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Abstract. In order to support new network architectures, Openflow im-
plements flows forwarding based on multiple tables via pipelines, which
increases the difficulty of the implementation. With the advent of multi-
core CPU, a software defined data plane, LabelCast, is proposed, which
characterizes the ability of forwarding operations and processing ser-
vices through the Label table and Cast table. Forwarding layer lookups
based on fixed-length labels and schedules packets processing, including
light-semantics action instructions of general process, which is easy to
be realized and is denoted by the Label table, and protocol semantics
or status-related service of special process, which could be enriched via
opening resources within network devices and is arranged by the Cast
table. LabelCast supplies a reliable and programmable data plane, and
could load multiple network architectures, so as to facilitate Internet
innovation.
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1 Introduction

To promote network evolution, Stanford proposed Openflow protocol[1]. Open-
flow abstracts data-plane of networks, makes the control-plane programmable,
and supports isolating experiment traffic from production traffic, which offers
a powerful support for a new network protocol to be experimented in a real
network environment. Openflow makes a compromise between academia and in-
dustry by abstracting the data-plane and opening the interface, so that it allows
researchers to develop new protocols based on the unified interface. Openflow
has been the de facto abstract layer of data-plane in the SDN (Software Defined
Network)[2], and being applied to the WAN, like traffic optimization in Google’s
global data center and infrastructure construction of Internet2 etc.

Satisfying the vendor’s demand for device closure and user’s demand for
isolation of packets promoted Openflow, which also placed restrictions on the
Openflow’s support for new network architectures. There are some network ar-
chitectures which cannot run well based on the Openflow, especially which needs
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to deal with packets one by one, like NDN[3] etc. Openflow provides two ways
to deal with packets one by one. One way is sending packets to Openflow con-
troller, which poses a great burden on Openflow controller and is also contrary to
the architecture of separation between data-plane and control-plane. The other
way is sending packets to intelligent data processing platform, which directly
connects with Openflow switches. Due to the need of vendors for device clo-
sure emphasized by Openflow, it just provides the data-plane abstract but hides
the implementation details in data-plane. It is not conducive for researchers to
extend Openflow dataplane function to support per-packet processing.

In order to support the packet-by-packet processing of network architectures
such as NDN and etc., researchers use programmable hardware to extend the
network forwarding-plane like NetFGPA[4], NetMagic and etc., build a soft-
ware virtual router[5][6] based on general multicore processors[7][8] and deploy
Middleboxes[9][10] in networks so as to enable more functions of in-network
processing. Processing in networks provides an efficient implementation of in-
novative network functions, but the lack of a unified abstraction and control
interface is not conducive to the development and deployment of new network
protocols. We further enhance the scalability of the network equipment to sup-
port new network architectures by lending the vendor’s need toward the device
closure of the resources, which lets device vendors provide intelligence processing
resources and development interface based on the network equipment resources.
At the same time, the isolation of experimental traffic and production traffic in
Openflow is a kind of scheduling based on packet options, which is unable to
meet the demand of dealing with special message options in new network archi-
tectures. We directly distinguish network architectures by labels, which simplify
packets classification and forwarding. Inspired by opening resources and unified
labels, we propose a software defined data-plane named LabelCast. LabelCast
identify network architectures with labels at the protocol level, while only mak-
ing abstraction for the ability of computing, storage and forwarding of network
devices, so that could support new network architectures.

In Labelcast, by dividing the data plane of the network into fast forwarding
plane and intelligence service plane based on semantics of processing in net-
works, and Label tables and Cast tables are proposed to abstract forwarding
resources and the computation and storage resources separately. LabeCast has
the following advantage: (1) Simplifying hardware implementation of forwarding
lookup based on fixed-length labels, (2) Enabling multiple user-defined applica-
tions running concurrently controlled by multiple Cast tables, (3) Achieving the
application isolation leveraging the extensible resource container, (4) Loading
multiple network architectures via LabelCast abstraction layer.

The structure of the paper is showed as follows, section 2 introduces the
evolution of network architectures, section 3 proposes a software defined data
plane, LabelCast, and the key mechanisms, such as the mapping and allocation
of labels, service atoms, section 4 provides the application of LabelCast, section
5 is the testing and analysis of the performance of the prototype, and the last
section is the conclusion of the work.
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2 Related Works

Openflow utilizes the three tuple <Matching, Instructions, Statistics> to denote
the abstraction layer of network forwarding. In the evolution progress, the match-
ing field extended from 12-tuples of Ethernet, IP and TCP in Openflow specifi-
cation 1.0 to 15-tuples in Openflow specification 1.1, and from fixed length rules
to the variable-length matching field based on TLV <Type, Length, Values> in
Openflow specification 1.2. The complexity processing of matching implemented
in Openflow switches try to support new network architectures. However, just
enlarging the matching field would increase the difficulty of the implementation
and could not satisfy unknown network protocols. The processing of Openflow
extends from one stage process to multiple stage pipelines in order to solve the
combination blast of multiple tables, which would increase the complexity of
mapping the special processing of the content-centric or service-centric network
architectures to the multiple pipelines of Openflow. The functions of Openflow
switches are continuing to develop, but they are limited to the processing of
packet basic options, such as modification and replacement, and still could not
support the requirements of new network applications, such as data cache.

To solve the complexity of the implementation of Openflow multi-stage
flow tables, based on current router functions of forwarding and controlling,
Openflow+[15] made an extension of Openflow on the aspects of the interface
between the forwarding and controlling layers and flow tables, and then pro-
posed the presentation of openflow rules based on TLV and the mechanism of
the mapping Openflow flow tables to ACL and FIB of routers. The scheme pro-
vides a simple method to implement Openflow on commodity routers, simplify
the implementation of Openflow and enhance the deployment of Openflow.

Juniper enlarges the forwarding layer by customization services, and then
proposes the service layer[16]. By integrating computing and storing resource
with network elements Juniper service layer provides the platform and SDK for
services from the third-party, which could support multiple services of network
managements and has good scalability. Due to the capability of SDK Juniper
service layer runs services mainly including network management, which could
not support packets processing in depth in the key data path. On the other hand,
Juniper service layer only admits authorized partners developing new network
applications on their platform, which lacks of openness.

Middleboxes[11] provide a novel method of patching to add new functions to
Internet, which could implement general packet forwarding and advanced packet
processing, such as NAT, firewall, proxy, IDS, etc., in order to enhance the
ability and security of Internet. On the other hand, the widespread deployment
of middleboxes and other network appliances has primarily resulted in some
challenges and criticism due to poor interaction with higher layer protocols.

Middleboxes also brought a lot of problems, which utilize the method of redi-
recting or DNS mechanism for targeting network traffic to Middleboxes. The
method would increase the complexity of the network control, and add packet
processing delay. On the other hand, Middleboxes are short of scalability, which
could not meet the requirements of high-performance flows processing, and lacks
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of programmability, which could not support the new network protocol experi-
ments, only act as the rapid deployment of mature network protocols.

Future Internet, such as XIA[12], NDN[13], Nebula[14], proposes different for-
warding layer of networks. NDN abstracts the forwarding layer by the content
store table(CS), the pending interest table(PIT) and the forwarding informa-
tion table(FIB). CS provides the index of data storing, PIT records the pending
interest packets to eliminate redundancy requests and the interest packets are
forwarded according to FIB. Forwarding layer of NDN implements packets for-
warding and supports data storing, which could not be implemented on Open-
flow switches. XIA adopts directed-graph to identify the path between the source
and destination nodes, in which all elements are identifiers of entities (e.g., ad-
dresses, identifiers of services, identifiers of contents). The target contents could
be retrieved at intermediate nodes of XIA when the present of the fallback path
in the directed graph, which could support the end-to-end and non-end-to-end
communication model and could not be realized in Openflow.

3 LabelCast: Software Defined Data Plane

With the development of microprocessors, the performance of CPU upgrades
continuously and could implement more and more complexity processing in net-
works. At the same time, in the evolution of next generation architectures some
new architectures are proposed, which requires high performance and more flex-
ibility of network elements. To resolve the problem and extend the functions of
forwarding layer of network platforms, a software defined data plane, LabelCast,
is proposed based on network devices with multi-core processor.

(a)Openflow Model (b)LabelCast Model

Fig. 1. Openflow vs. LabelCast

In LabelCast, services are running on the computing and storing resources
within network elements to implement protocol-related special processing in data
path, which could be added easily according to the requirements of new network
experiments compared with mapping the special processing of new network pro-
tocols to multiple pipelines of Openflow, as illustrated in Fig.1(a), and could run
concurrently via utilizing the parallelism of multicore processors, as illustrated
in Fig.1(b). Logical central controller of Labelcast provides the running plat-
form for network application controllers, maps the network protocols to labels



240 G. Lv et al.

and provides unified configuration interface of forwarding layer to support the
designing and testing of new network experiments in future.

3.1 Labelcast Scheme

The abstraction layer of LabelCast provides five tuples <Label, Instructions,
Service, Status, Restrictions> as a unified and simple management interface for
LabelCast controller, which abstracts the forwarding operations and process-
ing services of the forwarding layer. In rules the label field includes label value
and options, which is the complementary of labels and indicates the method
or precondition of packet processing. The instruction field indicates forwarding
operations(e.g., lookup and modification of the base options of packets). The
service field indicates the functions of processing packets including the sequence
of service atoms(e.g., matching and modification of any packet fields, storing and
loading data).

a) Instructions : Modifying basic options of packets, and controlling packet
in/out( forwarding operations) in the fast forwarding plane.

b) Services : The network protocols semantics or status-related special process-
ing functions in the intelligence service plane based on the computing and
storage resources within network devices. Services abstract the characterizes
of computing and storage resources and supply the development library for
users to design applications, which is denoted by atomService, atomService
= app (compResource, storeResource, pkt).

LabelCast utilizes Label table and Cast table to describe and manage packet
forwarding operations and services of packets processing based on the computing
and storage resources within network nodes.

c) Label Table: Indicates the index of packets forwarding instructions or process-
ing services on the forwarding plane, the entry contains the label and option
domain, the action command domain and service index ID field, which is
denoted by <Labels, Instructions, ServiceID>.

d) Cast Table: Indicates the forwarding plane services handling packet deeply,
the entry contains the service domain, the state domain and resource con-
straints domain, which is denoted by <Services, Status, Restrictions>.

After forwarding operations based on the Label table, packets could be redirected
to the target Cast table to be further processed based on protocols and status
of networks. Unlike Openflow model of pipeline, Labelcast adopts parallel pro-
cessing model controlled by multiple Cast tables, which could utilize the ability
of multi-core processors and exhibit the simplicity of run-to-completion model.
Labelcast controller manipulates the behavior of forwarding layer by configuring
the label table and the cast table with the rules.

In the rules, the label field is described by OLV <Offset, Length, Value>.
The offset field is the offset of the fixed-length labels in packets. OLV could
increase the flexibility of rules exchanged between the Labelcast controller and
the forwarding layer of network devices.
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3.2 Label Table

The label table includes labels, instructions and services. The matching field is
labels of packets, and the instruction field indicates packets forwarding actions,
and the service field indicates the index of the method to process packets.

Labels are allocated by the LabelCast controller. The first packet of flows are
sent to LabelCast controller due to missing against the Label table. Labelcast
controller analyzes the packet and dispatches it to the target network applica-
tion, which registers to process the protocol type of the packet. The network
application allocates the label from the subspace of labels and assigns the label
to the flow, and make the process policy for the flow. Based on the label and
the policy the Labelcast controller generates rules of Label table, and notify
the rules to the upstream and downstream nodes, as illustrated in Fig.2. At the
same time, the Labelcast controller notify the label to the source node of the
flow. After the configuration, the host sends the following packets of the flow
with the label, which are marked by the Labelcast adapter of hosts.

Fig. 2. Label Allocation and Distribution

In the forwarding layer lookup of the fixed-length labels of packets against
the label table gets the method of packet processing, such as action instructions
of light semantics or pointing to service atoms. The forwarding plane packet
processing is usually implemented by multi-stage processing, including simple
packet option modifications, such as TTL minus 1, look-up and output, as well
as label replacement. Multi-stage processing are decomposed into the flow pro-
cessing in the coarse-grained, firstly light semantics-related modifying options
and matching against rules, then the semantics-related packet processing, and
finally the light semantic output control. In Labelcast, modifying basic options
and output control of packet forwarding are denoted by instructions and imple-
mented by forwarding hardware, intermediate stage of packet processing as a
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network service based on the computing and storage resources. The instruction
is constituted by a number of basic actions, such as output and drop action,
which implement stateless packet forwarding operations.

3.3 Cast Table

Services are the sequence of service atoms and are scheduled by the Cast ta-
ble. Labelcast could extend the service based on the resource of computing and
storage. With the repaid increase of processors performance and memory capac-
ity, network nodes has a strong ability of computing and storing in addition to
the general forwarding hardware, which could provide the running platform for
service to implement network protocol semantics and status-related services of
packets processing in depth in the key data path.

Service atoms are implemented through application programs running on the
platform, and provide advance functions related to network protocols, such as
modification or replacement of any packet fields, forwarding based on rules and
storing and loading of data. On the other hand, service atoms could modify the
content of rules in forwarding layer, which could impact the process of subsequent
packets, and could assimilate packets and produce new packets. Service atoms
are developed by network vendors and could be extended by upgrading programs.

a) Buffer primitives : The allocation operation of the shared buffer or dedicated
buffer memory for applications, which are denoted by bufferAlloc, atom-
Service = bufferAlloc (restrictions) to abstract the allocation operation of
storage resources required by the service applications.

b) Threading primitives : The operations for the creation of threads, which are
denoted by createThd, atomService = createThd (restrictions) to abstract
the allocation operation of computing resources applied by services.

c) Registeration primitives : The operation of adding user-defined function to
a thread, which are denoted by registerFun, atomService = registerFun to
dynamically load service functions.

Packets process involving a variety of services, for example, IP over MPLS pro-
cess includes the options-specific modification of packets, in stack and out stack
operations of labels, and the output control operations. Multiple service primitive
perform in order, which constitutes a processing service, and pass the interme-
diate processing results through Metadata, which recorded in the state field of
the Cast table entries, to implement more complex processing in networks.

Service atoms are application programs based on the computing and stor-
age resources within network elements and implement protocol-related packet
processing in depth on the key data path. Service atoms could be upgraded
to implement new services and to support new network protocol-related packet
processing, which could avoid the complex upgrade of hardware of forwarding
layer and increase the flexibility of Labelcast. At the same time, network re-
searchers could design new services of packet processing through reconfiguring
the sequence of service and developing new service atoms, which could support
new network architectures, based on opening resources within network devices.
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3.4 LabelCast Processing

The Labelcast rules of five tuples include the restriction field of resources, which
indicates the resources that network applications could use. Each LabelCast node
allocates computing resource, storage and network bandwidth to network appli-
cations based on the LabelCast rules issued by LabelCast controller, which real-
ize the resources sharing between network experiments. LabelCast nodes adopt
eXtensible Linux Container to manage resources and allocate computing time,
storage size and network bandwidth to the container based on the restriction
field of rules, which provides the dedicated resources for network applications.

Fig. 3. Processing Model of Labelcast

The network application registers the network protocol of packets to the La-
belcast controller firstly, and the Labelcast controller allocates the subspace of
the label space to the application, as illustrated in Fig.3. When packets arrived
at the Labelcast node, the Label table are lookup against the label in Labelcast
options of packets. The first packet of flows with default label could be sent to
the Labelcast controller due to unmatching against the Label table. The Label-
cast controller dispatched the packet to the network application, which register
the network protocol type. The network application allocates the label from the
subspace and assigns the label to the flow, and make the process policy for the
flow. Based on the label and the policy the Labelcast controller generates rules
and configure the Label table and Cast table, and then notify the rules to the
upstream and downstream nodes. At the same time, the Labelcast controller
notify the label to the source node of the flow. After the configuration, the host
send the following packets of the flow with the label, which are marked by the
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Labelcast adapter of hosts. The following packets match the Label table and are
modified according to the instructions, and then are forwarded to the Cast table
and are processed by the target service.

4 NDN Based on Labelcast

We design NDN based on Labelcast, which demonstrate that processing in net-
works could be developed based on the software defined data plane efficiently.

For NDN, the prefixes of structural names are mapped to the fixed length
label, so the interest packets for different chunks of the same content are assigned
the same label, and are processed by the same method, which implements the
aggregation of interest packets with the same names. Labelcast controller notify
hosts the label, which would be inserted in the following interest packets for the
content. Hosts requesting the same content behave alike, so they are assigned
the same label, which could increase the characteristic of the flow and utilize the
cache of data efficiently.

NDN controller running on Labelcast controller computes the path of interest
packets, for simple, ingress data packet and egress interest packet are assigned
the same label, which make data packets returning as the original path. Labelcast
controller uses the label and the service of storing provided by the forwarding
plane to configure Label table, and configure the policy of storage, which deter-
mines whether storing the data or not, and determines interest packet accessing
data cache or not.

Label Instru.    ServID

L12 - NId1

L13        - NId2

Service Status     Restrict.

Ld/Re(L13) {s0,s1}       -

/parc.com/videos/WidgetA.mpg/s2   a

/parc.com/videos/WidgetA.mpg b

Prefix                                                Port

Prefix                                           Port

/parc.com/videos/WidgetA.mpg/s0  index1

Name                                                Dat

FIB

PIT

CS

Cast

Label

St,Re(L12)  {s2,s3}       -

/parc.com/videos/WidgetA.mpg/s1  index2

/parc.com/videos/WidgetA.mpg/s3   a

Fig. 4. Rules mapping between Labelcast and NDN

In NDN network, interest packets are forwarded based on FIB, while data
packets are forwarded by PIT, which is generated according to the ingress port of
interest packets. The lookup in NDN is longest prefixes matching, the publisher
registers the name of content, and maintains the content on source nodes. In
LabelCast, when interest packets arrive, the result of lookup based on the fixed-
length labels indicates actions instructions of the general processing of the base
options or services to process packets according to the name. Services update the
status of storing by adding chunk number to the member set of labels and ports,
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which is implemented by Bloomfilter[17]. When data packets arrive, services
modify labels, choose the output port, and delete the chunk number from the
member set of labels and ports. The Label table and the Cast table implement
the forwarding of interest packets and the generation of data packets together,
which correspond the functions of PIT and CS in NDN, as illustrated in Fig.4.

5 Prototype of LabelCast

5.1 Implementation of the Prototype

Based on the general-purpose multi-core processor FT1000 and Network Pro-
cessing Engine, NPE, we implement a prototype system to support LabelCast.
The Label table is implemented in NPE to schedule packet forwarding operations
and packet output control instructions in data plane. While taking the advan-
tage of the computing and storage resources within FT1000 connected through
the system bus PCI-E, we design the Cast table to implement a protocol and
status related packet processing services.

In the prototype system, the eXtended Linux container, XLC, is designed to
implement the virtualization and allocation of computing and storage resources,
which simplify the development of user-defined services. Based on a scalable
resource container, researchers could design and implement the custom packet
forwarding and processing services, and in the development of services the appli-
cation could call the system components and libraries provided by the Labelcast
prototype system to accelerate applications development.

5.2 PacketDirect IO Performance

Labelcast data plane provides the basic operations of packet forwarding and
services of packets processing. Basic forwarding operations in data plane are im-
plemented in NPE, to provide the light semantics actions of general packet pro-
cessing, including look-up table, modifying the basic packet options and output
control. Packets processing are implemented by the services running on FT1000
being tightly coupled with the NPE, to implement network protocol semantics
or the state-related deep packet processing services in data path, such as the
replacement of specific fields of packets, packets caching and the calculation of
route based on the matrix of the network layer reaching information. Therefore,
in the prototype system the system bus between NPE and FT1000 becomes the
key to improve the system performance.

In the design and implementation of the prototype system, an efficient Packet-
Direct mechanism was designed and implemented to improve system throughput
of the transport mechanism between NPE and FT1000. In experiments network
tester transmitting packets to NPE via two 10Gbps ports, testing the Pack-
etDirect IO performance of the prototype in the case of different number of
threads and packets size, the results are shown in Fig.5. With the number of
forwarding threads increasing, the performance of processing has a certain up-
grade under different packets size; 1 thread implements line-rate forwarding of
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1024-byte packets, 3 threads arrive at the line-rate forwarding of 512 bytes pack-
ets, 4 threads reach the highest forwarding rate, the maximum bandwidth of the
tester’s ports, 20Gbps, for 256 bytes packets. 64 bytes packets forwarding rate
is relatively high, because in the case of the same internal packet buffer size,
the number of cached small packets is relatively high. For the system through-
put, under the same number of threads the larger packet size is, the higher the
throughput is, for the system throughput is proportional to the length of the
packet under the same packet forwarding rate. For the packet size of 1024 bytes
single-thread could achieve the maximum rate of the tester, and for other packets
sizes as the increasing of the number of threads (processing power), the system
throughput increases. The results show that the PacketDirect mechanism of the
prototype meets the performance requirements of the system throughput.
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Fig. 5. PacketDirect IO Performance of Prototype

6 Conclusion

Labelcast provides and abstracts computing and storing resource within net-
work devices for researches, and support running user-defined service based on
extensible resource container, which provides a reliable and programmable data
plane and support new network architectures. By dividing the data plane of the
network into fast forwarding plane and intelligence service plane based on se-
mantics of processing in networks, Label tables and Cast tables are proposed to
abstract forwarding resources and the computation and storage resources sepa-
rately. Action instructions based on fixed-length labels in Labelcast is easily to
be implemented in hardware and service atoms of special processing could be
dynamically extended compared with Openflow. NDN are designed on the NPE
platform with Labelcast model, which support a large scale of parallel requests
on the same content and packet by packet processing. The implementation of
the prototype promotes the evolution of network architectures.
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