

J. Su et al. (Eds.): ICoC 2013, CCIS 401, pp. 145–157, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Research on Resource Management in PaaS
Based on IaaS Environment

Peng Xu, Rui Hu, and Sen Su

State Key Lab of Networking and Switching Technology
Beijing University of Posts and Telecommunications

Beijing, China
xupeng@bupt.edu.cn

Abstract. As one of the three service models of cloud computing, PaaS (Plat-
form as a Service) has gained more and more popularity for its capabilities in
optimizing development productivity and business agility. However, the tradi-
tional PaaS uses the dedicated infrastructure, which generally leads to the low
infrastructure utilization rate. To solve the above problem, PaaS based on IaaS
(PoI) emerged, in which IaaS (Infrastructure as a Service) is involved to provide
PaaS the infrastructure, to decrease the response time of the infrastructure scale
and to increase the utilization of the infrastructure. Because PoI has many cha-
racteristics, resource management mechanisms used in the traditional PaaS or
IaaS could no longer adopted in PoI. In this paper, an adaptive resource man-
agement framework and the corresponding scale-up, scale-down algorithms are
brought forward to guarantee the QoS of applications deployed in PaaS plat-
form as well as to decrease the rental cost of VMs from IaaS providers. Expe-
rimental results show that the resource management mechanisms proposed in
this paper can not only guarantee QoS of all applications, but also improve the
utilization rate of the infrastructure, thus to make PoI possess the advantages of
both PaaS and IaaS.

Keywords: cloud computing, paas, iaas, resource management.

1 Introduction

Cloud computing has gained unprecedented popularity since its inception and be-
comes a great solution to provide a flexible, on-demand and dynamically scalable
computing infrastructure for enterprises. Its Pay-As-You-Go pricing model is essen-
tially similar to other public utilities (e.g., electricity, gas and water). Therefore, cloud
computing is also called “On-Demand Computing”. Cloud computing supports three
service models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS).

IaaS, as the basic cloud service model, enables users to rent the infrastructure
(server, storage and network etc.) dynamically as needed. Since the increasing re-
quirements to improve the cost-efficiency of Internet Data Centers (IDCs), IaaS has
been widely adopted by more and more enterprises to improve the utilization rate of

146 P. Xu, R. Hu, and S. Su

the infrastructure. At the same time, enterprises, especially IT companies, tend to set
up PaaS platforms to provide Application Execution Environment (AEE) for their
applications and reuse a variety of application components. Because PaaS also has to
rely on the infrastructure such as servers and storage, IaaS becomes a candidate to
provide PaaS the infrastructure. That is the PaaS based on IaaS (PoI). PoI could pro-
vide the features of both PaaS and IaaS: i) to provide AEE for applications and appli-
cation components as PaaS; ii) to increase the utilization rate of the infrastructure
as IaaS.

Resource management is one of the most important issues of cloud computing which
decides the efficiency of the platform. In PoI, resource management also plays a very
important role as well. It has many characteristics: i) the traffic model and QoS require-
ments of different applications on PoI are different and changing fast. ii) PaaS could
dynamically use the resource of IaaS according to the requirements of applications.

In this paper, a QoS guaranteed and cost-efficient resource management mechan-
ism in PoI is presented. The rest of the paper is organized as follows. The related
works are introduced in Section 2. Then the architecture of PoI is illustrated in
Section 3. In section 4, the problems which have to be faced by PoI are stated and the
resource management framework of PoI is brought forward in detail. In the end, the
experimental results are presented in Section 5 followed by the conclusions and future
works in section 6.

2 Related Works

Recent research on dynamic resource provisioning in virtualized environments in-
cludes [1]. These research attempted to achieve application performance goals with
dynamic resource provisioning in virtualized environments. Most recently, people
extended the idea into the cloud environment [2]. [3] investigated task scheduling
with deadline and budget constraints in the heterogeneous environment. Some re-
search investigated cost-efficiency in the cloud environment. On the cloud providers’
point of view, [4][5] discussed the resource allocation and instance consolidation
strategies for cloud data centers. The goal is to maximize the profits of cloud provid-
ers while maintaining Service Level Agreement (SLAs). [6] discussed power man-
agement in cloud environment. On the cloud users’ point of view, the hot topic is to
build strategies to deploy applications among multiple cloud providers to enhance
availability with minimum cost [7].

Because PaaS platform is essentially a distributed system, it faces similar resource
management problems like other distributed systems. Computing resources (e.g.,
CPU, memory, disk I/O and network bandwidth) are limited in distributed systems;
therefore how to manage these resources with high efficiency is critical. PaaS plat-
form is asynchronous soft real-time system [8]. On one hand, PaaS platform is
asynchronous because requests of applications on PaaS are unpredictable and nonde-
terministic, and the distribution of the requests cannot be precisely described by ma-
thematical models. On the other hand, it is a soft real-time system because there are
some constraints on the response time, but the failure of timeliness will only lead to

 Research on Resource Management in PaaS Based on IaaS Environment 147

some small losses rather than disastrous consequences. The workload PaaS platform
confronted fluctuates within a wide range. Over-provisioning system resources to
accommodate the potential peak will lead to the waste of the resource. As a conse-
quence, it is important for PaaS platform to maintain efficient resource utilization
under a wide workload conditions without increasing the possibility of failure of time-
liness. [9] proposed a new algorithm called FC-LRU which integrates feedback con-
trol with LRU algorithm to perform adaptive resource management in PaaS platform.
However, the idea of FC-LRU algorithm is based on the assumption that the PaaS
platform is using its dedicated infrastructure. Therefore, the resource management
mechanism in traditional PaaS platform is no longer practical in PoI. New mechanism
for PoI should be adopted.

3 Architecture of PaaS Based on IaaS

Some enterprises adopt PaaS to provide AEE for their applications and application
components, because PaaS is famous for optimizing development productivity and
business agility. However, the benefits of the traditional PaaS are limited, because the
cost of the infrastructure scale-down and scale-up is high and with low efficiency in
the typical PaaS. At the same time, IaaS has many advantages in optimizing infra-
structure utilization. In order to maximize business agility and development produc-
tivity, enterprises are trying to set up PaaS on IaaS, namely PoI. PoI provides applica-
tion development, testing, execution and provision environment which enables both
PaaS’ ease of application deployment and IaaS’ efficient infrastructure management.

In the traditional PaaS, the infrastructure is dedicated for its usage. In the idle
hours, some infrastructure is idle and lead to great waste; while in the busy hours, the
infrastructure is inadequate, and QoS of applications could not be guaranteed. In PoI,
when it is the idle hours, the infrastructure of PaaS could scale down by using the
capability of the underlying IaaS; when it is the busy hours, the infrastructure of PaaS
could scale up. This mechanism could greatly increase the Cost Efficiency of the
platform.

The architecture of PoI is shown in Figure 2. It can be divided into two layers: PaaS
Layer and IaaS Layer. The PaaS Layer dynamically rents VMs from the IaaS accord-
ing to the workload.

• App Execution Engine hosts users’ applications. It provides multiple AEEs and
supports applications written by several programming languages (e.g., Java, PHP).
As one application is scaled up, the App Execute Engine will launch more in-
stances of this particular application.

• Front End is the entry to the platform: it accepts all requests from users and for-
wards them to the appropriate App Execution Engine. In essence, Front End is a
load balancer that knows the correspondence between requests and applications.

• Service Pool manages a set of services including data storage and many other ca-
pabilities that can be used by developers via APIs.

148 P. Xu, R. Hu, and S. Su

• Platform Master is the key component of PoI. It is responsible for application
scheduling, application resource allocation and interfacing with VM Management
to acquire or release infrastructure resource from/to IaaS.

• VM Management is the key component of IaaS to perform the infrastructure re-
source scheduling and providing corresponding APIs.

Fig. 1. Architecture of POI

In the architecture illustrated above, App Execution Engine and Front End are al-
lowed to have more than one instance running simultaneously. Users’ applications are
deployed in App Execution Engine. All components of PaaS, including App Execu-
tion Engine, are deployed in the VMs provided by IaaS. This architecture ensures the
scalability that all applications can easily be accommodated through scale-up and
scale-down. When one application’s workload increases and the requirements for
computing resources increases accordingly, Platform Master can increase applica-
tion’s instances, either based on current set of VMs or acquires more of them from
IaaS Layer to guarantee QoS of the applications. When one application’s workload
decreases, over-provisioning instances will lead to the waste of computing resources;
thus Platform Master can decrease its instances and decide whether to return over-
provisioning VMs to IaaS Layer in order to save VM rental cost.

4 Resource Management of PaaS Base on IaaS

4.1 Problem Statement

In this paper, a resource management framework of PoI is brought forward. On one
hand, PoI is an asynchronous soft real-time system. Its requests are unpredictable and
nondeterministic, and their distribution cannot be precisely described by the mathe-
matical models. On the other hand, it is a soft real-time system because there are some

 Research on Resource Management in PaaS Based on IaaS Environment 149

constraints on the response time, but the failure of timeliness will lead to some small
losses rather than disastrous consequences. In addition, computing resources that
PaaS needs are provided by IaaS Layer as a set of VMs. For those enterprises willing
to adopt PoI, it is important to minimize the usage of VMs in order to minimize the
rental cost as well as guarantee QoS of their applications.

QoS of the application is measured based on the number of requests missed their
deadlines. Missed Deadline Ratio (denoted as MissRatio) is defined as the percentage
of requests that missed their deadlines; the formula used to calculate this value is
given by (1): MissRatio ൌ number of requests missing their deadlinesnumber of total requests ሺ1ሻ

In terms of resource utilization, CPU utilization is involved in this paper because
CPU is the scarcest computing resource. It is important for PoI to maintain CPU utili-
zation at a high level. Different instances of an application may have different CPU
utilization, the CPU utilization of the application (denoted as Uୡ୮୳) is defined as the
average of CPU utilization of all instances; the formula used to calculate this value is
given by (2): UCPU୧୨ ൌ ∑ Uୡ୮୳౟୬୧ୀ଴nM ሺ2ሻ

Where n is the number of instances. M is the maximum CPU utilization that each
instance is allowed to use (CPU utilization of one application’s instance can be limited
by cgroup in recently released Linux version). M means that CPU utilization of an
instance should be limited below the M (e.g., 20%). UCPU୧୨ is used to represent the
CPU utilization of i୲୦instance of application j. The overall CPU utilization of PaaS can
be relatively high if the CPU utilization of each application is high.

Since users’ applications are running in VMs provided by IaaS, it is equally impor-
tant to reduce the usage of VMs in order to lower the rental cost as much as possible.
Traditionally IaaS providers charge according to Pay-As-You-Go pricing model.
Therefore the rental cost is determined by how long and how many VMs are used. The
Usage of VM is defined as the total usage time (denoted as TVM); the formula used to
calculate this value is given by (3):

TVM ൌ ෍ TVM౟
୬
ଵ ሺ3ሻ

Where TVM౟ represents the usage time of i୲୦ VM and n represents the number of
rented VMs.

In PoI, the resource management framework is designed following three objectives:

• Guaranteed QoS of the application, described by Missed Deadline Ratio.
• High resource utilization rate, described by CPU Utilization.
• Less VM usage, described by Time Usage of VMs.

150 P. Xu, R. Hu, and S. Su

4.2 Resource Management Framework

In [9], the resource management framework is mentioned and resource management
problems are simplified into feedback control problems. The first two objectives men-
tioned above can be achieved by feedback control. PID (Proportional-Integral-
Derivative) feedback control is adopted to maintain high CPU utilization. Besides,
VM scheduling algorithm is designed to manage VMs in order to achieve cost effi-
ciency as well as QoS guaranteed applications.

With its three-term functionality covering treatments to both transient and steady-
state responses, PID control offers the simplest and yet most efficient solutions on
many real-world control problems [10]. The reasons why PID control is employed in
this paper include: i) PoI is essentially a dynamic system and PID control technique is
widely accepted technique in dynamic systems; ii) precise mathematical model of the
system is not required in PID control technique. Instead, PID control technique can
achieve satisfactory performance based on an approximate model. The complexity of
PoI makes it difficult to be described precisely by mathematical model, which makes
PID control technique a great candidate for underlying resource management.

A classic feedback control system is composed of a controller, a plant (the object
to be controlled no matter what it is) and sensors (the object to measure the output of
the plant) [11]. Controlled Variables are the variables to be controlled. Set Points
represent the correct and expected values of the Controlled Variables. The difference
between the current value and the Set Point is the Errors. The whole feedback and
control loop is aimed to reduce the Errors.

• The sensor periodically monitors and compares the Controlled Variables to the Set
Points to determine the Errors.

• The controller generates control signals through control function based on the Errors.
• The actuator takes actions to control the plant based on the signal generated by the

controller, which is aimed to reduce the Errors.

Since Platform Master communicates with all components and collect information
(distribution of applications’ instance, workload of each application’s instance, re-
source utilization rate of each VM etc.) of the whole PoI and perform application
scheduling, application resource allocation and VM management (by interfacing with
VM Management of IaaS), Platform Master could be reconstructed to support the
feedback-control loop, thus the resource management framework is mainly imple-
mented in Platform Master, shown in figure 3.

In the framework shown in figure 3, Missed Deadline Ratio and average CPU Uti-
lization are adopted as the Controlled Variables. Because Controlled Variables are
application-independent, a small, non-zero value is used as the Set Point of Missed
Deadline Ratio for each application. The Set Point of Missed Deadline Ratio of appli-
cation j is denoted as MissRatioୱ୨ . Similarly, an expected percentage is used as the Set
Point of CPU Utilization for each application. The Set Point of CPU Utilization of
application j is denoted as Uୡ୮୳౩୨ . Note that the workload of each application in PaaS
is unpredictable, it is impossible to achieve 100% CPU utilization and 0% missed
deadline ratio. Therefore, a tradeoff between these two metrics is inevitable.

 Research on Resource Management in PaaS Based on IaaS Environment 151

Fig. 2. Resource Management Framework

The sampling time is defined to be the end of each period of the arrival of the feed-
back data. Resource management decisions are made at the beginning of each period
based on the feedback data collected previously. Then error୩୨ for application j could
be calculated with the following formula (4): error୩୨ ൌ wଵ ൈ ൫MissRatio୩୨ െ MissRatioୱ୨ ൯ ൅ wଶ ൈ ሺUୡ୮୳౟୨ െ Uୡ୮୳౩୨ ሻ ሺ4ሻ

Where k is the sampling instant and MissRatio୩୨ is the Missed Deadline Ratio in

the k୲୦sampling instant and Coefficients wଵ and wଶ are tunable. Based onerror୩୨ ,
the number of instances of application j to be changed can be calculated in the current
period with the following PID control formula (5):

∆Instance୨ ൌ C୮ ൈ error୩୨ ൅ CI ൈ ෍ error୩୨ ൅ CD ൈ error୩୨ െ error୩ିDW୨DWIW ሺ5ሻ

Where C୮, CI, CD, IW and DW are tunable coefficients. The number of instances
of application j can be changed according to ∆Instance୨. ∆Instance୨ ൐ 0 means that
the application should scale up (i.e., the number of instances of application j should be
increased), and ∆Instance୨ ൏ 0 means that the application should scale down (i.e.,
the number of instances of application j should be decreased), and ∆Instance୨ ൌ 0
means that current number of instances of application j is appropriate and does not
need change.

4.3 VM Scheduling Policy

How to set up a feedback control system in PoI and how to determine the number of
instances of each application in order to guarantee the QoS of each application are
stated above, then the policy to schedule the rented VMs will be illustrated. The deci-
sions on when to scale up and scale down are made on the objective: Low
Time Usage of VMs. Specifically, as the ∆Instance has been computed, strategies of

152 P. Xu, R. Hu, and S. Su

scale-up and scale-down which can lower the Time Usage of VMs as much as possi-
ble should be determined. The VM Scheduling Policy can be divided into two algo-
rithms: scale-up algorithm and scale-down algorithm.

1. Scale-Up Algorithm

In order to decrease the Time Usage of VMs, the CPU capacity of every VM should
be monitored. In addition, there is a threshold for each VM to limit its CPU utilization
in a safe level (e.g., 90%). The objective of scale-up algorithm is to make sure all
instances are converging to a small number of VMs as well as keep each VM’s CPU
utilization in a safe level. A memory management algorithm “BEST FIT” is intro-
duced to achieve the above objective. BEST FIT is a famous algorithm for OS memo-
ry management in order to avoid using larger blocks unnecessarily. In BEST FIT, the
block list is searched for the block that is smallest but greater than or equal to the
request size [12].

The suitable VM, into which new instances of the particular application to be ex-
panded are deployed, is chosen based on BEST FIT. Next this algorithm will be fur-
ther illustrated with an example. Assuming the utilization of all VMs is as figure 4:

Fig. 3. CPU Utilization of VMs

In figure 4, there are 4 VMs. White box represents the percentage of CPU unused.
In this example, an instance of application j need to be created and this instance will
occupy 10% CPU utilization of a single VM. The safe threshold of VMs is 90%.
Therefore, the actual percentages of CPU which could be used are 23%, 10%, 35%
and 2% respectively. According to the BEST FIT algorithm, VM2 is chosen as the
target to bear application j’s instance. If there is more than one instance to be scaled
up, the above procedures should be performed iteratively based on BEST FIT algo-
rithm. By using BEST FIT algorithm, the CPU of every rented VMs will be fully
exploited over the time. Scale-Down Algorithm

The scale-down algorithm is designed following the same objective as the scale-up
algorithm. Differing from scale-up algorithm, the scale-down algorithm tries to deter-
mine which instance to be removed in order to acquire as many idle VMs as possible
and return them to IaaS Layer.

 Research on Resource Management in PaaS Based on IaaS Environment 153

k୲୦ VM is denoted as VM୩ሼApplication Sequenceሽ, where Application Sequence
is the sequence of applications ID whose instances are running in VM୩. For example,
if 1 instance of application 1, 1 instance of application 2 and 1 instance of application 3
are running in k୲୦ VM, this VM can be denoted as VM୩ሼ1,2,3ሽ. Application Se-
quence probably has duplicate application ID since there could be more than one in-
stances of one application running simultaneously on the same VM. The above objec-
tive is achieved by introducing the heuristic algorithm and removed the instances of the
VM which has the least number of running instances and its instances are the subset of
the instances to be removed. Assuming there are 4 VMs: VMଵሼ1,2ሽ , VMଶሼ1ሽ , VMଷሼ2,2, 3ሽ, VMସሼ3,4,5ሽ, and the instances to be shrunk is {1,1, 2, 2, 2, 3}. Based on
our scale-down algorithm, the instances should be removed according to the following
sequence: VMଶሼ1ሽ, VMଵሼ1,2ሽ and VMଷሼ2,2,3ሽ. VM 1, 2 and 3 are set idle after the
scale-down and can be returned to IaaS Layer.

4.4 Resource Management Process

In summary, the resource management process in PoI is essentially a feedback-control
loop. At the beginning of every period, Platform Master collects all feedback data
from other components of the platform and makes resource management decisions
according to the feedback data. Every feedback-control loop can be divided into 4
phases.

• To collect performance metrics including Missed Deadline Ratio and CPU Utiliza-
tion of every application deployed on the platform.

• To compute ∆Instance for every application based on PID control function men-
tioned above.

• To deploy or remove application instances based on scale-up or scale-down algo-
rithms. Rent VMs from IaaS Layer if needed.

• To return all idle VMs to IaaS Layer in order to save rental cost.

5 Experiments

In this chapter, the comprehensive evaluation of the resource management framework
of PoI is presented. In Section 5.1, the details of the experimental setup are specified.
In Section 5.2, the proposed framework under different experimental parameters is
illustrated, then the analysis of the experimental results is given.

5.1 Experimental Setup

For the evaluation of the proposed resource management framework in PoI, work-
loads of different patterns as the workloads of the platform are prepared. The different
workloads are provided by The Grid Workloads Archive, which could provide ano-
nymous workload traces from grid environments to researchers and to practitioners
alike [13]. 3 workloads of different patterns within 24 hours are chosen as shown in
Figure 5.

154 P. Xu, R. Hu, and S. Su

Each workload pattern above represents a typical scenario. For example, workloads
of Application 1 and Application 3 slightly differ from each other but show a very
common pattern that fluctuates consistently and reaches peaks in the middle of the
day. In addition, workload of Application 2 shows a very steady pattern with several
wiggles.

Fig. 4. Workload Patterns of Application 1, 2 and 3

The fixed parameters of the experiment are shown in Table 1. Each workload is split
into 144 intervals with 10 minutes per interval. Each application is initialized and
deployed with 1 instance. Coefficients shown in Table 1 are obtained based on expe-
riences. The values of these coefficients could be determined by using PID tuning
techniques [14].

Table 1. Fixed Experimental Parameters

Number of Applications 3

Minutes per Interval 10
Number of Intervals 144

Initial Instances of each Application 1
Coefficient ܟ૚ 2
Coefficient ܟ૛ 1.5
Coefficient ۱1 ܘ
Coefficient ۱ܑ 0.5
Coefficient ۱1 ܌

5.2 Evaluation of Resource Management Framework

Besides the fixed experimental parameters shown in Table 1, there are also three
kinds of tunable experimental parameters including Set Point of Missed Deadline
Ratio for each application (denoted as MissRatio_s), Set Point of CPU Utilization for
each application (denoted as U_(cpu_s)) and VM Safe Threshold. For the clarifica-
tion and simplicity of the following analysis, MissRatio_s and U_(cpu_s) for all
applications are set together. The proposed resource management framework is eva-
luated under different settings of tunable experimental parameters.

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

Application 1 Application 2

Application 3

 Research on Resource Management in PaaS Based on IaaS Environment 155

Figure 6 shows the Missed Deadline Ratio and CPU Utilization of different appli-
cations in the platform with the tunable parameters settings in above table. The pro-
posed resource management framework keeps both the Missed Deadline Ratio and
CPU Utilization of all applications around the expected values in response to the
workloads of different patterns. The proposed framework also has the predictive ca-
pability to the changing workload. Take Application 1 as an example, as its workload
increases suddenly and keeps the increasing trend for periods, its Missed Deadline
Ratio only increases for a short time and returns to the expected value. The proposed
framework gains this predictive capability through PID control function based on
which it scales up Application 1 to deal with the future workload increase, with the
cost of the temporary fall of CPU Utilization.

Missed Deadline Ratio of Application 1 CPU Utilization of Application 1

Missed Deadline Ratio of Application 2 CPU Utilization of Application 2

Missed Deadline Ratio of Application 3 CPU Utilization of Application 3

Set Point of Missed Deadline Ratio 0.05
Set Point of CPU Utilization 0.8
VM Safe Threshold 0.9

Fig. 5. Missed Deadline Ratio and CPU Utilization of Application 1, 2 and 3

0

0.1

0.2

0.3

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.6

0.8

1

156 P. Xu, R. Hu, and S. Su

6 Conclusion and Future Works

It’s becoming a trend for enterprises to adopt PoI. In summary, PoI has many advan-
tages on the flexibility, reliability and cost-efficiency. In this paper, a QoS guaranteed
and cost-efficient resource management framework in PoI is proposed. The frame-
work is composed of a feedback control system and two scaling algorithms. Experi-
mental results show that the resource management framework can not only maintain
Missed Deadline Ratio of all applications at an expected value, but also improve the
CPU Utilization of all applications around an expected value. According to experi-
mental results, it can be found that Time Usage of VMs has negative correlation with
the Set Point of Missed Deadline Ratio, the Set Point of CPU Utilization and VM
Safe Threshold.

In this paper, the resource management framework is designed based on a relative-
ly simplified IaaS Layer, e.g., the action of renting and returning VMs can be finished
immediately. However this assumption usually does not hold true. For example,
Amazon Elastic Compute Cloud (Amazon EC2), an IaaS provider, charges on hourly
basis, which makes it impossible to return VMs to IaaS providers immediately. In the
future, a more practical abstraction of IaaS Layer will be involved, e.g., the potential
delay in renting and returning VMs needs to be taken into account.

References

1. Chandra, A., Gong, W., Shenoy, P.: Dynamic Resource Allocation for Shared data centers
using online measurements. In: Proceedings of the 11th International Workshop on Quality
of Service (2003)

2. Ruth, P., McGachey, P., Xu, D.: VioCluster, “Virtualization for Dynamic Computational
Domains”. IEEE International on Cluster Computing, 1–10 (September 2005)

3. Menasc, D., Casalicchio, E.: A Framework for Resource Allocation in Grid Computing.
In: Proceedings of the 12th Annual International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems, pp. 259–267 (2004)

4. Yazir, Y., Matthews, C., Farahbod, R., Neville, S., et al.: Dynamic Resource Allocation in
Computing Clouds using Distributed Multiple Criteria Decision Analysis. In: 3rd Interna-
tional Conference on Cloud Computing, Miami, Florida, USA (2010)

5. Chang, F., Ren, J., Viswanathan, R.: Optimal Resource Allocation in Clouds. In: 3rd Inter-
national Conference on Cloud Computing, Miami, Florida, USA (2010)

6. Mazzucco, M., Dyachuk, D., Deters, R.: Maximizing Cloud Providers Revenues via Ener-
gy Aware Allocation Policies. In: 3rd International Conference on Cloud Computing, Mi-
ami, Florida, USA (2010)

7. Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-Optimal Scheduling in Hybrid IaaS
Clouds for Deadline Constrained Workloads. In: 3rd International Conference on Cloud
Computing, Miami, Florida, USA (2010)

8. Cristian, F., Fetzer, C.: The Timed Asynchronous Distributed System Model. IEEE Trans-
actions on Parallel and Distributed Systems (June 1999)

9. Hu, R., Li, Y., Zhang, Y.: Adaptive Resource Management in PaaS Platform Using Feed-
back Control LRU Algorithm. In: 2011 International Conference on Cloud and Service
Computing (2011)

 Research on Resource Management in PaaS Based on IaaS Environment 157

10. Ang, K.H., Chong, G., Li, Y.: PID Control System Analysis, Design and Technology.
IEEE Transactions on Contr. Syst. Tech. 13(4), 559–576 (2005)

11. Astrom, K.J.: PID Controllers: Theory, Design, and Tuning. Instrument Soc. Amer. Re-
search Triangle Park (1995)

12. Best Fit Allocation Algorithm, http://www.cs.rit.edu/~ark/lectures/gc/
03_03_03.html (access on January 2013)

13. The Grid Workloads Archive, http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.
php?n=Home.GWA (access on January 2013)

14. Wang, Q.G., Lee, T.H., Fung, H.W., Bi, Q., Zhang, Y.: PID Tuning for Improved Perfor-
mance. IEEE Trans. Contr. Syst. Tech. 7, 3984–3989 (1999)

	Research on Resource Management in PaaS Based on IaaS Environment
	1 Introduction
	2 Related Works
	3 Architecture of PaaS Based on IaaS
	4 Resource Management of PaaS Base on IaaS
	4.1 Problem Statement
	4.2 Resource Management Framework
	4.3 VM Scheduling Policy
	4.4 Resource Management Process

	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluation of Resource Management Framework

	6 Conclusion and Future Works
	References

