wollastonite powder mixtures to facilitate
sintering of the compacts. Frit had a chemical composition on weight percent basis
as 5.5 % Na2O, 12.1 % CaO, 11.8 % Al2O3 and 60.6 % SiO2.

12.2.2 Characterisation

12.2.2.1 X-Ray Diffraction Analysis (XRD)

X-ray diffraction analysis is used for material characterisation and to determine
the crystal structure of nanocrystalline apatite-based biomaterials. Crystallographic
descriptions of trace elements incorporated into the HAp composites are carried out
according to the Joint Committee on Powder Diffraction and Standards (JCPDS,
HA, 09-0432).

12.2.2.2 Porosity Test

Pore formation in ceramics causes attachment and proliferation of osteoblasts. Pore
formation in the composites is tested according to the standard test method for water
absorption, bulk density, apparent porosity and apparent specific gravity of fired
whiteware products (ASTM C 373-88). For obtaining porosity firstly, weight of
ceramics (Wdry) is measured before placing them into water. After 24 h of immersion
in water, weight of suspended samples (Wsusp) was measured. The composites are
placed onto paper towel for wiping out of the water from the surface and saturated
weights (Wsat) are measured. In the present study, xylene was used as immersion
liquid instead of water.
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The results of the test are expressed by using the formula given below:

dbulk D Wdry � 0:861=
�
Wsat � Wsusp

�
(12.5)

where dbulk is the bulk density of the ceramic and 0.861 is the density of xylene.
The following formulae were used for obtaining sintered density in terms of

percentage of the theoretical density (%TD) and the percentage porosity (%P):

dbulk=dth � 100 D %TD (12.6)

100 � %TD D %P (12.7)

The theoretical density of hydroxyapatite was taken as 3.156 g/cm3.

12.2.2.3 Scanning Electron Microscopy (SEM)

The scanning electron microscope equipped with an X-ray microanalysis system
was used for imaging higher magnifications of the material. SEM examinations are
performed on broken surfaces after coating materials with a gold layer by the sputter
coating equipment.

12.3 Bone Structure and Function

The bone itself is a composite consisting of HAp nanorods embedded into a collagen
matrix. It is a protein matrix strengthened basically with calcium and phosphate.
Mostly type I collagen and cells form its organic component where minerals
establish its inorganic phase. The bone is a metabolically active vascular tissue that
has the capability to regenerate.

Bones are categorised as long, short, flat and irregular according to their shapes.
Long bones are separated into parts according to their functions. The outer shell
that is named as the cortex (Fig. 12.1) is thicker and the middle part that contains
the bone marrow that is named as the medulla (Fig. 12.2) is narrower at the center
of the long bone. This is the narrow shaft of bone called the diaphysis. The areas
next to the diaphysis and towards the endings of the bone are named as metaphysis.
The cortex becomes narrower and the medulla is wider in the metaphysis. Blood
circulation and metabolic activity is higher in the metaphysis related to its structure,
whereas the diaphysis is stronger but metabolically less active. The metaphysis ends
at the physis which is of cartilage named also as the growth plate in children and
growing adolescent. Longitudinal growth of bones occurs from the physis, whereas
transverse growth occurs from the apophysis. The physis and apophysis calcify at
the end of the growth period. The area from the physis to the end of the bone
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Fig. 12.1 Cortical bone

Fig. 12.2 Cancellous bone
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Fig. 12.3 Flat bones of the cranium connect each other with connective tissue

is named as the epiphysis. Almost each long bone ends with articular cartilage
constituting a joint that allows movement. Samples to short bones are the ones at
the wrist and ankle joints. These bones are tightly packed with ligaments allowing
essential but limited motion. Bones of the cranium (Fig. 12.3) are typical flat bones
and bones of the spine are examples of irregular bones.

Bones protect internal organs from outer powers. They allow movement as all
muscles attach to them. Bones produce new blood cells in their bone marrow and the
bone marrow is one of the most well-known sources of mesenchymal stem cells. The
bone also serves as the depot of minerals and trace elements. For example. calcium
is stored in bones and when needed it is released from there by certain hormones.

Mechanical properties of bone are important for protection and movement
functions. The minerals that constitute the inorganic part of the bone attain strength
that can indirectly be measured by dual energy X-ray absorptiometry (DXA) [25].
An alternative technology named vibration analysis is assessed to quantify bone
strength recently [26]. The organic part of the bone is mainly of collagen type 1. This
component gives elasticity to the bone. Due to its unique composition of organic
and inorganic components, the bone is as strong as steel but lighter. As the bone is a
living tissue, cells regularly exchange its components. This turnover of organic and
inorganic parts of the bone is characterised as homeostasis. As one part of the bone
is broken down (catabolised), it is regenerated (anabolised) immediately in children
and adults. With ageing and due to the genetic code of individuals, the breaking
down of the bone by osteoclasts turns to be faster than new bone production by
osteoblasts, leading to a condition of brittle bone.
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Fig. 12.4 The periosteum

Osteoporosis is defined as loss of bone mineral density (BMD) and deterioration
of bone microarchitecture leading to low quality of the bone that may end up with
fractures [27]. From the mechanical point of view, whenever the organic component
is removed the bone becomes brittle. When the inorganic component is removed
the bone becomes highly elastic but it cannot bear weight. The balance of the bone
is maintained by its cells through various internal and external stimulators. Bone
morphogenic proteins (BMP) which are mostly members of the transforming growth
factor (TGF) beta family are the most important signalling molecules that act on
bone cell proliferation and differentiation. BMPs are also important in bone growth
and regeneration. Systemic growth factors, neural mediators [28] and physical,
electrical and magnetic stimulators are proposed to mediate bone formation and
regeneration through BMPs [29].

When the unity of the bone is interrupted by a fracture, the initial stage of
response will be inflammation. The skin of the bone that is called the perios-
teum (Fig. 12.4) prevents the leakage of blood into other tissues. The so-called
haematoma entrapped in the periosteum will short after play a major effect in
regeneration. The necrotic tissue at the fracture ends is resorbed by osteoclasts
when internal or external fixation is attained. This is followed by the repair of blood
cells and appearance of osteoblast. Osteoblasts repair the injured bone, whereas the
haematoma is calcified by these cells. After initial healing is achieved, osteoblasts
will reshape the bone working together with osteoclasts. This final stage of repair is
named as regeneration as the original tissue is reconstructed. Osteocytes are the cells
of bone tissue that are responsible of communication. In case of injury, these cells
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invite the osteoclasts and osteoblasts to initiate repair. Cortical bone, cancellous
bone and the periosteum have cells and mediators that can initiate and continue
with the process of regeneration. Still the most important factors that take role in
bone regeneration are adequate and appropriate blood circulation and attainment of
stability.

12.4 Stem Cells and Cell Response to Nanocrystalline
Apatite-Based Biomaterials

Mesenchymal stem cells (MSCs) have the potential to convert to osteoblasts when
essential [30, 31]. These cells are frequently used together with natural or synthetic
matrices to regenerate the bone [31]. Apatite-based biomaterials are currently used
in non-weight-bearing bone sites as osteoconductive materials. In a recent study, we
were able to produce 300 and 500 nm nano-HAp powder clusters (Figs. 12.5 and
12.6) by heating them up to 300 ıC and 1,000 ıC, respectively. When these nano-
HAp powder clusters were combined with MSCs in culture, they attached (Fig. 12.7)
and proliferated well (Fig. 12.8) on the surface of the clusters.

Fig. 12.5 Scanning electron micrographs on 300 and 500 nm nano-HAp powder clusters
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Fig. 12.6 XRD of nano-HAp powder clusters

Fig. 12.7 MCSs attached on nano-HAp powder clusters
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Fig. 12.8 Proliferation and extracellular matrix formation of MSCs on nano-HAp powder clusters

Attachment and proliferation of MSCs on nano-HAp was assessed using a real-
time cell electronic system (Fig. 12.9).

Transmission electron microscopy (Fig. 12.10) and scanning electron
microscopy (Fig. 12.11) revealed that the nano-HAp was biocompatible. Cells
grew and exhibited their extracellular matrix on the nano-HAp powder clusters
(Fig. 12.12). Over a period of time, all the nano-HAp powder clusters were covered
with the extracellular matrix of MSCs (Fig. 12.13).

12.5 Tissue Response to Nanocrystalline Apatite-Based
Biomaterials

Synthesis of nanocrystalline apatite-based biomaterials is recently well studied
[32–34]. As nano-HAp is a relatively new material, few in vivo studies were carried
out [35]. Our recent clinical experience with trace element-containing HAp [23]
revealed that the basic material that we used to produce our nano-HAp powders was
Acceptable.
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Fig. 12.9 MSCs growing on nano-HAP ceramic powder clusters in a real-time cell electronic
system

Fig. 12.10 Transmission
electron microscopy of MSCs
implanted on nano-HAp
powder clusters revealed their
biocompatibility
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Fig. 12.11 Scanning electron microscopy of MSCs implanted on nano-HAp powder clusters
revealed that they exhibited growth and extracellular matrix production

12.6 Growth Factor and Drug Delivery

Growth factors, cells and scaffolds are essential components of regenerative
medicine. As stated previously, BMPs are used to regenerate the bone alone or in
combination with cells and scaffolds [36]. BMP-2-loaded nanoparticles combined
with fibrin presented potent effects of MSCs during bone regeneration [36]. Such
composites were also efficient in regenerating mandibular defects [37]. Nano-HAp
combined with poly(lactide-co-glycolide) promoted MSC adhesion and osteogenic
differentiation recently [38]. What we discovered from our studies were in line with
these recent findings. Nano-HAp can be combined with polymers to slow down the
release of growth factors and antibiotics. Nano-HAp can also be used to attach MSC
that will be delivered to the bone.
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Fig. 12.12 MSCs immediately covered the nano-HAp ceramics

12.7 Implant Surface Coatings

Integration of implants into the bone largely depends on surface properties.
Nano-HAp coating had potential benefits to enhance implant osseointegration
in rats [39]. A recent review assessed the effectiveness of coating orthopaedic
implants with nano-HAp [40–42]. Trace elements such as Mg and Sr can be
dropped on to the nano-HAp coating of implants [39]. We concur with the idea
that expanding the surface area of the bone-implant interface will aid better
osseointegration.

In conclusion, our findings with nano-HAp powders revealed that this biomaterial
is biocompatible and allows MSC attachment and proliferation. Attached cells
produce the extracellular matrix, and they may aid implant integration and/or release
of BMP or antibiotics.
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Fig. 12.13 In about 1–2 weeks, all nano-HAp surfaces were covered with the extracellular matrix
of the MSCs
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