
An Efficient Update Mechanism for GPU-Based

IP Lookup Engine Using Threaded Segment Tree

Yanbiao Li1, Dafang Zhang1, Gaogang Xie2, Jintao Zheng1, and Wei Zhao1

1 College of Information Science and Engineering, Hunan University,
Changsha, 410082, China

2 Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, 100190, China

Abstract. Recently, the Graphics Processing Unit (GPU) has been used
to deploy high-speed software routers. On this platform, designing an ef-
ficient IP lookup engine is still a challenging task, especially when taking
into account the comprehensive performance under frequent updates. Ex-
isting solutions either fail in dealing with update overhead, or can not
provide stable throughput. In this paper, we first propose the Threaded
Segment Tree, a novel tree-like structure. On this basis, we then present
a fast IP lookup engine with an efficient parallel update mechanism.
According to our experiment results on real-world data, the proposed
mechanism reduces the memory accesses on the GPU and the overall
update overhead by at least 82.5% and 89.6% respectively. Moreover, it
also ensures the lookup engine provides stable throughput under highly
frequent updates, which only decreases by less than 1% even though
update frequency increases to 100, 000 updates/s.
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1 Introduction

IP address lookup, as a key function of modern routers for packets forward-
ing and classifying, aims to determine a proper next hop for each incoming
packet, through comparing its destination address against all prefixes stored in
the Forwarding Information Base (FIB). It is always modeled as a Longest Prefix
Matching (LPM) problem.

1.1 Summarize of Prior Arts

Classic solutions to LPM fall into two major categories. Hardware-based solu-
tions always provide very fast lookup [1, 2], but their low flexibilities and high
consumptions on power and cost make them unadaptable to large tables, or to
growing requirements on scalability. By contrast, software-based solutions are
proved more flexible due to some tree-like data structures [3–5]. But processing
LPM on them requires multiple memory accesses for one lookup. Though op-
timized by many techniques [6, 7], their performance are still difficult to meet
today’s link speed.
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Fig. 1. (a) FIB. (b) A sample of GALE’s direct table. Deleting P3(10∗) from it and
then inserting P7(1∗, N5) into it must be processed in order. (c) Transforming prefixes
into segments. To simplify examples, we suppose the focused maximum prefix length
is 5 (which is 24 in practice).

Fortunately, some GPU-based software routers [8–10] have been proposed to
provide both high throughput and high scalability. However, with major focus on
the entire framework design, they all treat the routing table as static and thus fail
in dealing with update overhead. In view of this, J. Zhao et al. [11] presented a
GPU-Accelerated Lookup Engine (GALE), which provides both fast lookup and
the solution to route updates. Due to its update mechanism, a update request,
after being used to update a trie, is mapped into a range of unit modifications
toward a direct table stored on the GPU. However, different updates may be
mapped to the same unit. So, even with a careful length checking, breaking their
order may also lead to incorrect updates (as shown in Fig. 1(c)). Accordingly, in
GALE, not all updates can be processed in parallel, which obstructs it to benefit
enough from GPU’s parallelism.

1.2 Our Approach and Key Contributions

In this paper, we first implement the TBL24 of DIR-24-8 scheme [12] on the
GPU, just like GALE, to enable O(1) lookup. Then, instead of using a trie, we
present a novel tree-like structure, Threaded Segment Tree (TST), to process
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off-line updates on the CPU, achieving more efficient on-line updates toward the
TBL24 on the GPU. We call the proposed IP lookup engine TSTT, for its two
most important components are TST and TBL24 respectively.

We make three key contributions in this paper. Firstly, after transforming the
FIB into a compact segment tree, we design a special leaf-pushing technique, to
divide all prefixes into several non-intersecting segments. Besides, we present a
series of algorithms to thread necessary segments during off-line updates, ensur-
ing threaded segments cover all update information without any intersecting. As
a result, on-line updates can be processed completely in parallel.

The rest of this paper is organized as follows. Section 2 presents the system
architecture of our proposed scheme. And the details of TST are proposed in
Sect. 3. Section 4 discusses the performance evaluation experiments. At last, a
short conclusion are given in Sect. 5.

2 System Architecture

Since there are many novel designs toward the entire framework of GPU-based
software routers [8, 9], we only focus on the IP lookup engine, which can be
deployed into such routers as an additional plug-in [11]. With the help of an
optimized packet I/O engine [8], which manages packet queues and extracts
pending packets’ destination addresses for lookup, we pay our major attention
to the GPU-based accelerator for table lookup and update.

As shown in Fig. 2, our system architecture is based on Compute Unified
Device Architecture (CUDA), in which, all program codes are divided into two
cooperative parts, the Host and the Device, executed respectively on the CPU
and the GPU. In the Device, the TBL24, which stores all prefixes no longer
than 24 (the rest are stored in a small TCAM, which is not shown in Fig.2),
provides O(1) lookup. In the Host, as managed by a control thread, a group of
working threads process lookup and update requests, by utilizing the computing
resources of both the CPU and the GPU.

Processing route updates on TBL24 always needs help from additional struc-
tures [11]. In TSTT, TST plays such a role. Actually, in our case, all prefixes
no longer than 24 are transformed into segments, each of which corresponds to
a range of units of the TBL24. Then, a TST is constructed on bidis of these
segments, which is stored in the host memory (on the CPU) for off-line updates.
When a route update arrives, it is first used to update this TST, producing sev-
eral unit modifications toward the TBL24. During such off-line updates on the
CPU, all produced unit modifications are collected, and are then processed on
the GPU to update the TBL24 for on-line updates.

As the GPU works in Single Instructions with Multiple Threads (SIMT),
batch processing is required for improving performance. As long as all unit mod-
ifications produced during off-line updates are kept independently with each
other, all of them can be processed in parallel on the GPU. In this case, we can
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Fig. 2. TSTT’s architecture based on CUDA

collect all produced unit modifications in batchs, and send them to the GPU
batch by batch, by utilizing multiple streams1.

Besides, to avoid storing complicated next hop information (such as multi-
next-hop [13]) on the GPU, we store their index in the TST and the TBL24
instead, with entire next hop information stored in a separated Next Hop Table
on the CPU.

3 Threaded Segment Tree (TST)

3.1 Segment Tree and Prefix Transforming

Segment Tree is a special binary search tree that supports dynamic lookup and
update. Some of its extensions have been already used in IP lookup [14] and
packet classifying [15]. They all transform prefixes into segments in a straight-
forward way. As shown in Fig. 1(b), the maximum prefix length is supposed to
be max, if the length and value2 for a prefix are denoted as len and pre respec-
tively, then, its corresponding segment can be calculated as [pre×2max−len, pre×
2max−len + 2max−len − 1].

3.2 Building Leaf-pushed Segment Tree

After transforming all prefixes into segments (as shown in Fig. 1(b)), a segment
tree can be easily constructed. But in our case, the segment tree is only used
to produce segments that represents unit modifications toward TBL24 during

1 In CUDA, a steam is a sequence of operations executed in order.
2 For a prefix formatted as a.b.c.d/len, its prefix length is len and its prefix value is
(a× 224 + b× 216 + c× 28 + d) >> (32− len).
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(a) Before leaf pushing. (b) After leaf pushing.

Fig. 3. Segment tree built on the FIB shown in Fig. 1(a)

Algorithm 1. Leaf Pushing

Input: curNode, nextHop
1 if curNode = NULL or curNode.isPrefixSeg then
2 return;
3 end
4 LeafPushing (curNode.leftChild, nextHop);
5 if curNode.isLeaf then
6 ModifyNode (curNode, nextHop);
7 end
8 LeafPushing (curNode.rightChild, nextHop);

off-line updates. In order to generate as less segments as possible, we build a
compact segment tree (as shown in Fig. 3), in which a segment should not be
broken unless necessary. Originally, a prefix corresponds to only one segment
(let’s call it prefix segment), whose value is set as the entry index of this prefix.
So, each update request needs only modify just one prefix segment, enabling
update process be simple and efficient.

However, since two prefix segments may intersect with each other, on-line
updates produced by them may toward the same unit, making it unavailable
to process them in parallel. To address this issue, we introduce a special leaf
pushing technique3 to push all prefix segments’ values into leaf segments (shown
in Fig. 3(b)). Unlike the traditional leaf-pushing algorithm [6], there are two
important special rules for ours: 1) All prefix segments still reserve their own
values after leaf pushing. 2) Each value is pushed from some prefix segment
down to all possible leaf segments, until reaching another prefix segment. This
algorithm is described in Algorithm 1.

3 Leaf Pushing is a widely used technique for Trie-based IP lookup.
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After leaf pushing, each leaf segment contains an index number that corre-
sponds to a route entry, so as all prefix segments. On the other hand, a segment
can be represented by several leaf segments. In another word, instead of produc-
ing unit modifications by all prefix segments, we can use a group of leaf segments
to do the same thing. Since any two leaf segments will not intersect with each
other, all produced unit modifications in this way can be processed in parallel
now.

3.3 Threading Leaf Segments during Off-line Updates

Based on the leaf-pushed segment tree, several leaf segments can be used to pro-
duce unit modifications without intersecting. The next problem is to determine
which segments are required. In this section, we present a series of algorithms
to solve this problem, by threading all necessary leaf segments during off-line
updates. Since modifying an existing prefix can be treated as inserting a new
prefix, we only discuss how to delete/insert a prefix.

Prefix Deletion. To delete a prefix, we begin with looking up its corresponding
segment. If no one matches, nothing needs to do. Otherwise, the value of the
matched segment should be modified to the value of the nearest segment along
the path from it to the tree root (if no one found, use the default). Then, its
new value should be pushed down.

For example, as shown in Fig .4(a), to delete P3(10∗), its corresponding prefix
segment [16, 23 : P3] should be modified to P2 (the nearest segment along the
path from it to the root is 16, 31 : P2), which is then pushed down to three leaf
segments: [16, 19], [20, 20] and [22, 23]. While for deleting P1(0∗), the value of
its corresponding segment 0, 15 : P1 is modified to the default (e.g. 0). And the
default is then pushed down to two leaf segments: [4, 17] and [8, 15]. During the
deleting process, we use a doubly linked list to thread all leaf segments modified.
This algorithm is described in Algorithm 2.

Prefix Insertion. Inserting a prefix is namely inserting a segment. If this seg-
ment is already exist, its value should be set as the inserting prefix’s entry index.
Then, this new value should be pushed down. During this process, all leaf seg-
ments modified should be threaded in the double linked list. If the inserting
prefix segment is not exist, a series of leaf segments should be broken into new
segments until the inserting segment has been produced. During this process, all
generated leaf segments should be threaded. On the other hand, if a threaded
segment has been broken, it must be removed from the list.

For example, as shown in Fig. 4(b), to insert P7(1∗, N5), since its prefix seg-
ment [16, 31] is already exist, the value of this segment is set as P7, which is then
pushed down. While for inserting P8(0001∗), [0, 3 : P4] is broken into [0, 1 : P4]
and [2, 3 : P8], which should be threaded in turn. This algorithm is described in
Algorithm 3.
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Algorithm 2. Delete Segment

Input: curNode, delSeg, nextHop
1 if curNode.seg = delSeg and nextHop �= DEFAULT then
2 curNode.seg.value = DEFAULT; curNode.isPrefixSeg = FALSE;
3 LeafPushing (curNode, nextHop);

4 end
5 else
6 if curNode.isLeaf then
7 return;
8 end
9 if curNode.isPrefixSeg then

10 nextHop = curNode.seg.value;
11 end
12 mid = (curNode.seg.low + curNode.seg.high)/2;
13 if mid < delSeg.low then
14 DeleteSegment (curNode.rightChild, delSeg, nextHop);
15 end
16 if mid ≥ delSeg.high then
17 DeleteSegment (curNode.leftChild, delSeg, nextHop);
18 end

19 end

(a) Delete P3(10∗) and P1(0∗).

�

�

(b) Insert P7(1∗, N5) and P8(0001∗, N2).

Fig. 4. Threading leaf segments during off-line updates. Only one direction’s connec-
tion of the double linked list is shown.

4 Experimental Evaluation

In this section, based on four real-world routing data sets collected from the
RIPE RIS Project [16] (shown in Table.1), we conduct a group of experiments to
evaluate TSTT’s performance, and demonstrate its superiorities in comparison
with GALE. The experimental system is set up on a server with an Intel CPU
(Xeon E5-2630, 2.30GHz, 6Cores) and an NVIDIA GPU (Tesla C2075, 1.15 GHz,



An Efficient Update Mechanism for GPU-Based IP Lookup Engine 141

Algorithm 3. Insert Segment

Input: curNode, insSeg
1 if curNode.seg = insSeg then
2 curNode.seg.value = DEFAULT; curNode.isPrefixSeg = FALSE;
3 LeafPushing (curNode, nextHop);

4 end
5 else
6 if curNode.isLeaf then
7 BreakSegment (curNode);
8 end
9 mid = (curNode.seg.low + curNode.seg.high)/2;

10 if mid < insSeg.low then
11 InsertSegment (curNode.rightChild, insSeg);
12 end
13 if mid ≥ insSeg.high then
14 InsertSegment (curNode.leftChild, insSeg);
15 end

16 end

448 Cores) on the basis of CUDA 5.0. We measure all concerned metrics through
the NVIDIA Visual Profiler [17].

Table 1. Routing Data Sets (Collected at Jan. 1, 2013)

Data Set Location Total Prefixes Total Updates

rrc11 New York (NY), USA 442,176 1,177,425
rrc12 Frankfurt, Germany 450,752 4,049,260
rrc13 Moscow, Russia 456,580 2,025,239
rrc14 Palo Alto, USA 446,160 1,388,217

4.1 Memory Accesses Required for On-line Updates

To evaluate the performance of route update, we replay a week’s update traces
of rrc12 and a whole day’s update traces for all tables. After processing off-line
updates in TST, we get a list of threaded segments, each of which represents
several memory writes toward a range of units of the TBL24 on the GPU. While
for GALE, due to the length map checking, it requires both memory reads and
writes on the GPU to finish on-line updates. We evaluate the performance of
on-line updates by measuring the average produced global memory accesses per
update on the GPU.

As depicted in Fig. 5(a), the average produced memory accesses in TSTT are
far less than that in GALE in all cases. In fact, TSTT achieves a reduction by
92.5% ∼ 98.1%, which is still 82.5% ∼ 97.3% even ignoring memory reads in
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(a) (b)

Fig. 5. (a) average memory accesses produced per update on the GPU. (b) overall
update overhead on both the CPU and the GPU per update.

GALE. Such a significant improvement benefits from our mechanism essentially.
Actually, in TSTT, all produced unit modifications cover all update information
without any redundancy. So, excluding any of them must lose some update
information. In another word, the number of memory modifications for on-line
updates are minimized by TSTT.

4.2 Overall Update Overhead

Then, we take into account the overall update overhead (in time cost) for both
off-line updates (on the CPU) and on-line updates (on the GPU). Since TSTT’s
on-line update overhead are too small, we times it by 103.

As shown in Fig. 5(b), the average update overhead per update of TSTT’s
on-line updates is only 0.72 ns in the worst case, achieving a speedup than
GALE by a factor over 5000. Such a fast speed benefits from that the number
of produced unit modifications in TSTT are minimized, and all of them can be
processed in parallel on the GPU.

However, processing off-line updates in TSTT costs more time than that in
GALE by a factor of 2.3 ∼ 3.4. That’s because some additional operations are
required in TSTT, such as leaf pushing and list management. Even though,
in comparison with GALE, TSTT’s overall update overhead is still reduced by
89.6% ∼ 93.5%, which demonstrates clearly that TSTT’s update mechanism is
more efficient.

4.3 Comprehensive Performance

In order to evaluate the comprehensive performance, we process a 16M gener-
ated lookup requests in TSTT and GALE respectively, with update frequency
increasing to 100, 000 updates/s. Then, we measure the throughputs with Million
Lookups Per Second (MLPS) in all cases.

As presented in Fig. 6, without any updates, TSTT provides the same
throughput (539 MLPS) as GALE. That’s because their lookup approaches are
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Fig. 6. Comprehensive performance on rrc12 and rrc14

all based on the DIR-24-8 scheme. However, as update frequency is increasing,
TSTT’s superiority becomes more and more significant. Actually, in GALE, the
throughput decreases by 53.4% and 61.4% on rrc12 and rrc14 respectively. But
such descents in TSTT are even below 0.4%. In another word, with the help
of an efficient update mechanism, TSTT enables more stable throughput under
frequent updates than GALE.

5 Conclusion

In this paper, we have proposed an efficient update mechanism for a GPU-
accelerated IP lookup engine. By deploying the TBL24 of DIR-24-8 onto GPU’s
global memory, our proposed engine, TSTT, enables O(1) lookup. Moreover, we
presented an novel tree-like structure, Threaded Segment Tree (TST), to help
update the TBL24 on the GPU. Actually, by threading necessary leaf segments
during off-line updates, the number of unit modifications for on-line updates are
minimized, and all of them can be processed completely in parallel. According
to the experiment results, using our mechanism, the average required memory
accesses for on-line updates and the overall update overhead on both the CPU
and the GPU in average are reduced by at least 82.5% and 89.6% respectively.
What’s more, due to the proposed update mechanism, the throughput in TSTT
has been proved more stable. Actually, it only decreased by at most 0.9% even
if update frequency increases to 100, 000/s.
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