
Early Fault Detection Using Design Models

for Collision Prevention in Medical Equipment�

Arjan J. Mooij1, Jozef Hooman1,2, and Rob Albers3

1 Embedded Systems Innovation (ESI) by TNO, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

{arjan.mooij,jozef.hooman}@tno.nl
2 Computing Science Department, Radboud University Nijmegen, The Netherlands

3 Philips Healthcare, Best, The Netherlands
r.albers@philips.com

Abstract. In the medical domain there is a tension between the re-
quested speed of innovation and the time needed to deliver a certifiable
system. To ensure the required safety, usually a long test and integration
phase is needed. To shorten this phase and to avoid late bug fixing, the
aim is to detect faults (if any) much earlier in the development process.
This can be achieved by combining a number of model-based techniques
such as (1) architecture validation by simulating executable models, (2)
development of a Domain-Specific Language (DSL) to combine precision
with higher levels of abstraction, and (3) transformations from DSLs to
analysis models for performance evaluation and formal verification. We
illustrate such techniques using an industrial study project on a new
architecture for movement control including collision prevention.

1 Introduction

In the medical domain there is a tension between the requested speed of innova-
tion and the time needed to deliver a certifiable system. To ensure the required
safety, usually a long test and integration phase is needed. The problem is that
often faults are found in this late phase of the development process.

In industrial development processes, the first formal artefacts are usually at
the level of implementation code (or close to it), whereas the architecture and
design phases are based on informal documents; see Fig. 1(a). Faults are often
detected during or after developing such formal artefacts. However, the detected
faults do not only include implementation faults, but also faults that were in-
troduced in the requirements, architecture and design phases [19]. For example,
during test and integration it may turn out that the requirements are incom-
plete, or that a design cannot fulfil the requirements. Such faults are often costly
to repair in such a late phase.

The aim of our work is to detect such faults (if any) much earlier in the devel-
opment process, thus reducing late bug fixing in the test and integration phase,

� This research was supported by the Dutch national program COMMIT and carried
out as part of the Allegio project.

J. Gibbons and W. MacCaull (Eds.): FHIES 2013, LNCS 8315, pp. 170–187, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Early Fault Detection Using Design Models 171

(a) Traditional Approach

(b) Model-based Approach

Fig. 1. Development Processes and Phases

and hence increasing the rate of innovation. To this end, we combine a num-
ber of model-based techniques, which introduce formality in earlier development
phases; see Fig. 1(b). We emphasize high-level design models and their potential
for early analysis.

We have applied these techniques while participating in an industrial study
project at Philips Healthcare, in the context of interventional X-ray systems;
see Fig. 2. Such systems are used for minimally-invasive surgery, where X-ray
images guide the surgeon during an operation. These systems consist of one or
two so-called C-arms, each carrying an X-ray generator and a detector. During
the treatment, the C-arms, the detectors, and the patient table may move to
obtain optimal projections for the images.

Physical safety of these systems includes avoiding any collisions between these
heavy moving objects and the humans, such as patient and medical staff. The
study project has focused on redesigning the software components for movement
control, which includes functionality for collision detection and prevention.



172 A.J. Mooij, J. Hooman, and R. Albers

Fig. 2. Interventional X-Ray system

We have first developed a reference architecture for movement control. Archi-
tectures are usually described using informal drawings. However, it is difficult to
use such drawings to decide whether the architecture will really work in practice.
To obtain more confidence in the feasibility of the architecture, we have used
high-level formal models, which can be analysed using simulation and domain
visualization. By limiting the amount of detail in such models, the required ef-
fort remains acceptable. In our experience, such models trigger more detailed
discussions about the architectural concepts and their interactions.

Afterwards we have designed the component that is responsible for collision
prevention. The main challenges were to identify the main reasoning concepts,
and to represent the rules for collision prevention in a concise, precise and read-
able way, such that they can be inspected and analysed easily. To stay close to
the requirements formulation, we have developed a Domain-Specific Language
(DSL) that is targeted at the type of rules we want to express. We have gener-
ated code from these DSL models, and evaluated it on the physical hardware.
In addition we have analysed these models by defining transformations to and
from several analysis tools. As the collision prevention component is a safety-
critical real-time component, we have evaluated the required execution time and
we have verified some formal correctness properties.

Overview In Sect. 2 we address the description and analysis of the proposed
reference architecture. In Sect. 3 we focus on the design and analysis of the
collision prevention component. In Sect. 4 we discuss related work. Finally, in
Sect. 5 we draw some conclusions and sketch further work.

2 Reference Architecture for Movement Control

In this section we focus on the architecture phase from Fig. 1(b), where the aim
was to develop a reference architecture for movement control. An architecture
provides a high-level view of a specific system, whereas a reference architecture



Early Fault Detection Using Design Models 173

Fig. 3. Reference Architecture for Movement Control

provides a high-level view of a family of systems (or a product line). Architectures
are developed in an early development phase, where the goal is to decompose
the functionality in layers and components, and to identify the interfaces.

Traditionally (reference) architectures are described using various informal
drawings that are easy to make and modify. However, once the developers start
to reach an agreement on such informal drawings, it is still very difficult to
decide whether the architecture will really work in practice. Often the only way
to decide this is to start implementing it.

To gain more confidence in the feasibility of the architecture, we investigate
the use of formal modelling and analysis. In this development phase, where there
are many uncertainties and fast experimentation with variations is needed, it is
inappropriate to make a detailed formal model of the complete system. It would
be too time consuming, both to design and to modify the model, and it would
require too many details. In a later phase, it may be useful to model and analyse
some safety-critical components in detail. In this section we discuss the potential
for high-level formal modelling and analysis in the architecture phase.

2.1 Reference Architecture for Movement Control

Fig. 3 contains a simplified description of the reference architecture for move-
ment control that was proposed in this study project and that uses a layered
approach [8]. It consists of four layers:

– Coordination: interaction with the user about movements and procedures;
– Safety: restriction of movement requests in order to prevent collisions;



174 A.J. Mooij, J. Hooman, and R. Albers

– ObjectMovements : translation of complex movements to individual axes;
– SingleAxis : interaction with the physical motors and sensors.

There are two main flows of information. At the left side, sensor readings are
propagated through the layers and finally displayed to the user as user guidance.
At the right side, movement requests from the user are propagated to motors.

The interfaces of the layers are such that the safety layer can be removed; so
the safety layer acts as a kind of filter on the movement requests. The safety layer
stores the sensor information in 3D geometric models. Such a model contains
a representation of the physical objects (patient table, C-arm, detector, etc.)
and their 3D position. The safety layer contains, among others, a model for
the current position of the physical objects and a look-ahead model for their
expected position at a future point in time.

The safety layer is executed in a real-time loop with a certain frequency. In
this loop the distances between some of the objects in the various 3D models
are computed. Based on these distances, the collision prevention component
determines whether a given movement request is safe. If the request might lead to
collisions, the speed of the request is reduced or even set to zero. The restrictions
on the movements depend on many aspects such as the objects involved, the
accelerations and positions of the objects, the reaction time needed to influence
movements and the required brake distances. Look-ahead models are needed to
take response times and brake distances into account.

2.2 Required Functionality for Movement Control

The architecture phase has also been used to increase the insight in the func-
tionality that needs to be redesigned. In this type of systems there is always a
tension between safety and usability. On the one hand no dangerous situation
may be introduced, but on the other hand the physician wants to have maximum
freedom in controlling the system to obtain optimal projections for the images.
Moreover, users expect a very predictable system.

The existing system has evolved over many years, starting as a simple X-ray
system for diagnosis, and later on extended with functionality for interventional
X-ray, 3D scans, and hybrid operating rooms. In particular the latter leads to
new requirements and interfaces for additional external equipment. There have
also been several modifications and extensions on request of medical users. To
achieve a consistent user experience within the product family, both regular
design decisions and late modifications may become requirements that restrict
the design of future systems. These trends have introduced a number of incidental
complexities and intricate dependencies between pieces of functionality.

To be able to develop a new reference architecture where components have
clear responsibilities and clean interfaces, it was essential to challenge the need
for complex functionality and to identify the real underlying requirements. By
discussions with domain specialists, the requirements have been simplified sig-
nificantly, eliminating some notorious complexities and disentangling pieces of
functionality. We expect that these simplifications will reduce the potential for
faults in further development phases.



Early Fault Detection Using Design Models 175

2.3 High-level, Formal Modelling

Before starting the implementation, we would like to validate the architecture
in order to reduce risks. For instance, to gain confidence that several typical
scenarios can really be implemented effectively, and to investigate how the ar-
chitectural choices impact the system as the user would experience it. To keep
the workload manageable, it is crucial to focus on critical scenarios that have a
high impact on the system. In this application, we have considered some man-
ual joystick movements and a few medical procedures that involve moving the
C-arm according to a special trajectory.

To perform such validation, we have added some formality to the informal
drawings such that we obtain executable models. In this development phase
we only make high-level models that abstract from many of the details. We
have used very simplistic models of the hardware (motors and sensors); detailed
models with continuous behaviour and differential equations are far outside our
scope. Making such models triggers many questions to the developers about
their exact ideas. By clarifying these issues in an early development phase, costly
misunderstandings and repairs later on can be avoided.

To model the relevant scenarios, we have used a language called POOSL (Par-
allel Object-Oriented Specification Language, [31]), which has a formal semantics
defined in terms of a timed probabilistic labelled transition systems. POOSL uses
two types of building blocks: cluster (with a blue border) and process (with a
black border). Clusters can contain again clusters and processes, and thus they
can be used to model hierarchical system structures. Processes focus on individ-
ual behaviours and are specified using a textual object-oriented process algebra.
Each block has an external interface consisting of ports (drawn near its border)
that can be used for synchronous one-to-one message communication; that is, a
message can be communicated when a pair of a sender and a receiver are both
ready for communication.

Fig. 4(a) shows the graphical representation of our POOSL model in the
SHESim tool [14]. All the blocks in this diagram are clusters. In particular in
the bottom left corner there are four clusters for the architectural layers from
Fig. 3. The other blocks are clusters that expose the external interfaces of the
architecture to other validation tools as we need in the next section. In turn,
Fig. 4(b) shows the graphical representation of one of the clusters. All the blocks
in this diagram are processes. Processes themselves are specified textually. Most
of our processes follow the structure of a state machine.

Note that in this development phase we do not aim at formal verification.
The emphasis is on rapid prototyping of architectural concepts in a powerful
modelling language. Formal verification would impose additional restrictions on
the models and would require further abstractions from many relevant data
aspects, such as 3D position information and movement requests.

It is not easy to show that later implementations of the architecture are a for-
mal refinement of our architectural model. Our high-level models do not cover
all scenarios, they typically ignore detailed timing issues, and they can use sim-
plified external interfaces. Hence, at best we can expect this refinement only



176 A.J. Mooij, J. Hooman, and R. Albers

(a) Top-Level Specification (b) Specification of a Cluster

Fig. 4. Executable Model in POOSL

for restricted scenarios, and with additional conversions to make the interfaces
homogeneous; see also [19]. In this study project we have not tried to show
any formal refinement between different models. Still the analysis of individual
design models gives useful results.

2.4 Interactive Simulation and Domain Visualization

To validate the modelled behaviour, we use interactive simulation. In our ex-
perience, it is important to relate the architectural model to the user-perceived
system behaviour. That is, not only consider internal software aspects, but also
include their impact on the full system. This includes user interactions and ex-
ternal system behaviour such as physical movements and X-ray. To achieve this,
we combine simulation with domain visualizations [24,19].

Fig. 5 shows the combination of simulation and two types of domain visu-
alization. In the middle there is a simulator for the architectural model, which
focuses on the system’s functionality. At the left side there is a Java GUI that
simulates user interfaces such as joysticks, that displays user guidance messages,
and that can inject special simulated events such as faults or collisions. At the
right side there is a 3D model of the physical hardware that is modelled using
the 3D modelling and game engine Blender [7]. It shows the physical state of the
system, and it can be used to trigger X-ray requests via the pedals.

For example, by clicking on the picture of the joysticks, the user can trigger
events that start a movement or select a certain medical procedure that involves
movements. These events are sent to the simulator of the architecture. The ar-
chitectural model then determines whether certain user guidance messages have
to be generated; in this case an event is send to the Java GUI. The architec-
tural model might also trigger certain movements; in this case events are send to
Blender. The communication between these tools uses sockets (see also [24,19]).



Early Fault Detection Using Design Models 177

Fig. 5. Interactive Simulation and Domain Visualization

The combination of interactive simulation and domain visualization helps to
see the impact of design decisions on the system as a whole. Moreover, it turns
out to trigger again a lot of discussion, although there was common agreement
on the earlier informal drawings. Certain implications, omissions or faults can be
seen more quickly using an interactive simulation, in particular in combination
with a realistic domain visualization. This applies to the validation of both the
architectural concepts and the component interfaces.

Validation includes checking the completeness of the interfaces, the informa-
tion that is available in each component, and whether the components can to-
gether collect enough information for making the right decisions. This concerns,
for instance, sensor data and decisions where to store movement trajectories.
By formally modelling different choices, the developers can really experience the
consequences of different architectural decisions.

The analysis is particularly interesting when it comes to feature interaction.
Because we have a single executable model for multiple scenarios, interferences
can be identified early. For instance, in our model we had to make very ex-
plicit which manual movements are allowed during certain medical procedures.
Moreover, the possibility to inject faults makes it easy to experiment with, for
instance, graceful degradation strategies.

For the simulation we have used the SHESim tool [14] that includes an in-
teractive simulator for POOSL. It can show interaction diagrams with the flow
of messages between parts of the model. Moreover, during simulation the inter-
nal state of the model can be inspected. In our experience these facilities give
insight in the model, and also help in debugging the models, in a way that is
more convenient than debugging prototype implementations in some traditional
programming language.

2.5 Results

The applied modelling and simulation approach focuses on rapid prototyping
of the proposed reference architecture. In particular we have connected the ref-
erence architecture with the user-perceived system behaviour. This approach
has triggered more discussions among the developers during the architecture
phase, in which it is relatively easy to experiment with different alternatives.
Thus we have gained confidence in the feasibility of the proposed architecture.



178 A.J. Mooij, J. Hooman, and R. Albers

Fig. 6. Domain-Specific Language and Transformations

The proposed architecture has finally been implemented as a prototype, which
has been evaluated on the physical hardware.

3 Design for Collision Prevention

In this section we focus on the design phase from Fig. 1(b), and consider the
collision prevention component from Fig. 3. Collision prevention is based on rules
that describe in which situations the movement requests have to be restricted.
Although there are basic rules about required minimal distances between objects
(for example, between C-arm and table), there are many exceptions for special
procedures or situations. In addition there are detailed slowdown patterns that
describe how to restrict the movement requests in a safe and comfortable way.
Moreover, the set of rules varies depending on the product configuration.

An important goal of the redesign is to simplify the collision prevention com-
ponent, and to support further modifications of the collision prevention rules.
To represent the rules in a concise, precise and readable way, we aim to capture
the rules at a high level of abstraction, close to the requirements formulation.
To this end, we have developed a Domain-Specific Language (DSL).

Fig. 6 summarizes our work in relation to this DSL. At the left side, there is a
fragment of the developed meta-model and grammar for this DSL. These are not
specific for a single system, but they can be used for a family of similar systems
(for example, a product line). In the middle of Fig. 6, there is a fragment of a
DSL instance, which is specific for a single system. Based on such a DSL instance
we generate source code for an implementation, and we generate analysis models
for early validation of the rules.

3.1 Domain-Specific Language for Collision Prevention

The development of a Domain-Specific Language (DSL, [13,33]) includes a meta-
model and a grammar; see Fig. 6. The meta-model (abstract syntax) identifies
the essential concepts that we need for modelling the collision prevention rules,
and the relations between these concepts; see the snapshot in Figure 7(a). The



Early Fault Detection Using Design Models 179

(a) Meta-Model (b) Grammar

Fig. 7. DSL Snapshots

grammar (concrete syntax) defines the textual language used for describing in-
stances of the language; see the snapshot in Figure 7(b).

Fig. 8 contains a snapshot of an instance of the language. It starts with a specifi-
cation of the available 3D geometric models (as mentioned in Section 2.1), includ-
ing the geometric objects they contain. The collision prevention rules themselves
are specified in terms of restrictions. For each restriction there are criteria that
specify when the restriction is active. The effects of an active restriction can in-
clude user guidance and speed limits on the movements. Moreover, there are sev-
eral mechanisms to specify how to deal with hysteresis effects of the sensors and
processing latencies in the system, but these are not shown in this snapshot.

As mentioned in [25], DSLs trade generality for expressiveness in a limited
domain, leading to improved ease of use compared to general-purpose languages.
We aim that also non-programmers are able to use our language. As an example,
we have used measurement units for numbers instead of data types; confusion
about measurement units is a known source of faults.

The development of this DSL has been an iterative process. We have started
with a small set of language concepts, which were clearly essential for basic
collision prevention rules. Afterwards we have analysed more challenging rules,
thus gradually identifying some extra language concepts, which we have added
to the DSL. More details of this process are described in [26]; special emphasis
is given to gaining industrial confidence for the use of DSLs.

We have defined the DSL using Xtext [2], which is based on the Eclipse Mod-
elling Framework (EMF, [30]). Based on the grammar, an Eclipse-based editor,
parser and meta-model are generated automatically. Also convenient starting
points are provided for defining validation and code generation.

Clearly the definition of a DSL for modelling collision prevention rules requires
some additional effort. To make sure that these efforts pay off, DSLs should
mainly be considered when several instances (or modifications over time) are to
be expected, which is the case for the collision prevention rules.



180 A.J. Mooij, J. Hooman, and R. Albers

Fig. 8. Snapshot of a DSL Instance

Moreover, it is important to have a clear understanding of the semantics of
the modelling language. In the context of DSLs, the code generator often defines
the semantics. In [21] we give a mathematical semantics of some key concepts in
our DSL. Furthermore we have chosen the syntax of the DSL in such a way that
most of the language elements are practically self-explanatory; there are only a
few features whose semantics requires a more detailed explanation.

3.2 Generation of Source Code

For the generation of source code in Fig. 6, we have developed a custom code
generator (using Xtend [1]) that transforms the high-level concepts from our
DSL into executable code. By means of some glue code, we have integrated the
generated code with existing systems.

The generated code can be used in various ways. First of all, the code genera-
tion gives semantics to the concepts in the meta-model and grammar of the DSL.
When developing the DSL, we use the generated code to evaluate whether we
have correctly captured all essential concepts. Next, we use the code generation
for testing whether a specific set of rules has been modelled correctly, by running
the generated code on the physical hardware. Finally, the code generation can
be used for generating production code and then it adds immediate value to the
modelling efforts [16].

3.3 Basic Validation and Generation of Analysis Models

A high-level description in terms of a DSL has a lot of potential for analysis,
even before generating any source code for implementation in a general-purpose



Early Fault Detection Using Design Models 181

language.When applied to implementation code, many analysis techniques would
require the prior use of abstraction techniques. DSLs facilitate analysis by pro-
viding a domain-specific abstraction that naturally fits the problem domain.

Fig. 6 shows two types of analysis. We have started with some basic validation
on the DSL instance. This includes, for instance, type checking and checks that
certain relations are acyclic. Clearly such checks are limited and there is a need
for more analysis before code generation and time-consuming system tests. As
the collision prevention component is a safety-critical real-time component, we
have considered two types of analysis: performance evaluation of the required
execution times and formal verification of some correctness properties.

In selecting analysis tools, we have used two criteria [21]. The first one is
that no user interaction should be required, as the idea is to hide the analysis
tools from the user of the DSL. This means that the analysis models have to be
generated from the DSL instance, and the analysis results have to be translated
back to the DSL level. Ideally, the results are showed as warnings and errors in
the DSL editor.

The second criterion is that analysis results should be available in a short
amount of time, such that the analysis can be run after any modifications of
the DSL instance, such as changing or adding rules. Basic validation of DSL
instances is performed whilst typing. The other types of analysis are more time
consuming, and hence we do not intend to perform them whilst typing. We aim
for an analysis time of at most a few minutes (say a short coffee break).

Performance Analysis. The collision prevention component is part of a real-
time control loop that executes with a certain frequency; see Sect. 2.1. Hence
it is important that the collision prevention component can execute within the
period of the real-time loop. The performance analysis aims to predict quickly
how much execution time is needed based on the description in the DSL instance;
any other scheduling issues are not considered.

Fig. 9 gives an overview of the approach as described in [6]. In the top-left
corner we start with a DSL instance. To meet our criteria for the analysis tools
(fully automated, and time efficient), we create a POOSL model and analyse
it using the high-speed simulation tool Rotalumis [14]. The POOSL model is
generated using a model transformation (in Xtend [1]) from the DSL instance.
In addition, in the top-right corner, we collect performance profiles of basic
operations. These are added to the POOSL model. Finally, in the bottom-left
corner the statistical results are depicted, consisting of expected execution times
and their likelihood.

As the collision prevention acts as a safety layer, one may expect that we
are only interested in worst-case scenarios. However, we have performed a sta-
tistical analysis instead, as a worst-case analysis would assume the extremely
unlikely case that all functionality under-performs at the same time. Focusing
on the worst-case only may thus result in serious over-dimensioning of the sys-
tem, which, in turn, increases its costs. Moreover, the safety layer is not the only
means to ensure safety; for example, the lower layers in the architecture from
Fig. 3 contain various collision detection mechanisms.



182 A.J. Mooij, J. Hooman, and R. Albers

Fig. 9. Performance Analysis using the DSL

The most time-consuming basic operations are the distance computations be-
tween objects in the geometric models. The required amount of distance compu-
tations is basically determined by the instance of the DSL, which specifies which
distances are relevant for the specified set of rules. However, the generated im-
plementation code uses conditional and lazy evaluation. That is, depending on
the positions of objects, some distances may not need to be computed.

The required time for a single distance computation depends on the used
package for distance computations. In [6] we have considered distance compu-
tations on the basis of the Proximity Query Package (PQP, [23]), which is used
in the context of robotics [9]. The execution times in PQP vary depending on
the shapes of the objects and their relative geometric position. For each pair of
objects, we have profiled the execution time for distance computations.

In the POOSL performance model we abstract from the geometric positions of
the objects, and perform random sampling from the basic performance profiles.
In addition we use probabilities to model the conditional and lazy evaluation.
By simulating the performance model, we obtain a statistical indication of the
expected execution times. In [6] these times are compared with measurements
based on the generated implementation code.

Formal Verification. The collision prevention component is part of the safety
layer; see Fig. 3. The formal verification aims to check quickly whether the
following types of correctness properties hold for the DSL instance:

– well-defined expressions: checks whether there cannot be any “division by
zero” or “exponentiation resulting in a complex number”.

– ranges: checks whether the specified speed limits come from a proper range
of values; for example, whether they are non-negative in all situations.

– safety: checks various properties such as that if two objects are close to each
other and still approaching, then their speeds are restricted.

– deadlock: checks whether there is no position of the objects such that no
further movements are possible.



Early Fault Detection Using Design Models 183

Fig. 10. Safety Analysis using the DSL

Fig. 10 gives an overview of this approach as described in [21]. In the top-
left corner we start with a DSL instance. To meet our criteria for the analysis
tools (fully automated, and time efficient), we create a Satisfiability Modulo
Theories (SMT, [3]) model and analyse it using the SMT-solver Z3 [12]. The
SMT model is generated using a model transformation (in Xtend [1]) from the
DSL instance. In addition, in the top-right corner, we formulate the properties,
and also formalize them in an SMT model. The combination of these models is
analysed by the SMT-solver. For any failed property, an automated debugging
procedure identifies a place in the DSL instance that contributes to the failure.
At this place the results are displayed in the Eclipse-based editor for the DSL.

To make the formal verification feasible, we have applied several abstractions.
First of all, we abstract from the acceleration characteristics of the physical
objects. Similarly, we abstract from timing aspects of the system, such as the la-
tency between sensing and acting in the real-time control loop of the safety layer.
Moreover, we do not consider the physical shapes of the objects; basically we
consider completely independent object positions and distances between objects.

Using these abstractions, the experiments in [21] show that fast analysis and
user feedback is feasible for realistic instances of the DSL. For the correctness
properties mentioned above, the applied abstractions may result in false pos-
itives. Moreover, for the deadlock check it may also result in false negatives.
Nevertheless, also the deadlock check is useful as it can detect certain typical
mistakes in the collision prevention rules.

3.4 Results

The development of this DSL has triggered many discussions about the collision
prevention rules. By making the rules more explicit, we continuously had to
decide what is really essential, and what is just an implementation detail.



184 A.J. Mooij, J. Hooman, and R. Albers

The initial expectation was that there would be a lot of variability in the
rules. However, the combined study of the movement control architecture and
the collision prevention design has shown that a lot of the variability can be
isolated. In further work we will consider whether DSLs can play a useful role
in the design of these isolated parts.

Using language development frameworks like Xtext/Xtend, DSL instances
can easily be transformed to various types of analysis models. When applied to
implementation code, many analysis techniques would require the prior use of
abstraction techniques. Instead, DSLs facilitate analysis by providing a domain-
specific abstraction that naturally fits the problem domain.

4 Related Work

To model architectures, we have used the POOSL language and tooling, but the
general approach is not restricted to POOSL. An overview of many other formal
languages for describing architectures is provided by [17]. Our focus is on how to
apply such languages and methods effectively in industrial practice. A particular
challenge identified in [17] is scalability, which we address by making high-level
models that omit many details and focus on parts of the functionality.

For example, we could also consider architecture description languages such
as the SAE Architecture Analysis and Design Language (AADL, [29]) standard.
However, at the moment that we decided to use POOSL, the AADL tools were
still too much under development without convenient simulation possibilities.
We could also have used MatLab, but we prefer a light-weight tool specializing
in discrete event systems. In particular we focus on specification and not on
implementation or verification. The goal here is to keep the models simple, in
order to facilitate rapid experimentation.

In the context of the architectural validation, the goal is not to generate code
out of the POOSLmodels, in contrast to formal methods such as VDMTools [11],
Atelier B [10], SCADE Suite [15], and ASD:Suite [32]. The last tool has also been
used at Philips Healthcare [20,19,27]. The goal of our architectural validation is
rapid prototyping of the architectural concepts, in such a way that alternatives
can easily be explored, and changes can be made quickly.

It is interesting to compare such formal methods approaches with the DSL
approach. Both approaches aim for models at a higher abstraction level than im-
plementation code, and aim to generate implementation code from these models.
The code generators for formal methods approaches are usually generic and pre-
defined (based on a formal semantics), and hence the modelling cannot abstract
a lot from the implementation level. Typically the formal methods models are
a kind of state machines. As the code generators for DSLs are custom, higher-
level and domain-specific abstractions are feasible. Finally, the formal methods
approaches focus on formal verification using sophisticated model checkers. To
bring similar benefits to the DSL approach, we have introduced the transforma-
tions to various types of analysis models.

The architecture models from [22] are similar to our POOSL models. Their
analysis, however, focuses on validating the requirements by observing external



Early Fault Detection Using Design Models 185

behaviour, whereas in our analysis we focus equally on how this behaviour is
established internally.

The BIP (Behavior, Interaction, Priority; [5]) framework as described in [28]
uses a similar structure as our DSL approach. However, we use a DSL whereas
BIP is more a general-purpose language somewhat comparable to POOSL.

In earlier work [18] we have translated UML models into the formats of several
existing validation tools like model checkers and theorem provers. Also the work
on design space exploration from [4] has a similar flavour as our transformations
to analysis models. Also there the goal is to create a specification at a convenient
abstraction level, and then provide transformations to and from various analysis
tools. In both cases the transformations hide all the low-level encodings.

5 Conclusions and Further Work

We have participated in an industrial study project for redesigning the collision
prevention components of interventional X-ray systems. In this context, we have
demonstrated various model-based techniques that allow for fault detection in
early development phases. Thus we have gained confidence in the feasibility of
the proposed redesign. Finally a prototype implementation has been delivered,
which has been evaluated on the physical hardware.

The architecture analysis has led to more discussions before going into the
design and implementation phases. The DSL approach has led to simple de-
scriptions of collision prevention rules, from which a prototype implementation
is generated. In our experience, the Xtext/Xtend tools enable the quick develop-
ment of languages and their transformations. Our analysis techniques for DSL
instances show potential, but they became available to late during the study
project to have a significant impact.

An important challenge for all the analysis techniques described here is to
find a good balance between the level of detail and the potential for analysis.
In general, modelling in more detail is more time consuming, but it can enable
more extensive analysis. Note that more detail can also significantly increase the
time needed for the analysis. This is a serious issue, as we aim for quick feedback
in early development phases (when many details are still unknown).

The composition of the study team has also contributed to its success. First of
all it contains young people with fresh ideas. Secondly, it contains people with a
lot of experience and domain expertise, which was important to avoid too many
iterations of erroneous attempts. Finally it contains developers that made pro-
totype implementations of new ideas using the existing code base; this includes
both the new product features and the use of new development techniques like
DSLs.

Further Work. Architectural POOSL models are currently used to validate pro-
posed architectural changes of other parts of the system. It requires more exper-
imentation to define clear guidelines on how to handle with the tension between
level of detail and analysis power. In particular we would like to support a notion
of refinement on a series of models from requirements via architecture to design.



186 A.J. Mooij, J. Hooman, and R. Albers

To make sure that analysis results on the DSL are relevant for the generated
code, we need to establish that the code generators and model transformations
are consistent. We are currently investigating an approach where we first define
a formal semantics for the DSL, and then analyse which properties of the DSL
are maintained by the code generators and model transformations. A particular
challenge is to do this in such a way that it can be applied in industrial practice
in a cost effective way.

Finally we are improving the usability aspects of the POOSL tools. This
includes the use of DSL technology for developing an Eclipse-based editor. In
particular we are adding all kinds of validation checks while editing the POOSL
models, in order to support early fault detection.

Acknowledgements. The authors like to thank Freek van den Berg and Sar-
men Keshishzadeh for their work on analysis models for our DSL, and for pro-
viding relevant screenshots. The authors also like to thank Hans Driessen and
Jan Stevens for their active participation in this study project.

References

1. Xtend. version 2.3 (2012), http://www.eclipse.org/xtend/
2. Xtext. version 2.3 (2012), http://www.eclipse.org/Xtext/
3. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Modulo Theories.

Handbook of Satisfiability 185, 825–885 (2009)
4. Basten, T., Hendriks, M., Trcka, N., Somers, L., Geilen, M., Yang, Y., Igna, G.,

de Smet, S., Voorhoeve, M., van der Aalst, W., Corporaal, H., Vaandrager, F.:
Model-driven design-space exploration for software-intensive embedded systems.
In: Model-Based Design of Adaptive Embedded Systems. Springer (2013)

5. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Proceedings of SEFM 2006, pp. 3–12. IEEE Computer Society (2006)

6. van den Berg, F., Remke, A., Mooij, A., Haverkort, B.: Performance evaluation
for collision prevention based on a domain specific language. In: Balsamo, M.S.,
Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 276–287.
Springer, Heidelberg (2013)

7. Blender, http://www.blender.org/
8. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot.

Autom. 2(1), 14–23 (1986)
9. Carpin, S., Mirolo, C., Pagello, E.: A performance comparison of three algorithms

for proximity queries relative to convex polyhedra. In: Proceedings of ICRA 2006,
pp. 3023–3028 (2006)

10. ClearSy: Atelier B, http://www.atelierb.eu/en/
11. CSK Systems Corporation: VDMTools, http://www.vdmtools.jp/en/
12. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

13. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Notices 35(6), 26–36 (2000)

14. Eindhoven University of Technology: Software/Hardware Engineering (SHE) - Par-
allel Object-Oriented Specification Language (POOSL),
http://www.es.ele.tue.nl/poosl/

15. Esterel Technologies: SCADE Suite,
http://www.esterel-technologies.com/products/scade-suite/

http://www.eclipse.org/xtend/
http://www.eclipse.org/Xtext/
http://www.blender.org/
http://www.atelierb.eu/en/
http://www.vdmtools.jp/en/
http://www.es.ele.tue.nl/poosl/
http://www.esterel-technologies.com/products/scade-suite/


Early Fault Detection Using Design Models 187

16. Fitzgerald, J.S., Larsen, P.G.: Balancing insight and effort: The industrial uptake of
formal methods. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and
Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 237–254. Springer, Heidelberg
(2007)

17. Garlan, D.: Formal modeling and analysis of software architecture: Components,
connectors, and events. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS,
vol. 2804, pp. 1–24. Springer, Heidelberg (2003)

18. Graf, S., Hooman, J.: Correct development of embedded systems. In: Oquendo, F.,
Warboys, B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 241–249.
Springer, Heidelberg (2004)

19. Hooman, J., Mooij, A.J., van Wezep, H.: Early fault detection in industry using
models at various abstraction levels. In: Derrick, J., Gnesi, S., Latella, D., Treharne,
H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 268–282. Springer, Heidelberg (2012)

20. Hooman, J., Huis in ’t Veld, R., Schuts, M.: Experiences with a compositional
model checker in the healthcare domain. In: Liu, Z., Wassyng, A. (eds.) FHIES
2011. LNCS, vol. 7151, pp. 93–110. Springer, Heidelberg (2012)

21. Keshishzadeh, S., Mooij, A.J., Mousavi, M.R.: Early fault detection in DSLs using
SMT solving and automated debugging. In: Hierons, R.M., Merayo, M.G., Bravetti,
M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 182–196. Springer, Heidelberg (2013)

22. Kramer, J., Magee, J., Uchitel, S.: Software architecture modeling & analysis:
A rigorous approach. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS,
vol. 2804, pp. 44–51. Springer, Heidelberg (2003)

23. Larsen, E., Gottschalk, S., Lin, M., Manocha, D.: Fast distance queries with rect-
angular swept sphere volumes. In: Proceedings of ICRA 2000, vol. 4, pp. 3719–3726
(2000)

24. Li, L., Hooman, J., Voeten, J.: Connecting technical and non-technical views of
system architectures. In: Proceedings of CPSCom 2010, pp. 592–599 (December
2010)

25. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316–344 (2005)

26. Mooij, A.J., Hooman, J., Albers, R.: Gaining industrial confidence for the intro-
duction of domain-specific languages. In: Proceedings of COMPSAC workshops,
IEESD 2013, pp. 662–667. IEEE (2013)

27. Osaiweran, A., Schuts, M., Hooman, J., Wesselius, J.H.: Incorporating formal tech-
niques into industrial practice: an experience report. In: Proceedings of FESCA
2013. ENTCS, vol. 295 (2013)

28. Poulhiès, M., Pulou, J., Rippert, C., Sifakis, J.: A methodology and supporting
tools for the development of component-based embedded systems. In: Kordon, F.,
Sokolsky, O. (eds.) Monterey Workshop 2006. LNCS, vol. 4888, pp. 75–96. Springer,
Heidelberg (2007)

29. SAE International: Architecture Analysis & Design Language (AADL). SAE Stan-
dard AS5506B (September 2012)

30. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work. Pearson Education (2008)

31. Theelen, B.D., Florescu, O., Geilen, M., Huang, J., van der Putten, P.H.A., Voeten,
J.: Software/hardware engineering with the Parallel Object-Oriented Specification
Language. In: Proceedings of MEMOCODE 2007, pp. 139–148. IEEE (2007)

32. Verum Software Technologies: ASD:Suite, http://www.verum.com/
33. Voelter, M.: DSL Engineering, Version 1.0 (2013), http://dslbook.org

http://www.verum.com/
http://dslbook.org

	Early Fault Detection Using Design Models for Collision Prevention in Medical Equipment
	1 Introduction
	2 Reference Architecture for Movement Control
	2.1 Reference Architecture for Movement Control
	2.2 Required Functionality for Movement Control
	2.3 High-level, Formal Modelling
	2.4 Interactive Simulation and Domain Visualization
	2.5 Results

	3 Design for Collision Prevention
	3.1 Domain-Specific Language for Collision Prevention
	3.2 Generation of Source Code
	3.3 Basic Validation and Generation of Analysis Models
	3.4 Results

	4 Related Work
	5 Conclusions and Further Work
	References




