Tilmann Rabl

Meikel Poess

Chaitanya Baru
Hans-Arno Jacobsen (Eds.)

Specifying
Big Data Benchmarks

First Workshop, WBDB 2012, San Jose, CA, USA, May 2012
and Second Workshop, WBDB 2012, Pune, India, December 2012
Revised Selected Papers

LNCS 8163

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

8163

Tilmann Rabl Meikel Poess
Chaitanya Baru Hans-Arno Jacobsen (Eds.)

Specitying
Bi1g Data Benchmarks

First Workshop, WBDB 2012

San Jose, CA, USA, May 8-9, 2012
and Second Workshop, WBDB 2012
Pune, India, December 17-18, 2012
Revised Selected Papers

@ Springer

Volume Editors

Tilmann Rabl

University of Toronto, Department of Electric and Computer Science
10 King’s College Road, SFB 540, Toronto, ON M5S 3G4, Canada
E-mail: tilmann.rabl @utoronto.ca

Meikel Poess

Oracle Corporation, Server Technologies

500 Oracle Parkway, Redwood Shores, CA 94065, USA
E-mail: meikel.poess @oracle.com

Chaitanya Baru

University of California San Diego, Supercomputer Center
9500 Gilman Drive, La Jolla, CA 92093-0505, USA
E-mail: baru@sdsc.edu

Hans-Arno Jacobsen

University of Toronto, Department of Electric and Computer Science
10 King’s College Road, SFB 540, Toronto, ON M5S 3G4, Canada
E-mail: jacobsen@eecg.toronto.edu

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-53973-2 e-ISBN 978-3-642-53974-9
DOI 10.1007/978-3-642-53974-9

Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2013956744
CR Subject Classification (1998): H.2, H.3,J.1, C.4

LNCS Sublibrary: SL 3 — Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on acomputer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

‘While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Punctuated by the rapid growth in the use of the Internet, both in the number
of devices connected globally and the amount of data per device, the world
has been in the midst of an extraordinary information explosion over the past
decade. As a consequence, society is experiencing a rate of change in dealing
with information that is faster than at any other point throughout history. The
data originating from social media, enterprise applications, and computer devices
in general, commonly referred to as big data, continue to grow exponentially
establishing enormous potential for extracting very detailed information. Big
data are often differentiated from traditional large databases using the three
Vs: volume, variety, and velocity. Some also include a fourth V, namely, value.
With new systems, techniques, and algorithms being developed that can deal
with these new database characteristics, emerges the need for a standardized
methodology for their performance evaluation.

This sparked the idea among a small group of industry and academic ex-
perts to establish a series of workshops explicitly with the intention of defining
a set of benchmarks for providing objective measures of the effectiveness of
hardware and software systems dealing with big data applications. Chaitanya
Baru, Tilmann Rabl, Meikel Poess, Milind Bhandarkar, and Raghunath Nam-
biar formed a Steering Committee to organize these workshops — the Workshop
on Big Data Benchmarking series (WBDB) was born. Everybody on the Steering
Committee agreed that big data benchmarks, once established in the industry,
will facilitate evaluation of alternative solutions and provide for comparisons
among different solution approaches. The benchmarks need to characterize the
new feature sets, enormous data sizes, large-scale and evolving system config-
urations, shifting loads, and heterogeneous technologies of big data and cloud
platforms. There are new challenges and options in software for big data such
as SQL, NoSQL, and the Hadoop software ecosystem; different modalities of big
data, including graphs, streams, scientific data, and document collections, etc;
new options in hardware including, HDD vs. SSD, different types of HDD, SSD,
and main memory, and large-memory systems; and, new platform options that
include dedicated commodity clusters and cloud platforms.

WBDB workshops enable invited attendees to extend their view of big data
benchmarking as well as communicate their own ideas. This is accomplished
through an open forum of discussions on a number of issues related to big data
benchmarking — including definitions of big data terms, benchmark processes
and auditing. Each attendee was asked to submit an abstract about an inter-
esting topic, related to big data benchmarking and to give a 5-minute “light-
ening talk” during the first half of the workshop. After that the workshop at-
tendees, who covered the core big data benchmark issues, which were identified
in the workshops, were invited to submit a full paper to be included in these

VI Preface

proceedings. This turned out to be a great structure for the first two workshops,
because it brought a lot of ideas into the open and, since many workshop at-
tendees did not know each other, served as an introduction of the workshop
attendees. During social time, individuals were able to follow up on ideas that
were sparked by the lightening talks.

The First Workshop on Big Data Benchmarking (WBDB 2012), held during
May 8-9, 2012, in San Jose, CA, in the Brocade facilities, was attended by over 60
invitees representing 45 different organizations, including industry and academia.
It was funded by the NSF and sponsored by Mellanox, Seagate, Brocade, and
Greenplum. The topics discussed at the first workshop can be grouped into four
topic areas: (1) Benchmark Context; (2) Benchmark Design Principles for a Big
Data Benchmark; (3) Objectives of Big Data Benchmarking; and (4) Big Data
Benchmark Design.

As far as benchmark context is concerned, the consensus of the benchmark
attendees was that a big data benchmarking activity should begin at the applica-
tion level, by attempting to characterize the end-to-end needs and requirements
of big data analytic pipelines. While isolating individual steps in such pipelines,
e.g., sorting, is indeed of interest, it should be done in the context of the broader
application scenario. Furthermore, a wide range of data genres should be consid-
ered including, for example, structured, semi-structured, and unstructured data;
graphs (including different types of graphs that might occur in different types of
application domains, e.g., social networking versus biological networks); streams;
geospatial data; array-based data; and special data types such as genomic data.
The core set of operations need to be identified, modeled, and benchmarked for
each genre, while also seeking similarities across genres.

Numerous examples of successful benchmarking efforts can be leveraged, such
as those from consortia as the Transaction Processing Council (TPC), Standard
Performance Evaluation Corporation (SPEC), industry-driven efforts such as
VMMark (VMWare) and Top500, and benchmarks like Terasort and Graph500.
With respect to design principles, the workshop discussed whether those from
existing TPC benchmarks, many of which experience an impressively long shelf
life, can be adopted for a big data benchmark or whether new once should be
developed. The conclusion was that some design principles should be adopted
but that others such as scalability and elasticity seen in big data application
require the development of new design principles. One of the more contentious
topics was the questions of whether the goal of a big data benchmark should
foster innovation or competition, i.e., whether it should serve as a technical and
engineering or a marketing tool, which split the room into academic-focused
attendees and those from industry. The goals of a technical benchmarking activ-
ity are primarily to test alternative technological solutions to a given problem.
Such benchmarks focus more on collecting detailed technical information for
use in system optimization, re-engineering, and re-design. A competitive bench-
mark focuses on comparing performance and price/performance (and, perhaps,
other costs, such as start-up costs and total cost of ownership) among competing

Preface VII

products, and may require an audit as part of the benchmark process in order
to ensure a fair competition.

Following the successful First Workshop on Big Data Benchmarking, the sec-
ond workshop (WBDB 2012.in) was held in Pune, India, on December 16-17,
2012, where the facilities were provided by Persistent Systems and Infosys. Un-
like the first workshop, an open call for papers was published for WBDB 2012.in.
This was a good decision, since it attracted several submissions from interna-
tional researchers. However, the participation was restricted to one person per
company or institution. Each participant was requested to give a presentation.
The Steering Committee and the Program Committee did a great job in inviting
a balanced crowd of industrial and academic participants. About half of the 40
participants were local, while the other half came from all around the world.
The two-day workshop was organized in four major blocks. The first day started
with three longer presentations that showed matured research and results of
collaborations that were seeded in the first workshop. The second half of the
first day was used for discussing the BigData Topl00 idea, a big data-related
analogy of the Topb00 list of the world’s fastest super computers. The second
day began with discussion of big data-related hardware solutions and ended with
domain-specific topics in the big data landscape.

The major result from these two workshops is the definition of a big data an-
alytics benchmark, BigBench. It extents the well-known decision support bench-
mark TPC-DS with semi-structured and unstructured data, very common in big
data workloads. The two workshops also seeded the idea of forming a consortium
for the BigData Top100 list and a biweekly Big Data Benchmarking Community
call was established, where big data researchers and practitioners present novel
use-cases, problems, and solutions.

In this book, the most mature and interesting contributions from the First
and Second Workshop on Big Data Benchmarking were collected. We divided
the contributions into four categories. Five papers cover benchmarking, foun-
dations, and tools: “TPC’s Benchmark Development Model: Making the First
Industry Standard Benchmark on Big Data a Success” explains the methodology
the TPC uses to develop benchmarks”; “Data Management: A Look Back and a
Look Ahead” provides an overview of the TPC and why some benchmarks were
successful and some failed; “Big Data Generation” covers how large amounts of
data for large-scale factor big data benchmarks can be efficiently generated using
The Parallel Data Generation Framework (PDGF); “From TPC-C to Big Data
Benchmarks: A Functional Workload Model” describes how benchmark-relevant
elements from an application domain can be used to define benchmarks; and
“The Implications of Diverse Applications and Scalable Data Sets in Bench-
marking Big Data Systems” explores the influence of experiment scale on per-
formance.

The second category is about domain specific benchmarking. Six papers
cover a broad range of specific big data domains. “Processing Big Events with
Showers and Streams” discusses different categories of stream data and their
use-cases. The paper “Big Data Provenance: Challenges and Implications for

VIII Preface

Benchmarking” reviews big provenance solutions and explores strategies for
benchmarking them. In the paper “Benchmarking Spatial Big Data,” the do-
main of spatial data is explored and discussed. Scientific datasets and bench-
marking of array databases are presented in the paper “Towards a Systematic
Benchmark for Array Database Systems.” “Unleashing Semantics of Research
Data” presents challenges in retrieving big semantic data from research docu-
ments. This part of the book concludes with a discussion of graph data and
its generation in the paper “Generating Large-Scale Heterogeneous Graphs for
Benchmarking.”

The third category covers hardware-specific approaches to measuring big data
aspects. The paper “A Micro-Benchmark Suite for Evaluating HDFS Operations
on Modern Clusters” presents storage benchmarks on HDFS and in “Assessing
the Performance Impact of High-Speed Interconnects on MapReduce” different
network interconnects are evaluated.

The last category presents a full end-to-end big data benchmark. “BigBench
Specification V0.1” contains a detailed description of the big data analytics
benchmark BigBench including the full set of queries and the data model with
scripts to run the benchmark.

The 14 papers in this book were selected out of a total of 60 presentations
at WBDB 2012 and WBDB 2012.in. All papers were reviewed in two rounds.
We would like to thank all authors and presenters for making both workshops
successful. We thank the reviewers for their commitment and our sponsors for
helping to keep both workshops free of charge.

October 2013 Tilmann Rabl
Meikel Poess

Chaitan Baru

Hans-Arno Jacobsen

WBDB 2012 Organization

General Chairs

Chaitanya Baru San Diego Supercomputer Center
Milind Bhandarkar Pivotal

Raghunath Nambiar Cisco

Meikel Poess Oracle

Tilmann Rabl University of Toronto

Program Committee

Roger Barga Microsoft

Dhruba Borthakur Facebook

Goetz Graefe HP Labs

John Galloway Salesforce

Armanath Gupta San Diego Supercomputer Center
Ron Hawkins San Diego Supercomputer Center
Tony Hu Drexel University

Tannis Katsis UCSD

Tim Kraska Brown University

Hans-Arno Jacobsen Middleware Systems Research Group
Stefan Manegold CWI

Ken Osterberg Seagate

D.K. Panda Ohio State University

Scott Pearson Brocade

Beth Plale Indiana University

Lavanya Ramakrishann LLNL

Mohammad Sadoghi IBM

Chandrashekhar Sahasrabudhe Persistent Systems

Gilad Shainer Mellanox

S. Sudarshan IIT Bombay

Florian Stegmaier University of Passau

Gopal Tadepalli Anna University

WBDB 2012 Sponsors

WBDB 2012 Sponsors

NSF
Mellanox
Seagate
Brocade
Greenplum

WBDB 2012.in Sponsors

Computer Society of India
Persistent

NSF

Mellanox

Seagate

Brocade

Greenplum

Infosys

Table of Contents

Benchmarking, Foundations and Tools

TPC’s Benchmark Development Model: Making the First Industry
Standard Benchmark on Big Data a Success 1
Meikel Poess

Data Management — A Look Back and a Look Ahead................. 11
Raghunath Nambiar, Ramesh Chitor, and Ashok Joshi

Big Data Generation i 20
Tilmann Rabl and Hans-Arno Jacobsen

From TPC-C to Big Data Benchmarks: A Functional Workload
Model ... 28
Yanpei Chen, Francois Raab, and Randy Katz

The Implications of Diverse Applications and Scalable Data Sets in
Benchmarking Big Data Systems.......... i . 44
Zhen Jia, Runlin Zhou, Chunge Zhu, Lei Wang, Wanling Gao,
Yingjie Shi, Jianfeng Zhan, and Lizin Zhang

Domain Specific Benchmarking

Processing Big Events with Showers and Streams 60
Christoph Doblander, Tilmann Rabl, and Hans-Arno Jacobsen

Big Data Provenance: Challenges and Implications for Benchmarking . . . 72
Boris Glavic

Benchmarking Spatial Big Data. o o .. 81
Shashi Shekhar, Michael R. Evans, Viswanath Gunturi,
KwangSoo Yang, and Daniel Cintra Cugler

Towards a Systematic Benchmark for Array Database Systems......... 94
Peter Baumann and Heinrich Stamerjohanns

Unleashing Semantics of Research Data 103
Florian Stegmaier, Christin Seifert, Roman Kern, Patrick Hdéfler,
Sebastian Bayerl, Michael Granitzer, Harald Kosch,

Stefanie Lindstaedt, Belgin Mutlu, Vedran Sabol, Kai Schlegel, and
Stefan Zwicklbauer

Generating Large-Scale Heterogeneous Graphs for Benchmarking. 113
Amarnath Gupta

XII Table of Contents

Benchmarking Hardware

A Micro-benchmark Suite for Evaluating HDFS Operations on Modern
CIUSEETS .« .ttt
Nusrat Sharmin Islam, Xiaoyi Lu, Md. Wasi-ur-Rahman,
Jithin Jose, and Dhabaleswar K. (DK) Panda

Assessing the Performance Impact of High-Speed Interconnects on
MapReduce
Yandong Wang, Yizheng Jiao, Cong Xu, Xiaobing Li, Teng Wang,
Xinyu Que, Cristi Cira, Bin Wang, Zhuo Liu, Bliss Bailey, and

Weikuan Yu

End-to-End Big Data Benchmarks

BigBench Specification V0.1 — BigBench: An Industry Standard

Benchmark for Big Data Analytics i i,
Tilmann Rabl, Ahmad Ghazal, Minging Hu, Alain Crolotte,
Francois Raab, Meikel Poess, and Hans-Arno Jacobsen

Author Index

TPC’s Benchmark Development Model:
Making the First Industry Standard Benchmark
on Big Data a Success

Meikel Poess

Oracle Corporation, 500 Oracle Parkway,
Redwood Shores, CA 94065, USA
Meikel.Poess@oracle.com

Abstract. There are many questions to answer and hurdles to overcome before
an idea for a benchmark becomes an industry standard. After all technical chal-
lenges are solved and a prototype benchmark is created, the question arises on
how to turn the prototype into an industry standard benchmark that has broad
acceptance in the industry, is credible and sustainable over an extended period
of time. The Transaction Processing Performance Council is one of the most
recognized industry standard consortia for developing and maintaining industry
standard benchmarks. Its philosophy and strict rules have assured acceptance,
credibility and sustainability of its benchmarks for the last two decades. In this
paper the author shows how the TPC model for developing and maintaining
benchmarks can be applied to creating the first industry standard benchmark on
Big Data.

Keywords: Benchmark Development, Big Data, Database Systems Standard.

1 Introduction

As with the development of any other software product, the process of turning a
benchmark prototype into a product is not trivial. Prototypes are built in order to mi-
nimize the risks involved in software development. While it is important to develop a
prototype to prove general feasibility of the problem solution, a prototype is often far
from being a product because many steps are foregone, such as error handling and
logging, scalability testing, input validation, maintenance planning, upgrade planning
and documentation. However, for the development of an industry standard benchmark
having a prototype is especially important, as it allows those who will eventually
support the benchmark to verify whether the benchmark tests their product, i.e. hard-
ware and software. This will greatly increase acceptance of the benchmark. Even after
a benchmark is introduced to the market place it needs to be maintained, i.e. adapted
to new trends in hardware and software.

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 1-10, 2014.
© Springer-Verlag Berlin Heidelberg 2014

2 M. Poess

The three most recognized industry standard consortia, namely the Standard Per-
formance Evaluation Corporation (SPEC), the Transaction Processing Performance
Council (TPC) and the Storage Performance Council (SPC) have developed their own
ways to organize benchmark development, to deal with benchmark evolution, i.e.
versioning and to publish benchmark results in a way to assure the above key charac-
teristics of a successful benchmark. The TPC, unlike any other consortia has managed
to continue benchmarks over decades while keeping benchmarks comparable. This
has given companies the ability to compare benchmark results over a very long time
period and across many products. In [2] Karl Huppler, long term chair of the Transac-
tion Processing Performance council has defined the following five key aspects that
all successful benchmarks have in common:

e Relevant — A reader of the result believes the benchmark reflects something
important

e Repeatable — There is confidence that the benchmark can be run a second
time with the same result

e Fair — All systems and/or software being compared can participate equally

e Verifiable — There is confidence that the documented result is real

e Economical — The test sponsors can afford to run the benchmark

In this paper, the author introduces the TPC’s concept of organizing its benchmark
development and motivates why the TPC is a good candidate for developing and host-
ing the first industry standard benchmark on Big Data.

The remainder of this paper is organized as follows. Section 2 summarizes the con-
tributions the TPC has made over the last 24 years. Section 3 gives an overview on
how the TPC is organized and how consensus is made. It is followed by Section 4,
which provides an in-depth analysis of how the TPC is organized, how benchmarks
are developed and maintained. Section 5 motivates why the TPC is most qualified to
develop and host the first industry standard on Big Data. Section 6 concludes this

paper.

2 Historical Overview of TPC Benchmarks

For over 20 years the Transaction Processing Performance Council (TPC) has been
very successful in disseminating objective and verifiable performance data for trans-
action processing systems in general and database management systems (DBMS) in
various domains, i.e., Online Transaction Processing (OLTP), Decision Support (DS)
and Web Application (APP). See also the historic overview of the TPC by Kim Shan-
ley [5]. The TPC developed the four OLTP benchmark specifications, TPC-A, TPC-
B, TPC-C [6] and TPC-E, which to date produced over 1000 benchmark publications.
The TPC also developed four decision support benchmark specifications, TPC-D,

TPC’s Benchmark Development Model 3

TPC-H, TPC-R and TPC-DS, which produced to date over 160 benchmark results and
two web benchmark specifications, TPC-W and TPC-App, which produced a total of
four results. Recently the TPC added a virtualization benchmark based on existing
OLTP and Decision Support benchmarks, TPC-VMS. In addition to these domain
specific benchmarks, the TPC also developed pricing and energy specifications that
are applicable to all existing benchmarks.

The development time for industry standard benchmarks in the TPC is steadily ris-
ing due to increased complexities of benchmarks. TPC’s first OLTP benchmark speci-
fication, TPC-A, was published in November 1989. Built upon Jim Gray’s DebitCredit
benchmark TPC-A for the first time formalized the rules, which all vendors had to
obey in order to publish a benchmark result. About one year later, TPC-B was born.
TPC-B was a modification of TPC-A, using the same transaction type (banking trans-
action) but eliminating the network and user interaction components of the TPC-A
workload. The result was a batch transaction processing benchmark. Both TPC-A and
TPC-B counted about 40 pages and used a single, simple, update-intensive transaction
to emulate update-intensive database environments. Their transactions access schemas
with four tables, all using 1:n relationships. Two years later in June 1992, TPC’s third
OLTP benchmark specification, TPC-C, was approved after about four years of de-
velopment. Compared to previous OLTP benchmarks, the TPC-C benchmark is more
complex because of its multiple transaction types, more complex database schema
with 9 tables, 92 columns and 8 primary and 9 foreign keys and more complex overall
execution rules. In the first 15 months after approval TPC-C underwent three major
revisions (Version 2 and 3). All three versions included major new parts and concepts
but were labeled comparable. After a failed Version 4 attempt, in October 2000 Ver-
sion 5 of TPC-C was approved. This version was non-comparable to previous
versions. TPC-C counts 132 pages. In 2006 TPC-E, TPC’s latest OLTP benchmark
was approved after 6 years of development. TPC-E further increases complexity, e.g.
TPC-E defines 33 tables, 188 columns, 33 primary and 50 foreign keys. It counts 286
pages.

A similar pattern can be found with TPC’s decision support benchmarks. TPC-D,
TPC’s first decision support benchmark, was approved in May 1995 after four years
of development. TPC-D underwent one major backward compatible revision in 1998
before it was replaced by TPC-H and TPC-R in 1999. The replacement benchmarks,
TPC-H and TPC-R were based on TPC-D with some minor execution rules and query
changes [3]. Development took about one year. Because of lack of market support
TPC-R was decommissioned in January, 2005 only a couple results were published.
The ideas for TPC’s latest decision support benchmark, TPC-DS, go back as early as
2000. TPC-DS was published in the beginning of 2012 [4].

The following chart gives an overview of when the development of TPC bench-
marks started (dotted lines) and during which periods they were active (solid lines).

4 M. Poess

Jan2012
Version 1

TPC-DS sesessesssanssncnnnsninn o —
Apr200s
l Version 1
TPC-App -
Nov 1999 April 2005
Version 1 TPC-W Decommission
TPC-W SRR | 1 Feb1999
Version 1
1=
Feb 1999 Jul2002 April 2005
Version 1 Version 2 Decommission
TPC-R e
Feb 1999 Jul2002
Version 1 Version 2
TPC-H
May 1995 Oct 1998 April 1999
Version 1 Version2 Decommission
TPC-D [P
June 1992 Oct1993 June 1996 Oct 2000
Version1 Version2 Version3 Version 5
TPC-C
Nov 1989 June 1994 June 1995
Version 1 Version2 Decommission
TPC-B [T
Nov 1989 June 1994 June 1996
Version 1 Version2 Decommission
TPC-A fereeees >
L I | LI L LI L L

L L L L L L L L L L L L L L L]
“88 ‘B9 ‘90 ‘91 92 “93 ‘94 “95 “96 97 ‘98 ‘99 ‘00 ‘01 02 ‘03 ‘04 *05 ‘06 07 ‘08 09 ‘10 ‘11 ‘12 “13

Fig. 1. TPC Benchmark History

3 Organization of the TPC

The TPC is organized hierarchically. The “head” of the TPC organization is the Gen-
eral Council (GC), which takes all decisions during General Council (GC) Meetings,
held about every 2 months. During a GC meeting each member company has one
vote. In accordance with Robert’s Rules of Order a two-thirds vote is required to pass
most motions. During these meetings the GC receives feedback from subcommittees
in form of subcommittee status reports, which are subsequently distributed via the
TPC newsletter to those following the TPC’s activity closely.

Directly reporting to the GC are standing subcommittees and technical subcommit-
tees. The standing subcommittees are the Steering Committee (SC), the Technical
Advisory Board (TAB) and the Public Relations Committee (PRC). Technical sub-
committees are permanent committees that supervise and manage administrative,
public relations and documentation issues for the TPC. The Steering Committee (SC)
consists of five representatives, elected annually, from member companies. The SC is
responsible for overseeing TPC administration and support activities and for providing
overall direction and recommendations to the Full Council. Technical Advisory Board
(TAB) is tasked with maintaining document and change control over the complex
benchmark proposals and methodologies. In addition, the TAB studies issues involving
interpretation/compliance of TPC specifications and makes recommendations to the

TPC’s Benchmark Development Model 5

Council. The Public Relations Committee is tasked with promoting the TPC and es-
tablishing the TPC benchmarks as industry standards.

If the GC decides to take on new endeavors, such as developing a new benchmark
or defining a term, e.g. processor, it delegates these work items by creating technical
subcommittees. Member companies can join and leave subcommittees at any time
with approval of the GC. Fig. 2 draws a high level organization chart of the TPC.

General Council

‘Meet Independently,
Report every General Council Meeting

Standing Subcommittees | | Technical Subcommittees

Steering Committee Committee 1 ‘

Technical Advisor
Board

Public Relations
Committee

Committee n

Fig. 2. Hierarchical Structure of the TPC

All major decisions the TPC takes, especially those that affect benchmark specifi-
cations, require a super majority to pass. Only procedural decisions, such as voting on
committee members require a simple majority. A super majority is defined as two-
thirds of the member companies present and voting, excluding abstentions. A simple
majority is defined as greater than 50% of member companies present and voting. The
super majority rule guarantees strong consensus on important issues among member
companies. The hierarchical structure and voting rules set a very high bar for building
consensus between otherwise independent entities - mostly corporations. This assures
that decisions reached in the TPC are the result of a long consensus process of most
member companies, which in itself results in decisions that stand the proof of time.

4 Benchmark Development in the TPC

The TPC has two means to develop benchmark specifications as defined in TPC
policies. New benchmark specifications are developed following the Benchmark De-
velopment Cycle. Revisions of existing benchmark specifications are developed fol-
lowing the Revisions to a TPC Benchmark Standard. This section provides a brief
review of these two processes and discusses their advantages and disadvantages for
the development and maintenance of industry standard benchmarks.

6 M. Poess

4.1 Benchmark Development Cycle

New benchmark developments must follow the nine-step development process, which
is outlined in the figure below. Each box symbolizes one of the nine steps of the de-
velopment process. The shaded boxes indicate that the general council needs to take
action, usually by voting on a motion, the others involve extensive development and
testing efforts of technical subcommittee members.

‘ Benchmark Submittal ‘

v

Development
Subcommittee Creation

+ ready?

‘ Status and Direction ’_ Public Release
; Accepting Specification
for Review

+ ready?
‘ Formal Review ’__ﬂ Approval for Mail Ballot ‘
A

‘ Mail Ballot Approval ‘

./

Maintenance
Subcommittee Creation

Fig. 3. TPC’s current Benchmark Development Cycle

1. Benchmark Submittal:
Member companies submit an idea for a standard specification in a format similar
to TPC Benchmark Standards. If the General Council accepts the proposal a devel-
opment subcommittee is created to develop the final specification. Depending on
the resources that are spent to develop the benchmark idea into a benchmark speci-
fication this step can take anywhere between 6 months to 2 years.

2. Creation of a Subcommittee
This is a formal step taken by the General Council to establish and empower a de-
velopment subcommittee to develop a formal benchmark specification.

3. Status and Direction
This step is an iterative process. At each General Council Meeting, which is held
approximately every 2 months, the development subcommittee provides a status
update on its work, including a working draft of the Specification. During this
meeting the Council provides direction and feedback to the subcommittee to fur-
ther their work.

TPC’s Benchmark Development Model 7

4. Authorizing Public Release of Draft Specification
Once the General Council is convinced that the specification is almost ready it au-
thorizes the release of a draft Specification to the public. Releasing a specification
to the public encourages companies to implement the draft specification, to gather
more experimental data, and to speed-up the approval of a specification.

5. Accepting a Standard for Review
When the subcommittee feels that the Specification is of sufficient quality to be
considered for formal review and approval, it submits the Specification to the
Council for approval to advance into formal review.

6. Formal Review
In this phase, the specification is made available to all TPC members and the pub-
lic for formal review. All comments and proposed changes generated from the re-
view will be posted in the comment database and considered by the development
subcommittee for resolution. This step can take 6 months to 3 years.

7. Approval for Mail Ballot
This is a formal step the General Council takes to approve the updated benchmark
specification for mail ballot.

8. Mail Ballot Approval
This is a formal ballot to approve the benchmark specification as a standard. Each
member company can submit one vote to either approve, disapprove or abstain the
ballot.

9. Creation of a Maintenance Subcommittee
If the mail ballot is approved general council establishes a maintenance subcom-
mittee, which will automatically supersede the development subcommittee.

4.2 Revisions to an Existing Benchmark Specification Standard

The version number of a TPC benchmark specification comprises of three tiers, e.g.
the current version of TPC-H is 2.16.0. A revision to an existing benchmark specifica-
tion can either be a third tier, minor or major revision. Third tier changes clarify con-
fusing or ambiguous areas of the benchmark specification. They do not alter the
workload or specification's intent or meaning. Minor revisions entail changes that
may alter the workload, intent, or meaning of the benchmark specification. However,
the changes are such that benchmark publications that are published under new revi-
sion are still comparable to the prior version. Major revision changes alter the work-
load so significantly or alter the intent of the benchmark specification so drastically
such that benchmark publications following the new version are incomparable with
older versions.

4.3 General Methodology of TPC Benchmark Specifications

All TPC benchmarks follow a similar methodology and, consequently, follow a
similar structure. Each benchmark is technology agnostic. The goal of all TPC

8 M. Poess

benchmarks is to define a set of functional requirements that can be run on any sys-
tem, regardless of hardware, database management software or operating system. It is
the responsibility of those measuring the performance of systems using TPC bench-
marks, a.k.a. the test sponsor, to implement the specification and to submit proof that
the implementation meets all benchmark requirements, i.e., that the implementation
complies with the specification. The proof has to be submitted with every benchmark
publication in form of a Full Disclosure Report (FDR). The intent of the full disclo-
sure report is to enable other parties to reproduce the performance measurement. This
methodology allows any vendor, using "proprietary" or "open" systems, to implement
TPC benchmarks while still guaranteeing end-users that the measurement is compara-
ble. This characteristic differs from benchmarks published from other consortia, most
of which provide executable versions of their benchmarks. Those benchmarks are
limited to comparing machines that run on a limited number of systems, operating
systems and database management systems. In addition, each benchmark results is
audited by an independent auditor, who has been certified by the TPC.

TPC benchmarks are modeled after actual production applications and environ-
ments rather than being built using synthetic tests. This allows for benchmark analysts
to better understand and interpret benchmark results. It also helps to the general read-
er to relate their workload to the benchmark workload. In addition, testing an actual
production application evaluates all key performance factors like user interface,
communications, disk I/Os, data storage, and backup/recovery. The challenge in de-
signing such a benchmark, which is supposed to be a standard benchmark representa-
tive for a variety of systems and environments, lies in reducing the diversity of
operations found in a production application, while retaining its essential performance
characteristics, namely, the level of system utilization and the complexity of its opera-
tions. A large number of functions have to be performed to manage a production sys-
tem. Since many of these functions are proportionally small in terms of system
resource utilization or in terms of frequency of execution, they are not of primary
interest for performance analysis. Although these functions are vital for a production
system, within the context of a standard benchmark, they would merely create exces-
sive diversity and expense and are, therefore, omitted. For more detail see [1].

All benchmarks thus far require the database software to provide a minimum set of
functionality, e.g. Atomicity, Consistency, Isolation and Durability, commonly re-
ferred to as ACID. These system features are tested for each benchmark, not necessar-
ily as part of the performance measurement. TPC-H for instance, defines tests on a
smaller database that show ACID compliance.

Before performance numbers can be published, independent auditors must certify
their correctness, i.e., the compliance with the specification used. This is done in a
certification letter. The audit process may require the auditor to be present during the
performance measurement, especially when the systems used have not been ben-
chmarked before. While the general approach to benchmark auditing is identical
across TPC benchmarks, each benchmark defines some audit rules that are specific to
its application domain. Independent auditors are certified for one or more bench-
marks. The certification process for a particular benchmark is conducted by an Audi-
tor Certification Board consisting of TPC members with deep understanding of the

TPC’s Benchmark Development Model 9

benchmark specification. The board reviews the candidate’s credentials by conducting
an interview including technical questions to verify that the candidate has a solid un-
derstanding of the specific benchmark and the technologies and products that can
potentially be used in the benchmark implementation and specific questions on the
audit requirements of the benchmark. Each TPC benchmark adheres to large extents
to the following structure:

Clause Intention

PREAMBLE Introduction to the benchmark and high
level requirements

DATABASE DESIGN Requirements and restrictions on how to
implement the database schema

WORKLOAD Detailed definition of the workload

ACID Atomicity, Consistency, Isolation and
Durability requirements

WORKLOAD SCALING Tools and methodology on how to scale

the workload

METRIC/EXECUTION RULES Detailed description on how to execute
the benchmark and how to derive metrics
BENCHMARK DRIVER Requirements on how to implement the
benchmark driver

FULL DISCLOSURE REPORT Definition on what needs to be disclosed
and how to organize the disclosure re-
ports

AUDIT REQUIREMENTS Minimum requirements for the audit
process

5 Big Data Benchmark Development in the TPC

Developing an Industry Big Data Benchmark in the TPC has many advantages as the
development process would be based on methodologies refined over 20 years.

The stringent voting rules that are required to pass benchmark changes slow down
the development progress, but they also guarantee strong consensus among member
companies yielding very long benchmark life spans. Having a benchmark active and
results comparable for a long period is attractive because it usually takes the engineer-
ing teams a year to familiarize themselves with a new benchmark, i.e., develop a
benchmark kit, identify the best hardware and software combination to run the
benchmark and potentially develop new hardware and design new algorithms.
Hardware and software development cycles are usually measured in years, and since
hardware and software vendors are interested in showing continues incremental
performance increase from release one release cycle to another it is pertinent that
comparable versions of a benchmark are around for reasonable time. Furthermore,
TPC benchmarks are complex benchmarks often involving vast amount of engineer-
ing resources and capital investments. Hence, vendors are interested in using

10 M. Poess

benchmark results as long as possible for marketing purposes. Long lasting bench-
marks also provide a rich data source for performing long term studies as was done in,
which compared TPC-C results with Moore’s Law [7].

For a benchmark to be successful it needs to generate a strong name recognition.
The TPC being around for more than 20 years, who produced thousands of bench-
mark results comes with a very strong name recognition.

Benchmark development requires vast amount of engineering resources and capital
investments. Without expertise in both benchmark design and knowledge of the un-
derlying hardware and software components, which are the focus of the benchmark, a
development effort is doomed to fail. The TPC members provide engineers that are
experts in benchmark design. They are also very knowledgeable in the products of
their companies and, in some cases, also know their competitors product very well.

The TPC grants access to auditing tools, such as the Technical Advisory Board to
arbitrate disputes among members. It also provide access to auditors who can be
trained to audit any benchmark that.

The TPC also maintains a well known website, which can be used to promote
benchmark results. It is frequented by many individuals every day.

References

—

Introduction to the TPC-C benchmark, http://www. tpc.org/tpcc/detail.asp

2. Huppler, K.: Price and the TPC. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010, LNCS, vol.
6417, pp. 73-84. Springer, Heidelberg (2010)

3. Poss, M., Floyd, C.: New TPC Benchmarks for Decision Support and Web Commerce.
SIGMOD Record 29(4), 64-71 (2000)

4. Poess, M., Smith, B., Kollar, L., Larson, P.-A.: TPC-DS, taking decision support ben-
chmarking to the next level. In: SIGMOD Conference 2002, pp. 582-587 (2002)

5. Shanley, K.: Historical overview of the TPC, http://www.tpc.org/information/
about/history.asp

6. Current and historic TPC specifications, http: //www. tpc.org/tpcc/default.asp

7. Moore, G.E.: Cramming more components onto integrated circuits. Electronics Magazine, 4

(1965) (retrieved November 11, 2006)

Data Management — A Look Back and a Look Ahead

Raghunath N ambiarl, Ramesh Chitorz, and Ashok Joshi >

' Cisco Systems, Inc., 275 East Tasman Drive, San Jose, CA 95134, USA
rnambiar@cisco.com
2Cisco Systems, Inc., 260 East Tasman Drive, San Jose, CA 95134, USA
rchitor@cisco.com
3 Oracle Corporation, 10 Van De Graaff drive, Burlington, MA 01803, USA
ashok.joshi@oracle.com

Abstract. The essence of data management is to store, manage and process da-
ta. In 1970, E.F. Codd developed the relational data model and the universal da-
ta language “SQL” for data access and management. Over the years, relational
data management systems have become an integral part of every organization’s
data management portfolio. Today, the world is in the midst of an information
explosion fueled by worldwide adaption of internet and increase in number of
devices connected to the internet. The velocity, volume and velocity of data
generated are beyond the capabilities of traditional relational database manage-
ment systems. This explosive growth has encouraged the birth of new technolo-
gies like Hadoop and NoSQL.

This paper gives an overview of the technology trends in data management,
some of the emerging technologies and related challenges and opportunities and
eminent convergence of platforms for efficiency and effectiveness.

Keywords: Data Management, Big Data, Hadoop, NoSQL.

1 Historical Perspective

The six generations of distinct phases in data management evolving from manual
methods, through several stages of automated data management articulated by Jim
Gray is depicted in Table 1 [1].

Table 1. Phases in data management

4000 BC | 1800 | 1960

Paper and Pencil

Punch Cards

| Computers

Data management has gone through a series of disruptive innovations since the
first hierarchical data management systems of the sixties as shown in table 2. These
systems were developed when computers became a more cost-effective option for
private organizations.

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 11-19, 2014.
© Springer-Verlag Berlin Heidelberg 2014

12 R. Nambiar, R. Chitor, and A. Joshi

Table 2. History of Data Management Technologies

1960s 1970s 1990s 2000-Present
Traditional Files | Hierarchical Relational Big Data
(CODASYL)

Hierarchical data management systems modeled parent-child relationships between
related records. This provided a convenient solution that was rapidly found to have
significant shortcomings. Firstly it was an inflexible data model; the database and the
application program were very tightly coupled. And once the data hierarchy was em-
bodied in the application, it was not easy to change the data model without changes to
the application. Often, it was also necessary to reload the data in a different “format”
to reflect the new relationships. Furthermore, the hierarchical data model imposed
limits on the kinds of queries that could be executed against the database.

CODASYL systems, named after Conference on Data Systems Languages, is a
1959 consortium that worked on standardizing database interfaces, also better known
for developing COBOL programming languages) [2][3] improved upon these limita-
tions by providing the ability to express parent-child relationships as well as other
kinds of relationships. These relationships were embodied as “pointers” to the related
records in the database. The application had to explicitly update the record in order to
establish the relationships with related records. The ability to relate records (using
physical pointers) provided more flexibility to the application developer and made it
possible to run new kinds of queries without having to completely reorganize the
database and/or the application.

Ted Codd at IBM invented the theoretical foundations for relational database sys-
tems in the early 70s [4] [5]. RDBMS as they were commonly referred to as, allow
the user to establish relationships between two entities using logical relationships
(joins). In essence, each row includes information that can logically identify the other
rows it is related to. For example, an Employee row will contain a department _id.
The Department row also contains a department_id. If the value of the department_id
in an employee row matches the department_id in a Department row, then, semanti-
cally, that employee is related to (works in) that particular department. However,
since the relationships are maintained logically, queries can be expressed declarative-
ly, rather than in a program.

The SQL language (a programming language designed for managing data held in
RDBMS) provided powerful tools to quickly and easily manage and query large data
sets. This flexibility and ease of use led to tremendous popularity and widespread
adoption of relational systems. There was a lot of research in next 15 years on the
implementation and performance of RDBMS since the earlier versions did not match
the performance of CODASYL systems.

The following years saw huge improvements in performance and functionality of
these relational database systems as well as the underlying hardware platforms. Mod-
ern database systems are able parallelize queries, use smart heuristics for query opti-
mization, support a wide variety of data formats including text and multimedia and
allow the user to express a wide variety of questions simply and easily using SQL.

Data Management — A Look Back and a Look Ahead 13

They also provided a rich set of enterprise-class features such as security, intelligent
backups and disaster recovery. Due to these advances, as well as the plethora of
RDBMS-based systems available today, the vast majority of enterprise data manage-
ment and data processing is based on relational database systems.

The 90s saw the emergence of object-oriented databases (or OODBMS, for Object-
Oriented Database Management Systems) [6]. They try to make transactions and per-
sistence transparent to the object-oriented programmer. These systems too had their
shortcomings, for example, data in a specific OODBMS is typically accessible from a
specific programming language using a specific API, which is typically not the case
with Relational databases. OODBMS also were less efficient when the data and the
relationships were simple. By this time RDBMS were much more standardized and
less likely to change.

Perhaps its biggest disadvantage was in an RDBMS modifying the database sche-
ma either by creating, updating or deleting tables is typically independent of the ac-
tual application. In an OODBMS based application modifying the schema by creating,
updating or modifying a persistent class typically means that changes have to be made
to the other classes in the application that interact with instances of that class. This
typically means that all schema changes in an OODBMS will involve a system wide
recompile. It is fair to say that OODBMS did not gain widespread popularity and
remain niche solutions to this day.

Historically, CODASYL (to a lesser extent) and relational technologies were dis-
ruptive innovations that changed the data management industry. Since the early days,
the benefits of using data management systems were obvious. Though earlier systems
were hard to use and required custom programming, the cost was justified by the
business benefits. Relational technologies and SQL made it radically simpler to de-
velop applications, resulting widespread use of these systems.

2 Big Data

Big Data is another disruptive phenomenon that has emerged in recent years. It is still
in the early stages of development, and still suffers many of the same issues and pro-
gramming difficulties mentioned earlier. However, it is very clear that harnessing its
capabilities provides compelling business benefits.

Big Data is a term applied to data sets that are so large that commonly used soft-
ware tools cannot capture, manage, and process them within a tolerable time in a cost-
effective manner. Its data sizes are a constantly moving target, currently ranging from
a few dozen terabytes to many petabytes. Examples of Big Data sources vary widely,
including web logs, data from radio-frequency ID (RFID) sensor networks, social
network information, Internet text and documents, Internet search indexing, and call-
detail records. Scientific examples include astronomy and atmospheric science data,
as well as genomics, bio-geochemical, biological, and other complex and interdiscip-
linary scientific research. In addition, military surveillance, medical records, photo-
graphy archives, video archives, and large-scale ecommerce applications generate

14 R. Nambiar, R. Chitor, and A. Joshi

huge data volumes. While the types vary widely, the unifying theme is that this data
represents potential insight and value for organizations.

Growth of Big Data shows no sign of abating. In a June 2011 report titled Extract-
ing Value from Chaos, IDC estimated that 1.8 zettabytes of data would be created in
2011, growing to 16 zettabytes by 2016 [7]. Now enterprise data is so large that stor-
ing and managing it with traditional tools, such as relational database management
systems, no longer is economical. As a result, Big Data is increasingly becoming an
enterprise-level concern. IDC estimates that individuals create 75 percent of the in-
formation in the digital universe, yet enterprises have some liability for 80 percent of
this information at some point in its digital life.

3 Information Explosion and Avnet of Internet

The explosive growth of the Internet, wide-area cellular systems and local area wire-
less networks which promise to make integrated networks a reality, the development
of "wearable" computers and the emergence of "pervasive" computing paradigm, are
just the beginning of "The Wireless and Mobile Revolution". Today, 30% of world’s
population has Internet access. The majority of all business interactions are conducted
over the Internet. There are 15 billion devices connected to the Internet today; that’s
more than 2 devices for every human being living on the planet [8]. Wireless broad-
band is still in its infancy and will continue to grow better and faster in the coming
years. This enables people to be more connected and more mobile. If the necessary
bandwidth is available, it will always be more efficient to carry around a "battery with
a screen" and do all of the data processing on servers in remote data centers, reminis-
cent of the dumb terminal concept of the yesteryears. It is true that a desktop is more
responsive; however, it is important to keep in mind that human users don't need mi-
nimal latency; they just need acceptable latency. The realization of wireless connec-
tivity is bringing fundamental changes to telecommunications and computing and
profoundly affects the way we network, compute, analyze, communicate, and interact.
Interactive communication and information is now available and cheaply accessible to
vastly more people than it was ever before.

This emergence of the Internet and mobile applications has led to an explosion of
data. Storing all this data and providing simple ways to access it poses huge chal-
lenges to the data management tools developers. In the past 15 years, Internet-based
companies and Web 2.0 companies such as Yahoo, Google, Twitter and Facebook
have had to deal with Big Data out of necessity. The requirements of their business
compelled these pioneers to develop innovative and cost-effective solutions for their
data management problems. Fortunately, these companies were willing to share the
key concepts and lessons learned from these innovations with the developer commu-
nity. Further, they also established beyond the shadow of any doubt that harnessing
Big Data provides significant additional business benefits to the enterprise.

As mentioned earlier, Web 2.0 companies were early innovators of Big Data solu-
tions, resulting in a growing collection of open source technologies that dramatically
changed the culture of collaborative software development and the scale and economics

Data Management — A Look Back and a Look Ahead 15

of hardware infrastructure. These technologies enable data storage, management and
analysis in ways that were not possible with traditional technologies a few years ago.
And they are not all are suitable for the enterprise. While these solutions are attractive
from the standpoint of the innovation they can bring, many organizations require de-
pendable, supported, and tested enterprise-class solutions for rapid deployment and
mission-critical operation.

4 Evolution of Big Data Tools and Technologies

Traditional technologies such as relational database management systems often are
unable to handle the volume and velocity of Big Data in a cost-effective manner, re-
sulting in the emergence of two broad categories of technologies — interactive (or real-
time) processing and batch processing (analytics).

NoSQL is one such technology that has emerged in the interactive processing
space as an increasingly important part of interactive Big Data solutions for applica-
tions that need to process large volumes of simple reads and updates against very
large datasets. NoSQL is often characterized by what it is not, and definitions vary. It
can be Not Only SQL-based or simply Not a SQL-based database management sys-
tem. It may not provide full ACID (atomicity, consistency, isolation, durability) guar-
antees but still has a distributed and fault tolerant architecture.

NoSQL databases form a broad class of non-relational database management sys-
tems that are evolving rapidly, and several solutions are emerging with highly varia-
ble feature sets and few standards, each suited to address a certain type of interactive
Big Data management system (e.g. key-value stores, document stores, columnar
stores, etc.). While these technologies are attractive from the standpoint of the innova-
tions they can bring, not all products meet enterprise requirements.

As Big Data processing becomes increasingly important to the success of the busi-
ness, many organizations require robust, commercially supported solutions for rapid
deployments and the ability to integrate such solutions into existing enterprise appli-
cations infrastructure.

Map/Reduce computing falls into the category of batch solutions [9]. Rather than
focusing on each individual data item, Map/Reduce is designed to derive information
by aggregating large amounts of data in multiple ways. For example, a single tweet
may not be of much significance; however, if there’s a large number of tweets about a
topic within a short timeframe, that may provide significant information about an
opinion or sentiment by a large population. Map/Reduce technology can be used to
quickly derive aggregate information from data. Hadoop popularized by Yahoo, has
become synonymous with the Map/Reduce style of data processing. It brings mas-
sively parallel computing to commodity servers, resulting in a sizeable decrease in
cost per terabyte of storage.

These two categories of Big Data processing are being adopted widely by organi-
zations in order to enter the Big Data era successfully.

16

5

R. Nambiar, R. Chitor, and A. Joshi

Advantages of Big Data Technologies

We have already seen the significance of Big Data tools like NoSQL and
Map/Reduce. Here are some other noteworthy tools open-sourced under Apache um-
brella, for working with Big Data. Big Data technologies have several advantages as
listed below.

Elastic Scaling: Historically, database deployments relied on the capability
to scale up by deploying bigger servers as database loads increased. Today,
technology advancements deliver transparent scaling, enabling organizations
to add new servers as business demands dictate. With Big Data solutions, the
massive scale-out capabilities of technologies are designed to expand trans-
parently and dynamically, to large numbers of servers in a cost-effective
manner, effectively enabling making scaling trivial to design and implement.
Economics: Big Data technologies typically use clusters of inexpensive in-
dustry-standard servers to manage rapidly expanding data and transaction
volumes, whereas RDBMSs tend to rely on expensive proprietary servers
and storage systems. As a result, the cost per gigabyte or transactions per
second for can be many times less than the cost for RDBMS, enabling organ-
izations to store and process more data at a much lower price point.

Flexible Data Models: RDBMSs are built on a schema-centric approach in
which even minor changes to the data model can result in complex schema.
In addition, application changes often necessitate downtime or reduced ser-
vice levels. Big Data technologies have far more relaxed data model restric-
tions. Consequently, application and database schema changes do not have to
be managed as one complicated change unit.

Real-time Customizations: Consumer companies have long used data to
segment and target customers. Big Data creates a whole new playing field by
making real-time personalization possible. An oft-quoted example is a retail-
er being able to track the behavior of individual customers from Internet
click streams, update their preferences, and model their likely behavior in
real time. They will then be able to recognize when customers are nearing a
purchase decision and nudge the transaction to completion by bundling pre-
ferred products, usually offered with reward programs.

Risk Calculations for Large Portfolios: The past few years have been any-
thing but smooth sailing for financial services firms that have struggled to ef-
fectively manage their portfolios. An industry-wide failure to properly assess
the latent risks lurking in thousands of substandard loans led to billions of
dollars of losses. For a major company in the financial services market, one
of the root causes of its unacceptable risk exposure was simply an inability to
efficiently create models and run those models against its growing data vo-
lumes. The institution pursued and deployed a new paradigm for its analyti-
cal processing: Big Data analytics processing. This reduced the wait time
from a week to a few minutes, translating to savings of millions of dollars.
Improve Decision Quality: Big Data when leveraged in a timely manner
can provide insights from the vast amounts of data. This includes those

Data Management — A Look Back and a Look Ahead 17

already stored in company databases, from external third-party sources, the
Internet, social media and remote sensors. These insights and information
can improve decision quality.

6 Big Data in Enterprise

We have already seen the significance of Big Data tools. Organizations globally are
beginning to explore how Big Data can be used in order to improve the business.
According to one important study, companies taking advantage of the superabundance
of data through “data-directed decision-making” enjoy up to 6 percent productivity
improvements. As described in another insight from the IBM 2010 Global CFO Study
[11], over the next three years, organizations that leverage Big Data will financially
outperform their peers by 20 percent or more. The only way to keep up with the ex-
panding data is to think beyond traditional RDBMS tools in a way that most enter-
prises have never done.

Just as relational database systems were adopted widely and across a wide variety
of industries and applications, Big Data brings additional value to a wide variety of
organizations and enterprises, both big and small, regardless of the industry they cater
to. Through analysis of the large volumes of data there is the potential for making
faster advances in many scientific disciplines and improving the profitability and
success of many enterprises [12]. Few relevant use cases where Big Data technologies
can play a significant role are listed below:

e Data Storage: Collect and store unstructured and semi-structured data in
a fault-resilient scalable data store that can be organized and sorted for in-
dexing and analysis.

e Credit Scoring: Update credit scoring models using cross-functional
transaction data and recent outcomes, to respond to changes such as bub-
ble markets collapsing. Sweep recent credit history to build transaction-
al/temporal models.

e Data Archive: Medium-term archival of data from EDW/DBMS to in-
crease the length of time that data is retrained or to meet data retention
policies/compliance.

e Integration with Data Warehouse: Transfer data stored in Hadoop to
and from a separate DBMS for advanced analytics.

e Customer Risk Analytics: Build a comprehensive data picture of cus-
tomer-side risk based on activity and behavior across products and ac-
counts.

e Personalization and Asset Management: Create and model investor
strategy and goals based on market data, individual asset characteristics,
and reports fed into online recommendation system.

e Retailer Compromise: Prevent or catch frauds resulting from a breach of
retailer cards or accounts by monitoring, modeling, and analyzing high
volumes of transaction data and extracting features and patterns.

18 R. Nambiar, R. Chitor, and A. Joshi

e Mis-categorized Fraud: Reduce false positives and prevent mis-
categorization of legitimate transactions as fraud, using high volumes of
de-normalized data to build good models.

e Next-Generation Fraud: Daily cross-sectional analysis of portfolio using
transaction similarities to find accounts that are being cultivated for even-
tual fraud, using common application elements, temporal patterns, ven-
dors and transaction amounts to detect similar accounts pre-bust-out.

e Social Retention: Combine transactional, customer contact information
and social network data to do attrition modeling to learn social and trans-
action markers for attrition and retention.

¢ Sentiment and Bankruptcy: Find better indicators to predict bankruptcy
among existing customers using sentiment analysis from social network-
ing, responding quickly before the warning horizon.

7 Conclusion and Outlook

Database systems have continued to evolve progressively over the years. But Big
Data has dramatically changed how data is envisioned, managed and leveraged, and
in enterprise world its potential is just beginning to be understood. This is an exciting
time with a large number of tools and technologies being developed for Big Data and
large datasets. More and more enterprises are being forced out of their traditional way
of working with datasets. Led by Web 2.0 companies, exploitation of large datasets in
innovative ways is becoming increasingly common. Interesting trade-offs involving
data storage and retrieval, search and heuristic analysis, availability, and data consis-
tency are being made all the time, and, as to be expected, differently in different en-
terprise domains.

Understandably, with Big Data being the bleeding edge, the tools and technologies
available to effectively leverage its potential are still in nascent stage of development.
Enterprises with large datasets, can only neglect, the challenges and the opportunities
presented by Big Data technologies at their own peril.

References

1. Gray, J.: Data Management: Past, Present, and Future,
http://ftp.research.microsoft.com/pub/tr/tr-96-18.pdf

2. CODASYL: Conference on Data Systems Languages Records, 1959-1987

3. CODASYL, http://en.wikipedia.org/wiki/CODASYL

4. Codd, E.F.: Relational Completeness of Data Base Sublanguages. Database Systems:
65-98. CiteSeerX: 10.1.1.86.9277

5. Codd, E.F.: The Relational Model for Database Management, version 2nd edn. Addison
Wesley Publishing Company, ISBN 0-201-14192-2

6. OODBMS, http://en.wikipedia.org/wiki/OODBMS

7. Extracting Value from Chaos, IDC 2011 (2011),
http://www.emc.com/collateral/analyst-reports/idc-
extracting-value-from-chaos-ar.pdf

10.
11.

12.

Data Management — A Look Back and a Look Ahead 19

Nambiar, R.: Information Explosion a Storage Perspective,
http://gold.cs.pitt.edu/sites/gold.cs.pitt.edu.seedm/slides/
invited/Nambiar.pdf

Map/Reduce, http://research.google.com/archive/mapreduce.html
Hadoop, http://hadoop.apache.org/

IBM Global CFO Study,
http://www-935.1ibm.com/services/us/cfo/cfostudy2010/

Challenges and Opportunities with Big Data, http://www.cra.org/ccc/files/
docs/init/bigdatawhitepaper.pdf

Big Data Generation

Tilmann Rabl and Hans-Arno Jacobsen

Middleware Systems Research Group
University of Toronto
tilmann.rabl@utoronto.ca, jacobsen@eecg.toronto.edu
http://msrg.org

Abstract. Big data challenges are end-to-end problems. When handling
big data it usually has to be preprocessed, moved, loaded, processed, and
stored many times. This has led to the creation of big data pipelines.
Current benchmarks related to big data only focus on isolated aspects
of this pipeline, usually the processing, storage and loading aspects. To
this date, there has not been any benchmark presented covering the end-
to-end aspect for big data systems.

In this paper, we discuss the necessity of ETL like tasks in big data
benchmarking and propose the Parallel Data Generation Framework
(PDGF) for its data generation. PDGF is a generic data generator that
was implemented at the University of Passau and is currently adopted
in TPC benchmarks.

1 Introduction

Many big data challenges begin with extraction, transformation and loading
(ETL) processes. Raw data is extracted from source systems, for example, from
a web site, click streams (e.g. Netflix, Facebook, Google) or sensors (e.g., energy
monitoring, application monitoring, traffic monitoring). The first challenge in
extracting data is to keep up with the usually very data high production rate. In
the transformation step, the data is filtered and normalized. In the last step, data
is finally loaded in a system that will then do the processing. This preprocessing is
often time-consuming and hinders an on-line processing of the data. Nevertheless,
current big data benchmarks, e.g. GraySort [1], YCSB [2], HiBench [3], BigBench
[4], mostly concentrate on a single performance aspect rather than giving a
holistic view. They neglect the challenges in the initial ETL processes and data
movement. A comprehensive big data benchmark should have an end-to-end
semantic considering the complete big data pipeline [5]. An abstract example of
a big data pipeline as described in [6] is depicted in Figure 1.

Current big data installations are rarely tightly integrated solutions [7]. Thus,
a typical big data pipeline often consists of many separate solutions that cover
one or more steps of the pipeline. This creates a dilemma for end-to-end bench-
marking. Because many separate systems are involved an individual measure for
each part’s contribution to the overall performance is necessary for making pur-
chase decisions for an entire big data solution. A typical solution to this dilemma

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 20-27, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

http://msrg.org

Big Data Generation 21

; Big Data Analytical Pipeline
|
= ;
1 1) 1
S~

—i—b % X & '

:

T = = c = '

: S € ~= 9] 5 :

H o c et Bl = |

' (7] o 9 0L ® o = !

: = O K = s 3 '
——> = —> =5 — % o —> = —> g —>

i =t T

o c = &z

s 2 S g gy 2 5 g

: 2 o < £28e = £ :

— = b=} e c - ;

' o & < |

\ < /

\ /

Fig. 1. Abstract Stages of a Big Data Analytics Pipeline

is a component based benchmark. This requires having separate benchmarks for
different stages of the big data pipeline. An example is HiBench [3], which in-
cludes separate workloads and micro-benchmarks to cover typical Map-Reduce
jobs. HiBench, for example, includes workloads for sorting, clustering, and I/0.
These micro-benchmarks are run separately and, consequently, inter-stage inter-
actions, i.e., interference and interaction between different stages, as they would
appear in real-live systems, are not reflected in the benchmarks.

Considering inter-stage interactions makes the specification of an end-to-end
benchmark challenging. This is because it is supposed to be technology agnostic,
i.e., it should not enforce a certain implementation of the system under test and
also not enforce fixed set of stages. A benchmark should challenge the system
as a whole. This creates a dilemma for end-to-end benchmarking of a big data
pipeline, because an end-to-end benchmark should not be concerned about the
individual steps of the pipeline, which can differ from system to system, but all
steps should be stressed during a test. A solution to this dilemma is a benchmark
pipeline, where intermediate steps are specified but not enforced and only the
initial input and final output are fixed.

For a benchmark to be successful it has to be easy to use. Benchmarks that
come with a complete tool chain are used more frequently than benchmarks that
consist only of a specification. A recent example is the YCSB, which has gained a
lot of attention and a wide acceptance. YCSB is used in many research projects
as well as in industry benchmarks (e.g., [8,9]). For a big data benchmark the
most important and challenging tool is the data generator. In order to support
the various steps of big data processing, it would be beneficial to have a data
generator that can generate the data in different phases consistently. This makes
a verification of intermediate results as well as isolate single steps of the bench-
mark procedure possible and thus further increases the benchmarks applicability.
In such a data generator the data properties that are processed (such as depen-
dencies and distributions) need to be strictly computable. A data generation
tool that follows this approach is the Parallel Data Generation Framework.

22 T. Rabl and H.-A. Jacobsen

Our major contribution in this article is a solution to the problem of data
generation for big data benchmarks with end-to-end semantics. To the best of
our knowledge this is the first approach to this problem.

The rest of the paper is structured as follows, in Section 2, we give a brief
overview of the Parallel Data Generation Framework. Section 3 describes chal-
lenges of big data generation and how they are addressed by the Parallel Data
Generation Framework. Section 4 presents related work. We conclude in Section
5 with an outlook on future work.

2 Parallel Data Generation Framework

The Parallel Data Generation Framework (PDGF) is a flexible, generic data
generator that can be used to generate large amounts of relational data very
fast. It was initially developed at the University of Passau and is currently used
in the development of an industry standard ETL benchmark (described in [10]).
PDGF exploits parallel random number generation for an independent genera-
tion of related values. The underlying approach is straight forward; the random
number generator is a hash function which can generate any random number in
a sequence in O(1) without having to compute other values. Random number
generators with this feature are, for example, XORSHIFT generators [11]. With
such random number generators every random number can be computed inde-
pendently. Based on the random number arbitrary values can generated using
mapping functions, dictionary lookups and such. Quickly finding the right ran-
dom number is possible by using a hierarchical seeding strategy (table — column
— TOW).

== Table RNG |
Customer
{ Ceid> Column RNG} Row # / CustKey | Name | Address
[‘/. Update RNG] ;
(GeedST5a > ID (Row) RNG | 3 apP
A
[Generator(rn)

Fig. 2. PDGF’s Hierarchical Seeding Strategy

An overview of PDGF’s seeding strategy can be seen in Figure 2. The seed-
ing strategy starts by assigning a random number to each table, this number is
used as a seed for each column random number generator. PDGF is capable of
generating consistent updates, i.e, inserts, deletes, and updates in an abstract
time interval (for details refer to [12]). Which and how values are updated is
determined by the update random number generator, the resulting seeded row
value random number generator is used to deterministically compute the ran-
dom numbers required for the actual value generation. Having a seeded random

Big Data Generation 23

number generator for the value generation instead of a single random number
or fixed number of values makes it possible to generate values that use a non-
deterministic number of random numbers, such as text.

Full Table

Rows 250001
—500000

Rows 500001
— 750000

Rows 750001

Rows 1—
—1000000

Processor/Core | "e-

Fig. 3. Parallel Data Generation in PDGF

Not all values should be randomly chosen. An example are references. For
tables that contain foreign key constraints, for example, the keys must exist
in the referenced tables, which is challenging in the case of non-dense keys or
multi-part keys. Using the deterministic approach, existing values can easily and
efficiently be recomputed. Furthermore, being able to independently generate all
values makes it possible to fully parallelize and distribute the data generation.
This especially interesting for big data applications. PDGF comes with an inte-
grated scheduling system that automatically handles multi-core and multi-node
parallelism. The working principle is presented in Figure 3. Each table can be
split up in equal sized partitions, which can be generated on shared nothing
machines. Each partition can further be divided up in multiple subsets, which
can be distributed to separate threads or processes.

For further details of this generation approach see [12,13,14,15,16,17].

3 A Big Data Generator

One can build a versatile data generator for big data benchmarking based
on PDGF. Although PDGF was built for relational data it features a post-
processing module that enables a mapping to other data formats such as XML,
RDF, etc. Since all data is deterministically generated and the generation is
always repeatable it is possible to compute intermediate and final results of
transformations. The underlying relational model makes it possible to generate
consistent queries on the data. This makes PDGF an ideal candidate tool for big
data benchmarking.

PDGF was recently used for generating the data set for the BigBench big data
analytics benchmark [4]. BigBench models a retail business, were articles are sold
in stores and over websites. The schema consists of structured, semi-structured,
and unstructured data as can be seen in Figure 4. The structured core of the
schema is adapted from TPC-DS [18]. The semi- and unstructured parts are

24 T. Rabl and H.-A. Jacobsen

' - Structured Data Y Unstructured |
/ Item ‘\ Data
/ sales \ >-
Web Page Customer

\ /
Adapted

TPC-DS

I BigBench
Specific

/!

Semi-Structured Data

Fig. 4. BigBench Schema

implemented in PDGF. The unstructured part models reviews of products. The
semi-structured part models an Apache Web server log. The reviews are used for
sentiment analysis, which requires very realistic text in order to get reasonable
results. This is achieved by using Markov chains.

D et it e >
System under Test
N
oLTP | — 7 cbc
N~
>
Customer | !, | XML ETL Data
(_Memt 7 Warehouse
N
“Financal | 1, | Multi
Newswire] | |_format
Staging Area

Fig. 5. TPC-DI Overview

Another recently finished data generator built based on PDGF is TPC-DI’s
data generator. TPC-DI is an data integration benchmark, which benchmarks
ETL systems. As is shown in Figure 5, the benchmark defines several sources of
information that are stored in different formats. The benchmark itself measures
the performance of a system that integrates the different data sources into a
single data warehouse. The data generator generates the historical files of each
data source as well change data captures in daily increments. For the benchmark
to produce meaningful results, the data from the different sources has to be
consistent. This means, for example, that only employees with the status account

Big Data Generation 25

managers in the human resources database manage customers’ accounts and,
thus, are referenced in the customer management database.

When combining the two examples above, one can create a big data gener-
ator that satisfies all characteristics of typical big data use cases. For example,
the well established 3 to 5 V’s, namely volume, velocity, variety, and the exten-
sions value and veracity, can all be covered by such a generator. Parallel data
generation is the only means to generate big volumes of data in timely fashion.
The velocity aspect can be satisfied generally by fast generation of data as well
as by fast generation of incremental updates, which ensure the characteristic of
frequent data change. The variety aspect is covered with different data sources.
The value extension is hinting to the additional value that can be retrieved from
a deep analysis of the data, which therefore has to have meaningful patterns and
correlations. Finally, veracity is of the data can be changed by introducing deltas
and errors in the generation, which is present in the TPC-DI specification.

4 Related Work

There are multiple different approaches to data generation. Many current bench-
marks use very primitive data that is simply based on statistical distributions.
Examples are Terasort (a.k.a. Graysort) [1] and YCSB [2]. In order to get more
realistic data, structured approaches to data generation have to be used. One
way to get very realistic data is simulation. This can be done in an application
specific way, e.g., using human browser interaction simulation with the Selenium
simulator [19], or using a generic graph based approach [20,21]. Although very
realistic, all simulation-based approaches are too slow for big data generation.
Therefore, many benchmarks including most of the standard benchmarks have
special purpose data generators that are not or only to a very small degree con-
figurable. An example are all TPC benchmarks, with the exception of TPC-DI
(based on PDGF) and to some extend TPC-DS (based on the partial config-
urable data generator MUDD [22]). Since the implementation of quality data
generators is a tedious work, several commercial and scientific generic data gen-
erators have been developed. To ensure fast data generation these typically do
not use simulation but either reread data to build correlations (e.g., [23]) or re-
compute referenced values (e.g., PDGF and Myriad [24]). Due to the data sizes
generated and the speed of network and disk transfer rates, the computational
approach is the fastest and most scalable and thus most suitable for big data
generation.

5 Conclusion

The big data landscape is quickly evolving, much like the landscape of database
management systems in its early stages. As a result, big data systems are het-
erogeneous and even for the broadly accepted Hadoop software stack there is no
commonly accepted benchmark. Several proposals are currently emerging, be-
cause of the missing maturity of the big data field and the high pace of evolution,

26 T. Rabl and H.-A. Jacobsen

benchmarks have to evolve as well. To this end, configurable data generators are
necessary to help benchmarks keep up with the development and, thus, stay
relevant.

The Parallel Data Generation Framework is an ideal candidate for big data
generation. In this article, we have listed characteristics that a big data generator
has to fulfill and have demonstrated by example that PDGF can satisfy all
requirements. A demo of PDGF is available for download!. A commercialized
version is available from http://www.bankmark.de.

What is missing for an easy to use benchmark is a driver that starts the exe-
cution, measures the performance and calculates the metrics. This is non-trivial
because there is no standard access language so far. However, relational input
as generated by PDGF can be easily transformed in any other representation,
which will ease the implementation of such tool chains.

PDGF is continuously improved and extended, current work focuses on data
types typical in big data scenarios like text and click-streams. Initial implemen-
tations were used to implement the BigBench data generator. Other work targets
scaling-up existing data sets and combining simulation-like data generation with
the purely computational approach.

References

1. Gray, J.. GraySort Benchmark. Sort Benchmark Home Page,
http://sortbenchmark.org

2. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
Cloud Serving Systems with YCSB. In: SoCC, pp. 143-154 (2010)

3. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench Benchmark Suite:
Characterization of the MapReduce-Based Data Analysis. In: ICDEW (2010)

4. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.A.:
BigBench: Towards an industry standard benchmark for big data analytics. In:
Proceedings of the ACM SIGMOD Conference (2013)

5. Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., Rabl, T.: Benchmarking Big
Data Systems and the BigData Top100 List. Big Data 1(1), 60-64 (2013)

6. Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., Rabl, T.: Setting the Direction
for Big Data Benchmark Standards. In: Nambiar, R., Poess, M. (eds.) TPCTC
2012. LNCS, vol. 7755, pp. 197-208. Springer, Heidelberg (2013)

7. Carey, M.J.: BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities.
In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 108-123.
Springer, Heidelberg (2013)

8. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., Lopez, J., Gibson, G., Fuchs,
A, Rinaldi, B.: YCSB++: Benchmarking and performance debugging advanced
features in scalable table stores. In: SoCC, pp. 9:1-9:14 (2011)

9. Rabl, T., Sadoghi, M., Jacobsen, H.A., Gémez-Villamor, S., Muntés-Mulero, V.,
Mankowskii, S.: Solving Big Data Challenges for Enterprise Application Perfor-
mance Management. PVLDB 5(12), 1724-1735 (2012)

10. Wyatt, L., Caufield, B., Pol, D.: Principles for an ETL Benchmark. In: Nambiar, R.,
Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 183-198. Springer, Heidelberg
(2009)

! Parallel Data Generation Framework — http://www.paralleldatageneration.org

http://www.bankmark.de
http://sortbenchmark.org
http://www.paralleldatageneration.org

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Big Data Generation 27

Marsaglia, G.: Xorshift RNGs. Journal of Statistical Software 8(14), 1-6 (2003)
Frank, M., Poess, M., Rabl, T.: Efficient Update Data Generation for DBMS Bench-
mark. In: ICPE 2012 (2012)

Poess, M., Rabl, T., Frank, M., Danisch, M.: A PDGF Implementation for TPC-
H. In: Nambiar, R., Poess, M. (eds.) TPCTC 2011. LNCS, vol. 7144, pp. 196-212.
Springer, Heidelberg (2012)

Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A Data Generator for Cloud-Scale
Benchmarking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417,
pp. 41-56. Springer, Heidelberg (2011)

Rabl, T., Lang, A., Hackl, T., Sick, B., Kosch, H.: Generating Shifting Workloads to
Benchmark Adaptability in Relational Database Systems. In: Nambiar, R., Poess,
M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 116-131. Springer, Heidelberg (2009)
Rabl, T., Poess, M.: Parallel data generation for performance analysis of large,
complex RDBMS. In: DBTest 2011, p. 5 (2011)

Rabl, T., Poess, M., Danisch, M., Jacobsen, H.A.: Rapid Development of Data
Generators Using Meta Generators in PDGF. In: DBTest 2013: Proceedings of the
Sixth International Workshop on Testing Database Systems (2013)

Poss, M., Nambiar, R.O., Walrath, D.: Why You Should Run TPC-DS: A Workload
Analysis. In: VLDB, pp. 1138-1149 (2007)

Hunt, D., Inman-Semerau, L., May-Pumphrey, M.A., Sussman, N., Grandjean, P.,
Newhook, P., Suarez-Ordonez, S., Stewart, S., Kumar, T.: Selenium Documenta-
tion (2013), http://docs.seleniumhq.org/docs/

Houkjeer, K., Torp, K., Wind, R.: Simple and Realistic Data Generation. In: VLDB
2006: Proceedings of the 32nd International Conference on Very Large Data Bases,
VLDB Endowment, pp. 1243-1246 (2006)

Lin, P.J., Samadi, B., Cipolone, A., Jeske, D.R., Cox, S., Rendén, C., Holt, D.,
Xiao, R.: Development of a Synthetic Data Set Generator for Building and Testing
Information Discovery Systems. In: ITNG 2006: Proceedings of the Third Inter-
national Conference on Information Technology: New Generations, pp. 707-712.
IEEE Computer Society, Washington, DC (2006)

Stephens, J.M., Poess, M.: MUDD: a multi-dimensional data generator. In: WOSP
2004: Proceedings of the 4th International Workshop on Software and Performance,
pp. 104-109. ACM, New York (2004)

Bruno, N., Chaudhuri, S.: Flexible Database Generators. In: VLDB 2005: Pro-
ceedings of the 31st International Conference on Very Large Databases, VLDB
Endowment, pp. 1097-1107 (2005)

Alexandrov, A., Tzoumas, K., Markl, V.: Myriad: Scalable and Expressive Data
Generation. In: VLDB 2012 (2012)

http://docs.seleniumhq.org/docs/

From TPC-C to Big Data Benchmarks:
A Functional Workload Model

Yanpei Chen!, Francois Raab?, and Randy Katz3

! Cloudera & UC Berkeley
yanpei@cloudera.com
2 InfoSizing, Inc.
francois@sizing.com
3 UC Berkeley
randyQ@eecs.berkeley.edu

Abstract. Big data systems help organizations store, manipulate, and
derive value from vast amounts of data. Relational database and MapRe-
duce are the two most prominent technologies for such systems.
Organizations use them to perform complex analysis on diverse and un-
conventional data types with fast growing data volumes. As more big
data systems are deployed, the industry faces the challenge to develop
representative benchmarks that can evaluate the capabilities of compet-
ing implementations. In this position paper, we argue for building future
big data benchmarks using what we call a “functional workload model”.
This concept draws on combined experiences from standard benchmarks,
exemplified by TPC-C. The functional workload model describes the
functional goals that the system must achieve, the data access patterns,
the load variations over time, and the computation required to achieve
the functional goals. Abstracting functional workload models from empir-
ical studies of MapReduce deployments represents the first step towards
building truly representative big data benchmarks.

1 Introduction

Big data systems represent one of the fastest growing segments of the computer
industry today. They allow organizations to store, manipulate, and analyze large
and rapidly growing volumes of data from diverse and unconventional sources.
The exploding trade press on big data suggests that it has spread beyond early
adopters to traditional industry sectors. As new products appear and vendors
issue competing claims, the need emerges for an objective method to compare
the applicability, efficiency, and cost of big data solutions. In other words, there
is a growing need for a set of standard big data performance benchmarks.

There have been a number of attempts at constructing big data benchmarks [18,
20,21,23,30]. None of them has yet gained wide recognition and usage. The field
of big data performance is in a state where results from one publication to the
next are not comparable and often not even closely related. This was also the case
for online transaction processing (OLTP) some twenty years ago and for decision
support shortly thereafter.

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 28-43, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Functional Workload Model 29

In this position paper, we propose and argue for the use of a formal process to
develop standard big data benchmarks. This process draws on experiences from
successful industry standard benchmarks. We start by summarizing the prop-
erties of a good benchmark and we select TPC-C, the standard yardstick for
OLTP performance, to illustrate our proposed benchmark development process
(Section 2). To that end, we present an insider’s retrospective on the devel-
opment of TPC-C and discuss the process that led to the creation of a fully
synthetic, yet representative benchmark (Section 3). Analyzing this process al-
lows us to formalize three key concepts of the paper — application domains, the
functional workload model and functions of abstraction; and to discuss how they
enable the construction of representative benchmarks that can translate across
different types of big data systems (Section 4). We then highlight that the pro-
cess of identifying MapReduce functional workload models and their functions
of abstraction remains bottlenecked on empirical data and outline some of the
challenges specific to big data benchmarks (Section 5). Finally, we present a
vision for the development of big data benchmarks that would span multiple
application domains, each rooted in documented empirical data (Section 6).

2 To Define a Big Data Benchmark

Performance measurement for computer systems is not a new topic, and bench-
mark properties are well studied. To explore the path that would lead to the
definition of a successful big data benchmark, we begin by reviewing pertinent
properties of a good benchmark.

2.1 Properties of a Good Benchmark

The criteria for a good performance benchmark has been the topic of multiple
publications [22, 25, 27]. Prior work on the topic has identified the following
essential properties:

— Representative: The benchmark should measure performance under real life
environments and use metrics that are relevant to real life applications.

— Relevant: The benchmark should focus on measuring technologies that are
relevant and prominent in the market and align themselves with an area
where demand for performance information is high.

— Portable: The benchmark should be fair and portable to competing solutions
that target the needs of the same applications.

— Scalable: The benchmark should be able to measure performance of systems
within a wide range of scale. As technology progresses system scales and
their performance capabilities tend to increase. The benchmark should be
able to accommodate for that increase.

— Verifiable: The benchmark should prescribe repeatable measurements that
produce the same results and can be independently verified.

30 Y. Chen, F. Raab, and R. Katz

— Simple: The conceptual elements of the benchmark should be reduced to
a minimum and made easily understandable. The benchmark should also
abstract away details that represent case-by-case configurations or system
administration choices and do not affect performance.

While the above speaks of the properties that a good benchmark should display,
it does not address the methodology through which such a benchmark can be
constructed. In the following sections we propose such a methodology, illustrate
it using a successful standard benchmark, and review how it can be applied to
the construction of a big data benchmark.

2.2 Examples of Successful Benchmarks

The field of performance benchmarks is indeed crowded. But few benchmarks
have reached the level of active industry standards. When it comes to bench-
marks measuring complete or end-to-end systems, two organizations have dom-
inated the market over the last two decades: SPEC and TPC.

Each organization has published a number of benchmarks with various degree
of success. One criteria for success is the level at which the benchmark is being
used by various organizations. While internal use is difficult to quantify, external
publication of benchmark results is easy to tally and represents a clear success
criteria. Looking at the most published benchmarks from TPC and SPEC reveals
the following:

Table 1. Benchmark Result Publications

Benchmark Publications
SPECjbb (2000 - 2005) 1,050
TPC-C 760
SPEC SFS 730
SPECweb (96 - 2009) 700
TPC-D/H 650

Of the above benchmarks, TPC-C and TPC-D/H were defined using a similar
process of empirically driven abstractions. They can provide useful insight into
the creation of a big data benchmark. To further explore and illustrate these
concepts we will be examining the story of TPC-C with the goal to formalize
the process at the core of its definition.

3 The Process of Building TPC-C

TPC-C is a good example of a benchmark that has had a substantial impact
on technologies and systems. Understanding the origin of this long standing
industry yardstick provides important clues toward the definition of a big data
benchmark. In this section, we retrace the events that lead to the creation of
TPC-C and present the conceptual motivation behind its design.

Functional Workload Model 31

3.1 The Origins of TPC-C

The emergence and rapid growth of On Line Transaction Processing (OLTP) in
the early eighties highlights the importance of benchmarking a specific applica-
tion domain. The field of transaction processing was heating up and the need to
satisfy on-line transaction requirements for fast user response times was grow-
ing rapidly. CODASYL databases supporting transactional properties were the
dominant technology, a status increasingly challenged by relational databases.
For instance, version 3 of the Oracle relational database, released in 1983, im-
plemented support for the COMMIT and ROLLBACK functionalities. As com-
petition intensified, the need emerged for an objective measure of performance.
In 1985, Jim Gray led an industry-academia group of over twenty members to
create a new OLTP benchmark under the name DebitCredit [13].

In the late eighties, relational databases had matured and were fast replacing
the CODASYL model. The DebitCredit benchmark, and its derivatives ET1
and TP1, had become de-facto standards. Database system vendors used them
to make performance claims, often raising controversies [33]. A single standard
was still absent, which led to confusion about the comparability of results. In
June of 1988, T. Sawyer and O. Serlin proposed to standardize DebitCredit.
Later that year, O. Serlin spearheaded the creation of the Transaction Processing
Performance Council (TPC) tasked with creating an industry standard version
of DebitCredit [34].

Around this time, Digital Equipment Corporation (DEC) was in the process
of developing a new relational database product, code name RdbStar. The devel-
opment team soon recognized that a performance benchmark would be needed
to assess the capabilities of early versions of the new product. DEC’s European
subsidiary had been conducting a vast empirical survey of database applications
across France, England, Italy, Germany, Holland, Denmark and Finland. Pro-
duction systems at key customer sites had been examined and local support
staff interviewed. The survey sought to better understand how databases were
used in the field and which features were most commonly found in production
systems. Armed with this data, the RdbStar benchmark development project
started with an examination of the many database benchmarks known at the
time, including the Wisconsin benchmark [15], AS3AP [35] and the Set Query
Benchmark [29].

The approach found to be the most representative of the European survey’s
findings came from an unpublished benchmark, one developed by the Microelec-
tronics and Computer Consortium (MCC), one of the largest computer industry
research and development consortia, based in Austin, TX. Researchers at MCC
were working on distributed database technology [14] and had developed a sim-
ulator to test various designs. Part of the simulator involved executing OLTP
functions inspired by an order processing application. The MCC benchmark was
selected by DEC as the starting point for the RdbStar benchmark. Parts of
the MCC benchmark were adjusted to be better aligned with the findings of
the empirical survey and the resulting benchmark became known internally as
Order-Entry.

32 Y. Chen, F. Raab, and R. Katz

In November of 1989, the TPC published its standardized end-to-end version
of DebitCredit under the name TPC Benchmark A (TPC-A) [11]. TPC Bench-
mark B (TPC-B) [12] followed in August 1990, which represented a back-end
version of TPC-A. By then, the simple transaction in DebitCredit was starting
to come under fire as being too simplistic and not sufficiently exercising the
features of mature database products. The TPC issued a request for proposal
of a more complex OLTP benchmark. IBM submitted its RAMP-C benchmark
and DEC submitted Order-Entry. The TPC selected the DEC benchmark and
assigned its author, F. Raab, to lead the creation of the new standard. July 1992
saw the approval and release of the new TPC Benchmark C (TPC-C) [31].

3.2 The TPC-C Application Domain

One of the main purposes of a benchmark is to evaluate and contrast the merits
of various implementations of the same set of requirements. These requirements
are driven from the common elements found in the many use cases [28] that pop-
ulate broad computational categories such as OLTP, decision support, OLAP,
analytics, stream processing or big data. We use the term “application domain”
to refer to these computational categories. Specifically, an application domain en-
capsulates many per-customer use cases. While each use case will likely include
some rare and customer-specific computational needs, the application domain
focuses on the common computational elements among many similar use cases.

The original Order-Entry benchmark from DEC included two distinct com-
ponents: a set of database transactions targeting the OLTP application domain,
and a set of simple and complex queries targeting the decision support appli-
cation domain. The TPC adopted the transactional portion of Order-Entry for
the creation of its new OLTP benchmark: TPC-C.

An important aspect of the design of the transactional portion of Order-Entry
is that it did not follow the model traditionally used for implementing use cases
and building business applications. To illustrate this aspect we contrast the two
design models.

The design of a business application can be decomposed into four basic ele-
ments, as follows:

— Tables: The database tables, the layout of the rows and the correlation be-
tween tables.

— Population: The data that populates the tables, the distribution of values
and the correlation between the values in different columns of the tables.

— Transactions: The units of computation against the data in the tables, the
distribution of input variables and the interactions between transactions.

— Scheduling: The pacing and mix of transactions.

In the traditional design model, each of these elements implements part of
the business functions targeted by the application. The tables would represent
the business context. The population would start with a base set capturing the
initial state of the business and evolve as a result of conducting daily business.

Functional Workload Model 33

The transactions would implement the business functions. The scheduling would
reflect business activity. This traditional model results in an application that is
well aligned with the business details of the targeted use case. As such, it is
too specific to be representative of the broader and more generic aspects that
characterize a whole application domain.

In contrast, benchmarking is a synthetic activity that seeks to be representa-
tive of a whole application domain. Its sole purpose is to gather relevant perfor-
mance information as it pertains to any application within the targeted domain.
Being free of any real business context, the elements of such a benchmark can
be abstracted from a representative cross section of the application domain’s use
cases.

To illustrate the concept of using abstractions to design the elements of a
benchmark, we take a closer look at how this applies to transactions. The objec-
tive is to look at the compute units of multiple applications and to find repeti-
tions or similarities. For instance, in the OLTP application domain, it is common
to find user-initiated operations that involve multiple successive database trans-
actions. While these transactions are related through the application’s business
semantics, they are otherwise independent from the point of view of exercising
the system or measuring its performance. Consequently, they should be exam-
ined independently during the process of creating a set of abstract database
transactions. Consider the following:

User-initiated operation

Database Transaction T1
Read row from table A
Update row in table B
Commit transaction

Database Transaction T2
Update row in table A
Insert row in table C
Commit transaction

Database Transaction T3
Read row from table C
Update row in table B
Commit transaction

In the above, T1 and T3 are performing similar operations, but on different
tables. However, if tables A and C have sufficiently similar characteristics, T'1
and T3 can be viewed as duplicates of the same abstract transaction, one that
contains a “read row” followed by an “update row”.

During the design of the Order-Entry benchmark, five abstract transactions
were selected to encapsulate the activity most commonly found in real-life OLTP
application. Such a simplification resulted in a substantial loss of specificity.
However, we argue that the loss is more than outweighed by the gain in the
ability to gather performance information that are relevant and applicable across
a large portion of the OLTP application domain. The success of the benchmark
over the last two decades appears to support this view.

34 Y. Chen, F. Raab, and R. Katz

4 Functions of Abstraction and Functional Workload
Model

The process of constructing TPC-C illustrates two key concepts — functions
of abstraction and the functional workload model. In this section, we explain
what they are, and how they form a methodology for constructing benchmarks
that target specific application domains while accommodating diverse system
implementations.

4.1 Functions of Abstraction

The implementations of use cases within a particular application domain are
made of computational functions, such as transactions, queries, or MapReduce
jobs. As stated above, the design of a benchmark is only concerned with ab-
stracting a cross-section of the most commonly found computational functions.
We introduce the concept of functions of abstraction as a way of describing
these abstracted computational functions. The intent is to capture a functional
description of “what is being computed” at an abstract level; rather than a more
concrete behavioral description of “how the computation is done”.
The properties of a function of abstraction are as follows:

— Generic: The functional goal of the computation is described in a generic
form, independent of the underlying system implementation, its software
stack and the hardware behavior that results.

— Atomic: A group of transactions, queries, or jobs that must be executed
together to serve a meaningful purpose (from a performance standpoint)
should be considered as a single function of abstraction and not subdivided.

— Unique: Two different sets of transactions, queries, or jobs that serve the
same functional goal are two realizations of the same function of abstraction.

— Data independent: The same function of abstraction can execute against
data with different statistical properties and of different scales. Specifically,
the description of the dataset acted upon is separate from the description of
the function acting on the data.

— Interdependent: Their description includes the rules governing the interac-
tions they have with each other.

— Composable: Any subset can be combined to create workloads of various
levels of complexity.

TPC-C (i.e., Order-Entry) helps illustrate the concept. The benchmark is
articulated around five functions of abstraction: a mid-weight read-write trans-
action (i.e., New-Order), a light-weight read-write transaction (i.e., Payment),
a mid-weight read-only transaction (i.e., Order-Status), a batch of mid-weight
read-write transactions (i.e., Delivery), and a heavy-weight read-only transaction
(i.e., Stock-Level) [32]. They are specified in the semantic context, or story-line,
of an order processing environment. That context, however, is entirely artificial.
Its sole purpose is to allow easy description of the components.

Functional Workload Model 35

Translating back to the earlier list, properties of functions of abstraction apply
to TPC-C as follows:

Generic: The functional goal is defined in terms of a set of data manipu-
lation operations. The underlying system could be a relational database, a
traditional file system, a CODASYL database, or an extension of the Apache
Hadoop implementation of MapReduce that provides transactional capabil-
ities.

— Atomic: Each transaction involves multiple data manipulation operations
that operate as a whole.

— Unique: The five transactions serve five different functional goals.

— Data independent: The targeted data is defined separately through the dis-
tribution of values used as input variables. The data volume and schema is
likewise specified separately.

— Interdependent: Their interactions is governed by the transactional proper-
ties of atomicity, consistency, isolation, and durability (i.e., the ACID prop-
erties).

— Composable: Workloads of various complexities can be created by using var-
ious combinations and mixes of the defined transactions. The TPC-C work-
load involves the combination of all five transactions, while the Payment
transaction run by itself would become the TPC-A (i.e., Debit-Credit) work-
load.

Once defined, the functions of abstraction can be combined with a specified
scheduling and with the definition of table structures and populations to form a
functional workload model, which we explain next.

4.2 Functional Workload Model

The functional workload model captures in an implementation-independent (i.e.,
functional) manner the load that the system needs to service. This load is de-
signed to be representative of the demands put on the system by an average
use case within the application domain. The functional workload model includes
three components - the functions of abstraction, their load pattern, and the data
set they act upon.

The load pattern applied to the system is specified in terms of the execution
frequency, distribution and arrival rate of each individual function of abstraction.
In defining the load pattern, functions of abstraction can be combined to form
coordinated groups with interdependencies.

The data set acted upon is specified in terms of its structure, inter-dependence
between data elements, initial size and contents, and how it evolves over the
course of the workload’s execution.

The definition of these three components is limited to the essential functional
goals of the particular application domain. The simplicity and lack of duplica-
tion that governs the definition of functions of abstraction must also be applied

36 Y. Chen, F. Raab, and R. Katz

when specifying the load pattern and the data set that completes the functional
workload model.

Again, TPC-C helps illustrate the concepts involved in the functional work-
load model:

— There are functions of abstractions in the form of five transactions.

— The load pattern involves a randomized arrival of transactions controlled by
a weighted selection criteria and a random inter-arrival delay [32].

— There is an inter-dependence between the transactions. In particular, every
New-Order will be accompanied by a Payment, and every group of ten New-
Order transactions will produce one Delivery, one Order-Status, and one
Stock-Level transaction [32].

— There are specified structures, inter-dependencies, contents, initial sizes,
and growth rates for the data set, materialized in nine tables (i.e., Ware-
house, District, Customer, History, Order, New-Order, Order-Line, Stock,
and Item [31]).

In contrast, a major shortcoming of some of the recent big data micro bench-
mark proposals [6,9, 26, 30] is the lack of any clear workload model, let alone
a functional workload model as defined here. The resulting benchmarks mea-
sure system performance using one stand-alone compute unit at a time. They
are lacking the functional view that is essential to benchmarking the diverse
and rapidly changing big data solutions aimed at servicing emerging application
domains, as we explain next.

4.3 Functional Benchmarks Essential for Big Data

We advocate the functional view for big data benchmarks, as illustrated by the
Functional Workload Model layer in Figure 1.

The functional view enables a large range of similarly targeted systems to be
compared, because such an abstraction level has been intentionally constructed
to be independent of system implementation choices. In particular, the functional
description of TPC-C does not preclude an OLTP system from being built on
top of, say, the Hadoop distributed file system, and its performance compared
against a relational database system.

The functional view also allows the benchmark to scale and evolve. This ability
comes from the fact that functions of abstraction are specifically constructed to
be independent of each other, and of the characteristics of the data sets they
act upon. Thus, functions of abstraction can remain relatively fixed as the size
of the data set is scaled. Further, as each application domain evolves, functions
of abstraction can be added, deprecated, involved in a different load pattern
or performed on a data sets with different characteristics. Thus, functions of
abstraction form an essential part of a scalable and evolving benchmark model.

Figure 1 also shows the Systems View and Physical View. In Section 5.4, we
will explain the pros and cons of these alternate approaches using some examples
of early MapReduce benchmarks. We will also discuss these approaches in the
context of a general purpose big data benchmark.

Functional Workload Model 37

Application Domain
| Use-Case X || Use-Case Y || Use-Case Z |

Functional Workload Model

| Functions of Abstraction |

| Data Set || Load Pattern |

Systems View

| Web Server || TP Monitor | | App Server |
| MapReduce | | Relational/SQL | | NoSQL DB |
Physical View

| SMP Server || Blades || Cluster || Cloud |

| CPU || Network || Memory || Storage |

Fig.1. The conceptual relations between application domains, functional workload
models, functions of abstraction, and the system and physical views

5 Extending these Concepts to MapReduce

For the functions of abstractions concept to be useful, it must be applicable
to different types of big data systems. Two important examples are relational
databases and MapReduce. Identifying functions of abstraction for big data is
currently bottlenecked on limited empirical knowledge. However, emerging em-
pirical data hints toward the identification of some application domains, each
with its own functional workload model. This section discusses some benchmark
lessons drawn from MapReduce and generally applicable to big data.

5.1 Towards Functions of Abstraction for Big Data

MapReduce and big data represent relatively new and rapidly expanding com-
puting paradigms. The latest empirical insights [16] indicate that the effort to
extract Hadoop MapReduce functions of abstraction remains a work in progress.
The data in that study, while unprecedented for MapReduce, is limited to seven
workloads. This is far from the breadth of the OLTP survey that preceded TPC-
C. A key result from [16] is the diversity of observed behavior. This result in-
dicates that we should survey more system deployments to understand both
common and outlier behavior. Even if functions of abstraction are extracted
from the current, limited survey, there is no guarantee that these functions of
abstraction would be representative of a majority of big data deployments.

A key shortcoming in the data from [16] is the lack of direct information re-
garding functional computation goals. This is due to the fact that current logging
tools in the Apache Hadoop implementation of MapReduce collect only system-
level information. Specifically, the analysis in [16] identified common MapReduce

38 Y. Chen, F. Raab, and R. Katz

jobs using abstractions that are inherently tied to the map and reduce computa-
tional paradigm (i.e., input, shuffle, output data sizes, job durations, map and re-
duce task times). While such a systems-view has already led to some MapReduce-
specific performance tools [10], this view becomes insufficient for extracting func-
tions of abstractions related to big data application domains.

A good starting point to identify functions of abstraction would be to capture
the data query or workflow text at MapReduce extensions such as Hive [2],
Pig [4], HBase [1], Oozie [3], or Sqoop [5]. The hope is that the analysis of a
large collection of such query or workflow texts would mirror the empirical survey
that led to the TPC-C functions of abstraction. A complementary effort woud
involve collecting the experiences of bid data scientists and big data systems
administrators. A collection of such first-hand experiences should offer insights
on what are the common big data business goals and the ensuing computational
needs. The emergence of enterprise MapReduce vendors with a broad customer
base helps expedite such efforts.

5.2 Emerging Big Data Application Domains

The data in [16] allows us to speculate on the emerging big data application
domains that are addressed by the MapReduce deployments surveyed, notwith-
standing the limits outlined in Section 5.1. In the following, we describe the
characteristics of these application domains.

A leading application domain is flexible latency analytics, for which MapRe-
duce was originally designed [19]. Flexible latency analytics is indicated by the
presence of some jobs with input and output data sets that are orders of magni-
tude larger than for other jobs, up to the “full” data set. This application domain
has previously been called “batch analytics”. However, as with other application
domains such as decision support, the batch nature is due to the limited capa-
bilities of early systems. Low latency is desirable but not yet essential; hence
“flexible latency”. The data in [16] indicates that different deployments perform
vastly different kinds of analytics, suggesting that the application domain likely
involves functions of abstraction with a wide range of characteristics.

Another application domain is interactive analytics. Evidence suggesting in-
teractive analytics include diurnal workload patterns, identified by visual in-
spection, and the presence across all workloads of frameworks such as Hive and
Pig, one of whose design goals was ease of use by human analysts familiar with
SQL. The presence of this application domain is confirmed by data scientists
and systems administrators [8]. Low computational latency would be a major
requirement. It is likely that this application domain is broader than online an-
alytical processing (OLAP), since the analytics typically involve unstructured
data, and some analyses are specifically performed to explore and identify pos-
sible data schema. The functional workload model is likely to contain a dynamic
mix of functions of abstraction, with a large amount of noise and burstiness
overlaid on a daily diurnal pattern.

Functional Workload Model 39

Yet another application domain is semi-streaming analytics. Streaming an-
alytics describes continuous computation processes, which often update time-
aggregation metrics. For MapReduce, a common substitute for truly streaming
analytics is to setup automated jobs that regularly operate on recent data, e.g.,
compute click-rate statistics for a social network with a job every five minutes.
Since “recent” data is intentionally smaller than “historical” data, we expect
functions of abstraction for this application domain to run on relatively small
and uniformly sized subset of data. The functional workload model is likely to
involve a steady mix of these functions of abstraction.

According to the seven deployments surveyed in [16], all three application
domains appear in all big data deployments. While interactive analytics carries
the most weight in terms of the number of jobs, they are all good candidates
for a targeted big data benchmark, provided that they are confirmed by either
trace analysis or user surveys of additional big data deployments.

5.3 Challenges Highlighted by MapReduce Survey

The MapReduce survey in [16] also served to highlight properties of big data sys-
tems that represent new challenges in the development of big data benchmarks.
They can be summarized as follows:

— System diversity: Big data systems tend to host multiple use cases from
divergent application domains. Such diversity translates to significant, and
sometimes mutually exclusive, variations in the design of big data systems.
A good benchmark for big data needs to replicate realistic conditions across
a range of application domains, and use metrics that translates across po-
tentially divergent computational needs. Thus, it may be challenging for a
big data benchmark to be representative and portable.

— Rapid data evolution: Big data systems use cases constantly and rapidly
evolve. This reflects the innovations in business, science, and consumer be-
havior facilitated by knowledge extracted from big data. This change is often
rooted in the underlying data set and likely outpaces the ability to develop a
representative data set as part of the functional workload model. The chal-
lenge is to ensure that the benchmark keeps sufficient pace with such changes
to remain relevant.

— System and data scale: Big data systems often involve multiple, distributed
components, while big data itself often involves multiple sources of different
formats. This translates to multiple ways for the system and the data to
scale. Consequently, it is challenging for a big data benchmark to be truely
scalable and adequately capture the multi-dimentional scaling paradigm of
big data systems.

— System complexity: The distributed nature of big data systems also make
it challenging for a big data benchmark to be simple. Any simplifications
of big data systems is likely to remain fairly complex in the absolute sense.
The process of simplifications will need to be supported by objective and

40 Y. Chen, F. Raab, and R. Katz

empirical measurements to verify that all significant performance factors are
captured by the benchmark.

5.4 Surveying MapReduce-Specific Benchmarks

The success of MapReduce greatly helped raise the profile of big data. The
application domains currently dominated by MapReduce should be an important
part of big data benchmarks. Some MapReduce benchmarks also help highlight
limited approaches for building a general purpose big data benchmark.

The list below discusses these approaches, along with the corresponding
MapReduce-specific benchmarks, and why they make it hard to achieve the
desirable benchmark properties summarized in Section 2.

— Not having a true functional workload model. Bechmarks in this category
focus on measuring stand-alone MapReduce jobs [6,9,26,30]. They are in-
herently limited to measuring a narrow sliver of the full range of cluster
behavior, as a real life cluster hardly ever runs one job at a time or just
a handful of specific jobs. This prevents the benchmark from achieving the
“representative” property.

— Adopting a physical view of benchmarking. This category includes the Grid-
mix3 [7] Bechmark. It seeks to reproduce the exact breakdown of jobs into
tasks, the exact placement of tasks on machines, and the exact scheduling
of task execution. This is similar to other physical view benchmarks that
reproduce CPU, memory, disk, and network activities. While useful for com-
paring hardware components, one cannot use physical view benchmarks to
compare, for example, two MapReduce systems that have different schedul-
ing algorithms or operate on data of different compression formats. Further,
the attempt to reproduce a large amount of execution details introduces scal-
ability issues for the benchmark execution tool [8,24]. “Portable”, “scalable”,
and “verifiable” properties would be hard to achieve.

— Adopting a systems view of benchmarking. This view is adopted by the
SWIM [10] benchmark. This approach captures system behavior at the nat-
ural, highest level semantic boundaries in the underlying system. For MapRe-
duce, this translates to MapReduce-specific, per job characteristics such as
the input and output data to the map() and reduce() functions. The systems
view does allow many desirable benchmark properties to be achieved, and
SWIM is already used by leading big data platform vendors. However, the
systems view for MapReduce is not “portable” to other big data solutions.
For example, the map() and reduce() abstractions do not directly translate
to traditional RDBMS systems. Hence, the systems view is also insufficient
for a general big data benchmark.

The functional view advocated in this paper specifically seeks to go beyond
these limits. It aims to enable comparison between diverse styles of systems that
service the same functional goals, but have different system architectures and
exhibit different physical behaviors.

Functional Workload Model 41
6 Vision for Big Data Benchmark

The concepts of functions of abstraction, functional workload model, and appli-
cation domains help us develop a vision for a possible big data benchmark.

Big data encompasses many application domains. OLTP is one domain. If con-
firmed by further survey, other possible domains are OLAP, flexible latency an-
alytics, interactive analytics, and semi-streaming analytics. There may be other
application domains yet to be identified. The criteria for identifying an appli-
cation domain should be that a trace-based or user-based survey indicates that
the application domain is important to the big data needs of a large range of
enterprises, and that sufficient empirical traces are available to allow functions
of abstraction and functional workload models to be extracted.

Within each application domain, there are multiple functions of abstraction,
extracted from empirical traces and defined in the fashion outlined in Section 4.1.
The benchmark should include the functions of abstraction representing the com-
mon traces from across all system deployments within the application domain.
What is “common” needs to be supported by empirical traces.

There is also a representative functional workload model, extracted from em-
pirical traces and defined in the fashion outlined in Section 4.2. Each specific
system deployment or application will likely include a different organization of
data sets and workload arrival patterns. The benchmark should include a sin-
gle representative functional workload model for each application domain, i.e.,
a functional workload model that is not specific to any one application, greatly
simplified, and yet typical of the entire application domain. The details of this
representative functional workload model need to be supported by empirical
traces.

The traces and survey used to support the selection of functions of abstraction
and functional workload models should be made public. Doing so allows the
benchmark to establish scientific credibility, defend against charges that it is
not representative of real life conditions, and align with the business needs of
enterprises seeking to derive value from big data.

Good first steps toward realizing the ideas in this paper include the Big-
Bench benchmark [23], which includes English descriptions of what could be
expanded into functions of abstractions for some Teradata use cases, and the
CH-benchmark [17], which aims to combine the OLTP and OLAP application
domains.

7 Summary and Future Work

In this paper we summarized the properties of a good benchmark and highlighted
the need for a formal process to build a benchmark displaying these properties.
We studied the creation of TPC-C as an example of such a process and formalized
it by introducing several essential concepts — application domains, functions
of abstraction, and the functional workload model. We studied the results of
published surveys of big data systems as a first step toward defining application

42 Y. Chen, F. Raab, and R. Katz

domains and functions of abstractions specific to big data, with the ultimate goal
of creating a set of widely accepted and frequently used big data benchmarks.

The next step in the process of building the first standard big data benchmark
would be to survey additional system deployments to identify the most promi-
nent big data application domain and within this application domain to identify
the representative functional workload model and its functions of abstraction.
In the future, we should also consider combining multiple big data benchmarks
to represent systems that increasingly host use cases from multiple application
domains.

References

Apache HBase, http://hbase.apache.org/

Apache Hive, http://hive.apache.org/

Apache Oozie, http://incubator.apache.org/oozie/

Apache Pig, http://pig.apache.org/

Apache Sqoop, http://sqoop.apache.org/

Gridmix, HADOOP-HOME/mapred/src/benchmarks/gridmix in Hadoop 0.21.0 on-

wards

Gridmix3, HADOOP-HOME/mapred/src/contrib/gridmix in Hadoop 0.21.0 onwards

Personal conversation with data scientists and cluster operators at Facebook

Sort benchmark home page, http://sortbenchmark.org/

10. SWIM - Statistical Workload Injector for MapReduce, http://github.com/
SWIMProjectUCB/SWIM/wiki

11. TPC Benchmark A Standard Specification Revision 2.0 (1994),
http://www.tpc.org/tpca/spec/tpca_current.pdf

12. TPC Benchmark B Standard Specification Revision 2.0 (1994),
http://www.tpc.org/tpca/spec/tpcb_current.pdf

13. Anon, et al.: A measure of transaction porcessing power. Datamation (1985)

14. Belady, L., Richter, C.: The MCC Software Technology Program. SIGSOFT 10
(1985)

15. Bitton, D., DeWitt, D., Turbyfill, C.: Benchmarking database systems: A system-
atic approach. In: VLDB 1983 (1983)

16. Chen, Y., Alspaugh, S., Katz, R.: Interactive Analytical Processing in Big Data
Systems: A Cross-Industry Study of MapReduce Workloads. In: VLDB 2012 (2012)

17. Cole, R., et al.: The mixed workload ch-benchmark. In: DBTest 2011 (2011)

18. Cooper, B., et al.: Benchmarking cloud serving systems with ycsb. In: SOCC 2010
(2010)

19. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI 2004 (2004)

20. Fadika, Z., et al.: Benchmarking mapreduce implementations for application usage
scenarios. In: GRID 2011 (2011)

21. Ferdman, M., et al.: Clearing the clouds, a study of emerging scale-out workloads
on modern hardware. In: ASPLOS 2012 (2012)

22. Ferrari, D.: Computer systems performance evaluation. Prentice-Hall (1978)

23. Ghazal, A., et al.: Bigbench: towards an industry standard benchmark for big data

analytics. In: SIGMOD 2013 (2013)

S otk W

© o N

http://hbase.apache.org/
http://hive.apache.org/
http://incubator.apache.org/oozie/
http://pig.apache.org/
http://sqoop.apache.org/
HADOOP-HOME/mapred/src/benchmarks/gridmix
HADOOP-HOME/mapred/src/contrib/gridmix
http://sortbenchmark.org/
http://github.com/SWIMProjectUCB/SWIM/wiki
http://github.com/SWIMProjectUCB/SWIM/wiki
http://www.tpc.org/tpca/spec/tpca_current.pdf
http://www.tpc.org/tpca/spec/tpcb_current.pdf

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Functional Workload Model 43

Gowda, B.D.: HiBench: A Representative and Comprehensive Hadoop Benchmark
Suite. In: et al. (eds.) Presentations of WBDB 2012. LNCS, vol. 8163, Springer,
Heidelberg (2014)

Gray, J.: The Benchmark Handbook For Database and Transaction Processing
Systems - Introduction. In: Gray, J. (ed.) The Benchmark Handbook for Database
and Transaction Processing Systems. Morgan Kaufmann Publishers (1993)
Huang, S., et al.: The HiBench benchmark suite: Characterization of the
MapReduce-based data analysis. In: ICDEW 2010 (2010)

Huppler, K.: The art of building a good benchmark. In: Nambiar, R., Poess, M.
(eds.) TPCTC 2009. LNCS, vol. 5895, pp. 18-30. Springer, Heidelberg (2009)
Jacobson, I., et al.: Object-Oriented Software Engineering - A Use Case Driven
Approach. Addison-Wesley (1992)

O’Neil, P.: A set query benchmark for large databases. In: Conference of the Com-
puter Measurement Group 1989 (1989)

Pavlo, A., et al.: A comparison of approaches to large-scale data analysis. In:
SIGMOD 2009 (2009)

Raab, F.: TPC-C - The Standard Benchmark for Online Transaction Processing
(OLTP). In: Gray, J. (ed.) The Benchmark Handbook for Database and Transac-
tion Processing Systems. Morgan Kaufmann Publishers (1993)

Raab, F., Kohler, W., Shah, A.: Overview of the TPC Benchmark C: The Order-
Entry Benchmark, www.tpc.org/tpcc/detail.asp

Serlin, O.: IBM, DEC disagree on DebitCredit results. FT Systems News 63 (1988)
Serlin, O.: The History of DebitCredit and the TPC. In: Gray, J. (ed.) The
Benchmark Handbook for Database and Transaction Processing Systems. Morgan
Kaufmann Publishers (1993)

Turbyfill, C., Orji, C., Bitton, D.: As3ap: A comparative relational database bench-
mark. In: COMPCON 1989 (1989)

www.tpc.org/tpcc/detail.asp

The Implications of Diverse Applications
and Scalable Data Sets
in Benchmarking Big Data Systems

Zhen Jial'2, Runlin Zhou®, Chunge Zhu?®, Lei Wang!2, Wanling Gao®-2,
Yingjie Shi!, Jianfeng Zhan'*, and Lixin Zhang'

! State Key Laboratory Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, China
2 University of Chinese Academy of Sciences, China
3 National Computer Network Emergency Response Technical Team Coordination
Center of China
jiazhen@ncic.ac.cn, zhourunlin@cert.org.cn, jadove@163.com,
wl@ncic.ac.cn, {gaowanling,shiyingjie,zhanjianfeng,zhanglixin}@ict.ac.cn

Abstract. Now we live in an era of big data, and big data applications
are becoming more and more pervasive. How to benchmark data center
computer systems running big data applications (in short big data sys-
tems) is a hot topic. In this paper, we focus on measuring the performance
impacts of diverse applications and scalable volumes of data sets on big
data systems. For four typical data analysis applications—an important
class of big data applications, we find two major results through experi-
ments: first, the data scale has a significant impact on the performance of
big data systems, so we must provide scalable volumes of data sets in big
data benchmarks. Second, for the four applications, even all of them use
the simple algorithms, the performance trends are different with increas-
ing data scales, and hence we must consider not only variety of data sets
but also variety of applications in benchmarking big data systems.

Keywords: Big Data, Benchmarking, Scalable Data.

1 Introduction

In the past decades, in order to store big data and provide services, more and more
organizations around the world build data centers with scales varying from several
nodes to hundred of thousands of nodes [21]. Massive data are produced, stored,
and analyzed in real time or off line. According to the annual survey of the global
digital output by IDC, from 2005 to 2020, the digital data will grow by a factor of
300, from 130 exabytes to 40,000 exabytes. The more data we produce, the more
data center systems are deployed for running big data applications.

As researchers in both academia and industry pay great attention to innova-
tive systems and architecture in big data systems [5] [30] [13] [19] [20] [7] [8], the

* Corresponding author.

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 44-59, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Implications in Benchmarking Big Data Systems 45

pressure to evaluate and compare performance and price of these systems rises
[16] [6]. Benchmarks provide fair basis for comparison among different big data
systems. Besides, benchmarks represent typical needs of system support from big
data applications. Together with workload characterization of typical big data
applications, benchmarking results can thus enable active improvements of big
data systems.

In a tutorial given at HPCA 2013 [14], we stated our position on big data
benchmarking: we should take an incremental approach in stead of a top-down
approach because of the following four reasons: first, there are many classes of
big data applications, and there is a lack of a scientific classification of different
classes of big data applications. Second, even for data center workloads, there
are many important application domains, e.g., search engines, social networks,
though they are mature, customers, vendors, or researchers from academia or
different domains of industry do not know enough to make a big data bench-
mark suite because of the confidential issues [9]. Third, the value of big data
drives the emergence of innovative application domains, which are far from our
reach. Fourth, the complexity, diversity, scale, workload churns, and rapid evo-
lution of big data systems indicate that both customers and vendors often have
incorrect or outdated assumptions about workload behaviors [9]. Recently, big
data benchmarking communities make a first but important step, and Ghazal
et al. present BigBench, an end-to-end big data benchmark proposal [16], whose
underlying business model of BigBench is a product retailer. Although we have
some insights of the big data applications [18] [11] [30], considering the challenges
mentioned above, there is a long way to go.

Workload, application and data are all important for characterizing big data
systems [23]. In this paper, we focus on data analysis workloads—an important
class of big data application, and investigate the performance impacts of diverse
applications and scalable volumes of data set in benchmarking big data sys-
tems. We choose four typical data analysis applications from a benchmark suite
for big data systems [15], and use different input data sets, the scale of which
ranges from Mega Byte to Tera Byte, to drive those applications. As Rajara-
man explained [22], for big data applications, inferior algorithms beat better,
sophisticated algorithms because of the computing overhead. The four applica-
tions we chose indeed use simple algorithms, whose computation complexities
slightly vary from O(n) to O(n x logan). We use a user-perceived performance
metric—data processed per second to depict the system processing capability.

Through experiments, we learnt that:

— For the four representative big data applications, data scale has a significant
impact on the performance of big data systems, so we must provide scalable
volume of data sets in big data benchmarks.

— For the four representative big data applications, the performance trends are
different with increasing data scales, and hence we must consider not only the
variety of data sets but also the variety of applications when benchmarking
big data systems. This also implies that there is no one-fit-all application.

46 7. Jia et al.

The remainder of the paper is organized as follows. Section 2 shows the work-
loads and evaluation methodology. Section 3 reports the experiment results and
Section 4 gives our analysis. Section 5 discusses the implications of our ob-
servations in benchmarking big data systems. Section 6 draws conclusions and
mentions the future work.

2 Evaluation Methodology

2.1 Workloads

We choose four representative Hadoop applications from BigDataBench[15] in-
cluding Sort, Word Count, Grep and Naive Bayes.

Sort is arepresentative I/ O-intensive application, which simply uses the MapRe-
duce framework to sort records within a directory. Word Count is a representative
CPU-intensive application, which reads text files and counts how often the words
occur. Grep is frequently used in data mining algorithm, and it extracts match-
ing strings from text files. Naive Bayes is a simple probabilistic classifier which
applies the Bayes’ theorem with strong (naive) independence assumptions.

In this paper, these four applications we chosen all have relatively low com-
putational complexity. This is because that “More data usually beats better
algorithms” [22]. Table 1 shows some details of the four applications.

Table 1. Details of Different Algorithms

Application Time Complexity Characteristics
Sort O(n x logan) Integer comparison
WordCount O(n) Integer comparison and calculation
Grep O(n) String comparison
Naive Bayes O(m x n) Floating-point computation

2.2 Performance Metric

We adopt a user-perceived performance metric - data processed per second to
reflect the system’s data processing capability. For each application, the metric
of data processed per second is defined as the input data size divided by the
application running time. For example, the running time of Sort with 100 GB
input data set is 2487 seconds, and then the data processed per second of Sort
is 41.6 MB/s. For Sort, this metric means the application can sort 41.6 Mega
Byte data per second.

In order to explain the trend of each application’s processing capability, we
also collect several micro-architectural and operating system level metrics. We
get the micro-architectural data by using hardware performance counters. We
use Perf—a profiling tool for Linux 2.6+ based systems [2], to drive the hard-
ware performance counters collecting micro-architectural events. In addition, we
access the proc file system to collect OS-level performance data, such as the I/O
wait time. We collect all the four slave nodes data, and report the mean value.

Implications in Benchmarking Big Data Systems 47

2.3 Summary of Hadoop Job Execution [1]

The four applications are all based on Hadoop. Hadoop is a framework that
allows for the distributed processing of large data sets using the Map/Reduce
model [1]. A MapRedcue job consists of a map function and a reduce function,
and Hadoop breaks each job into tasks. Each map task processes one input data
block (typically 64 MB) and produces intermediate results. Reduce tasks deal
with the list of intermediate data through the reduce functions and produce the
jobs’ final output [1]. Job scheduling is performed by the unique master node
of Hadoop, and there are also many slave nodes which own a fixed number of
map slots and reduce slots to run tasks. The master assigns tasks of the job in
response to heartbeats sent by slaves, which report the number of free map and
reduce slots on the slave [28]. In our experiments, we submit the Hadoop jobs
one by one and use the default FIFO scheduler policy. So the tasks of each job
will be queued in the master node and be executed in FIFO orders too.

2.4 Experiment Platforms

We use a 5-node cluster to run those applications. Each node has two Xeon
Eb5645 processors equipped with 16 GB memory and 8 TB disk. For the 5-node
cluster, we deploy a Hadoop environment on it (1 master and 4 slavers). The
details of configuration parameters of each node are listed in Table 2.

Table 2. Details of Configurations

CPU Type Intel ®Xeon E5645
Cores 6 cores@2.4G

threads 12 threads
#Sockets 2

L1 DCache 32KB, 8-way associative, 64 byte/line
L1 ICache 32KB, 4-way associative, 64 byte/line
L2 Cache 256 KB, 8-way associative, 64 byte/line
L3 Cache 12 MB, 16-way associative, 64 byte/line
Memory 32 GB , DDR3
Network 1 Gb ethernet link

The operating system is Centos 5.5 with Linux kernel 2.6.34. The Hadoop
version is 1.0.2, and the java version is JDK 1.6. For each slave node, we assign
18 map slots and 18 reduce slots with 512 MB Java heap for each slot. For other
Hadoop configurations, we use the default ones.

3 Evaluation Results and Analysis

3.1 Data Scale

For those four applications, we use different input data sets to drive those ap-
plications. For Sort, the scale of the input data sets ranges from 200 MB to 100

48 7. Jia et al.

GB. For Word Count and Grep, the scale of the input data sets ranges from 200
MB to 1 TB, respectively. For Naive Bayes, the scale of input data sets ranges
from 160 MB to 300 GB. In order to eliminate the experiment deviations, each
experiment is performed at least two times. We report the mean values across
several times experiments.

3.2 Experiments Observations

Figure 1 shows the system’s data processing capability, which is the performance
metric defined in section 2.2. We can find that the system has significantly dif-
ferent data processing capabilities when running different applications with dif-
ferent scale of data sets. For example, the system processing capability running
Grep is more than 3 times than that of running WordCount when they both pro-
cess 1 TB data set. Meanwhile, the performance metrics of big data applications
are sensitive to the data scales. Even for the same application, the processing
capability is significantly varied from different scales of input data sets. For ex-
ample, running Grep, the performance of the system is 3.077 MB per second
when the data scale is 200 MB, while the processing capability is up to 398.7
MB per second with 1 TB data input. The details of our findings from those
experiments are described as follows.

Sort WordCount

100

80 /

60 //

40 /

20 /

o L

200M 456G 6G 106 506 1006 200M 456 106 50G 100G 500G 1T

Grep Bayes

Data processed per second (MB/S)
.
8§ 8
N

Data processed per second (MB/S)

450
400

350

300 —

250

200 /

150 /
e

100

>

\

Data processed per second

Data processed per second
(MB/s)

200M 456 106 506G 100G 5006 1T 160M 45G 106 50G 100G 200G 300G

Fig. 1. The System’s Processing Capability

First, different applications have different processing capabilities. We can find
that the maximum processing capability is 336 MB/s (Grep) and the minimum
processing capability is 33 MB/s (Naive Bayes) when the data scale is 100 GB
,;respectively. This is because that Naive Bayes classifies records based on a
probability model. It needs to calculate posterior probability for each record.
So it is the most time-consuming one in the four applications, and has the

Implications in Benchmarking Big Data Systems 49

lowest processing capability. While Grep is much simpler than the other three
applications. It only finds the matched strings in each record, so it has the highest
processing capability. In Section 4, we provide more performance data to explain
this observation. Those different processing capabilities of different applications
imply that varieties of workloads must be considered in big data benchmarking,
since a certain application can not represent the behaviors of all workloads in
big data field. A benchmark suite composed of diverse workloads is needed.
Second, the same application has different processing capability with different
data scales. For all the four applications, we can find that there is a stage where
the processing capability increases with increasing of data scale. This can be seen
as a process of stressing the system step by step, which leads the system to a
state of resource being fully used, and hence a peak system processing capability
will appear. The reason why applications’ processing capabilities increase with
increasing of data scale is that the computing resources are not fully used when
the data set is small, especially when the data size is less than the 4.5 GB. The
basic data block size for each Hadoop map task is 64 MB in our experiments
[26], so on our Hadoop cluster, the minimum data size driving all map slots to
run tasks concurrently is 4.5 GB (64 M B x 18 map tasks x 4 slaves). When
the input data set is too small (less than 4.5 GB), the Hadoop will just allocate
some of map slots to complete the job. This situation causes only some of slaves
busy and others less busy or even idle. So when the data set is less than 4.5
GB, applications show low processing capabilities. When all the map slots are
used, the processing capabilities increase. After testing with 4.5 GB data set, we
use larger data sets to stress the system further. We can find there is a turning
point, of which processing capability curves stop increasing: 10 GB for sort, 500
GB for Grep, 100 GB for WordCount and 50 GB for Naive Bayes, respectively.
There may be some fluctuations, which are within the range of allowable devi-
ation. This phenomenon can be caused by many reasons, such as the different
computational complexities, diverse resource requirements, and diverse system’s
bottlenecks, which will be further explained in Section 4. The highest points in
the figure mean the maximum processing capability in our experiments. The cor-
responding abscissa value is the data set which can drive applications to reach
the maximum processing capability. The phenomenon implies that we should
tune the scalable volume of input data set to achieve the peak performance.
What we must point out is that the data set size, which drives the system to
reach the maximum processing capability, is an approximation for we do not
enumerate all the data set size in our experiments. Take Sort for an example.
In our experiment environment, the highest point is at 10 GB point. The input
data set size, which can drive the application to reach the maximum processing
capability, is about 10 GB. However, the 10 GB is an approximation, for we do
not know whether a 9 GB data set or an 11 GB data set can achieve better pro-
cessing capability. For the other three applications, their processing capability
curves tend to smooth along with the data scale increasing. It implies that the
maximum processing capabilities of them are near to the smooth points of them.

50 Z. Jia et al.
4 Further Analysis

This section will analyze the causes of phenomena in Figure 1. We will find the
main factors, which cause the processing capability varying with data scale. First,
we will report the cluster’s resource requirements with data scale increasing, and
then investigate whether the computational complexity theory can explain the
processing capability trend. At last, we will explain some interesting phenomena.

4.1 Resource Requirements

As mentioned in section 3.2, increasing the input data size is a process of stress-
ing the system and using more resources step by step. Resource consumption
characteristics have great influence on the application performance [29] [25], so
we would like to investigate the resource requirements and resource utilization
for each application. The operation system level metrics can reflect applications’
requirements directly since the operating system is the one that manages hard-
ware resources and provides services for applications running upon it.

For an application can be decoupled into data movement and calculating,
the operating system level metrics we choose are I/O wait percentage and CPU
utilization, which can reflect the data movement and calculating. We get those
metrics from the proc file system as mentioned in Section 2.2. We collect the
system time, user time, irq time, softirq time and nice time, and sum those time
up as the CPU used time. The CPU utilization is defined as the CPU used time
divided by all CPU time. The I/O wait percentage is defined as the I/O wait
time, which can also get from the proc file system, divided by all CPU time.

I/O wait time means the time spent by CPU waiting for I/O operations to
complete. A high percentage of I/O wait time means that the application has
1/0 operations frequently, which further indicates that the application is an I/O
intensive workload. For system, high I/O wait implies that I/O operations may
be the system’s bottleneck. The CPU utilization reflects how much time the
CPU is used to do calculation instead of waiting for I/O or idle.

Figure 2 shows the CPU utilization and I/O wait time percentage of each
workload. For Sort, when the data size is less than 10 GB, the data processing
capability increases with the data scale increasing, and the CPU utilization goes
up for it uses the Hadoop slots more efficiently. When the data size is larger than
10 GB, the processing capability decreases with data scale increasing. From Fig-
ure 2, we can find that the system’s I/O wait time increases intensively whereas
the CPU utilization decreases when data scale is greater than 10 GB. This phe-
nomenon means that system is waiting for the data coming and further decreases
the processing capability. The last point of sort application in Figure 2 seems
strange. At 100 GB point the CPU usage decreases and the I/O wait time de-
creases at the same time, which seems unreasonable. This phenomenon is caused
by the unbalanced I/O wait time *. The data we showed in Figure 2 is the average

! We run the Sort 100 GB data set several times. Each time the experiment has the
similar phenomenon.

Implications in Benchmarking Big Data Systems 51

Sort WordCount
—+—CPU Utilization =10 wait 80% —m—CPU Utilization —&—10 wait
50% 70%
20% /\ 60% y_i
/ T 50%

30%

//' Py /—"{
20% 30%
o / l/
l—-——‘-""{ 10% /

0%

200M 456G 6G 10G 50G 100G 0% 4 & & A
Grep 200M 456G 10G 50G 100G 500G 1T
—8—CPU Utilization ——10 wait Bayes
70% 0% —4—CPU Utilization ~#-10 wait
60% //. 80% o ———
50% 70%
40% ’/ o i/
/ 50%
30% 40% /
20% ?—4 30% //
N R 20%
10% /r we |4
0% a % ———_—-=bbaG—-7—_. a8
200M 456G 110G 50G 100G 500G 1T 160M 456G 106G 50G 100G 200G 300G

Fig. 2. The CPU Utilization and I/O Wait Percentage of Each Workloads

value of the four slaves. For the four slaves, we find that the maximum I/O wait
time percentage is 31.5% and minimal I/O wait percentage is 17.6% with the
average 25.3% in the face of 50 GB data. Whereas the 100GB point’s maximum
I/0 wait percentage is 36.6% and minimal I/O wait time percentage is 10.9%
with average 20.5%. The variance of running 50 GB data set is 27 whereas the
variance is 94 for running 100 GB data set, which indicates that running 100
GB data set makes the system more unbalanced.

So here we can find that for the I/O intensive application — Sort, the pro-
cessing capability trend is mostly impacted by the I/O operations. The large
percentage of I/O wait time elongates the Sort’s execution time and further
reduces the processing capability. The I/O operation becomes a bottleneck for
Sort application.

Different from Sort, the other three applications (WordCount, Grep and Naive
Bayes), are not I/O-intensive applications, and they do not have an obvious
bottleneck. So the processing capability is mostly decided by CPU utilization.
When the system’s resource is fully used, the processing capability is unchanged.

4.2 What about Computational Complexity Theory?

The computational complexity theory is used to identify the inherent difficulty
of solving a problem and it is also interested in the time consuming with an
increase in the input size, which matches our scenario. The time required to solve
a problem with certain scale is commonly expressed using big O notation, which
is called time complexity. Such as we showed in Table 1, the time complexity of
Sort algorithm is O(n X logan). The time complexity of Grep and Wordcount is
O(n), and the time complexity of Naive Bayes is O(mxn), where m is the length
of dictionary. The m is a constant, so the complexity can also be seen as O(n).

52 7. Jia et al.

Sort Wordcount
7E+09 1.40E+09
@ 6E+09 @ 1.20E+09 &
s Ay s e
35 SE+09 i 1.00E+09
g \ g ——
@ 4E+09 \ « 8.00E+08
-% 3E+09 \ 2 6.00E+08
i
g 2E+09 \ 2 4.00E408
£ 16009 —— < 2 200408
0 0.00E+00
200M 4.56 6G 106 50G 1006 200M 45G 10G 50G 100G 500G T
Grep Bayes
9.00E+08 < 9E+09
8.00E+08 8E+09
@ \ 2 \
S 7.00E+08 \ S 7E+09 \
fg 6.00E+08 \ E’_ 6E+09 \
@ 5.00E+08 _ @ SE+09 \
.S 4.00E+08 .2 4E+09
k v M ©
S 3.00£+08 S 36409
g g
£ 2008408 2 26409
1.00E+08 1E+09
0.00E+00 0
200M 456 106 50Gg 100G 500G 1T 160M 456 106 50G 100G 200G 300G

Fig. 3. Instructions Executed per Mega Byte Data Processing of Each Application

For the complexity, researchers actually use the RAM (Random Access Machine)
[12] model to measure it for the Turning Machine method is incredibly tedious
[17]. In order to calculate the time complexity, the researchers need to analyze
the source code of the application, and find the operations in the execution path.
In RAM model, each simple operation takes exactly one time step. Each memory
access takes exactly one time step. Under the RAM model, the running time of
an application is measured by counting up the number of time steps taking on
a given input data set [24].

The RAM time-complexity is calculated by counting basic arithmetic oper-
ations in source code. And the compiler will compile the source code to in-
structions according to the processor’s ISA (Instruction Set Architecture). The
number of instructions executed can reflect how much work the processor need
to do. So we collect the number of instructions executed for each workload.
We calculate the instructions executed per Mega Byte data processing by using
formula 1. The reason why we use this metric is that the three out of our four
applications own time complexity of O(n). When an algorithm’s time complexity
is O(n), the number of instructions executed should increase in the proportion
of increasing data scale. That is to say, if we double the data scale, the number
of executed instructions should also be doubled. So the instructions executed
per Mega Byte data should be unchanged, when the application faces different

data sizes.

slaved .
Savel Imstruction executed

1
Input Data Size (in Mega Byte) (1)

Figure 3 shows the number of instructions executed for processing each Mega
Byte data. We can find that when the input data set is small, such as 200 MB,

4.5 GB and etc., the number of instructions executed for processing each Mega

Implications in Benchmarking Big Data Systems 53

Byte data is more than that of larger input data sets. This is because the four
applications all use Hadoop framework. The framework will introduce extra in-
structions, such as the demon process TaskTracker and DataNode will execute
many instructions. The extra instructions will affect the metric, instructions ex-
ecuted per Mega Byte data, especially when the input data set is small. When
the data set is less than 4.5 GB, even though some slaves do not run application
tasks, the Hadoop framework instructions will also be executed and counted,
such as instructions executed by DataNode process. And hence the percentage
of Hadoop framework instructions of small data set driven workload is much
larger than that of workload driven by large data set. So an application driven
by a small data set will execute more instructions per Mega Byte data than the
large data sets. This can explain why the curves in Figure 3 decrease sharply
from the smallest data set to 4.5 GB data set. When enlarging the input data set,
the application will execute more application instructions and further amortize
the extra instructions introduced by Hadoop framework. For the four applica-
tions, the stationary points are different. For Grep the stationary point is 10
GB, and for the other three applications the stationary points can be seen as 4.5
GB. Although there are some fluctuations, they are within the range of allowable
deviations. The different stationary points are caused by different logic the four
applications own. The Naive Bayes is the most complex one as mentioned in Sec-
tion 3.2. So it needs the maximum number of instructions to process each Mega
Byte data among the four applications (about 4.2 x 10 instructions executed
for processing each Mega Byte data). The large amount of instructions needed
for processing each Mega Byte data make it easy to amortize the instructions
introduced by Hadoop framework. Whereas the Grep is the simplest one among
the four applications. It needs the minimum number of instructions to process
each Mega Byte data (about 3.8 x 10® instructions executed Mega Byte data).
So it needs more application instructions to amortize the Hadoop framework in-
troduced instructions. That’s why the stationary point for Grep is 10 GB, while
the points for other three are 4.5 GB. After the stationary points in Figure 3,
we find the instructions executed for each Mega Byte data fit the complexity
theory. The instructions executed for processing each Mega Byte data remain
unchanged, when the application faces different scale data.

In Figure 3, the Sort has the same trend with other three applications, even
though its time complexity is O(n x logan). This can be explained by using the
following interpretation. Let us assume that we enlarge the data set x times for
Sort. The time complexity will be & x nloga(z x n). The complexity increases
z + logpx times. which can be explained by equation 2. The n in equation 2
is Sort application’s record number. For Sort, each record size is about 10 KB
on average. For a 10 GB input data set the record number is about 1 million,
whereas the z is not a big number. The x is 5 when the data set increases
from 10 GB to 50 GB. The x X log,x will be a very small number. So the time
complexity increases can be seen as x, which implies the total number of executed
instructions increases at liner rate with data scale increasing. So the instructions
executed for processing each Mega Byte data nearly remain the same, which is

54 7. Jia et al.

consist with Figure 3. We can conclude that the four applications’ instructions
executed situation meets the complexity theory.

x X n x loga(z X n)
n X logan
x x (logax + logan)
logan (2)
logax

T+xe
logan

=z +zelog,x

4.3 Additional Interesting Phenomena

Besides the above discussions, we also find some interesting phenomena, we will
show the phenomena and explanations in the rest of this section.

Phenomenon 1: The sort’s processing capability trend decreases sharply when
the data scale is larger than 10 GB in Figure 1.

Explanations: According to those applications’ time complexity, the Sort’s
processing capability should remain unchanged or decrease slightly after the
resource is fully used. For the data processing capability can be evaluated as
n/(n x logan) = 1/logan. The processing capability will decrease at the speed
x ® log,x, which is a very small number just as explained above. But we find
that Sort application’s processing capability decreased sharply when data set
is larger than 10 GB in Figure 1. The processing capability decrease between
10 GB data set and 50 GB data set reaches 53% (the process capability for
10 GB data and 50 GB data are 77.01 MB/s and 50.45 MB/s respectively).
Whereas the instructions needed for processing each Mega Bytes data nearly
remain unchanged (Figure 3) when the data set is larger than 10 GB for Sort.
This phenomenon is caused by the RAM (Random Access Machine) model,
which is used in calculation the time complexity. As mentioned above, the RAM
model assumes that each simple operation takes exactly one time step. Each
memory access takes exactly one time step, and we have as much memory as
we need. The RAM model is too simple, which covers up many real situations,
such as division two numbers takes more time than adding two numbers in
most cases, memory access times differ greatly depending on whether data sit
in cache or on the disk and etc [24]. So the RAM model can not depict the time
consumed accurately, especially the long latency memory access. If the data is
not in main memory, it will take a long time waiting for data coming and the
I/O wait time is increased. That is to say, the long latency memory access, will
cause the CPU waiting for the data coming. During this time, the instructions,
which are waiting for the operand, will not be executed until the data come. The
instruction is delayed and further the corresponding operation will need more
time to complete. For Sort application, the long I/O wait time elongates the
instruction execution time and further decrease the processing capability. From

Implications in Benchmarking Big Data Systems 55

Figure 2, we can find that, the I/O wait time percentage increase with the data
increasing. The long I/O wait time extends the instructions execution time and
makes the processing capability trend deviate from the complexity trend. Just
as Larry Carter found that the performance looks much closer to O(n®) instead
of O(n?) when doing matrix multiply on IBM RS/6000 [27].

For the other three applications (WordCount, Grep, Naive Bayes), they do not
have an obvious bottleneck with the data scale increasing. Although operations
and memory access do not take the same time step, the average time of processing
each record tends to convergence when data volume is large enough for each
application. That’s why those three applications’ processing capability trends
meet the time complexity.

Phenomenon 2: In Figure 1, different applications have different processing
capabilities even though they process the same amount of data and have the
same time complexity.

Explanations: The complexity theory is used to direct algorithm design, instead
of evaluating the processing capability among different kinds of algorithms. The
value of time complexity (big O notation expressed) is an estimated value. The
big O notation expressed time complexity is said to be described asymptotically,
i.e., as the input size goes to infinity. It only includes the highest order term and
excludes coefficients and lower order terms. The complexity calculated as func-
tion of the size of the input. It can give a trend of time consuming with the scale
increasing when face certain problem in theory. Even though the trend may
deviate from real situation, it can be used to direct algorithm design. For exam-
ple, when facing the same problem, such as classification, an O(n?) algorithm is
worse than an O(n) algorithm e.g. Naive Bayes, in most instances. However, for
different problems, the operations mix can be different, and the number of basic
operations needed for processing each unit of data is also different. For instance,
when processing the same amount of data, the instructions needed for Grep and
WordCount are totally different in Figure 3. So the time complexity can not be
used to evaluate different kinds of algorithms.

Actually the processing capabilities are mainly decided by the instructions
executed per Mega Byte data and the systems bottleneck after the system re-
source is fully used. For instances, when process 100 GB data, Grep needs 0.39
Tera instructions whereas Naive Bayes needs 428 Tera instructions even though
they all have the computational complexity of O(n). So the Grep has better pro-
cessing capability than Naive Bayes. The Sort’s processing capability is 77.01
MB/s when it processes 10 GB data, whereas it is 50.45 MB/s when facing 50
GB data. This is because that the percentage of I/O wait time is enlarged and
becomes a bottleneck.

Phenomenon 3: Different applications’ highest processing capability appears
at different data scales in Figure 1.

Explanations: Different applications have different resource requirements. Naive
Bayes needs more CPU resources than WordCount. When they both process 10
GB data set, WordCount’s CPU utilization is 43.94% whereas the Naive Bayes’s

56 7. Jia et al.

is 65.23% (in Figure 2). The more CPU resources needed by Naive Bayes drive it
to reach the highest point faster. This phenomenon can explain why the definitions
of "large” and ”small” depend on the specific applications [10].

5 Lessons Learnt from the Experiments

Through the above experiments, we learnt several lessons in benchmarking big
data systems.

5.1 Consider the Scalable Volumes of Data Inputs in Big Data
Benchmarking

The data scale has a significant impact on the performance evaluation of big
data systems. Even for the same application, the processing capability of the
big data system in terms of data processed per second varies significantly with
increasing data scales. For example, running Grep, the processing capability of
the system is 3.077 MB per second when the data scale is 200 MB, while the
processing capability is up to 398.7 MB per second with 1 TB data input. If we
want to benchmark a big data system, the system should be fully used, only in
this way can the system show peak performance. Big data is needed for stressing
test big data systems. In addition, larger data set can reduce the impacts from
framework. As mentioned in Section 4, large data set can amortize the framework
introduced instructions and further decrease the framework’s impacts.

From Sort application, we can also conclude that big data requires big data
system. When we enlarge the Sort’s input data set, the processing capability
decreases sharply for the large proportion of I/O wait time. It is too inefficient
to process big data by using a small scale system. The phenomenon can also
explain why more data usually beats better algorithms [22] in some degree. The
big data can stress the bottleneck of the system such as I/O operations for Sort,
so the algorithms designed for processing big data should pay more attention to
avoid system’s bottleneck instead of reducing the time complexity only.

In order to benchmark big data systems, we must tune the volumes of data
inputs so as to get the peak performance of the system and reduce the impacts
of framework, and hence scalable volumes of data input must be provided in big
data benchmarks.

5.2 Consider Diversities of Workloads in Big Data Benchmarking

Also, we find that, running different applications results in varied performance
number even they use the same scale of data input. For example, the processing
capability of running Grep is more than 3 times that of running WordCount
when they process 1 TB input data set.

As Baru et al. [7] mentioned, big data issues impinge upon a wide range of
applications, covering from scientific to commercial applications. Different ap-
plications have different processing capabilities. It is difficult to single out one

Implications in Benchmarking Big Data Systems 57

application to represent all. So when we evaluate big data systems, we must
consider not only variety of data sets [16], but also variety of workloads. Dif-
ferent workloads can also reduce the impact of a specific application. Our pre-
vious work shows that customizable workloads suite is preferred to meet users’
requirements [21].

5.3 The Limitation of the Sort Benchmark

Lastly, the state-of-practice methods for big data systems evaluation, such as
MinuteSort[4], JouleSort, GraySort and TeraByte Sort [3], have their limitations,
since most of them own a fixed scale of data input.

For example, TeraByteSort reports the performance with a 1 TB data input,
which only reflects its sort performance with a 1TB data. But we do not know
its performance when the data scale increases up to 10 TB or 1 PB. At the
same time, we do not know whether the 1 TB data can drive the system to
achieve the maximum processing capability. Another example is MinuteSort. If
the MinuteSort’s result of a big data system is 100 GB, which reflects that it
sorts specific 100 GB data in one minute. But we do not know the processing
capability in the face of 1 TB data.

Moreover, the sort benchmarks only consider one algorithm and fail to cover
the diversity of workloads in big data fields.

6 Conclusion and Future Work

In this paper, we paid attention to an important class of big data applications—
data analysis workloads. Through the experiments we find that first, the data
scale has a significant impact on the performance of big data systems, so we must
provide scalable volumes of data sets in big data benchmarks so as to achieve
peak performance for big data systems with different scales. Second, for the data
analysis workloads, even all of them use the simple algorithms, the performance
trends are different with increasing data scales, and hence we must consider not
only variety of data sets but also variety of applications in benchmarking big
data systems.

For data analysis workloads, we adopt an incremental approach to build
benchmark suite. Now we have investigated application domains, singled out
the most important applications and released a first version benchmark suite
[15] on our web page (http://prof.ict.ac.cn/BigDataBench). In the near future,
we will continue to add more representative benchmarks to this suite. Especially,
we will also develop data generation tools, which can generate scalable volumes
of data sets for big data benchmarks.

Acknowledgment. We are very grateful to anonymous reviewers. This work is
supported by the Chinese 973 project (Grant No.2011CB302502), the Hi-Tech
Research and Development (863) Program of China (Grant No. 2011AA01A203,
2013AA01A213), the NSFC project (Grant No.60933003, 61202075), the BNSF
project (Grant No.4133081) and the 242 project (Grant No.2012A95).

58

7. Jia et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

http://hadoop.apache.org/

. Performance counters for linux,

https://perf.wiki.kernel.org/index.php/Main_Page

Sort benchmark home page, http://sortbenchmark.org/

Apacible, J., Draves, R., et al.: Minutesort with flat datacenter storage. Technical
report, Microsoft Research (2012)

Barroso, L., Holzle, U.: The datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis Lectures on Computer Architec-
ture 4(1), 1-108 (2009)

Baru, C., et al.: Benchmarking big data systems and the bigdata top100 list. Big
Data 1(1), 60-64 (2013)

Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., Rabl, T.: Setting the direction
for big data benchmark standards. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012.
LNCS, vol. 7755, pp. 197-208. Springer, Heidelberg (2013)

Buros, W.M., et al.: Understanding systems and architecture for big data. IBM
Research Report (2013)

Chen, Y.: We Don’t Know Enough to make a Big Data Benchmark Suite. In:
Workshop on Big Data Benchmarking (2012)

Chen, Y., Raab, F., Katz, R.H.: From tpc-c to big data benchmarks: A functional
workload model. Technical Report UCB/EECS-2012-174, EECS Department, Uni-
versity of California, Berkeley (July 2012)

Chen, Z., Jianfeng, Z., Zhen, J., Lixin, Z.: Characterizing os behavior of scale-
out data center workloads. In: The Seventh Annual Workshop on the Inter-
action Amongst Virtualization, Operating Systems and Computer Architecture,
WIVOSCA 2013 (2013)

Cook, S.A., Reckhow, R.A.: Time bounded random access machines. Journal of
Computer and System Sciences 7(4), 354-375 (1973)

Ferdman, M., et al.: Clearing the clouds: A study of emerging workloads on mod-
ern hardware. Architectural Support for Programming Languages and Operating
Systems (2012)

Gao, W., et al.: A benchmark suite for big data systems. In: The 19th IEEE
International Symposium on High Performance Computer Architecture (HPCA
2013) (2013), Tutorial http://prof.ict.ac.cn/HPCA/BigDataBench.pdf

Gao, W, et al.: Bigdatabench: a big data benchmark suite from web search engines.
In: The Third Workshop on Architectures and Systems for Big Data (ASBD 2013)
in Conjunction with the 40th International Symposium on Computer Architecture
(May 2013)

Ghazal, A., et al.: Bigbench: Towards an industry standard benchmark for big data
analytics. In: ACM SIGMOD Conference (2013)

Holyer, I.: Computational complexity (1984)

Jia, Z., Wang, L., Zhan, J., Zhang, L., Luo, C.: Characterizing data analysis work-
loads in data centers. In: 2013 IEEE International Symposium on Workload Char-
acterization (IISWC). IEEE (2013)

Jia, Z., Zhan, J., Wang, L., Zhang, L., et al.: Hvcbench: A benchmark suite
for data center. The 19th IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA 2013) (2013), Tutorial Technical Report
http://prof.ict.ac.cn/HPCA/HPCA_Tutorial _HVC_4-jiazhen.pdf

http://hadoop.apache.org/
https://perf.wiki.kernel.org/index.php/Main_Page
http://sortbenchmark.org/
http://prof.ict.ac.cn/HPCA/BigDataBench.pdf
http://prof.ict.ac.cn/HPCA/HPCA_Tutorial_HVC_4-jiazhen.pdf

20.

21.

22.
23.

24.

25.

26.
27.
28.

29.

30.

Implications in Benchmarking Big Data Systems 59

Lotfi-Kamran, P., Grot, B., Ferdman, M., Volos, S., Kocberber, O., Picorel, J.,
Adileh, A., Jevdjic, D., Idgunji, S., Ozer, E., et al.: Scale-out processors. In: Pro-
ceedings of the 39th International Symposium on Computer Architecture, pp.
500-511. IEEE Press (2012)

Luo, C., Zhan, J., Jia, Z., Wang, L., Lu, G., Zhang, L., Xu, C., Sun, N.: Cloudrank-
d: benchmarking and ranking cloud computing systems for data processing appli-
cations. Frontiers of Computer Science 6(4), 347-362 (2012)

Rajaraman, A.: More data usually beats better algorithms. Datawocky Blog (2008)
Sang, B., Zhan, J., Lu, G., Wang, H., Xu, D., Wang, L., Zhang, Z., Jia, Z.: Precise,
scalable, and online request tracing for multitier services of black boxes. IEEE
Transactions on Parallel and Distributed Systems 23(6), 1159-1167 (2012)
Skiena, S.S.: The algorithm design manual: with 72 figures, vol. 1. Telos Press
(1998)

Wang, L., Zhan, J., Shi, W., Liang, Y.: In cloud, can scientific communities ben-
efit from the economies of scale? IEEE Transactions on Parallel and Distributed
Systems 23(2), 296-303 (2012)

White, T.: Hadoop: The definitive guide. O’Reilly Media (2012)

Yelick, K.: Single processor machines: Memory hierarchies and processor features
Zaharia, M., et al.: Delay scheduling: a simple technique for achieving locality and
fairness in cluster scheduling. In: Proceedings of the 5th European Conference on
Computer Systems, pp. 265-278. ACM (2010)

Zhan, J., Wang, L., Li, X., Shi, W., Weng, C., Zhang, W., Zang, X.: Cost-aware co-
operative resource provisioning for heterogeneous workloads in data centers. IEEE
Transactions on Computers

Zhan, J., Zhang, L., Sun, N., Wang, L., Jia, Z., Luo, C.: High volume through-
put computing: Identifying and characterizing throughput oriented workloads in
data centers. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), pp. 1712-1721. IEEE (2012)

Processing Big Events with Showers and Streams

Christoph Doblander!'2, Tilmann Rabl'3, and Hans-Arno Jacobsen'

! Middleware Systems Research Group
arno.jacobsen@msrg.org
2 TU Miinchen, Germany
doblande@in.tum.de
3 University of Toronto, Canada
tilmann.rabl@utoronto.ca

Abstract. Emerging use cases derived from the area of cloud comput-
ing, smart power grids, and business process management require a set
of capabilities not met by traditional event processing systems. These
use cases were chosen to illustrate the capabilities required from systems
that are able to process what we refer to as Big Fvents, that is Big
Data in motion. To further illustrate Big Events, we identify three use
cases and analyze the characteristics of the events involved. Based on
this analysis, we specify requirements regarding the event schema, event
query language, historic event processing needs, event timing, and result
accuracy. Collectively, we refer to the constellation of state changes in a
given system that exhibits these characteristics as event showers, refer-
ring to the collective of these events, similar to the notion of an event
stream in the context of event stream processing. We call systems that
offer capabilities for meeting these requirements event shower processing
systems in contrast to traditional event (stream) processing systems. The
use cases we picked, demonstrate that additional value can be captured
by having shower processing systems in place. The benefits lie in the
new possibilities to gain additional insights, increase observability, and
to further exert control and opportunities for optimizations in the given
applications.

1 Introduction

As storage prices continue to drop, more and more data is stored for subsequent
analysis. This trend has recently been coined as the era of Big Data [27]. As
more and more data can be stored, the value of data analysis increases, since
ever more patterns can be mined and data that previously was not of interest
can be monetized. However, still many data sources are unused since their value
perishes quickly. This kind of fast-paced data that needs to be processed in real-
time or near-real time is often called Big Events [17] and refers to the processing
of Big Data in motion.

The possibility to process Big Fvents by either exposing events from large
systems or by sensing events from many sources needs a powerful processing
system. We call systems that can process Big Events, (event) shower processing

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 60-71, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Processing Big Events with Showers and Streams 61

systems. Events represent state transitions in the environment, conveyed as event
messages to the system. The terms event messages and events in this context
are typically used interchangeably.

More formally, an event shower is a partially ordered set of events, either
bounded or unbounded, where the partial orderings are imposed by the causal,
timing, and other relationships between the events. Others have referred to sim-
ilar notions as event clouds [25,26], which due to the affinity in terminology
to cloud computing, we would like to avoid to reuse here. Informally speaking,
an event shower represents the constellation of events over time resulting from
considering the collective of events originating from disparate event sources in a
distributed system.

Events can be sensed from the environment or can be exposed by existing
systems and applications. As we show in our use case analysis, valuable infor-
mation can be derived from correlating and analyzing event showers. Since our
society becomes more dependent on technology and systems become more com-
plex, observability is a critical requirement. Creating interfaces between systems
requires a lot of specification and testing. In case of a malfunction, reproducing
errors is a hard problem since the interactions internal to a system can not be
easily reproduced or since the unique conditions leading up to the failure only
occur once in a while.

Without doubt, debugging functionalities in software development tools in-
crease observability for programmers, while event exposure increases observ-
ability in complex systems [41]. When event showers originating from multiple
interacting systems can be analyzed, these systems become more observable and
transparent. In case of a malfunction in an observable system, it may be possible
to find ways to recover, if a well-behaved state is reached [12].

The difference between event stream processing systems and event shower
processing systems are defined by the characteristics of the events involved. In
stream processing systems, events tend to originate from one to a few data
sources, while in shower processing systems, events originate from many data
sources. Consequently, for event showers, it is impossible to accurately synchro-
nize time across the publishing data sources. Therefore, logical clocks or other
mechanism are required to establish some form of event ordering. In stream pro-
cessing, events are often implicitly timestamped, relative to the single source
they are emitted from or relative to the stream processor that received them in
a given order, often arrival order.

In stream processing systems, the stream schema is known a priori, in shower
processing systems, event schemas are subject to change and may not be known
a priori, because the systems exposing events are not within the organizational
control of the system which correlates and aggregates the events. Accordingly,
shower processing systems have to be able to deal with schema-less information.
More of the differences are discussed in Section 3.

To this end, systems are needed, which can analyze massive amounts of events
from multiple systems and can deal with the characteristics of these events. With
shower processing systems, it is possible to discover emergent behavior, mine for

62 C. Doblander, T. Rabl, and H.-A. Jacobsen

patterns, observe the interactions between disparate systems and, thus, increase
the overall observability, while this is less of a concern for stream processing.

In this paper, we analyze the characteristics of events derived from considering
three emerging use cases. Based on our analysis, we formulated the requirements
for systems, which can deal with these kind of events, which we refer to as event
shower processing system. We show how the different elements (i.e., query lan-
guage, publish/subscribe semantics, and consistency requirements) fit together
and outline future research required in this area in order to establish event shower
processing systems. Throughout the text, we point to literature that describes
systems exhibiting some of the requirements we postulate.

The rest of the paper is organized as follows. In Section 2, we describe three
different use cases: cloud computing, smart power grids, and business process
management. In Section 3, we define the required feature set for an event shower
processing system, discuss how it differs from existing approaches, and present
the individual elements of such a system. Finally, in Section 4, we discuss how
event shower processing systems can be beneficial in the presented use cases.

2 Use Cases

We identified three emerging use cases where additional insights can be gained by
analyzing and correlating events from multiple systems. The domains were cho-
sen because of recent interest from the research community and where affordable
sensors could bring increased observability.

Figure 1 shows an exemplary overview of a system which processes event show-
ers. Multiple systems expose events or sense events from the environment. Oper-
ators formulate queries which compile to pattern matching rules, content-based
routing topologies, aggregations and correlations. The topology is optimized for
low latency or maximum throughput.

Fig. 1. Event shower processing system

Processing Big Events with Showers and Streams 63

2.1 Cloud Computing

With cloud computing, storage and computing resources get commoditized.
Cloud providers offer on-demand configurable computing resources [28].

Monitoring plays an important role when making systems running on cloud
computing platforms resilient (e.g., [39]). This helps to understand how systems
operate. In case of failure, monitoring helps with the root-cause analysis or to
discover potential weaknesses. As abstraction layers are added to the software
stack, one looses observability because typically performance problems are un-
derstood at the very lowest layer of the stack [10].

Shower processing systems make it possible to correlate the data streams of
the cloud environment with other event streams. While system-level events are
well defined in terms of schema, application specific events can change frequently.
A potential use case is to correlate exposed events from business processes and
performance indicators of cloud environments [29]. With this information it is,
for example, possible to optimize the latency of a specific business process or to
forecast the impact on the infrastructure when a specific business process gets
executed more often.

2.2 Smart Power Grids

The smart grid is the next evolution of the electrical power grid by enabling
bidirectional communication and control of energy generators and consumers [3].
Energy demand and generation has to be exactly balanced. Until recently, the
demand was given and then matched with the generation. As the portion of
fluctuating energy sources, like solar and wind increases, the demand must in-
creasingly be matched to the generation.

Observability is a key ingredient to control and balance production and de-
mand in the smart grid [9]. This can be seen in the following example. The total
production in Germany at 12:00 o’clock on June 20th, 2013, a sunny weekday,
was 70 GW. 18 GW or 26% of the total production were generated by solar
cells [1]. The expected solar production, published the previous day was only
13 GW, resulting in a prediction error of 5 GW. Based on the previous day’s
prediction, power plants are scheduled. This results in monetary losses due to
severe over-provisioning. Furthermore, the gap between production and demand
had to be compensated by lowering the output of conventional generators. Even
more expensive is the inverse situation, where the expected solar production
is not met. In this case, the higher demand has to be compensated through
the spot market or more costly alternatives, with short-term regulation energy.
While shifting demand is already done by huge power consumers, such as cold
storages, there is a huge potential in controlling large numbers of electric vehi-
cles and smaller devices like heat pumps or fridges [16,31,33]. Recent approaches
also show how consumption forecasting could be done more accurate [44].

64 C. Doblander, T. Rabl, and H.-A. Jacobsen

To control the huge number of individual devices, the current state must
be observable to estimate the potential effect of control. This requires massive
sensing infrastructures and near real-time processing of event showers. Since
the events may have different kinds of latencies caused by changing networking
conditions, the system has to deal with missing information and respect those
in the overall state estimation. An area where low latency is required is, for
example, phasor measurements. Phasor measurement units include GPS clocks,
which provide an external time stamp for potentially correlating events, subject
to the achievable GPS clock accuracy [20]. As the cost of GPS clocks and phasor
measurement units decreases, it also becomes affordable to install them in low
voltage grids, to pro-actively take actions in developing situations [30].

Event shower processing can add significant value to this scenario. Events from
weather stations, buildings, generators, shiftable demand and energy storages
can be correlated and aggregated and control can further be optimized.

2.3 Business Process Management

Exposing events from business processes can provide valuable insights if com-
bined and correlated with external data. Instead of mining existing log files one
can think of automatically exposing events via the business process execution
engine [41] or to leverage a process execution engine, already designed and im-
plemented through a publish/subscribe approach [24], thus, naturally exposing
events.

Business process mining has been shown to be applicable to real-world scenar-
ios [32]. An extended scenario could be the correlation of events from business
processes with click-stream events from Web shops and weather data. An exem-
plary scenario is as follows: Historic click-stream events show that people tend to
do more online shopping on rainy days [4]. Analysis of the events exposed from
a business process engine could show that these sales have higher return rates.
Thus, returns increase and customers are not satisfied. Hence, additional per-
sonnel resources are needed to deal with the returns. This shows that correlating
weather data and historic events could help provision personnel accordingly.

Exposing events can also benefit white box testing in SOA environments [41].
This shows that increased observability can be used also for testing. More gen-
erally speaking, event exposure can be though of as an approach to expose
unstructured information over system boundaries to enable the above described
scenarios.

3 Definitions

The main characteristics of the events in the presented use cases above are the
following: The events are exposed implicitly, which makes it difficult to define
an event schema. They cross organizational boundaries or systems, which makes
it difficult to standardize and prescribe a given event schema. Also, events may
be exposed from proprietary and legacy systems, so changing the events is not

Processing Big Events with Showers and Streams 65

easily possible. Furthermore, events from inexpensive sensors may lack exact
timing information.

It is difficult to support the above use cases with existing event (stream)
processing systems. While existing event processing systems exhibit capabilities
to handle some of these event characteristics, event shower processing systems
are representatively covering all requirements (see Table 1).

Table 1. Event showers vs. event streams

Showers Streams
Schema Optional Defined
Boundaries Distributed across multiple systems Part of a system
Routing Implicit publish/subscribe semantics -
Historic Historic and current events Only current events
Query language Declarative Can be declarative
Timing External or logical clocks Ordered by system arrival
Consistency Eventual consistent Consistent

Event Stream Processing and Complex Event Processing: Event stream
processing systems typically do not cross organizational or system boundaries.
If those boundaries are crossed, typically the event schema is specified, e.g., in
financial markets. Complex event processing can combine multiple data sources
but the correlation and aggregation of the events is done within a single system.
An exemplary software which can be used in such an environment would be
IBM Infosphere [2].

A system capable of processing event showers can distribute the aggregation
and correlation of events across multiple systems and can consider infrastructure
concerns to optimize the topology. This could be done by leveraging existing
publish/subscribe-style event processing and overlay networks. [23,43]

Rule-Based Systems: In rule-based systems it is possible to derive deduc-
tions [11]. Event shower processing systems take this approach one step further
by enabling deductions on multiple event streams by supporting a declarative
logic-based query language.

Publish/Subscribe Systems: Publish/Subscribe systems consist of publish-
ers which produce events, subscribers which register for events, and brokers
which route the events through an overlay network [14]. New event sources are
advertised by a broadcast message. The advertisement contains schema and ad-
ditional information regarding event shape and timing.

Event shower processing systems compile queries to aggregations and correla-
tions, which are essentially join operations [22,23]. The operations are compiled
to subscriptions that attract publications as intermediate results and pass match-
ing publications on throughout the system to higher-level subscriptions. Event
shower processing systems create these implicit subscriptions to events expressed
in the query language and spread the correlation and aggregation throughout
the topology [22,23].

66 C. Doblander, T. Rabl, and H.-A. Jacobsen

:—type(production(timestamp :number(integer), household:string (varchar)),
watt :number(integer))).
:—type(household (hhid: string (varchar), connectedTo:string (varchar))).
:—type(solarcell (hhid:string(varchar), kwpeak:number(integer))).
:—type(windturbine (hhid:string (varchar), kwpeak:number(integer),
diameter :number(integer))).
:—type(transformer (trid:string (varchar), a:string(varchar),
b:string (varchar))).

Listing 1. Type definition Datalog

3.1 Event Schema

An event schema is a formal definition of the structure of data. Events can be
observed or are automatically exposed by systems or databases [?,41]. When
events are exposed implicitly, the schema of these events can change, if new fea-
tures are introduced in the underlying system. Hence, an event shower processing
system must be able to map unstructured, semi-structured and structured data
to a schema. An adaptor can map unstructured data to structured data, see
Figure 2 for an illustration. Existing approaches, which have been designed to
deal with semi-structured data are NoSQL databases [34]. It is also possible to
infer types based on discovered schemas. That is type providers [37] offer type
safe access inside a statically typed programming language. Listing 1 shows some
types from the smart grid domain. With type providers the corresponding types
and adapters could be generated automatically. This could be done based on an
advertisement, which contains type information or by discovering the schema of
events.

Adaptor Structured Events

Fig. 2. Schema adaptor

3.2 Historic Event Data and Databases

In a system, which can process event showers, there is no difference between
current events and historic event data, see Figure 3. This is an important feature
serving the discovery and correlation between event streams or to train machine
learning models. Accessing historic event data can be implemented as a feature
of publish/subscribe systems [18,21] or as part of a hybrid event processing
architecture, such as MADES [38], which is a distributed event store that can
query historic event data in the same way as process current and future events.

The NoSQL database CouchDB [7] can expose notifications when the under-
lying data changes. Relational databases have the possibility to expose events
by triggers. The notifications could be further exposed as events. This point of

Processing Big Events with Showers and Streams 67

Event Exposure Publication

Sensing Infrastructure

Fig. 3. Event sources

view challenges the implementation of the query processor, which should be
capable to process historic data in a batch-like fashion and also incorporate
current events.

Recent work [42] shows how the map-reduce model for batch processing can be
combined with event stream processing. Consequently, event shower processing
systems can be seen as the next evolutionary step of big data systems.

3.3 Query Language

To discover knowledge in event streams a powerful language is needed. Data-
log [11] can be viewed as a subset of general logic programs. It also supports
recursion which has advantages when querying graph structures, e.g., social net-
works or electrical grid topologies. Datalog queries are guaranteed to terminate
and can be run safely [35]. It has also been demonstrated [8] that complex events
can be derived from simpler events by means of deductive rules. To use Datalog
for event processing some extensions are needed, for example, to reason about

\% transformers, transactional data

mediumhighvoltagegrid, distributiongridnorth).

transformer (munichsouth, mediumhighvoltagegrid,
distributiongridsouth). transformer (munich, highvoltagegrid,
mediumhighvoltagegrid).

\% households, transactional data
household (hh2, distributiongridsouth).
solarcell (hh2, 12).

windturbine (hh2, 23, 7).

\% current production , eventstreams with uniz timestamp
production(1375688745, hhl, 15).
production(1375688745, hh2, 18).
production(1375688746, hh3, 4).

Listing 2. Sample data and events

68 C. Doblander, T. Rabl, and H.-A. Jacobsen

all renewables kw (HH, KW) :—
windturbine (HH, KW,).

all renewables kw (HH, KW) :—
solarcell (HH, KW).

nearest transformer (HH, TR) :—
household (HH, GRID),
transformer (TR, , GRID).

sum renewables kw (SumSolar) :—
sum(all renewables kw (HH, KW), KW, SumSolar).

sum renewables(HH, TR, SumSolar) :—
nearest transformer (HH, TR),
sum(all renewables kw (HH, KW), KW, SumSolar).

sum renewables (TR, SumRenewable) :—
sum(sum renewables(, TR, ToSum), ToSum, SumRenewable).

current production (TR, Prod) :—
nearest transformer (HH, TR),
production (TS, HH, Prod).

sum production (TR, SumProd) :—
sum(current production(TR, Prod), Prod, SumProd).

Listing 3. Queries in Datalog

temporal relations [5]. Also deductions and inductions have to respect tempo-
ral semantics [6]. It has already been shown that Datalog can be executed in
parallel [15] and, therefore, Datalog processing can also utilize massive parallel
hardware like Graphic Processing Units (GPU) or Field Programmable Gate
Arrays (FPGAs). Historic data and exemplary events are shown in Listing 2.
Listing 3 shows how this data is queried and aggregated. The output of the
query refreshes continuously as new data becomes available or static data is
updated.

3.4 Timing

Preserving ordering in a distributed system is a challenging task since clocks
can not be accurately synchronized. Ordering can be preserved by logical clocks
which need coordination. In case of large distributed event showers this is not
practicable. Corbett et al. [13] show how to use GPS clocks to preserve ordering
in a truly global distributed database. Depending on the consistency require-
ments approximately synchronizing to within a A,,,, may suffice [19]. Other
approaches use heartbeat signals in streams [36]. Systems which can process
event showers consequently rely on logical clocks, GPS clocks or must be aware
of the synchronization error.

3.5 Accuracy

Sensors may be deployed in the field with unreliable network connections or inac-
curate readings. Also, shower processing systems can span multiple organizations

Processing Big Events with Showers and Streams 69

domains, operating world-wide, and, thus, must be self-aware of the latency they
introduce. The immediate output of the event shower system may still not be
accurate and as additional events arrive at the system, the result becomes more
accurate. For example, if the maximum latency of incoming events from one
event stream was more than a second, the result stream must be delayed at least
a second to produce an accurate result.

4 Conclusions

We showed that there are emerging use cases in cloud environments, smart grids
and business process management where current state of the art event process-
ing systems are unable to cope. The events may be implicitly exposed from
legacy system, business process engines or are sensed from the environment with
cheap sensors and high latency network connections. Analyzing and correlating
these kind of events needs additional capabilities in the query language and the
underlying system, dealing, among others, with schemaless events, timing and
accuracy.

We outlined possibilities to overcome those hurdles when dealing with that
kind of events. First, by using a higher level logic-based query language which
abstracts from publish/subscribe. Second, by adding adapters to be able to deal
with unstructured events in a type-safe way. Third, by including historic data
and databases which can be used to train machine learning classifiers and to
discover correlations. Finally, by adding the possibility to adapt accuracy by
delaying the result or by supporting logical clocks or GPS clocks.

References

1. EEX Transparency Platform (June 2013), http://transparency.eex.com

2. IBM InfoSphere (June 2013), http://www.ibm.com/software/data/infosphere/

3. NIST Smart Grid Definition (June 2013),
http://www.nist.gov/smartgrid/beginnersguide.cfm

4. Online spending soars as shoppers stay warm in wintry conditions (June 2013),
http://www.thisismoney.co.uk/money/markets/article-2305003

5. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26
(November 1983)

6. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.:
Dedalus: datalog in time and space. In: Proceedings of the First International
Conference on Datalog Reloaded, Datalog 2010. Springer (2011)

7. Anderson, J.C., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide, 1st edn.
O’Reilly Media, Inc. (2010)

8. Anicic, D., Fodor, P., Stojanovic, N., Stithmer, R.: Computing complex events
in an event-driven and logic-based approach. In: Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems, DEBS. ACM, New
York (2009)

9. Bayegan, M.: A Vision of the Future Grid. Power Engineering Review. IEEE 21(12),
10-12 (2001)

http://transparency.eex.com
http://www.ibm.com/software/data/infosphere/
http://www.nist.gov/smartgrid/beginnersguide.cfm
http://www.thisismoney.co.uk/money/markets/article-2305003

70

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

C. Doblander, T. Rabl, and H.-A. Jacobsen

Cantrill, B.: Hidden in Plain Sight. ACM Queue 4(1) (February 2006)

Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Transactions on Knowledge and Data Engineer-
ing 1(1) (1989)

Chen, C., Ye, C., Jacobsen, H.A.: Hybrid context inconsistency resolution for
context-aware services. In: IEEE International Conference on Pervasive Computing
and Communications, PerCom (2011)

Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.J., Ghemawat,
S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li,
H., Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S., Rao, R., Rolig, L.,
Saito, Y., Szymaniak, M., Taylor, C., Wang, R., Woodford, D.: Spanner: Google’s
globally-distributed database. In: Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (2012)

Fidler, E., Jacobsen, H.A., Li, G., Mankovski, S.: The PADRES distributed pub-
lish/subscribe system. In: 8th International Conference on Feature Interactions in
Telecommunications and Software Systems (2005)

Ganguly, S., Silberschatz, A., Tsur, S.: A framework for the parallel processing of
Datalog queries. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data. ACM, New York (1990)

Goebel, C., Callaway, D.: Using ICT-Controlled Plug-in Electric Vehicles to Supply
Grid Regulation in California at Different Renewable Integration Levels. IEEE
Transactions on Smart Grid (2013)

Jacobsen, H.A.: Big events. In: Third International Workshop on Big Data Bench-
marking (2013)

Jacobsen, H.A., Muthusamy, V., Li, G.: The PADRES Event Processing Network:
Uniform Querying of Past and Future Events. IT - Information Technology 51(5),
250-260 (2009)

Jerzak, Z., Fach, R., Fetzer, C.: Adaptive Internal Clock Synchronization. In: IEEE
Symposium on Reliable Distributed Systems, SRDS 2008 (2008)

Li, F., Qiao, W., Sun, H., Wan, H., Wang, J., Xia, Y., Xu, Z., Zhang, P.: Smart
transmission grid: Vision and framework. IEEE Transactions on Smart Grid 1(2),
168-177 (2010)

Li, G., Cheung, A., Hou, S., Hu, S., Muthusamy, V., Sherafat, R., Wun, A., Jacob-
sen, H.A., Manovski, S.: Historic data access in publish/subscribe. In: Proceedings
of the DEBS 2007. ACM, New York (2007)

Li, G., Jacobsen, H.-A.: Composite subscriptions in content-based publish/sub-
scribe systems. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 249-
269. Springer, Heidelberg (2005)

Li, G., Muthusamy, V., Jacobsen, H.-A.: Adaptive content-based routing in general
overlay topologies. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS,
vol. 5346, pp. 1-21. Springer, Heidelberg (2008)

Li, G., Muthusamy, V., Jacobsen, H.A.: A distributed service-oriented architecture
for business process execution. ACM Trans. Web 4(1) (January 2010)

Luckham, D., Schulte, R.: Event Processing Glossary - Version 2.0 (June 2013),
http://www.complexevents.com/2011/08/23/event-processing-glossary-
version-2-0/

Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston (2001)

http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2-0/
http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2-0/

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

Processing Big Events with Showers and Streams 71

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C.,
Byers, A.H.: Big Data: The next frontier for innovation, competition, and pro-
ductivity (2011), http://www.mckinsey.com/mgi/publications/big data/pdfs/
MGI big data full report.pdf

Mell, P., Grance, T.: NIST Cloud Computing Definition. Tech. rep. (July 2009),
http://www.csrc.nist.gov/groups/SNS/cloud-computing/

Muthusamy, V., Jacobsen, H.-A.: BPM in Cloud Architectures: Business Process
Management with SLAs and Events. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM
2010. LNCS, vol. 6336, pp. 5-10. Springer, Heidelberg (2010)

Novosel, D., Madani, V., Bhargava, B., Vu, K., Cole, J.: Dawn of the grid synchro-
nization. IEEE Power and Energy Magazine 6(1) (2008)

del Razo, V., Goebel, C.: H.A.J.: Benchmarking a car-originated-signal approach
for real-time electric vehicle charging control. Tech. rep. (2013)

Reijers, H.A., Weijters, A.J.M.M., Dongen, B.F.V., Medeiros, A.K.A.D., Song, M.,
Verbeek, H.M.W.: Business process mining: An industrial application. Information
Systems 32(5) (2007)

Rivera, J., Wolfrum, P., Hirche, S., Goebel, C., Jacobsen, H.A.: Alternating direc-
tion method of multipliers for decentralized electric vehicle charging control. In:
Proceedings of the IEEE CDC (in press, 2013)

Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison-Wesley Professional (2012)

Sagiv, Y., Vardi, M.Y.: Safety of datalog queries over infinite databases. In: Pro-
ceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems. ACM (1989)

Srivastava, U., Widom, J.: Flexible time management in data stream systems. In:
Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems. ACM (2004)

Syme, D., Battocchi, K., Takeda, K., Malayeri, D., Petricek, T.: Themes in
information-rich functional programming for internet-scale data sources. In: Pro-
ceedings of the 2013 Workshop on Data Driven Functional Programming. ACM
(2013)

Rabl, T., Mohammad Sadoghi, K.Z., Jacobsen, H.A.: DEBS 2013: Poster: MADES
- A Multi-Layered, Adaptive, Distributed Event Store. ACM (2013)

Tseitlin, A.: The Antifragile Organization. ACM Queue (2013)

Ye, C., Jacobsen, H.A.: Whitening SOA Testing Via Event Exposure. IEEE Trans-
actions on Software Engineering (2013)

Ye, C., Jacobsen, H.-A.: Event Exposure for Web Services: A Grey-Box Approach
to Compose and Evolve Web Services. In: Chignell, M., Cordy, J., Ng, J., Yesha,
Y. (eds.) The Smart Internet. LNCS, vol. 6400, pp. 197-215. Springer, Heidelberg
(2010)

Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized streams: an efficient
and fault-tolerant model for stream processing on large clusters. In: Proceedings of
the 4th USENIX Conference on Hot Topics in Cloud Computing, HotCloud 2012,
p. 10 (2012)

Zhang, K., Sadoghi, M., Muthusamy, V., Jacobsen, H.A.: Multicast group mem-
bership management in high speed wide area networks. In: 33rd International Con-
ference on Distributed Computing Systems (2013)

Ziekow, H., Doblander, C., Goebel, C., Jacobsen, H.A.: Forecasting Household
Electricity Demand with Complex Event Processing: Insights from a Prototyp-
ical Solution. In: Proceedings of the 14th International Middleware Conference.
Middleware (2013)

http://www.mckinsey.com/mgi/publications/big_data/pdfs/MGI_big_data_full_report.pdf
http://www.mckinsey.com/mgi/publications/big_data/pdfs/MGI_big_data_full_report.pdf
http://www.csrc.nist.gov/groups/SNS/cloud-computing/

Big Data Provenance:
Challenges and Implications for Benchmarking

Boris Glavic

Illinois Institute of Technology
10 W 31st Street, Chicago, IL 60615, USA
glavic@iit.edu

Abstract. Data Provenance is information about the origin and cre-
ation process of data. Such information is useful for debugging data and
transformations, auditing, evaluating the quality of and trust in data,
modelling authenticity, and implementing access control for derived data.
Provenance has been studied by the database, workflow, and distributed
systems communities, but provenance for Big Data - which we refer to as
Big Provenance - is a largely unexplored field. This paper reviews existing
approaches for large-scale distributed provenance and discusses potential
challenges for Big Data benchmarks that aim to incorporate provenance
data/management. Furthermore, we will examine how Big Data bench-
marking could benefit from different types of provenance information.
We argue that provenance can be used for identifying and analyzing per-
formance bottlenecks, to compute performance metrics, and to test a
system’s ability to exploit commonalities in data and processing.

Keywords: Big Data, Benchmarking, Data Provenance.

1 Introduction

Provenance for Big Data applications is a relatively new topic that has not
received much attention so far. A recent community white paper [5] on the chal-
lenges and opportunities of Big Data has identified provenance tracking as a
major requirement for Big Data applications. Thus, provenance should be in-
cluded in benchmarks targeting Big Data. We first give a brief introduction to
provenance and review the current state-of-the-art of provenance for Big Data
systems and applications. Afterwards, we discuss the implications of provenance
for benchmarking. In particular, we try to answer the following questions: How
to generate workloads with provenance aspects? What are the differences be-
tween provenance workloads and the workloads currently used in benchmark-
ing? Finally, we argue that provenance information can be used as a supporting
technology for Big Data benchmarking (for data generation and to allow new
types of measurements) and profiling (enable data-centric monitoring).

2 Provenance for Big Data

Provenance information explains the creation process and origin of data by
recording which transformations were responsible in creating a certain piece

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 72-80, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

glavic@iit.edu

Big Data Provenance: Challenges and Implications for Benchmarking 73

of data (a so-called data item) and from which data items a given data item is
derived. We refer to the first type as transformation provenance and the second
type as data provenance. Additional meta-data such as the execution environ-
ment of a transformation (the operating system, library versions, the node that
executed a transformation, ...) is sometimes also considered as provenance. A
standard approach to classify provenance information is granularity. Coarse-
grained provenance handles transformations as black-boxes: it records which
data items are the inputs and outputs of a given transformation. Usually this
information is represented in a graph structure by linking data items or col-
lections to the transformations that produced or consumed them. Fine-grained
provenance provides insights about the data-flow inside a transformation, i.e.,
it exposes the processing logic of a transformation by modelling which parts
of the inputs were necessary/sufficient/important in deriving a specific output
data item. For example, consider a transformation that counts the frequency of
words in a collection of documents and outputs pairs of words and their count. If
we consider documents as atomic units of data, then a coarse-grained approach
would consider all input documents as the provenance of one output pair (w, c).
In contrast, the fine-grained provenance of a pair (w,c¢) would only consist of
the documents containing the word w.

Provenance has found applications in debugging data (e.g., to trace an er-
roneous data item back to the sources from which it was derived), trust (e.g.,
by combining trust scores for the data in a data item’s provenance), probabilis-
tic data (the probability of a query result can be computed from the proba-
bilities of the data items in its provenance [13,8]), and security (e.g., enforce
access-control to a query result based on access-control policies for items in its
provenance [11]). All these use-cases translate to the Big Data domain. Even
more, we argue that provenance is critical for applications with typical Big
Data characteristics (volume, velocity, and variety). A standard approach to
deal with the velocity (and to a lesser degree also the variety) aspect of Big
Data is to apply data cleaning and integration steps in a pay-as-you-go fash-
ion. This has the advantage of increasing the timeliness of data, but in com-
parison with the traditional ETL approach of data warehousing comes at the
cost of less precise and less well-documented metadata and data transforma-
tions. Without provenance information, it is impossible for a user to under-
stand the relevance of data, to estimate its quality, and to investigate unex-
pected or erroneous results. Big Data systems that automatically and trans-
parently keep track of provenance would enable pay-as-you-go analytics that
do not suffer from this loss of important metadata. Furthermore, provenance
can be used to define meaningful access control policies for heavily processed
and heterogenous data. For instance, a user could be granted access to analysis
results if they are based on data she owns (have data that she owns in their
provenance).

1 To be more precise, for state-of-the-art implementations of such applications.

74 B. Glavic

3 State-of-the-Art

Having motivated the need for Big provenance, we now present a brief overview
of provenance research related to Big Data and highly scalable systems. Since
providing a complete overview of provenance research for distributed systems
is beyond the scope of this paper, we only present a few approaches that are
related to Big Data research or relevant for the discussion. Provenance research
from the database community has been largely focused on fine-grained prove-
nance, but has mostly ignored distributed provenance tracking. Recently, Tkeda
et al. [7] introduced an approach for tracking the provenance of workflows mod-
elled as MapReduce jobs. The authors introduce a general fine-grained model
for the provenance of map and reduce functions. Provenance is stored in HDFS
by annotating each key-value pair with its provenance (appended to the value).?
The approach provides wrappers for the map and reduce functions that call the
user-provided versions of these functions. These wrappers strip off the prove-
nance information from the value before passing it to the original user function
and attach provenance to the output based on the input’s provenance and the
semantics of the mapper and reducer functions. The HadoopProv system [2]
modifies Hadoop to achieve a similar effect. Another approach for MapReduce
provenance adapts database provenance techniques to compute the provenance
of workflows expressed in a subset of the Pig language [3] corresponding to rela-
tional algebra. Similarly, the approach from [15] adapts a database provenance
model for a distributed datalog engine.

While most workflow systems support distributed execution of workflows,
provenance techniques for these systems are mainly coarse-grained (with a few
noticeable exceptions) and rely on centralized storage and processing for prove-
nance. Malik et al. [9] present an approach for recording provenance in a dis-
tributed environment. Provenance is captured at the granularity of processes
and file versions by intercepting system calls to detect dependencies between
processes, files, and network connections. Each node stores parts of a prove-
nance graph corresponding to its local processing and maintains links to the
provenance graphs of other nodes. To support queries over the provenance across
node boundaries, the nodes exchange summaries of their provenance graphs in
the form of bloom filters. Muniswamy-Reddy et al. [10] introduce protocols for
collecting provenance in a cloud environment. Each node runs PASS (prove-
nance aware storage system), a system that collects provenance at the file level
by intercepting system calls. Provenance is stored using cloud storage services
like S3 and SimpleDB. One major concern in this work is how to guarantee that
provenance and data is coupled consistently when the underlying storage services
only provide eventual consistency. Seltzer et al. [12] apply the PASS approach
to extend the Xen Hypervisor to collect provenance information by monitoring
the system calls of a virtual machine.

2 To be precise, there is an additional indirection in storing the provenance of a reducer
output. See [7] for details.

Big Data Provenance: Challenges and Implications for Benchmarking 75

In summary, existing approaches address some aspects of Big Provenance such
as distributed storage, low-level operating system provenance, or fine-grained
provenance for Big Data languages that are can be mapped to relational query
languages (for which provenance is well-understood). However, Big Provenance
still remains a challenging problem for the following reasons:

— Big data is often characterized as highly heterogeneous (variety) and users
expect to be able to run ad-hoc analytics without having to define exten-
sive types of meta-data like, e.g., a schema. This makes it hard to define a
common structure to model the provenance of such data sets - especially for
fine-grained provenance. For example, if we do not know how data entries
are organized in a file, we cannot reference individual entries from the file in
the provenance.

— Big Data systems tend to make the distribution of data and processing trans-
parent to provide simpler programming models. This enables analysts with
little knowledge about distributed systems to run large scale analytics. How-
ever, if the purpose of collecting provenance is to analyze the performance
of a Big Data analytics system, then we would like to include information
about data and processing locations in the provenance of a data item. For
instance, this type of information could be used to check whether a data
item was shipped to a large number of distinct locations during processing.

— A data item may have been produced by transformations that are executed
using different Big Data analytics and storage solutions. The provenance of
such a data item will reference data and transformations from each system
that was used to create the data item. Since shipping all data items and
process information in the provenance of a data item together with the data
item will result in prohibitively large amounts of information to be trans-
ferred between systems, a query solution for Big Provenance has to interact
with more than one system and understand several storage formats to be
able to evaluate queries over provenance information.

4 Provenance as a Benchmark Workload

As mentioned before, provenance is of immense importance in the Big Data con-
text. Thus, benchmarks for Big Data systems should include provenance work-
loads such as tracking provenance during the execution of a regular workload
or querying pre-generated provenance data. In principle, there are two options
for integrating provenance into benchmark workloads. First, existing provenance
systems could be used as data generators for a benchmark and the actual work-
load would consist of queries over this provenance data. Second, tracking prove-
nance could be part of the workload itself. Given the lack of Big Provenance
systems discussed in Section 2, the first approach seems to be more realistic in
the short term. However, in contrast to the second approach, it does not test
the ability of Big Data systems to deal with provenance information. Before
discussing these two options in more depth, we first discuss how provenance
workloads differ from “regular” workloads and how these differences influence
what aspects of a system will be stressed by a provenance workload.

76 B. Glavic

4.1 Provenance vs. Standard Workloads

Typical analytics over large datasets produce outputs that are significant smaller
than the input data set (e.g., clustering, outlier detection, or aggregation). Prove-
nance, however, can be orders of magnitude larger than the data for which
provenance is collected. Provenance models the relationship between inputs and
outputs of a transformation and, thus, even in its simplest form, can be quadratic
in the number of inputs and outputs. This increase of size is aggravated for fine-
grained provenance (e.g., when tracking the provenance of each data entry in a
file instead of handling the file as a single large data item) or when each data
item is the result of a sequence or DAG of transformations. Furthermore, the
provenance information of two data items often overlaps to a large extend [4].
A benchmark that includes workloads running over provenance data stresses a
system’s capability to exploits commonality in the data (e.g., compression) and
to avoid unnecessary shipping of data.

4.2 Pregenerated Provenance Workloads

Because of the potential size of provenance relative to the size of the data it is
describing, it is possible to generate large data sets and computationally expen-
sive workloads by collecting the provenance of a small set of transformations at
fine granularity. This property could be exploited to generate data at the scale
required for benchmarking a Big Data system. A common problem with bench-
mark data sets of such size is that it is unfeasible to distribute full datasets
effectively over the internet (limitation of network bandwidth). Hence, a Big
Data benchmark should include a data generator that allows users of the bench-
mark to generate the data sets locally. Generating detailed provenance for a small
real-world input workload using an existing provenance system is one option to
realize such a data generator. In contrast to other types of data generators, this
approach has the advantage that it can be bootstrapped using a small input
dataset as shown in the example below.

Example 1. Consider a build process for a piece of software using the make build
tool. During the build temporary files are created and deleted as the result of
compilation. The build process executes tests on the compiled software which
results in additional files being created and destroyed. Assume we execute the
build using an approach that collects provenance for files by intercepting system
calls (e.g., [12]). The resulting provenance graph will be large. Similarly, consider
a workload that applies an image processing algorithm to an input file. We
could use a provenance approach that instruments the program to record data
dependencies as provenance information [14]. This would produce provenance at
pixel granularity and for individual variable assignments of the image processing
program. Thus, the amount of recorded provenance would be gigantic. These
examples demonstrate that by computing the provenance of relatively small and
simple workloads we can generate large benchmark datasets.

Big Data Provenance: Challenges and Implications for Benchmarking T

4.3 Provenance Tracking as Part of the Workload

Alternatively, provenance collection could be directly used as a benchmark work-
load. The advantage of this approach is that it measures the ability of Big Data
systems to deal with provenance efficiently. However, given the current state
of the art discussed in Section 4.1, a benchmark with such a workload would
prevent most Big Data systems from being benchmarked. Even for systems for
which provenance tracking has been realized (e.g., Hadoop) we may not want
to use provenance support until its impact has been understood sufficiently well
and the systems have been optimized to a reasonable extend. A solution that
allows for a smoother transition is to design a workload in such a way that avail-
able provenance information could be exploited to improve performance, but is
not strictly necessary to execute the workload.

Example 2. Assume a workload that requires the benchmarked system to count
the appearances of words in a collection of documents (e.g., word-count for
wikipedia articles from the PUMA benchmark [1]) and retrieve simple prove-
nance (the original documents in which the words occur) for a small, randomly
selected subset of words. A Big Data system with provenance support could use
stored provenance to execute the second part of the workload efficiently while a
system without provenance support could fall back to the brute force method of
searching for the specific word in all documents.

In summary, the main arguments for adding provenance to Big Data bench-
mark workloads are:

— Provenance has been recognized as an important functionality for Big Data [5].
Thus, it is natural to expect a benchmark to test a system’s capability to deal
with provenance.

— Provenance workloads stress-test the ability of a system to exploit com-
monalities in data and processing which is essential for Big Data systems.
Including provenance in a workload will allows us to generate benchmarks
that target this specific aspect.

We have discussed two options for integrating provenance in benchmark work-
loads:

— Run an existing provenance system to pre-generate a provenance workload.
Using this approach we can generate provenance benchmarks for Big Data
systems without provenance support. Furthermore, the sheer size of prove-
nance information can be exploited to (1) generate large data sets from
existing small real-world workloads and (2) develop concise benchmark spec-
ifications that can be shipped and expanded to full-sized workloads locally.

— Use provenance tracking as part of workload, i.e., the benchmarked system is
required to track provenance. This method would test the ability of a system
to efficiently track and query provenance, but requires broad adaptation of
provenance techniques for Big Data to be feasible (unless, as explained above,
provenance support is made optional).

78 B. Glavic

5 Data-Centric Performance Measures

Besides from being an interesting and challenging use-case for workload design,
Big Provenance could also be used as a supporting technology for benchmarks. A
major goal for Big Data systems is robustness of performance and scalability [6].
Provenance can be used to provide a fine-granular, data-centric view on execution
times and data movement by propagating this information based on data-flow.
For example, we could measure the execution times of each invocation of a
mapper in a MapReduce system and attach this information as provenance to
the outputs of the mapper. The individual execution times are then aggregated
at the reducer and combined with the reducer’s execution time. This type of
provenance can be used to compute measures for individual jobs in a workload
and to compute new performance metrics using provenance information.

Ezample 3. Assume a system performs reasonably well on a complex workload.
However, one job was taking up most of the available resources while most of
the jobs performed better than expected. The poor performance is hidden in the
overall well performance, but may become problematic if we change the input
size of the poor-performing job. We could record the execution times for all tasks
of a job and the movement of data items between nodes as provenance. Based
on this information we can identify jobs that use a large amount of resources
relative to the size of data they consume or produce.

Note that in the example above the data-centric, provenance-based view on
performance measurements is substantial for computing the measure. Bench-
marks could exploit such information to define new data-centric measures for
robustness of performance. For example, the benchmark could require the exe-
cution of several workloads with overlapping sets of jobs and define the deviation
of execution times and data movements of a job over all workload executions as
a measure of robustness.

6 Monitoring and Profiling

Acting upon the results of a benchmark to improve the performance of a system
usually requires additional monitoring and profiling to identify and understand
the causes of poor performance. Big Data benchmarks should consist of complex
and diverse workloads. However, understanding why a system performs good or
poor over a complex workload is hard. Provenance could be used to complement
monitoring solutions for Big Data systems.

Assume we record resource utilization of transformations and location changes
of data items as the provenance of a data item. We could compute the amount of
resources that were spend on producing a data item from this type of provenance
information. Note that this is the data-centric equivalent to profiling execution
times of functions in, e.g., a Java program. Coupling data with performance
measurements for the transformations that created it enables novel types of pro-
filing. For example, to identify redundant computations, we simply have to check

Big Data Provenance: Challenges and Implications for Benchmarking 79

whether the provenance of the final outputs of a transformation contains a data
item multiple times (possibly produced by different transformations at different
locations). This information can be used to automatically detect potential opti-
mizations (e.g., it may be cheaper to ship the data item than to reproduce it).
Furthermore, if an intermediate result is not in the fine-grained provenance of
any final result of a task, then it was unnecessary to produce this intermediate
result at all.

7 Conclusions

This paper discusses the importance of and challenges for Big Provenance for
benchmarking. In addition to sketching the advantages and issues of generating
Big Data provenance workloads, we argue that provenance may also be used to
aide developers in identifying bottlenecks in the performance, scalability, and ro-
bustness of their systems. Provenance can be used for 1) computing fine-grained,
data-centric performance metrics, 2) for measuring if a system is able to exploit
data commonalities, and 3) for profiling systems.

References

1. Ahmad, F., Lee, S., Thottethodi, M., Vijaykumar, T.: PUMA: Purdue MapReduce
Benchmarks Suite. Tech. Rep. TR-ECE-12-11, Purdue University (2012)

2. Akoush, S., Sohan, R., Hopper, A.: HadoopProv: Towards Provenance as A First
Class Citizen in MapReduce. TaPP (2013)

3. Amsterdamer, Y., Davidson, S., Deutch, D., Milo, T., Stoyanovich, J.,
Tannen, V.: Putting Lipstick on Pig: Enabling Database-style Workflow Prove-
nance. PVLDB 5(4), 346-357 (2011)

4. Chapman, A., Jagadish, H.V., Ramanan, P.: Efficient Provenance Storage. In: SIG-
MOD, pp. 993-1006 (2008)

5. Divyakant, A., Bertino, E., Davidson, S., Franklin, M., Halevy, A., Han, J.,
Jagadish, H.V., Madden, S., Papakonstantinou, Y., Ramakrishnan, R., Ross, K.,
Shahabi, C., Vaithyanathan, S., Widom, J.: Challenges and opportunities with big
data (2012)

6. Graefe, G.: Benchmarking robust performance. In: Rabl, T., et al. (eds.) WBDB
2012. LNCS, vol. 8163, Springer, Heidelberg (2012)

7. Ikeda, R., Park, H., Widom, J.: Provenance for generalized map and reduce work-
flows. In: CIDR, pp. 273-283 (2011)

8. Karvounarakis, G., Green, T.: Semiring-Annotated Data: Queries and Provenance.
SIGMOD Record 41(3), 5-14 (2012)

9. Malik, T., Nistor, L., Gehani, A.: Tracking and Sketching Distributed Data Prove-
nance. In: eScience, pp. 190-197 (2010)

10. Muniswamy-Reddy, K., Macko, P., Seltzer, M.: Provenance for the cloud. In: FAST,
pp. 197-210 (2010)

11. Park, J., Nguyen, D., Sandhu, R.: A provenance-based access control model. In:
PST, pp. 137-144 (2012)

12. Seltzer, M., Macko, P., Chiarini, M.: Collecting Provenance via the Xen Hypervisor.
In: TaPP (2011)

80 B. Glavic

13. Widom, J.: Trio: A System for Managing Data, Uncertainty, and Lineage. Manag-
ing and Mining Uncertain Data, 1-35 (2008)

14. Zhang, M., Zhang, X., Zhang, X., Prabhakar, S.: Tracing Lineage beyond Relational
Operators. In: VLDB, pp. 1116-1127 (2007)

15. Zhou, W., Mapara, S., Ren, Y., Li, Y., Haeberlen, A., Ives, Z., Loo, B., Sherr, M.:
Distributed time-aware provenance. PVLDB 6(2), 49-60 (2012)

Benchmarking Spatial Big Data

Shashi Shekhar!, Michael R. Evans!, Viswanath Gunturi!,
KwangSoo Yang!, and Daniel Cintra Cugler?

! Computer Science & Eng. Faculty, University of Minnesota
200 Union Street S.E. #4192, Minneapolis, MN 55455, USA
2 Institute of Computing, University of Campinas, Campinas, SP, Brazil
{shekhar,mevans, gunturi, ksyang}@cs.umn. edu,
danielcugler@ic.unicamp.br

Abstract. Increasingly, location-aware datasets are of a size, variety,
and update rate that exceeds the capability of spatial computing tech-
nologies. This paper addresses the emerging challenges posed by such
datasets, which we call Spatial Big Data (SBD). SBD examples in-
clude trajectories of cell-phones and GPS devices, vehicle engine mea-
surements, temporally detailed road maps, etc. SBD has the potential
to transform society via a number of new technologies including next-
generation routing services. However, the envisaged SBD-based services
pose several significant challenges for current spatial computing tech-
niques. SBD magnifies the impact of partial information and ambiguity
of traditional routing queries specified by a start location and an end
location. In addition, SBD challenges the assumption that a single al-
gorithm utilizing a specific dataset is appropriate for all situations. The
tremendous diversity of SBD sources substantially increases the diversity
of solution methods. Newer algorithms may emerge as new SBD becomes
available, creating the need for a flexible architecture to rapidly integrate
new datasets and associated algorithms. To quantify the performance of
these new algorithms, new benchmarks are needed that focus on these
spatial big datasets to ensure proper comparisons across techniques.

Keywords: Benchmarking, Spatial Big Data.

1 Introduction

Spatial computing is a set of ideas and technologies that facilitate understanding
the geo-physical world, knowing and communicating relations to places in that
world, and navigating through those places. The transformational potential of
mobility services is already evident. From Google Maps [17] to consumer Global
Positioning System (GPS) devices, society has benefited immensely from spatial
computing. Scientists use GPS to track endangered species to better understand
behavior, and farmers use GPS for precision agriculture to increase crop yields
while reducing costs. Google Earth is being used in classrooms to teach children
about their neighborhoods and the world in a fun and interactive way. We’ve
reached the point where a hiker in Yellowstone, a biker in Minneapolis, and a

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 81-93, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

82 S. Shekhar et al.

taxi driver in Manhattan know precisely where they are, their nearby points of
interest, and how to reach their destinations using mobility services [47].

Increasingly, however, the size, variety, and update rate of mobility datasets
exceed the capacity of commonly used spatial computing and spatial database
technologies to learn, manage, and process the data with reasonable effort. Such
data is known as Spatial Big Data (SBD). We believe that harnessing SBD
represents the next generation of routing services. Examples of emerging SBD
datasets include temporally detailed (TD) roadmaps that provide speeds every
minute for every road-segment; GPS trace data from cell-phones, and engine
measurements of fuel consumption, greenhouse gas (GHG) emissions, etc. SBD
has transformative potential. For example, a 2011 McKinsey Global Institute
report estimates savings of ”about $600 billion annually by 2020” in terms of
fuel and time saved [26,29] by helping vehicles avoid congestion and reduce idling
at red lights or left turns. Preliminary evidence for the transformative potential
includes the experience of UPS, which saves millions of gallons of fuel by simply
avoiding left turns (Figure 1(a)) and associated engine idling when selecting
routes [26]. Immense savings in fuel-cost and GHG emission are possible if other
fleet owners and consumers avoided left-turns and other hot spots of idling, low
fuel-efficiency, and congestion. Ideas advanced in this paper may facilitate ’eco-
routing’ to help identify routes that reduce fuel consumption and GHG emissions,
as compared to traditional route services reducing distance travelled or travel-
time. It has the potential to significantly reduce US consumption of petroleum,
the dominant source of energy for transportation (Figure 1(b)). It may even
reduce the gap between domestic petroleum consumption and production (Figure
1(c)), helping bring the nation closer to the goal of energy independence.

A domain-specific benchmark (such as a Spatial Big Data benchmark) should
address four key criteria: relevance, portability, scalability and simplicity [18§].
Related work in spatial database benchmarking [36,49] presents workloads for
traditional geographic information systems (GIS) related spatial computing,
such as raster and vector datasets. Raster data is used in remote sensing (e.g.,
Google Earth) whereas vector data represents points, lines and polygons, each
with their own library of necessary operators. A key-missing component of these
related benchmarks is graph-based datasets, useful for applications such as rout-
ing and urban navigation. In addition, the rise of spatio-temporal datasets also
requires new workloads, as road networks now come with traffic speeds measured
every minute of every day.

This paper makes the following contributions: an up-to-date workload for
spatial computing, including four types of data (raster, vector, network and
spatio-temporal); a set of summary metrics reminiscent of the historical TPS
(transactions per second) metrics [18] for Spatial Big Data (SBD-R, -V, -N, -
ST) and requirements, both functional (specific behavior) and non-functional
(overall operation of a system), for future spatial computing benchmarks.

Benchmarking Spatial Big Data 83

2011 Energy Consumption for Transporation

M Electricity

M Natural Gas
Biomass

M Petroleum (Qil)

(b)

16 /Qi('
5 ~_Rail
U.S. Production —Marine
~0ff-Road
—Heavy Trucks

B

5]

—Light Trucks

Million Bamrels Per Day

—Cars

o N & 0 @ B

1970 1980 1980 2000 2010 2020 2030
Year

(c)

Fig.1. (a) UPS avoids left-turns to save fuel [26]. (b) Petroleum is dominant energy
source for US Transportation [54]. (c¢) Gap between US petroleum consumption and
production is large and growing [5,10]. (Best in color).

2 Traditional Spatial Big Data

The data inputs of spatial computing are more complex than the inputs of clas-
sical computing, as they include extended objects, such as: points, lines, and
polygons in vector representation and field data in regular or irregular tessella-
tion, such as raster data. The data inputs have two distinct types of attributes:
non-spatial attributes and spatial attributes. Non-spatial attributes are used to
characterize non-spatial features of objects such as name, population and unem-
ployment rate for a city. They are the same as the attributes used in the data
inputs of classical data mining. Spatial attributes are used to define the spa-
tial location of extent of spatial objects [42]. The spatial attributes of a spatial
object most often include information related to spatial locations, for example,
longitude, latitude, and elevation, defined in a spatial reference frame, as well
as a shape. There are four basic models to represent spatial data: raster (grid),
vector (object), network (graph) and spatio-temporal:

Raster: In its simplest form, a raster consists of a matrix of cells (or pixels)
organized into rows and columns (or a grid) where each cell contains a value
representing information, such as temperature. A set of operations called Map
Algebra was introduced [52] to manipulate representations of continuous vari-
ables defined over a common domain. These operations were categorized into
three categories: local, focal and zonal; each based on the geographic size of the

84 S. Shekhar et al.

operation. For example, an elevation raster dataset can be queried with a zonal
(large region) operation to derive slope. Raster datasets can be digital aerial
photographs, imagery from satellites, digital pictures, or even scanned maps.

Vector: Geographic features in a vector format can be represented by points,
lines, or polygons (areas). Vector data over a space is a framework to formalize
specific relationships among a set of objects. In Table 1, a relationship between
spatial and non-spatial data is described using spatial relations performed on
vector datasets. These relations are separated into a number of classifications:
topological to describe relationships regardless of projection, directional to de-
scribe orientation and metric to describe distances between objects.

Table 1. Common relationships among spatial and non-spatial data

Non-spatial Relation Spatial Relation
Arithmetic Set-oriented: union, intersection, membership, ...
Ordering Topological: meet, within, overlap, ...
Instance-of Directional: North, Left, Above, ...
Subclass-of Metric: distance, area, perimeter, ...
Part-of Dynamic: update, create, destroy, ...
Membership-of Shape-based and visibility

Networks: Traditional spatial computing utilizes digital road maps [19, 31,
33,46]. Figure 2(a) shows a physical road map and Figure 2(b) shows its digital,
i.e., graph-based, representation. Road intersections are often modeled as ver-
tices and the road segments connecting adjacent intersections are represented
as edges in the graph. For example, the intersection of 'SE 5th Ave’ and 'SE
University Ave’ is modeled as node N1. The segment of 'SE 5th Ave’ between
'SE University Ave’ and 'SE 4th Street’ is represented by the edge N1-N4. The
directions on the edges indicate the permitted traffic directions on the road seg-
ments. Digital roadmaps also include additional attributes for road-intersections
(e.g., turn restrictions) and road-segments (e.g., centerlines, road-classification,
speed-limit, historic speed, historic travel time, address-ranges, etc.) Figure 2(c)
shows a tabular representation of the digital road map. Additional attributes
are shown in the node and edge tables respectively. For example, the entry for
edge E1 (N1-N2) in the edges table shows its speed and distance. Such datasets
include roughly 100 million (10%) edges for the roads in the U.S.A. [31].

Route determination services [28,45], abbreviated as routing services, include
the following two services: best-route determination and route comparison [41].
The first deals with determination of a best route given a start location, end lo-
cation, optional waypoints, and a preference function. Here, choice of preference
function could be: fastest, shortest, easiest, pedestrian, public transportation,
avoid locations/areas, avoid highways, avoid toll ways, avoid U-turns, and avoid
ferries. Route finding is often based on classic shortest path algorithms such as
Dijktra’s [24], A* [9], hierarchical [20,21,43,44], materialization [38,40,43], and
other algorithms for static graphs [4,7,8,13,14,34,39]. Shortest path finding is

Benchmarking Spatial Big Data 85
~a 5 N7 Nodes Edges
& g, |NID | [EID | From | To | Speed | Distance
i 4/’ | NT | [E1] N1 | N2|[35mph| 0.075mi
N4 N8 N2 E2 | N1 | N4 [30mph| 0.075mi
| N3 | | E3 | N2 | N3 |35mph| 0.078mi
| N4 | [E4 | N2 | N5 |30mph| 0.078mi
| N5 | [E5 | N3 [N6 [30mph| 0.077mi
NG E6 | N4 | N1 |30mph| 0.075mi
| N7 | [E7 | N4 | N7 [30mph| 0.078mi
N8 | | E8 | N5 | N2 [30mph| 0.078mi
[N9 |
(a) (b) (c)

Fig. 2. Current representations of road maps as directed graphs with scalar travel time
values. (a) Example Road Map [17]. (b) Graph Representation. (c) Tabular Represen-
tation of digital road maps.

often of interest to tourists as well as drivers in unfamiliar areas. In contrast,
commuters often know a set of alternative routes between their home and work.
They often use an alternate service to compare their favorite routes using real-
time traffic information, e.g., scheduled maintenance and current congestion.
Both services return route summary information along with auxiliary details
such as route maneuver and advisory information, route geometry, route maps,
and turn-by-turn instructions in an audio-visual presentation media.

OpenlLsS [28] presents a system (see Figure 3) that incorporates a wide-spectrum
of spatial technologies, ultimately reporting to a location-aware client. The loca-
tion utility performs as a geocoder by determining a geographic position, given
a place name, street address or postal code. The directory service provides users
with access to the nearest, or a specific place, product or service. The presentation
layer renders geographic information for display. The route determination compo-
nent provides routing information between locations.

Gaobdobility Sarvar
{Opanl5 Core
Servicos)

oy |
| Dectry
ousmoun)
Provenmten |

‘.

Wirsloss
Mahworics

Location-Awarg
Clianis.

=3

B Deskiop
\oramens |

Cioll Pabmy|
Poschst
Daraces

-
In-

Fig. 3. OpenLS Architecture [28]

86 S. Shekhar et al.
3 Emerging Spatial Big Data

Spatio-temporal datasets are significantly more detailed than traditional digi-
tal roadmaps in terms of attributes and time resolution. In this subsection we
describe three representative sources of SDB that may be harnessed in next
generation routing services.

Spatio- Temporal Engine Measurement Data: Many modern fleet vehi-
cles include rich instrumentation such as GPS receivers, sensors to periodically
measure sub-system properties, and auxiliary computing, storage and commu-
nication devices to log and transfer accumulated datasets [22,23,27, 30,50, 51].
Engine measurement datasets may be used to study the impacts of the envi-
ronment (e.g., elevation changes, weather), vehicles (e.g., weight, engine size,
energy-source), traffic management systems (e.g., traffic light timing policies),
and driver behaviors (e.g., gentle acceleration/braking) on fuel savings and GHG
emissions.

These datasets may include a time-series of attributes such as vehicle loca-
tion, fuel levels, vehicle speed, odometer values, engine speed in revolutions per
minute (RPM), engine load, emissions of greenhouse gases (e.g., CO3 and NOX),
etc. Fuel efficiency can be estimated from fuel levels and distance traveled as well
as engine idling from engine RPM. These attributes may be compared with geo-
graphic contexts such as elevation changes and traffic signal patterns to improve
understanding of fuel efficiency and GHG emission.

I -
-

:‘ D _.fi ~—Etlevatior = i
:: .‘_' - §ng_e_cl_

- Fa N1 -l M

- - = | L AN

| et

~, £

N

-

Fuel Consumption (I)

,
wf="
0'-'
L]
2
‘h______‘_

s

Fig. 4. Engine measurement data improve understanding of fuel consumption [6]. (Best
in color).

For example, Figure 4 shows heavy truck fuel consumption as a function of
elevation from a recent study at Oak Ridge National Laboratory [6]. Notice how
fuel consumption changes drastically with elevation slope changes. Fleet owners
have studied such datasets to fine-tune routes to reduce unnecessary idling [1,2].
It is tantalizing to explore the potential of this dataset to help consumers gain
similar fuel savings and GHG emission reduction. However, these datasets can
grow big. For example, measurements of 10 engine variables, once a minute, over
the 100 million US vehicles in existence [12,48], may have 10'* data-items per
year.

Benchmarking Spatial Big Data 87

GPS Trace Data: A different type of data, GPS trajectories, is becoming
available for a larger collection of vehicles due to rapid proliferation of cell-
phones, in-vehicle navigation devices, and other GPS data logging devices [15,58]
such as those distributed by insurance companies [57]. Such GPS traces allow
indirect estimation of fuel efficiency and GHG emissions via estimation of vehicle-
speed, idling and congestion. They also make it possible to make personalized
route suggestions to users to reduce fuel consumption and GHG emissions. For
example, Figure 5 shows 3 months of GPS trace data from a commuter with
each point representing a GPS record taken at 1 minute intervals, 24 hours a
day, 7 days a week. As can be seen, 3 alternative commute routes are identified
between home and work from this dataset. These routes may be compared for
idling, which are represented by darker (red) circles. Assuming the availability
of a model to estimate fuel consumption from speed profile, one may even rank
alternative routes for fuel efficiency. In recent years, consumer GPS products
[15,53] are evaluating the potential of this approach.

Work

@ o-1omeH
10- 30 MPH
) 30-70MPH

&% .
”GLV: o
9 L8
@9. o @ Q
Tean 8
®
L S

Fig.5. A commuter’s GPS tracks over three months reveal preferred routes. (Best in
color).

Historical Speed Profiles: Traditionally, digital road maps consisted of
centerlines and topologies of the road networks [16,46]. These maps were used
by navigation devices and web applications such as Google Maps [17] to sug-
gest routes to users. New datasets from companies such as NAVTEQ [31] use
probe vehicles and highway sensors (e.g., loop detectors) to compile travel time
information across road segments for all times of the day and week at fine tem-
poral resolutions (seconds or minutes). This data is applied to a profile model,
and patterns in the road speeds are identified throughout the day. The pro-
files have data for every five minutes, which can then be applied to the road
segment, building up an accurate picture of speeds based on historical data.
Such temporally detailed (TD) roadmaps contain much more speed information
than traditional roadmaps. Traditional roadmaps (Figure 2(a)) have only one

88 S. Shekhar et al.

scalar value of speed for any given road segment. In contrast, TD roadmaps may
list speed/travel time for a road segment for thousands of time points (Figure
6) in a typical week. This allows a commuter to compare alternate start-times
in addition to alternative routes. It may even allow comparison of (start-time,
route) combinations to select distinct preferred routes and distinct start-times.
For example, route ranking may differ across rush hour and non-rush hour and
in general across different start times. However, TD roadmaps are big and their
size may exceed 103 items per year for the 100 million road-segments in the US
when associated with per-minute values for speed or travel-time. Thus, industry
is using speed-profiles, a lossy compression based on the idea of a typical day of
a week, as illustrated in Figure 6(a), where each (road-segment, day of the week)
pair is associated with a time-series of speed values for each hour of the day.

Travel time (mins)

3:00am 6:00am 9:00am 12:00pm 3:00pm 6:00pm 9:00pm
Time of day

(a)
FT_DailyHistoric Data Historic Daily
Speed Profile Table
Freeflow Weekday Weekend
EID Speed Speed Speed Sun Mon Tue Wed Thu Fri Sat Speed_0 Speed_1

\\“H

—]

I

@AW N =

null

(b)

Fig. 6. Spatial Big Data on Historical Speed Profiles. (a) Travel time along four road
segments over a day. (b) Schema for Daily Historic Speed Data. (Best in color).

In the near future, values for the travel time of a given edge and start time
will be a distribution instead of scalar. For example, analysis of GPS tracks may
show that travel-time for a road-segment is not unique, even for a given start-
time of a typical week. Instead, it may consist of different values (e.g., 1, 2, 3
units), with associated frequencies (e.g., 10, 30, 20). Emergence of such SBD may
allow comparison of routes, start-times and (route, start-time) combinations for
statistical distribution criteria such as mean and variance. We also envision richer
temporal detail on many preference functions such as fuel cost. Other emerging
datasets include those related to pot-holes [35], crime reports [37], and social
media reports of events on road networks [56].

Benchmarking Spatial Big Data 89

4 Metrics For Spatial Big Data Benchmarks

Metrics for spatial big data can be categorized via a classification used in software
engineering into functional (specific behaviors) and non-functional requirements
(overall operation of a system). In this section, we will describe each and provide
examples.

Metrics for Functional Spatial Big Data Requirements: Spatial com-
puting traditionally operates on one of the four data types listed in Table 2:

Table 2. Data Types in Spatial Computing

Data Type Representation Operations Potential Metric

Raster (field) Geo-Matrix Map algebra operations on Map algebra operations
Local, Focal, Zonal regions per second

Vector (object) Points, Lines, Intersection Model, Nearest Nearest Neighbors per

Polygons Neighbor, Point Query, second, Range-query
Range Query, etc. (screen paint) per second
Network Graphs (nodes, Shortest Path, Max Flow, Shortest-Paths
edges) Evacuation, etc. per second
Spatio-Temporal Trajectories, Time-dependent shortest =~ Mobile device interactions
Temporal path, GPS tracking, per second
Networks logging, etc.

SBD-R: Raster datasets are frequently used for remote sensing applications,
where large-scale map algebra and matrix operations are used. A helpful per-
formance metric (e.g., map algebra operations per second) would measure how
quickly representative operations of this type could be performed on a variety
of dataset scales (e.g. terabyte, petabyte, exabyte, etc.).

SBD-V: Processing vector datasets in spatial database systems has histor-
ically been computationally expensive, with many key features (e.g., nearest
neighbor queries) not being provided with the system. As newer systems are de-
veloped with these features, performance metrics measuring how quickly range
queries and nearest neighbor queries can be computed are needed. Representa-
tive metrics include: nearest neighbors per second and range-queries per second.

SBD-N: Mapping services such as Google Maps has demonstrated the pop-
ularity of network-based datasets for use-cases such as personal transportation
routing. It is not hard to imagine Google has a measure for how many shortest-
paths per second it can calculate as it is serving the world driving directions,
but universal and public benchmarks in this field will allow comparison between
current spatial database systems. Representative metrics include: shortest-paths
per second and evacuation planning.

SBD-ST: Spatio-temporal datasets are becoming more and more common-
place with the rise of location-based services and metrics for database systems
rating their ability to handle some of these more common complex queries are
crucial. For example, many applications currently request the location of a user,
and potentially also monitor nearby points of interest to report back to the user.

90 S. Shekhar et al.

So a metric that described the number of mobile device interactions (e.g., track-
ing, local context, location trigger, etc.) per second would be extremely useful for
a variety of end-user applications. Representative metrics include: mobile device
interactions per second, GPS logs per second, etc

Metrics for Non-Functional Spatial Big Data Requirements: Many
Spatial Big Data use-cases (e.g., emergency services like E911, disaster response,
etc.) typically require fault tolerance, where it should be resilient against nat-
ural calamities such as earthquakes, hurricanes, etc. Such requirements necessi-
tate ”triple-continental redundancy” [3], where the data is replicated on servers
spread across multiple continents. This requirement poses several challenges for
current cloud-based storage technologies due to performance issues inherent with
wide-area replication and access. A potential metric for disaster resilience is a
resilience footprint (e.g., 100 mile resilient, 1,000 mile, 10,000 mile), which may
indicate the geo-spatial footprint of the disaster (e.g., fire, flood, tornado, earth-
quake, hurricane) that will not disrupt service.

Privacy of geographic information is an important and timely challenge due
to personal information in GPS tracks, Check-in’s, tweets, etc. While location
information (GPS in phones and cars) can provide great value to users and
industry, streams of such data also introduce spooky privacy concerns of stalk-
ing and geo-slavery [11]. For example, Ushahidi is a non-profit tech company
providing technology for citizen-based reporting used in many countries with
controlling regimes where privacy and protecting the reporter is extremely im-
portant [55]. Computer science efforts at obfuscating location information to date
have largely yielded negative results. Thus, many individuals hesitate to indulge
in mobile commerce and citizen reporting due to concern about privacy of their
locations, trajectories and other spatio-temporal personal information [25]. It
may be premature to provide specific metrics. However, Spatial Big Data bench-
marks and metrics are needed to address many questions such as the following:
”whether people reasonably expect that their movements will be recorded and
aggregated...” ? [32]. How do we quantify location privacy in relation to its spatio-
temporal precision of measurement? How can users easily understand and set
privacy constraints on location information? How does quality of location-based
service change with variations in obfuscation level? Crucial to widespread adop-
tion will be comforting the public, where a easy-to-understand metric describing
the loss of privacy given information surrendered (e.g., adversary information
gain per piece data submitted) will help people understand and compare various
services against their privacy concerns.

5 Conclusion

Increasingly, location-aware datasets are of a size, variety, and update rate that
exceed the capability of spatial computing technologies. This paper addresses
the emerging challenges posed by such datasets, which we call Spatial Big Data
(SBD), specifically as they apply to mobility services (e.g., transportation and
routing). SBD examples include trajectories of cell-phones and GPS devices,

Benchmarking Spatial Big Data 91

vehicle engine measurements, temporally detailed (TD) road maps, etc. SBD
has the potential to transform society.

Current benchmarks for spatial computing remain limited to small data sizes
and only a portion of current popular data types. New benchmarks need to
be built around Spatial Big Datasets, incorporating all four data types (raster,
vector, network, spatio-temporal), while covering a wide variety of use-cases from
emergency management, location-based services, advanced routing services, etc.
New performance metrics, both functional (e.g., mobile interactions per second)
and non-functional (e.g., disaster resilience footprint), will facilitate comparison
between new systems being created and promoted by various spatial computing
vendors.

Acknowledgments. We would like to thank Eric Horvitz (Microsoft), the Com-
puting Community Consortium (CCC), Hillol Kargupta (UMBC), Erik Hoel
(ESRI), Oak Ridge National Labs (ORNL) and the US-DoD for their help-
ful comments and support. This work was supported by NSF (0713214, DGE-
0504195), US-DoD and FAPESP (grants 2011/19284-3, 2012/11395-3).

References

1. American Transportation Research Institute (ATRI). Fpm congestion monitoring
at 250 freight significant highway location: Final results of the 2010 performance
assessment (2010), http://goo.gl/3cAjr

2. American Transportation Research Institute (ATRI). Atri and fhwa re-
lease bottleneck analysis of 100 freight significant highway locations (2010),
http://goo.gl/CONuD

3. Bauer, E., Adams, R., Eustace, D.: Beyond Redundancy: How Geographic Re-
dundancy Can Improve Service Availability and Reliability of Computer-based
Systems. Wiley-IEEE Press (2011)

4. Booth, J., Sistla, P., Wolfson, O., Cruz, I.: A data model for trip planning in mul-
timodal transportation systems. In: Proceedings of the 12th International Confer-
ence on Extending Database Technology: Advances in Database Technology, pp.
994-1005. ACM (2009)

5. Brown, A.: Transportation Energy Futures: Addressing Key Gaps and Providing
Tools for Decision Makers. Technical report, National Renewable Energy Labora-
tory (2011)

6. Capps, G., Franzese, O., Knee, B., Lascurain, M., Otaduy, P.: Class-8 heavy truck
duty cycle project final report. ORNL/TM-2008/122 (2008)

7. Chan, E.P.F., Zhang, J.: Efficient evaluation of static and dynamic optimal route
queries. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.)
SSTD 2009. LNCS, vol. 5644, pp. 386-391. Springer, Heidelberg (2009)

8. Chang, T.: Best routes selection in international intermodal networks. Computers
& Operations Research 35(9), 2877-2891 (2008)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press (2001)

10. Davis, S.C., Diegel, S.W., Boundy, R.G.: Transportation energy data book: Edition
28. Technical report, Oak Ridge National Laboratory (2010)

11. Dobson, J., Fisher, P.: Geoslavery. IEEE Technology and Society Magazine 22(1),
47-52 (2003)

http://goo.gl/3cAjr
http://goo.gl/C0NuD

92

12.

13.

14.

15.
16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

S. Shekhar et al.

Federal Highway Administration. Highway Statistics. HM-63, HM-64 (2008)
Frigioni, D., Ioffreda, M., Nanni, U., Pasqualone, G.: Experimental analysis of
dynamic algorithms for the single. ACM Journal of Experimental Algorithmics
(JEA) 3, 5 (1998)

Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Semidynamic algorithms for
maintaining single-source shortest path trees. Algorithmica 22(3), 250-274 (1998)
Garmin, http://www.garmin.com/us/

George, B., Shekhar, S.: Road maps, digital. In: Encyclopedia of GIS, pp. 967-972.
Springer (2008)

Google Maps, http://maps.google.com

Gray, J.: Benchmark handbook: for database and transaction processing systems,
2nd edn. Morgan Kaufmann Publishers Inc. (1993)

Hoel, E.G., Heng, W.-L., Honeycutt, D.: High performance multimodal networks.
In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633,
pp. 308-327. Springer, Heidelberg (2005)

Jagadeesh, G., Srikanthan, T., Quek, K.: Heuristic techniques for accelerating hier-
archical routing on road networks. IEEE Transactions on Intelligent Transportation
Systems 3(4), 301-309 (2002)

Jing, N., Huang, Y.-W., Rundensteiner, E.A.: Hierarchical optimization of optimal
path finding for transportation applications. In: Proceedings of the Fifth Inter-
national Conference on Information and Knowledge Management (CIKM), pp.
261-268. ACM (1996)

Kargupta, H., Gama, J., Fan, W.: The next generation of transportation systems,
greenhouse emissions, and data mining. In: Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1209—
1212. ACM (2010)

Kargupta, H., Puttagunta, V., Klein, M., Sarkar, K.: On-board vehicle data stream
monitoring using minefleet and fast resource constrained monitoring of correlation
matrices. New Generation Computing 25(1), 5-32 (2006)

Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education (2009)

Krumm, J.: A survey of computational location privacy. Personal and Ubiquitous
Computing 13(6), 391-399 (2009)

Lovell, J.: Left-hand-turn elimination, December 9. New York Times (2007),
http://goo.gl/3bkPb

Lynx GIS, http://www.lynxgis.com/

Mabrouk, M., Bychowski, T., Niedzwiadek, H., Bishr, Y., Gaillet, J., Crisp, N.,
Wilbrink, W., Horhammer, M., Roy, G., Margoulis, S.: Opengis location services
(openls): Core services. OGC Implementation Specification 5, 016 (2005)
Manyika, J., et al.: Big data: The next frontier for innovation, competition and
productivity. McKinsey Global Institute (May 2011)

MasterNaut. Green Solutions,
http://www.masternaut.co.uk/carbon-calculator/

NAVTEQ), www.navteq.com

New York Times. Justices Say GPS Tracker Violated Privacy Rights (2011),
http://www.nytimes.com/2012/01/24/us/police-use-of-gps-is-ruled-
unconstitutional.html

OpenStreetMap, http://www.openstreetmap.org/

Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance
estimation in large networks. In: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM 2009, pp. 867-876 (2009)

http://www.garmin.com/us/
http://maps.google.com
http://goo.gl/3bkPb
http://www.lynxgis.com/
http://www.masternaut.co.uk/carbon-calculator/
www.navteq.com
http://www.nytimes.com/2012/01/24/us/police-use-of-gps-is-ruled-unconstitutional.html
http://www.nytimes.com/2012/01/24/us/police-use-of-gps-is-ruled-unconstitutional.html
http://www.openstreetmap.org/

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.
49.

50.
51.
52.

53.
54.

55.
56.
57.

58.

Benchmarking Spatial Big Data 93

Pothole Info. Citizen pothole reporting via phone apps take off, but can street
maintenance departments keep up? (2011), http://goo.gl/cG13B

Ray, S., Simion, B., Brown, A.D.: Jackpine: A benchmark to evaluate spatial
database performance. In: 2011 IEEE 27th International Conference on Data En-
gineering (ICDE), pp. 1139-1150. IEEE (2011)

SafeRoadMaps. Envisioning Safer Roads, http://saferoadmaps.org/

Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, pp. 43-54 (2008)

Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: Deme-
trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 23-36. Springer, Heidelberg (2007)
Sankaranarayanan, J., Samet, H.: Query processing using distance oracles for
spatial networks. IEEE Transactions on Knowledge and Data Engineering 22(8),
1158-1175 (2010)

Schiller, J., Voisard, A.: Location-based services. Morgan Kaufmann (2004)
Shekhar, S., Evans, M.R., Kang, J.M., Mohan, P.: Identifying patterns in spa-
tial information: A survey of methods. Wiley Interdisc. Rew.: Data Mining and
Knowledge Discovery 1(3), 193-214 (2011)

Shekhar, S., Fetterer, A., Goyal, B.: Materialization trade-offs in hierarchical short-
est path algorithms. In: Scholl, M., Voisard, A. (eds.) SSD 1997. LNCS, vol. 1262,
pp. 94-111. Springer, Heidelberg (1997)

Shekhar, S., Kohli, A., Coyle, M.: Path computation algorithms for advanced trav-
eller information system (atis). In: Proceedings of the Ninth International Confer-
ence on Data Engineering, Vienna, Austria, April 19-23, pp. 31-39. IEEE Computer
Society (1993)

Shekhar, S., Vatsavai, R.R., Ma, X., Yoo, J.S.: Navigation systems: A spatial
database perspective. In: Location-Based Services, pp. 41-82. Morgan Kaufmann
(2004)

Shekhar, S., Xiong, H.: Encyclopedia of GIS. Springer Publishing Company, Incor-
porated (2007)

Shrank, D., Lomax, T., Eisele, B.: The 2011 urban mobility report. Texas Trans-
portation Institute (2011)

Sperling, D., Gordon, D.: Two billion cars. Oxford University Press (2009)
Stonebraker, M., Frew, J., Gardels, K., Meredith, J.: The sequoia 2000 storage
benchmark. ACM SIGMOD Record 22, 2-11 (1993)

TeleNav, http://www.telenav.com/

TeloGIS, http://wuw.telogis.com/

Tomlin, C.D.: Geographic information systems and cartographic modeling.
Prentice Hall (1990)

TomTom. TomTom GPS Navigation (2011), http://www.tomtom. com/

U.S. Energy Information Adminstration. Monthly Energy Review (June 2011),
http://www.eia.gov/totalenergy/data/monthly/

Ushahidi, http://www.ushahidi.com

Waze Mobile, http://www.waze.com/

Wikipedia. Usage-based insurance — wikipedia, the free encyclopedia (2011),
http://goo.gl/NqJE5 (accessed December 15, 2011)

Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering per-
sonal gazetteers: an interactive clustering approach. In: Proceedings of the 12th
Annual ACM International Workshop on Geographic Information Systems, pp.
266-273. ACM (2004)

http://goo.gl/cGl3B
http://saferoadmaps.org/
http://www.telenav.com/
http://www.telogis.com/
http://www.tomtom.com/
http://www.eia.gov/totalenergy/data/monthly/
http://www.ushahidi.com
http://www.waze.com/
http://goo.gl/NqJE5

Towards a Systematic Benchmark
for Array Database Systems

Peter Baumann and Heinrich Stamerjohanns

Center for Advanced Systems Engineering (CASE), Jacobs University,
Bremen, Germany
{p.baumann,h.stamerjohanns}@jacobs-university.de

Abstract. Big Data are a central challenge today in science and indus-
try. Typically, Big Data are characterized from application perspectives.
From a data structure perspective, among the core structures appear-
ing are sets, graphs, and arrays. In particular in science and engineering
we find arrays being a main contributor to data volumes. In fact, large,
multi-dimensional arrays represent an important information category
in earth, life, and space sciences, but also in engineering, business, and
e-government.

Having long been neglected by database research, arrays today in-
creasingly receive attention leading to a whole new field of investigation,
Array Databases. As more and more Arry Database Systems emerge,
similarities and differences can be observed. This calls for complemen-
tary research on benchmarks for Array DBMSs.

We present work in progress on such a comprehensive Array DBMS
benchmark, which is based on our 15 years of pioneering Array DBMSs
and also designing a geo raster query language standard and its corre-
sponding functionality benchmark.

1 Motivation

Large, multi-dimensional arrays represent a major Big Data contributor in sci-
ence, industry, and e-government. For example, spatio-temporal Earth science
data include 1-D time series, 2-D satellite imagery, 3-D x/y/t image timeseries
and x/y/z geophysical data, and 4-D x/y/z/t atmosphere and ocean data, among
others. Likewise, in Life Sciences bio/medical modalities like computerized to-
mography (CT) scans and confocal microscopy produce increasing amounts of
spatio-temporal data. In Astrophysics, optical and radar sensors deliver high-
resolution raster data as continuous streams and with large numbers of spectral
bands. Statistical data sets transcend spatio-temporal dimensions by using user-
defined measures as dimension axes, but still yielding n-D data cubes. Multime-
dia databases use vectors of hundreds to thousands of features for content-based
image retrieval. Figure 1 symbolizes some relevant applications.

Arrays appear as low-dimensional spatio-temporal data, medium-dimension
statistics data (such as 3 to 12 dimensional OLAP [17]), and high-dimensional
feature vectors (with thousands of dimensions) [15]. A further distinguishing

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 94-102, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Towards a Systematic Benchmark for Array Database Systems 95

Fig. 1. Array data: A collage of applications

criterion is the number of cells carrying meaningful information: sparse data,
with typically 3 to 5 % of cell positions being occupied by data, appear in
OLAP and statistics data cubes; dense data, with 100% or not much less of cells
carrying data, such as satellite imagery.

Operations applied on such arrays can be studied by investigating image and
signal processing, statistics, and linear algebra, to name a few. Finally, arrays
regularly appear as ”Big Data” with terabyte-sized single objects and petabyte
archives, such as the holdings of Earth Observation (EO) data centers like the
European Space Agency (ESA) and NASA archives.

Although arrays form an essential data structure in science and engineering
and although this structure is well defined and known, database research has
long neglected arrays, categorizing them as ”unstructured data” to be stored
as BLOBs. Consequently, no semantics and no operations can be offered by the
database system, and hence users like large-scale data centers did not get any
value from using databases for their array data. Still today, therefore, databases
in science are mainly used for metadata while array and similar data are main-
tained by specially crafted data management tools with specialized service in-
terfaces, but without fexible general-purpose query languages.

Only recently Array DBMSs have become a mainstream area of research. The
pioneering system is rasdaman ("raster data manager”) with its 24 years since
its first publication and with a fully-fledged implementation used in operational
installations since many years. Rasdaman is based on a minimal algebra on which
query language, optimization, query evaluation, and storage layout is based.
Among recent research approaches are SciQL, an array extension to the column-
store MonetDB system, and SciDB, a standalone Array DBMS utilizing User-
Defined Functions for providing array functionality.

96 P. Baumann and H. Stamerjohanns

Rasdaman

Grid DataBlade

TerraLib

PostGis Raster

Oracle genraster
ESRI ArcSDE
SciQL
SgatiaLite
SciDB
. —
picdms Paradise OpenTSD, ExtaScid
]]

|

EXTRA/EXCESS Grid & Gridfield
—|]

AQL AQuery

[] []

AML RAM

[| -

Fig. 2. A Brief History of Array DBMSs

In terms of data service standards, we can find arrays with ISO SQL:1998 and
its successors and with the OGC Web Coverage Processing Service (WCPS) [7],
a geo raster query language.

Given this relevance of array support in databases and with various, slightly
varying systems emerging the quest for benchmarks arises. A comprehensive,
well documented, and maintained benchmark can be of significant value to both
deployers - like data centers - and database vendors, but also individual scientists
and engineers. Further, it should allow to not only assess Array DBMSs as such,
but also the large number of array supporting tools which are not using database
technology, such as MatLab [19], R [23], and OPeNDAP [3].

In this paper we describe first concepts of a benchmark for large-scale, multi-
dimensional array services. Currently, we are structuring the various facets of the
possible and useful benchmarking tests. As a first result, we suggest a “suitability
cube” framework in which all assessment aspects can be embedded. Under work
is the refinement and breakdown of this concept.

In the next section we describe related work. Section 3 introduces the Suit-
ability Cube. Practical examples are presented in Section 4; Section 5 concludes
the contribution.

Towards a Systematic Benchmark for Array Database Systems 97

2 Related Work

Benchmarking of databases has been thoroughly addressed in the eighties and
nineties, including periods of hot ”benchmark wars” between vendors. Today, a
set of generally accepted benchmarks is available for relational databases. Among
the most popular are the SPEC [26] and TPC [10] database benchmarks.

There is no equivalent, though, for array databases. Given the only recently
broadened interest of the database community there are no established bench-
marks yet - actually, not even a commonly agreed conceptual data and query
model.

Figure 2 gives a brief visual overview of the historical development. A notable
precursor was PICDMS [9] which offered a conceptual model of a stack of same-
resolution 2-D arrays with operators on them, although a generic array query
language was not yet present, and no suitable architecture was indicated. Several
publications emerged from relatively short-lived investigations. Most of today’s
systems, like PostGIS Raster [22] and rasdaman [18], add arrays as an additional
attribute type, in sync with ISO SQL [14] which establishes arrays as a collection
(i-e., column) type. A deviating approach is pursued by SciQL [16] and SciDB
[24] where arrays are modeled similarly to tables, reusing much of standard SQL
syntax albeit with a different semantics.

On commercial side, Oracle GeoRaster has to be mentioned, although - similar
to PICDMS - it supports only 2-D arrays and lacks query support. ESRI ArcSDE
has attempted to utilize databases for its 2-D rasters, but seems to not pursue
development any further.

In terms of standards, we can find array support in two places. ISO SQL:1998
and its successors offer array support through an array collection type, although
no array operators; a currently proposed new work item is aiming at closing
this gap. The Open Geospatial Consortium (OGC) establishes and maintains
Web service standards for geospatial intelligence. Arrays form a subcategory of
so-called coverages [6], aka space-time varying phenomena. In 2008, OGC has
adopted the Web Coverage Processing Service (WCPS) standard [7], a spatio-
temporal geo raster query language, conceptually influenced by the rasdaman
Array Algebra.

There have been several early attempts to benchmark geospatial databases
[25,20], but these included e.g. a limited number of temporal queries or focused
on domains like remote sensing exclusively so that evaluations outside their
specific application domain were not feasible.

SS-DB has been proposed as a benchmark for science oriented databases[11].
By applying a space science use-case, it performs nine queries on astronomical
array data. This case study is an important contribution towards understanding
astrophysical workloads. However, the benchmark remains on application level
and does not provide a thorough evaluation on model or algebra level. This
benchmark has been run against SciDB [12] and MySQL [1]. It is available as
open source, although similar results have not been reported yet by other groups.

For the geospatial domain, an analysis of relevant functionality has been
pursued in [13]. Based on a broad survey of operations used in geo imaging,

98 P. Baumann and H. Stamerjohanns

functionality has been classified and described by a uniform algebraic frame-
work to allow for a systematic inspection. Representative array query examples
further have been published for web mapping [4], genetic research [21], among
others.

All these efforts are characterized by selecting particular use cases, without
proof of covering the respective domain adequately. Further, there is no rigorous
conceptual analysis of array queries which might characterize a concrete system’s
performance in its entirety. Therefore, the field currently is dominated by ad-
hoc attempts. Our work aims at consolidating them into an Array Database
benchmarking framework.

3 Benchmarking Arrays

3.1 Conceptual Array Modeling

Based on the common definition of an array as a function a : X — V from some
d-dimensional Euclidean hypercube X into some value set V' we naturally find
some first query operation candidates:

— Changing the domain set X, often called subsetting; this can be differen-
tiated into trimming (cropping the domain while retaining the number of
dimensions) and slicing (extracting hyperslabs, thereby reducing dimension-
ality).

— Manipulating the value set V; this leads to a common set of unary and binary
array operations, such as pixel-wise addition of images.

— Changing the array function itself, like establishing new mappings (examples
include histograms and matrix multiplication).

— De-arraying functions, like aggregation.

When it comes to storing arrays, all systems uniformly perform partitioning -
as practiced in image processing since long under the name out-of-core processing
- into sub-arrays called chunks or tiles. Systems differ in the degree of variability.
On one end there are static partitionings into square blocks where only the block
size can be modified; on the high end are freely definable tiling schemes with
and without overlapping, which forms an important tuning parameter. Also,
these partitions naturally induce a tile streaming architecture which allows to
keep only few parts of an array in server main memory during query evaluation,
thereby achieving scalability in data volumes.

3.2 Benchmarking Dimensions

Based on the above outline of the concepts under test, we group features of an
Array DBMS into several categories: Overall, we currently consider the following
data categories as relevant for a benchmark:

— Array Model Features: Assess the expressive power of the data model:

Towards a Systematic Benchmark for Array Database Systems 99

e Number of Dimensions: This can be low-dimensional spatio-temporal
data (1-D, 2-D, 3-D, 4-D, 5-D), medium-dimensional (6-D through 12-
D), or high-dimensional (such as thousands of dimensions). Note that
there is not a rigorous limit between boundaries, but we feel that the
orders of magnitude separate good enough for focused testing.

e Cell Type: Array cells can contain single values, records of values (such
as hyperspectral satellite imagery), as well as theoretically any other data
structure. In practice, variable-length cell types like strings are avoided
by all models inspected, due to the added complexity in storage man-
agement.

— Array Data Properties:

e Volume of Data: Object sizes may range from a few kB for 1-D time-
series over a few hundred MB for a satellite image up to PB size climate
model output. Sizes of object sets can be massive as well — e.g., the Eu-
ropean Space Agency (ESA) plans to have 102 satellite images under
their custody with their ngEO project.

e Sparsity of Data: How does access and processing performance depend
on sparsity, i.e., the percentage of non-null values within a data array.
OLAP data, for example, have a density of typically 3% to 5% while
satellite images often have a density of 100%.

e Storage Features: What partitioning schemes does the Array DBMS

support? Can partitions be compressed? Distributed?
— Array Operations: This encompasses questions like: what primitives are

offered? Are operations executed natively or as UDFs? An open question is

how to systematically scale query complexity for benchmarking.

e Isolated Position Relevance: How does access to a large array depend
on the size, shape, and position of the subsetting box?

e Coupled Position Relevance: How does access to a large array vary
when two subsettings are done in sequence, for different bounding boxes?
What about non-trivial access patterns like in convolutions, statistical
operations, Fourier Transforms, or simply mirroring an array?

e Processing Capabilities: What array operations are offered? Formal-
izations like Array Algebra help to find comprehensive operations and
operation combinations.

e Processing Implementation: To what extent are array operations na-
tively supported by the query engine, and where does it resort to UDFs?
How efficient is the architecture, utilizing optimization, parallelization,
etc.?

e Data Ingest and Update: How fast can arrays be loaded?” How fine-

grain can updates to parts of arrays be applied?
— Updates: In view of the large size of single objects, it is not sufficient to

only test creation, replacement, and deletion of whole objects. Updating
an object typically will address selected areas within an array, which poses
specific performance challenges.

— Application Specific Features: Geo imagery, for example, requires spe-
cific operations like orthorectification, coordinate transformation; statistical
data require algebra operations like matrix multiplication and inversion.

100 P. Baumann and H. Stamerjohanns

4 Application Scenarios

Our research in array databases is based on both theoretical investigation, like
finding a declarative, minimal Array Algebra [8], and extensive practical evalua-
tions with users and in standardization bodies [5]. A number of domains in engi-
neering and science have been investigated in close collaboration with large-scale
data centers, including remote sensing, oceanography, geology, climate model-
ing, astrophysics, planetary science, computational fluid dynamics, genetics, and
human brain imaging.

There is a diverse audience of users for these use cases. For the public at
large, the database serves a large number of clients with typically a limited set
of well defined queries wrapped in visual clients. Power users and researchers
may use the database query language - possibly again with visual support - to
conveniently wade through their raw data and run individual analyses.

Typically, the hardware to be used - like cloud, cluster and tape silos - is
already present so the main question is not to determine the best hardware but
to find the right data management and service tool for the given scenario. Here
we hope to provide guidance with a reproducible benchmark.

5 Conclusion and Outlook

Arrays comprise an information category whose importance is just now being
acknowledged by the database community at large. In science, engineering, busi-
ness, social media, and statistics large arrays are of prime importance. With
further systems emerging in addition to the pioneer Array DBMS, rasdaman, a
standardized benchmark is useful for both system designers and data providers
using such technology.

As part of ongoing activities towards a systematic benchmark we propose
a first structuring of benchmark facets for a quantitative assessment of Array
DBMSs. Aspects considered include conceptual data and query model capabil-
ities, scalability in data volume, dimensionality, and query complexity, native
query support vs UDFs, and application domain requirements. Therefore, we
consider our work as a generalization of the application specific SS-DB per-
formance comparison. In particular, experience from writing functional confor-
mance test suites for geo raster services within OGC [2] has provided useful
insights into test design and structuring.

Currently we are implementing the first slate of tests, focusing on storage ac-
cess and array operations. Once a sufficient slate of tests is available, it is planned
to run them against the available Array DBMSs and publish both benchmark
code and results.

Acknowledgement. This research work is being supported by the European
Community’s Seventh Framework Programme (EU FP7) under grant agree-
ment no. 283610 ” European Scalable Earth Science Service Environment (Earth-
Server)”.

Towards a Systematic Benchmark for Array Database Systems 101

References

1. MySQL, http://www.mysql.com/

2. OGC Compliance Testing, http://wuw.opengeospatial.org/compliance

3. OpenNdap, http://www.openndap.org

4. Baumann, P., Jucovschi, C., Stancu-Mara, S.: Efficient map portrayal using a

10.

11.

12.

13.

14.

15.

16.

17.

general-purpose query language (a case study). In: Bhowmick, S.S., Kiing, J.,
Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 153-163. Springer, Heidelberg
(2009)

Baumann, P. (ed.): Web Coverage Processing Service (WCPS) Implementation
Specification. No. 08-068r2, OGC, 1.0.0 edn. (2008)

Baumann, P.: Beyond rasters: introducing the new OGC web coverage service 2.0.
In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in
Geographic Information Systems, GIS 2010, pp. 320-329. ACM, New York (2010),
http://doi.acm.org/10.1145/1869790.1869835

Baumann, P.: The OGC web coverage processing service (WCPS) stan-
dard. Geoinformatica 14(4), 447-479 (2010), http://dx.doi.org/10.1007/
s10707-009-0087-2

Baumann, P.: A database array algebra for spatio-temporal data and beyond. In:
Pinter, R., Tsur, S. (eds.) NGITS 1999. LNCS, vol. 1649, pp. 76-93. Springer,
Heidelberg (1999)

Chock, M., Cardenas, A.F., Klinger, A.: Database structure and manipulation
capabilities of a picture database management system (picdms). IEEE Transactions
on Pattern Analysis and Machine Intelligence 6(4), 484-492 (1984)

Council Transaction Processing Performance, TPC C Benchmark (2010), Standard
Specification, http://www.tpc.org/tpcc/spec/tpcc_current.pdf
Cudre-Mauroux, P., Kimura, H., Lim, K.T., Rogers, J., Madden, S., Stonebraker,
M., Zdonik, S., Brown, P.: SS-DB: A standard science DBMS benchmark (2010)
Cudre-Mauroux, P., Kimura, H., Lim, K.T., Rogers, J., Simakov, R., Soroush,
E., Velikhov, P., Wang, D.L., Balazinska, M., Becla, J., DeWitt, D., Heath, B.,
Maier, D., Madden, S., Patel, J., Stonebraker, M., Zdonik, S.: A demonstration
of SciDB: a science-oriented DBMS. Proc. VLDB Endow. 2(2), 15341537 (2009),
http://dl.acm.org/citation.cfm?id=1687553.1687584

Garcia, A., Baumann, P.: Modeling fundamental geo-raster operations with array
algebra. In: Proc. IEEE SSTDM, October 28-31, pp. 607-612 (2007)
I1S09075:1999: Information Technology-Database Language SQL. Standard No.
ISO/IEC 9075:1999, International Organization for Standardization (ISO) (1999),
(Available from American National Standards Institute, New York, NY 10036,
(212) 642-4900)

Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137-142. Springer, Heidelberg (1998), http://dx.doi.org/10.1007/
BFb0026683

Kersten, M.L., Zhang, Y., Ivanova, M., Nes, N.: SciQL, a query language for
science applications. In: Baumann, P., Howe, B., Orsborn, K., Stefanova, S.
(eds.) EDBT/ICDT Array Databases Workshop, pp. 1-12. ACM (2011), http:
//dblp.uni-trier.de/db/conf/edbt/array2011.html#KerstenZIN11

Kimball, R., Caserta, J.: The data warehouse ETL toolkit. John Wiley & Sons
(2004)

102 P. Baumann and H. Stamerjohanns

18. LSIS Research Group Jacobs University. The array database rasdaman, Rasdaman
is available at http://www.rasdaman.org

19. MATLAB: version (R2013a). Natick, Massachusetts (2013)

20. Patel, J.M., Yu, J.B., Kabra, N., Tufte, K., Nag, B., Burger, J., Hall, N.E.,
Ramasamy, K., Lueder, R., Ellmann, C.J., Kupsch, J., Guo, S., DeWitt, D.J.,
Naughton, J.F.: Building a Scaleable Geo-Spatial DBMS: Technology, Implemen-
tation, and Evaluation. In: Peckham, J. (ed.) SIGMOD Conference, pp. 336-347.
ACM Press (1997), http://doi.acm.org/10.1145/253260.253342

21. Pisarev, A., Poustelnikova, E., Samsonova, M., Baumann, P.: Mooshka: a system for
the management of multidimensional gene expression data in situ. Inf. Syst. 28(4),
269-285 (2003), http://dx.doi.org/10.1016/S0306-4379(02)00074-1

22. PostGIS, http://www.postgis.org

23. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2013), http://www.R-project.
org

24. Stonebraker, M., Brown, P., Poliakov, A., Raman, S.: The architecture of SciDB.
In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809,
pp. 1-16. Springer, Heidelberg (2011), http://dl.acm.org/citation.cfm?id=
2032397.2032399

25. Stonebraker, M., Frew, J., Gardels, K., Meredith, J.: The Sequoia 2000 Benchmark.
In: Buneman, P., Jajodia, S. (eds.) SIGMOD Conference, pp. 2-11. ACM Press
(1993), http://doi.acm.org/10.1145/170035.170038

26. The Standard Performance Evaluation Corporation. SPEC Benchmark (2012),
http://www.spec.org/benchmarks.html

Unleashing Semantics of Research Data

Florian Stegmaier!, Christin Seifert!, Roman Kern?, Patrick Hofler?,
Sebastian Bayerl!, Michael Granitzer!, Harald Kosch®, Stefanie Lindstaedt?,
Belgin Mutlu?, Vedran Sabol?, Kai Schlegel®, and Stefan Zwicklbauer!

! University of Passau, Germany
2 Know-Center, Graz, Austria

Abstract. Research depends to a large degree on the availability and
quality of primary research data, i.e., data generated through experi-
ments and evaluations. While the Web in general and Linked Data in
particular provide a platform and the necessary technologies for sharing,
managing and utilizing research data, an ecosystem supporting those
tasks is still missing. The vision of the CODE project is the establish-
ment of a sophisticated ecosystem for Linked Data. Here, the extraction
of knowledge encapsulated in scientific research paper along with its pub-
lic release as Linked Data serves as the major use case. Further, Visual
Analytics approaches empower end users to analyse, integrate and orga-
nize data. During these tasks, specific Big Data issues are present.

Keywords: Linked Data, Natural Language Processing, Data Ware-
housing, Big Data.

1 Introduction

Within the last ten years, the Web reinvented itself over and over, which led
from a more or less static and silo-based Web to an open Web of data, the so
called Semantic Web!. The main intention of the Semantic Web is to provide an
open-access, machine-readable and semantic description of content mediated by
ontologies. Following this, Linked Data [1] is the de-facto standard to publish
and interlink distributed data sets in the Web. At its core, Linked Data defines
a set of rules on how to expose data and leverages the combination of Semantic
Web best practices, e.g., RDF? and SKOS?.

However, the Linked Data cloud is mostly restricted to academic purposes due
to unreliability of services and a lack of quality estimations of the accessible data.
The vision of the CODE project* is to improve this situation by the creation
of a web-based, commercially oriented ecosystem for the Linked Science cloud,
which is the part of the Linked Data cloud focusing in research data. This ecosys-
tem offers a value-creation chain to increase the interaction between all peers,

! http://www.w3.org/standards/semanticweb/
2 http://www.w3.org/RDF/

3 http://www.w3.org/2004/02/skos/

4 http://www.code-research.eu/

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 103-112, 2014.
© Springer-Verlag Berlin Heidelberg 2014

http://www.w3.org/standards/semanticweb/
http://www.w3.org/RDF/
http://www.w3.org/2004/02/skos/
http://www.code-research.eu/

104 F. Stegmaier et al.

e.g., data vendors or analysts. The integration of a marketplace leads on the
one hand to crowd-sourced data processing and on the other hand to sustain-
ability. By the help of provenance data central steps in the data lifecycle, e.g.,
creation, consumption and processing, along corresponding peers can be moni-
tored enabling data quality estimations. Reliability in terms of retrieval will be
ensured by the creation of dynamic views over certain Linked Data endpoints.
The portions of data made available through those views can be queried with
data warehousing functionalities serving as entry point for visual analytics ap-
plications.

The motivation behind the CODE project originated from obstacles of daily
research work. When working on a specific research topic, the related work anal-
ysis is an crucial step. Unfortunately, this has to be done in a manual and time
consuming way due to the following facts: First, experimental results and ob-
servations are (mostly) locked in PDF documents, which are out of the box
unstructured and not efficiently searchable. Second, there exist a large amount
of conferences, workshops, etc. leading to an tremendous amount of published
research data. Without doubt, the creation of a comprehensive overview over on-
going research activities is a cumbersome task. Moreover, these issues can lead to
a complete wrong interpretation of the evolution of a research topic. Specifically
for research on ad-hoc information retrieval, Armstrong et al. [2] discovered in an
analysis of research papers issued within a decade, that no significant progress
has been achieved.

In contrast to scientific events, ongoing benchmarking initiatives such as the
Transaction Processing Council (TPC) exist. The main output of the TPC is
the specification and maintenance of high-impact benchmarks for the database
technology with members from Oracle, Microsoft, Sybase etc. Obviously, the
industries are interested in running these benchmarks to show their competitive
abilities. The results of those runs are published on the TPC website® as well
as scientific workshops, e.g., Technology Conference on Performance Evaluation
and Benchmarking (TPCTC)®. Unfortunately, it is currently very cumbersome
to interact with the data to create comparisons or further visual analysis.

On the basis of this observations, the present issues could be improved by the
use of the services established by the CODE project. Focusing on benchmarking
initiatives, CODE technologies can be used to integrate the results of specific
test runs, align them with extra information and therefore create an integrated
TPC data warehouse to perform in depth analysis on the data, e.g., time series
analysis.

This paper introduces the CODE project, along with its main processing steps.
The main contributions are as follows:

— Data sources available in the research community will be described and the
correlation to Big Data issues are given.

— The CODE project along with its main components is introduced with re-
spect to the already defined Big Data processing pipeline.

® http://www.tpc.org/information/results.asp
5 http://www.tpc.org/tpcte/

http://www.tpc.org/information/results.asp
http://www.tpc.org/tpctc/

Unleashing Semantics of Research Data 105

Table 1. Processable research data available in the CODE project

Type Data Set Description Data Characteristic

Research paper PDF documents Aggregated facts like tables, fig-
ures or textual patterns. Low
volume, but high integration ef-
fort.

Primary research data Evaluation data of re- Data generated by mostly au-
search campaigns avail- tomated means. Large volumes,
able in a spreadsheet like low schema complexity.
format (1. normal form)
or via Web-APIs

Retrievable data Linked Open Data end- Semantically rich, intercon-
points nected data sets. Large volumes,

hard to query (technically and

from a usability point of view).

Mostly background knowledge.

Embedded data Microdata, Microformat, Semantically rich, but dis-
RDFa tributed data. Less of interest.

The remainder of the paper is as follows: Section 2 highlights the data sources
which can be processed by the CODE technologies. Here, an correlation to Big
Data issues will be given. To get an understanding of the actual workflow, Sec-
tion 3 proposes a processing pipeline, which is compliant to the overall definition
of a Big Data processing pipeline. Finally, Section 4 concludes the paper and gives
insights in the current achievements of the project.

2 Rediscovering Hidden Insights In Research

Research data is made available in various ways to the research society, e.g.,
stored in digital libraries or just linked to a specific website. Table 1 summa-
rizes four data sources that are taken into account in the aforementioned usage
scenario.

Research papers are a valuable source of state-of-the-art knowledge mostly
stored in digital libraries reaching an amount of several Terabytes. Apart from
the overall storage, the actual size of a single PDF document does not exceed
a few Megabytes. The main task is to extract meaningful, encapsulated infor-
mation such as facts, table of contents, figures and — most important — tables
carrying the actual evaluation results. The present diversity of extracted data
leads to a high integration effort for a unified storage. In contrast to that, pri-
mary research data is released in a more data centric form, such as table-based
data. This kind of data is mostly issued by (periodic) evaluation campaigns or
computing challenges. Famous examples are the CLEF initiative focusing on
the promotion of research, innovation, and development of information retrieval

106 F. Stegmaier et al.

systems. The outcome of such activities is thousands of raw data points stored
in Excel sheets. Here, the volume of the data is most likely very large but de-
fined by a specific schema with less complexity than PDF documents. Both data
sources share an unstructured nature due to missing semantics on the schema
and data level. To overcome this issue, the two remaining data sources of Ta-
ble 1 are utilized. In this light, Linked Open Data endpoints serve as source for
retrievable data, such as DBPedia” or PubMed®. On the one hand, these end-
points expose their data following the 5 star open data rule meaning the data
is openly available, annotated with clear semantics and interconnected in the
distributed Linked Open Data cloud. On the other hand, due to its distributed
nature, efficient federated retrieval is a hard task. The last data source mentioned
is embedded data meaning content of websites semantically annotated with mi-
crodata, microformat or RDFa. This information can be embedded table-based
primary research data or auxiliary information, such as biographic data of a
person.

As one can observe, there is a large amount of research data already available
on the Web. The major drawback in this data landscape is the fact, that those
are unconnected. Due to this fact, a comprehensive view is not possible, which
leads to a loss of information. By the help of the CODE ecosystem, in particular
by its data warehouse, this data gets connected and inference with respect to
new knowledge is enabled.

Before considering the details of the knowledge extraction process, the corre-
lation to the buzzword Big Data will be discussed. In todays research, the term
Big Data® [3] is often used as a fuzzy concept without clear defined semantics.
The following dimensions, the “3Vs”, have to be mentioned when speaking of
Big Data:

Volume is the most obvious characteristic for Big Data. Nearly every applica-
tion domain produces an tremendous amount of data and is even increased
by user interactions. This observation is also observable in terms of research
data, when thinking of the amount of papers published with the correspoding
monitored user interactions, such as citing.

Velocity makes it possible to state the production rate of the data. Huge data
portions may be produced in real time in ongoing sensor systems, e.g., as-
tronomy data, as an batch-like outcome of events, such as a conference or
an evaluation campaign or single publications, such as white papers.

Variety takes the structure of the data itself into account. As already discussed,
the data can be unstructured in silo-based PDF storage, semi-structured in
Excel spreadsheets, or available in information retrieval systems.

Those three characteristics are commonly discussed by the community. It is
clear, that Big Data at its core defines the data itself and the way it is processed
and analyzed by corresponding pipelines. Linked Data on the other hand brings

" http://www.dbpedia.org/
8 http://pubmed.bio2rdf .org/
9 http://cra.org/ccc/docs/init/bigdatawhitepaper . pdf

http://www.dbpedia.org/
http://pubmed.bio2rdf.org/
http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf

Unleashing Semantics of Research Data 107

in the techniques to semantically interlink and publish this heterogeneous por-
tions of data. A recent white paper [4] issued by Mitchell and Wilson extend
those Vs with respect to a data centric way:

Value of the data is the key to real interpretation and knowledge generation by
answering the question which interaction steps of a processing chain made
the data portions really “worthy”.

The last characteristic can be directly aligned to the proposed approach. Here,
crowd-sourced enabled data processing and analysis is combined with provenance
chains to estimate the quality of the underlying data. By the help of Linked
Data publishing techniques, the basis is given towards opening data silos for
sophisticated interaction.

3 Big Data Pipeline Approach

When working with Big Data, Labrinidis and Jagadish [5] argue that “we lose
track of the fact that there are multiple steps to the data analysis pipeline,
whether the data are big or small”. The Big Data processing pipeline proposed
by CODE in terms of knowledge extraction of research data is illustrated in
Figure 1.

PDFdata — PDF Analysis — Natural Language

Processing
—

HTML data

— Intermediate p Disambiguation Data Warehousing
formats & Enrichment
Table data _ ¥ T—— S —

RDF2Tables Linked

|
[RRLARCIL: e

Visual Analytics

Storage & ()
Publishement

Data cloud

Provenance data &
RDF Cube Vocabulary

Fig. 1. Conceptual processing chain of knowledge creation and consumption

On the left hand side of Figure [5]the data sources introduced in Section 2
serve as an input for the conceptual processing chain. The data flow (continuous
arrows) as well as dependencies (dashed arrows) are also plotted in the image.
The central components are PDF analysis, Natural Language Processing, Dis-
ambiguation & Enrichment, Data Warehousing and Visual Analytics and will
be discussed in the following.

108 F. Stegmaier et al.

3.1 PDF Analysis

Most of the research papers are stored in the PDF format. The quality of output
of the PDF analysis thereby highly influences subsequent steps in the CODE
processing chain. PDF is a page description language which allows low level
control of the layout, but in this process the logical structure of the text is lost.
For instance, text in multiple columns is often rendered across the columns, not
adhering to the natural reading order. Especially tables are challenging because
there is no annotation of logical tables defined in the PDF format. Still tables
are assumed to contain lot of factual quantitative information. In general the
challenges for PDF analysis can be summarised as:

— Text content extraction, extracting raw textual content (ignoring images and
tables).

— Metadata extraction, e.g. extracting author names, titles, journal titles for
scientific publications.

— Structure annotation, annotating document structure, e.g. for generating
automatic table of contents.

— Block detection, detection of logical blocks like tables, abstracts.

— Table decomposition, extraction of table data according to its logical struc-
ture.

In recent years considerable research progress has been made with regard
to these challenges. Text content extraction methods are able to extract text
in human-reading order [6]. Metadata extraction already quite well extracts
relevant metadata from scientific papers [7, 8]. Block detection has been ap-
proached [8], but especially the extraction of complex tables is in the focus of
ongoing research [9,10].

Despite the progress in the single steps, there is no general solution which
can provide all information in the quality needed within the CODE project in
sufficient quality. Thus, the task is to aggregate results from recent research on
PDF analysis into the CODE prototype and adapt or refine existing approaches.
Further, we expect manual post-processing to be necessary for achieving certain
analysis results.

3.2 Natural Language Processing

Based upon the textual representation of a research article, the contained facts
should be mined. Therefore techniques from the field of natural language pro-
cessing are employed. As an initial step, named entities within the text are
identified. Depending on the actual domain of the articles (biomedical domain,
computational science, ...) the type of named entities varies.

Domain adaptation in the CODE project is foreseen to be transformed into
a crowd-sourcing task. For example, in the computer science domain, where
ontologies and annotated corpora are scarce, the users of the CODE platform
themselves annotate the relevant concepts. Starting with the automatic detec-
tion of named entities, the relationship between those are identified in a second

Unleashing Semantics of Research Data 109

step. This way the textual content is analysed and domain dependant, factual
information is extracted and stored for later retrieval.

3.3 Disambiguation and Enrichment

Entity disambiguation is the task of identifying a real world entity for a given
entity mentioning. In presence of a semantic knowledge base, disambiguation is
the process of linking an entity to the specific entity in the knowledge base.

Within the CODE project, entity disambiguation is applied to identify and
link scientific knowledge artefacts mentioned in scientific papers. Subsequently
background information from the Linked Science cloud can be presented to the
user while reading or writing scientific papers.

The challenges regarding entity disambiguation within the CODE project
are the following: (i) variance and specificity of scientific domains: not only do
scientific papers cover a wide variety of topics but each domain very in-depth;
(ii) synonyms in Linked Data repositories, and (iii) evolving knowledge: topic
changes in scientific papers and in Linked Data endpoints.

Disambiguation using general purpose knowledge bases (mostly Wikipedia)
has been widely covered in research, e.g. [11-13]. While approaches for specific
knowledge bases exist, e.g. [14] for biomedical domain, the applicability of the
approaches to a combination of general and specific knowledge bases and the
resulting challenges (scalability, synonyms) has to be investigated within the
CODE project.

After disambiguation, the gathered information for an entity can be extended
by knowledge available in the Linked Data cloud. This extra information will be
validated by user feedback and then integrated into the knowledge base. This
process yields to an automatic and intelligent Linked Data endpoint facing the
following research tasks: (i) integration and usage of provenance data, (ii) rank-
ing and similarity estimations of Linked Data repositories or RDF instances,
and (iii) quality of service parameter (e.g., response time). This process is often
termed Linked Data Sailing. Currently, there exist frameworks to calculate simi-
larity between Linked Data endpoints, e.g., SILK [15], and Linked Data traversal
frameworks, e.g., Gremlin'®, which serves as a basis for further developments.

3.4 Storage and Publishing

The persistence layer of the CODE framework consists of a triple store, which
has to offer certain abilities: (i) Linked Data compatible SPARQL endpoint
and free text search capability, (ii) federated query execution, e.g., SPARQL
1.1 federated query!!, and (iii) caching strategies to ensure efficient retrieval.
Those requirements are fulfilled by the Linked Media Framework [16], which has
been selected for storage. For data modelling tasks, two W3C standardization
efforts are in scope, which will be soon issued as official recommendations. The

10 nttps://github. com/tinkerpop/gremlin/
" nttp://www.w3.org/TR/sparqlil-federated-query/

https://github.com/tinkerpop/gremlin/
http://www.w3.org/TR/sparql11-federated-query/

110 F. Stegmaier et al.

PROV-0!? ontology will be used to express and interchange provenance data.
Further, the W3C proposes the RDF Cube Vocabulary!'? as foundation for data
cubes, which are the foundation of data warehouses. Both vocabularies will be
interconnected to ensure a sophisticated retrieval process.

3.5 Data Warehousing

As already mentioned, the basis for OLAP functionalities is the data cube. The
data cube model is a collection of statistical data, called observations. All obser-
vations are defined by dimensions along with measures (covering the semantics)
and attributes (qualify and interpret the observation). Well-known data ware-
housing retrieval functionalities would last from simple aggregation functions,
such as AVG, up to high-level roll up or drill down operators. During retrieval
the following functionality has to be ensured: (i) interconnection of RDF cubes,
(ii) independence of dimensions, and (iii) high-level analytical retrieval in graph
structures. Current research is dealing with the integration of RDF data into
single data cubes [17,18], but do not take an interconnection / federation into
scope. Within the CODE framework, algorithms of relational data warehousing
systems will be evaluated with respect to their applicability to graph structures.
By the help of data cube interconnections complex analytical workflows can be
created.

3.6 Visual Analytics

One important aspect of the CODE project is to make data available to end
users in an easy-to-use way. This data might be already Linked Data as well as
semantic data extracted from scientific PDFs. The goal is to build a web-based
Visual Analytics interface for users who have no prior knowledge about semantic
technologies. The main challenges regarding Visual Analytics in the scope of the
CODE projects are:

— building an easy-to-use web-based interfaces for querying, filtering and ex-
ploring semantic data,

— developing semantic descriptions of Visual Analytics components to facilitate
usage with semantic data, and

— building an easy-to-use web-based interfaces for creating visual analytic
dashboards.

A query wizard is envisioned, with which users can search for relevant data, filter
it according to their needs, and explore and incorporate related data. Once the
relevant data is selected and presented to the user in tabular form, the Visual-
ization Wizard helps them to generate charts based on the data in order to make
it easier understandable, generate new insights, and communicate those insights
in a visual way. One of the tools for visualizing the data will be MeisterLabs’
web-based MindMeister mind mapping platform.

12 nttp://www.w3.org/TR/prov-o/
13 http://www.w3.org/TR/vocab-data-cube/

http://www.w3.org/TR/prov-o/
http://www.w3.org/TR/vocab-data-cube/

Unleashing Semantics of Research Data 111
4 Conclusion

In this paper the challenges of the CODE project have been outlined. Further,
the connection and the relevance to Big Data topics has been argued. In the
current phase of the project, prototypes for certain issues of the introduced
pipeline have been developed'. Within the second year of the project, those
will be integrated into a single platform. Periodic evaluations will be conducted
to ensure the required functionality and usability of the prototypes.

Acknowledgement. The presented work was developed within the CODE
project funded by the EU Seventh Framework Programme, grant agreement
number 296150. The Know-Center is funded within the Austrian COMET Pro-
gram under the auspices of the Austrian Ministry of Transport, Innovation and
Technology, the Austrian Ministry of Economics, Family and Youth and by
the State of Styria. COMET is managed by the Austrian Research Promotion
Agency FFG.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data — the story so far. International
Journal on Semantic Web and Information Systems 5(3), 1-22 (2009)

2. Armstrong, T.G., Moffat, A., Webber, W., Zobel, J.: Improvements that don’t
add up: ad-hoc retrieval results since 1998. In: Conference on Information and
Knowledge Management, pp. 601-610 (2009)

3. Dumbill, E.: What is big data? An introduction to the big data land-
scape. O’Reilly Strata (January 11, 2012), http://strata.oreilly.com/2012/01/
what-is-big-data.html

4. Mitchell, I., Wilson, M.: Linked Data - Connecting and exploiting Big Data. White
Paper (March 2012), http://www.fujitsu.com/uk/Images/Linked-data-connecting-
and-exploiting-big-data-(v1.0).pdf

5. Labrinidis, A., Jagadish, H.V.: Challenges and opportunities with big data.
PVLDB 5(12), 2032-2033 (2012)

6. Hasan, 1., Parapar, J., Barreiro, A Improving the extraction of text in pdfs
by simulating the human reading order. Journal of Universal Computer Science 18,
623-649 (2012), http://www. jucs.org/jucs_18_5/improving_the_extraction_of

7. Granitzer, M., Hristakeva, M., Knight, R., Jack, K., Kern, R.: A comparison of
layout based bibliographic metadata extraction techniques. In: Proceedings of the
2nd International Conference on Web Intelligence, Mining and Semantics, WIMS
2012, pp. 19:1-19:8. ACM, New York (2012)

8. Kern, R., Jack, K., Hristakeva, M.: TeamBeam - Meta-Data Extraction from Sci-
entific Literature. D-Lib Magazine 18 (July 2012)

9. Fang, J., Gao, L., Bai, K., Qiu, R., Tao, X., Tang, Z.: A table detection method
for multipage pdf documents via visual seperators and tabular structures. In: 2011
International Conference on Document Analysis and Recognition (ICDAR), pp.
779-783 (September 2011)

" nttp://www.code-research.eu/results

http://strata.oreilly.com/2012/01/what-is-big-data.html
http://strata.oreilly.com/2012/01/what-is-big-data.html
http://www.jucs.org/jucs_18_5/improving_the_extraction_of
http://www.code-research.eu/results

112

10.

11.

12.

13.

14.

15.

16.

17.

18.

F. Stegmaier et al.

Liu, Y., Bai, K., Gao, L.: An efficient pre-processing method to identify logical
components from pdf documents. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.)
PAKDD 2011, Part I. LNCS (LNAI), vol. 6634, pp. 500-511. Springer, Heidelberg
(2011)

Kataria, S.S., Kumar, K.S., Rastogi, R.R., Sen, P., Sengamedu, S.H.: Entity dis-
ambiguation with hierarchical topic models. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2011, pp. 1037-1045. ACM, New York (2011)

Fader, A., Soderl, S., Etzioni, O.: Scaling wikipediabased named entity disambigua-
tion to arbitrary web text. In: Proc. of WikiAI (2009)

Dredze, M., McNamee, P., Rao, D., Gerber, A., Finin, T.: Entity disambiguation for
knowledge base population. In: Proceedings of the 23rd International Conference
on Computational Linguistics, COLING 2010, Stroudsburg, PA, USA, pp. 277-285.
Association for Computational Linguistics (2010)

Rebholz-Schuhmann, D., Kirsch, H., Gaudan, S., Arregui, M., Nenadic, G.: An-
notation and disambiguation of semantic types in biomedical text: a cascaded ap-
proach to named entity recognition. In: Proceedings of the EACL Workshop on
Multi-Dimensional Markup in NLP, Trente, Italy (2006)

Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links
on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 650-665. Springer, Heidelberg (2009)

Kurz, T., Schaffert, S., Biirger, T.: LMF — a framework for linked media. In: Pro-
ceedings of the Workshop on Multimedia on the Web Collocated to i-KNOW/
i-SEMANTICS, pp. 1-4 (September 2011)

Kampgen, B., Harth, A.: Transforming statistical linked data for use in olap sys-
tems. In: Proceedings of the 7th International Conference on Semantic Systems,
I-Semantics 2011, New York, NY, USA, pp. 33-40. ACM (2011)

Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and olap multidi-
mensional networks. In: Proceedings of the International Conference on Manage-
ment of Data, pp. 853-864 (2011)

Generating Large-Scale Heterogeneous Graphs
for Benchmarking

Amarnath Gupta

San Diego Supercomputer Center
Univ. of California San Diego
La Jolla, CA 92093, USA

Abstract. Graphs have emerged as an important genre of data that are
found in a wide class of applications. The most dominant benchmark for
graph data today is Graph 500 that generates a Stochastic Kronecker
graph of various sizes, and reports the time to perform a breadth-first
search. Apache Giraph uses Pagerank computation as an algorithmic
benchmark for large graphs, but does not provide the mechanism to gen-
erate graph data. Other forms of graph benchmarks have been developed
by smaller communities and are not known widely. However, most bench-
marking data for graphs are derived from a single structure generation
model, and therefore does not capture the variability of structure and
content. To this end, we propose heterogeneous graphs, a mixed model
graph structure that combines several existing generation techniques into
a single benchmark. It is a hybrid that constructs edge-labeled multi-
graphs with multiple components, which can be hierarchical, power-law
graphs, community-forming graphs, and a new class of graphs formed by
motif composition. The user can use a simple set of 4 parameters to spec-
ify the graph, but has the option to use several more parameters to have
a finer control of the hybrid structure. We define the generation process
for heterogeneous graphs and propose an initial set of query operations
against the generated data.

Keywords: heterogeneous graph, benchmarking, power law, commu-
nity structure, data generation.

1 Introduction

The unprecedented growth of the social media industry in the past few years
have cast a spotlight on the importance and usefulness of graph data. In Decem-
ber 2012, Facebook reported 1.06 billion monthly active users and 618 million
daily active users, while in January 2013, LinkedIn reported more than 200
million acquired users. With these explosive numbers, the industry is finding
new ways to utilize and productize graph-based analysis. Products for tasks like
finding communities with a specific demographic and interest profile, finding ob-
jects (e.g., pictures, places, products, ...) that like-minded people use, finding
highly networked people with a certain expertise, are beginning to emerge. At
the same time, the market is quickly finding new ways to utilize these products;

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 113-128, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

114 A. Gupta

for example, marketing companies are beginning to exploit the knowledge of dis-
covered communities to identify their targets. Taking a step back, one can see
that despite the recent surge of popularity and interest, graph-structured data
had always been used in academic research and niche product markets. Many
complex graph data manipulation and analysis algorithms have been developed
by the Computer Science community. Perhaps more interestingly, application
communities have done extensive research in using graph data for their specific
problems. In Biomedical Sciences, researchers study patterns of connectivity and
behavior for interconnected biological objects that evolve with time; in Data Min-
ing and Knowledge Discovery, researchers study call logs and discover “hidden”
patterns in mobile communication graphs; in Linked Graph communities Sys-
tems Analysts develop navigation and exploration techniques over a wide range
of connected data sets; Social Science researchers study network influences and
create metrics for scoring individuals or groups based on their “dynamics” (i.e.,
activity patterns) on any social networks. These groups have created many al-
gorithms for simulating, storing, partitioning, navigating, searching, indexing,
summarizing and analyzing various forms of graphs. However, these algorithms
have mostly been used for the sizes and variants of graph data they needed for
their own purposes. Now, with the advent of new use cases and market demands
for huge and rapidly increasing graph sizes, one needs to determine what kinds
of algorithms are required, and what kind of operating infrastructure these algo-
rithms should run on in practice to achieve the desired performance at the scale
needed. This motivates us to consider graph data benchmarking as an impor-
tant genre within the larger context of Big Data benchmarking. A graph data
benchmarks will contributed to the fair and standardized assessment of perfor-
mance across different algorithm providers, different system versions from the
same provider and across different architectures.
Challenges. Bhandarkar! argues that big data systems are characterized by
their flexibility in processing diverse data genres, including graphs, geo-locations
and text, using a variety of methods. Because of the many sources and methods
of analyzing Big Data, a single benchmark that characterizes all use-cases could
not exist. We hold that the same is true even within the genre of graph data,
and developing a single benchmark that represents the structure and processing
needs of all graph data is impossible to create. For example, social networks are
structured differently biological interaction networks, and have different evolu-
tion processes when viewed over time. Although they share some common forms
of query and analysis (e.g., finding “influential nodes”) are common to both
forms of graphs, significant differences exist between them. For example, social
networks are characterized by small clique-ish groups, while biological networks
are often used for subgraph pattern matching (motif discovery).

In this paper, we consider the problem of large-scale graph data generation
for benchmarking. The contributions of this work are as follows.

! http://reflectionsblog.emc.com/2013/02/industry-standard-benchmarks-
for-big-data-platforms.html

http://reflectionsblog.emc.com/2013/02/industry-standard-benchmarks-for-big-data-platforms.html
http://reflectionsblog.emc.com/2013/02/industry-standard-benchmarks-for-big-data-platforms.html

Generating Heterogeneous Graphs 115

— Based on a number of application scenarios, we develop a set of general-
purpose design guidelines for graph data generators.

— Using these guidelines, we construct a specific application case to create a
graph generator.

— We present the specification and a reference implementation of the generator
for directed graphs with labeled edges with constraints.

2 Related Work

The most well-known graph benchmark till date is Graph 500
(www.graph500.o0rg), which currently intends to provide benchmark data
sets for three application kernels: concurrent search, optimization (single
source shortest path), and edge-oriented (maximal independent set) in the
context of five graph-related application areas: Cybersecurity, Medical Infor-
matics, Data Enrichment, Social Networks, and Symbolic Networks. In this
section, we describe the Graph 500 data generator. We also present the data
generators for some more specialized benchmarks that target different audiences.

Graph 500. For Graph 500, the user provides two parameters called SCALE and
EDGEFACTOR. The system uses this to create a graph G with N = 25CALE nodes
and F = EDGEFACTOR % N edges. The goal is to construct the graph using a
graph generation technique called Kronecker generator similar to the Recursive
MATrix (R-MAT) scale-free graph generation algorithm [1]. The R-MAT gen-
erator uses an adjacency matrix data structure. It recursively sub-divides the
adjacency matrix of the graph into four equal-sized partitions and distributes
edges within these partitions with unequal probabilities. Initially, the adjacency
matrix is empty, and edges are added one at a time. Each edge chooses one of
the four partitions with probabilities A, B, C, and D, respectively. The graph
generator creates a small number of multiple edges between two vertices as well
as self-loops. It also generates the data graph with high degrees of locality. How-
ever, according to the Graph 500 standard the vertex numbers must be randomly
permuted, and then the edge tuples must randomly shuffled to remove the high
degree of locality. This last requirement ensures that no benchmark algorithm
can exploit the locality to their advantage. The primary benchmarking algo-
rithm test performed on the data is a breadth-fisrt traversal that starts from an
arbitrary node and constructs the BFS tree of its traversal. More recently, [2]
has developed a stoachastic generalization of the R-MAT method that has been
empirically observed to have interesting real-network-like properties.

The LFR Benchmark. Based on the “mixing pattern” model of [3], Lanci-
chinetti, Fortnato and Radicchi (hence LFR) [4] develop a class of benchmark
graphs that model graphs whose nodes participate in internal community struc-
tures. The benchmark models real-world networks (e.g., social networks) con-
taining communities of different sizes. To realize this, the algorithm assumes
that both the degree and the community size distributions are power laws, with
exponents 3 and 7, respectively. Each node is given a degree taken from a power
law distribution with exponent y. The extremes of the distribution k,,;, and

www.graph500.org

116 A. Gupta

kmae are chosen such that the average degree is k. Each node shares a fraction
(1 — p) of its links with the other nodes of its community and a fraction p with
the other nodes of the network, where p is called mizing parameter. The sizes of
the communities are taken from a power law distribution with exponent (3, such
that the sum of all sizes equals the number N, i.e., the number of nodes of the
graph. The generation process starts with an empty graph and incrementally
fills in the adjacency matrix by obeying the constraints above. The target of
this benchmark is to evaluate algorithms that attempt to find community struc-
tures in a network — utilized in solving “people finding” tasks through citation,
co-participation, and professional networks. We note that unlike the Graph 500
case, these graphs are supposed to have local internal structures, and therefore
serve a different purpose as a benchmark for a different (and growing) segment
of the graph-data industry.

The S3G2 Method. The previous two methods generated graphs whose nodes
and edges were not labeled. Thus, they cannot be used to generate database-like
graphs such as RDF data (or any other data that can be viewed as RDF). [5]
proposes a method called Scalable Structure-correlated Social Graph Generator
(S3G2) that addresses the problem of generating scalable random graphs with
value and structure correlations. In this model, the graph generator produces new
nodes with property values, and edges between these nodes and existing nodes.
In S3G2 graph, a node belongs to one of the object classes or is a literal. A la-
beled edge contains two nodes and an edge property in which one node belongs
to an object class and the other node is a literal or an object. The edge prop-
erty is a literal property or a relation property, respectively. One node can have
many edges with the same edge property and there is no edge connecting two
literal nodes. In an edge, the end node is considered as the property value of the
start node. The generation algorithm uses a set of correlation rules to construct
legitimate edges. In doing so, it uses a probability model to choose a certain
value from a dictionary, or the probability to connect two nodes with an edge
are thus influenced according to these correlation rules, by existing data values.
For instance, the birth location of a person influences probability distribution
of the first name and school dictionaries. As another example, the probability
to create a friendship edge is influenced by agreement on birth-year and school
properties of two person nodes. The benchmark uses mapreduce style algorithms
to generate social network-like graphs that network analysis algorithms can use.
There are other well-known benchmarking standards, like the LUBM [6] and the
BSBM [7] benchmarks for RDF and OWL data, that might be considered as
graph data depending on application and implementation. For example, some
implementations can treat them as Description Logic systems that do not have
any explicit graph operations, while others, like the linked-data systems that
emphasize on traversal based access to graph nodes using a query language like
SPARQL, do model RDF data as graphs. This makes them relevant yet some-
what out of our scope for this paper. The primary observation we would like
to make from these use cases is that with graphs, it is insufficient to construct

Generating Heterogeneous Graphs 117

a single application-level benchmark scenario like TPC-C that is representative
enough for most applications.

Next, we make a case for developing a data generator for heterogeneous
graphs, that we believe are more pervasive than we generally acknowledge, and
represent a new class of applications that are underrepresented in literature. We
motivate the case with an application scenario.

3 An Application Scenario

Our application is modeled after a drug discovery scenario, where a research
organization maintains both its private data as well as publicly available data it
has gathered from different web sites. We deliberately choose a scientific rather
than a business scenario for our benchmark because we believe that scientific
applications are a rich, vital yet underserved territory for the benchmarking
community and expect that efforts like this will help foster the development of
interesting algorithm and system design in the future. The benchmark is based
upon the following considerations.

— The data is structured as a combination of N overlapping named graphs
G1...Gp, where the overlap is accomplished by node sharing. The nodes
of the graphs represent instances of biological entities like genes, proteins,
parts of the human body, pharmacological compounds, and so forth, while
the labeled edges represent (a) attributes that have scalar values (of type
int, string, float...), and (b) binary relationships between entity pairs.
They overlap because each named component graph is independently produced
by different user groups who populate different properties of the same entities.

— A subset of the named graphs G ... Gy are hierarchical, i.e., they are struc-
tured as trees or DAGs. Physically, they represent class hierarchies and
partonomy hierarchies among entities. For example a drug classification sys-
tem is a hierarchical graph. Similarly, a citation network is also a hierarchical
graph (DAG). Each hierachical graph uses a single hierarchy-forming rela-
tionship (HFR) (i.e., only one edge label is used in each hierarchical graph).
For the drug classification case, the HFR is subclass0f, while in the citation
case, the HFR is cites.

— The remaining N —k graphs are multigraphs (i.e., there can be multiple edges
between two nodes). For example, the research organization would often
download biological interaction graphs from the National Center for Biomed-
ical Informatics (NCBI). This network contains information about how
biomolecules interact with each other, and may have recors for two molecules
A and B that satisfy the relations (A physically-interacts-with B) and
(A positively-regulates B). However, we would like to ensure that there
is no redundant content in the graph. So we impose the constraint that there
cannot be two different edges with identical labels between two nodes for the
same graph. Note however that since we assume the component graphs to
be independently created, this does not preclude two different graphs from
creating two edges of the same label on the same two nodes.

118 A. Gupta

— The multigraphs differ in terms of their network connectivity properties.

e Some component graphs (biological networks) obey the power-law more
strictly than others (human social networks e.g., science groups)

e some graphs have a larger skew in the distribu-
tion of edge labels (more specialized properties like
(geneA is-allelic-variant-of geneB) are less abundant than
generic properties like (proteinA is-target-of drugB))

e some graphs (physical interactions among molecules) are denser (i.e.,
have a higher node to edge ratio) than others (citation networks)

e some graphs may optionally have additional constraints regarding sub-
graph patterns, containing patterns that ought to appear, and patterns
that are prohibited. For example,

These characteristics illustrate why generating benchmark data for heteroge-
neous graphs cannot be treated the same way as relational or warehouse data
benchmarks where the variability in data patterns and its impact on access op-
erations are less pronounced. It also justifies why generation of benchmark data
for heterogenous graphs should not use a fixed schema pattern that most TPC
standards use, but should rather be based on a number of graph parameter
characteristics the above examples allude to.
In the next section we present our benchmark.

4 GDB-H: The Heterogeneous Graph Data Benchmark

The Setting. The drug discovery lab modeled in the benchmark is inter-
ested in 11 entity categories: genes, proteins, diseases, anatomy (includes gross
anatomical parts, tissues, cells, and subcellular structures), phenotypes (i.e., ob-
served characteristics), drugs (i.e., pharmacological substances that may have
multiple brand names), interactions, pathways (named interaction graphs over
genes/proteins), species, experiment types, and publications. In Table 1, these
entity types are associated with the following sets of attributes expressed in an
object-relational style.

In this schema, multivalued attributes are designated as a set of a type, and
object references are designated as a set of object identifiers. In addition to
these categories, the benchmark assumes a set of objectClassNames for each
category. For the sake of convenience we will use generic names for these classes.
For example, class names for interactions will be called interactionClass-1,
interactionClass-2, ... and so forth.

Not included in the schema is a list of 3000 binary relationships which we call
Ry ... R3gpo here, including HFRs that hold between pairs of instances of these
entities. Table 2 shows a few of these relationships.

The Benchmark Data. The GDB-H benchmark allows a user to specify a
small number of mandatory parameters and a larger set of optional paramters.
The mandatory parameters are:

(a) GRAPHNUM - total number of component graphs with a minimum value of
8, and maximum value of 100.

Generating Heterogeneous Graphs 119

Table 1. The entity types and their attributes used in GDB-H

Entity Type Attributes
genes id:int, symbol:char[4], name:char[32], organism:char[32], chromosome:[2],
startPosition:long, endPosition:long
proteins id:int, symbol:char[4], name:char[32], molecularWeight:float, produc-

ingGene:genes.id, function:set(char[32])
diseases id:int, name:char[32], broadType:char[32], description:char[1024],
cause:char[1024], signSymptoms:char[1024], affectedPopulation:string
anatomy id:int, name:char[32], isGrossAnatomicalObject:bool, isTissue:bool, is-
Cell:bool, isSubCellular:bool

phenotype id:int, name:[32], description:[256], affected Anatomical-
Part:set(anatomy.id)
drugs id:int, substanceName:char[128], brandName:char[128], targetDis-

ease:set(disease.id), targetProtein:proteins.id, targetBiologicalPro-
cess:set(char[128])

interactions id:int, sourceMolecule:char[256], targetMolecule:char[256], interaction-
Type:char[128], referenceCitation:set(publications.id)

pathways id:int, name:char[128], description:char[512], pathway-
Graph:set (interactions.id)
species id:int, commonName:char[128], scientificName:char[256]

experiment Type id:int, name:char[128], description:char[256]
publications id:int, title:char[256], authors:set(char[1024]), journal:char[512],
date:dateTime

Table 2. A representative sample of the relationships used by the benchmark

Relationship Domain Range HFR? Explanation
instanceOf entitylnstance ObjectClassName no example: g1 is an instance
of genes

subclassOf objectClassName ObjectClassName yes example: drug is a subclass
of molecules

partOf anatomy anatomy yes example: finger is a part

of hand
cites publication publication yes

follows interaction interaction yes interaction ¢l occurs after

interaction 72
is-target-of protein drug no example: drug d1 works by

affecting protein pl

is-inside anatomy anatomy yes example: brain is inside the

skull

A. Gupta

NODES - total number of nodes, with a minimum of 100,000, and a maximum
of 100,000,000.

NODE-TYPES - total number of node types, a value between 3 and 11, where
11 will consider all entity types shown in Table 2.

EDGE-LABELS - total number of distinct edge labels, a value between 30 and
3000.

Note that we do not use the edge-factor parameter used by Graph 500, primarily
because the above parameters are sufficient to create a heterogeneous data graph

usin

g the method described in the next section. If all values are chosen at the

minimal level, the total data size will be approximately 10'° bytes, the same as
the toy size of the Graph 500 benchmark, and choosing the maximum value will

COrT

espond to 10'* bytes, the large size of the Graph 500 benchmark. However,

a more sophisticated user will use additional parameters to control the nature
of the graphs produced. These parameters are:

(i)

(iii)

(iv)

TYPE-RATIOS - a set of (property, proportion) pairs where properties are
hierarchical, power-law [8], community [9], motif composition (see
next section), and the proportions are non-zero numbers that denote the
fraction of the component graphs that should have these properties. The
proportion values must add up to 1. Note that in an extreme (and undesir-
able) case where TYPERATIOS= (hierarchical, 1.0), the system gener-
ates a number of different classifications on the same set of terminal nodes.
In the default case, this proportions are determined by the system, and fa-
vors the power-law and community-structured graphs. As a further option
one may choose the desired power values of the power-law graphs, however,
the system will adjust these values (and drop them if the number of com-
ponent graphs does not match) to fit all constraints on the specification.
NODE-DISTRIBUTION - a set of qualitative statements that characterize the
relative sizes of the component graphs. It is specified as a set of (size-
property, proportion) pairs where the size-properties are small, medium,
large, very large, huge and the proportions, as before, denote the frac-
tion of the component graphs that should have these properties. In prac-
tice, this specification will be taken as a guideline for node allocation to the
component graphs. In the default case, the minimal setting will produce a
limited non-uniformity in the node sizes of the distribution. With increasing
node count, the full graph will be more diverse in node distribution.
EDGE-DENSITY - as with NODE-DISTRIBUTION, this property sets the guide-
line for the expected relative densities of the edges. The edge density is
measured as D = 2|E|/|V|(|V| — 1), where |V|, |E| are the node and edge
counts respectively; for the specification edge density is grouped into the
classes very sparse, sparse, medium, dense, very dense.

OVERLAP - this parameter specifies the degree of node overlap that the
different component graphs of the total graph. The parameter is speci-
fied as (degree of overlap, propotion) pairs, where the degree of overlap
is specified as none, light, medium, heavy, full. However, there are

Generating Heterogeneous Graphs 121

some restrictions to the manner in which the specification is applied. A hi-
erachical graph can never be full or none, thus making a declaration like
OVERLAP= (full, 1.0) will be considered an error, unless the proportion
of hierarchical components is set to 0.

(v) LABEL-TO-EDGE - the label-to-edge ratio R = |L|/|E| of a graph, where
L is the number of distinct labels and |E| measures the degree of edge
coloring in a labeled multigraph. For hierarchical graphs |L| = 1 by defini-
tion, making 1/|E| the lower bound for R. As in the case of the previous
measures, the user provides a qualitative specification of this ratio using
the categories low, medium low, medium, medium high, high, and pro-
vides the proportion of graph components for each category. Thanks to the
size dependent nature of this ratio, the low category is interpreted to be a
small multiple of 1/|E|.

(vi) CONSTRAINTS - a set of first order predicates that must hold for a user-
specified graph. For the purposes of this benchmark, the constraints may
only be based on edge patterns, node and edge properties, or cardinality

of nodes and edges. We present a few illustrative examples:
— if ((nodel subClassOf node2), (node2 subClassOf node3))
disallow ((nodel subClassOf node3))
— if (nodel is-target-of node2)
disallow ((nodel is-target-of node2), (nodel is-target-of node3), (nodel not node3))
— if O
disallow((indegree(node1)>10), (nodel :R node2), (indegree(node2)>10))
— if (nodel instanceOf genes), (node2 instanceOf proteins), (nodel.symbol
= node.symbol)) mustOccur ((node2 derived-from nodel))
— if ((node2 subClassOf nodel), (count(node2) > 20))
mustOccur ((node2 IN componentGraph:G), (nodeCount(G) > 200))

Here all constraint expressions are inspired by the SPARQL syntax, and
use edge triples, and nodel, node2 are treated as node variables. The
first constraint prohibits the matrialization of the transitive closure of the
HFR subClass0f. The second constraint uses a simple form of negation
to disallow the incidence of two distinct edges of a specified label to the
same node. The third constraint has an empty if clause, and disallows
two connected nodes to each have a high indegree. Note the use of the
builtin function indegree, as well as the use of the unbound edge label
:R in the constraint. The fourth constraint shows the use of mustOccur
that asserts a consequent edge pattern given an antecedent edge pattern.
Here, we also show the use of the node.property construct, which are
used for the static attributes of the entity types from Table 1. Finally,
shows the use of two aggregate functions count (node) (resp. count (edge),
and nodeCount (graph) (resp. edgeCount (graph) in a constraint. Further,
node (resp. edge) IN graph is a membership function that relates a node to
the component graph it belongs to. Since the constraints are not specific
to any component graph, the benchmark applies them to the entire graph.

We believe that making these parameters optional does not place significant
burden on the users who would like to run their algorithmic benchmark on the
default graph, and yet having them available provides a rich set of parameters for
more exploratory users who currently have no flexible mechanism of generating
complex heterogeneous test graphs and run queries against them.

122 A. Gupta

5 Generating GDB-H Graphs

The central task is GDB-H benchmark generation is to create random labeled
graphs that are hierarchical, power-law, community-structured or purely ran-
dom, over a set of overlapping nodes whose entity types come from Table 1, and
construction criteria follow the user directives specified in the last section. We
achieve this by combining a number of existing graph generation models for these
4 graph categories, duly customized to suit our benchmarking requirements. We
first describe our base-level models for these categories.

Hierarchical. Our base model for hierarchical graphs derives from [10]. This
model holds that a DAG is acyclic because there is an underlying ordering
amongst the nodes (e.g., due to time in citation graph). We use the case from
[10] where the edge probabilities are independent of each other. For this model,
one generates a Poisson distributed random number m with mean equal to the
desired expected number of edges (which we compute by , then distribute those
edges at random over the graph in proportion to F;;, which is the probability
that a certain edge emanating from node j will connect to a node i, (j > 4). For
GDB-H, we first need to estimate m. To do this we assume that the average
in-degree of a node is 5, and we generate the indegree k" for node i based on
a Gausssian distribution with ¢ = 2, rounded off to the closest integer. Then
m =Y, ki". Now we need to add more semantics to this model. For example,
if the hierarchy is to represent a classfication (i.e., a subclass of relationship),
there is no total order on the node set; hence we impose an arbitrary order
amongst the nodes. If the hierarchy is to represent a partonomy, then we restrict
the model such that an edge does not go from some node j to a node i — k
bypassing node i. On the other hand, if it is a citation graph between pairs
of publication entities, the nodes are ordered by the actual date stamps of the
randomly generated instances of publication. The model can generate a small
number of duplicate edges between the same two nodes — we simply eliminate
these edges.

Power-Law. Power-law, i.e., the assertion that the number of nodes of a graph,
y, of a given degree x is proportional to 2 for some constant 8 > 0, is a very pop-
ular model for natural graphs. It has been empirically shown that many biolog-
ical interaction graphs approximately show a power-law distribution. Although
the theory has been significantly criticised in recent years [11], the power-law
nonetheless remains a reasonable rough model of biological interactions. We pro-
duce power-law graphs by following the generative model in [8]. By this model,
the maximum degree of the node is e®/# where « is the logarithm of the size
of the graph. We keep 2 < 8 < 3.47875. For this range the number of nodes
n =~ ((B)e® where ((z) is the Riemann zeta function. Since n is given for us,
we can approximately compute the value of o, and consequently the number
of edges m = 0.5((beta — 1)e®. Keeping 8 between 2 and 3.47875 ensures that
there is a unique giant component of the graph, but also there is very likely a
second large component, and the whole graph is most likely connected. Other
ranges of 3, particularly 1 < 8 < 2, has been found useful in some realistic
models of gene interaction systems [12], but we do not use this range because

Generating Heterogeneous Graphs 123

it might produce multiple unconnected components of the graph, which is not
our goal. To customize this model for our requirements, we use the user-defined
parameters NODE-DISTRIBUTION and EDGE-DENSITY to determine the value of
n and S respectively (in practice, we use stored values of these parameters from
pre-run simulations).
Community Model. It has been shown that unlike the pure power-law graph,
many real graphs show the formation of community structures, in which if nodes
A and B are related and C is related to one of them, it is very likely that C' is
also related to the other, thus forming an ABC community. [9,13] formalize this
model and propose a generative model for graphs with community structures.
They measure the global as clustering coefficient ¢ as the ratio: ¢ = no. of closed
wedges/no. of wedges and the clustering coefficient per degree as the fraction:
no. of closed wedges centered at a node of degree d
cd= no. of wedges centered at a node of degree d
If ng is the number of nodes of degree d, the total number of nodes n =), nq
and the number of edges m = 0.5, d.ng. In our case, we are given n, so we
need to create the degree distribution ny4. Fortunately, it is shown [9] that n, has
a log normal distribution, i.e., ng = k.exp(f(loi d)'B), where it has been experi-
mentally determined that 1.85 < a < 2.2 and 1.75 < 8 < 2.1. The factor k is set
based on NODE-DISTRIBUTION. It has also been found that the mean value of ¢q4
is €4 = Cmaz-exp(—(d—1)P) where ¢pqq, the maximum clustering coefficient and
p are set based on EDGE-DENSITY using precmputed simulation results. Then
the distribution ¢4 is given by the normal distribution N (¢4, min(0.01,0.5¢,).
The construction of the graph follows the BTER generation technique described
in [9]. As before, we eliminate any duplicate edges generated in the process.

Motif Composition. In contrast to the previous approaches, which can be
viewed as construction of graphs with global structural constraints, motif com-
position is a “bottom-up” construction process. It uses a library of motifs, i.e.,
commnly occurring local graph patterns and composes them to produce a larger
graph. The motivation for providing this construction option is that for several
kinds of networks, it is very difficult to have overarching models that reflect
the local patterns faithfully. In our application domain, one such class is bio-
logical pathways which could be regulatory, signal transduction or metabolic by
functionality. Although we do not have any empirical proof at this point, we
conjecture that the same requirement of matching local patterns holds for other
domains as well. We approach the problem by constructing a predefined motif
library. Figure 1 illustrates some of the patterns observed in metabolic path-
ways [14]. Each motif has open-ended placeholders where other motifs can be
fit. The motif composition graph is generated by computing the total number
of motifs that should be used based on the expected size of the graph and then
selecting a random selection of motifs such that the total number of open ends is
minimal. This means that the i-th motif’s placement in the graph is conditional
upon the placement of the open slots left behind by the previous (i — 1) motifs.
For this case, the EDGE-DENSITY parameter is ignored. Also, notice the cyclic

| o e i) o) e e}

e e e) o . o i

Fig. 1. A set of motifs for metabolic network, adapted from [14]

relationship in the patterns. Our generation process ensures that while cycles
may exist in the data, no cycles exist for the same edge label in a motif-composed

graph.

Graph Generation. Based on the above considerations for generating the com-
ponent graphs of various types, the overall graph construction process is as fol-

lows.

1. Based on GRAPHNUM, NODES and NODE-DISTRIBUTION we allocate the num-
ber of graphs per per graph type and the number of nodes per graph such
that in the default case, node counts are ordered as hierarchies < motif com-
position graphs < community graphs ~ power-law graphs. This can however
be altered based on the TYPE-RATIO specification.

2. For each node set allocated to power-law and community-structured graphs

(a)

We allocate a subset of the entity types based on the NODE-TYPES spec-
ification. In general, we group together entity types that form connected
subgraphs of the schema graph shown in Table 1 because they are seman-
tically related. Some of these groups are: (genes, proteins, interactions,
pathways, experimentTypes), (drugs, pathways, proteins, interactions,
experimentTypes), (genes, interactions, experimentTypes, publications),
(diseases, anatomy, phenotype, drugs) and so forth.

For these groups, we represent the entities as star-shaped structures (the
center is the id, and the attributes are the edges) connected by the inter-
object relationships in the schema, and create random instances of the
entities based on the number of nodes determined in the previous step.
Once instances of the primary entities are created, we create power-law
and community-structured edges following the criteria discussed above.
We randomly allocate labels from the EDGE-LABELS directive provided
no constraints are violated.

Generating Heterogeneous Graphs 125

3. For nodes allocated to motif composition graphs

(a) We allocate entity types based on NODE-TYPES as before, but we only
consider genes and proteins because they participate in pathways.

(b) We randomly choose motifs from the motif library as described before
and assign labels to these edges so that the labels respect the type re-
quired by nodes on both sides of the relationships. Further, some motifs
come with their own constraints which are recorded in the motif libraries
— for example, motif 7 in Figure 1 needs C1,C2 to be proteins whose
functions are as enzymes.

4. Now we are left with creating hierarchical graphs on top of the same entity
nodes we have used.

(a) We use a set of rules to determine the type of hierarchy we need for these
entity nodes. For example, drugs are connected to drugClass nodes using
the subclassO0f relationship, while anatomy nodes are related to anato-
myClass nodes through the subClass0f relationship but with several
other anatomy nodes using the part0f relationship.

(b) If publications are included in the schema, we create a cites hierarchy
among them.

6 Sample Test Queries for GDB-H Graphs

In this section we present a sampling of potential test queries against any graph
generated from the specification above. The purpose of these queries is to access
and retrieve portions of the graph and compute functions on it. We note that
there is an important difference between our setting and the TPC-style setting,
and most graph benchmarks we have discussed in Section 2. In a TPC-style
benchmark, the schema of the benchmark database is completely known and
therefore benchmark SQL queries can be posed without difficulty. In a typical
graph setting, the benchmarks are essentially algorithmic and hence the structure
of the graph is the only object of concern. Through not discussed in Section 2,
the RDF/OWL benchmarks like LUBM follow the TPC metaphor — they have
a simple schema graph with some inference rules, and their goal is to show the
scalability in the size of the data and the ontological inference. In our situation,
we have a large heterogeneous graph that use a set of declared entity types,
but have a large number of possible connections between these entities — the
connnections are based on user-defined guidelines but the connection structure
is primarily generated algorithmically. This is notionally similar to the original
idea of semistructured data [15] and we will use ideas from semi-structured query
languages to develop our test queries. In these queries we use a select .. from
. where structure to return nodes, paths and subgraphs. As part of the select
and where clauses we use standard graph operations that any graph database
should support.
Q1. List all genes that are related to some publications, and return the corre-
sponding publications. A gene can be related to a publication along arbitrary-
length paths, but the query does not need to return the paths. We write this
query as:

126 A. Gupta

select X, Y where genes(X), publications(Y), reachable(Y,X)

where reachable(Y,X) is a standard graph operation, which reads as Y is
reachable from X. We adopt the convention that X will be intantiated by the
instances of class genes. By our convention not having a from clause implies that
the query is over the entire graph. However, due to the construction process of
the heterogeneous graphs, query will never use hierarchical graph components.
Q2. Find paths of length upto k that start from proteins, go through phenotypes
but not through pathways and end in publications. This query is parameterized
on k. This query is subject to the presence of cycles in motif composition com-
ponents, and dense parts of the graph. The first problem should be resolved
by cycle detection and handling in the path evaluation process, while setting
realistic limits on k eliminates the second. We express this query as:

select path(p) where proteins(X), pathways(W), phenotypes(H), publications(Y),

p.first = X, p.last = Y, contains(p,H), not(contains(p,W))

where p will be a chain of edges. A variant of this query will ask for select
disjoint path(p).
Q3. Find disease pathways having at least 5 connected interaction edges belonging
to the same interaction class. This query shows the equivalent of a “HAVING”’
clause in a relational query.

select W where pathways(W), Interactions(I), InteractionClass(C),

subClass0f+(I,C), connected(I), count(I)>=5

where subClass0f+ refers to a chain of subClass0f edges from C to I;
connected(I) returns true if the elements of the set I are connected in the
graph.

Q4. Find the k-neighborhood of the protein with the highest centrality value over
all non-hierachical graphs. This graph query that combines an aggregate function
(computing a centrality measure) with a neighborhood query with a user-selected
parameter k. We express the query as:

select k-neighborhood(X) from components G where protein(X),

not (type(G), hierarchical), betweenness-centrality(C,X,G); max(C)

where max (C), where C is the betweenness-centrality value is logically computed
at the end. In this query we use the from clause to select a subset of the com-
ponent graphs for the query, which in this case, is the full graph except the
hiearchical components.
Q5. Find the longest path containing a single edge label. This aggregate query
has a condition on the edge label, and can be expressed as:

select path(p) where edge(E), label(L, E), member(E, p),

not(edge(E’), label(L’,E’), member(E’,p), L != L’); maxlength(p)

where edge, label and member are built-in graph functions, and the function
maxlength is computed after accumulating the candidate paths. A variant of
this query can specify a set of labels and ask for the longest path using only
those labels.

Generating Heterogeneous Graphs 127

Q6. Find the occurrences of a graph pattern. The pattern can be purely struc-
tural or it can place semantic constraints. The following subgraph extraction
query shows a five-edge pattern:

select subgraph(G) where edge(E1l), edge(E2), edge(E3), edge(E4), edge(E5),

member ([E1,E2,E3,E4,E5],G), El=(nl1 :L1 n2), E2=(n2 :L2 n3), E3=(nl :L3 n4),
E4=(n4 :L3 nb), E5=(n2 :L4 nb), L4=’is-target-of’

where :L1 means a relationship with label L1. Named edges E1 ... E5 are as-
sumed distinct. A shared node variable (n2) represents a shared node. The last
predicate represents a semantic constraint on the otherwise structural pattern.

These queries do not represent the complete horizon of benchmark queries that
can be asked for heterogeneous graphs, but they do represent important classes of
questions that go beyond the current one-track approach for graph benchmarks.
Using GDB-H Queries for Benchmarking. The basic performance met-
ric for the above queries is minimum mean response time and 90th percentile
response time as used in the TPC-C benchmark. However, since the data dis-
tribution for GDB-H is more complex, we need to be cautious that two runs of
the data generator produces comparable data. We envision that the typical use
case will be for the user to specify only the mandatory parameters at first; when
the system generates data, it will also output the parameters of the remaining
distributions used for generating the data. As the user finds the data acceptable,
they now use all parameters of the prior run as the guideline to specify the next
round of data generation. This will keep the generated data sets comparable.

7 Conclusion and Outlook

In this paper, our intent was to develop three important viewpoints in the con-
text of big data benchmarking. First, graph benchmarks that we see today are
mostly geared toward single operations, but they lack “variety”, an important
component of big data. We proposed a mathematically well-founded heteroge-
nous graph data model and presented its generation methodology with the idea
of increasing the variety part of the graph. Second, it is important to go beyond
single operations for graph benchmarking and develop query operations that
showcase how different graph operators can be effectively combined to formulate
and evaluate “larger” queries. We expect our test queries will serve as an initial
attempt to create such ad hoc complex queries that make use of different graph
functions. Third, our benchmark should really be taken as a “generic template”
and while our example application is around biological data, our template can
be used for any domain. If the entity types were non-biological objects like per-
son, place, event, geographic object and music, while the relationships connecting
them together are 1ike: person X object, visited: person X location,
attended: person X event, located-in: event X places and so forth,
the system will resemble a social media framework, for example the recently
announced Facebook Graph.

Since this is our first attempt to develop a generation algorithm, it can be
improved significantly. Currently, edge label assignment is separate from edge

128 A. Gupta

assignment — we need to bring them under a single generative model. We must
explore some properties of heterogenous graphs to understand its behavior more
completely. We must make the generation process faster, possibly using a dis-
tributed framework. Finally, the query language must be matured significantly.

References

1. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: A recursive model for graph
mining. In: Proc. 4th SIAM Int. Conf. on Data Mining (2004)

2. Seshadhri, C., Pinar, A., Kolda, T.G.: An in-depth study of stochastic kronecker
graphs. In: Proc. of the 11th IEEE Int. Conf. on Data Mining (ICDM), pp. 587-596
(2011)

3. Newman, M.E.; Girvan, M.: Mixing patterns and community structure in networks.
Statistical Mechanics of Complex Networks, 66-87 (2003)

4. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78, 04110 (2008)

5. Pham, M.-D., Boncz, P., Erling, O.: S3g2: A scalable structure-correlated social
graph generator. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755,
pp. 156-172. Springer, Heidelberg (2013)

6. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. J. Web Sem. 3(2-3), 158-182 (2005)

7. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. on Semantic Web
and Information Systems (IJSWIS) 5(2), 1-24 (2009)

8. Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs. Ex-
perimental Mathematics 10(1), 53-66 (2001)

9. Seshadhri, C., Kolda, T.G., Pinar, A.: Community structure and scale-free collec-
tions of Erdos-Rényi graphs. CoRR abs/1112.3644 (2011)

10. Karrer, B., Newman, M.: Random graph models for directed acyclic networks.
Physical Review E 80(4), 046110 (2009)

11. Lima-Mendez, G., van Helden, J.: The powerful law of the power law and other
myths in network biology. Mol. BioSyst. 5, 1482-1493 (2009)

12. Chung, F.R.K., Lu, L., Dewey, T.G., Galas, D.J.: Duplication models for biological
networks. Journal of Computational Biology 10(5), 677—687 (2003)

13. Kolda, T.G., Pinar, A., Plantenga, T., Seshadhri, C.: A scalable generative graph
model with community structure (February 2013),
http://arxiv.org/abs/1302.6636

14. Krumsiek, J., Suhre, K., Illig, T., Adamski, J., Theis, F.J.: Gaussian graphical mod-
eling reconstructs pathway reactions from high-throughput metabolomics data.
BMC Systems Biology 5(1), 21 (2011)

15. Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J., Widom, J.: Querying semistruc-
tured heterogeneous information. In: Ling, T.W., Mendelzon, A.O., Vieille, L.
(eds.) DOOD 1995. LNCS, vol. 1013, pp. 319-344. Springer, Heidelberg (1995)

http://arxiv.org/abs/1302.6636

A Micro-benchmark Suite for Evaluating
HDFS Operations on Modern Clusters*

Nusrat Sharmin Islam, Xiaoyi Lu, Md. Wasi-ur-Rahman,
Jithin Jose, and Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering, The Ohio State University
{islamn, luxi, rahmanmd, jose, panda}@cse.ohio-state.edu

Abstract. Hadoop Distributed File System (HDFS) is the primary storage sys-
tem of Hadoop. Many applications use HDFS as the underlying file system due
to its portability and fault-tolerance. The most popular benchmark to measure the
I/0O performance of HDFS is TestDFSIO which involves the MapReduce frame-
work. However, there is a lack of standardized benchmark suite that can help users
evaluate the performance of standalone HDFS and make comparisons for differ-
ent networks and cluster configurations. In this paper, we design and develop a
micro-benchmark suite that can be used to evaluate performance of HDFS opera-
tions. This paper also illustrates how this benchmark suite can be used to evaluate
the performance results of HDFS installations over different networks/protocols
and parameter configurations on modern clusters.

Keywords: Big Data, Hadoop, HDFS, Micro-benchmarks, Clusters and Networks.

1 Introduction

In the past several years there has been an immense surge of interest for Big data. Big
Data provides ground breaking opportunities for enterprise information management
and decision making. As a matter of fact, Big Data fundamentally changes the way
decisions are being made in a wide range of domains including health care, biomed-
ical research, internet services, business informatics, scientific computing and others.
MapReduce [13] has been proved as a viable model for processing petabytes of data.
Hadoop [7] is an open-source implementation of the MapReduce model, and it has
gained lots of attentions from academic and industrial communities. The Hadoop soft-
ware stack contains several middleware components such as Hadoop Distributed File
System (HDFS) [30] (filesystem), MapReduce (computation), and HBase [8] (database).
Hadoop is derived from Google’s MapReduce [13] and Google File System (GFS) [15]
which is also the underlying file system of Google’s Big Table [11]. As data sizes
are steadily increasing, there is an increasing demand for Hadoop to deliver high-
performance and scalability continuously. Recent research works [32,27,16,33,20] an-
alyze on the huge performance improvements possible for different cloud computing

* This research is supported in part by National Science Foundation grants #0CI-0926691,
#OCI-1148371 and #CCF-1213084.

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 129-147, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

130 N.S. Islam et al.

middlewares using InfiniBand [2] networks. The first ever Hadoop package designed
and developed using RDMA over InfiniBand is available for public use from [1]. It pro-
vides native InfiniBand Verbs level support for multiple Hadoop components (HDFS,
MapReduce and RPC) for Big Data processing and can offer significant performance
improvement over the socket-based implementation of Apache Hadoop over Infini-
Band.

Hadoop Distributed File System (HDFES) is the primary storage for Hadoop clus-
ters. Both Hadoop MapReduce and HBase rely on HDFS as the underlying basis for
providing data distribution and fault tolerance. As the underlying file system, the per-
formance of HDFS operations dramatically influences the performance of the upper
layer middlewares, components, and applications. The performance of HDFS opera-
tions is determined by many factors related to storage and network configurations in
modern clusters, controllable parameters in software (e.g. block-size), data access pat-
terns of applications, and so on. So we often need to tune these factors for the optimal
performance based on cluster and workload characteristics. One of the most common
tuning methods is to adopt a benchmark tool suite to evaluate the performance met-
rics in different kinds of system configurations. Currently, the most popular benchmark
to measure the I/O performance of HDFS is TestDFSIO [34], which needs to launch
the MapReduce framework. According to [21], due to the scheduling delays of the
MapReduce framework, HDFS cannot be utilized to its full potential. However, there is
a lack of standardized benchmark suite that can help users evaluate the performance of
standalone HDFS and make comparisons for different storage, network, and parameter
configurations on modern clusters. This kind of benchmarks can also prove to be more
relevant for applications using native HDFS (such as HBase) instead of going through
the MapReduce layer.

In this paper, we design, develop, and implement a comprehensive micro-benchmark
suite to evaluate the performance of standalone HDFS, particularly, the Read and Write
operations. We provide options for varying different benchmark-level parameters such
as file size, numbers of concurrent readers for read-only workload, writers for write-
only workload and readers and writers for mixed workload. Our benchmark suite can
also dynamically set the HDFS configuration parameters like block-size, replication
factor, etc. Our benchmarks can also display the HDFS configuration parameters for
a Hadoop cluster, as part of the benchmark output and present different statistics like
minimum, maximum and average, for the results.

This paper makes the following key contributions:

1. Design, develop, and implement a micro-benchmark suite to evaluate I/O perfor-
mance of standalone HDFS.

2. Provide a set of standard benchmarks to measure the latency and throughput of
HDFS read, write, and mix workload (read and write).

3. Tllustrate the performance results of HDFS read and write using our benchmark
suite over different networks/protocols and parameter configurations on modern
clusters.

The rest of the paper is organized as follows. Section 2 discusses the background of
this research. In Section 3, we distinguish our work from existing work in the field. We
present our design considerations for the benchmark suite in Section 4 and benchmarks

HDFS Benchmarks 131

for HDFS operations in Section 5. In Section 6, we show the performance evaluation
results. Finally, we conclude in Section 7.

2 Background

2.1 Hadoop Distributed File System (HDFS)

The Hadoop Distributed File System (HDFS) is used as the primary storage for a
Hadoop cluster. Figure 1 illustrates the basic architecture of HDFS. An HDFS cluster
consists of two types of nodes: NameNode and DataNodes. The NameNode manages
the file system namespace. It maintains the file system tree and stores all the meta data.
The DataNodes on the other hand, act as the storage system for the HDFS files. HDFS
divides large files into blocks of size 64 MB. Each block is stored as an independent file
in the local file system of the DataNodes. HDFS usually replicates each block to three
(replication factor three) DataNodes. In this way, HDFS guarantees data availability and
fault-tolerance.

HDFS Client |4—>< NameNode

DataNode DataNode DataNode DataNode

EEENE EEO ECOEN OEEm

S 0 O O

Fig. 1. Overview of HDFS

The HDFS client contacts the NameNode during any kind of file system operations.
When the client wants to write a file to HDFS, it gets the block IDs and list of DataN-
odes for each block from the NameNode. Each block is split into smaller packets and
sent to the first DataNode in the pipeline. The first DataNode then replicates each of
the packets to the subsequent DataNodes. Packet transmission in HDFS is pipelined;
a DataNode can receive from the previous DataNode while it is replicating data to the
next DataNode. If the client is running inside a DataNode, then the block is first written
to the local file system of the current node. Figure 2(b) illustrates this operation.

For HDFS read, as shown in Figure 2(a), the client first contacts the NameNode to
check its access permission and gets the block IDs and locations for each of the blocks.
For each block belonging to the file, the client connects with the nearest DataNode and
reads the block. Blocks belonging to a particular file are read sequentially by the client.

132 N.S. Islam et al.

2.2 High Performance Networks

In this section, we present an overview of the different networking technologies that
can be utilized in data center for high-performance communication. During the past
decade, the field of High-Performance Computing (HPC) has been witnessing a transi-
tion to commodity clusters with modern interconnects such as InfiniBand and 10Gigabit
Ethernet.

InfiniBand. InfiniBand [18] is an industry standard switched fabric that is designed
for interconnecting nodes in HPC clusters. It is a high-speed, general purpose I/O in-
terconnect that is widely used by scientific computing centers world-wide. The recently
released TOP500 rankings in June 2013 indicate that InfiniBand technology now pro-
vides interconnects on 226 systems (45.2%) and it is the most-used internal system
interconnect technology. One of the main features of InfiniBand is Remote Direct Mem-
ory Access (RDMA). This feature allows software to remotely read or update memory
contents of another remote process without any software involvement at the remote
side. InfiniBand has started making inroads into the commercial domain with the recent
convergence around RDMA over Converged Enhanced Ethernet (RoCE) [31].

InfiniBand software stacks, such as OpenFabrics [23], provide driver for implement-
ing the IP layer. This makes it possible to use the InfiniBand device as just another
network interface available from the system with an IP address. Such IB devices are
presented as 1b0, ibl and so on just like other Ethernet IP interfaces. Although the
verbs layer in InfiniBand provides OS-bypass, the IP layer does not provide so. This
layer is often called “IP-over-IB” or IPoIB for short. We use this terminology in the
paper. Out of the two modes (Unreliable Datagram or UD and Reliable Connection or
RC) available for IPoIB, RC is used more as it provides better performance by lever-
aging reliability from the hardware. In this paper also, we use connected mode IPoIB,
which has better point-to-point performance.

° i

o

&
E 4_—%
o
§/ NameNode
DataNode DataNode
5 Q)
o V\ﬁ
o
§/ m
DataNode DFSClient DataNode
IS IS
< <
o o
§/ S
DataNode DataNode

NameNode

(&

DFSClient

(a) HDFS read operation (b) HDFS write operation
Fig. 2. HDFS read and write operation

HDFS Benchmarks 133

10 Gigabit Ethernet. In data center environments for achieving better performance
with respect to higher bandwidth, 10 Gigabit Ethernet is typically used. It is also real-
ized that traditional sockets interface may not be able to support high communication
rates [9]. Towards that effort, iWARP (Internet Wide Area RDMA Protocol) standard
was introduced for performing RDMA over TCP/IP [28]. The iWARP semantics is very
similar to the verbs layer used by InfiniBand, with the exception of requiring a connec-
tion manager. In fact, the OpenFabrics [23] network stack provides a unified interface
for both iWARP and InfiniBand.

In this study, we have used 1 GigE, 10 GigE and IPoIB interconnects in the experi-
ments.

2.3 Solid State Drive (SSD) Overview

Solid State Drives have amassed a lot of attention over the recent past owing to sig-
nificant data-throughput and efficiency gains over traditional spinning-disks. Although
it is a mere physical array of fast flash-memory packages, the core-intelligence of an
SSD can be attributed to its Flash Translation Layer (FTL) which plays a vital role in
the adoption of this technology. Some of the major functionalities of an SSD, such as
Wear Leveling, Garbage Collection and Logical Block Mapping are packed into the
FTL. High bandwidth as well as low latency makes SSD an ideal candidate to be used
in the DataNodes of the Hadoop cluster in order to lessen the I/O bottlenecks for HDFS
applications.

3 Related Work

Benchmarking is important for evaluating Big Data systems, and extensive work has
been done in this area. Hadoop [7] contains a set of built-in micro-benchmarks such
as TeraSort [24], Sort [4], Word Count [6], RandomWTriter [3], TestDFSIO [34], etc.
TestDFSIO, the most popular HDFS benchmark, is implemented as a Hadoop MapRe-
duce job. Each map task in TestDFSIO opens an HDFS file to write or read sequentially
and measures the data size and execution time. A single reduce task aggregates the per-
formance results of all the map tasks by computing the average I/O rate and throughput.
J. Shafer et al. [21] analyzed HDFS performance using the TestDFSIO program and re-
vealed that the bottleneck could be the MapReduce tasks scheduling in Hadoop, the
HDFS Java implementation, and the native disk I/O scheduling.

MRBench [22] executes highly complex queries on large amount of relational
data and provides micro-benchmarks in the form of MapReduce jobs of TPC-H [5].
MRBS [29] is a benchmark suite to evaluate the dependability of MapReduce systems,
and it includes five benchmarks for several application domains and a wide range of
execution scenarios. The authors of HiBench [17] have extended the DFSIO program
to compute the aggregated bandwidth by disabling the speculative execution of the
MapReduce framework. HiBench also evaluates Hadoop in terms of system resource
utilization (e.g. CPU and memory). MalStone [10] is a benchmark suite designed to
measure the performance of cloud computing middleware when building data mining
models. Yahoo! Cloud Serving Benchmark (YCSB) [12] is a set of benchmarks for per-
formance evaluations of key/value-pair and cloud data serving systems. YCSB++ [25]

134 N.S. Islam et al.

further extends YCSB to improve performance understanding and debugging. The au-
thors in [14] have compared SQL Server and MongoDB on interactive data-serving
environments using the YCSB benchmark. The authors in [26] have performed com-
prehensive evaluations of six open-source data stores as part of application perfor-
mance monitoring for Big Data. Traditional benchmark suite for POSIX file system,
I0Zone [19], generates and tests a variety of file system operations.

By analysis on these related works, we find that there is a lack of a suite of micro-
benchmarks to evaluate the native HDFS operations and current research works were
not able to analyze the variable HDFS performance on different hardware. Our pro-
posed benchmark suite addresses such shortcomings in the Big Data community for
evaluating HDFS performance. Our benchmark suite does not need to launch any other
job (such as MapReduce) and can be used in a simple manner to evaluate the I/O perfor-
mance of standalone HDFS. As a result, our benchmark suite can be used to carry out
performance comparison of HDFS for different storage, network, protocol, and param-
eter configurations on modern clusters. This suite of micro-benchmarks is particularly
designed for HDFS and can also be applied for other distributed file systems that have
similar APIs as HDFS.

4 Design Considerations for the Benchmark Suite

Among the operations of HDFS, the most important ones are sequential write, sequen-
tial read and random read. HDFS performance is usually measured by the latency and
throughput of these operations. The performance of HDFS is influenced by a range of
factors such as underlying network as well as storage, HDFS configuration parameters
and data access patterns. We consider the aspects described below designing the bench-
mark suite.

Network: The performance of HDFS operations is influenced by the underlying in-
terconnect or protocol to a great extent [20,32]. During HDFS Write, data packets are
replicated from one DataNode to another along the pipeline. Therefore, high perfor-
mance networks can speed up the replication process for data-intensive applications.
Faster interconnects can enhance the performance of HDFS Read also. If the HDFS
client co-exists with a block replica in the same DataNode, the client simply reads the
block locally. But, if the DFSClient runs in a separate node outside the Hadoop cluster,
read performance can be improved by the usage of faster networks and protocols. Be-
sides, the optimal packet-size for HDFS varies with the interconnect or protocol [20].
HDFS performance also depends on HDFS block-size. The DFSClient communicates
with the NameNode before it reads or writes an HDFS block. For any particular file
size, larger block-size results in reduced number of communications with the NameN-
ode. Therefore, HDFS block-size is an important parameter in determining the optimal
performance for HDFS applications. Our benchmark suite facilitates easy configura-
tion of these parameters for different network types, to help understand the interaction
between network characteristics and HDFS performance.

Storage: The number and type (HDD, SSD or combination) of the underlying stor-
age device can have significant impact on HDFS performance. The optimal values of

HDFS Benchmarks 135

the configuration parameters may also vary with the storage type. Therefore, our bench-
mark suite, equipped with options to change HDFS configuration parameters from user-
level input, makes the performance characterization over different storage platforms
easier and user friendly.

HDFS Configuration Parameters: The performance of HDFS largely depends on var-
ious configuration parameters like replication factor, HDFS file I/O buffer size, etc. In
our benchmarks, we provide options to set these HDFS configuration parameters dy-
namically with the values provided by the users. If no values are provided from the user
level, the benchmark will run with the parameters specified in the HDFS configuration
file.

Data Access Patterns: The performance of HDFS operations is also influenced by
different data access patterns of workloads. In our benchmarks, we focus on three kinds
of data access patterns: Sequential, Random, and Mixed (user specified ratio). Users
can select the workload type by a simple parameter.

5 Benchmarks for HDFS Operations

In this study, we develop a micro-benchmark suite for HDFS. Each of the benchmarks
is written in Java. We design and implement the following set of benchmarks:

Sequential Write Latency (HDFS-SWL): This benchmark takes the file name and size
as inputs and outputs the total time to write this file to HDFS. HDFS write is performed
sequentially by dividing the file into a set of blocks. For this, the benchmark invokes the
HDFS create () APIto get an instance of FSDataOutputStream. Data bytes are
then written to HDFS by using the write () method of FSDataOutputStream.
The benchmark starts a timer just after creating the file and stops this after the file is
closed. The time measured in this way is reported as the latency of sequential write
for the file specified by the user. The pseudocode of the benchmark is presented in
Algorithm 1.

Sequential or Random Read Latency (HDFS-SRL or HDFS-RRL): This bench-
mark takes the file name, size, access pattern (random or sequential) and seek inter-
val (for random only) as inputs and outputs the time to read the file from HDFS.
For this, the benchmark invokes the HDFS open() API to get an instance of
FSDataInputStream. Data bytes are then read from HDFS by using the sequen-
tial or random read () method of FSDataInputStream. The benchmark starts a
timer just after opening the file and stops this after read completion. The time measured
in this way is reported as the read latency for the data size specified by the user.
Sequential Write Throughput (HDFS-SWT): The user can input the number of con-
current writers and the size of data in (MB) per writer. The benchmark outputs the
throughput per writer by dividing the data size with the write-time required by it. The
total throughput is calculated by multiplying the average throughput per writer with the
number of writers.

In order to launch multiple HDFS clients (writers) at the same time, we have de-
signed a job-launcher. The job-launcher is a Java program that starts the writer pro-
cesses in different nodes. It also aggregates the throughput values from different writers
and outputs the total write throughput.

136 N.S. Islam et al.

Input: File Name f Name, File Size fSize, Integer iterationCount, A
sequence of configuration parameters, C' = ¢y, ca, ..., Cp

Result: Latency for Sequential Write

create a Hadoop Configuration object

if C.length! = 0 then
set conf parameters
else
load default parameters
end
while iterationCount > 0 do
create FSDataOutputStream object fsOut
start timer
call fsOut.write(f Name, fSize)
fsOut.close()
end timer
delete fsOut from HDFS
end

Print Average Latency
Algorithm 1. PSEUDOCODE OF SEQUENTIAL WRITE LATENCY (HDFS-SWL)

BENCHMARK

Sequential Read Throughput (HDFS-SRT): This benchmark works in a similar man-
ner as the one for write workload. Here the inputs are number of concurrent readers and
read size per reader. It calculates the total throughput for sequential read. In this case
also, the Java-based job-launcher aggregates the read throughput from different readers
and outputs the total throughput.

Sequential Read-Write Throughput (HDFS-SRWT): This benchmark calculates the
total throughput when HDFS read and write are occurring simultaneously. The bench-
mark takes the numbers of readers, writers and size per reader and writer as inputs. The
read/write ratio can be varied by varying the number of concurrent readers and writers
and also the data size for each.

In all these benchmarks, the users can also provide different HDFS configuration pa-
rameters as input as discussed in Section 4. Table 1 lists the parameters of our bench-
mark suite. Each benchmark can report the configuration parameters in use for it as part

Table 1. Benchmark parameter list

Benchmark File F%le HDFS Param- Readers Writers Random/Seq Seek Interval
Name Size eters Read

HDFS-SWL v v v

HDFS-

SRI/RRL v v v v v (RRL)

HDFS-SWT v v v

HDFS-SRT v v v

HDFS-SRWT v v v v

HDFS Benchmarks 137

of the output. The benchmark suite also calculates statistics like Min, Max, and Avg.
latency and throughput.

6 Performance Evaluation

In this section, we present the detailed performance evaluations of HDFS using our
micro-benchmark suite.

6.1 Experimental Setup

We have used two different cluster configurations.

(1) Intel Westmere Cluster (Cluster A): This cluster consists of 160 compute nodes
with Intel Westmere series of processors using Xeon Dual quad-core processor nodes
operating at 2.67 GHz with 12GB RAM and 160GB HDD. Each node is equipped with
MT26428 QDR ConnectX HCAs (32 Gbps data rate) with PCI-Ex Gen2 interfaces. The
nodes are interconnected using a Mellanox QDR switch. Each node runs Red Hat Enter-
prise Linux Server release 6.1 (Santiago) at kernel version 2.6.32-131 with OpenFabrics
version 1.5.3.

(2) Intel Westmere Cluster with Larger Memory (Cluster B): Nodes in this clus-
ter have the same configurations as Cluster A but with 24GB of RAM each. Addition-
ally, twelve of the storage nodes are equipped with three 1TB HDD each and the rest
four nodes have 300 GB OCZ VeloDrive PCIe SSD. Four of the storage nodes also
have NetEffect NEO20 10Gb Accelerated Ethernet Adapter (iWARP RNIC) that are
connected using a 24 port Fulcrum Focalpoint switch.

6.2 Evaluations over different Interconnects and Protocols:

In this section, we discuss the performance of our benchmarks over different intercon-
nects and protocols like 1 GigE, 10 GigE, and IPoIB. HDFES replication factor is three,
block-size is 64 MB, file io-buffer-size is 4 KB, and packet-size is 64 KB for GigE net-
works and 128 KB for IPoIB. These packet-sizes are found to be optimal for the corre-
sponding interconnects [20].
HDFS-SWL, HDFS-SRL, HDFS-RRL: In these experiments, the HDFS NameNode
and client run exclusively on two different nodes. Since HDFS write is more network
intensive (as it involves replication), we have performed experiments with HDFS write
in four and 32 DataNodes in Cluster A in order to observe how the write performance
vary with number of DataNodes. Each of the DataNodes has single disk per node.
Figures 3(a) and 3(b) show the latency of file write using SWL in four and 32 DataN-
odes, respectively. For the same file size, the latency decreases as we move from four
to 32 DataNodes. And the performance improvement of IPolIB is bigger than that of 1
GigE. This is because the same amount of data is distributed to more number of disks
when 32 DataNodes are used. High performance network (like InfiniBand) and pro-
tocol (like IPoIB) can achieve more speed up when the I/O bottleneck is reduced or
eliminated by using more disks.

138 N.S. Islam et al.

160 T T 140 T T

W 1GigE
140 oo R (32Gbps) 120 - -ooee e

- W 1GigE .
B 1PofB (32Gbps)
120 fovveemeeee s T

100 o eemeee e

Time (s)
Time (s)

60 [nom e
40 free
20 F

File Size (GB) File Size (GB)

(a) Sequential write latency in 4 DataNodes (b) Sequential write latency in 32 DataN-
(HDFS-SWL) odes (HDFS-SWL)

Fig. 3. HDFS write latency in Cluster A

Figures 4(a) and 4(b) illustrate the performance results with HDFS-SRL, HDFS-
RRL, respectively, for file sizes 1 GB-10 GB. We have used a seek interval of 500 for
HDFS-RRL. For the same read size, the latency of HDFS-RRL is slightly higher than
that of HDFS-SRL. The latency of random read increases with seek interval.

Figures 5(a) and 5(b) show the HDFS-SWL and HDFS-SRL latency results over

1 GigE, IPoIB (32Gbps) and 10 GigE. In this experiment, we use four DataNodes in
Cluster B. Each of the DataNodes uses single HDD per node as HDFS data directory.
The client (reader/writer) runs in a remote node. From the results, it is observed that,
10 GigE provides smaller write latency than that of 1 GigE while IPoIB (32Gbps) gives
the smallest latency in this configuration.
HDFS-SWT: Figures 6(a) and 6(b) show the performance results of SWT for four and
eight writers, respectively. The file size varies from 1 GB-10 GB. From the figures we
observe that the total throughput increases as the number of writers is increased from
four to eight. Also for IPoIB, the throughput decreases as the file size increases. This
is because, for high performance network protocol (like IPoIB), the bottleneck moves
from network to I/O as the file size increases. Larger file sizes increase the amount of
I/O which results in reduced throughput for IPoIB with increasing file sizes.

We have performed similar experiments using a 32-DataNode Hadoop cluster. In this
case, the throughput does not decrease significantly with increasing file sizes. Because
the same amount of data is now distributed to more number of nodes which in turn
reduces the I/O bottleneck by placing more data in disk cache and thus achieves higher
throughput. Figures 7(a) and 7(b) show the results.

Figure 8(a) shows the HDFS-SWT write throughput results over 1GigE,
IPoIB (32Gbps) and 10 GigE. In this experiment, the four writers run in four differ-
ent DataNodes in Cluster B. Each of the DataNodes has single HDD per node. From
the results, it is observed that, 10GigE provides better write throughput than that of
1 GigE while IPoIB (32Gbps) gives the highest throughput in this configuration.

Also for 10 GigE and IPolB, the throughput for smaller file size (i.e. 5 GB) is com-
paratively much higher than that of the others. This is because, for smaller file sizes,
most of the data is written to the disk cache; thus the amount of data actually going to
disk is very small. Therefore, the throughputs are quite high.

HDFS-SRT: Figure 8(b) shows the HDFS-SRT read throughput results over 1 GigE,
IPoIB (32Gbps) and 10 GigE. In this experiment, the four readers run in a remote node

100 T T T

| 1GigE
B IPof8 (32Gbps)

Time (s)

File Size (GB)
(a) Sequential read latency in 4 DataNodes
(HDFS-SRL)

HDFS Benchmarks 139

120 T T T

W 1GigE
B IPof8 (32Gbps)

Time (s)
3

File Size (GB)

(b) Random read latency in 4 DataNodes
(HDFS-RRL)

Fig. 4. HDFS read latency in Cluster A

300
L. ®mIGgE . g il
250] 100%&
W 1PolB (32Gbps)
g 150 [rommmmmmmeme e
fisl

100 [+ oo

50 -

10 15
File Size (GB)

(a) Sequential write latency in 4 DataNodes

(HDFS-SWL)

200

W 1GigE
W 10GigE
150 | 1PolB (32Gbps) [B

Time (s)

File Size (GB)

(b) Sequential read latency in 4 DataNodes
(HDFS-SRL)

Fig. 5. HDFS write and read latency in Cluster B

500
450 -

Throughput (MBps)

(a) Sequential write throughput with 4 writ-

400 -
350 -
300 -
250 -
200 -
150 |-
100 [+

50

File Size (GB)

ers in 4 DataNodes (HDFS-SWT)

ST M 1GigE
J—] IPoﬁB(}ZGbps) I,

700

600 -

W 1GigE
| IPoﬁB(}ZGbps) I

500 -

400 -

300 -

Throughput (MBps)

200 -

100

File Size (GB)

(b) Sequential write throughput with 8 writ-
ers in 4 DataNodes (HDFS-SWT)

Fig. 6. HDFS write throughput in Cluster A (4 DataNodes)

140 N.S. Islam et al.

700

) LAOO [+ -omeeeeme e g

e [11%1%(320@5) T 1200 oo f%ﬁf’mchps) o
2 500 - B RSERIEEE T R R 2
& B 1,000 -
Zo0--M-B-H-B-B-B-0-B-NN- Eapvei BN BN BN BN BN BN BB m

100 - 200 (- B BN B S [e N =

0 0
File Size (GB) File Size (GB)
(a) Sequential write throughput with 4 writ- (b) Sequential write throughput with 8 writ-
ers in 32 DataNodes (HDFS-SWT) ers in 32 DataNodes (HDFS-SWT)
Fig. 7. HDFS write throughput in Cluster A (32 DataNodes)
600 T

1600 oo

igE
B IGigE 1:400 B IPolB (32Gbps)

z B 10GigE 21200 o eeee
& 400 - @ IPolB (32Gbps) &
= 2 1,000
2 300 H
5 £ oo
z 2 600
£ 200 £
= =}

400 [+
200 oo

0

5 10 15 20 5 10 15 20
File Size (GB) File Size (GB)
(a) Sequential write throughput with 4 writ- (b) Sequential read throughput with 4 read-
ers in 4 DataNodes (HDFS-SWT) ers in 4 DataNodes (HDFS-SRT)

Fig. 8. HDFS write and read throughput in Cluster B (4 DataNodes)

outside the Hadoop cluster. From the results, it is observed that, 10GigE provides better
read throughput than that of 1 GigE while IPoIB (32Gbps) gives the highest throughput
in this configuration. From all the results of HDFS-SRT, it is evident that, the read
throughput does not vary much with increasing file sizes. Most of the HDFS reads
occur from the cache, which results in higher read throughput.

Figures 9(a) and 9(b) show the performance results of HDFS-SRT for four and eight
readers, respectively. These experiments are performed on a four-DataNode Hadoop
cluster and all the clients run in a remote node. The file size varies from 1 GB-10 GB.
From the figures we observe that the total read throughput improves as the number of
readers increases from four to eight. Also the read throughput for IPoIB is significantly
higher than that for 1GigE as IPoIB supports much higher network bandwidth. Fig-
ures 9(a) and 9(b) also depict that HDFS write throughput in four DataNodes is much
less than that of read throughputs. This is because HDFS write involves replication
which follows a pipeline size of three by default. Besides, most of the HDFS reads are
performed from the disk cache, which results in lower read latency for each block of
the file, thus providing a higher read throughput.

HDFS-SRWT: The performance results of average latency and total throughput of
HDFS-SRWT are illustrated in Figures 10(a) and 10(b), respectively. Here, we have
used a workload of 50% read-50% write; each reader and writer works on equal amount
of data. The average read/write latency decreases in HDFS-SRWT compared to that in

1,600 T T

W 1GigE
1400 oo R bl (32Gbps)

£ 1,000 -

Throughput (MBps

File Size (GB)

(a) Sequential read throughput with 4 read-
ers in 4 DataNodes (HDFS-SRT)

HDFS Benchmarks 141

2,500 oo

"W 1GigE
B PolB (32Gbps)

2,000 -

1,500 -

1,000 -

Throughput (MBps)

o
S
S

1 2 3 4 5 6 7 8 9 10
File Size (GB)
(b) Sequential read throughput with 8 read-
ers in 4 DataNodes (HDFS-SRT)

Fig. 9. HDFS read throughput in Cluster A (4 DataNodes)

180 —
160 |- -~ M Read(1G

jigE) L | Read(|iF) AR
B Read(IPofB-32Gbps) B Read(IPo[B~32Gbps)

140 B Wme%IGll%E) U RN RN I [R = | Wntc?lGllgBl;) EERRRREREEEEEE
W Write(IPo[B-32Gbps) —32Gbps)

W Write(IPol
120 oo e

3
T

8O oo
60 f oo

401

20l

Time (s)
o«
2 3
S 3

T
L

Throughput (MBps)

I

=3

3
T
I

<)
S
S
T
I

=

File Size (GB) File Size (GB)

(a) Read and write latency with 4 readers and
4 writers (HDFS-SRWT)

(b) Read and write throughput with 4 readers
and 4 writers (HDFS-SRWT)

Fig. 10. HDFS mixed workload evaluation in Cluster A

HDFS-SWL/HDFS-SRL as the same amount of data is being read/written by larger
number of reader/writer threads. The throughputs also decrease compared to those in
HDFS-SRT/HDFS-SWT due to the contention among reader and writer threads.

6.3 Evaluations over different Storage Platforms:

In this section, we discuss the performance of our benchmarks over different storage
platforms.

HDFS-SWT: Our experiments reveal that the performance of HDFS write is influenced
by an interesting interplay between network and storage. We run HDFS-SWT bench-
mark with eight and sixteen clients in an eight-DataNode Hadoop cluster and each of
the clients run in a DataNode. For this, we use eight storage nodes in Cluster B as
the DataNodes. Each of these nodes is equipped with two HDDs per node. From Fig-
ures 11(a) and 11(b), we observe that, for high performance networks like IPoIB, the
throughputis significantly increased for larger file sizes as we switch from single to dou-
ble disks per node. Networks like 1GigE do not show the similar trend. As for 1GigE,
the limited network bandwidth itself is the bottleneck. Whereas, the higher bandwidth of
[PoIB helps to increase the write throughput further, as the I/O bottleneck is eliminated
by installing multiple disks per node. Also for 30GB file size, the gain in throughput for
IPoIB compared to 1GigE is 93% over single disk. This gain increases up to 239% for

142 N.S. Islam et al.

two disks per node. The write throughput of IPoIB also increases by 85% as we switch
from single to double disks per node. For 1GigE, this increase is only 5.5%. Thus, high
performance interconnects and protocols can provide much better performance as the
I/0 bottleneck is eliminated.

1,600 2,500
14007 W 1GigE-1d B b B 1Gigh
1200 b ... 1Pl (32Gbp>) Ldisk - 2000 el IPO (SZGbp5> Idisk s
2 (] lG| E-2disks a O IPch} (32Gbps) 2disks
& L | | | O IPoIB (32Gbps)-2disks @
= 1,000 S 1,500 | b Q|
Z 800t 4 g
=))
2 ol B 2 1,000 - R I e (B e
g £
= 400 F B =
500 =
200 - h
0 5 10 15 20 25 30 0
File Size (GB) File Size (GB)
(a) Sequential write throughput with 8 writ- (b) Sequential write throughput with 16
ers in 8 DataNodes (HDFS-SWT) writers in 8 DataNodes (HDFS-SWT)

Fig. 11. HDFS write throughput in Cluster B (8 DataNodes, single vs double disks per node)

However, multiple disks cannot increase the write throughput significantly for
smaller file sizes. For smaller file sizes, most of the data is placed in disk cache during
file write. Thus, more disks cannot help improve the performance much in this case.

800 T T 2,000
B 1Gi
L = 1P oFB(}Z(bp<) HDD | IPol ﬁ)(}ZGbpa) HDD
O 1Gi; O 1GigE-SSD
G(,oo———————————————-[FBmeps)SSD e = 1,500 ===~ B IPO[B (32Gbps)=SSD -------------------
Z 2
g soo---4-M4-- - R g
24004 2 1,000----- - s B === B -
) E)
ERELUISEREEE [[EESEEEE [EEESEEN IS H
g £
Sk HomBo R = s00 B
100
0 5 10 15 20 0 5 10 15 20
File Size (GB) File Size (GB)
(a) Sequential write throughput with 4 writ- (b) Sequential read throughput with 4 read-
ers in 4 DataNodes (HDFS-SWT) ers in 4 DataNodes (HDFS-SRT)

Fig. 12. HDFS write and read throughput in Cluster B (4 DataNodes, HDD vs SSD per node)

Figures 12(a) and 12(b) show the comparison of throughputs of HDFS-SWT and
HDFS-SRT over HDD and SSD. In the HDFS-SWT test, we have used four writers
each running in a DataNode. As observed from Figure 12(a), for high performance
networks like IPolIB, the write throughput in SSD is much higher than that in HDD
for larger file sizes. This is because of the higher write bandwidth of the SSDs. But
networks like 1 GigE fail to utilize the improved write bandwidth of SSDs due to its
limited network bandwidth. Thus, high performance interconnects and protocols can
utilize the benefit of improved storage and offer much better performance. However,

HDFS Benchmarks 143

for smaller file sizes, the throughput does not depend much on the storage as most of
the data is placed inside disk cache during HDFS write.

HDFS-SRT: Figure 12(b) shows the read throughputs of HDFS-SRT on HDD and
SSD platforms. As we observe, due to the improved read bandwidth of SSDs, the read
throughput increases on this platform. However, the increase is not as significant as in
case of HDFS write. The reason behind this is, during HDFS write, lots of threads in-
cluding the replication threads access the same disk which degrades the throughput. But
for read, the number of concurrent threads accessing the disk is much less. The read op-
eration involves much less contention than write. Thus, the increase in read throughput
is less compared to that in write throughput with improved storage.

We have also performed HDFS-SRT experiments with eight readers in an eight-
DataNode Hadoop cluster. Each client runs in a DataNode. The client first writes a
file to HDFS and then reads it back. As observed from Figure 13(a), the read through-
put does not depend on the underlying network in this case, as most of the blocks will
be read locally from the same node in which the client is running. The read throughputs
are also quite high irrespective of the network due to the data prefetching done during
HDFS read.

4,000 T T 3,500

;
W 1GigE-1disk ——
3500 - B Dl (3Gbps)-1disk | 3,000 oo B R ik]
B 1GigE-2disks O 1GigE-2disks
2 3000 [-oooee e [TPOIB (32Gbps)-2disks -+++- 2 2500 ... O] IPol3 (32Gbps)~2disks i
) 2 2
a 2]
2,500 -
= < 2,000
2 2,000 - S
£ 5 1,500
2 1500 -

= 1000 |-

500 - 500 =+

0

5 10 15 20 25 30

File Size (GB) File Size (GB)

(a) Sequential read throughput with 8 read- (b) Sequential read throughput with 8 read-
ers in 8 DataNodes (HDFS-SRT) ers in a remote node (HDFS-SRT)

Fig. 13. HDFS read throughput in Cluster B (8 DataNodes, single vs double disks per node)

Figure 13(b) shows the read throughputs when eight readers run in a remote node
outside the Hadoop cluster. In this case, the throughput increases for high performance
networks like IPoIB, as the HDFS blocks are read by clients running in a remote node.
Thus, the read latency decreases for IPoIB which, in turn, causes the throughput to
increase.

From both Figures 13(a) and 13(b), we observe that, HDFS read performance does
not vary much as we switch from single to double disks per node. This is because,
the HDFS blocks belonging to a file are distributed to different DataNodes in the clus-
ter during replication. While reading, different readers read the blocks from different
nodes. As a result, the contention among the readers is less than that in HDFS write
(as write involves replication also). Therefore, multiple disks cannot improve the read
performance significantly.

HDFS-SRWT: We have performed HDFS-SRWT experiments with eight readers and
eight writers in an eight-DataNode Hadoop cluster. The readers and writers run in a

144 N.S. Islam et al.

T T 2,500 T T

2,500 [------------------ M Read(1GigE) o B Read(1GigE)
’] Rcad%ll’i; ~32Gbps)] Reqd}lpoﬁs—szﬁbps)
W Write(1Gi 2,000 [---------- B Write(1Gi -

E) E)
B Write(IPol3232Gbps) B Write(IPolB332Gbps)

»
=3
S
3
T

n

S

3

1,500 ----

1,000 -~
1,000 F----

Throughput (MBps)
Throughput (MBps)

o
S
3

500 -

0 5 10 15 20 25 30 5 10 15 20 25 30

File Size (GB) File Size (GB)

(a) Read and write throughput with 8 read- (b) Read and write throughput with 8 read-
ers and 8 writers with single disk per node ers and 8 writers (SRWT) with two disks per
(HDFS-SRWT) node (SRWT)

Fig. 14. HDFS throughput for mix workload in Cluster B (8 DataNodes, single vs double disks
per node)

remote node and we used a workload of 50% read-50% write. As can be seen from
Figures 14(a) and 14(b) multiple disks can increase the write throughput for HDFS.

6.4 Finding out the Optimal Values for Hadoop Configuration Parameters:

The performance of an HDFS application depends on the application characteristics,
data access pattern as well as the values of Hadoop configuration parameters. In order
to guarantee optimal performance for an application, it is important to find out the op-
timal values of the configuration parameters over different interconnects and protocols.
Our benchmarksuite facilitates the tuning of various Hadoop configuration parameters
dynamically at run-time.

Finding out the Optimal HDFS Block-Size: Figure 15 shows the throughputs of SWT
for different HDFS block-sizes of 128MB and 256MB. Figure 8(a) shows the write
throughput for HDFS block-size of 64MB. As observed from these figures, HDFS write
throughput is maximized for the block-size of 128MB in our platform. A file has fewer
blocks if the block size is larger. This makes it possible for the client to read/write
more data with less interaction with the Namenode. It also reduces the total size of
metadata in the Namenode (this can be an important consideration for extremely large
file systems). In order to maximize the throughput for a large file, it is better to use
a larger HDFS block-size. On the other hand, smaller block-size is more suitable for
smaller file sizes.

Effect of HDFS Replication Factor on Throughput: Figure 16 shows the write
throughputs of SWT for varying replication factors. Figure 8(a) shows the write through-
put for HDFS replication factor of three. As observed from these figures, HDFS write
throughput is maximized for a replication factor of one and with this replication factor,
the throughput does not depend on the interconnect or protocol since most of the data
is written to the node in which the writer is running. The throughputs of SWT are bet-
ter for smaller replication factor. Thus, SWT provides better throughput for replication
factor of two compared to that of three. This is because, HDFS performs a pipelined
replication. The higher the length of pipeline, the longer the latency to complete the
replication process, which, in turn, reduces the throughput. HDFS replication factor is

600

500 oo J

W IGigE
B 10GigE
400 W TPoIB (32Gbps) o]

Throughput (MBps)

5 10 15 20
File Size (GB)
(a) Sequential write throughput with 4 writ-
ers in 4 DataNodes with HDFS block-size of
128MB(HDFS-SWT)

HDFS Benchmarks 145

600

500 fooeeeeee

igE
B [0GigE
400 oo - PO (32Gbps)

300 f-oneeee

200 -

Throughput (MBps)

100 |----

File Size (GB)

(b) Sequential write throughput with 4 writ-
ers in 4 DataNodes with HDFS block-size of
256MB (HDFS-SWT)

Fig. 15. HDFS write throughput in Cluster B (4 DataNodes)

1,200 T

B i
1,000 B IPollS (32Gbps)

%
=3
3

Throughput (MBps)
o
2
3

5 10 15 20
File Size (GB)

(a) Sequential write throughput with 4 writ-
ers in 4 DataNodes with replication factor of
2 (HDFS-SWT)

1,600 |-t]
Gk
1,400 - e B 10GieE]
B [PolB (32Gbps)
Z 1,200 B PR EEPRRRE |
Z 1,000 |- i

Throughput (MBps)

5 10 15 20
File Size (GB)

(b) Sequential write throughput with 4 writ-
ers in 4 DataNodes with replication factor of
1 (HDFS-SWT)

Fig. 16. HDFS write throughput in Cluster B (4 DataNodes)

a per file option. Depending on the requirement of the application, users can increase or
decrease the replication factor of each specific file in the Hadoop cluster.

7 Conclusion and Future Work

In this paper, we have designed, developed and implemented a micro-benchmark suite
to evaluate performance of standalone HDFS. We have provided benchmarks for mea-
suring HDFS Read and Write latencies. Our benchmarks can also measure the through-
puts for read-only, write-only and mixed workloads. We have designed a flexible in-
frastructure for the benchmarks such that the values of different HDFS configuration
parameters can be set dynamically. As an illustration, we have presented performance
results of our benchmarks for HDFS over different interconnects on modern cluster.

The benchmark suite can prove to be helpful for designing and evaluating applica-
tions that invoke HDFS directly without going through the MapReduce layer. We plan
to make this micro-benchmark suite available to the Big Data community via an open-
source release in future.

146

N.S. Islam et al.

Acknowledgment. We are indebted to Hao Wang for helpful discussions on the bench-
mark design in the paper.

References

[EIE-CIEN - NV R NI N

12.

13.

17.

18.
19.
20.

. Hadoop-RDMA: High-Performance Design of Hadoop over RDMA-enabled Interconnects,

http://hadoop-rdma.cse.ohio-state.edu/

. InfiniBand Trade Association, http://www.infinibandta.com

RandomWriter, http: //wiki.apache.org/hadoop/RandomWriter

. Sort, http://wiki.apache.org/hadoop/Sort

TPC Benchmark H - Standard Specication, http: //www. tpc.org/tpch
WordCount, http://wiki.apache.org/hadoop/WordCount

. Apache Hadoop, http://hadoop.apache.org/
. Apache HBase, http: //hbase.apache.org
. Balaji, P., Shah, H.V., Panda, D.K.: Sockets vs RDMA Interface over 10-Gigabit Networks:

An In-depth Analysis of the Memory Traffic Bottleneck. In: Workshop on Remote Direct
Memory Access (RDMA): Applications, Implementations, and Technologies (RAIT), in
Conjunction with IEEE Cluster (2004)

. Bennett, C., Grossman, R.L., Locke, D., Seidman, J., Vejcik, S.: Malstone: towards a Bench-

mark for Analytics on Large Data Clouds. In: Proceedings of the 16th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 145-152.
ACM, New York (2010)

. Chang, F.,, Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,

Fikes, A., Gruber, R.: Bigtable: A Distributed Storage System for Structured Data. In: The
Proceedings of the Seventh Symposium on Operating System Desgin and Implementation
(OSDI 2006), WA (November 2006)

Cooper, B.F, Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking Cloud
Serving Systems with YCSB. In: The Proceedings of the ACM Symposium on Cloud Com-
puting (SoCC 2010), Indianapolis, Indiana, June 10-11 (2010)

Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:
OSDI 2004: Proceedings of the 6th conference on Symposium on Opearting Systems De-
sign and Implementation. USENIX Association (2004)

. Floratou, A., Teletia, N., DeWitt, D.J., Patel, J.M., Zhang, D.: Can the Elephants Handle the

NoSQL Onslaught? In: The Proceedings of the VLDB Endowment, VLDB 2012 (2012)

. Ghemawat, S., Gobioff, H., Leung, S.: The Google File System. In: The Proceedings of the

19th ACM Symposium on Operating Systems Principles (SOSP 2003), NY, USA, October
19-22 (2003)

. Huang, J., Ouyang, X., Jose, J.: High-Performance Design of HBase with RDMA over In-

finiBand. In: IEEE Int’l Parallel and Distributed Processing Symposium, IPDPS 2011 (May
2011)

Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench Benchmark Suite: Character-
ization of the MapReduce-based Data Analysis. In: IEEE 26th International Conference on
Data Engineering Workshops, ICDEW (2010)

Infiniband Trade Association, http://www.infinibandta.org

I0zone, http://www.iozone.org/

Islam, N.S., Rahman, M.W., Jose, J., Rajachandrasekar, R., Wang, H., Subramoni, H.,
Murthy, C., Panda, D.K.: High Performance RDMA-based Design of HDFS over InfiniBand.
In: The International Conference for High Performance Computing, Networking, Storage
and Analysis, SC (November 2012)

http://hadoop-rdma.cse.ohio-state.edu/
http://www.infinibandta.com
http://wiki.apache.org/hadoop/RandomWriter
http://wiki.apache.org/hadoop/Sort
http://www.tpc.org/tpch
http://wiki.apache.org/hadoop/WordCount
http://hadoop.apache.org/
http://hbase.apache.org
http://www.infinibandta.org
http://www.iozone.org/

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

HDFS Benchmarks 147

Shafer, J., Cox, S.R.: A.L.: The Hadoop Distributed Filesystem: Balancing Portability and
Performance. In: The Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS 2010), White Plains, NY, March 28-30 (2010)
Kim, K., Jeon, K., Han, H.: MRBench: A Benchmark for MapReduce Framework. In: 14th
IEEE International Conference on Parallel and Distributed Systems, ICPADS 2008, pp.
11-18 (2008)

OpenFabrics Alliance, http: //www.openfabrics.org/

Owen, O’Malley: Terabyte sort on apache hadoop,
http://sortbenchmark.org/Yahoo-Hadoop.pdf

Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., Lépez, J., Gibson, G., Fuchs, A.,
Rinaldi, B.: YCSB++: Benchmarking and Performance Debugging Advanced Features in
Scalable Table Stores. In: Proceedings of the 2nd ACM Symposium on Cloud Computing,
SOCC 2011, pp. 9:1-9:14. ACM, New York (2011)

Rabl, T., Sadoghi, M., Jacobsen, H.-A., Gdémez-Villamor, S., Muntés-Mulero, V.,
Mankovskii, S.: Solving Big Data Challenges for Enterprise Application Performance Man-
agement. In: The Proceedings of the VLDB Endowment, VLDB 2012 (2012)

Rahman, M.W., Huang, J., Jose, J., Ouyang, X., Wang, H., Islam, N., Subramoni, H., Murthy,
C., Panda, D.K.: Understanding the Communication Characteristics in HBase: What are the
Fundamental Bottlenecks? In: IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS (April 2012)

RDMA Consortium: Architectural Specifications for RDMA over TCP/IP,
http://www.rdmaconsortium.org/

Sangroya, A., Serrano, D., Bouchenak, S.: MRBS: Towards Dependability Benchmarking
for Hadoop Mapreduce. In: Caragiannis, 1., et al. (eds.) Euro-Par Workshops 2012. LNCS,
vol. 7640, pp. 3—12. Springer, Heidelberg (2013)

Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System. In:
IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST (2010)
Subramoni, H., Lai, P.,, Luo, M., Panda, D.K.: RDMA over Ethernet - A Preliminary Study.
In: Proceedings of the 2009 Workshop on High Performance Interconnects for Distributed
Computing, HPIDC 2009 (2009)

Sur, S., Wang, H., Huang, J., Ouyang, X., Panda, D.K.: Can High Performance Interconnects
Benefit Hadoop Distributed File System? In: Workshop on Micro Architectural Support for
Virtualization, Data Center Computing, and Clouds, in Conjunction with MICRO 2010, At-
lanta, GA (2010)

Wang, Y., Que, X., Yu, W., Goldenberg, D., Sehgal, D.: Hadoop Acceleration through Net-
work Levitated Merge. In: Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2011 (2011)

White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc. (October 2010)

http://www.openfabrics.org/
 http://sortbenchmark.org/Yahoo-Hadoop.pdf
http://www.rdmaconsortium.org/

Assessing the Performance Impact
of High-Speed Interconnects on MapReduce*

Yandong Wang, Yizheng Jiao, Cong Xu, Xiaobing Li, Teng Wang, Xinyu Que,
Cristi Cira, Bin Wang, Zhuo Liu, Bliss Bailey, and Weikuan Yu

Department of Computer Science
Auburn University
{wangyd, yzj0018, congxu,xbli, tzw0019, xque,
cmc0031,bwang,zhuoliu,wkyu,bailebn}@auburn.edu

Abstract. Hadoop is a successful open-source implementation of MapReduce
programming model. It has been widely adopted by many leading industry com-
panies for big data analytics. However, its intermediate data shuffling is a time-
consuming operation that impacts the total execution time of MapReduce
programs. Recently, a growing number of organizations are interested in address-
ing this issue by leveraging the high-performance interconnects, such as Infini-
Band and 10 Gigabit Ethernet, which have been popular in High-Performance
Computing (HPC) Community. There is a lack of comprehensive examination of
the performance impact of these interconnects on MapReduce programs.

In this work, we systematically evaluate the performance impact of two popu-
lar high-speed interconnects, 10 Gigabit Ethernet and InfiniBand, using the
original Apache Hadoop and our extended Hadoop Acceleration framework. Our
analysis shows that, under the Apache Hadoop, although using fast networks can
efficiently accelerate the jobs with small intermediate data sizes, it is unable
to maintain such advantages for jobs with large intermediate data. In contrast,
Hadoop Acceleration provides better performance for jobs of a wide range of
data sizes. In addition, both implementations exhibit good scalability under dif-
ferent networks. Hadoop Acceleration significantly reduces CPU utilization and
I/0 wait time of MapReduce programs.

1 Introduction

MapReduce, introduced by Google, has evolved as the backbone framework for
massive-scale data analysis. Its simple yet expressive interfaces, efficient scalability,
and strong fault-tolerance have attracted a growing number of organizations to build
their cloud services on top of the MapReduce framework. Hadoop MapReduce [1], ad-
vanced by Apache foundation, is a popular open source implementation of MapReduce
programming model. Compliant with MapReduce framewrok, Hadoop divides a job
into two types of tasks, called MapTasks and ReduceTasks, and assigns them to differ-
ent machines for parallel processing. Although this framework is straightforward, its

* This research is supported in part by an NSF grant #CNS-1059376, and a grant from Lawrence
Livermore National Laboratory.

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 148-163, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Assessing the Performance Impact of High-Speed Interconnects on MapReduce 149

intermediate data shuffling remains a critical and time-consuming operation as identi-
fied by many previous works [2, 3, 4, 5, 6]. Such data shuffling stage requires to move
all the intermediate data generated by MapTasks to ReduceTasks, thereby causing a
significant volume of network traffics and constraining the efficiency of data analytics
applications.

High-Performance interconnects, such as InfiniBand [7] and 10 Gigabit Ethernet,
provide appealing solutions to relieve such pressure on the intermediate data shuffling
in the MapReduce frameworks. The state-of-the-art high-speed networks, such as In-
finiBand, have been able to deliver up to 56Gbps bandwidth and sub-microsecond la-
tency. Their low CPU utilization ability can spare more CPU cycles for MapReduce
applications to accelerate their progress. Moreover, many fast interconnects have also
offered Remote Direct Memory Access (RDMA) [8] protocol to fully take advantages
of high-performance properties of those networks. Although high-performance inter-
connects have been popular in the High-Performance Computing (HPC) community,
the performance impact of these networks on MapReduce programs remains unclear. A
growing number of cloud companies, such as Amazon [9] are planning to build their
next generation clusters on top of high-performance interconnects. But there is a lack
of comprehensive examination of the performance impact of these interconnects on
MapReduce programs.

To fill this void, we conduct a thorough assessment of the performance of MapRe-
duce programs on different high-performance interconnects. In particular, we investi-
gate how InfiniBand and 10 Gigabit Ethernet (10 GigE) improve the performance of
the original Hadoop and our extended Hadoop Acceleration implementation [10]. Our
evaluation centers around three aspects of MapReduce clusters, including scalability,
performance impact on different phases, and resource utilization. Overall, our contribu-
tions can be summarized as the following:

For the original Apache Hadoop, using high-performance interconnects can effi-
ciently accelerate the programs with small intermediate data size by as much as
51.5%, but provide imperceptible performance improvement for programs with
large intermediate data, when compared to 1 Gigabit Ethernet (1 GigE).

— The original Hadoop exhibits good scalability under 1/10 Gigabit Ethernets and
InfiniBand environments. Compared to 1 GigE, 10 GigE and InfiniBand provide
better scalability in large clusters.

— Simply adopting high-performance interconnects, the original Hadoop cannot re-
duce the CPU utilization and remove the disk bottleneck issues in existing design
of Hadoop MapReduce.

— Our Hadoop Acceleration framework exhibits comparable scalability as the Apache
Hadoop. Meanwhile it is able to efficiently speed up the jobs by as much as 49.5%
in both InfiniBand and 10 GigE environments. Results also show that it accelerates
both the map and reduce phases of data-intensive programs.

— Our Hadoop Acceleration cuts down on CPU utilization by up to 46.4% and allevi-

ates disk contention by leveraging the advantages of fast networks.

The remainder of the paper is organized as follows. We briefly introduce the back-
ground in Section 2. We then present the comprehensive assessment results in Section 3.

150 Y. Wang et al.

Finally, we provide a review of related work in Section 4 and then conclude the paper
in Section 5.

2 Background

2.1 Architecture of Apache Hadoop MapReduce

Hadoop implements MapReduce framework with two categories of components: a Job-
Tracker and many TaskTrackers. The JobTracker commands TaskTrackers to process
data in parallel through two main functions: map and reduce. In this process, the Job-
Tracker is in charge of scheduling map tasks (MapTasks) and reduce tasks (Reduc-
eTasks) to TaskTrackers. It also monitors their progress, collects run-time execution
statistics, and handles possible faults and errors through task re-execution.

>~ Map

_ Shuffle/
Merge

i~ Reduce

Fig. 1. An Overview of Data Processing in Hadoop MapReduce Framework

From the view of pipelined data processing, Hadoop consists of three main execu-
tion phases: map, shuffle/merge, and reduce as shown in Figure 1. In the first phase, the
JobTracker selects a number of TaskTrackers and schedules them to run the map func-
tion. Each TaskTracker launches several MapTasks, one per split of data. The mapping
function in a MapTask converts the original records into intermediate results, which are
data records in the form of <key’,val’> pairs. These new data records are stored as a
MOF (Map Output File), one for every split of data. In the second phase, when MOFs
are available, the JobTracker selects a set of TaskTrackers to run the ReduceTasks.
TaskTrackers can spawn several concurrent ReduceTasks. Each ReduceTask starts by
fetching a partition that is intended for it from a MOF (also called segment). Typically,
there is one segment in each MOF for every ReduceTask. So, a ReduceTask needs to
fetch such segments from all MOFs. Globally, these fetch operations lead to an all-to-
all shuffle of data segments among all the ReduceTasks. This stage is also commonly
referred as the shuffle/merge phase. In the third, or reduce phase, each ReduceTask
loads and processes the merged segments using the reduce function. The final result is
then stored to Hadoop Distributed File System [11].

Although the framework of Hadoop MapReduce is simple, the global all-to-all data
shuffling process imposes significant pressure on the network. Therefore, it is appeal-
ing to accelerate such intermediate data shuffling via leveraging high-performance in-
terconnects, such as InfiniBand or 10 Gigabit Ethernet (10 GigE). While, due to the

Assessing the Performance Impact of High-Speed Interconnects on MapReduce 151

higher cost of fast networks than traditional 1 Gigabit Ethernet (1 GigE), it is critical to
investigate the benefits for Hadoop MapReduce to employ high performance networks.

2.2 Architecture of Hadoop-Acceleration

In order to address the issues exposed by intermediate data shuffling in Apache Hadoop,
a new framework, called Hadoop Acceleration (Hadoop-A) [10], was designed on top
of Apache Hadoop to take advantage of high-speed interconnects to accelerate the data
movement.

MOFSupplier NetMerger

Data Network Network Data
Retriever Server Client Merger

| Multiple Interconnects |

| o Hadoop Acceleration Framework

Fig. 2. Software Architecture of Hadoop-A

Figure 2 depicts the architecture of Hadoop Acceleration framework. Two new user-
configurable plugin components, MOFSupplier and NetMerger, are introduced to lever-
age different protocols provided by the fast networks and enable alternative data merge
algorithms. So far, the transportation protocols supported by Hadoop-A include TCP/IP
and RDMA verbs. User have options to choose either Network Levitated Merge [10]
or Hierarchical Merge algorithm [12] to conduct the merge process at the ReduceTask
sides. Both algorithms strive to fully utilize the memory to accomplish the merge pro-
cess, thus avoiding the disk I/O overhead. Both MOFSupplier and NetMerger are
threaded C implementations, with all components following the object-oriented prin-
ciple. We briefly describe several features of this acceleration framework without going
too much into the technical details of their implementations.

User-Transparent Plugins — A primary requirement of Hadoop-A is to maintain
the same programming and control interfaces for users. To this end, MOFSupplier and
NetMerger plugins are designed as C processes that can be launched by TaskTrackers.

Multithreaded and Componentized MOFSupplier and Netmerger — MOFSup-
plier contains an network server that handles fetch requests from ReduceTasks. It also
contains a data engine that manages the index and data files for all MOFs that are gen-
erated by local MapTasks. Both components are implemented with multiple threads in
MOFSupplier. NetMerger is also a multithreaded program. It provides one thread for
each Java ReduceTask. It also contains other threads, including a network client that
fetches data partitions and a staging thread that uploads data to the Java-side Reduc-
eTask.

152 Y. Wang et al.

2.3 Overview of High-Performance Interconnects

InfiniBand is a highly scalable interconnect technology, which can achieve low latency
and high bandwidth that is up to 56Gbps. It is widely used in large data center, high
performance computing systems and embedded applications, which require high speed
communications. Featured by Remote Direct Memory Access (RDMA), InfiniBand
transfers data directly between memory locations over network without the involve-
ment of CPU and extra data copying. And because InfiniBand incurs very low CPU
utilization, it is ideal to carry several traffic categories, like management data and stor-
age data, over a single connection.

10 Gigabit Ethernet (10GigE) can also attain high bandwidth but its data transmis-
sion latency is longer than InfiniBand due to the data encapsulation through TCP/IP
protocol stack. RDMA is also available for 10 Gigabit Ethernet through RDMA over
Converged Ethernet (RoCE). Supported by the features of RDMA, 10GigE can reduce
the data transmission latency dramatically.

3 Benchmarking Study of MapReduce Programs on Different
Interconnects

In this section, we report the performance of the original Apache Hadoop [1] and our
Hadoop Acceleration [10], on three different interconnects.

3.1 Experimental Environment

All experiments are conducted on two environments, which are InfiniBand environ-
ment and Ethernets environment, respectively. Each environment features 23 compute
nodes. All compute nodes in both clusters are identical. Each node is equipped with
four 2.67GHz hex-core Intel Xeon X5650 CPUs, two Western Digital SATA 7200 RPM
500GB hard drives and 24GB memory.

In the Ethernet environment, all compute nodes connect to both a 1 Gigabit NET-
GEAR switch and a 10 Gigabit Voltaire switch. In the InfiniBand environment, Mel-
lanox ConnectX-2 QDR Host Channel Adaptors are installed on each node that connect
to a 108-port InfiniBand QDR switch providing up to 40 Gb/s full bisection bandwidth
per port. We use the InfiniBand software stack, OpenFabrics Enterprise Distribution
(OFED) [13] version 1.5.3, as released by Mellanox. Note that in the InfiniBand envi-
ronment, [PoIB (an emulated implementation of TCP/IP on InfiniBand) provides stan-
dardized IP encapsulation over InfiniBand links. Therefore, all applications that require
TCP/IP can continue to run without any modification. Detailed description of IPoIB can
be found in [14]. InfiniBand also provides Socket Direct Protocol (SDP) [15] to accel-
erate the TCP/IP protocol via leveraging the RDMA capability, albeit its performance
is still not as competive as the RDMA verbs. Similar to IPolB, it requires no modifica-
tion to the applications. Recently, OFED has announced to discontinue the support for
SDP. However, we still include the evaluation results with SDP in this work to provide
insight for its potential successor protocol, such as jVerbs. Although both InfiniBand
and 10 GigE provide RDMA protocol, current Hadoop is unable to directly use it but
via the SDP protocol.

Assessing the Performance Impact of High-Speed Interconnects on MapReduce 153

In terms of the Hadoop setup, we employ the stable version Hadoop 1.0.4. During the
experiments, one node is dedicated for both the NameNode of HDFS and the JobTracker
of Hadoop MapReduce. On each slave nodes, we allocate 4 MapTask and 2 ReduceTask
slots. The HDFS block size is chosen as 256MB as suggested by [16] to balance the
parallelism and performance of MapTasks. We assign 512 MB and 1 GB heap size to
each MapTask and ReduceTask respectively.

Benchmarks we adopt to conduct the evaluation include Terasort, WordCount, from
standard Hadoop package. Terasort is extensively used through the entire evaluation due
to its popularity as a de facto standard Hadoop I/O benchmark. In the Terasort, the size
of intermediate data and the final output are as large as the input size. Via controlling
the input data size, Terasort can effectively expose the I/O bottleneck across the Hadoop
data processing pipeline.

Many cases have been explored in our evaluation experiments. To avoid confusion,
we list the protocol and network environment used for each test case in Table 1. In
addition, in the following sections, we use Hadoop-A and Hadoop Acceleration inter-
changeably.

Table 1. Protocol and Network Description of Test Cases

Name of Test Cases Transport Protocol Network
Apache Hadoop with 1GigE TCP/TP 1 GigE
Apache Hadoop with 10GigE TCP/TP 10 GigE
Apache Hadoop with IPolB [PoIB InfiniBand
Apache Hadoop with SDP SDP InfiniBand
Hadoop-A with 10 GigE TCP/TP 10 GigE
Hadoop-A with RoCE RoCE 10 GigE
Hadoop-A with RDMA RDMA InfiniBand
Hadoop-A with IPoIB IPoIB InfiniBand

3.2 Impact of High-Performance Interconnects on Hadoop MapReduce

We have evaluated the impact of high-performance interconnects on Apache Hadoop
MapReduce from three aspects, which are scalability, performance impact on different
phases, and resource utilization.

Scalability. We study the scalability of Apache Hadoop via examining its ability to
process a growing amount of data with fixed amount of computational resources and its
ability to improve the throughput when expending the resources (a.k.a Scale Up).

To investigate the ability of Hadoop to process growing amount of data, we run
Terasort jobs of different input sizes on 22 slave nodes in both InfiniBand and Ethernet
environments. For each data size, we conduct 3 experiments and report the average
job execution time. Overall, Hadoop shows linear scalability for small data sizes and
nonlinear increase for large data sets.

Figure 3 shows the performance of Apache Hadoop with various data sizes under 3
different networks. As shown in Figure 3 (a), compared to running Hadoop on 1 GigE,
using 10 GigE reduces the job execution time by 26.5% on average. Noticeably, fast

154 Y. Wang et al.

I Apache Hadoop with 1 GigE — —&— Apache Hadoop with 10 GigE
@ 2500 @ 2500
§ —&— Apache Hadoop with 10 GigE § —*— Apache Hadoop with IPolB
& 2000 s & 2000 - —— Apache Hadoop with SDP il
“E> / °E> /
£ 1500 £ 1500
c c
L L
S 1000 / S 1000
%3 %3
& of &
w w
2 500]
5 3
I
oll———0 0
16 32 64 128 256 16 32 64 128 256
Input Size (GB) Input Size (GB)

(@) Comparison between 1 GigE and 10 GigE (b) Comparison between 10 GigE and Infini-
Band

Fig. 3. Performance of Apache Hadoop with Growing Data Sizes

network is very beneficial for small data sizes (< 64 GB). For instance, when the data
size is 32GB, compared to Hadoop on 1GigE, using 10 GigE effectively speeds up
the job execution time by as much as 51.5%. This is because the movement of small
size data is less dependent on disks and most of them reside in disk cache or system
buffers. Thus high-performance networks can exhibit better benefits for data shuffling.
While, simply adopting fast networks provide no encouraging improvements for large
data sets (> 128 GB) due to severe disk I/O bottleneck caused by large data sets. Such
disk bottleneck is triggered in many places across the data shuffling. In particular, when
the merge process is heavy, a large number of small random reads for retrieving the
merged results exist in ReduceTasks and quickly vanish the improvements gained from
fast data movement.

On the other hand, as shown in the Figure 3 (b), although InfiniBand provides even
higher throughput and lower latency than 10 GigE, using InfiniBand achieves negligible
performance improvements across the tests and only slightly reduces the job execution
time by 13% for 256 GB data size due to less memory copy overhead involved in IPoIB
and SDP.

We further study the Apache Hadoop’s ability to scale up with two patterns, which
are Strong Scaling pattern and Weak Scaling pattern. In the case of strong scaling, we
fix the input data size (256GB) while expending the number of slave nodes. In the
case of weak scaling, for each test case, we use a fixed-size data size (6GB) for each
ReduceTask, so the total input size increases linearly when we increase the number of
nodes, reaching 264GB when 22 slave nodes are used.

Figure 4 shows the results of strong scaling tests under different networks. In all of
the test cases, job execution time reduces linearly as more nodes join the computation.
However, as shown in the Figure 4 (a), on average, 10 GigE only marginally acceler-
ates the job execution by 8.1% due to disk constraints. In addition, we observe that in
the strong scaling case, 10 GigE even delivers better performance than InfiniBand. On
average, 10 GigE outperforms IPoIB and SDP by 3.2% and 5.8%. Such results demon-
strate that InfiniBand do not have superior advantages over 10 GigE for data-intensive
MapReduce applications.

Assessing the Performance Impact of High-Speed Interconnects on MapReduce 155

6000

—_ Apache Hadoop with 1 GigE 6000 || —=— Apache Hadoop with 10 GigE
() ()
B 5000 || —— Apache Hadoop with 10 GigE 2 —— Apache Hadoop with IPolB
] S 5000
2 & 2 —— Apache Hadoop with SDP
L 4000 F L
@ \ @ 4000+
£ = E
3000 —~g - —
e £ 3000 >
2 = 2 —
3 2000 3
o ~E A ° =
2 S g 2000 —
> >
w w
-3
g 1000 g8 1000
rl =

0 0

12 14 16 18 20 22 12 14 16 18 20 22
No. of Slave Machines No. of Slave Machines (GB)

(@) Comparison between 1 GigE and 10 GigE (b) Comparison between 10 GigE and Infini-
Band

Fig. 4. Strong Scaling Evaluation of Apache Hadoop

3000 3000
Apache Hadoop with 1 GigE —F+— Apache Hadoop with 10 GigE

—F£+— Apache Hadoop with 10 GigE —— Apache Hadoop with IPolB

2500 2500

—+— Apache Hadoop with SDP

Job Execution Time (seconds)
Job Execution Time (seconds)

2000 !
8=
1500
1000 1000
12 14 16 18 20 22 12 14 16 18 20 22
No. of Slave Machines No. of Slave Machines (GB)

(@) Comparison between 1 GigE and 10 GigE (b) Comparison between 10 GigE and Infini-
Band

Fig. 5. Weak Scaling Evaluation of Apache Hadoop

For the weak scaling tests, the optimal result should be a uniform execution time
across the tests. However, as shown in Figure 5, in the 1 GigE environment, job is
slowed down by 22.8% when the number of nodes increases from 12 to 22, showing
poor scalability of 1 GigE. In contrast, using 10 GigE not only decreases the job exe-
cution time by 21.9% on average, but achieves better scalability (11.6% increase from
12 to 22 nodes) as well. Similar to the strong scaling tests, 10 GigE outperforms Infini-
Band in the weak scaling test with respect to the job execution time. This is because
when the number of nodes is small, 10 GigEs TCP/IP protocol is more lightweight than
IPoIB protocol, which is an emulation of TCP/IP protocol in the InfiniBand environ-
ment, leading to more overhead. But InfiniBand shows better scalability for large cluster
size due to higher bandwidth and the design of InfiniBand HCA. When the number of
nodes increases from 12 to 22, job execution is slightly degraded by 1.7% when running
with SDP protocol.

Impact on Different Phases of the Data Processing Pipeline. To evaluate the im-
pact of high-performance interconnects on different map and reduce phases of differ-
ent types of Apache Hadoop applications. We employ two applications, Terasort and

156 Y. Wang et al.

140 Apache Hadoop with 1 GigE 140 Apache Hadoop with 1 GigE
120 Apache Hadoop with IPolB 120 —*— Apache Hadoop with IPolB
£ 100 £ 100
1] 0
0 3
4 80 2 80
= =
o o
o 60 a 60
]]
= 40 = 40
20 20
0 0
0 500 1000 1500 2000 0 50 100 150 200 250 300 350
Time (seconds) Time (seconds)
(a) Progress of Map Phase (Terasort) (b) Progress of Map Phase (WordCount)
140 Apache Hadoop with 1 GigE 140 Apache Hadoop on 1 GigE
120 || —%— Apache Hadoop with IPolB 120 | . —*— Apache Hadoop on IPolB
g 100 g 100
1] 1]
17 0
< 80 2 80
= =
o o
o 60 o 60
]]
S 40 S 40
20 20
0 0 Kook K
0 500 1000 1500 2000 0 50 100 150 200 250 300 350
Time (seconds) Time (seconds)

(c) Progress of Reduce Phase (Terasort) (d) Progress of Reduce Phase (WordCount)
Fig. 6. Impact of InfiniBand on Map and Reduce Phases

WordCount, which represent data-intensive and computation-intensive application, re-
spectively. Figure 6 depicts the progress of map and reduce phases of different jobs.

Figure 6 (a) and (b) show that simply running Apache Hadoop on InfiniBand gain im-
perceptible performance improvement in both applications. In Terasort job, each Map-
Task spends a large portion of task execution time on merging the temporary spilled
files. While the MapTasks in WordCount consume more CPU resources. Thus both
types of MapTasks provide InfiniBand with limited optimization spaces. While on the
ReduceTask side, as shown in Figure 6 (c) and (d), we observe that InfiniBand still
fails to accelerate the progress of ReduceTasks of Terasort due to extremely slow merge
process within the ReduceTasks. Expensive merge process and repetitive merge behav-
ior significantly drag down the draining of data from the network links, resulting in
slow ReduceTasks. For the WordCount, InfiniBand offers negligible improvement due
to very small intermediate data sizes. Since 10 GigE exibits similar performance pat-
tern, we omit to elaborate on its results here for conciseness.

Resource Utilization. In addition to job execution times, we have also collected the
CPU and disk utilization statistics across the experiments. CPU utilization is an im-
portant performance metric. Low CPU utilization during data shuffling and merging
can spare more CPU cycles for acceleration computation phases of Hadoop applica-
tions. Figure 7 (a) shows the CPU utilization of Apache Hadoop when running Terasort

Assessing the Performance Impact of High-Speed Interconnects on MapReduce 157

80 Apache Hadoop with 10 GigE 1400 —&— Apache Hadoop with 10 GigE (Wait Time)
70 Apache Hadoop with IPolB - 00 —+— Apache Hadoop with 10 GigE (Service Time)
60 —— Apache Hadoop with SDP g
= 53
z & 1000
c 50 é’
] a0 [
S 40 A g 2
5 i ¥ E
> 30 / 5 600
S y S
20 1 [l E; 400
| &
I WG o
10 = o - 200
0 4= n il
0
0 100 200 300 400 500 600 0 200 200 500 800 3000
Time (second) Time (sec)
(a) CPU Utilization (b) Disk Utilization

Fig.7. Analysis of CPU and Disk Utilization of Apache Hadoop

benchmark with 128GB input data. As shown in this figure, utilization difference be-
tween 10 GigE and InfiniBand is not significant. During the first 200 seconds, 10 GigE
presents slightly lower utilization. The reason is that in the InfiniBand tests cases, there
are more remote MapTasks, meaning more MapTasks need to fetch input data remotely.
After 200 seconds, three networks achieve very similar utilization statistics. Compared
to the 1 GigE, three networks reduces the CPU utilization by 9.6% on average (for clear
presentation, we omit the 1 GigE data in Figure 7 (a)).

As we have claimed before, disk bound merge process is the major performance
bottleneck that prevents Apache Hadoop from making full use of advantages of fast
networks. To illustrate such issue, we have examined the I/O wait (queuing) time and
the service time of I/O requests during a 160 Terasort job execution. As shown in Fig-
ure 7 (b), the I/O wait time can be more than 1000 milliseconds. Worse yet, extremely
quick service time (< 8 milliseconds) indicates that most I/O requests are spending
nearly 100% of their time waiting in the queue , which explicitly demonstrates that the
storage system is not able to keep up with the requests. In addition, both MapTasks
and ReduceTasks intensively competes for disk bandwidth, this can significantly over-
load the disk subsystem, causing high-performance networks unable to accelerate the
data-intensive MapReduce applications.

3.3 Impact of High-Performance Interconnects on Hadoop Acceleration

Hadoop Acceleration framework is a major step forward for Hadoop to support high-
performance networks. Its network layer is designed to be highly portable on a variety
of networks, such as InfiniBand and 10 GigE with a rich set of protocol support, such as
RDMA, TCP/IP, etc. In this section, we study the performance of Hadoop Acceleration
framework (Hadoop-A) on different networks via the same strategies used in section 3.2
and compare its performance against original Apache Hadoop.

Scalability. Figure 8 shows the performance of Hadoop-A with growing data sets by
conducting Terasort benchmark. Overall, Hadoop-A is superior to the original Apache
Hadoop for data-intensive applications. In the 10 GigE environment, compared to
Apache Hadoop, running Hadoop-A with TCP/IP reduces the job execution times by

158 Y. Wang et al.

—&— Apache Hadoop with 10 GigE
Hadoop-A with 10 GigE
2000 | —k— Hadoop-A with RoCE pul

—— Apache Hadoop with IPolB
—&— Hadoop-A with IPolB
2000 Hadoop-A with RDMA

2500 2500

1500 # 1500

1000 1000

o
o
=]

Job Execution Time (seconds)
(4]
o
o

Job Execution Time (seconds)

- [k g
16 32 64 128 256 16 32 64 128 256

Input Size (GB) Input Size (GB)
(a) Performance of Hadoop-A in 10 GigE En- (b) Performance of Hadoop-A in InfiniBand
vironment Environment

Fig. 8. Performance of Hadoop Acceleration with Growing Data Sizes

19.3% on average. Enabling the RDMA over Converged Ethernet (RoCE) protocol fur-
ther accelerates the job execution by up to 15.3%. In the InfiniBand environment, on
average, Hadoop-A outperforms the original Hadoop by 14.1% and 38.7%, when IPoIB
and RDMA protocols are used respectively. Moreover, in both environments, we ob-
serve that Hadoop-A delivers better performance for all ranges of data sizes. For small
data sets, Hadoop-A is better due to its elimination of JVM overhead from the critical
path of data shuffling. For large data sets, Hadoop-A mitigates the disk bottleneck via its
flexible framework to support various merging algorithms, such as Network Levitated
Merge [10] and Hierarchical Merge algorithm [12], both of which fully take advan-
tage of the memory to avoid disk I/O for the intermediate data merging process at the
ReduceTask side.

3000

- 6000 || —— Apache Hadoop with IPolB & —¥— Apache Hadoop with IPolB
2 —&— Hadoop-A with IPolB e —&— Hadoop-A with IPolB
S 5000 S 2500
§ Hadoop-A with RDMA § Hadoop-A with RDMA
© 4000 Y
g g 2000 /\ﬁ/\ L
= =
3000 g S 3
2 2 1500 e
3 S 3
$ 2000 O A 8
X ~e— I
. — S 1000
2 1000 °
= =

0 500

12 14 16 18 20 22 12 14 16 18 20 22
No. of Slave Machines (GB) No. of Slave Machines (GB)

(a) Strong Scaling of Hadoop Acceleration (b) Weak Scaling of Hadoop Acceleration

Fig. 9. Scalability Evaluation of Hadoop Acceleration in InfiniBand Environment

Scalability is a critical feature for MapReduce, thus we also evaluate the strong
scaling and weak scaling capability of Hadoop-A. As shown in the Figure 9 (a), run-
ning Hadoop-A with RDMA and with IPoIB effectively outperform Apache Hadoop by
49.5% and 20.9%, respectively on average, and achieves a comparable linear reduction
as the original Hadoop. On the other hand, for the weak scaling tests, Hadoop-A with
RDMA and with IPoIB reduce the execution time by 43.6% and 21.1%, respectively on

Assessing the Performance Impact of High-Speed Interconnects on MapReduce 159

average, compared to Apache Hadoop with IPoIB, and exhibit slight performance vari-
ance across the tests. (Similar performance is observed under the 10 GigE environment,
so we omit the results for succinctness).

140 || —*— Apache Hadoop with IPolB
Hadoop-A with RDMA

-
™
[=]

—*— Apache Hadoop with IPolB
Hadoop-A with RDMA

-
n
=]

120

< Iy
< 100 KX XXX < 100
2 2
g 80 g 80
14 14
-8 60 o 60
K 7 K
S a0 A S a0

n
=]
8

o~

0 0%
0 500 1000 1500 2000 0 500 1000 1500 2000
Time (seconds) Time (seconds)
(a) Map Progress (b) Reduce Progress

Fig. 10. Impact on Different Phases of Terasort

Impact on Different Phases of Data Processing Pipeline. Across the tests, we ob-
serve that Hadoop-A is able to speedup both the map and reduce phases of the data-
intensive applications. Figure 10 illustrates such phenomenon, in which MapTasks of
TeraSort complete much faster under Hadoop-A, especially when the percentage of
completion goes over 50%. This is because in Hadoop-A, all ReduceTasks only per-
forms lightweight operations such as fetching headers and setting up in-memory priority
queue during the map phase, thereby leaving more resources such as disk bandwidth for
MapTasks, which can fully relish the resources to accelerate their executions. While, on
the ReduceTask side, we observe slow progress at the beginning (before 500th second).
This is because during this period, ReduceTasks are just constructing the in-memory
priority queue, meanwhile waiting for the map phase to complete. As soon as the map
phase complete (after 500th second), ReduceTask rapidly progresses to the 60%, sig-
nificantly outperforming the original ReduceTasks.

80 80

——=— Apache Hadoop with 10 GigE —=— Apache Hadoop with IPolB
70 Hadoop-A with 10 GigE 70 —=— Hadoop-A with IPolB
60 Hadoop-A with RoCE 60 Hadoop-A with RDMA
g g
t 50 t 50
K] °
% W 7‘5“: 40
S 30} ‘ 3 30
o i \ o
o o o
20 | 20
K At
10 1 e T e 10
o Lk L. ol \
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (second) Time (second)
(@) 10 GigE Environment (b) InfiniBand Environment

Fig. 11. CPU Utilization of Hadoop Acceleration

Resource Utilization. By eliminating the overhead of JVM and reducing the disk 1/O,
Hadoop-A greatly lowers the CPU utilization. As shown in the Figure 11 (a), in the 10

160 Y. Wang et al.

GigE environment, compared to Apache Hadoop on 10GigE, Hadoop-A on RoCE and
on 10GigE reduce the CPU utilization by 46.4% and 33.9%, respectively on average.
In addition, compared to TCP/IP protocol, leveraging RoCE cuts down on the CPU
utilization by about 18.7% due to less memory copies to consume the CPU cycles. Such
improvement is also observed in the InfiniBand environment as shown in the Figure 11

®).

Table 2. 1/0 Blocks
READ (MB) WRITE (MB)
Apache Hadoop with 10 GigE 5,426 36,427
Hadoop-A with 10 GigE 2,441 22,713
1200 -
—=— Apache Hadoop with 10 GigE (Write) 1400 —©&— Apache Hadoop with 10 GigE (Wait Time)
o 1000 Apache Hadoop with 10 GigE (Read) . Hadoop-A with 10 GigE (Wait Time)
= —~— Hadoop-A with 10 GigE (Write) g 1200
2 —— Hadoop-A with 10 GigE (Read) 2
@ 800 & 1000
o =
£ q E @
H | 3 800
g 600 | 2
& 13 “‘?‘9\ 2 600 f[®
S 400 I\ ot 2
H E.' 400
£ i
2 20 | Vigern A 3 A 2 ol
0 400 600 800 1000 0 0 200 400 i 600 800 1000
Time (sec) Time (sec)
(a) I/0O Profiling (b) I/O Wait Time

Fig. 12. Disk Utilization of Hadoop Acceleration

To assess the effectiveness of Hadoop-A to improve the disk utilization, we have also
measured the disk accesses during data shuffling under Hadoop-A, and compared the
results with that of Apache Hadoop. We run TeraSort on 20 slave nodes with 160GB as
input size. On each node we run vmstat and iostat to collect I/O statistics and trace the
output every 2 seconds.

Table 2 shows the comparison of the number of bytes read and written by Hadoop
and Hadoop-A from and into local disks per slave node. Overall, Hadoop-A reduces
the number of read blocks by 55.1% and write blocks by 37.6%. This demonstrates that
Hadoop-A reduces the number of I/O operations and relieves the load of underlying
disks.

Fig. 12 (a) shows the progressive profile of read and write bytes during the job execu-
tion. During the first 200 seconds in which MapTasks are active, there is no substantial
difference between Hadoop and Hadoop-A in terms of disk I/O traffic. After the first
200 seconds, ReduceTasks start fetching and merging the intermediate data actively.
Because Hadoop-A uses the network-levitated merge algorithm which completely elim-
inates the disk access for the shuffling and merging of data segments, we observe that
Hadoop-A effectively reduces the number of bytes read from or written to the disks.
Therefore, disk I/O traffic is significantly reduced during this period.

As shown in section 3.2, I/O requests in Apache Hadoop experience long I/O wait
time, thus degrading the performance. In order to further analyze the benefit from the

Assessing the Performance Impact of High-Speed Interconnects on MapReduce 161

reduced disk accesses, we measure the I/O wait time in Hadoop-A, and compare it
with Apache Hadoop. The result is shown in Figure 12 (b). As shown in the figure,
Hadoop-A leads to similar or lower I/O wait time during the first 200 seconds, which
corresponds to the mapping phase of the job execution. As the job progresses, I/O wait
time of Hadoop-A is significantly reduced when job enters into the shuffle/merge and
reduce phases. This demonstrates that the reduction of disk accesses contributes to the
reduction of I/O wait time. Aggregately, these experiments indicate that Hadoop-A ef-
fectively improves I/O performance in Hadoop, thereby effectively shortening job exe-
cution time.

4 Related Work

Leveraging high performance interconnects to move data in the Hadoop ecosystem has
attracted numerous research interests from many organizations over the past a few years.
Huang et al. [17] designed an RDMA-based HBase over InfiniBand. In addition, they
pointed out the disadvantages of using Java Socket Interfaces in Hadoop ecosystem.
A recent evaluation [18] of Hadoop Distributed File system (HDFS) [11] used the
SDP [15] and IPoIB protocols of InfiniBand [19] to investigate the potential benefit
of leveraging fast networks for pipelined writing in HDFS. In the same work, authors
showed that Hadoop was unable to directly leverage the RDMA (Remote Direct Mem-
ory Access) communication mechanism available from high-performance RDMA inter-
connects. For that reason, to enhance the efficiency of HDFS, Islam et al. [20] modified
HDFS network connection structure to use RDMA over InfiniBand via JNI interfaces.
Jose et al. [21, 22] implemented a scalable memcached through taking advantage of
performance benefits provided by InfiniBand. But, although Hadoop MapReduce is a
fundamental basis of Hadoop ecosystem, there is lack of research on how to efficiently
leverage high performance interconnects in Hadoop MapReduce. [10] studied the feasi-
bility of importing RDMA support into the Apache Hadoop. Meanwhile, [23] measured
the overhead imposed by Java Virtual Machine on the Hadoop shuffling.

Adopting RDMA from high speed networks for fast data movement has been very
popular in various programming models and storage paradigms, such as MPIL. [24]
studied the pros and cons of using RDMA capabilities in a great details. Liu et al. [25]
designed RDMA-based MPI over InfiniBand. Yu er al. [26] implemented a scalable
connection management strategy for high-performance interconnects. Implementations
of PVFS [27] on top of RDMA networks such as InfiniBand and Quadrics were de-
scribed in [28] and [29], respectively. However, none of them have studied the impact
of high-speed inter-connection on Hadoop MapReduce framework.

5 Conclusions

In the Hadoop MapReduce framework, data shuffling accounts for a considerable
portion of the total execution time of MapReduce programs. Meanwhile, the current
technologies in interconnect fabric have made the speed of NIC comparable with RAM-
base memory. In this paper, we undertake a comprehensive evaluation on how Hadoop

162 Y. Wang et al.

MapReduce framework can be accelerated by leveraging high-performance intercon-
nects. We have examined the performance of Apache Hadoop and Hadoop Accelera-
tion framework on InfiniBand and 1/10 Gigabit Ethernet from the aspects of scalability,
data processing pipeline and resource utilization. Our experiment results reveal that
simply switching to the high-performance interconnects cannot effectively boost the
performance of Apache Hadoop due to the cost imposed by JVM and disk bottleneck
on Hadoop intermediate data shuffling. Moreover, with various application evaluated
on both Ethernet and InfiniBand environments, we demonstrate that Hadoop Acceler-
ation framework can significantly reduce the CPU utilization and job execution time
for MapReduce jobs that generate a large amount of intermediate data. Specifically,
Hadoop Acceleration can effectively reduce the execution time of Hadoop jobs by up to
49.5% and lower the CPU utilization by 46.4%. In the future, we plan to further eval-
uate the MapReduce programs on large clusters that consists of hundreds of thousands
nodes.

References

[1] Apache Hadoop Project, http: //hadoop.apache.org/

[2] Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Pro-
ceedings of the 6th Conference on Symposium on Opearting Systems Design & Implemen-
tation, OSDI 2004, vol. 6, p. 10. USENIX Association, Berkeley (2004)

[3] Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.: A
comparison of approaches to large-scale data analysis. In: Proceedings of the 35th SIGMOD
International Conference on Management of Data, SIGMOD 2009, pp. 165-178. ACM,
New York (2009)

[4] Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: Mapreduce
online. In: Proceedings of the 7th USENIX Conference on Networked Systems Design and
Implementation, NSDI 2010, p. 21. USENIX Association, Berkeley (2010)

[5] Seo, S., Jang, 1., Woo, K., Kim, L., Kim, J.S., Maeng, S.: HPMR: Prefetching and pre-
shuffling in shared MapReduce computation environment. In: CLUSTER, pp. 1-8 (August
2009)

[6] Rao, S., Ramakrishnan, R., Silberstein, A., Ovsiannikov, M., Reeves, D.: Sailfish: a frame-
work for large scale data processing. In: Proceedings of the Third ACM Symposium on
Cloud Computing, SoCC 2012, pp. 4:1-4:14. ACM, New York (2012)

[7] InfiniBand Trade Association: The InfiniBand Architecture,
http://www.infinibandta.org

[8] Recio, R., Culley, P., Garcia, D., Hilland, J.: An rdma protocol specification, version 1.0
(October 2002)

[9] High Performance Computing (HPC) on AWS,
http://aws.amazon.com/hpc-applications/

[10] Wang, Y., Que, X., Yu, W., Goldenberg, D., Sehgal, D.: Hadoop acceleration through net-
work levitated merge. In: Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2011, pp. 57:1-57:10. ACM,
New York (2011)

[11] Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technolo-
gies, MSST 2010, pp. 1-10. IEEE Computer Society, Washington, DC (2010)

http://hadoop.apache.org/
 http://www.infinibandta.org
 http://aws.amazon.com/hpc-applications/

[12]
[13]
[14]

[15]
[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Assessing the Performance Impact of High-Speed Interconnects on MapReduce 163

Que, X., Wang, Y., Xu, C., Yu, W.: Hierarchical merge for scalable mapreduce. In: Proceed-
ings of the 2012 Workshop on Management of Big Data Systems, MBDS 2012, pp. 1-6.
ACM, New York (2012)

Open Fabrics Alliance, http://www.openfabrics.org

Chu, J., Kashyap, V.: Transmission of IP over InfiniBand(IPoIB) (2006),
http://tools.ietf.org/html/rfcd391

InfiniBand Trade Association: Socket Direct Protocol Specification V1.0 (2002)

Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.: Delay
scheduling: a simple technique for achieving locality and fairness in cluster scheduling.
In: Proceedings of the 5th European Conference on Computer Systems, EuroSys 2010, pp.
265-278. ACM, New York (2010)

Huang, J., Ouyang, X., Jose, J., Wasi-ur-Rahman, M., Wang, H., Luo, M., Subramoni, H.,
Murthy, C., Panda, D.K.: High-performance design of hbase with rdma over infiniband.
In: 26th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2012,
Shanghai, China, May 21-25, pp. 774-785 (2012)

Sur, S., Wang, H., Huang, J., Ouyang, X., Panda, D.K.: Can High-Performance Intercon-
nects Benefit Hadoop Distributed File System? In: MASVDC 2010 Workshop in Conjunc-
tion with MICRO (December 2010)

Infiniband Trade Association, http://www.infinibandta.org

Islam, N.S., Rahman, M.W., Jose, J., Rajachandrasekar, R., Wang, H., Subramoni, H.,
Murthy, C., Panda, D.K.: High performance rdma-based design of hdfs over infiniband.
In: Proceedings of 2012 International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2012. ACM (2012)

Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J., Wasi-ur-Rahman, M., Islam, N.S.,
Ouyang, X., Wang, H., Sur, S., Panda, D.K.: Memcached design on high performance rdma
capable interconnects. In: ICPP, pp. 743-752. IEEE (2011)

Jose, J., Subramoni, H., Kandalla, K., Wasi-ur Rahman, M., Wang, H., Narravula, S., Panda,
D.K.: Scalable memcached design for infiniband clusters using hybrid transports. In: Pro-
ceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2012), pp. 236-243. IEEE Computer Society, Washington, DC (2012)
Wang, Y., Xu, C., Li, X., Yu, W.: Jvm-bypass for efficient hadoop shuffling. In: 27th IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2013. IEEE (2013)
Frey, PW., Alonso, G.: Minimizing the hidden cost of rdma. In: Proceedings of the 2009
29th IEEE International Conference on Distributed Computing Systems, ICDCS 2009, pp.
553-560. IEEE Computer Society, Washington, DC (2009)

Liu, J., Wu, J., Panda, D.K.: High performance rdma-based mpi implementation over infini-
band. International Journal of Parallel Programming 32, 167-198 (2004)

Yu, W., Gao, Q., Panda, D.K.: Adaptive connection management for scalable mpi over
infiniband. In: Proceedings of the 20th International Conference on Parallel and Distributed
Processing, IPDPS 2006, p. 102. IEEE Computer Society, Washington, DC (2006)

Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: PVFS: A Parallel File System For
Linux Clusters. In: Proceedings of the 4th Annual Linux Showcase and Conference, Atlanta,
GA, pp. 317-327 (October 2000)

Wu, J., Wychoff, P., Panda, D.K.: PVFS over InfiniBand: Design and Performance Evalua-
tion. In: Proceedings of the International Conference on Parallel Processing 2003, Kaohsi-
ung, Taiwan (October 2003)

Yu, W., Liang, S., Panda, D.K.: High Performance Support of Parallel Virtual File System
(PVFS2) over Quadrics. In: Proceedings of the 19th ACM International Conference on
Supercomputing, Boston, Massachusetts (June 2005)

http://www.openfabrics.org
http://tools.ietf.org/html/rfc4391
http://www.infinibandta.org

BigBench Specification V0.1

BigBench: An Industry Standard Benchmark for Big Data
Analytics

Tilmann Rabl', Ahmad Ghazal?, Minqing Hu?, Alain Crolotte?,
Francois Raab3, Meikel Poess?, and Hans-Arno Jacobsen®

! University of Toronto
2 Teradata Corp.
3 InfoSizing Inc.
4 Oracle Corp.

Abstract. In this article, we present the specification of BigBench, an
end-to-end big data benchmark proposal. BigBench models a retail prod-
uct supplier. The benchmark proposal covers a data model and a set of
big data specific queries. BigBench’s synthetic data generator addresses
the variety, velocity and volume aspects of big data workloads. The struc-
tured part of the BigBench data model is adopted from the TPC-DS
benchmark. In addition, the structured schema is enriched with semi-
structured and unstructured data components that are common in a
retail product supplier environment. This specification contains the full
query set as well as the data model.

1 Introduction

Big data (BD) is about increasing volume of data from a variety of sources
including structured, semi-structured and unstructured data. Some of the BD
sources are typically generated with high velocity like click streams and sensors
logs. This wealth of data provides a lot of new analytic and business intelligence
(BI) opportunities like fraud, churn and customer loyalty analysis.

Many commercial and open source systems were built or extended to store and
process BD. These tools are mostly parallel database management systems or
MapReduce (MR) based systems. There are no standards yet on BD processing,
but for the most part these systems provide SQL, UDF, MR or a mix of these
as an interface.

Even though there are no standards for BD yet, still there is a need to measure
and compare the performance of the different systems that claim to support BD.
Recently, there are quite a few efforts in the area of big data benchmarking (e.g.
PigMix!, GridMix?, GraySort?). Some of these benchmarks are focused on one
component of the system and others are focused on specific MR, systems.

! PigMix — https://cwiki.apache.org/confluence/display/PIG/PigMix
2 GridMix — http://hadoop.apache.org/docs/mapreduce/current/gridmix.html
3 Sort Benchmark Home Page — http://sortbenchmark.org

T. Rabl et al. (Eds.): WBDB 2012, LNCS 8163, pp. 164-201, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

https://cwiki.apache.org/confluence/display/PIG/PigMix
http://hadoop.apache.org/docs/mapreduce/current/gridmix.html
http://sortbenchmark.org

BigBench Specification V0.1 165

In this article, we present the specification of the end to end big data bench-
mark BigBench. BigBench is based on a fictitious retailer who sells products
to customers via physical and online stores. This specification completes our
previous publication that covered details on the data model, synthetic data gen-
erator, workload description, and metrics [1]. The workload queries are specified
in English and in Teradata Aster’s SQL-MR syntax [2,3]. We introduce new
metrics specific to BD data loading and workload execution. The feasibility of
the proposal is shown by applying it on the Teradata Aster DBMS (TAD). This
experiment involves generating 200 gigabyte of data and loading it into TAD.
The workload is executed as a single stream of queries.

The rest of this article is structured as follows. In Section 2, we describe the
BigBench data model. In Section 3, we give a short overview of the BigBench
data generation. We describe the BigBench workload in Section 4. Section 5
shows the results of our proof-of-concept evaluation of BigBench on Teradata
Aster. We conclude in Section 6. In Appendix A, we list all 30 BigBench queries
and Appendix B contains the complete schema for BigBench.

2 Data Model

BD is not about volume only. Douglas Laney described the 3 Vs of BD refer-
ring to volume, velocity and variety [4]. Velocity is an important issue in BD
since such data like clicks or sensor information are produced at an increasing
rate. Also, data comes in different forms like structured relational tables, semi-
structured key-value web clicks or unstructured social data text. Our data model
has the volume, variety and velocity elements as described in the following.

Structured Data Y Unstructured)
Marketprice Item \ Data
Sales Reviews
Web Page Customer /
\ / oo B
Y [] Adapted
Web Log TPC-DS
BigB h
Semi-Structured Data =] Big (Ier.1c
Specific

Fig. 1. Simplified BigBench Data Model

166 T. Rabl et al.

The variety property of our model is illustrated in Figure 1. The structured
part of BigBench is an adaption of the TPC-DS model which also depicts a
product retailer [5]. We borrowed the store and online sales part from that
model and added a table for competitor prices of the retailer.

The structured part is enriched with semi-structured and unstructured data
shown in the lower and right part of Figure 1. The semi-structured part’s content
is composed by clicks made by customers and guest users visiting the retailer
site. Some of these clicks are for completing a customer order. As shown in Figure
1, the semi-structured data is logically related to the Web Page, Customer and
Sales tables in the structured part. Our design assumes the semi-structured data
to be a key-value format similar to Apache web server log format.

Typically, database and MR systems would convert such format to a table/file
with a schema like (DateID, TimelD, SalesID, WebPagelD, UserID). However,
we do not require such conversion since some systems may choose to run analyt-
ics on the native key-value format. Product reviews is a growing source of online
retail data. We found such source to be an excellent representation for the un-
structured data in our model. Figure 1 shows product reviews in the right part
and its relationship to Date, Time, Item, Users and Sales tables in the struc-
tured part. One implementation of the product reviews is a single table/file with
a structure like (DateID, TimeID, SalesID, ItemID, ReviewRating, ReviewText).
The full schema is specified in SQL in Apendix B.

3 Data Generation

Our work also provides a design and implementation of a data generator for the
proposed BigBench data model. Our data generator is based on an extension of
PDGF [6]. PDGF is a parallel data generator that is capable of producing large
amounts of data for an arbitrary schema. The existing PDGF can be used to
generate the structured part of the BigBench model. However, it is not capable
of generating the unstructured product reviews text. First, PDGF is enhanced
to produce a key-value data set for a fixed set of required and optional keys.
This is sufficient to generate the weblogs part of BigBench.

The main challenge in product reviews is producing the unstructured text. We
developed and implemented an algorithm that produces synthetic text based on
sample input text. The algorithm uses a Markov Chain technique that extracts
key words and builds a dictionary based on these key words. The new algorithm
is applied for our use case by using some real product reviews from an online
retailer for the initial sample data. PDGF interacts with the review generator
through an API sending a product category as input and receiving a product
review text for that category.

The volume dimension of our model is far simpler than the variety discussion
and previous data generators had a good handle on that. PDGF handles the
volume well since it can scale the size of the data based on a scale factor. It also
runs efficiently for large scale factors since it runs in parallel and can leverage
large systems dedicated for the benchmark.

BigBench Specification V0.1 167

For our proof-of-concept system, the tables that are originating from TPC-DS
are generated using DSdgen, the TPC-DS standard data generator?.

4 Workload

The second major component of BigBench is the specification of workload queries
applied on the BigBench data model. In terms of business questions, we found the
big data retail analytics by McKinsey serves our purpose given that BigBench
is about retail [7]. In [7] five major areas of big data analytics are described
namely: marketing, merchandising, operations, supply chain and new business
models. These areas are further broken down into sub-functions. For example,
marketing can be broken down into cross selling, sentiment analysis, etc. We
used these 5 areas and added reporting as a sixth area. We postulate that a big
data benchmark should have some traditional business intelligence or reporting
type of queries.

In addition to the big data retail business levers above, we looked at the
different technical aspects the BigBench queries should measure. We identified
the following three areas:

— The type of the input data the query is addressing. We made sure each
of the structured, semi-structured, unstructured and their combinations are
covered in the queries. Out of the 30 queries 18 (60%) are exclusively on the
structured data, 7 (23.3%) incorporated semi-structured data, and 5 (16.7%)
additionally incorporated unstructured data.

— The type of processing appropriate for the query. This dimension targets the
two common paradigms of SQL (and similar constructs like HQL) and MR.
Thus, our queries can be answered by SQL, others by MR or a mix of both.
Note that some of the perceived MR queries can also be written through
complex SQL constructs like window functions and therefore we identify the
two classes in this dimension as simple SQL and MR or complex SQL. In this
definition, 12 (40%) queries are declarative (pure SQL), 5 (16.7%) queries
are procedural (MR), and 13 (43.3%) are a mix.

— The third important technical dimension is the different algorithms of MR,
processing as described by the Apache MAHOUT system. Classes of algo-
rithms used in the BigBench queries are statistical analysis (6 queries), path
analysis (5 queries), text analysis (4 queries), association mining (4 queries),
classification (1 query), clustering (3 queries), reporting (8 queries).

The categorization along technical dimensions with corresponding query num-
bers is shown in Table 4. The implementation technique is either declarative,
procedural, or mixed. Declarative queries are pure SQL queries, that could
also be processed by stock relational database systems. Procedural queries are
pure MapReduce implementations that do not need joins. Mixed queries contain
MapReduce functions along with relational operations, such as joins or views.

4 TPC-DS and DSDgen is available at http://www.tpc.org/tpcds/default.asp

http://www.tpc.org/tpcds/default.asp

168 T. Rabl et al.

Query Type Queries Percent Data Type Queries Percent
6,7, 9. 13 14, 15, 16, 17, 19
Declarative 14, 16, 17, 19, 40% Structured o) 60%
o1 29 25 24 20, 21, 22, 23, 24,
P 25, 26, 29
1, 4,5, 8,
. 11, 12, 15, . 2,3,4, 5,
Mixed 18, 20. 25, 43% Semi-Structured 8. 12, 30 23%
%6’2%’30 10, 11, 1
Procedural ! 3, 10, 17% Unstructured 0, 11, 18, 17%

27, 28 27, 28

The queries were specified to cover the areas of big data analytics as well
as the technical dimensions of big data processing. Below is an overview of the
business functions as proposed by McKinsey [7] and the associated BigBench
queries:

Marketing 18.6%
Cross-selling 1,2,3,29.30
Customer micro-segmentation 4,5,6,9,25,26
Sentiment analysis 8,10,11,18,28
Enhancing multichannel consumer experiences 12,13
Merchandising 16.7%
Assortment optimization 14,21,27
Pricing optimization 16,17
Operations 13.3%
Performance transparency 7,15
Customer return analysis 19,20
Supply chain 6.7%
Inventory management 22,23
New business models 3.3%
Price comparison 24

In Appendix A, we list all 30 BigBench queries. It has to be noted that some
of the queries are identical to TPC-DS queries, this is true for the SQL code as
well as the English description. For those queries, we list the original template
number in brackets in the description below.

5 Evaluation

We chose to initially run BigBench on the Teradata Aster DBMS. TAD has all
features needed to store and process big data. Data can be stored as tables and
queries can be executed using the SQL-MR interface that extends declarative
SQL with MR processing.

TAD is based on the nCluster technology. nCluster is a shared-nothing parallel
database, optimized for data warehousing and analytic workloads [2]. nCluster

BigBench Specification V0.1 169

manages a cluster of commodity server nodes, and is designed to scale out to
hundreds of nodes and scale up to petabytes of active data.

The test was executed on a 8 node Teradata Aster appliance. Each node is
a Dell server with two quad-core Xeon 5500 at 3.07Ghz and hardware RAID 1
with 8 2.5” drives.

For the test, DSdgen is used to produce the selected TPC-DS tables included
in our data model. We used PDGF to generate the additional parts of the data
model. The new parts produced by PDGF include the Item marketprice table,
an Apache-style web server log, and the XML configuration for the online review
generator. PDGF is also configured to generate references (PK-FK relationships)
in the new data that matches the TPC-DS data. In the future, we plan on
extending PDGF to handle the generation of TPC-DS tables without the need
for DSdgen.

The data was loaded into TAD as tables. The web logs were parsed and con-
verted to a table similar to the structure shown in Appendix B. Product reviews
are also interpreted as a table assuming the review text as a VARCHAR(5000).

As a proof of concept, we executed the workload as a single stream without
velocity on a ca. 130 GB data set. This corresponds to a scale factor 100 in TPC-
DS. Since we adapt the velocity methodology from TPC-DS, it and can easily
be implemented with a simple driver that periodically adds data to the system
and re-submits a new stream of queries. Furthermore, the addition of concurrent
query streams can be handled similarly to benchmarks such as TPC-H.

The query processing times for the individual queries can be seen below.

Query run-time (sec) Query run-time (sec)

Al 200 Al16 8700.045
A2 12.529 Al17 146.879
A3 19.948 A18 1507.33
A4 33.345 A19 11.368
A5 9.462 A20 345

A6 11.652 A21 109.817
A7 1.176 A22 114.555
A8 12.581 A23 1113.373
A9 8.698 A24 11.714
A10 24.847 A25 254.474
All 2713.042 A26 2708.261
Al12 918.575 A27 4617
Al13 1572 A28 381.005
Al4 7952 A29 7.201
Al5 41.747 A30 6208

6 Conclusion

In summary, we present the first end-to-end benchmark for big data analytics.
While previous work focused on one type of data or processing, we produced
30 queries that address all the three technical dimensions described above. The

170 T. Rabl et al.

queries cover all the six major business areas of DB analytics mentioned earlier.
We developed and implemented a novel technique for producing unstructured
text data and integrated it with traditional structured data generators. We con-
ducted a proof of concept of the proposal by executing it on the Teradata Aster
DBMS.

Currently, all queries are translated to the Hadoop eco-system. The complete
data generator will be migrated to PDGF, which will make it possible to gen-
erate more complex dependencies consistently across the different parts of the
schema. This will add correlations that are desirable for exercising analytical
queries. Although, basic metrics were specified in [1], we will extend this part of
the specification with additional approaches, directly targeting big data related
questions.

References

1. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen., H.A.:
BigBench: Towards an industry standard benchmark for big data analytics. In:
Proceedings of the ACM SIGMOD Conference (2013)

2. Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: A Practical Ap-
proach to Self-Describing, Polymorphic, and Parallelizable User-Defined Functions.
PVLDB 2(2), 1402-1413 (2009)

3. Teradata Aster: Teradata Aster Big Analytics Appliance 3H - Analytics Foun-
dation User Guide. Release 5.0.1 edn (2012), http://www.info.teradata.com/
edownload.cfm?itemid=123060004

4. Laney, D.: 3D Data Management: Controlling Data Volume, Velocity and Variety.
Technical report, Meta Group (2001)

5. Nambiar, R.O., Poess, M.: The Making of TPC-DS. In: VLDB, pp. 1049-1058 (2006)

6. Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A Data Generator for Cloud-Scale
Benchmarking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417,
pp. 41-56. Springer, Heidelberg (2011)

7. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.:
Big data: The Next Frontier for Innovation, Competition, and Productivity. Tech-
nical report, McKinsey Global Institute (2011), http://www.mckinsey.com/
insights/mgi/research/technology and innovation/big data the next
frontier for innovation

A BigBench Queries

Below all 30 queries of the BigBench proposal are shown. The queries are speci-
fied in English, to give a high-level understanding what the business question of
each query is. Additionally, an SQL-MR syntax-based description is given [2,3].

Query 1. Find products are sold together frequently in given stores. Only prod-
ucts in certain categories sold in specific stores are considered, and ”sold to-
gether frequently” means at least 50 customers bought these products together
in a transaction.

http://www.info.teradata.com/edownload.cfm?itemid=123060004
http://www.info.teradata.com/edownload.cfm?itemid=123060004
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation

BigBench Specification V0.1 171

SELECT pidl AS iteml, pid2 AS item2, COUNT(*) AS cnt
FROM basket_generator (ON
(SELECT s.ss_ticket_number AS oid, s.ss_item_sk AS pid
FROM store_sales100 s
INNER JOIN item100 i ON s.ss_item_sk = i_item_sk
WHERE i.i_category_id in (1,4,6) and s.ss_store_sk = 10
PARTITION BY oid
basket_size(2)
basket_item(’pid’)
item_set_max(500)
)
GROUP BY 1,2
HAVING COUNT(pidl) > 49
ORDER BY 1,3,2;

Listing 1.1. Query 1

Query 2. Find the top 30 products that are mostly viewed together with a given
product in online store. Note that the order of products viewed does not matter.

SELECT pidl AS iteml, pid2 AS item2, COUNT (1) AS cnt
FROM basket_generator (ON
(SELECT wcs_user_sk AS cid, wcs_item_sk AS pid
FROM web_clickstreams
WHERE wcs_item_sk IS NOT NULL
AND wcs_user_sk IS NOT NULL
)
PARTITION BY cid
basket_size(2)
basket_item(’pid’)
item_set_max(500)
)
WHERE pidl IN (1416,9082,1547)
GROUP BY 1,2
ORDER BY 1,3,2
LIMIT 30;

Listing 1.2. Query 2

Query 3. Find the last 5 products that are mostly viewed before a given product
was purchased online. Only products in certain categories and viewed within 10
days before the purchase date are considered.

SELECT lastviewed_item , purchased_item, COUNT (%)
FROM nPath (ON web_clickstreams
PARTITION BY wcs_user_sk
ORDER BY wcs_click_date_sk, wcs_click_time_sk
MODE (’NONOVERLAPPING’)
PATTERN (’A+.B’)
SYMBOLS (true AS A, wcs_sales_sk IS NOT NULL AS B)

RESULT (
LAST (wcs_item_sk OF A) AS lastviewed_item,
LAST (wcs_click_date_sk OF A) AS lastviewed_date,
FIRST (wcs_item_sk OF B) AS purchased_item,
FIRST (wcs_click_date_sk OF B) AS purchased_date

)
)

WHERE purchased_item

= 16891

AND purchased_date - lastviewed_date <

GROUP BY 1,2;

11

Listing 1.3. Query 3

172 T. Rabl et al.

Query 4. Shopping cart abandonment analysis: For users who added products
in their shopping carts but did not check out in the online store, find the average
number of pages they visited during their sessions.

DROP VIEW sessions;

CREATE VIEW sessions AS (
SELECT x*
FROM sessionize (ON
(SELECT c.wcs_user_sk as uid, c.wcs_item_sk as item,
w.wp_type as wptype,
d.d_date + t.t_time*INTERVAL ’1 ,second’ as tstamp
FROM web_clickstreams c, web_page w, date_dim d, time_dim t
WHERE c.wcs_web_page_sk = w.wp_web_page_sk
AND c.wcs_click_date_sk = d.d_date_sk
AND c.wcs_click_time_sk = t.t_time_sk
AND c.wcs_user_sk IS NOT NULL
) AS clicks
PARTITION BY uid
ORDER BY tstamp
timecolumn (’tstamp’)
timeout (’3007)
)
ORDER BY wuid, tstamp
);

DROP VIEW cart_abadon;
CREATE VIEW cart_abadon AS (
SELECT *
FROM nPath (ON sessions
PARTITON BY sessionid
ORDER BY tstamp
MODE (’NONOVERLAPPING?’)
PATTERN (°C*.A.Bx$’)
SYMBOLS (wptype = ’dynamic’ AS A, true as C, wptype <> ’order’ AS B)
RESULT (FIRST_NOTNULL (sessionid OF C) AS sid,
LAST_NOTNULL (tstamp OF B) AS end_s,
FIRST_NOTNULL (tstamp OF C) AS start_s

)

SELECT c.sid, COUNT (%) AS s_pages
FROM cart_abadon c, sessions s

WHERE s.sessionid = c.sid

GROUP BY 1;

Listing 1.4. Query 4

Query 5. Build a model using logistic regression: based on existing users online
activities and demographics, for a visitor to an online store, predict the visitors
likelihood to be interested in a given category.

DROP VIEW logstic_reg_t;

CREATE VIEW logstic_reg_t AS (

SELECT c_customer_sk, college_education, male,
CASE WHEN clicks_in_category > 2 THEN true ELSE false END AS 1label

FROM (
SELECT c_customer_sk,
CASE WHEN (cd_education_status = ’Advanced Degree’
OR cd_education_status = ’College’
OR cd_education_status = ’4,yr Degree’
OR cd_education_status = ’2,yr Degree.’)

THEN TRUE ELSE FALSE END AS college_education,
CASE WHEN cd_gender = ’M’ THEN TRUE ELSE FALSE END AS male,

BigBench Specification V0.1 173

SUM (CASE WHEN i_category=’Books’ THEN 1 ELSE 0 END) AS
clicks_in_category
FROM customer, customer_demographics, item, web_clickstreams

WHERE wcs_user_sk = c_customer_sk
AND c_current_cdemo_sk = cd_demo_sk
AND wcs_item_sk = i_item_sk

GROUP BY 1,2,3) C
)

DROP TABLE books_interests;
SELECT *
FROM log_regression (

ON (SELECT 1)
PARTITION BY 1
DATABASE (’benchmark’)
USERID (’benchmark’)
PASSWORD (’benchmark’)
INPUTTABLE(’ logstic_reg_t’)
OUTPUTTABLE(’books_interests’)
COLUMNNAMES(’label’,’college_education’,’male’)

Listing 1.5. Query 5

Query 6. (TPC-DS 4) Find customers who spend more money via web than in
stores for a given year. Report customers first name, last name, their country of
origin and identify if they are preferred customer.

BEGIN;
DROP TABLE IF EXISTS qO04_year_total_8;

CREATE TEMP TABLE qO4_year_total_8 (

customer_id VARCHAR (186) ,
customer_first_name CHAR (20),
customer_last_name CHAR (30) ,
c_preferred_cust_flag CHAR(1),
c_birth_country VARCHAR (20) ,
c_login CHAR (13),
c_email_address CHAR (50) ,
dyear INTEGER,
year_total DECIMAL (15,2),
sale_type VARCHAR (2)

) DISTRIBUTE BY HASH (customer_id) AS (

SELECT c_customer_id::VARCHAR AS customer_id,
c_first_name AS customer_first_name,
c_last_name AS customer_last_name,
c_preferred_cust_flag,
c_birth_country,

c_login,

c_email_address,

sv.d_year AS dyear,
sv.year_total AS year_total,
’s’::VARCHAR AS sale_type

FROM customer,
(SELECT ss.ss_customer_sk AS customer_sk,
dt.d_year AS d_year,
SUM(((ss_ext_list_price - ss_ext_wholesale_cost
- ss_ext_discount_amt) + ss_ext_sales_price) / 2)
AS year_total
FROM store_sales ss, date_dim dt
WHERE ss.ss_sold_date_sk = dt.d_date_sk
GROUP BY ss.ss_customer_sk, dt.d_year) sv
WHERE c_customer_sk = sv.customer_sk
UNION ALL
SELECT c_customer_id::VARCHAR AS customer_id,
c_first_name AS customer_first_name,

174 T. Rabl et al.

c_last_name AS customer_last_name,
c_preferred_cust_flag,
c_birth_country,

c_login,

c_email_address,

cv.d_year AS dyear,
cv.year_total AS year_total,
’c’::VARCHAR AS sale_type

FROM customer,
(SELECT ws.ws_bill_customer_sk AS customer_sk
dt.d_year AS d_year
SUM(((ws_ext_list_price - ws_ext_wholesale_cost
- ws_ext_discount_amt) + ws_ext_sales_price) / 2)
AS year_total
FROM web_sales ws,

date_dim dt

WHERE ws.ws_sold_date_sk = dt.d_date_sk

GROUP BY ws.ws_bill_customer_sk, dt.d_year) cv

WHERE c_customer_sk = cv.customer_sk);

ANALYZE qO4_year_total_8;

SELECT t_s_secyear.customer_id,
t_s_secyear.customer_first_name,
t_s_secyear.customer_last_name,
t_s_secyear.c_preferred_cust_flag,
t_s_secyear.c_birth_country,
t_s_secyear.c_login

FROM qO04_year_total_8 t_s_firstyear,
q04_year_total_8 t_s_secyear,
q04_year_total_8 t_c_firstyear,
q04_year_total_8 t_c_secyear

WHERE t_s_secyear.customer_id = t_s_firstyear.customer_id
AND t_s_firstyear.customer_id = t_c_secyear.customer_id
AND t_s_firstyear.customer_id = t_c_firstyear.customer_id
AND t_s_firstyear.sale_type = g’

AND t_c_firstyear.sale_type = ¢’

AND t_s_secyear.sale_type = g’

AND t_c_secyear.sale_type = ¢’

AND t_s_firstyear.dyear = 1999

AND t_s_secyear.dyear = 1999 + 1

AND t_c_firstyear.dyear = 1999
AND t_c_secyear.dyear =
AND t_s_firstyear.year_total > 0
AND t_c_firstyear.year_total > 0
AND CASE WHEN t_c_firstyear.year_total > 0
THEN t_c_secyear.year_total / t_c_firstyear.year_total
ELSE NULL END >
CASE WHEN t_s_firstyear.year_total > 0
THEN t_s_secyear.year_total / t_s_firstyear.year_total
ELSE NULL END
ORDER BY t_s_secyear.customer_id,
t_s_secyear.customer_first_name,
t_s_secyear.customer_last_name,
t_s_secyear.c_preferred_cust_flag,
t_s_secyear.c_birth_country,
t_s_secyear.c_login
LIMIT 100;

DROP TABLE IF EXISTS qO04_year_total_8;
END;

Listing 1.6. Query 6

BigBench Specification V0.1 175

Query 7. (TPC-DS 6) List all the stores with at least 10 customers who during
a given month bought products with the price tag at least 20% higher than the
average price of products in the same category.

BEGIN;
DROP TABLE IF EXISTS qO6_specific_month_88;
DROP TABLE IF EXISTS qO6_cat_avg_price_88;

CREATE DIMENSION TABLE qO06_specific_month_88 AS
SELECT DISTINCT (d_month_seq) AS d_month_seq
FROM date_dim
WHERE d_year = 2002
AND d_moy = 7;

CREATE DIMENSION TABLE qO6_cat_avg_price_88 AS
SELECT i_category AS i_category,
AVG (i_current_price) * 1.2 AS avg_price
FROM item
GROUP BY i_category;

SELECT a.ca_state AS state, count(*) as cnt
FROM customer_address a, customer c,
store_sales s, date_dim d, item i,
q06_specific_month_88 m, qO06_cat_avg_price_88 p

WHERE a.ca_address_sk = c.c_current_addr_sk
AND c.c_customer_sk = s.ss_customer_sk
AND s.ss_sold_date_sk = d.d_date_sk
AND s.ss_item_sk = i.i_item_sk
AND d.d_month_seq = m.d_month_seq
AND p.i_category = i.i_category

AND i.i_current_price > p.avg_price
GROUP BY a.ca_state
HAVING COUNT (%) >= 10
ORDER BY cnt
LIMIT 100;

DROP TABLE IF EXISTS qO06_specific_month_88;
DROP TABLE IF EXISTS qO6_cat_avg_price_88;
END;

Listing 1.7. Query 7

Query 8. For online sales, compare the total sales in which customers checked
online reviews before making the purchase and that of sales in which customers
did not read reviews. Consider only online sales for a specific category in a given
year.

BEGIN;
DROP VIEW clicks;
CREATE VIEW clicks AS (

SELECT c.wcs_item_sk AS item,
c.wcs_user_sk AS uid,
.wcs_click_date_sk AS c_date,
.wcs_click_time_sk AS c_time,

.wcs_sales_sk AS sales_sk,
w.wp_type AS wpt
FROM web_clickstreams c, web_page w
WHERE c.wcs_web_page_sk = w.wp_web_page_sk
and c.wcs_user_sk IS NOT NULL

o o o0

)

DROP VIEW sales_review;
CREATE VIEW sales_review AS (
SELECT s_sk

176 T. Rabl et al.

FROM nPath(ON clicks
PARTITION BY uid
ORDER BY c_date, c_time
MODE (’NONOVERLAPPING?)
PATTERN (’A+.C*.B’)
SYMBOLS (wpt = ’review’ AS A, TRUE AS C,
sales_sk IS NOT NULL AS B)
RESULT (FIRST (c_date OF B) AS s_date,
FIRST (sales_sk OF B) AS s_sk))
WHERE s_date > 2451424 AND s_date <2451424+365
);

SELECT SUM (CASE WHEN ws.ws_sk IN (SELECT * FROM sales_review)
THEN ws_net_paid
ELSE 0 END) AS review_sales_amount,
SUM (ws_net_paid) -
SUM (CASE WHEN ws.ws_sk IN (SELECT * FROM sales_review)
THEN ws_net_paid
ELSE 0 END) AS no_review_sales_amount
FROM web_sales ws
WHERE ws.ws_sold_date_sk > 2451424
AND ws.ws_sold_date_sk <2451424+365;
END;

Listing 1.8. Query 8

Query 9. (TPC-DS 48) Calculate the total sales by different types of customers
(e.g., based on marital status, education status), sales price and different com-
binations of state and sales profit.

SELECT SUM (ss_quantity)
FROM store_sales, store, customer_demographics,
customer_address , date_dim
WHERE s_store_sk = ss_store_sk
AND ss_sold_date_sk = d_date_sk
AND d_year = 1998
AND ((cd_demo_sk = ss_cdemo_sk

AND cd_marital_status = ’M’
AND cd_education_status = ’4,yr Degree’
AND ss_sales_price between 100.00 AND 150.00)
OR
(cd_demo_sk = ss_cdemo_sk
AND cd_marital_status = ’M’
AND cd_education_status = ’4,yr Degree’
AND ss_sales_price between 50.00 AND 100.00)
OR
(cd_demo_sk = ss_cdemo_sk
AND cd_marital_status = ’M’
AND cd_education_status = ’4,yr Degree’

AND ss_sales_price between 150.00 AND 200.00))
AND ((ss_addr_sk = ca_address_sk
AND ca_country = ’UnitedStates’
AND ca_state in (’KY’, ’GA’, ’NM’)
AND ss_net_profit between 0 AND 2000)
OR
(ss_addr_sk = ca_address_sk
AND ca_country = ’United_States’
AND ca_state in (’MT’, °0OR’, ’IN’)
AND ss_net_profit between 150 AND 3000)
OR
(ss_addr_sk = ca_address_sk
AND ca_country = ’United_ States’
AND ca_state in (’WI’, ’MO’, ’WV?’)
AND ss_net_profit between 50 AND 25000));

Listing 1.9. Query 9

BigBench Specification V0.1 177

Query 10. For all products, extract sentences from its product reviews that
contain positive or negative sentiment and display the sentiment polarity of the
extracted sentences.

SELECT pr_item_sk, out_content, out_polarity, out_sentiment_words
FROM ExtractSentiment

(ON product_reviews100
TEXT_COLUMN (’pr_review_content’)
MODEL (’dictionary’)
LEVEL (’sentence’)
ACCUMULATE (’pr_item_sk’)
)

WHERE out_polarity = ’NEG’

OR out_polarity = ’P0S’;

Listing 1.10. Query 10

Query 11. For a given product, measure the correlation of sentiments, including
the number of reviews and average review ratings, on product monthly revenues.

BEGIN;
DROP VIEW IF EXISTS review_stats;
CREATE VIEW review_stats AS(
SELECT p.pr_item_sk AS pid,
CAST(p.r_count AS INT) AS reviews_count,
CAST(p.avg_rating AS INT) AS avg_rating,
CAST(s.revenue AS INT) AS m_revenue
FROM (SELECT pr_item_sk, COUNT(*) AS r_count,
AVG(pr_review_rating) AS avg_rating
FROM product_reviews
WHERE pr_item_sk IS NOT NULL
GROUP BY 1) p
JOIN
(SELECT ws_item_sk, SUM(ws_net_paid) AS revenue
FROM web_sales
WHERE ws_sold_date_sk > 2452642-30
AND ws_sold_date_sk < 2452642
AND ws_item_sk IS NOT NULL
GROUP BY 1) s
ON p.pr_item_sk = s.ws_item_sk);
SELECT =*
FROM corr_reduce (ON
corr_map (ON
review_stats
COLUMNS (’[m_revenue:reviews_count],[m_revenue:avg_ratingl’)
KEY_NAME (°k’)
)
PARTITION BY k);

DROP VIEW review_stats;
END;

Listing 1.11. Query 11

Query 12. Find all customers, who viewed items of a given category on the web
in a given month and year that was followed by an in-store purchase in the three
consecutive months.

SELECT *
FROM nPath (
ON (SELECT c.wcs_item_sk AS item,
c.wcs_user_sk AS uid,

178 T. Rabl et al.

c.wcs_click_date_sk AS c_date,
c.wcs_click_time_sk AS c_time
FROM web_clickstreams c, item i
WHERE c.wcs_item_sk = i.i_item_sk
AND i.i_category in (’Books’, ’Electronics’)
AND c.wcs_user_sk IS NOT NULL
AND c.wcs_click_date_sk > 2451424
AND c.wcs_click_date_sk < 2451424+30) AS click
PARTITION BY uid
ORDER BY c_date, c_time
ON (SELECT s.ss_item_sk AS item,
s.ss_customer_sk AS uid,
s.ss_sold_date_sk AS s_date,
s.ss_sold_time_sk AS s_time
FROM store_sales s, item i
WHERE s.ss_item_sk = i.i_item_sk
AND i.i_category in (’Books’, ’Electronics’)
AND s.ss_customer_sk IS NOT NULL
AND s.ss_sold_date_sk > 2451424
AND s.ss_sold_time_sk < 2451424+120) AS sale
PARTITION BY uid order by s_date, s_time
MODE (’NONOVERLAPPING?’)
PATTERN (’ (c+).(s)’)
SYMBOLS (click.uid IS NOT NULL AS c,
sale.uid IS NOT NULL AS s)
RESULT (FIRST(c_date OF c) AS c_date,
FIRST(s_date OF s) AS s_date,
FIRST(sale.uid OF s) AS user_sk)

Listing 1.12. Query 12

Query 15. (TPC-DS 74) Display customers with both store and web sales in
consecutive years for whom the increase in web sales exceeds the increase in
store sales for a specified year.

BEGIN;

DROP TABLE IF EXISTS q74_customer_year_total_880;

CREATE TEMP TABLE q74_customer_year_total_880(
customer_id VARCHAR (16) ,
customer_first_name CHAR(20)
customer_last_name CHAR (30)

year INTEGER

year_total DECIMAL (15,2)

sale_type VARCHAR (2))

DISTRIBUTE BY hash (customer_id) AS

SELECT c_customer_id customer_id,
c_first_name customer_first_name,
c_last_name customer_last_name,
d_year year,
SUM(ss_net_paid) year_total,
s’ ::VARCHAR sale_type

FROM customer, store_sales, date_dim
WHERE c_customer_sk = ss_customer_sk

AND ss_sold_date_sk = d_date_sk
AND d_year IN (1999 ,1999 + 1)
GROUP BY c_customer_id, c_first_name,
c_last_name, d_year

UNION ALL

SELECT c_customer_id customer_id,
c_first_name customer_first_name,
c_last_name customer_last_name,
d_year year,

SUM(ws_net_paid) year_total,
w’::VARCHAR sale_type

BigBench Specification V0.1 179

FROM customer, web_sales, date_dim
WHERE c_customer_sk = ws_bill_customer_sk
AND ws_sold_date_sk = d_date_sk
AND d_year IN (1999 ,1999 + 1)
GROUP BY c_customer_id, c_first_name,
c_last_name, d_year;

SELECT t_s_secyear.customer_id, t_s_secyear.customer_first_name,
t_s_secyear. customer_last_name
FROM q74_customer_year_total_880 t_s_firstyear,
q74_customer_year_total_880 t_s_secyear,
q74_customer_year_total_880 t_w_firstyear,
q74_customer_year_total_880 t_w_secyear

WHERE t_s_secyear.customer_id = t_s_firstyear.customer_id
AND t_s_firstyear.customer_id = t_w_secyear.customer_id
AND t_s_firstyear.customer_id = t_w_firstyear.customer_id
AND t_s_firstyear.sale_type = g’

AND t_w_firstyear.sale_type = Ty’

AND t_s_secyear.sale_type = g’

AND t_w_secyear.sale_type = Ty’

AND t_s_firstyear.year = 1999

AND t_s_secyear.year = 1999 + 1

AND t_w_firstyear.year = 1999
AND t_w_secyear.year =
AND t_s_firstyear.year_total > 0
AND t_w_firstyear.year_total > 0
AND CASE WHEN t_w_firstyear.year_total > 0
THEN t_w_secyear.year_total / t_w_firstyear.year_total
ELSE NULL END
> CASE WHEN t_s_firstyear.year_total > 0
THEN t_s_secyear.year_total / t_s_firstyear.year_total
ELSE NULL END
ORDER BY 1
LIMIT 100;

DROP TABLE IF EXISTS q74_customer_year_total_880;
END;

Listing 1.13. Query 13

Query 14. (TPC-DS 90) What is the ratio between the number of items sold
over the internet in the morning (8 to 9am) to the number of items sold in the
evening (7 to 8pm) of customers with a specified number of dependents. Consider
only websites with a high amount of content.

SELECT CAST(amc AS DECIMAL (15,4)) / CAST(pmc AS DECIMAL (15,4)) am_pm_ratio
FROM (SELECT COUNT (%) amc
FROM web_sales, household_demographics, time_dim, web_page wp
WHERE ws_sold_time_sk = time_dim.t_time_sk
AND ws_ship_hdemo_sk = household_demographics.hd_demo_sk
AND ws_web_page_sk = wp.wp_web_page_sk
AND time_dim.t_hour BETWEEN 8 AND 8+1
AND household_demographics.hd_dep_count = 5
AND wp.wp_char_count BETWEEN 5000 AND 5200) at,
(SELECT COUNT (*) pmc
FROM web_sales, household_demographics , time_dim, web_page wp
WHERE ws_sold_time_sk = time_dim.t_time_sk
AND ws_ship_hdemo_sk = household_demographics.hd_demo_sk
AND ws_web_page_sk = wp.wp_web_page_sk
AND time_dim.t_hour BETWEEN 19 AND 19+1
AND household_demographics.hd_dep_count = 5
AND wp.wp_char_count BETWEEN 5000 AND 5200) pt
ORDER BY am_pm_ratio ;

Listing 1.14. Query 14

180 T. Rabl et al.

Query 15. Find the categories with flat or declining sales for in store purchases
during a given year for a given store.

BEGIN;
DROP VIEW IF EXISTS category_coefficient;
DROP VIEW IF EXISTS time_series_category;

CREATE VIEW time_series_category AS (
SELECT i.i_category_id AS cat,
s.ss_sold_date_sk AS d,
SUM(s.ss_net_paid) AS sales
FROM store_sales s, item i
WHERE s.ss_item_sk = i.i_item_sk
AND i.i_category_id IS NOT NULL
AND s.ss_sold_date_sk > 2451424
AND s.ss_sold_date_sk < 2451424+365
AND s.ss_store_sk = 10
GROUP BY 1,2
);

CREATE VIEW category_coefficient AS (
SELECT 1 AS category, coefficient_index, value AS slope
FROM linreg (ON

linregmatrix (ON

(SELECT d, sales

FROM time_series_category

WHERE cat = 1)

) PARTITION BY 1

)
WHERE coefficient_index = 1
UNION ALL

SELECT 2, coefficient_index, value
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_category
WHERE cat = 2)
) PARTITION BY 1

)
WHERE coefficient_index = 1
UNION ALL

SELECT 3, coefficient_index, value
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_category
WHERE cat = 3)
) PARTITION BY 1
)
WHERE coefficient_index = 1
UNION ALL
SELECT 4, coefficient_index, value
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_category
WHERE cat = 4)
) PARTITION BY 1
)
WHERE coefficient_index = 1
UNION ALL
SELECT 5, coefficient_index, value
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_category
WHERE cat = 5)
) PARTITION BY 1

BigBench Specification V0.1 181

)
WHERE coefficient_index = 1
UNION ALL
SELECT 6, coefficient_index, value
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_category
WHERE cat = 6)
) PARTITION BY 1
)
WHERE coefficient_index = 1
UNION ALL
SELECT 7, coefficient_index, value
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_category
WHERE cat = 7)
) PARTITION BY 1
)
WHERE coefficient_index = 1
UNION ALL
SELECT 8, coefficient_index, value
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_category
WHERE cat = 8)
) partition by 1
)
WHERE coefficient_index = 1
UNION ALL
SELECT 9, coefficient_index, value
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_category
WHERE cat = 9)
) partition by 1

WHERE coefficient_index = 1
UNION ALL
SELECT 10, coefficient_index, value
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_category
WHERE cat = 10)
) partition by 1
)
WHERE coefficient_index = 1;

SELECT * FROM category_coefficient WHERE slope < 0;

DROP VIEW category_coefficient;
DROP VIEW time_series_category;
END;

Listing 1.15. Query 15

Query 16. (TPC-DS 40) Compute the impact of an item price change on the
store sales by computing the total sales for items in a 30 day period before and
after the price change. Group the items by location of warehouse where they
were delivered from.

182 T. Rabl et al.

SELECT w_state, i_item_id,
SUM (CASE WHEN (CAST (d_date AS DATE) < CAST (’1998-03-16° AS DATE))
THEN ws_sales_price - coalesce(wr_refunded_cash ,0) ELSE O
END)
AS sales_before,
SUM (CASE WHEN (CAST (d_date AS DATE) >= CAST (’1998-03-16° AS DATE))
THEN ws_sales_price - coalesce(wr_refunded_cash ,0) ELSE O
END)
AS sales_after
FROM web_sales LEFT OUTER JOIN web_returns

ON (ws_order_number = wr_order_number
AND ws_item_sk = wr_item_sk),
warehouse, item, date_dim
WHERE i_item_sk = ws_item_sk
AND ws_warehouse_sk = w_warehouse_sk

AND ws_sold_date_sk = d_date_sk
AND d_date BETWEEN (CAST (’1998-03-16’ AS DATE) - INTERVAL ’30,day’)
AND (CAST (’1998-03-16’ AS DATE) + INTERVAL °’30,day’)
GROUP BY w_state,i_item_id
ORDER BY w_state,i_item_id;

Listing 1.16. Query 16

Query 17. (TPC-DS 61) Find the ratio of items sold with and without pro-
motions in a given month and year. Only items in certain categories sold to
customers living in a specific time zone are considered.

SELECT promotions, total,
CAST(promotions AS DECIMAL (15,4)) /
CAST(total AS DECIMAL (15,4)) * 100
FROM (SELECT SUM (ss_ext_sales_price) promotions
FROM store_sales, store, promotion, date_dim,
customer, customer_address , item
WHERE ss_sold_date_sk = d_date_sk
AND ss_store_sk = s_store_sk
AND ss_promo_sk = p_promo_sk
AND ss_customer_sk= c_customer_sk

AND ca_address_sk = c_current_addr_sk

AND ss_item_sk = i_item_sk

AND ca_gmt_offset = -7

AND i_category = ’Jewelry’

AND (p_channel_dmail = ’Y’ OR p_channel_email = ’Y’
OR p_channel_tv = ’Y’)

AND s_gmt_offset = -7

AND d_year = 2001

AND d_moy = 12) promotional_sales,

(SELECT sum(ss_ext_sales_price) total
FROM store_sales, store, date_dim,
customer, customer_address, item
WHERE ss_sold_date_sk = d_date_sk

AND ss_store_sk = s_store_sk

AND ss_customer_sk= c_customer_sk

AND ca_address_sk = c_current_addr_sk
AND ss_item_sk = i_item_sk

AND ca_gmt_offset = -7

AND i_category = ’Jewelry’

AND s_gmt_offset = -7

AND d_year = 2001

AND d_moy = 12) all_sales

ORDER BY promotions, total;

Listing 1.17. Query 17

BigBench Specification V0.1 183

Query 18. Identify the stores with flat or declining sales in 3 consecutive months,
check if there are any negative reviews regarding these stores available online.

BEGIN;

DROP VIEW IF EXISTS store_coefficient;
DROP VIEW IF EXISTS time_series_store;

CREATE VIEW time_series_store AS (

SELECT

FROM
WHERE
AND
GROUP

ss_store_sk AS store, ss_sold_date_sk AS d,
SUM(ss_net_paid) AS sales

store_sales

ss_sold_date_sk > 2451424

ss_sold_date_sk < 2451424+90

BY 1,2);

CREATE VIEW store_coefficient AS (

SELECT

1 AS store, coefficient_index, value AS slope

FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 1)
) PARTITION BY 1
)
WHERE coefficient_index = 1
UNION ALL
SELECT 2 AS store, coefficient_index, value AS slope
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 2)
) PARTITION BY 1
)
WHERE coefficient_index = 1
UNION ALL
SELECT 3 AS store, coefficient_index, value AS slope
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 3)
) PARTITION BY 1
)
WHERE coefficient_index = 1
UNION ALL
SELECT 4 AS store, coefficient_index, value AS slope
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 4)
) PARTITION BY 1
)
WHERE coefficient_index = 1
UNION ALL
SELECT 5 AS store, coefficient_index, value AS slope
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 5)
) PARTITION BY 1
)
WHERE coefficient_index = 1
UNION ALL
SELECT 6 AS store, coefficient_index, value AS slope
FROM linreg (ON

184 T. Rabl et al.

linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 6)
) PARTITION BY 1

)
WHERE coefficient_index = 1
UNION ALL

SELECT 7 AS store, coefficient_index, value AS slope
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 7)
) PARTITION BY 1

)
WHERE coefficient_index = 1
UNION ALL

SELECT 8 AS store, coefficient_index, value AS slope
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 8)
) PARTITION BY 1

)
WHERE coefficient_index = 1
UNION ALL

SELECT 9 AS store, coefficient_index, value AS slope
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 9)
) PARTITION BY 1

)
WHERE coefficient_index = 1
UNION ALL

SELECT 10 AS store, coefficient_index, value AS slope
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 10)
) PARTITION BY 1

)
WHERE coefficient_index = 1
UNION ALL

SELECT 11 AS store, coefficient_index, value AS slope
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 11)
) PARTITION BY 1

)
WHERE coefficient_index = 1
UNION ALL

SELECT 12 AS store, coefficient_index, value AS slope
FROM linreg (ON
linregmatrix (ON
(SELECT d, sales
FROM time_series_store
WHERE store = 12)
) PARTITION BY 1
)
WHERE coefficient_index = 1);

BigBench Specification V0.1 185

SELECT s_store_name, pr_review_date, out_content,
out_polarity, out_sentiment_words
FROM ExtractSentiment (ON
(SELECT s_store_name, pr_review_content, pr_review_date
FROM store_coefficient c, store s, product_reviews
WHERE c.slope < O
AND s.s_store_sk = c.store
AND pr_review_content like ’%’||s_store_namell|’%’)
TEXT_COLUMN(’pr_review_content’)
MODEL (’dictionary’)
LEVEL (’DOCUMENT *)
ACCUMULATE(’s_store_name’,’pr_review_date’))
WHERE out_polarity = ’NEG’;

DROP VIEW store_coefficient;
DROP VIEW time_series_store;
END;

Listing 1.18. Query 18

Query 19. Retrieve the items with the highest number of returns where the num-
ber of returns was approximately equivalent across all store and web channels
(within a tolerance of +/- 10%), within the week ending a given date. Analyze
the online reviews for these items to see if there are any major negative reviews.

BEGIN;

CREATE VIEW sr_items AS
(SELECT i_item_sk item_id,
SUM(sr_return_quantity) sr_item_qty
FROM store_returns, item, date_dim
WHERE sr_item_sk = i_item_sk
AND d_date IN
(SELECT d_date
FROM date_dim
WHERE d_week_seq IN
(SELECT d_week_seq
FROM date_dim
WHERE d_date IN
(21998-01-02’,21998-10-15",1998-11-10")))
AND sr_returned_date_sk = d_date_sk
GROUP BY i_item_sk
HAVING SUM (sr_return_quantity) > 0);

CREATE VIEW wr_items AS
(SELECT i_item_sk item_id, SUM(wr_return_quantity) wr_item_qty
FROM web_returns, item, date_dim
WHERE wr_item_sk = i_item_sk
AND d_date IN (SELECT d_date
FROM date_dim
WHERE d_week_seq in
(SELECT d_week_seq
FROM date_dim
WHERE d_date IN (’2001-03-10’ ,’2001-08-04’ ,’2001-11-147)))
AND wr_returned_date_sk = d_date_sk
GROUP BY i_item_sk
HAVING SUM(wr_return_quantity) > 0);

CREATE VIEW return_items AS
(SELECT sr_items.item_id item, sr_item_qty,
100.0 * sr_item_qty / (sr_item_qty + wr_item_qty) / 2.0 sr_dev,
wr_item_qty, 100.0 * wr_item_qty /
(sr_item_qty + wr_item_qty) / 2.0 wr_dev,
(sr_item_qty +wr_item_qty) / 2.0 "average"
FROM sr_items, wr_items

186 T. Rabl et al.

WHERE sr_items.item_id = wr_items.item_id
ORDER BY average DESC
LIMIT 100) ;

SELECT pr_item_sk, out_content, out_polarity, out_sentiment_words
FROM ExtractSentiment (ON
product_reviews
TEXT_COLUMN (’pr_review_content’)
MODEL (’dictionary’)
LEVEL (’sentence’)
ACCUMULATE (’pr_item_sk’)
)
WHERE out_polarity = ’NEG’
AND pr_item_sk IN (SELECT item FROM return_items);

DROP VIEW return_items;
DROP VIEW wr_items;
DROP VIEW sr_items;
END;

Listing 1.19. Query 19

Query 20. Customer segmentation for return analysis: Customers are separated
along the following dimensions: return frequency, return order ratio (total num-
ber of orders partially or fully returned versus the total number of orders),
return item ratio (total number of items returned versus the number of items
purchased), return amount ration (total monetary amount of items returned ver-
sus the amount purchased), return order ratio. Consider the store returns during
a given year for the computation.

CREATE VIEW sales_returns AS (

SELECT s.ss_sold_date_sk AS s_date,
r.sr_returned_date_sk AS r_date,
s.ss_item_sk AS item,
s.ss_ticket_number AS oid,
s.ss_net_paid AS s_amount,
r.sr_return_amt AS r_amount,
(CASE WHEN s.ss_customer_sk IS NULL

THEN r.sr_customer_sk ELSE s.ss_customer_sk END) AS cid,
s.ss_customer_sk AS s_cid,
sr_customer_sk AS r_cid
FROM store_sales s LEFT JOIN store_returns100 r ON
s.ss_item_sk = r.sr_item_sk

AND s.ss_ticket_number = r.sr_ticket_number

WHERE s.ss_sold_date_sk IS NOT NULL);

CREATE VIEW clusters AS (
SELECT cid,
100.0 * COUNT (DISTINCT (CASE WHEN r_date IS NOT NULL
THEN oid ELSE NULL END))
/ COUNT (DISTINCT oid) AS r_order_ratio,
SUM (CASE WHEN r_date IS NOT NULL THEN 1 ELSE O END)
/ COUNT (item) * 100 AS r_item_ratio,
SUM (CASE WHEN r_date IS NOT NULL THEN r_amount ELSE 0 END)
/ SUM (s_amount) * 100 AS r_amount_ratio,
COUNT (DISTINCT (CASE WHEN r_date IS NOT NULL
THEN r_date ELSE NULL END))
AS r_freq
FROM sales_returns
WHERE cid IS NOT NULL
GROUP BY 1
HAVING COUNT (DISTINCT (CASE WHEN r_date IS NOT NULL
THEN r_date ELSE NULL END)) > 1);

BigBench Specification V0.1 187

SELECT =*
FROM kmeans (ON
(SELECT 1)

PARTITION BY 1

DATABASE (’benchmark’)

USERID (’benchmark’)

PASSWORD (’benchmark’)

INPUTTABLE (’clusters AS,c’)
OUTPUTTABLE (’user_return_groups’)
NUMBERK (’4°));

SELECT clusterid, cid
FROM kmeansplot (ON
clusters AS c
PARTITION BY ANY
ON user_return_groups dimension
CENTROIDSTABLE (’user_return_groups’))
ORDER BY clusterid, cid;

DROP TABLE user_return_groups;
DROP VIEW clusters;
DROP VIEW sales_returns;

Listing 1.20. Query 20

Query 21. (TPC-DS 29) Get all items that were sold in stores in a given month
and year and which were returned in the next six months and re-purchased by
the returning customer afterwards through the web sales channel in the following
three years. For those these items, compute the total quantity sold through the
store, the quantity returned and the quantity purchased through the web. Group
this information by item and store.

SELECT i_item_id, i_item_desc, s_store_id, s_store_name,
sum(ss_quantity) AS store_sales_quantity,
sum(sr_return_quantity) AS store_returns_quantity,
sum(ws_quantity) AS web_sales_quantity

FROM store_sales, store_returns, web_sales, date_dim d1,
date_dim d2, date_dim d3, store, item

WHERE di1.d_moy =4
AND di1.d_year = 1998
AND dil.d_date_sk = ss_sold_date_sk
AND i_item_sk = ss_item_sk
AND s_store_sk = ss_store_sk
AND ss_customer_sk = sr_customer_sk
AND ss_item_sk = sr_item_sk
AND ss_ticket_number = sr_ticket_number
AND sr_returned_date_sk = d2.d_date_sk
AND d2.d_moy BETWEEN 4 AND 4 + 3
AND d2.d_year = 1998
AND sr_customer_sk = ws_bill_customer_sk
AND sr_item_sk = ws_item_sk
AND ws_sold_date_sk = d3.d_date_sk
AND d3.d_year IN (1998,1998+1,1998+2)

GROUP BY i_item_id, i_item_desc, s_store_id, s_store_name
ORDER BY i_item_id, i_item_desc, s_store_id, s_store_name;

Listing 1.21. Query 21

Query 22. (TPC-DS 21) For all items whose price was changed on a given date,
compute the percentage change in inventory between the 30-day period before
the price change and the 30-day period after the change. Group this information
by warehouse.

188 T. Rabl et al.

SELECT x*
FROM (SELECT w_warehouse_name , i_item_id,
SUM (CASE WHEN (CAST (d_date AS DATE) < CAST (’2000-05-08° AS
DATE))
THEN inv_quantity_on_hand
ELSE O END) AS inv_before
SUM (CASE WHEN (CAST (d_date AS date) >= CAST (’2000-05-08’
AS DATE))
THEN inv_quantity_on_hand
ELSE O END) AS inv_after
FROM inventory, warehouse, item, date_dim
WHERE i_current_price BETWEEN 0.99 AND 1.49
AND i_item_sk = inv_item_sk
AND inv_warehouse_sk = w_warehouse_sk
AND inv_date_sk = d_date_sk
AND d_date BETWEEN (CAST (’2000-05-08’ AS DATE) - 30)
AND (CAST (’2000-05-08° AS DATE) + 30)
GROUP BY w_warehouse_name , i_item_id) x
WHERE (CASE WHEN inv_before > 0
THEN inv_after / inv_before
ELSE NULL END) BETWEEN 2.0/3.0 AND 3.0/2.0
ORDER BY w_warehouse_name, i_item_id;

Listing 1.22. Query 22

Query 23. (TPC-DS 39) This query contains multiple, related iterations:

1. Calculate the coefficient of variation and mean of every item and warehouse
of two consecutive months.

2. Find items that had a coefficient of variation in the first months of 1.5 or
larger.

BEGIN;

CREATE VIEW inv AS
(SELECT w_warehouse_name , w_warehouse_sk, i_item_sk,
d_moy, stdev, mean,
CASE mean WHEN O THEN NULL ELSE stdev/mean END cov
FROM (SELECT w_warehouse_name , w_warehouse_sk, i_item_sk,
d_moy, stddev_samp(inv_quantity_on_hand) stdev,
avg(inv_quantity_on_hand) mean
FROM inventory, item, warehouse, date_dim
WHERE inv_item_sk = i_item_sk
AND inv_warehouse_sk = w_warehouse_sk
AND inv_date_sk = d_date_sk
AND d_year = 1998
GROUP BY w_warehouse_name , w_warehouse_sk,
i_item_sk, d_moy) foo
WHERE CASE mean WHEN O THEN O ELSE stdev/mean END > 1);

SELECT invl.w_warehouse_sk, invl.i_item_sk, invl.d_moy, invl.mean,
invl.cov, inv2.w_warehouse_sk, inv2.i_item_sk, inv2.d_moy,
inv2.mean, inv2.cov

FROM inv invl,inv inv2
WHERE inv1l.i_item_sk = inv2.i_item_sk
AND invl.w_warehouse_sk = inv2.w_warehouse_sk
AND invi.d_moy=1
AND inv2.d_moy=1+1
ORDER BY invl.w_warehouse_sk, invl.i_item_sk,
invl.d_moy, invl.mean, invl.cov,
inv2.d_moy,inv2.mean, inv2.cov;

DROP VIEW IF EXISTS inv;
CREATE VIEW inv AS

(SELECT w_warehouse_name ,

d_moy, stdev,

BigBench Specification V0.1

w_warehouse_sk, i_item_sk,

mean,

CASE mean WHEN O THEN NULL ELSE stdev/mean END cov

FROM (SELECT w_warehouse_name ,

d_moy ,

w_warehouse_sk, i_item_sk,
stddev_samp(inv_quantity_on_hand) stdev,

avg(inv_quantity_on_hand) mean

FROM
WHERE
AND
AND
AND
GROUP

d_year

inventory,
inv_item_sk =
inv_warehouse_sk =
inv_date_sk =

BY w_warehouse_name ,
i_item_

item, warehouse,
i_item_sk
w_warehouse_sk
d_date_sk

date_dim

= 1998
w_warehouse_sk ,
sk ,d_moy) foo

WHERE CASE mean WHEN O THEN O ELSE stdev/mean END > 1);

SELECT
invl.mean,
inv2.d_moy,
inv invil,
invli.i_item_sk =

FROM
WHERE
AND
AND
AND
AND
ORDER

invl.d_moy= 2
inv2.d_moy= 2 + 1
invli.cov > 1.5

invl.mean,invil

DROP VIEW inv;
END;

invl.w_warehouse_sk,
invl.cov,
inv2.mean,
inv inv2

inv2.i_item_sk
invl.w_warehouse_sk =

BY invl.w_warehouse_sk,
.cov,

invl.i_item_sk, invl.d_moy,
inv2.w_warehouse_sk, inv2.i_item_sk,
inv2.cov

inv2.w_warehouse_sk

invl.i_item_sk,
inv2.d_moy,

invl.d_moy,
inv2.mean, inv2.cov;

Listing 1.23. Query 23

189

Query 24. For a given product, measure the effect of competitors’ prices on
products’ in-store and online sales. (Compute the cross-price elasticity of demand

for a given product).

BEGIN;

CREATE VIEW competitor_price_view AS

(SELECT i_item_sk,

imp_end_date -
item,
imp_item_sk =

FROM
WHERE
AND
AND

CREATE VIEW self_ws_view
(SELECT ws_item_sk,

SUM (CASE WHEN
AND
THEN
SUM (CASE WHEN
AND
THEN
FROM web_sales,
WHERE ws_item_sk = c.
GROUP BY 1);

CREATE VIEW self_ss_view
(SELECT ss_item_sk,

SUM (CASE WHEN

AND

THEN

SUM (CASE WHEN

AND

(imp_competitor_price - i_current_price)
/ i_current_price AS price_change,

imp_start_date,
imp_start_date AS no_days

item_marketprices
i_item_sk
i_item_sk in (7,17)

imp_competitor_

price < i_current_price);
AS

ws_sold_date_sk >= c.imp_start_date
ws_sold_date_sk < c.imp_start_date + c.no_days
ws_quantity ELSE O END) AS current_ws,
ws_sold_date_sk >= c.imp_start_date -
ws_sold_date_sk < c.imp_start_date
ws_quantity ELSE O END) AS prev_ws

c.no_days

competitor_price_view c

i_item_sk

AS

ss_sold_date_sk >= c.imp_start_date
ss_sold_date_sk < c.imp_start_date + c.no_days
ss_quantity ELSE O END) AS current_ss,
ss_sold_date_sk >= c.imp_start_date - c.no_days
ss_sold_date_sk < c.imp_start_date

190 T. Rabl et al.

THEN ss_quantity ELSE O END) AS prev_ss
FROM store_sales, competitor_price_view c
WHERE c.i_item_sk = ss_item_sk
GROUP BY 1);

SELECT i_item_sk, (current_ss + current_ws-prev_ss-prev_ws)
/ ((prev_ss + prev_ws) * price_change) AS cross_price_elasticity
FROM competitor_price_view, self_ws_view, self_ss_view
WHERE i_item_sk = ws_item_sk
AND i_item_sk = ss_item_sk;

DROP VIEW self_ws_view;

DROP VIEW self_ss_view;

DROP VIEW competitor_price_view;
END;

Listing 1.24. Query 24

Query 25. Customer segmentation analysis: Customers are separated along the
following key shopping dimensions: recency of last visit, frequency of visits and
monetary amount. Use the store and online purchase data during a given year
to compute.

DROP VIEW usersegments;
CREATE VIEW usersegments AS
(SELECT ss_customer_sk AS cid, ss_ticket_number AS oid,
ss_sold_date_sk AS dateid, sum(ss_net_paid) AS amount
FROM store_sales
WHERE ss_sold_date_sk > 2452277
AND ss_customer_sk IS NOT NULL
GROUP BY 1,2,3
UNION ALL
SELECT ws_bill_customer_sk AS cid, ws_order_number AS oid,
ws_sold_date_sk AS dateid, SUM(ws_net_paid) AS amount
FROM web_sales
WHERE ws_sold_date_sk > 2452277
AND ws_bill_customer_sk is not null
GROUP BY 1,2,3);

DROP VIEW clusteringtable;
CREATE VIEW clusteringtable AS
(SELECT cid AS id,
CASE WHEN 2452642 - MAX(dateid) < 60
THEN 1.0 ELSE 0.0 END as recency,
COUNT (oid) AS frequency,
SUM (amount) AS totalspend
FROM usersegments
GROUP BY 1);

DROP TABLE user_shopping_groups;

SELECT =*
FROM kmeans (ON
(SELECT 1)

PARTITION BY 1

DATABASE (’benchmark’)

USERID (’benchmark’)

PASSWORD (’benchmark’)

INPUTTABLE (’clusteringtable AS,c’)
OUTPUTTABLE (’user_shopping_groups’)
NUMBERK (’87)) ;

Listing 1.25. Query 25

BigBench Specification V0.1 191

Query 26. Cluster customers into book buddies/ club groups based on their in
store book purchasing histories.

CREATE VIEW clusteringtable AS
(SELECT ss.ss_customer_sk AS cid,
COUNT (CASE WHEN i.i_class_id=1 THEN
COUNT (CASE WHEN .i_class_id=3 THEN
COUNT (CASE WHEN
COUNT (CASE WHEN
COUNT (CASE WHEN

1 ELSE NULL END) AS idi1,
i 1 ELSE NULL END) AS id3,
i.i_class_id=5 THEN 1 ELSE NULL END) AS id5,
i.i_class_id=7 THEN 1 ELSE NULL END) AS id7,
i.i_class_id=9 THEN 1 ELSE NULL END) AS id9,
COUNT (CASE WHEN i.i_class_id=11 THEN 1 ELSE NULL END) AS idi1,
COUNT (CASE WHEN i.i_class_id=13 THEN 1 ELSE NULL END) AS id13,
COUNT (CASE WHEN i.i_class_id=15 THEN 1 ELSE NULL END) AS idi15,
COUNT (CASE WHEN i.i_class_id=2 THEN 1 ELSE NULL END) AS id2,
COUNT (CASE WHEN i.i_class_id=4 THEN 1 ELSE NULL END) AS id4,
COUNT (CASE WHEN i.i_class_id=6 THEN 1 ELSE NULL END) AS id6,
COUNT (CASE WHEN i.i_class_id=8 THEN 1 ELSE NULL END) AS 1id8,
COUNT (CASE WHEN i.i_class_id=10 THEN 1 ELSE NULL END) AS id1o0,
COUNT (CASE WHEN i.i_class_id=14 THEN 1 ELSE NULL END) AS idi4,
COUNT (CASE WHEN i.i_class_id=16 THEN 1 ELSE NULL END) AS id16
FROM store_sales ss, item i
WHERE ss.ss_item_sk = i.i_item_sk

AND i.i_category = ’Books’
AND ss.ss_customer_sk IS NOT NULL
GROUP BY 1

HAVING COUNT(ss.ss_item_sk) > 5);

SELECT *
FROM kmeans (ON
(SELECT 1)

PARTITION BY 1

DATABASE (’benchmark’)

USERID (’benchmark’)

PASSWORD (’benchmark’)

INPUTTABLE (’clusteringtable ASc’)
OUTPUTTABLE (’book_club_groups’)
NUMBERK (’27)) ;

SELECT clusterid, cid
FROM kmeansplot (
ON clusteringtable AS c
PARTITION BY ANY
ON book_club_groups dimension
CENTROIDSTABLE (’book_club_groups’))
ORDER BY clusterid, cid;

DROP TABLE IF EXISTS book_club_groups;
DROP VIEW IF EXISTS clusteringtable;

Listing 1.26. Query 26

Query 27. Extract competitor product names and model names (if any) from
online product reviews for a given product.

SELECT DISTINCT =*

FROM FindNamedEntity (

ON (SELECT pr_review_sk, pr_item_sk, pr_review_content
FROM product_reviews
WHERE pr_item_sk = 10653) AS p

PARTITION BY ANY
ON nameFind_configure AS "ConfigureTable" DIMENSION
TEXT_COLUMN (’pr_review_content’)
MODEL (’ organization’)
OUTPUT_COLUMNS(’pr_review_sk’, ’pr_item_sk’));

Listing 1.27. Query 27

192 T. Rabl et al.

Query 28. Build text classifier for online review sentiment classification (positive,
negative, neutral), using 60% of available reviews for training and the remaining
40% for testing. Display classifier accuracy on testing data.

CREATE FACT TABLE a32_trainingt (
pr_review_sk BIGINT,
pr_rating CHAR(3),
pr_review_content TEXT,
pr_item_sk BIGINT
) DISTRIBUTE BY HASH (pr_review_sk) AS
SELECT pr_review_sk,
(CASE pr_review_rating
WHEN 1 THEN °NEG’
WHEN 2 THEN °’NEG’
WHEN 3 THEN °’NEU’
WHEN 4 THEN °’PO0S”’
WHEN 65 THEN °’POS’ END) AS pr_rating,
pr_review_content, pr_item_sk
FROM product_reviews
WHERE MOD (pr_review_sk, 5) IN (1,2,3);

CREATE FACT TABLE a32_testingt (
pr_review_sk BIGINT,
pr_rating CHAR(3),
pr_review_content text,
pr_item_sk BIGINT
) DISTRIBUTE BY HASH (pr_review_sk) AS
SELECT pr_review_sk,
(CASE pr_review_rating
WHEN 1 THEN °’NEG’
WHEN 2 THEN °’NEG’
WHEN 3 THEN °’NEU’
WHEN 4 THEN °PO0S”’
WHEN 5 THEN °P0S’ END) AS pr_rating,
pr_review_content, pr_item_sk
FROM product_reviews
WHERE MOD (pr_review_sk, 5) IN (0, 4);

SELECT *

FROM TextClassifierTrainer (
ON (SELECT 1)
PARTITION BY 1
DATABASE (’benchmark’)
USERID (’benchmark’)
PASSWORD (’benchmark’)
INPUTTABLE(’a32_trainingt’)
TEXTCOLUMN(’pr_review_content’)
CATEGORYCOLUMN(’pr_rating’)
MODELFILE(’senti_classifier.mod’)
CLASSIFIERTYPE(’MaxEnt’)
NLPPARAMETERS(’useStem:true’));

SELECT *
FROM TextClassifier (
ON InputTable(’a32_testingt’)
TEXTCOLUMN(’pr_review_content’)
MODEL (’senti_classifier.mod’)
ACCUMULATE(’pr_review_sk’,’pr_rating’));

SELECT =*
FROM TextClassifierEvaluator (

ON TextClassifier (
ON InputTable(’a32_trainingt’)
TEXTCOLUMN(’pr_review_content’)
MODEL (’senti_classifier.mod’)
ACCUMULATE(’ pr_review_sk’,’pr_rating’))

PARITION BY 1

BigBench Specification V0.1 193

EXPECTCOLUMN(’ pr_rating’)
PREDICTCOLUMN(’ out_category’));

DROP TABLE a32_trainingt;
DROP TABLE a32_testingt;

Listing 1.28. Query 28

Query 29. Perform category affinity analysis for products purchased online to-
gether.

CREATE VIEW c_affinity_input AS
(SELECT i.i_category_id AS category_cd,
s.ws_bill_customer_sk AS customer_id
FROM web_sales s INNER JOIN item i
ON s.ws_item_sk = i_item_sk
WHERE i.i_category_id IS NOT NULL);

SELECT =*
FROM cfilter (ON

(SELECT 1)
PARTITION BY 1
DATABASE (’benchmark’)
USERID (’benchmark’)
PASSWORD (’benchmark’)
INPUTTABLE (’benchmark.c_affinity_input’)
OUTPUTTABLE (’c_affinity_out’)
DROPTABLE (’true’)
INPUTCOLUMNS (’category_cd’)
JOINCOLUMNS (’customer_id’));

SELECT * FROM c_affinity_out;

DROP TABLE IF EXISTS c_affinity_out;
DROP VIEW IF EXISTS c_affinity_input;

Listing 1.29. Query 29

Query 30. Perform category affinity analysis for products viewed together.

DROP VIEW IF EXISTS c_affinity_input;
CREATE VIEW c_affinity_input AS
(SELECT i.i_category_id AS category_cd,
s.wcs_user_sk AS customer_id
FROM web_clickstreams s INNER JOIN item i
ON s.wcs_item_sk = i_item_sk

WHERE s.wcs_item_sk IS NOT NULL
AND i.i_category_id IS NOT NULL
AND s.wcs_user_sk IS NOT NULL);
SELECT *
FROM cfilter (ON
(SELECT 1)

PARTITION BY 1

DATABASE (’benchmark’)

USERID (’benchmark’)

PASSWORD (’benchmark’)

INPUTTABLE (’benchmark.c_affinity_input’)
OUTPUTTABLE (’c_affinity_out’)

DROPTABLE (’true’)

INPUTCOLUMNS (’category_cd’)

JOINCOLUMNS (’customer_id’));

SELECT *

194 T. Rabl et al.

FROM c_affinity_out;

DROP VIEW IF EXISTS c_affinity_input;
DROP TABLE IF EXISTS c_affinity_out;

Listing 1.30. Query 30

B BigBench Schema

Below is the complete schema definition for BigBench in Teradata Aster DBMS
syntax.

DROP TABLE IF EXISTS customer_simple;

DROP TABLE IF EXISTS customer_addr_simple;
DROP TABLE IF EXISTS inventory_simple;
DROP TABLE IF EXISTS item_simple;

DROP TABLE IF EXISTS store_sales_simple;
DROP TABLE IF EXISTS store_returns_simple;
DROP TABLE IF EXISTS web_sales_simple;
DROP TABLE IF EXISTS web_returns_simple;

DROP TABLE IF EXISTS customer cascade;

DROP TABLE IF EXISTS customer_address cascade;
DROP TABLE IF EXISTS customer_demographics cascade;
DROP TABLE IF EXISTS date_dim cascade;

DROP TABLE IF EXISTS dbgen_version cascade;
DROP TABLE IF EXISTS household_demographics cascade;
DROP TABLE IF EXISTS income_band cascade;

DROP TABLE IF EXISTS item cascade;

DROP TABLE IF EXISTS promotion cascade;

DROP TABLE IF EXISTS reason cascade;

DROP TABLE IF EXISTS ship_mode cascade;

DROP TABLE IF EXISTS store cascade;

DROP TABLE IF EXISTS time_dim cascade;

DROP TABLE IF EXISTS warehouse cascade;

DROP TABLE IF EXISTS web_site cascade;

DROP TABLE IF EXISTS web_page cascade;

DROP TABLE IF EXISTS inventory cascade;

DROP TABLE IF EXISTS store_sales cascade;

DROP TABLE IF EXISTS store_returns cascade;
DROP TABLE IF EXISTS web_sales cascade;

DROP TABLE IF EXISTS web_returns cascade;

CREATE TABLE dbgen_version (

dv_version VARCHAR (186),
dv_create_date date,
dv_create_time time,

dv_cmdline_args VARCHAR (200)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE customer_demographics (

cd_demo_sk BIGINT NOT NULL,
cd_gender CHAR (1),
cd_marital_status CHAR (1),

cd_education_status CHAR (20) ,
cd_purchase_estimate INTEGER,
cd_credit_rating CHAR (10)
cd_dep_count INTEGER,
cd_dep_employed_count INTEGER,
cd_dep_college_count INTEGER,
PRIMARY KEY (cd_demo_sk)

) DISTRIBUTE BY REPLICATION;

BigBench Specification V0.1 195

CREATE TABLE date_dim (

d_date_sk BIGINT NOT NULL,
d_date_id CHAR(16) NOT NULL,
d_date DATE,
d_month_seq INTEGER,
d_week_seq INTEGER,
d_quarter_seq INTEGER,
d_year INTEGER,
d_dow INTEGER,
d_moy INTEGER,
d_dom INTEGER,
d_qoy INTEGER,
d_fy_year INTEGER,
d_fy_quarter_seq INTEGER,
d_fy_week_seq INTEGER,
d_day_name CHAR (9),
d_quarter_name CHAR(6),
d_holiday CHAR (1),
d_weekend CHAR (1),
d_following_holiday CHAR(1),
d_first_dom INTEGER,
d_last_dom INTEGER,
d_same_day_1ly INTEGER,
d_same_day_1lq INTEGER,
d_current_day CHAR (1),
d_current_week CHAR (1),
d_current_month CHAR (1),
d_current_quarter CHAR (1),
d_current_year CHAR (1),

PRIMARY KEY (d_date_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE warehouse (
w_warehouse_sk BIGINT NOT NULL,
w_warehouse_id CHAR (16) NOT NULL,
w_warehouse_name VARCHAR (20),
w_warehouse_sq_ft INTEGER,
w_street_number CHAR (10),

w_street_name VARCHAR (60) ,
w_street_type CHAR (15),
w_suite_number CHAR (10),
w_city VARCHAR (60) ,
w_county VARCHAR (30) ,
w_state CHAR(2),
w_zip CHAR (10),
w_country VARCHAR (20) ,
w_gmt_offset DECIMAL (5,2),

PRIMARY KEY (w_warehouse_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE ship_mode (
sm_ship_mode_sk BIGINT NOT NULL,
sm_ship_mode_id CHAR(16) NOT NULL,

sm_type CHAR (30) ,
sm_code CHAR (10),
sm_carrier CHAR (20),
sm_contract CHAR (20) ,

PRIMARY KEY (sm_ship_mode_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE time_dim (
t_time_sk BIGINT NOT NULL,
t_time_id CHAR(16) NOT NULL,

t_time INTEGER,
t_hour INTEGER,
t_minute INTEGER,
t_second INTEGER,

t_am_pm CHAR(2),

196 T. Rabl et al.

t_shift CHAR (20) ,
t_sub_shift CHAR(20),
t_meal_time CHAR(20),
PRIMARY KEY (t_time_sk)

) DISTRIBUTE BY REPLICATION;

CREATE TABLE reason (
r_reason_sk BIGINT NOT NULL,
r_reason_id CHAR(16) NOT NULL,
r_reason_desc CHAR(100),
PRIMARY KEY (r_reason_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE income_band (

ib_income_band_sk BIGINT NOT NULL,

ib_lower_bound INTEGER,
ib_upper_bound INTEGER,
PRIMARY KEY (ib_income_band_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE store (

s_store_sk BIGINT NOT NULL,
s_store_id CHAR (16) NOT NULL,
s_rec_start_date DATE,
s_rec_end_date DATE,
s_closed_date_sk BIGINT,
s_store_name VARCHAR (50) ,
s_number_employees INTEGER,
s_floor_space INTEGER,
s_hours CHAR (20) ,
s_manager VARCHAR (40) ,
s_market_id INTEGER,
s_geography_class VARCHAR (100),
s_market_desc VARCHAR (100) ,
s_market_manager VARCHAR (40) ,
s_division_id INTEGER,
s_division_name VARCHAR (50) ,
s_company_id INTEGER,
s_company_name VARCHAR (50) ,
s_street_number VARCHAR (10),
s_street_name VARCHAR (60) ,
s_street_type CHAR (15)
s_suite_number CHAR (10) ,
s_city VARCHAR (60) ,
s_county VARCHAR (30) ,
s_state CHAR(2),
s_zip CHAR (10),
s_country VARCHAR (20) ,
s_gmt_offset DECIMAL (5,2),

s_tax_precentage DECIMAL (5,2),
PRIMARY KEY (s_store_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE web_site (

web_site_sk BIGINT NOT NULL,
web_site_id CHAR(16) NOT NULL,
web_rec_start_date DATE,
web_rec_end_date DATE,

web_name VARCHAR (50),
web_open_date_sk BIGINT,
web_close_date_sk BIGINT,

web_class VARCHAR (50) ,
web_manager VARCHAR (40) ,
web_mkt_id INTEGER,
web_mkt_class VARCHAR (50),
web_mkt_desc VARCHAR (100) ,
web_market_manager VARCHAR (40) ,

web_company_id INTEGER,

web_company_name
web_street_number
web_street_name
web_street_type
web_suite_number
web_city
web_county
web_state

web_zip
web_country
web_gmt_offset
web_tax_percentage
PRIMARY KEY (web_site_sk)

BigBench Specification V0.1

CHAR (50) ,
CHAR (10) ,
VARCHAR (60) ,
CHAR (15) ,
CHAR (10) ,
VARCHAR (60) ,
VARCHAR (30) ,
CHAR(2),

CHAR (10) ,
VARCHAR (20),
DECIMAL (5,2),
DECIMAL (5,2),

) DISTRIBUTE BY REPLICATION;

CREATE TABLE household_demographics (

hd_demo_sk
hd_income_band_sk
hd_buy_potential
hd_dep_count
hd_vehicle_count

PRIMARY KEY (hd_demo_sk)

BIGINT NOT NULL,
BIGINT,

CHAR (15) ,
INTEGER ,
INTEGER,

) DISTRIBUTE BY REPLICATION;

CREATE TABLE web_page (
wp_web_page_sk
wp_web_page_id
wp_rec_start_date
wp_rec_end_date
wp_creation_date_sk
wp_access_date_sk
wp_autogen_flag
wp_customer_sk
wp_url
wp_type
wp_char_count
wp_link_count
wp_image_count
wp_max_ad_count

BIGINT NOT NULL,
CHAR(16) NOT NULL,
DATE,

DATE,

BIGINT,

BIGINT,

CHAR (1),

BIGINT,

VARCHAR (100) ,

CHAR (50) ,

INTEGER,

INTEGER ,

INTEGER ,

INTEGER ,

PRIMARY KEY (wp_web_page_sk)
) DISTRIBUTE BY REPLICATION;

CREATE TABLE promotion (
p_promo_sk
p_promo_id
p_start_date_sk
p_end_date_sk
p_item_sk
p_cost
p_response_target
p_promo_name
p_channel_dmail
p_channel_email
p_channel_catalog
p_channel_tv
p_channel_radio
p_channel_press
p_channel_event
p_channel_demo
p_channel_details
p_purpose
p_discount_active
PRIMARY KEY (p_promo_sk)

BIGINT
CHAR (16)
BIGINT,
BIGINT,
BIGINT,
DECIMAL (15,2),
INTEGER,

CHAR (50) ,

CHAR (1),

CHAR (1),

CHAR (1),

CHAR (1),

CHAR (1),

CHAR (1),

CHAR (1),

CHAR (1),
VARCHAR (100) ,
CHAR (15) ,

CHAR (1),

NOT NULL,
NOT NULL,

) DISTRIBUTE BY REPLICATION;

CREATE TABLE customer (
c_customer_sk
c_customer_id

BIGINT NOT NULL,
CHAR(16) NOT NULL,

197

198 T. Rabl et al.

c_current_cdemo_sk
c_current_hdemo_sk
c_current_addr_sk
c_first_shipto_date_sk
c_first_sales_date_sk
c_salutation
c_first_name
c_last_name
c_preferred_cust_flag
c_birth_day
c_birth_month
c_birth_year
c_birth_country
c_login
c_email_address
c_last_review_date

BIGINT,
BIGINT,
BIGINT,
BIGINT,
BIGINT,

CHAR (10) ,
CHAR (20) ,
CHAR (30) ,
CHAR (1),
INTEGER ,
INTEGER,
INTEGER,
VARCHAR (20) ,
CHAR (13),
CHAR (50) ,
CHAR (10) ,

PRIMARY KEY (c_customer_sk)
) DISTRIBUTE BY HASH (c_customer_sk);

CREATE TABLE customer_address (

ca_address_sk
ca_address_id
ca_street_number
ca_street_name
ca_street_type
ca_suite_number
ca_city
ca_county
ca_state

ca_zip
ca_country
ca_gmt_offset
ca_location_type

BIGINT NOT NULL,
CHAR(16) NOT NULL,
CHAR (10) ,

VARCHAR (60) ,

CHAR (15) ,

CHAR (10) ,

VARCHAR (60) ,
VARCHAR (30),
CHAR(2),

CHAR (10) ,

VARCHAR (20) ,
DECIMAL (5,2),

CHAR (20) ,

PRIMARY KEY (ca_address_sk)
) DISTRIBUTE BY HASH (ca_address_sk);

CREATE TABLE inventory (
inv_date_sk
inv_item_sk
inv_warehouse_sk
inv_quantity_on_hand

BIGINT NOT NULL,
BIGINT NOT NULL,
BIGINT NOT NULL,
INTEGER

) DISTRIBUTE BY HASH (inv_item_sk);

CREATE TABLE item (
i_item_sk
i_item_id
i_rec_start_date
i_rec_end_date
i_item_desc
i_current_price
i_wholesale_cost
i_brand_id
i_brand
i_class_id
i_class
i_category_id
i_category
i_manufact_id
i_manufact
i_size
i_formulation
i_color
i_units
i_container
i_manager_id
i_product_name

PRIMARY KEY (i_item_sk)

BIGINT NOT NULL,
CHAR(16) NOT NULL,
DATE,

DATE,

VARCHAR (200) ,
DECIMAL (7,2),
DECIMAL (7,2),
INTEGER ,

CHAR (50) ,
INTEGER,

CHAR (50) ,
INTEGER,

CHAR (50) ,
INTEGER ,

CHAR (50) ,
CHAR (20) ,
CHAR (20) ,
CHAR (20) ,
CHAR (10) ,
CHAR (10) ,
INTEGER,

CHAR (50) ,

) DISTRIBUTE BY HASH (i_item_sk);

CREATE TABLE store_sales (
ss_sold_date_sk
ss_sold_time_sk
ss_item_sk
ss_customer_sk
ss_cdemo_sk
ss_hdemo_sk
ss_addr_sk
ss_store_sk
ss_promo_sk
ss_ticket_number
ss_quantity
ss_wholesale_cost
ss_list_price
ss_sales_price
ss_ext_discount_amt
ss_ext_sales_price
ss_ext_wholesale_cost
ss_ext_list_price
ss_ext_tax
ss_coupon_amt
ss_net_paid
ss_net_paid_inc_tax
ss_net_profit

BigBench Specification V0.1 199

BIGINT default 9999999,
BIGINT,

BIGINT NOT NULL,
BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT NOT NULL,
INTEGER,

DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),

) DISTRIBUTE BY HASH (ss_item_sk);

CREATE TABLE store_returns

sr_returned_date_sk
sr_return_time_sk
sr_item_sk
sr_customer_sk
sr_cdemo_sk
sr_hdemo_sk
sr_addr_sk
sr_store_sk
sr_reason_sk
sr_ticket_number
sr_return_quantity
sr_return_amt
sr_return_tax
sr_return_amt_inc_tax
sr_fee
sr_return_ship_cost
sr_refunded_cash
sr_reversed_charge
sr_store_credit
sr_net_loss

(

BIGINT default 9999999,
BIGINT,

BIGINT NOT NULL,
BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT NOT NULL,
INTEGER,

DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),

) DISTRIBUTE BY HASH (sr_item_sk);

CREATE TABLE web_sales (
ws_sk
ws_sold_date_sk
ws_sold_time_sk
ws_ship_date_sk
ws_item_sk
ws_bill_customer_sk
ws_bill_cdemo_sk
ws_bill_hdemo_sk
ws_bill_addr_sk
ws_ship_customer_sk
ws_ship_cdemo_sk
ws_ship_hdemo_sk
ws_ship_addr_sk
ws_web_page_sk
ws_web_site_sk
ws_ship_mode_sk
ws_warehouse_sk

BIGINT NOT NULL,
BIGINT default 9999999,
BIGINT,

BIGINT,

BIGINT NOT NULL,
BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

BIGINT,

200 T. Rabl et al.

ws_promo_sk
ws_order_number
ws_quantity
ws_wholesale_cost
ws_list_price
ws_sales_price
ws_ext_discount_amt
ws_ext_sales_price
ws_ext_wholesale_cost
ws_ext_list_price
ws_ext_tax
ws_coupon_amt
ws_ext_ship_cost
ws_net_paid
ws_net_paid_inc_tax
ws_net_paid_inc_ship

ws_net_paid_inc_ship_tax

ws_net_profit

BIGINT,
BIGINT NOT NULL,
INTEGER,
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),

) DISTRIBUTE BY HASH (ws_sk);

CREATE TABLE web_returns (

wr_returned_date_sk
wr_returned_time_sk
wr_item_sk

wr_refunded_customer_sk

wr_refunded_cdemo_sk
wr_refunded_hdemo_sk
wr_refunded_addr_sk

wr_returning_customer_sk

wr_returning_cdemo_sk
wr_returning_hdemo_sk
wr_returning_addr_sk
wr_web_page_sk
Wr_reason_sk
wr_order_number
wr_return_quantity
wr_return_amt
wr_return_tax
wr_return_amt_inc_tax
wr_fee
wr_return_ship_cost
wr_refunded_cash
wr_reversed_charge
wr_account_credit
wr_net_loss

BIGINT default 9999999,

BIGINT,
BIGINT NOT NULL,
BIGINT,
BIGINT,
BIGINT,
BIGINT,
BIGINT,
BIGINT,
BIGINT,
BIGINT,
BIGINT,
BIGINT,
BIGINT NOT NULL,
INTEGER,
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),
DECIMAL (7,2),

) DISTRIBUTE BY HASH (wr_item_sk);

DROP TABLE IF EXISTS item_marketprices cascade;
DROP TABLE IF EXISTS web_clickstreams cascade;
DROP TABLE IF EXISTS product_reviews cascade;

CREATE TABLE item_marketprices (

imp_sk

imp_item_sk
imp_competitor
imp_competitor_price
imp_start_date
imp_end_date

PRIMARY KEY (imp_sk)

BIGINT NOT NULL,
BIGINT NOT NULL,
VARCHAR (20) ,
DECIMAL (7,2),
BIGINT,

BIGINT,

) DISTRIBUTE BY HASH (imp_sk);

wcs_click_sk
wcs_click_date_sk
wcs_click_time_sk
wcs_sales_sk
wcs_item_sk
wcs_web_page_sk

CREATE TABLE web_clickstreams (

BIGINT NOT NULL,
BIGINT,
BIGINT,
BIGINT,
BIGINT,
BIGINT,

BigBench Specification V0.1 201

wcs_user_sk BIGINT,
PRIMARY KEY (wcs_click_sk)
) DISTRIBUTE BY HASH (wcs_click_sk);

CREATE TABLE product_reviews (

pr_review_sk BIGINT NOT NULL,
pr_review_date DATE,
pr_review_time CHAR(6),
pr_review_rating INT NOT NULL,
pr_item_sk BIGINT NOT NULL,
pr_user_sk BIGINT,
pr_order_sk BIGINT,
pr_review_content TEXT NOT NULL,

PRIMARY KEY (pr_review_sk)
) DISTRIBUTE BY HASH (pr_review_sk);

Author Index

Bailey, Bliss 148
Baumann, Peter 94
Bayerl, Sebastian 103

Chen, Yanpei 28

Chitor, Ramesh 11

Cira, Cristi 148
Crolotte, Alain 164
Cugler, Daniel Cintra 81

Doblander, Christoph 60
Evans, Michael R. 81

Gao, Wanling 44
Ghazal, Ahmad 164
Glavic, Boris 72
Granitzer, Michael 103
Gunturi, Viswanath 81
Gupta, Amarnath 113

Hofler, Patrick 103

Hu, Minqging 164

Islam, Nusrat Sharmin 129
Jacobsen, Hans-Arno 20, 60, 164
Jia, Zhen 44

Jiao, Yizheng 148

Jose, Jithin 129

Joshi, Ashok 11

Katz, Randy 28
Kern, Roman 103
Kosch, Harald 103

Li, Xiaobing 148
Lindstaedt, Stefanie 103

Liu, Zhuo 148
Lu, Xiaoyi 129

Mutlu, Belgin 103
Nambiar, Raghunath 11

Panda, Dhabaleswar K. (DK)
Poess, Meikel 1, 164

Que, Xinyu 148

28, 164
20, 60, 164

Raab, Francois
Rabl, Tilmann

Sabol, Vedran 103

Schlegel, Kai 103

Seifert, Christin 103
Shekhar, Shashi 81

Shi, Yingjie 44
Stamerjohanns, Heinrich 94
Stegmaier, Florian 103

Wang, Bin 148

Wang, Lei 44

Wang, Teng 148

Wang, Yandong 148
Wasi-ur-Rahman, Md. 129

Xu, Cong 148

Yang, KwangSoo 81
Yu, Weikuan 148

Zhan, Jianfeng 44
Zhang, Lixin 44

Zhou, Runlin 44

Zhu, Chunge 44
Zwicklbauer, Stefan 103

129

	Preface
	Organization
	Table of Contents
	Benchmarking, Foundations and Tools
	TPC’s Benchmark Development Model: Making the First Industry Standard Benchmark
on Big Data a Success
	1 Introduction
	2 Historical Overview of TPC Benchmarks
	3 Organization of the TPC
	4 Benchmark Development in the TPC
	4.1 Benchmark Development Cycle
	4.2 Revisions to an Existing Benchmark Specification Standard
	4.3 General Methodology of TPC Benchmark Specifications

	5 Big Data Benchmark Development in the TPC
	References

	Data Management – A Look Back and a Look Ahead

	1 Historical Perspective
	2 Big Data
	3 Information Explosion and Avnet of Internet
	4 Evolution of Big Data Tools and Technologies
	5 Advantages of Big Data Technologies
	6 Big Data in Enterprise
	7 Conclusion and Outlook
	References

	Big Data Generation
	1 Introduction
	2 Parallel Data Generation Framework
	3 A Big Data Generator
	4 Related Work
	5 Conclusion
	References

	From TPC-C to Big Data Benchmarks:
A Functional Workload Model
	1 Introduction
	2 To Define a Big Data Benchmark
	2.1 Properties of a Good Benchmark
	2.2 Examples of Successful Benchmarks

	3 The Process of Building TPC-C
	3.1 The Origins of TPC-C
	3.2 The TPC-C Application Domain

	4 Functions of Abstraction and Functional Workload Model
	4.1 Functions of Abstraction
	4.2 Functional Workload Model
	4.3 Functional Benchmarks Essential for Big Data

	5 Extending these Concepts to MapReduce
	5.1 Towards Functions of Abstraction for Big Data
	5.2 Emerging Big Data Application Domains
	5.3 Challenges Highlighted by MapReduce Survey
	5.4 Surveying MapReduce-Specific Benchmarks

	6 Vision for Big Data Benchmark
	7 Summary and Future Work
	References

	The Implications of Diverse Applications and Scalable Data Sets
in Benchmarking Big Data Systems
	1 Introduction
	2 Evaluation Methodology
	2.1 Workloads
	2.2 Performance Metric
	2.3 Summary of Hadoop Job Execution [1]
	2.4 Experiment Platforms

	3 Evaluation Results and Analysis
	3.1 Data Scale
	3.2 Experiments Observations

	4 Further Analysis
	4.1 Resource Requirements
	4.2 What about Computational Complexity Theory?
	4.3 Additional Interesting Phenomena

	5 Lessons Learnt from the Experiments
	5.1 Consider the Scalable Volumes of Data Inputs in Big Data
	Benchmarking
	5.2 Consider Diversities of Workloads in Big Data Benchmarking
	5.3 The Limitation of the Sort Benchmark

	6 Conclusion and Future Work
	References

	Domain Specific Benchmarking
	Processing Big Events with Showers and Streams

	1 Introduction
	2 Use Cases
	2.1 Cloud Computing
	2.2 Smart Power Grids
	2.3 Business Process Management

	3 Definitions
	3.1 Event Schema
	3.2 Historic Event Data and Databases
	3.3 Query Language
	3.4 Timing
	3.5 Accuracy

	4 Conclusions
	References

	Big Data Provenance:
Challenges and Implications for Benchmarking
	1 Introduction
	2 Provenance for Big Data
	3 State-of-the-Art
	4 Provenance as a Benchmark Workload
	4.1 Provenance vs. Standard Workloads
	4.2 Pregenerated Provenance Workloads
	4.3 Provenance Tracking as Part of the Workload

	5 Data-Centric Performance Measures
	6 Monitoring and Profiling
	7 Conclusions
	References

	Benchmarking Spatial Big Data

	1 Introduction
	2 Traditional Spatial Big Data
	3 Emerging Spatial Big Data
	4 Metrics For Spatial Big Data Benchmarks
	5 Conclusion
	References

	Towards a Systematic Benchmark
for Array Database Systems
	1 Motivation
	2 Related Work
	3 Benchmarking Arrays
	3.1 Conceptual Array Modeling
	3.2 Benchmarking Dimensions

	4 Application Scenarios
	5 Conclusion and Outlook
	References

	Unleashing Semantics of Research Data

	1 Introduction
	2 Rediscovering Hidden Insights In Research
	3 Big Data Pipeline Approach
	3.1 PDF Analysis
	3.2 Natural Language Processing
	3.3 Disambiguation and Enrichment
	3.4 Storage and Publishing
	3.5 Data Warehousing
	3.6 Visual Analytics

	4 Conclusion
	References

	Generating Large-Scale Heterogeneous Graphs
for Benchmarking
	1 Introduction
	2 Related Work
	3 An Application Scenario
	4 GDB-H: The Heterogeneous Graph Data Benchmark
	5 Generating GDB-H Graphs
	6 Sample Test Queries for GDB-H Graphs
	7 Conclusion and Outlook
	References

	Benchmarking Hardware
	A Micro-benchmark Suite for Evaluating
HDFS Operations on Modern Clusters
	1 Introduction
	2 Background
	2.1 Hadoop Distributed File System (HDFS)
	2.2 High Performance Networks
	2.3 Solid State Drive (SSD) Overview

	3 Related Work
	4 Design Considerations for the Benchmark Suite
	5 Benchmarks for HDFS Operations
	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Evaluations over different Interconnects and Protocols:
	6.3 Evaluations over different Storage Platforms:
	6.4 Finding out the Optimal Values for Hadoop Configuration Parameters:

	7 Conclusion and Future Work
	References

	Assessing the Performance Impact
of High-Speed Interconnects on MapReduce
	1 Introduction
	2 Background
	2.1 Architecture of Apache Hadoop MapReduce
	2.2 Architecture of Hadoop-Acceleration
	2.3 Overview of High-Performance Interconnects

	3 Benchmarking Study of MapReduce Programs on Different Interconnects
	3.1 Experimental Environment
	3.2 Impact of High-Performance Interconnects on Hadoop MapReduce
	3.3 Impact of High-Performance Interconnects on Hadoop Acceleration

	4 Related Work
	5 Conclusions
	References

	End-to-End Big Data Benchmarks
	BigBench Specification V0.1

	1 Introduction
	2 DataModel
	3 Data Generation
	4 Workload
	5 Evaluation
	6 Conclusion
	References

	Author Index

