
A Modal Specification Approach for On-Demand
Medical Systems�

Andrew L. King, Lu Feng��, Oleg Sokolsky, and Insup Lee

Department of Computer & Information Science, University of Pennsylvania
{kingand,lufeng,sokolsky,lee}@cis.upenn.edu

Abstract. The on-demand approach, where systems are assembled from
components by lay users, has seen success in the consumer electronics
industry. Currently, there is growing demand for on-demand capabilities
in medical systems so caregivers can create larger medical systems from
smaller medical devices. Unlike consumer electronics, medical systems
pose challenges for the on-demand approach due to attributes such as de-
vice complexity, device variability and safety requirements. In this paper,
we propose a formal specification language for on-demand (medical) sys-
tems. Our approach is based on the formalism of Modal I/O Automata,
which allows system designers to express complex device requirements
and can be used to reason about safety and liveness properties of on-
demand medical systems directly from their specifications. We illustrate
the applicability of our approach through a case study of a closed-loop
patient controlled analgesia system.

1 Introduction

An on-demand system is any system assembled by a lay user out of compo-
nents that have not been previously tested together. An example on-demand
system is a home entertainment system: A typical home theater is composed of
speakers, an audio/visual receiver, a content source (such as a DVD player or
streaming video device), and television. Assembly of these on-demand systems
is facilitated by a ‘plug-and-play’ capability in the components themselves; in
theory each component conforms to a well defined standard (e.g., USB, HDMI,
Bluetooth) which then ensures that the components properly compose to form a
functioning system. The standards typically define a small set of rigid component
classes. For example, the USB standard defines around 20 classes for different
component types such as mass storage (external hard drives), human interface
device (keyboards and mice), audio, and video. The feature sets for each class
are fixed (and relatively simple).

� Research is supported in part by NSF grants CNS-1035715 and IIS-1231547.
�� Lu Feng is supported by James S. McDonnell Foundation 21st Century Science Ini-

tiative - Postdoctoral Program in Complexity Science/Complex Systems - Fellowship
Award.

J. Gibbons and W. MacCaull (Eds.): FHIES 2013, LNCS 8315, pp. 199–216, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

200 A.L. King et al.

Recently, there has been interest in on-demand medical systems where health
care workers can assemble larger medical systems out of smaller medical de-
vices at the bedside in order to provide better therapy for their patients [25].
These on-demand systems would be used to provide better physiologic alarms
(by combining data streams from multiple medical devices) and closed loop con-
trol (using physiologic sensors to drive actuators). While there is demand from
the medical community, critical care medical systems have two major attributes
which pose engineering challenges for the on-demand approach.

First, medical devices tend to be more complex. Unlike consumer electronics,
critical care medical devices are very complex and variable, even among devices
designed for a similar purpose (e.g., infusion pumps). Often, this complexity
and variability is the result of different ways device manufacturers have chosen
to mitigate certain safety hazards. The complexity and variability means it is
difficult to capture the range of behavior of a single device class in a standard
similar to USB where the features and behavior of each class are fully enumer-
ated beforehand. Second, on-demand medical systems serve a safety critical
purpose; if the composite system malfunctions or is implemented incorrectly in-
jury or death could result. Traditional safety critical systems such as aircraft,
nuclear power plants and standalone medical devices are evaluated for safety
before they are delivered to the user. The state of the art in safety assesment is
to consider the completely assembled system as a whole. In on-demand medical
systems this would not be possible because each system instance may be as-
sembled by combining devices that have never been tested together. There must
be some mechanism in place to analyze the behavior of all instantiations of a
on-demand system in order to ensure that any instantiation only exhibits safe
behavior.

There have been a number of high-level proposals for how to achieve safe
on-demand medical systems [20,11,25,5]. These proposals all involve separating
system functionality between interoperable componenets: coordination applica-
tions (apps), medical devices, and a Medical Application Platform (MAP). In
these proposals, each type of system component would be regulated, certified,
and then obtained by the health-care organization separately [12]. We now pro-
vide a brief overview of the role and use of each system component type.

Apps are software programs that provide the coordination algorithm for a
specific clinical scenario (i.e., smart alarms, closed-loop control of devices, etc.).
In addition to executable code, these apps contain device requirements decla-
rations: a formal model of the medical devices they need to operate correctly.
These apps would be validated and verified against their requirements specifica-
tion before they are marketed. Symmetrically, the interoperable medical devices
carry a self-descriptive model, known as a capabilities specification. Each med-
ical device would be certified that it conforms to its specification before it is
marketed and sold to end users.

The MAP provides a trusted base: It executes the coordination apps and
facilitates the assembly of the on-demand system. When a user connects a med-
ical device to the network, that medical device will transmit its capabilities

A Modal Specification Approach for On-Demand Medical Systems 201

specification to the MAP. Likewise, when a user attempts to launch an app, the
MAP analyzes the app’s requirements specification and the connected devices’
capabilities specifications. If the devices do not have the required capabilities,
the MAP will prevent the app from running and notify the user. This func-
tionality is critical to the assembly of on-demand medical systems because it
is the foundation for any safety or effectiveness claim; in theory only systems
which exhibit the behavior captured by the app (and its associated requirements
specification) will be instantiated. This enables various stakeholders (e.g., app
developers and regulatory agencies) to verify and validate the behavior of all
possible instantiations of an on-demand system by checking the behavior of the
application against its requirements specification.

Finally, each of these components would implement an interoperability stan-
dard. The standard would specify allowed network transport protocols, how med-
ical and system information is encoded on the network, provide a basic means
to establish an interconnection between components, and expose logical inter-
faces for the transmission of data or commands. Current interoperability stan-
dards, such as IEEE-11073 POC [16], IEEE-11073 PHD [9,8] and Health Level 7
(HL7) [10] focus mainly on data interoperability (i.e., they provide a mechanism
for the exchange of data). Notably absent in current standards is the ability to
address the reactive behavior of various medical systems. This means that cur-
rent standards are largely unsuitable for interoperable medical systems where
multiple devices are coordinating to provide autonomous delivery of care.

Our ability to reason about an on-demand medical system a priori (i.e., before
it is instantiated) depends on how the app requirements and device capabilities
are specified. There are three major goals that must be met by a suitable speci-
fication language:

G1 The language must enable us to automatically relate app device require-
ments specifications to device capabilities specifications: properties which
must hold for apps composed with their requirements specification must
hold for any ad hoc system where the app is composed with compatible
devices.

G2 The language must enable app developers to explicitly specify variability in
required device behavior: if all safety properties are satisfied with a highly
variable device requirements specification it means the app is compatible
with a larger set of medical devices.

G3 The language must be expressive enough to specify arbitrarily complex and
reactive behavior.

In this paper, we propose a modal specification language for on-demand sys-
tems which addresses G1, G2 and G3. This formalism could be layered onto
existing standards to enable the specification of device behavior. Syntactically,
it is a simple, state-based language inspired by Alur and Henzinger’s Reactive
Modules formalism [1]. Semantically, each module defined in the language is
equivalent to a modal I/O automaton (MIOA) [24], a formalism that extends
labeled transitions systems with a may/must modality on transitions and an
input/output/internal distinction on action labels.

202 A.L. King et al.

MIOAs are well suited for reasoning about on-demand systems for the follow-
ing reasons. First, the may/must distinction of transitions is useful for specifying
the behavioral variability of devices: must transitions denote required behavior
and may transitions represent allowed behavior. Thus, we can use MIOAs to
reason about all possible instantiations of an on-demand system based on the
specification. Second, we show that the weak modal refinement relation of MIOAs
preserves both safety (nothing bad happens) and liveness (something good even-
tually happens) properties. The guarantee of safety and liveness properties are
essential for on-demand medical systems, e.g.,

– “the patient’s SpO2 level should never be lower than 95" (safety)
– “the laser must be completely deactivated to allow the flow of the oxygen

concentrate from the ventilator" (liveness)

Third, the compositionality of MIOAs allows us to easily verify the behav-
ior of component-based on-demand systems by verifying their specifications. For
example, if we find a medical device that refines an app’s requirements specifica-
tion, then we can claim that the system created by composing the app with that
device will satisfy all safety and liveness properties satisfied by the composition
of that app and its requirements specification.

We have prototyped our approach using the MIO Workbench tool [6] and the
PRISM model checker [22], and applied it to a few case studies. In this paper,
we report on the application of our approach to the case study of a closed loop
patient controlled analgesia system.

The rest of this paper is organized as follows: in Section 2 we describe one
possible application of on-demand medical systems as a motivating example. In
Section 3 we describe our proposed specification language and the underlying
MIOA semantics. Section 4 contains a case study where we apply language to
specify an on-demand medical system and then verify properties of that system.
We conclude the paper, discuss current weaknesses of the approach, and propose
directions for future work in Section 5.

2 Motivating Example

In this section we describe Patient Controlled Analgesia (PCA), the hazards of
PCA, and how a closed-loop system could be used to mitigate those hazards. The
purpose of the example itself is twofold. First it illustrates how the functionality
of the closed-loop system can be divided between an app and medical devices.
Second, it allows us to show variability among the same class of medical device
and how that variability can affect the safety of an on-demand system.

After trauma (e.g., invasive surgery) patients convalescing in an ICU are often
placed on PCA therapy for pain management. During PCA therapy, patients are
attached to an infusion pump loaded with a painkiller (e.g., an opiod). When
the patient desires additional pain-relief, they press a trigger which causes the
pump to deliver a bolus of medication. While PCA lets patients manage their
own pain-levels effectively [15] it also creates an opportunity for overdose. Opiod

A Modal Specification Approach for On-Demand Medical Systems 203

Pulse
Oximeter

App

PCA PumpPatient

SpO2

SpO2

on/off

drug rate

bolus

Fig. 1. A closed-loop PCA system

overdose can result in respiratory depression, which in turn can result in injury
or death [17,27,13]. One possible way to mitigate the hazard posed by PCA is to
‘close the loop’: analyze data from sensors attached to the patient in real-time
to determine if the patient is nearing respiratory distress and, if so, disable the
pump [26,19].

As shown in Figure 1, the system consists of four components: a pulse oxime-
ter, an app, a PCA infusion pump and a patient. The system operates in a
closed-loop fashion: the pulse oximeter keeps monitoring the patient’s SpO2 value
(measure of blood oxygenation), and the app controls the PCA pump based on
the SpO2 value read from the pulse oximeter (the app would stop the pump if
the detected SpO2 value is lower than 95). When the PCA pump is turned on, it
delivers drug to the patient with a normal infusion rate pre-programmed by the
caregiver; however, if it receives a bolus request from the patient, then a higher
drug dose will be supplied, unless the pump is stopped by the app.

This application has one main safety property: the infusion rate of the pump
should always be 0 (i.e., the pump is off) whenever the patient has an SpO2

below a certain threshold (e.g., SpO2 < 95). The satisfaction of this property
depends on both the algorithm implemented by the app and the behavior of
the PCA pump the app is managing. Figure 2 illustrates the behavior of three
different types of PCA pumps as state machines. Figure 2a represents a simple
infusion pump that infuses while it receives the on signal. Technically speaking,
the pump of Figure 2a is not a PCA pump because it doesn’t provide any
mechanism for the patient to request a bolus. Figure 2b represents a PCA pump
that will infuse at a rate of 1 while it receives the on signal and it will infuse
at a rate of 2 when the patient requests a bolus, even if it is receiving the off.
Finally, Figure 2c represents an even more complex PCA pump. This pump will
autonomously disable itself under a number of conditions in order to mitigate
several hazards associated with infusion pumps [4]. For example, if the pump
detects air bubbles in the infusion line, it will halt infusion and raise an alarm
in order to prevent an air-embolism.

So, which pump should we choose to use? If we plug any of these three pumps
into the system, will the patient’s safety be guaranteed? And is there an easy way
to verify the effectiveness of the PCA system? These questions will be answered

204 A.L. King et al.

r0

r1

r2

off? flowRate!0

on? flowRate!1

(a)

r0

r1

r2

r3

off? flowRate!0

bolus?

on?
flowRate!1

bolus?

flowRate!2

(b)

r0

r1

r2 r3

off?

flowRate!0

bolus?

on?

flowRate!1

bolus?

flowRate!2

overheat

restore

r6

alarm
air

r4 r5

on?
off?

flowRate!0
bolus?

(c)

Fig. 2. MIOAs for three different PCA pump devices

in Section 4 by applying our modal specification approach, which is explained
in the next section.

3 A Specification Language for On-Demand Systems

In this section, we propose a simple, state-based specification language for de-
scribing the requirements of on-demand systems. This language can be applied,
for example, by app developers to specify the desirable behavior of compatible
medical devices. The language is based on Alur and Henzinger’s Reactive Mod-
ules formalism [1], with the extension of transition modality (i.e., distinguishing
must and may transitions). We first define the syntax of our proposed language
in Section 3.1, and then give its semantics in Section 3.2.

3.1 Syntax

We define each component of an on-demand system as a module M , which
is a tuple

(
(inM , outM , intM), varM , (mustM ,mayM)

)
where (inM , outM , intM)

is the signature of M representing sets of input, output and internal actions,
varM is a set of state variables, and (mustM ,mayM) are sets of must and may
transitions.

A module communicates with the external environment via input and output
actions in the CSP style [14]; that is, an input (resp. output) action, denoted
by c?v (resp. c!v), enables the module to receive (resp. send) message v over
a named channel c. The message v, which for example can be an expression
about some previous inputs or a valuation of some local variable of the module,
must be typed. Sometimes, message v is omitted from an input/output action,
denoted by c? or c!, with the interpretation that there is only a single possible
message can be transmitted through channel c. The set of internal actions intM ,
representing internal events of module M , are not observable to the external
environment.

A Modal Specification Approach for On-Demand Medical Systems 205

module M1

input: a?integer[0..1], b?;
output: c!;
internal: τ ;

s : [0..3] init 0;

[a?v] (s = 0)
must−−−→ (s′ = 1);

[c!] (s = 2)
must−−−→ (s′ = 3);

[τ] (s = 3)
must−−−→ (s′ = 3);

[τ] (s = 0)
may−−→ (s′ = 2);

[b?] (s = 1)
may−−→ (s′ = 3);

endmodule

Fig. 3. An example module specification

The variable set varM defines the local state space of module M . A state
variable s ∈ varM can be either a Boolean value, or an integer within a predefined
finite range. We suppose that each variable s has an initial value s.

The behavior of module M is defined by the set of must/may transitions
(mustM ,mayM). Each transition t ∈ mustM ∪mayM takes the form (a, g,m, u),
comprising an action label a, a guard g, a modality label m and an update u. The
action a ∈ inM∪outM∪intM can be either an input/output action synchronizing
with the external environment, or an internal event occurring within the module.
The guard g is a predicate over the state variables varM , determining if transition
t is enabled. The modality label m ∈ {must,may} indicates if the transition is
required (i.e., must occur) in all implementations or if it is allowed (i.e., may
occur) in any implementation. The update u describes the effect of transition t
on state variables; more specifically, u = (s′1 = expr1)∧· · · (s′n = exprn) where s′i
denotes the updated value of state variable si ∈ varM , and expr i is an expression
in terms of the state variables.

Example 1. Figure 3 shows an example module M1 described in our proposed
specification language. The description is split into four parts, defining actions,
state variables, as well as must and may transitions of the module. The module
M1 has two input actions: “a?integer[1..2]" that receives a integer value within
the range {1, 2} via channel “a", and “b?" that receives an input via channel “b"
(the message is omitted). The module may send an output through action “c!",
and has a single internal action τ .

We also see that M1 has a single interger-valued variable s with the range
{0, . . . , 3} and an initial value 0. There are four transitions in M1. Each transition
t = (a, g,m, u) is written in a line “[a] g

m−→ u; ”. For example, line “[a?v] (s =

0)
must−−→ (s′ = 1);" represents a “must" transition with action “a?v", guard

(s = 0) and update (s′ = 1).

206 A.L. King et al.

s0 s3

s1

s2

a?v b?

τ c!
τ

(a) M1

a?v

b?τ

r2r1

r3
τ

r0

(b) M′
1

a!v
b!

c?

t1 t2t0

(c) M2

Fig. 4. Three example MIOAs

3.2 Semantics

The semantics of our specification language is based on Modal I/O Automata [24]
which in turn are extensions of Modal Transition Systems [23]. A modal I/O au-
tomaton (MIOA) can be considered as a (nondeterministic) state transition sys-
tem with an input/output/internal distinction on action labels and a must/may
distinction on its transition relations.

Definition 1 (MIOA).A modal I/O automatonP is a tuple (SP , sP , inP , outP ,
intP ,→�P ,→♦P) where SP is a finite set of states, sP ∈ SP is an initial state,
inP , outP and intP are disjoint sets of input, output and internal actions, →�P⊆
SP × actP × SP is the must transition relation describing required behavior, and
→♦P⊆ SP × actP ×SP is the may transition relation describing allowed behavior
(actP = inP ∪ outP ∪ intP).

Themapping fromamoduleM =
(
(inM , outM , intM), varM , (mustM ,mayM)

)

described in our proposed specification language to a MIOA P is straightforward.
We define the state space SP of P to be the set of all valuations of the state vari-
ables in varM . The initial state sP is givenby the initial values of variables in varM .
The action sets inP = inM , outP = outM , and intP = intM . And each transition
t ∈ mustM (resp. t ∈ mayM) maps to a transition p

a−→�P p′ (resp. p a−→♦P p′) in
P , where p and p′ are states given by the guard and update of t, respectively.

Example 2. The module M1 described in Figure 3 maps to the MIOA M1 shown
in Figure 4a. There are four states {s0, s1, s2, s3} in M1, each of which maps to
a valuation of variable s = i for i ∈ {0, . . . , 3} in M1 . The initial state of M1 is
s0, indicated by an incoming arrow in Figure 4a. The must transitions are drawn
in solid arrows, while the may transitions are drawn in dashed arrows.

In this paper, we consider only syntactically consistent MIOA where →�P⊆
→♦P , i.e., every required transition is also allowed. If the must and may tran-
sition relations of a MIOA P coincide, denoted →�P=→♦P , then we call P
an implementation. An abstract MIOA with nonempty must and may transi-
tion relations specifies a set of concrete implementations: a must transition asks
that any legal implementation must include that transition, while a may transi-
tion indicates that implementations are allowed (but not required) to have that
transition. Formally, the relation between an abstract specification MIOA and
a concrete implementation MIOA is captured by refinements. There are many

A Modal Specification Approach for On-Demand Medical Systems 207

different types of refinement relations between MIOAs [24,7]. In our setting, we
adopt the weak modal refinement relation [7], which ensures that the observable
behavior of an implementation (e.g., actual medical device) refines the specifi-
cation (e.g., app requirements).

We need the notion of weak transitions to reason about the observable behav-
ior of MIOAs. Given an input/output action a of a MIOA P , there exists a weak
must transition between states p and p′, denoted by p (

a−→�P)
∗ p′, iff there exist

a pair of states p1, p2 ∈ SP such that p (
τ−→�P)

∗ p1
a−→�P p2 (

τ−→�P)
∗p′, where τ

denotes any arbitrary internal action and p (
τ−→�P)

∗ p1 represents finitely many
(zero or more) transitions from p to p1 labelled with internal actions. The notion
of weak may transitions p (

a−→♦P)∗ p′ can be defined analogously.

Definition 2 (Weak Modal Refinement). Given two MIOAs P and Q with
inP = inQ and outP = outQ, a relation R ⊆ SP × SQ is called a weak modal
refinement for P and Q iff for all (p, q) ∈ R and a ∈ actP ∪ actQ it holds that:

– if q a−→�Q q′ then there exists p′ ∈ SP such that p (
â−→�P)

∗ p′ and (p′, q′) ∈ R,
– if p a−→♦P p′ then there exists q′ ∈ SQ such that q (â−→♦Q)∗ q′ and (p′, q′) ∈ R,

where (
â−→�P)

∗ = (
a−→�P)

∗ if a ∈ intP ∪outP , and (
â−→�P)

∗ = (
τ−→�P)

∗ otherwise.
If there exists a refinement relation R such that (sP , sQ) ∈ R, then we claim that
P weakly modally refines Q, denoted by P ≤∗

m Q.

The weak modal refinement relation defined above allows implementations
to contain different (i.e., unspecified) internal behavior as long as the internal
behavior does not prevent the implementation from performing required external
behavior. The refinement also prevents implementations from performing ‘extra’
external behavior as long as the extra behavior is specified in the signature of the
specification. It does allow implementations to introduce new external behavior
if that behavior is an action-label not specified in the specification; in this case,
the transitions labled with that action are treated as τ transitions.

Example 3. The MIOA M′
1 shown in Figure 4b weakly modally refines the

MIOA M1 shown in Figure 4a, under relation R = {(r0, s0), (r1, s0), (r2, s1),
(r3, s3)}. Note that the required transition s2

c!−→�s3 in M1 does not have a
mapping in M′

1, because M′
1 does not contain a refinement of the allowed tran-

sition s0
τ−→♦ s2 in M1 such that no refinement of state s2 is reachable in M′

1.

Recall that, in our proposed specification language, a module (medical device)
can comminucate with the external environment via sending/receiving messages.
We now introduce a binary composition operator [24] to reason about the mes-
sage passing. We say that two MIOAs P1 and P2 are composable iff the over-
lapping of their actions only occur on complementary types, i.e., (in1 ∪ int1) ∩
(in2 ∪ int2) = ∅ and (out1 ∪ int1) ∩ (out2 ∪ int2) = ∅.
Definition 3 (Composition). The composition of two composeable MIOAs P1

and P2 is given by a MIOA P1⊗P2 = (S, s, in , out , int ,→�,→♦), where the state

208 A.L. King et al.

s0t0

a.v b

τ
τ

s1t1

s3t2

s2t0

Fig. 5. A MIOA composition M1 ⊗M2.

space S = S1 × S2, the initial state s = (s1, s2), in = (in1\out2) ∪ (in2\out1),
out = (out1\in2) ∪ (out2\in1), int = int1 ∪ int2 ∪ (in1 ∩ out2) ∪ (in2 ∩ out1),
and the transition relations are given by the following rules (for γ ∈ {�,♦}):

p1
a!→γ p′1 p2

a?→γ p′2
p1 ⊗ p2

a→γ p′1 ⊗ p′2

p1
a?→γ p′1 p2

a!→γ p′2
p1 ⊗ p2

a→γ p′1 ⊗ p′2

p1
a→γ p′1 a /∈ act2

p1 ⊗ p2
a→γ p′1 ⊗ p2

a /∈ act1 p2
a→γ p′2

p1 ⊗ p2
a→γ p1 ⊗ p′2

Example 4. Figure 5 shows the composition of two MIOAs M1 (Figure 4a) and
M2 (Figure 4c). M1 expects an input action “a?v" in state s0 while M2 sends
an output action “a!v" in state t0, these two transitions are composed into a
transition s0t0

a.v−−→� s1t1 in M1 ⊗M2. Similarly, the may transition s1
b?−→♦ s3

in M1 composes with the must transition t1
b?−→�t2 in M1, resulting in a may

transition s1t1
b−→♦ s3t2 in the product. Since τ is an internal action of M1, the

τ -labelled transitions of M1 compose with atomic transitions (self-loops) of M2,
see for example, s0t0

τ−→♦ s2t0. Note that s2t0 is a deadlock state.

A motivation of our work is to design a specification language that makes
verifying properties of medical devices easy. In particular, we are interested in
two kinds of properties: safety (something bad will never happen) and liveness
(something good will eventually happen). Formally, a safety property φsafe is
defined as a liner-time property over a set of actions such that any infinite word
w where φsafe does not hold contains a bad prefix (i.e., a finite prefix w′ where
the bad thing has happened); a liveness property φlive (over a set of actions) is
an linear-time property such that each finite word can be extended to an infinite
word that satisfies φlive .

Given a MIOA P and a safety or liveness property φ over actP , we define two
satisfaction relations:

– P |=� φ, under-approximates “all refinements of P satisfy φ";
– P |=♦ φ, over-approximates “some refinement of P satisfies φ".

To verify property φ on P , we need to prove that P |=� φ is true; and to refute
property φ, we need to establish that P |=� ¬φ holds.

We prove that weak modal refinement preserves the verification of safety and
liveness properties as follows.

A Modal Specification Approach for On-Demand Medical Systems 209

Lemma 1. Let P and Q be two MIOAs such that P ≤∗
m Q. Given a safety

property φsafe over actions inP ∪ outP , if Q |=� φsafe , then P |=� φsafe .

Proof. For the sake of contradiction, suppose Q |=� φsafe and P �|=� φsafe . The
latter means that there may exist some path ρ in P containing a bad prefix. For
simplicity, assume that the bad behavior is represented by a single word a. We
have a path ρ = p0 → · · · → pn−1

a−→♦P pn. Based on P ≤∗
m Q and Definition 2,

there exists a pair of states q and q′ in Q such that (pn−1, q) ∈ R, (pn, q′) ∈ R

and q (
τ−→♦Q)∗ qi−1

a−→♦Q qi (
τ−→♦Q)∗q′. Therefore, there may exist a path in

Q containing the bad word a, which is a contradiction with Q |=� φsafe . �
Lemma 2. Let P and Q be two MIOAs such that P ≤∗

m Q. Given a liveness
property φlive over actions inP ∪ outP , if Q |=� φlive , then P |=� φlive .

Proof. Since Q |=� φlive , every (infinite) path in Q must eventually reach the
good condition. For simplicity, assume that the good condition is represented
by a single word a. Then, there must exists a pair of states qn−1 and qn in any
(infinite) path ρ of Q such that ρ = q0 → · · · → qn−1

a−→�Q qn → · · · . Based
on P ≤∗

m Q and Definition 2, for each pair of qn−1 and qn, there must exists
a pair of corresponding states p, p′ in P such that (p, qn−1) ∈ R, (p′, qn) ∈ R

and p (
τ−→�P)

∗ pi−1
a−→�P pi (

τ−→�P)
∗p′. Therefore, every infinite path in P must

eventually reach the good condition, so that we have P |=� φlive . �
Another nice feature about weak modal refinement is the following composi-

tionality result:

Theorem 1 (Compositionality [2]). Let P1,P ′
1 and P2 be MIOAs (P1 and Q

are composable). If P ′
1 ≤∗

m P1, then P ′
1 ⊗ P2 ≤∗

m P1 ⊗ P2.

Based on the above theorem and Lemmas 1 and 2, we can verify safety and
liveness properties on medical devices without composing the (large) complete
systems. For example, let P1 be the specification for some medical device, P ′

1 be
an implementation of the actual device, P2 be the external environment (e.g.,
app, patient) and φ be the desirable safety or liveness property. When designing
the specification, the app developers make sure that P1 ⊗ P2 |=� φ. We only
need to check whether the device P ′

1 weakly modally refines the specification
P1. If P ′

1 ≤∗
m P1 holds, then we can claim that P ′

1 ⊗ P2 |=� φ without actually
verifying the composed system P ′

1 ⊗ P2.

4 Case Study

Now we apply our proposed specification approach to analyze the closed-loop
PCA example from Section 2. We model each system component (i.e., app,
patient, Pulse Oximeter and PCA pump) as a MIOA. To answer the question
that, from the three PCA pumps shown in Figure 2, which one should we choose

210 A.L. King et al.

s0 s3

s1

s2

a?v
b?

τ

c!

τ
0.5

0.5
0.5

0.5

Fig. 6. Translation of the MIOA in Figure 4a for PRISM

to use, we use the MIO Workbench tool [6] to check weather the MIOA of a pump
weakly modally refines the MIOA of the pump specification. If the refinement
relation holds, then the pump is good in the sense that the PCA system should
be able to guarantee the required safety property; otherwise, the pump is not
safe to use.

To demonstrate that our approach can help to preserve system properties,
we also use the (probabilistic) model checker PRISM [22] to verify the required
safety property of composed PCA systems because of PRISM’s relative maturity
and ease of use. PRISM does not actually support the verification of MIOAs. We
instead translate MIOAs as probabilistic automata (PAs): each must transition
becomes a transition with probability 1 and each may transition becomes a
transition with probability 0.5 1. For example, Figure 6 shows the probabilistic
translation of the MIOA in Figure 4a; the may transition from s0 to s2 now
becomes a transition with probability 0.5 (the black dot is the sink state). If
PRISM verifies that certain property is true with probability 1, then the property
“must" be satisfied by the on-demand medical system; and if the verification
result is a real value p such that 0 < p < 1, then the system “may" satisfy the
property.2

4.1 Modelling

Figure 7 shows the detailed model for the pulse oximeter, which is a two-state
modal I/O automaton synchronizing with the patient model via a must tran-
sition labelled with the input action “toSensor?SpO2" and then immediately
sending the data to the app via another must transition with the output action
“toApp!SpO2". Note that, in both actions, SpO2 ∈ [0, 100] is an integer value
transmitted over the input/output channel.

1 To make probabilistic distributions full, we complement each may transition with
a transition (with probability 0.5) to a sink state; however, the verification result
would exclude all the paths leading to the sink state.

2 While an evaluation of scalability is beyond the scope of this paper, PRISM imple-
ments a number of efficient model-checking algorithms for probabilistic systems and
can scale to models with at least 107 states.

A Modal Specification Approach for On-Demand Medical Systems 211

PO1

toSensor?SpO2

toApp!SpO2

PO2

Fig. 7. MIOA for the pulse oximeter

SpO2
=100

SpO2
=98

SpO2
=0

SpO2
=99

flowRate?1 flowRate?1 flowRate?1 flowRate?1

...
flowRate?0 flowRate?0 flowRate?0 flowRate?0

flowRate?2 flowRate?2 flowRate?2

toSensor!SpO2

bolus!

toSensor!SpO2

bolus!

toSensor!SpO2

bolus!

toSensor!SpO2

bolus!

Fig. 8. MIOA for the patient dynamics

We adopt a simple patient model which only considers the patient’s discrete
SpO2 measurements.3 As shown in Figure 8, each state of the MIOA for the pa-
tient model represents a single SpO2 value, ranging from 0 to 100. With an initial
value of 100, the patient’s SpO2 measurement decreases by 1 or 2 upon receiving
drug from the PCA pump at a normal infusion rate (“flowRate?1") or a bolus
rate (“flowRate?2"), respectively. On the other hand, the SpO2 value increases
by 1 if the PCA pump stops (“flowRate?0"), modeling the restoration of the pa-
tient’s vital sign as the drug concentration reduces. At any point, the patient has
the option of pressing the button to request one more dose from the PCA pump
(denoted by the output action “bolus!"). The patient’s SpO2 level is constantly
monitored by the pulse oximeter via synchronizing over “toSensor!SpO2".

The behavior of the control app is illustrated in Figure 9 using our proposed
specification language4. The app has an input action “toApp?" carrying integer
values SpO2 sent by the pulse oximeter, and two output actions “on!" and “off!"
which control the PCA pump. There are two state variables a and v. Initially we
assume a = 0 and v = 100. If an input action “toApp?SpO2" is detected, the app
updates a as 1 and sets v with the received SpO2 value. If v > 95, meaning that
the patient’s vitals are not endangered, then the app outputs an “on!" signal to
the PCA pump for allowing drug delivery; otherwise, an “off!" signal is sent to
stop the PCA pump.

Figure 10a describes the specification for the PCA pump, which should be pro-
vided by the app developers, and Figure 10b shows the corresponding MIOA.
Under this specification, if the pump is enabled by the “on?" command from the

3 See [26] for an example of how continuous patient dynamics can be related to a
discrete model.

4 The corresponding MIOA has more than 200 states and thus is too large to be drawn
here.

212 A.L. King et al.

module app

input: toApp?integer[0..100];
output: on!, off!;

a : [0..1] init 0;
v : [0..100] init 100;

[toApp?SpO2] (a = 0)
must−−−→ (a′ = 1) ∧ (v′ = SpO2);

[on!] (a = 1) ∧ (v > 95)
must−−−→ (a′ = 0);

[off!] (a = 1) ∧ (v ≤ 95)
must−−−→ (a′ = 0);

endmodule

Fig. 9. App that controls the PCA pump

module pumpSpec

input: on?, off?, bolus?;
output: flowRate!integer[0..2];
internal: τ ;

s : [0..5] init 0;

[off?] (s = 0)
must−−−→ (s′ = 1);

[on?] (s = 0)
must−−−→ (s′ = 2);

[on?] (s = 4)
must−−−→ (s′ = 5);

[off?] (s = 4)
must−−−→ (s′ = 5);

[flowRate!0] (s = 1)
must−−−→ (s′ = 0);

[flowRate!0] (s = 5)
must−−−→ (s′ = 4);

[flowRate!1] (s = 2)
must−−−→ (s′ = 0);

[flowRate!2] (s = 3)
must−−−→ (s′ = 0);

[bolus?] (s = 1)
may−−→ (s′ = 1);

[bolus?] (s = 2)
may−−→ (s′ = 3);

[bolus?] (s = 5)
may−−→ (s′ = 5);

[tau] (s = 0)
may−−→ (s′ = 4);

[tau] (s = 4)
may−−→ (s′ = 0);

endmodule

(a)

s0

s1

s2 s3

s4 s5

off? flowRate!0

bolus?

on?

τ

τ

flowRate!1

bolus?

flowRate!2

on?
off?

flowRate!0
bolus?

(b)

Fig. 10. The PCA pump specification and its corresponding MIOA

app, then it can deliver drug to the patient at a normal infusion rate “flowRate!1";
however, if it is disabled by the “off?" command, then no drug will be delivered
(“flowRate!0"). Some pump may allow receiving “bolus?" request from the pa-
tient, which are described as “may" transitions in the specification (dashed lines
in Figure 10b). To avoid the overdose of drug, the “bolus?" request is only effec-
tive (i.e., the pump delivers drug at a higher rate “flowRate!2") when the pump
is enabled by the app. A pump may shut itself down due to various reasons and
may also restore from the shutdown; the specification allow these behavior by
describing them “may" transitions labelled with an internal action τ . When a

A Modal Specification Approach for On-Demand Medical Systems 213

pump is shutdown, it would not respond to any command from the app/patient
and no drug will be delivered.

4.2 Analysis

Figure 2 shows three PCA pump devices with different functionality. Device (a)
has the basic functions of receiving commands from the app and delivering drug
to the patient accordingly. Device (b) has the additional function of adjusting
the drug infusion rate based on patients’ bolus requests. Device (c) is the most
sophisticated equipment: apart from the functions of receiving app commands
(bolus requests) and delivering drug, it can detect air bubbles in the infusion line
and issue alarm, and also protect itself from overheating; if any of these hazards
is detected, the pump will shutdown automatically until the device is restored.

Our experiments indicate that devices (a) and (c) meet the specification re-
quirements, because their corresponding MIOAs (Figures 2a and 2c) are both
weak refinements of the specification’s MIOA (Figure 10b). However, device (b)
does not meet the specification: the path

r0
off?−−−→ r1

bolus?−−−−−→ r3
flowRate!2−−−−−−−−→ r0

in the device’s MIOA (Figure 2b) does not have a mapping (allowed path) in
the specification’s MIOA.

We verified the safety property “patient’s SpO2 level should always be above
94" on the PCA systems composed using these three devices. It is not surprising
to find that both systems of devices (a) and (c) satisfy the safety property, but
the system of device (b) violates the property. The violation is due to the fact
that device (b) always admits patients’ bolus request even if the app has issued
the “off" command.

5 Conclusion and Discussion

In this paper we have described an approach to specify on-demand systems
and applied that approach to an example application from the medical domain.
This approach uses a specification language with the semantics of MIOA. We
showed that weak modal refinement can be used to check the compatibility
between app requirements and device capabilites by proving that weak modal
refinement preserves both safety and liveness properties. This enables medical
systems developers to express complex medical device behavioral requirements,
explicitly specify allowed variability and reason about the behavior of on-demand
systems a priori.

While we provided a case study as a proof-of-concept for the approach, there
are many open questions concerning the engineering, safety and application of
on-demand medical systems in a critical care setting. First we note that there are
several areas where our proposed specification language and associated semantics
would need to be extended to make the approach more applicable to real medical

214 A.L. King et al.

systems. For example, the action labels in our language are only tagged with
simple data-types. Often, medical device actions relate directly to an interaction
with the physical world (e.g., an infusion pump infusing a drug). It would be
useful if action labels could also be tagged with physical types which would
denote the physical interaction of the action. Furthermore, our approach only
supports reasoning about discrete time systems. Real medical devices exhibit
continuous time behavior, and the ability to capture real-time behavior is critical
if we want to apply our approach to real medical systems. For example, the on-
demand medical systems described in [3,26,18] all rely on ‘timeout’ behavior in
the medical devices to guarantee system safety in the presence of inter-device
communications failures. Additionally, many medical devices exhibit continuous
behavior in terms of their interactions with the patient. For example, infusion
pumps deliver drugs continuously according to ‘trumpet’ curves [28]. It is not
known to what fidelity a specification will need to capture device behavior: Is
continuous time plus discrete behavior enough, or is a fully hybrid specification
required? The answer to this question will likely depend on the types of on-
demand systems clinicians will want to employee.

Second, the approach described in this paper requires that medical devices
comply with their specifications. In theory this seems reasonable, but in prac-
tice it may not be possible to have total confidence in a device’s compliance
with its specification. For example, a device may be non-compliant due to an
uncaught systematic defect (i.e., a design or implementation error), uncaught
manufacturing errors, or unaccounted for environmental interference (e.g., artifi-
cal light interfering with a physiologic sensor). Should the specification approach
be extended to capture the possibility of these errors? If so, what types of er-
rors and faults should be captured in the specification versus left to other risk
management mechanisms?

Finally, medical devices can interact with each other indirectly through the
patient (e.g., a pulse-oximeter attached to a patient on supplementary oxygen
will sometimes give abnormally high readings). Should on-demand systems check
for these types of interactions automatically? Or should we rely on the medical
caregiver to determine which combinations of medical devices are appropriate to
use in a given situation? The answer is not clear; though at first it may appear
that automatic interaction checking could improve the safety of the system, in
practice doing thisis very difficult due to the fact we currently lack a detailed
understanding of human physiology. This in turn can result in overly conser-
vative or sensitive checks. For example, modern computerized physician order
entry (CPOE) systems automatically check if a doctor prescribes drugs that may
interact adversely. In many cases hospitals have worked with vendors to disable
these checks because these checks are too conservative (i.e., generate an over-
whelming number of alerts) and the caregivers are competent enough to know
how the drugs will interact and whether or not the risk is justified for a par-
ticular patient [21]. The answer to this question will depend on the complexity
of on-demand medical systems, our level of understanding of patient physiology,
and the fidelity of care those system are intended to deliver.

A Modal Specification Approach for On-Demand Medical Systems 215

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System De-
sign 15(1), 7–48 (1999)

2. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal
and mixed specifications. European Association for Theoretical Computer Science.
Bulletin (95) (2008)

3. Arney, D., Goldman, J.M., Whitehead, S.F., Lee, I.: Synchronizing an x-ray and
anesthesia machine ventilator: A medical device interoperability case study (2009)

4. Arney, D., Jetley, R., Jones, P., Lee, I., Sokolsky, O.: Formal methods based de-
velopment of a pca infusion pump reference model: Generic infusion pump (gip)
project. In: Joint Workshop on High Confidence Medical Devices, Software, and
Systems and Medical Device Plug-and-Play Interoperability, HCMDSS-MDPnP,
pp. 23–33. IEEE (2007)

5. Medical devices and medical systems - essential safety requirements for equipment
comprising the patient-centric integrated clinical environment (ice),
http://enterprise.astm.org/filtrexx40.cgi?+REDLINE_PAGES/F2761.htm

6. Bauer, S.S., Mayer, P., Legay, A.: Mio workbench: A tool for compositional design
with modal input/output interfaces. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 418–421. Springer, Heidelberg (2011)

7. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility,
refinement, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

8. Carroll, R., Cnossen, R., Schnell, M., Simons, D.: Continua: An interoperable per-
sonal healthcare ecosystem. IEEE Pervasive Computing 6(4), 90–94 (2007)

9. Clarke, M., Bogia, D., Hassing, K., Steubesand, L., Chan, T., Ayyagari, D.: De-
veloping a standard for personal health devices based on 11073. In: 29th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
EMBS 2007, pp. 6174–6176 (2007)

10. Dolin, R.H., Alschuler, L., Boyer, S., Beebe, C., Behlen, F.M., Biron, P.V., Shvo,
A.S.: Hl7 clinical document architecture, release 2. Journal of the American Medical
Informatics Association 13(1), 30–39 (2006)

11. Hatcliff, J., King, A., Lee, I., Macdonald, A., Fernando, A., Robkin, M., Vasserman,
E., Weininger, S., Goldman, J.M.: Rationale and architecture principles for medical
application platforms. In: IEEE/ACM Third International Conference on Cyber-
Physical Systems, ICCPS 2012, pp. 3–12. IEEE Computer Society, Washington,
DC (2012), http://dx.doi.org/10.1109/ICCPS.2012.9

12. Hatcliff, J., Vasserman, E., Weininger, S., Goldman, J.: An overview of regula-
tory and trust issues for the integrated clinical environment. In: Proceedings of
HCMDSS 2011 (2011)

13. Hicks, R.W., Sikirica, V., Nelson, W., Schein, J.R., Cousins, D.D.: Medication
errors involving patient-controlled analgesia. American Journal of Health-System
Pharmacy 65(5), 429–440 (2008)

14. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Inc., Upper
Saddle River (1985)

15. Hudcova, J., McNicol, E., Quah, C., Lau, J., Carr, D.B.: Patient controlled intra-
venous opioid analgesia versus conventional opioid analgesia for postoperative pain
control: A quantitative systematic review. Acute Pain 7(3), 115–132 (2005)

16. Iso/ieee 11073 committee,
http://standards.ieee.org/findstds/standard/11073-10103-2012.html

http://enterprise.astm.org/filtrexx40.cgi?+REDLINE_PAGES/F2761.htm
http://dx.doi.org/10.1109/ICCPS.2012.9
http://standards.ieee.org/findstds/standard/11073-10103-2012.html

216 A.L. King et al.

17. Joint Commission: Sentinel event alert issue 33: Patient controlled analgesia by
proxy (December 2004),
http://www.jointcommission.org/sentinelevents/sentineleventalert/

18. Kim, C., Sun, M., Mohan, S., Yun, H., Sha, L., Abdelzaher, T.F.: A framework
for the safe interoperability of medical devices in the presence of network failures.
In: Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical
Systems, pp. 149–158. ACM (2010)

19. King, A., Arney, D., Lee, I., Sokolsky, O., Hatcliff, J., Procter, S.: Prototyping
closed loop physiologic control with the medical device coordination framework.
In: Proceedings of the 2010 ICSE Workshop on Software Engineering in Health
Care, pp. 1–11. ACM (2010)

20. King, A., Procter, S., Andresen, D., Hatcliff, J., Warren, S., Spees, W., Jetley,
R., Jones, P., Weininger, S.: An open test bed for medical device integration and
coordination. In: Proceedings of the 31st International Conference on Software
Engineering (2009)

21. Kuperman, G.J., Bobb, A., Payne, T.H., Avery, A.J., Gandhi, T.K., Burns, G.,
Classen, D.C., Bates, D.W.: Medication-related clinical decision support in com-
puterized provider order entry systems: A review. Journal of the American Medical
Informatics Association 14(1), 29–40 (2007),
http://www.sciencedirect.com/science/article/pii/S106750270600209X

22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

23. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of the Third
Annual Symposium on Logic in Computer Science, LICS 1988, pp. 203–210 (1988)

24. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

25. Medical device “plug-and-play” interoperability program (2008),
http://mdpnp.org/

26. Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., Lee, I.: Model-
driven safety analysis of closed-loop medical systems. IEEE Transactions on In-
dustrial Informatics (2013)

27. Paul, J.E., sawhney, M., Beattie, W.S., McLean, R.F.: Critical incidents amongst
10033 acute pain patients. Canadian Journal of Anesthesiology 51, A22 (2004)

28. Voss, G.I., Butterfield, R.D.: 27.1 performance criteria for intravenous infusion
devices. Clinical Engineering, 415 (2003)

http://www.jointcommission.org/sentinelevents/sentineleventalert/
http://www.sciencedirect.com/science/article/pii/S106750270600209X
http://mdpnp.org/

	A Modal Specification Approach for On-Demand Medical Systems
	1 Introduction
	2 Motivating Example
	3 A Specification Language for On-Demand Systems
	3.1 Syntax
	3.2 Semantics

	4 Case Study
	4.1 Modelling
	4.2 Analysis

	5 Conclusion and Discussion
	References

