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Abstract. For the dynamic load characteristics of Wireless sensor network, we 
propose the idea of parallel Coalition and introduce the game theory into the 
solving of dynamic task allocation problem. In this paper, we design the model 
of multiple task allocation based on Nash equilibrium, and use runtime of task, 
Transmission energy consumption and Residual energy to design the utility 
function of Games. Then we use PSO to find to the point of Nash equilibrium. 
By using this method, guarantee the task execution effectiveness and improve 
the utilization rate of networks. Simulation results prove the validity of the  
algorithm, and can effectively prolong the lifetime of the network. 
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1 Introduction 

Wireless sensor network (WSN) which includes a large number of sensor nodes is a 
wireless self-organizing and data-centric network [1]. The biggest drawback of wire-
less sensor network is that nodes have very limited energy, storage space and compu-
ting ability. Task scheduling is a classic problem of extensive research in the field of 
high-performance computing, and is also the core issues in the area of operating sys-
tem research. In the operation of parallel and distributed computing systems, In order 
to effectively use the system resources, an application is usually decomposed into 
multiple tasks. Systems allocate resources to each task and determine the ordering of 
tasks execution. Task management is an important module in WSN, and it works 
together with the mobile management and energy management to monitor energy 
consumption, dynamic change and the role of task allocation of the sensor nodes in 
the entire network [1].  

Many native and foreign scholars have done much research work on task allocation 
of WSN during the past several years. Yang et al propose an energy-balanced alloca-
tion of a real-time application onto a single-hop cluster of homogeneous sensor nodes 
connected with multiple wireless channels [2]. An epoch-based application consisting 
of a set of communicating tasks is considered. Each sensor node is equipped with dis-
crete dynamic voltage scaling (DVS). The time and energy costs of both computation 
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and communication activities are considered. Liu et al propose a method based on 
elastic neural network to reduce energy consumption under the background of tracking 
aerial flying targets with the aim of the task allocation of collaborative technique in 
wireless sensor network [3]. In order to prolong the lifetime, reduce the energy con-
sumption and balance the network load effectively, CHEN et al propose a dynamic 
Coalition model and its corresponding algorithm of task assignment in wireless sensor 
network (WSN) [4]. This method describes a cost function according to the execution 
time, energy consumption and load balance. Particle swarm optimization (PSO) is used 
to optimize task allocation. And on this basis propose a multi-agent-based architecture 
for WSNs and construct a mathematical model of dynamic Coalition for the task allo-
cation problem [5].  

Since Maynard Smith and Price introduced the ideas of evolutionary into game 
theory, learning from the analysis method of biological theory of evolution became a 
new way to calculate Nash equilibrium points and had been obtained abundant out-
comes[6~8]. As in [9], the solution of the Nash equilibrium been shown to belong 
PPAD problem completely. Thomas et al solves the Nash equilibrium by using the 
genetic algorithms [10]. YI et al built a Grid model of m*n type grid using M/ M/ 1 
queue system, and promoted the concept of task scheduling Nash equilibrium among 
multi-schedulers. The optimal objective of each scheduler is mean complete time per 
task [11]. 

This paper also based on the mechanism of dynamic coalition, and PSO was 
adopted to design a WSNs task allocation algorithm based on game theory. PSO is 
simple and easy to implement, and with no gradient information and with other ad-
vantages, which can be used to solve many complex problems. Our algorithm is able 
to adapt to the dynamic change of network load and adjust the network running status 
in time. This paper defines the utility function with the goal of reducing the execution 
time, reducing transport energy consumption and balancing network energy distribu-
tion, and using PSO to obtain the Nash equilibrium of tasks allocation. The results of 
experiment show its dependability and feasibility. The following will detail descrip-
tion of the problem as well as the specific algorithm implementation. 

2 Model of Dynamic Task Allocation 

2.1 Parallel Coalition 

Coalition formation is a key problem in multi-agent systems. Parallel Coalition [12] is 
a concurrent generation problem of multiple dynamic coalitions. Parallel Coalition 
consists of two cases: Crossed Coalition and multi-task Coalition. Crossed Coalition 
means that an agent to join multiple coalition s or a task can be performed by multiple 
Coalitions. 

Due to the limitations of WSNs such as resource availability and shared 
communication medium, parallel processing among sensor nodes is a promising 
solution to provide the demanded computation capacity in WSNs. Considering many 
points of similarity between WSNs and multi-agent systems, this paper introduces the 
complicated coalition into WSNs. As shown in Figure 1, a coalition consists of a 
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number of nodes, and tasks are assigned to the selected coalition structure. Using this 
method we can take full advantage of the core capacity of member nodes, which can 
lead to finishing the tasks more efficiently and is more suitable for the application 
environment of WSNs. 

2.2 The Concept of Mixed Nash Equilibrium 

Game theory is a mathematical decisive approach aiming to solve the problem between 
competition and cooperation. If there is a competing or collaborative behavior among 
bodies in the environment, they will tend to adopt some effective strategies to maxim-
ize the utility of the individual of group. Generally, game body, strategy and utility 
are three main elements of game theory. The game body also acts as the player for the 
game. In general, a game requires at least two players. Besides, the game strategy is 
the actions of each body which is defined in advance, and each body has their own 
strategy set. In additional, each player of the game has a utility function to estimate 
the utility obtained from a certain strategy of the body. Assuming an n-person non-
cooperative game, the pure strategy of player pi is defined as Si= (si

1, si
2, ···, si

mi), 
where mi denotes the number of the pure strategy of pi. The corresponding mixed 
strategy of the pure strategy Si is defined as xi= (xi

1, x
i
2, ···, xi

mi), where xi meets xi
j≥0 

and xi
1+xi

2+···+xi
mi=1. i.e., the player selects the pure strategy si

j (1≤j≤mj) with  
probability xi

j. Then the mixed situation of the game theory can be defined as X= 
(x1, x2, ···, xn). 

In this mixed situation, the expected payoff of pi is defined as follows: 
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Where Pi (s
1

j1, s
2

j2, ···, sn
jn) denotes the gain of player pi when p1 select strategy s1

j1, 
player p2 select strategy s2

j2, ···, and player pn select strategy sn
jn. 

Definition 1. If the mixed situation X* meets ui(X
*||xi)≤ui(X

*), the mixed situation 

X* is the mixed Nash Equilibrium of an n-person non-cooperative game where X*||xi 
denotes that only pi change its strategy. 

Property 1. The mixed situation X* is the mixed Nash equilibrium of an n-person 
non-cooperative game if and only if the pure strategy si

j meets ui(X
*|| si

j)≤ui(X
*). 

Proof: Suppose that X* is the mixed Nash equilibrium. If ui(X
*|| si

j) ≥ui(X
*), the 

player pi will obtain a better gain when it select strategy si
j. According to the idea of 

game theory, Nash equilibrium is the best select of each player, so X* will not be 
mixed Nash equilibrium. 

2.3 Task Allocation 

A wireless sensor network consisting of n heterogeneous wireless sensor nodes distri-
buted in a certain range, and 10% of the node elected as the leader node. The number 
of Coalition is l, and we define the set of coalitions as C= (c1, c2, ···, cl), where 
l=n*10%. A set of independent tasks T= (t1, t2, ···, tm) arrive at sink node at the  
same time. 
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An n-dimensional vector REQ= (req1, req2, ···, reqn) denotes requirements of 
tasks, where reqi denotes requirement of task ti. Through the dynamic topology and 
routing control, sink node can obtain energy of node and ability of task of node. 

In this paper, a matrix Bk= (bij)l×m is used to record the capacity of different coali-
tion on different tasks, and we defined the execution time as: 

 
req

iTime
ij b

ij
=                                 (2) 

Where bij denotes the capacity that i-th coalition executes j-th task, Timeij denotes the 
time required where j-th task run in i-th coalition. 

The energy consumption of wireless sensor networks includes three parts: transmis-
sion energy consumption, processing power consumption and access to energy con-
sumption. As the energy of transferring 1 bit data is far greater than the energy of 
processing 1 bit data, we usually ignore the processing energy consumption and the 
access to energy consumption. The discussion focused on communication energy 
consumption in this paper. The minimum transmission energy consumption is P0,trans 
when the standard distance is d0 i.e., the distance dij between i-th node and j-th node 
determines the energy consumption [13]: 

2 2

, ,2 2
0

(4 )ij
i trans o trans

t r

d
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π β
λ

= × ×                     (3) 

Where, Gt denotes emission coefficient, Gr denotes receive coefficient, λ denotes 
Wireless communication wavelength, β denotes Factor of the energy consumption 
of the system. As (4π)2β/GtGrλ2×P0,trans is a constant, (dij/d0)

2 is the evaluation index 
of unit data of transmission energy. To simplify the data, a matrix COST= (costij)m×l is 
used to record transmission energy consumption, costij denotes the energy consump-
tion when j-th task transfer data to i-th coalition. 

This paper use an n-dimensional vector E to denotes residual energy of coalition. ei 
denotes residual energy of i-th coalition. P(ei) denotes the proportion of residual ener-
gy of i-th coalition in the sum of residual energy of entire network. 
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l
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In order to prolong the network lifetime, during the process of allocation, we 
should balance the residual energy of each coalition. The network residual energy 
average degree is defined as: 

 ( ) ( )

1

log i

l
P e

i
i

H P e
=

= −                       (5) 

Where  denotes the energy entropy of networks. The larger the value of entropy, the 
more average residual energy distribution, and the longer network lifetime. 
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3 Our Algorithm 

This paper assumes that a coalition is constituted by a number of sensor nodes, and 
these nodes are mutually closer in distance. Tasks are scheduled on the coalitions, 
rather than directly on the sensor nodes. Algorithm assigns tasks according to the 
current situation of networks. With development of energy consumption, the algo-
rithm adaptively adjusts the allocation plan. The condition that the Nash equilibrium 
scheduling algorithm directly work on coalitions can be established is: a coalition is 
constituted by several nodes, therefore, a coalition can be considered to be a virtual 
node which has stronger ability and higher energy. Meanwhile, as mentioned above, 
both of multi-tasks allocation and solution of Nash equilibrium belong to NP-hard 
problem, take such an approach can reduce the scale of problem to obtain the solution 
of the problem quickly and reduce the difficult of experimental simulation. Specific 
implementation approach of our algorithm is given below. 
Definition 2. Three components of game theory in our algorithm: 
(1) players of game is s set of non-cooperative tasks,  T= (t1, t2, ..., tm); 
(2) The pure strategy set of players consist of n coalition, coalitions are heterogene-

ous, and coalitions have own corresponding task ability, transmission consump-
tion and residual energy; The corresponding mixed strategy set of players is 
X=(x1, x2,… , xn), where xi is called mixed strategy of i-th player; 

(3) In game theory, the utility function is an important indicator to measure the gain 
of players, it defined herein is: 

1 2 3cosi
j j ij ju w nt w t w e= × + × + ×                     (6) 

Where i
ju  represents utility function which is used to transform multi-target to 

single target, and denotes the gain that i-th task obtain from j-th coalition. The smaller 
the value of utility function, the better; ntj is the sum of busyj and Timeji, busyj denotes 
the busy time of j-th coalition; costij denotes transmission energy consumption of the i-
th player in the j-th coalition; ej denotes the residual energy of j-th coalition; w1, w2 and 
w3 denote weight value. 

3.1 Nash Equilibrium PSO 

In this paper, according to Definition 2, we use PSO to find the point of Nash Equili-
brium. And our algorithm is called NEPSO. 

We use the floating number matrix to represent the task allocation plan. The utility 
function is defined to optimize task execution time, energy consumption and energy 
entropy of network. Then we use utility function to further define the fitness function 
of PSO. 

We use a matrix Xm l×  to code the position of a particle: 
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Where i
jx   denotes the probability that i-th task select the j-th coalition, 

and 1 2 1i i i
lx x x+ + + =  . 

For solving the Nash equilibrium of mixed strategies, each task ti is allocated to 

some coalitions according to its mixed strategy 1 2( , , , )i i i i
lx x x x=  , In such a case, 

we need to change the utility function of pure strategies, and the expected utility func-
tion is defined as: 
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And we also need to update status of coalition after assigned a task: 

*i
j j j jibusy busy x Time= +                       (9) 

*cosi
j j j ije e x t= −                            (10) 

The fitness function of PSO is defined as follows: 

*
,( ) max{max{ ( ) ( )},0}i i i i

i

f X u X u X−= −         (11) 

This fitness function is based on the fact: from the point of view of each player, if 
it change its strategy, the gain that take pure strategy is less than the gain that take 
mixed strategy, and this player will not want to change its strategy. As shown in equa-
tion (10), the value of fitness function of X is zero when X is the best solution X*. The 
smaller the value of fitness, the better. 

In each time of iteration, the particles update themselves by tracking the two ex-
treme values. One is the optimal solution of each particle, which is called the local 
optimal solution, denoted by Xi

lBest, where Np denotes the number of particles. The 
other extreme is the global optimal solution of entire population which is currently 
found, denoted by XgBest. During the iteration of PSO, the i-th particle velocity and 
position update equation: 

1 1

2 2

( 1) * ( ) * *( ( ))

* *( ( ))

i i i i
k k lBest k

i
gBest k

V t w V t c r X X t

c r X X t

+ = + −

+ −
         (12) 

( 1) ( 1) ( )i i i
k k kX t V t X t+ = + +                    (13) 

Where Vk
i(t) denotes the speed of the i-th particle during the k-th iteration,  

Xk
i(t)denotes the position of the i-th particle during the k-th iteration, Xi

lBest denotes the 
current local optimal solution of i-th particle, XgBest denotes the current global optimal 
solution of entire population. r1 and r2 denote the random number between 0-1, c1 and 
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c2 denotes learning factor. w denotes Inertia weight, and it is linearly decreasing 
weight, and decrease from wmax to wmin, as shown in equation (13): 

minmax
max

max

w w
w w ite

ite

−= − ×                      (14) 

Where itemax denotes maximum number of iterations. 
Definition 3. if mixed Nash equilibrium solution X meets ,i j∀  , 

0i
jx ≥ and 1i

j
j

x = , it is called standardized solution. 

If the solution of particles during the iteration of PSO is not the standardized solu-
tion, we should deal it with the method shown in equation (14) and (15): 
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j
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3.2 PSO Algorithm Process  

Input: 
(1) The size of population K, the maximum number itemax; 
(2) Inertia weight w, maximum weight values wmax, minimum weight value wmin; 
(3) Learning factor c1 and c2, the value is 2 in our experiments; 
(4) Initialize set of tasks T= (t1, t2, ···, tm), set of tasks requirements REQ= (req1, req2, 

···, reqn) , an ability matrix ( )ij l mB b ×= , and the energy consumption matrix 

COST= (costij)m×l. 
Output: 
(1) the best mixed strategy X*; 
(2) Residual energy of each coalition RE=(re1, re2, …, rel) ; 
(3) Busy time of coalitions BUSY= (busy1, busy2, ···, busyl). 
Step1: Initialize the population. Initialize each particle X, each component of the 

vector xi is random number between 0-1, then handle xi  according to equa-
tion (14) and (15); 

Step2: compute Vi(t+1) of i-th particle according to equation (11), then update Xi 
(t+1) according to equation (12); 

Step3: handle Vi(t+1) according to equation (14) and (15); 
Step4: compute fitness value of Xi(t+1); 

Step4.1: input mixed strategy matrix X, busy time and energy of each coali-
tion, and set of tasks; 

Step4.2: for task ti, compute its executing time and transmission energy con-
sumption in the coalitions; 
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Step4.3: according to equation (5), compute gain of pure strategy of task ti  in 
the coalitions. 

Step4.4: according to equation (7) and mixed strategy xi, compute expected 
gain of task ti . 

Step4.5: update busy time and energy of each coalition according to equation 
(8) and equation (9); 

Step4.6: compare expected gain of task ti and all pure gain, then update the 
value of fitness according to equation (10); 

Step4.7: if ti is the last task, then end; else i plus 1 and go to step4.2. 
Step5: determine whether need to update the local optimal solution or the global op-

timal solution; 
Step6: The number of iterations plus 1; 

Step7: Judge whether the number of iterations reaches the upper limit itemax. If 
ite=itemax, then return XgBest, else go to Step2. 

During the process of computing, we need to handle the three parameters of the 
utility function (execute time, transmission energy consumption and residual energy). 
In this paper, the value mapped to the interval [0, 0.5] by using sigmoid function, as 
shown in equation (16) and equation (17): 
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4 Simulation and Results 

Our simulation study is conducted for a WSN of n nodes that are placed uniformly in a 
rectangular region of 200 by 200 meters, and 10% of the nodes are elected as the 
leader. The requirements of the subtask are distributed in the range of the interval (2, 
6]. In the same situation, the greater the value is, the longer the time of executing this 
task is. This value also reflects the difficulty of the task processing. The ability of 
executing task is distributed in the range of the interval (15, 25], the greater the value 
is, the stronger the ability is. The energy consumption is distributed in the range of the 
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interval (3, 7], the greater the value is, the greater the consumption is. The energy of 
each node is distributed in the range of the interval (45000, 55000] mj.  

Through several experiments, in order to obtain a high-quality solution rapidly in a 
short period of time, the parameters of PSO are set as follows: maximum number  
of iterations itemax is 100, the size of population K is 50, wmax is 0.9, wmin is 0.5, c1 and 
c2 is 2, w1 is 1, w2 is 1, w3 is 3. 
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Fig. 1. The entropy of different numbers of batches 

As shown in Figure 1, here are a set of experiments to observe the performance of 
wireless sensor networks under different task batch. In the respect of balancing 
networks energy to improve networks lifecycle, compare to MCTTAA and RTAA, 
NEPSO shows good results. The Energy Entropy is keeping at about 3.9. From this 
figure, we can know that three algorithm can let the network has a good entropy when 
the batches of task is small, especially at the interval [600, 900]. However, with the 
increasing  of the batches of task, entropy of MCTTAA declining much faster than 
the others. Similarly, although the RTAA let network energy entropy still maintaining 
at a good level, but compared to the NEPSO algorithm, it is more poor. 

Figure 2 and Figure 3 are the compare of execution time. Due to MCTTAA is based 
on the shortest completion time, whether the average execution time or minimum 
execution time, it shows a very good performance. RTAA and NEPSO is worse.  
As shown in Figure 8, the average execution time of NEPSO and RTAA is almost  
the same, and their corresponding curves are almost overlapping. And on the  
minimum execution time, as shown in Figure 9, NEPSO after MCTTAA is superior to 
RTAA. 
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Fig. 2. The average of execution time of different numbers of batches 
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Fig. 3. The minimum of execution time of different numbers of batches 

In this experiment, the maximum residual energy in coalition is set to be 
55000mj.When an coalition’s residual energy is less than 5% of the maximum resi-
dual energy, namely residual energy is less than 2750mj, the network will be failure. 
As shown in Fig.4, under different numbers of alliance, the batches of task executed 
by NEPSO are the most. When the number of coalition is small, the disparity among 
the three algorithms is not obvious, but with the increase of coalitions, it can obvious-
ly see that performance of NEPSO in improving the network life cycle is excellent, 
RTAA and MCTTAA are much poor, especially MCTTAA. 
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Fig. 4. The life cycle of different numbers of coalitions 

5 Conclusion 

For certain characteristics of wireless sensor networks, based on dynamic coalition 
mechanism, this paper propose a task dynamic allocation algorithm using game 
theory. The proposed algorithm designs a strategy to solve the Nash equilibrium with 
PSO algorithm. Simulation results show that the adaptive algorithm constructed in 
this paper is effective. It can obtain a satisfactory solution in a short time and ensure 
the execution time while effectively extend the lifetime of network. Further research 
work will focus on the fault-tolerant mechanism, namely, building a tasks adaptive 
allocation algorithm with fault-tolerant mechanism in WSN. 
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