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Abstract Green supply chain management (GrSCM) has its roots in supply chain
management (SCM) and environmental management. In fact, adding ‘‘green’’
concept into traditional SCM leads to studying environmental impact of SCM-
related processes. Logistics activities which form the main part of SCM-related
processes belong to the most influential sources of environmental pollution and
greenhouse emissions which may cause harmful impacts both on human health and
ecosystem quality. In order to reduce hazardous environmental impacts of logistics
activities, the concept of green logistics (GrLog) and reverse logistics (RL) was
introduced. Similar to traditional supply chain, uncertainty plays an important role
in GrSCM; however, considering the environmental factors beside the quantity and
quality of end-of-life products elevates the degree of uncertainty in GrLog and RL
problems. In this chapter, designing and planning problems in GrLog and RL are
investigated in a fuzzy environment via a systematic review and analysis of recent
literature. Three selected fuzzy mathematical models from the recent literature are
elaborated. A real industrial green logistics case study is described and investi-
gated and a number of avenues for further research are finally suggested.
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1 Introduction to Green and Reverse Logistics
Management

The design and operation of supply chains has traditionally been upon economical
and technological objectives such as maximizing revenue/minimizing cost, max-
imizing responsiveness, increasing flexibility, etc. For example, companies take
into account various factors such as price, quality and flexibility when selecting
their suppliers or just consider economical aspects when choosing their production
technologies or selecting their transportation modes.

Since 1990s, green issues are increasingly considered by governments, people,
industries and scientists in design and planning problems in both micro and macro
levels. For example, governments force manufacturers to include green aspects
into their products and production processes and taking into account green con-
siderations in their logistics-related processes such as supplier selection and
material movements. People prefer to buy products from those companies with
higher reputation in environmental protection. As a result, including green aspects
in products gradually becomes as a competitive advantage for manufacturers.
Establishing international standards (such as ISO 14000 series) and international
conventions (such as Kyoto Protocol in 1997) could also be considered as
important drivers for environmental protection.

Among the logistics activities, manufacturing and transportation activities are
the main sources of waste generation, ecosystem disruption, and depletion of
natural resources (Fiksel 1996). As such, governments force the firms to decrease
the environmental impact of their activities and all of these urge the manufacturers
to consider environmental issues through their supply chains (Büyüközkan 2012).
Paying more attention to GrLog not only can decrease the ecological impact of
industrial activities but also can maintain or even increase quality, reliability,
performance, energy efficiency or decrease cost (Srivastava 2007).

1.1 Importance and Drivers

The growing importance of GrSCM/GrLog is driven mainly by the escalating
deterioration of the environment. Nevertheless, it is not only environmental issues
that matters; it is good business sense and higher profits too (Srivastava 2007). In
fact, the perspective of ‘‘greening as a burden’’ gradually changes toward
‘‘greening as a potential source of competitive advantage’’ (Van Hoek 1999).

According to the study of De Brito and Dekker (2004), companies involve in
green practices either because they can profit from it (competitive advantages); or/
and because they have to doing so due to environmental legislations; or/and
because they ‘‘feel’’ socially motivated to do it (social responsibility).

By reviewing a great number of papers in the relevant literature, the following
drivers of GrSCM/GrLog could be realized:
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• Deterioration of the environment involving:

– limited natural resources;
– diminishing raw material resources;
– increase in solid and hazardous wastes (Fiksel 1996);
– increasing level of pollution (water and air);

• economic advantages and savings (Porter and Van der Linde 1995a, b) by
saving resources, eliminating wastes and productivity improvement;

• environmental legislations and regulatory requirement like:

– Montreal Protocol in 1987 that limit the production of substances harmful to
the stratospheric ozone layer, such as CFCs;

– the Kyoto Protocol in 1997 that limits the emissions of greenhouse gases
from industrialized countries;

• environmental management standards and guidelines (e.g., ISO 14000 series);
• consumer pressures (Lamming and Hampson 2005; Elkington 1994).

In addition to abovementioned drivers, benefits acquired by managing used
product for further utility, adding customer’s value, etc., are some other drivers
enforcing manufacturers to address RL in their production activities (Wang and
Sun 2005).

1.2 Definition and Scope

Zhu and Sarkis (2004) mentioned that the scope of GrSCM can range from a simple
act of green purchasing to implementing an integrated green supply chain flowing
from suppliers to customers, and even reverse flows of logistics. On the other hand,
Srivastava (2007) defined the range of GrSCM as ‘‘the flow of material from the
final customers back to retailers, collection points, manufacturers, and/or disposal
sites’’. According to this definition, the scope of GrSCM includes reactive moni-
toring of the general environmental management programs and/or proactive prac-
tices implemented through reduce, re-use, rework, refurbish, reclaim, recycle,
remanufacture, or as a whole, reverse logistics activities. Particularly, in the area of
reverse logistics, researchers have explored various topics and issues, including
reusing, recycling, remanufacturing, etc. (see Kroon and Vrijens 1995; Barros et al.
1998; Jayaraman et al. 1999).

RL was defined by Council of Logistics Management as ‘‘The role of logistics
in recycling, waste disposal, and management of hazardous materials; a broader
perspective included all relating to logistics activities carried out in source
reduction, recycling, substitution, reuse of materials and disposal’’.

Also, Rogers et al. (1999) have defined RL as ‘‘the process of planning, imple-
menting, and controlling the efficient, cost effective flow of raw materials, in-process
inventory, finished goods and related information from the point of consumption to
the point of origin for the purpose of recapturing value or proper disposal’’.
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Srivastava (2007) defined GrSCM as ‘‘integrating environmental thinking into
supply chain management, including product design, material sourcing and
selection, manufacturing processes, delivery of the final product to the consumers
as well as end-of-life management of the product after its useful life’’.

Sarkis et al. (2011) reviewed different concepts and definitions related to
GrSCM including ‘‘sustainable supply network management (Young and
Kielkiewicz-Young 2001; Cruz and Matsypura 2009), Supply and demand sus-
tainability in corporate socially responsible networks (Kovacs 2004; Cruz and
Matsypura 2009), supply chain environmental management (Sharfman et al.
2009), green purchasing (Min and Galle 1997) and procurement (Günther and
Scheibe 2006), environmental purchasing (Carter et al. 2000; Zsidisin and Siferd
2001), green logistics (Murphy and Poist 2000) and environmental logistics
(Gonzalez-Benito and Gonzalez-Benito 2006) and sustainable supply chains
(Linton et al. 2007; Bai and Sarkis 2010)’’.

According to the above-mentioned descriptions, here we define GrSCM as
‘‘integrating environmental and economical aspects into all decisions of supply
chain management through all stages of product life cycle (cradle-to-grave) in
order to create (more) sustainable value for broad range of stakeholders’’.

1.3 Classification of Planning Problems in Green
and Reverse Logistics Management

Different classifications on green supply chain have ever been proposed in the
literature. Among them, Srivastava (2007) introduced a classification based on
problem context in which GrSCM is classified into (1) green design and (2) green
operations. In this classification, subjects such as life cycle assessment (LCA) and
ergonomic comfort design (ECD) are related to green design while green manu-
facturing and remanufacturing, reverse logistics, network design and waste man-
agement are subfields of green operations.

Recently, Ilgin and Gupta (2010) classified environmentally conscious manu-
facturing and product recovery into four main categories including (1) product
design, (2) reverse and closed-loop supply chain, (3) remanufacturing and (4)
disassembly.

Similar to the traditional SCM, GrSCM can also be classified according to the
length of decision horizon, i.e., strategic (STRG), tactical (TCTL) and operational
(OPRL) decisions. Issues such as green supply chain network design and inte-
grated forward-reverse logistics network design are considered as strategic deci-
sions; problems concerning with the amount of material flows between each pair of
network’s facilities at each medium-term time period (e.g., monthly) with respect
to their environmental concerns as well as cost objectives are known as tactical
decisions and finally decisions such as green daily production scheduling and
material transportations are operational level ones.
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In the literature, there are several multi-attribute decision making (MADM)
techniques used to evaluate the performance of whole GrSCM/GrLog/RL, sup-
pliers and third-party logistics providers (see Shen et al. 2013; Ravi 2012; Lin
2013; Kannan et al. 2009; Kannan et al. 2013; Govindan et al. 2013; Dhouib 2013;
Akman and Pıs�kın 2013); however, in this chapter we have focused on GrLog and
RL designing and planning problems.

From the operations research (OR) perspective, different modeling approaches
including mixed-integer linear programming (MILP), multi-objective integer lin-
ear programming (MOILP), mixed-integer goal programming (MIGP), multi-
objective mixed integer programming (MOMIP), fuzzy goal programming (FGP),
credibility-based fuzzy mathematical programming (CFMP), multi-objective
possibilistic mixed integer linear programming (MOPMILP) have been used to
formulate planning problems in the context of GrSCM/GrLog. In addition, in order
to solve the developed mathematical models, different approaches are often
applied in the literature which include: commercial optimization solvers (like
CPLEX) to find optimal solutions in small to medium-scaled problems, decom-
position-based exact/approximation methods (like Benders decomposition/La-
grangean relaxation) and heuristic or metaheuristic methods to yield near-optimal
or optimal solutions in large-scaled instances.

As discussed before, uncertainty plays an important role in GrSCM/GrLog and
RL contexts. Three main approaches including: (1) fuzzy programming, (2) sto-
chastic programming and (3) robust programming are used to cope with uncertainty.
Uncertainty is usually considered in the model parameters involving: Demands (D),
Transportation Costs (TC), Handling Costs (HC), Quantity of Returns (QnR),
Quality of Returns (QlR), Fixed Opening Costs (FOC), Manufacturing Costs (MC),
Processing Costs (PC), Operations Costs (OC), Remanufacturing Costs (RC),
Capacity levels (Cap), Recovery Percentages (RPer), Landfill Percentages (LPer),
Number of Created Jobs (NCJ), Emission Factors (EF), Production Rates (PR),
Collection Costs (CC), Distribution Costs (DC) and Recovery Fractions (RF) or is
incorporated into the objective function(s) such as Flexibility of Goals (FG) and
Preference of DM’s over objective function (POF) in multi-objective models.

A detailed review of selected papers from the literature related to GrSCM/
GrLog, RL and closed-loop supply chain (CLSC) based on abovementioned
classifications is provided in Table 1.

For more comprehensive and detailed review of GrSCM/GrLog and RL,
interested readers can consult with (Srivastava 2007; Sbihi and Eglese 2007; Ilgin
and Gupta 2010; Sarkis et al. 2011), and (Fleischmann et al. 1997; Beamon 1999;
De Brito and Dekker 2004; Wang and Sun 2005; Pishvaee et al. 2010a; Souza
2013), respectively.

The rest of the chapter is organized as follows. In Sect. 2, the concept of GrLog
and RL management under uncertainty is discussed. A classification for different
types of uncertainty, main programming approaches to cope with uncertainties,
advantages of fuzzy mathematical programming approach over other competing
approaches and a classification for fuzzy mathematical models are also given in
this section. Afterwards, in Sect. 3, three selected fuzzy mathematical models
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addressing GrLog and RL planning problems are presented and discussed. In
Sect. 4, an industrial case study is provided and finally, some possible future
directions for further research are presented in Sect. 5.

2 Green and Reverse Logistics Management Under
Uncertainty

The complex nature and structure of commercial supply chains and working in a
dynamic and chaotic business environment, imposes a high degree of uncertainty
in supply chain planning decisions and significantly affects their overall perfor-
mance (Klibi et al. 2010). The degree of complexity in green and reverse logistics
is even greater than traditional supply chains, since highly imprecise parameters
such as quantity and quality of returned products and environmental factors should
also be taken into account (Erol et al. 2011; Pishvaee et al. 2012b).

As it could be seen in Table 1, most of the published papers are related to
strategic level decisions rather than tactical or/and operational decisions. Decisions
regarding locations and number of required manufacturing, remanufacturing, and
collection centers as well as aggregated material flows between these centers and
consumers in forward and reverse directions are some of main decisions made in
the strategic level. It is quite clear that the degree of uncertainty in strategic
decisions is significantly higher than mid-term and short-term decisions. The
reason goes back to difficulty of forecasting and providing confident values for
input parameters in a longer time horizon.

In the light of above-mentioned points, accounting for uncertainty in GrLog and
RL is inevitable. Therefore, different approaches to cope with uncertainty are used
in the literature including stochastic programming (e.g., Pishvaee et al. 2009;
Cardoso et al. 2013), fuzzy programming (e.g., Tsai and Hung 2009; Qin and Ji
2010; Wang and Hsu 2010; Pishvaee and Torabi 2010; Pishvaee and Razmi 2012;
Pishvaee et al. 2012a; Pishvaee et al. 2012b; Pinto-Varela et al. 2011; Vahdani
et al. 2013a; Vahdani et al. 2012) and robust programming (e.g., Pishvaee et al.
2011; Pishvaee et al. 2012a; Vahdani et al. 2012) approaches. Among these
approaches, fuzzy programming methods are mostly utilized in recent years due to
their capability in handling both epistemic and vague uncertainties.

In this section, a useful taxonomy is provided to classify different kinds of
uncertainty in green and reverse logistics planning problems. Then, various types
of fuzzy programming methods which have already been applied in the context of
GrLog and RL along with their characteristics are studied and analyzed.

2.1 Classification of Uncertainties

Different general and SCM-related classifications for uncertainty have ever been
proposed in the literature from different points of view. Among them, according to
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Tang (2006) and Klibi et al. (2010), uncertainty in supply chains can be classified
into two groups: (1) business-as-usual (or operational) uncertainty, such as usual
fluctuations in demand and supply data which mostly includes events with low to
medium impact, medium to high likelihood; (2) disaster uncertainty, that covers
rare events with high business impacts but low likelihood such as uncertainty in
supply disruptions due to occurrence of a natural disaster (e.g., flood or earth-
quake) in supplier location. Terms such as ‘‘hazard’’ and ‘‘disruption’’ can also be
used instead of the term ‘‘disaster’’ here. This type of uncertainty can be originated
generally from natural sources i.e., earthquake, flood, Tsunami or man-made
sources such as war, terrorist attacks, labor strikes, sanctions, etc.

From a general view, Dubois et al. (2003) classified uncertainty as: (1)
uncertainty in input data, and (2) flexibility in constraints and goals. The first type
is the most common uncertainty faced in supply chains which is usually referred to
epistemic uncertainty and possibilistic programming methods are used to handle
such kind of uncertainty. The second type of uncertainty deals with flexibility in
target value of fuzzy goals and/or right hand side (RHS) of soft constraints for
which flexible mathematical programming models are utilized to cope with such
flexible values (Bellman and Zadeh 1970; Mula et al. 2006).

Uncertainty in data can be classified into two categories (Mula et al. 2006; Mula
et al. 2007): (1) randomness, that stem from the random nature of parameters and
stochastic programming methods are the most applied approaches to cope with this
sort of uncertainty; (2) Epistemic uncertainty, that deals with ill-known and
imprecise parameters arising from lack of knowledge regarding the exact value of
these parameters for which possibilistic programming approaches are usually
applied (Pishvaee and Torabi 2010; Mula et al. 2006).

From a different point of view, Davis (1993) classified the potential sources of
uncertainty in supply chains in three main categories, i.e., (1) supply uncertainty,
(2) process uncertainty and (3) demand uncertainty. In general, changes in sup-
plier’s performance such as lateness in delivery of raw materials or delivery of
defective materials by suppliers leads to supply uncertainty. On the other hand,
faults occurring in production and/or distribution processes are the main sources of
process uncertainty. Finally, imprecise estimation of future demands for special
products, changes in market, changes in customers attitude, changes in fashion,
etc. are the main sources of demand uncertainty which is the most frequent
uncertainty in real-life situations.

Another classification of uncertainty in the context of production systems is
provided by Ho (1989) as: (1) environmental uncertainty and (2) system uncer-
tainty. Similar to afore-mentioned classifications in the context of supply chain,
environmental uncertainty is related to demand side uncertainties derived from
customer behavior and market trends as well as supply side uncertainties stemmed
from the performance of suppliers. Furthermore, system uncertainty refers to those
uncertainties within the production, distribution, collection and recovery processes
for example uncertainties pertaining to production costs/times and actual capacity
of different processes.
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It should be mentioned that all of the reviewed classifications are meaningful in
the context of GrSCM/GrLog, RL and CLSC but the main point is that how should
we cope with these uncertainties in mathematical models?

2.2 Overview of Different Approaches to Cope
with Uncertainty

As the body of literature shows, three main approaches are mostly employed to
deal with uncertainty in the context of mathematical programming, i.e., (1) sto-
chastic programming, (2) fuzzy programming and (3) robust optimization. Based
on the structure and context of the concerned problem, type of uncertainty and the
level of incompleteness in the model’s parameters, one or a combination of these
approaches can be applied. Nevertheless, each method has its unique character-
istics which differentiate it from the others. Hence, one should delicately study and
analyze the type(s) of uncertainty involved in the concerned problem and then
choose the most appropriate method(s) to cope with recognized uncertainty or
uncertainties.

2.2.1 Stochastic Programming

Stochastic programming methods can be used whenever randomness is the main
source of uncertainty in input data for which random variables with known
probability distributions are often utilized.

Sahinidis (2004) classified stochastic programming into two main categories:
programming with recourse (i.e., two-stage stochastic programming) and proba-
bilistic (chance constrained) programming. In the former, the decision variables
are partitioned into two sets. The first stage decisions are those that have to be
made before the actual realization of the uncertain parameters and the second stage
decisions are those that must be made after realization of uncertain parameters.
This method is mostly suggested when infeasibility is allowed with charging
penalty costs. Traditionally, the second-stage variables are interpreted as correc-
tive measures or recourse against any infeasibilities arising due to a particular
realization of uncertainty. From a different point of view, one can refer to first-
stage decisions as strategic decisions and the second-stage decisions as tactical or
operational decisions following the first-stage plan that has been made in an
uncertain environment. The objective is usually to determine the first-stage deci-
sions in such a way that minimizes total first-stage costs and the expected value of
second-stage costs. On the other hand, the former focus on the reliability of the
system, i.e., the ability of system to meet feasibility in an uncertain environment.
This reliability could be translated as a minimum requirement on the probability of
satisfying constraints (i.e., the confidence level of satisfaction).
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For detailed classification on stochastic programming approaches and their
mathematical challenges, the reader may consult with Sahinidis (2004) and Birge
and Louveaux (1997).

2.2.2 Robust Optimization

Robust programming/optimization provides risk-averse methods to cope with
uncertainty in optimization problems. According to Pishvaee et al. (2012a), ‘‘a
solution to an optimization problem is said to be robust if it has both feasibility and
optimality robustness. Feasibility robustness means that the solution should remain
feasible for (almost) all possible values of uncertain parameters and optimality
robustness means that the value of objective function should remain close to
optimal value or have minimum (undesirable) deviation from the optimal value for
(almost) all possible values of uncertain parameters’’.

Robust programming approaches can be classified into three groups (Pishvaee
et al. 2012a): (1) hard worst case robust programming (Soyster 1973; Ben-Tal and
Nemirovski 1998; Ben-Tal et al. 2009), (2) soft worst case robust programming
(Inuiguchi and Sakawa 1998; Bertsimas and Sim 2004) and (3) realistic robust
programming (Mulvey et al. 1995).

The hard worst case approach is the most pessimistic approach since in this
approach it is assumed that all parameters could get their worst case value
simultaneously. Although this approach gives maximum safety against uncertainty
by giving feasible solution for all realization of uncertain parameters, the matter of
highly conservatism made by this approach found itself confronted by intense
criticisms (Bertsimas and Sim 2004). That is, they believe that it is highly unre-
alistic or over pessimistic approach. However, Ben-Tal et al. (2009) supports this
approach because it does not need any information about the possibility or
probability distribution of uncertain parameters. Also, Pishvaee et al. (2012a)
expressed that hard worst case is appropriate for risk averse DMs and it is espe-
cially applicable in the cases that a small perturbation from the expected perfor-
mance of the system causes catastrophic outcomes (e.g., in military and emergency
cases).

The second approach is more flexible than hard worst case approach. By this
approach, like the hard worst case, one tries to minimize the worst case value of
objective function but the difference is that it does not satisfy (all) the constraints
in their extreme worst case.

Finally, the realistic robust programming approach aims to seek trade-off
between the robustness of achieved solution and the cost of robustness (a cost–
benefit logic). This approach is appropriate for profit-seeking and flexible DMs and
could be applicable in most of business cases (Pishvaee et al. 2012a).

For more information about the RP theory, the interested readers are referred to
Beyer and Sendhoff (2007), Ben-Tal et al. (2009) and Pishvaee et al. (2012a).
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2.2.3 Fuzzy Programming

Fuzzy programming can handle both epistemic uncertainty in data as well as
flexibility in goals and/or elasticity in constraints. Using this approach, imprecise
parameters are modeled by appropriate possibilistic distributions in the form of
fuzzy numbers. Moreover, flexible target values and vague (soft) inequalities/
equalities are formulated through fully subjective preference-based fuzzy mem-
bership functions.

Accordingly, fuzzy mathematical programming can be classified into two main
classes (Inuiguchi and Ramík 2000; Mula et al. 2006; Torabi and Hassini 2008):
(1) possibilistic programming and (2) flexible programming. Possibilistic pro-
gramming is used when there is lack of knowledge (epistemic uncertainty) about
exact values of input data (parameters) due to unavailability or insufficiency of
required data. Accordingly, suitable possibilistic distributions based upon both
available objective data and subjective opinions of DMs are introduced for
modeling imprecise data in the form of fuzzy numbers. On the other hand, flexible
programming is used to cope with flexibility in target value of goals and/or
elasticity in soft constraints. The latter refers to those constraints tainted with soft
inequalities/equalities in the form of ~� ; ~� and ffi in which tilde sign shows the
softness of respective constraints. For example, x1 ~� 20 means that x1should be
less than or equal to 20 but small deviations could be accepted subject to less
constraint’s satisfaction degrees. In flexible programming, a subjective, i.e.,
preference-based fuzzy membership function is usually adopted for each vague
target value or soft constraint. It is quite clear that both possibilistic and flexible
programming approaches could be simultaneously applied in a mathematical
model when there is a mixture of aforementioned types of uncertainties.

2.3 Advantages of Fuzzy Approaches

In many cases, due to lack of historical data, it is hard or even impossible to fit a
probability distribution for some objective-natured parameters such as products’
demands or unit processing times of manufacturing operations. Furthermore, some
other input data have a fully subjective nature like those of judgmental data quoted
by expert(s) in most of decision making situations. In the former case, it is a
reasonable option to fit a suitable possibilistic distribution for each parameter
based upon the available (but often insufficient) objective data as well as sub-
jective opinions of DMs, but in the latter, a fully subjective (preference-based)
fuzzy set is adopted for each judgmental data based upon expert’s subjective
knowledge, experience and feelings. However, in both cases, fuzzy numbers can
be used to formulate the incomplete, vague and ambiguous data and fuzzy pro-
gramming approaches are the most suitable tools for coping with such uncer-
tainties (Qin and Ji 2010; Wang and Hsu 2010).

618 M. Mousazadeh et al.



In the context of GrLog and RL, there is not only greater lack of historical data
but also existence of more complex relationships between some data, makes the
estimation of related parameters even more impossible. To overcome this defi-
ciency, the fuzzy mathematical programming approaches are being more
employed in the context of GrLog, RL and CLSC (Pishvaee and Torabi 2010; Qin
and Ji 2010).

In brief, the major advantages of fuzzy programming can be summarized as
follows (Mula et al. 2006; Pishvaee and Torabi 2010): (1) it can appropriately
handle both the imprecise and vague data; (2) it can integrate subjective and
objective data (i.e., using of both available historical data and human subjective
knowledge) to formulate business decision problems in practical situations; (3) it
can resolve the issue of infeasibility in some decision making situations such as
applications of hierarchical planning (Torabi et al. 2010); (4) problems formulated
as fuzzy programming models can be easily reformulated to their equivalent crisp
counterparts for which commercial optimization solvers could be used to obtain
optimal solutions; (5) fuzzy programming can offer enough flexibility for
obtaining various solutions by taking into account the tolerances provided by fuzzy
data which can then be evaluated by DM to find a most preferred final solution
based on her/his preferences; (6) compared to the stochastic programming
approach that its deterministic counterpart increases numerical complexity of the
problem in a great degree, by using a fuzzy programming approach, a final solution
could be obtained with much fewer computation. In the next subsection, a com-
prehensive review of fuzzy programming approaches is provided in the context of
green and reverse logistics.

2.4 Review of Relevant Papers

As mentioned in Sect. 2.2, the fuzzy programming approaches can be classified
into two groups: flexible programming and possibilistic programming.

Literature review demonstrates that the most of published works in the context
of reverse and green logistics addressing the fuzziness, use either one of the
possibilistic programming approaches (see for example: Pishvaee and Torabi
2010; Qin and Ji 2010; Pishvaee and Razmi 2012; Pishvaee et al. 2012a; Pishvaee
et al. 2012b; Vahdani et al. 2013b) or a mixture of possibilistic and flexible
programming approaches (see for example: Tsai and Hung 2009; Wang and Hsu
2010; Özceylan and Paksoy 2013) when different type of fuzziness (i.e., imprecise
coefficients in objective functions and/or constraints as well as flexible target
values for objectives and/or soft inequalities) are introduced in the formulated
problem. In this subsection, the related papers are reviewed in more details.
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2.4.1 Possibilistic Programming

Pishvaee and Torabi (2010) propose a possibilistic programming approach for a
closed-loop supply chain network design problem in which some parameters are
imprecise. A bi-objective possibilistic mixed-integer programming model is pro-
posed which integrates the strategic network design for both forward and reverse
flows with material flows tactical decisions. An efficient interactive fuzzy solution
approach is developed by combining Jimenez et al. (2007), Parra et al. (2005), TH
(see Torabi and Hassini 2008) and SO (see Selim and Ozkarahan 2008) methods,
that is capable of generating both balanced and unbalanced efficient solutions
based on decision maker’s preferences.

Qin and Ji (2010) propose three credibility measure based fuzzy programming
approaches, i.e., expected value (see Liu and Liu 2002), chance constrained pro-
gramming (see Liu and Iwamura 1998) and dependent-chance constrained pro-
gramming (see Liu 1999) to design a product recovery network. In order to solve
the proposed MILP models, a hybrid intelligent algorithm is used that integrates
fuzzy simulation and genetic algorithm.

Pishvaee and Razmi (2012) propose a multi-objective fuzzy mathematical
programming model for designing an environmental supply chain. In the proposed
model, a life-cycle assessment (LCA) based method is applied in order to quantify
the environmental impact of different options. The main decisions of the proposed
model are the location of production and collection centers as well as flow
quantities between different facilities under two different objectives, i.e., mini-
mization of total costs and total environmental impacts. In order to solve the
proposed model, an interactive fuzzy solution approach based on the e-constraint
method is developed and finally a real industrial case study is provided to show the
usefulness of the proposed model as well as the solution approach.

Pishvaee et al. (2012a) propose a novel robust possibilistic programming (RPP)
approach and use it for design of a socially responsible supply chain network. This
approach involves six variants of RPP which are elaborated in the next section.
The model aims to select a set of locations for plants and distribution centers
among candidate locations, an appropriate production technology for each opened
plant and estimate material flows between different facilities while 1) minimizing
the total costs including fixed opening costs, variable production costs and
transportation costs, and 2) maximizing the social responsibility of the concerned
network including: maximization of job opportunities, minimization of total pro-
duced wastes, lost days caused from work’s damages and the number of potentially
hazardous products. Finally, a real industrial case is provided to illustrate the
efficiency and applicability of this novel approach.

Pishvaee et al. (2012b) propose a bi-objective credibility-based fuzzy mathe-
matical programming model for designing supply chain network design in which
green issues are also taken into account. The model aims to make a trade-off
between two conflicting objectives, i.e., minimization of total costs and minimi-
zation of the environmental impacts by defining CO2 equivalent index in order to
quantify the environmental burden of logistics activities. Also, an interactive fuzzy
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solution approach by mixing two credibility measure based approaches (i.e.,
expected value and chance constrained programming) is developed to solve the
original bi-objective fuzzy model. A real industrial case study is also provided that
supports the applicability of the proposed model.

Finally, Vahdani et al. (2013a) propose a possibilistic-queuing model for
designing a reliable closed-loop supply chain network. The model aims to mini-
mize the total costs and the expected transportation costs after failure of bi-
directional facilities of the concerned network. A new probabilistic queuing
constraint is introduced in order to overcome capacity limitations and an efficient
hybrid solution method by combining the queuing theory, possibilistic program-
ming and fuzzy multi objective programming approaches is developed to solve the
model.

2.4.2 Flexible Programming

Among the relevant papers, Tsai and Hung (2009) introduce a fuzzy goal pro-
gramming approach for green supply chain optimization. In the proposed
approach, the well-known activity-based costing (ABC) and performance evalu-
ation in value-chain structure are integrated aiming to find the optimal supplier
selection and flow allocation. Also, analytical hierarchy process (AHP) is utilized
to determine the final objective structure and as an illustrative case example, the
green supply chain of mobile phone is studied.

Also, Wadhwa et al. (2009) propose a flexible multi criteria decision-making
(MCDM) model based on fuzzy-set theory for reverse logistics systems. Their
model collect required information from DMs in order to select the most suitable
alternative(s) for product reprocessing concerning five different criteria, i.e., cost/
time, environmental impacts, market factors, quality factors and legislative factors.
To assess the rating of the criteria, they use verbal values collected from product
return experts instead of crisp values due to this fact that the crisp evaluation of the
criteria is quite impossible.

2.4.3 Mixed Possibilistic and Flexible Programming

Wang and Hsu (2010) study a closed-loop supply chain network design in which
some imprecise parameters and soft constraints are introduced. The decisions to be
made involve: the location of production, distribution and dismantler centers and
amount of material flows between these centers. An interval programming method
is applied in order to reformulate the crisp counterpart of the original fuzzy model.

Özceylan and Paksoy (2013) propose a multi-objective mixed-integer fuzzy
mathematical model for optimizing an integrated forward and reverse closed-loop
supply chin network with multiple period and multiple items. The concerned
decisions consist of: opening of potential plants and retailers alongside with
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amount of shipment between different set of facilities while minimization of total
transportation, purchasing, refurbishing and fixed costs simultaneously. In the
proposed model, capacity and reverse rates as model parameters and also objective
and demand constraints are considered as fuzzy data. In order to build the crisp
counterpart, the linear membership functions are defined for all fuzzy objective
functions and a-value and weighted average methods are used to convert the fuzzy
inequality constraints into crisp ones.

3 Selected Fuzzy Mathematical Models

In this section, three different fuzzy mathematical models are elaborated in the
context of green and reverse logistics in which different fuzzy programming
approaches are employed to capture inherent fuzziness in the data. For the sake of
simplicity, the notations used in this section are the same as those represented in
the original papers.

3.1 A GrLog Model with Mixed Expected Value and Chance
Constrained Programming Approach

In this subsection, a brief discussion of fuzzy mathematical model introduced by
Pishvaee et al. (2012b) along with the respective defuzzification process to for-
mulate the crisp counterpart are provided as a sample in the current GrLog liter-
ature under fuzziness. The problem is a single product, three-echelon supply chain
which includes multiple production and distribution centers and customer zones.
Products are produced in production centers and are then transported to the dis-
tribution centers through which are finally delivered to the customer zones. The
locations of the customers are fixed and each customer has its own demand which
must be completely fulfilled. There are a number of potential sites for establishing
production and distribution centers at different capacity levels. Furthermore,
multiple options of production technologies are available for each established
production center and different transportation modes can be used for transporting
products between each pair of nodes in the network. The model aims to determine
the number, location and required capacity of production and distribution centers
alongside the preferred production technology at each production center as well as
transportation mode between each pair of nodes. The model has two different
objectives i.e., minimization of overall opening, production and transportation cost
and minimization of overall environmental effects. In order to assess and quantify
burden of logistics activities including production and transportation activities on
environment, the CO2 equivalent index based on the Eco-indicator 99 database
(Goedkoop and Spriensma 2000) is used. The structure of the problem is depicted
in Fig. 1 and notations are described thereafter.
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Indices

i index of candidate production centers i 2 1; 2; . . .; If g
j index of candidate distribution centers j 2 1; 2; . . .; Jf g
k index of fixed customer zones k 2 1; 2; . . .;Kf g
m index of capacity levels available for production centers m 2 1; 2; . . .;Mf g
n index of capacity levels available for distribution centers n 2 1; 2; . . .;Nf g
l index of potential production technologies l 2 1; 2; . . .; Lf g
p index of potential transportation modes p 2 1; 2; . . .;Pf g:

Parameters

dk demand of customer zone k
f ml
i fixed cost of opening production center i with capacity level m and

production technology l
gn

j fixed cost of opening distribution center j with capacity level n

cp
ij unit transportation cost from production center i to distribution center j via

transportation mode p
ap

jk unit transportation cost from distribution center j to customer zone k via
transportation mode p

ql
i unit manufacturing cost at production center i with production technology l

sm
i capacity of production center i with capacity level m

un
j capacity of distribution center j with capacity level n

Production 
Centers (I)

Distribution 
Centers (J)

Customer 
Zones (K)

Fig. 1 Structure of the
discussed green logistics
network (adopted from
Pishvaee et al. 2012b)

Green and Reverse Logistics Management Under Fuzziness 623



l CO2 equivalent emission per unit product produced using technology l
tp
ij CO2 equivalent emission per unit product shipped from production center

i to distribution center j using transportation mode p.
sp

jk CO2 equivalent emission per unit product shipped from distribution center
j to customer zone k using transportation mode p.

Variables

ulp
ij

quantity of product manufactured at production center i using technology
l and shipped to distribution center j using transportation model p

qp
jk quantity of products shipped from distribution j to customer zone k using

transportation mode p
xml

i 1, if potential production center i with capacity level m and technology l is
opened; 0, otherwise

yn
j 1, if potential distribution center j with capacity level n is opened; 0,

otherwise

Using abovementioned notation, the proposed mathematical model is as
follows:

minw1 ¼
X

i;m;l
f ml
i xml

i þ
X

j;n
gn

j yn
j þ

X
i;j;l;p

ql
i þ cp

ij

� �
ulp

ij þ
X

j;k;p
ap

jkqp
jk ð1Þ

minw2 ¼
X

i;j;l;p
lþ tp

ij

� �
ulp

ij þ
X

j;k;p
sp

jkqp
jk ð2Þ

s:t :
X

j;p
qp

jk� dk 8k ð3Þ
X

i;l;p
ulp

ij ¼
X

k;p
qp

jk 8j ð4Þ
X

j;p
ulp

ij �
X

m
xml

i sm
i 8i; l ð5Þ

X
k;p

qp
jk �

X
n

yn
j u

n
j 8j ð6Þ

X
m;l

xml
i � 1 8i ð7Þ

X
n

yn
j � 1 8j ð8Þ

xml
i ; y

n
j 2 0; 1f g 8i; j; l;m; n ð9Þ

ulp
ij ; q

p
jk� 0 8i; j; k; p ð10Þ

Objective function (1) minimizes the total fixed opening costs, production costs
and transportation costs while objective function (2) minimizes the total CO2

equivalent emission. Demand fulfillment of each customer zone is guaranteed by
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constraints (3). Constraints (4) ensure that all of the manufactured products must
be transported to distribution centers. Equations (5) and (6) are the capacity
constraint for production and distribution centers, respectively. Equation (7)
ensure that at most one capacity level and one technology can be assigned to each
production center at each candidate location. Similarly, assigning at most one
capacity level to each distribution center at each candidate location is guaranteed
via (8). Finally, the binary and non-negativity restrictions on the corresponding
decision variables are indicated in (9) and (10).

As mentioned earlier, most of the parameters in logistics network design are
tainted with epistemic uncertainty. To cope with this uncertainty, a new credi-
bility-based chance constrained programming model is proposed in this paper.
Modeling all of the imprecise parameters in the model as trapezoidal possibility
distributions, and substituting Eqs. (1)–(3), (5) and (6) with Eqs. (11)–(15), the
possibilistic programming counterpart of the discussed problem could be formu-
lated as below:

minE w1½ � ¼
X

i;m;l
E ~f ml

i

� �
xml

i þ
X

j;n
E ~gn

j

h i
yn

j

þ
X

i;j;l;p
E ~ql

i

� �
þ E ~cp

ij

h i� �
ulp

ij þ
X

j;k;p
E ~ap

jk

h i
qp

jk

ð11Þ

minE w2½ � ¼
X

i;j;l;p
E l½ � þ E ~tp

ij

h i� �
ulp

ij þ
X

j;k;p
E ~sp

jk

h i
qp

jk ð12Þ

Cr
X

j;p
qp

jk� dk

n o
� bk 8k ð13Þ

Cr
X

j;p
ulp

ij �
X

m
xml

i sm
i

n o
� ki 8i; l ð14Þ

Cr
X

k;p
qp

jk�
X

n
yn

j u
n
j

n o
� hj 8j ð15Þ

In this model, the expected value method is used to convert the possibilistic
objective functions into their crisp ones. To do so, according to Liu and Liu
(2002), the expected value of a trapezoidal fuzzy number ~W with four prominent
points ~W ¼ Wð1Þ;Wð2Þ;Wð3Þ;Wð4Þ

� �
will be equal to Wð1Þ þWð2Þþ

�
Wð3Þ þWð4Þ=4Þ.

Meanwhile, by adopting a chance-constrained programming approach, a minimum
confidence level is set to ensure satisfaction of each possibilistic constraint per-
taining to most critical constraints (i.e., demand and capacity restrictions) at some
acceptable level. A, based on (Zhu and Zhang 2009), for a-critical values greater
than 0.5, the following substitutions could be used:

Cr W� rf g� a$ r� 2� 2að ÞWð3Þ þ 2a� 1ð ÞWð4Þ ð16Þ

Cr W� rf g� a$ r� 2a� 1ð ÞW 1ð Þ � 2� 2að ÞWð2Þ ð17Þ
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Consequently, after converting abovementioned possibilistic terms into their
crisp equivalents, the crisp counterpart of (11)–(15) is reformulated as below:

minE w1½ � ¼
X

i;m;l

f ml
ið1Þ þ f ml

ið2Þ þ f ml
ið3Þ þ f ml

ið4Þ
4

 !
xml

i þ
X

j;n

gn
jð1Þ þ f n

jð2Þ þ f n
jð3Þ þ f n

jð4Þ
4

� 	
yn

j

þ
X

i;j;l;p

ql
ið1Þ þ ql

ið2Þ þ ql
ið3Þ þ ql

ið4Þ þ cp
ijð1Þ þ cp

ijð2Þ þ cp
ijð3Þ þ cp

ijð4Þ
4

 !
ulp

ij

þ
X

j;k;p

ap
jkð1Þ þ ap

jkð2Þ þ ap
jkð3Þ þ ap

jkð4Þ
4

 !
qp

jk

ð18Þ

minE w2½ � ¼
X

i;j;l;p

l
ð1Þ þl

ð2Þ þl
ð3Þ þl

4ð Þ þtp
ijð1Þ þ tp

ijð2Þ þ tp
ijð3Þ þ tp

ijð4Þ
4

 !
ulp

ij

þ
X

j;k;p

sp
jkð1Þ þ sp

jkð2Þ þ sp
jkð3Þ þ sp

jkð4Þ
4

 !
qp

jk

ð19Þ

X
j;p

qp
jk� 2� 2bkð Þdkð3Þ þ 2bk � 1ð Þdkð4Þ 8k ð20Þ

X
j;p

ulp
ij �

X
m

xml
i 2ki � 1ð Þsm

ið1Þ þ 2� 2kið Þsm
ið2Þ

h i
8i; l ð21Þ

X
k;p

qp
jk �

X
n

yn
j 2hj � 1
� �

un
jð1Þ þ 2� 2hj

� �
un

jð2Þ

h i
8j ð22Þ

3.2 RL Using Dependent-Chance Constrained Programming

In this part, the model proposed by Qin and Ji (2010) is presented as a sample
model for reverse logistic in which three different credibility measure based
possibilistic programming methods, i.e., expected value, chance constrained pro-
gramming and dependent-chance constrained programming are implemented
independently on the original model.

The problem is of reverse logistics network design type that includes multiple
consumers, collection centers and manufacturing centers. Suppose that there is a
set of potential sites for collection centers and the DM must make decision about
the number and location of collection centers as well as the quantity of returned
products from each customer zones to each collection center. In the proposed
model, minimization of total setup costs, penalty costs, handling and transportation
costs are considered as the objective function. The following notations are used for
model formulation.
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Indices

i index of consumer zones i 2 1; 2; . . .; If g
j index of candidate collection centers j 2 1; 2; . . .; Jf g:

Parameters

ni quantity of returned product from consumer zone i
gj cost of opening collection center j
fj unit handling cost in collection center j
ci penalty cost per unit of uncollected returned product from consumer i
pij unit transportation cost from consumer zone i to collection center j
qj unit transportation cost from collection center j to manufacturing center
Vj maximum capacity of collection center j
M maximum number of opened collection centers
c minimum service level.

Variables

xij quantity of returned products from consumer zone i to collection center j
yj equal 1, if collection center j is opened and 0 otherwise.

Using the abovementioned notations, the proposed mathematical model is as
follows:

MinC x; yð Þ ¼
X

j
gjyj þ

X
i;j

pijxij þ
X

i
ci ni �

X
j
xij

� �
þ
X

i;j
fj þ qj

� �
xij

ð23Þ

s:t : cni�
X

j
xij 8i ð24Þ

X
i
xij� yjVj 8j ð25Þ

1�
X

j
yj�M ð26Þ

xij� 0 8i; j ð27Þ

yj 2 0; 1f g 8j ð28Þ

The objective function (23) is to minimize total opening costs, transportation
costs, handling costs and penalty costs of not collected returned products from
consumer zones. Constraints (24) ensure that minimum service level must be
fulfilled for each consumer zone. Capacity constraint for each collection center is
proposed via (25). Constraint (26) ensures that at most M collection centers from
all candidate sites could be opened and finally decision variables types are assured
via (27) and (28).
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Since it is difficult or even impossible to predict the quantity of returned
products as well as opening and transportation costs exactly, these parameters, i.e.,
ni; gjand fj are then considered as independent possibilistic variables modeled by
fuzzy numbers and three different possibilistic programming approaches, i.e.,
expected value, chance constrained programming and dependent-chance con-
strained programming are applied independently on the original mathematical
model. Also, the imprecise parameters might have triangular, trapezoidal or nor-
mal membership functions. Since the first two approaches are employed in the
previous model, in this subsection, we only elaborate the dependent-chance con-
strained programming for the concerned model.

Dependent-chance constrained programming was first introduced by Liu (1999)
and then became one the most commonly used possibilistic programming
approaches. In this approach, the decision maker tries to maximize the credibility
degree of a possibilistic term not exceeding from a given value (here the total costs
not exceeding from the capital limit (C0)) subject to some credible constraints
(here the demand fulfillment constraints). Accordingly, for the discussed model,
we would have:

max Cr C x; yð Þ�C0f g ð29Þ

s:t : Cr cni�
X

j
xij

n o
� bi 8i ð30Þ

ð25Þ-ð28Þ

Now, suppose that ni; gjand fj are independent fuzzy numbers with normal

membership functions v e1
i ; r

1
i

� �
; v e2

i ; r
2
i

� �
and v e3

i ; r
3
i

� �
, respectively. Hence, the

linear crisp counterpart of the above dependent-chance programming model is as
follows:

max 1þ exp
p e� � C0ð Þffiffiffi

6
p

r�

� 	� 	�1

ð31Þ

s:t :
X

j
xij� ce1

i þ
ffiffiffi
6
p

cr1
i

p
ln

1� bi

bi

� 	
8i ð32Þ

ð25Þ-ð28Þ

in which e* and r* are as follows:

e� ¼
X

i
cie

1
i þ

X
j

yje
2
j þ e3

j þ qj

� �X
i
xij

h i
þ
X

i;j
pijxij ð33Þ

r� ¼
X

i
cir

1
i þ

X
j

yjr
2
j þ r3

j

X
j
xij

� �
ð34Þ

The interested reader may refer to Qin and Ji (2010) for more details.
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3.3 RL Using a Robust Possibilistic Programming Approach

To benefit from the advantages and capabilities of both robust programming and
possibilistic programming, a novel approach entitled ‘‘robust possibilistic pro-
gramming’’ was introduced by Pishvaee et al. (2012a) for the first time in the
literature.

In that chapter, five different robust possibilistic programming (RPP) approa-
ches covering hard worst case, soft worst case and realistic robust programming
approaches are proposed and efficiency of each one is tested by using an industrial
case study. The results show that each of the proposed approaches has its strengths,
weaknesses and are useful to be applied in some specific situations. For example,
the hard worst case is useful for risk-averse decision makers (DM) while soft worst
case is suitable for risk-neutral or benefit seeking DMs. In the studied case study, it
is proved that among the developed RPPs, the RPP-II model is more effective than
other introduced approaches. This model is useful when DM is only sensitive
about over deviation from expected optimal value like situations where achieving
lower total cost is more desirable. Also, one of the main advantages of this method
is that the model optimizes the minimum confidence level since it is defined as
decision variable in the model.

Since the structure of the problem discussed in Qin and Ji (2010) is similar to
that of presented by Pishvaee et al. (2012a), here we modify the model developed
by Qin and Ji (2010) as an application for RPP-II model.

In this new version of model developed by Qin and Ji (2010), the capacity of
collection centers (Vj) in addition to previously mentioned parameters are con-
sidered as imprecise ones whose their possibilistic distributions are of trapezoidal

type, i.e., ~gj ¼ gjð1Þ; gjð2Þ; gjð3Þ; gjð4Þ

� �
; ~ni ¼ nið1Þ; nið2Þ; nið3Þ; nið4Þ

� �
; ~fj ¼ fjð1Þ;

�

fjð2Þ; fjð3Þ; fjð4ÞÞ and ~Vj ¼ Vjð1Þ;Vjð2Þ;Vjð3Þ;Vjð4Þ
� �

. Accordingly, the RPP-II version
of this model is as follows:

Min E C x; yð Þ½ � þ s C x; yð Þmax�C x; yð Þmin

� �
þ
X

i
d ni 4ð Þ � 1� bið Þni 3ð Þ � bini 4ð Þ
� �

þ
X

j
p ajV 1ð Þj þ 1� aj

� �
V 2ð Þj � V 1ð Þj

� �
yj ð35Þ

s:t : c 1� bið Þni 3ð Þ þ bini 4ð Þ
� �

�
X

j
xij 8i ð36Þ

X
i
xij� ajV1ðjÞ þ 1� aj

� �
V 2ð Þj

� �
yj 8j ð37Þ

0:5� aj; bi� 1 8i; j ð38Þ

ð26Þ-ð28Þ

where parameters dand p are the penalty rate of violating the demand and
capacity constraints. In practice, these parameters could be considered as penalty
cost of not collecting each unit of returned products and cost of each unit of extra
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capacity needed in collection centers to handle all collected returned products.
Also, in abovementioned model we have:

E C x; yð Þ½ � ¼
X

j
E gj

� �
yj

X
i;j

pijxij þ
X

i
ci E nið Þ �

X
j
xij

� �

þ
X

i;j
E fj

� �
þ qj

� �
xij

ð39Þ

C x; yð Þmax ¼
X

j
gð4Þjyj þ

X
i;j

pijxij þ
X

i
ci nð4Þi �

X
j
xij

� �

þ
X

i;j
fð4Þj þ qj

� �
xij

ð40Þ

C x; yð Þmin ¼
X

j
gð1Þjyj þ

X
i;j

pijxij þ
X

i
ci nð1Þi �

X
j
xij

� �

þ
X

i;j
fð1Þj þ qj

� �
xij

ð41Þ

In fact, the first term of objective function is the expected value function while
the second and third terms refer to optimality and feasibility robustness, respec-
tively. Also, equations (36) and (37) are crisp counterpart of possibilistic form.

As could be seen, the last term of objective function is non-linear. Therefore, by
introducing new variables lj ¼ aj:yj, the linear counterpart of the model can be
written as below.

Min E C x; yð Þ½ � þ s C x; yð Þmax�C x; yð Þ
� �

þ
X

i

d nið4Þ � 1� bð Þnið3Þ
�

�bnið4Þ
�
þ
X

j

p ljVð1Þj þ yj � l
� �

Vð2Þj � yj � Vð1Þj
� � ð42Þ

X
i
xij� ljV1ðjÞ þ yj � lj

� �
V 2ð Þj

� �
8j ð43Þ

lj� L	 yj 8j ð44Þ

lj� L	 yj � 1
� �

þ aj 8j ð45Þ

lj� a 8j ð46Þ

26ð Þ; 28ð Þ; 36ð Þ; 38ð Þ ð47Þ

It should be noted that the parameter L in the model is a large number.

4 Case Study

In this section a real green supply chain case study, presented in Pishvaee and
Razmi (2012) is reviewed. The case study is related to an Iranian single-use
medical needle and syringe manufacturer that has one production plant with
capacity of producing about 600 million products per year. The firm feeds both
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domestic and overseas customers. Reviewing the World Health Organization
(WHO) report (2005) demonstrates that around 16 billion injections are carried out
per year while reusing unsterilized needles and syringes leads to 8-16 million
hepatitis B, 2.3-4.7 million hepatitis C and 80000-160000 human immunodefi-
ciency virus (HIV) infections around the globe. These data shows that the end-of-
life (EOL) management of this medical product is very critical from the envi-
ronmental viewpoint. In order to decrease infection risks, needles and syringes are
put into safety boxes and one of available EOL options such as following ones are
used:

• Incineration methods like cement incinerator and rotary kiln incinerator which
can be used conveniently with low cost, and are capable of energy recovery but
at the same time are considered as a major source of emissions with consider-
able amount of negative impact on environment;

• non-incineration methods, such as steam autoclave with sanitary landfill and
microwave disinfection;

• recycling that can be used by considering solutions for disinfecting the used
products.

The respective supply chain structure is depicted in Fig. 2 in which new
products that are produced in manufacturing centers are transported to the cus-
tomer zones in forward network and after being used, the EOL products are
transported to the collection centers by reverse flows. After that, the EOL products
can be delivered to incineration and/or recycling centers. It is assumed that all the
customer demands must be fulfilled and also all of the returned products (a pre-
defined percent of customer’s demand) must be collected.

The manufacturer serves 13 domestic and two foreign customer zones from two
neighbor countries but the firm is just in charge of collecting the EOL products
from domestic customer zones. The firm has already opened one plant with about
600 million production capacity per year but seven other potential locations are
available for increasing the production capacity of needles and syringes. At the
reverse side, there are 11 candidate locations which can be selected for estab-
lishing collection centers. Furthermore, four steel and plastic recycling centers and
three incineration centers are also available for handling used products. The aim of
model is to find the number and location of opened production/collection centers
as well as quantity of the material flows between different facilities with respect to
two conflicting objective functions, i.e., minimization of total cost and minimi-
zation of total environmental impact in which Eco-indicator 99 (see Goedkoop and
Spriensma 2000) is used to quantify the second objective.

Due to lack of sufficient historical data and also dynamic nature of the problem
which does not guarantee that behavior of uncertain parameters comply with
historical data, the uncertain parameters are presented by fuzzy numbers and
possibilistic programming approach is used to handle these uncertain parameters in
the model. In order to solve the problem, an interactive fuzzy solution method
based on e-constraint method is used in which for each value of minimum
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acceptable feasibility degree (a) ranged from 0.6 to 1, six Pareto-optimal solutions
are generated. It should be mentioned that in the proposed method, the satisfaction
degree of environmental objective (l1) is kept as the objective function of the e-
constraint method and satisfaction degree of cost objective (l2) is used as a side
constraint.

Solving the discussed model using abovementioned method, one can see that
when a-level value increases (in response to uncertainty with higher confidence
level), it will lead to increase in values of both objective functions because more
resources (raw material, products, transportations, etc.) must be used to fulfill the
demand and collection of returned products.

Fig. 2 The structure of the concerned supply chain (adopted from Pishvaee and Razmi 2012)
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In addition, as it was expected, the two objective functions are in conflict. In
fact, the cost-based objective function has a tendency towards designing a cen-
tralized network with less total cost while the environmental-based objective
function offers a more decentralized network since this structure decreases
transportation distances between centers that has less negative environmental
impacts. Finally, based on the firm’s preference, the decision maker sets minimum
acceptable feasible degree (a) equal to 0.9 by which the satisfaction degree for
both objectives were selected as l1 = 0.85 and l2 = 0.694. In this preferred
solution, two production centers and five collection centers should be opened.

5 Future Research Directions

Given the current state-of-the-art literature in GrLog and RL areas, there are
various avenues for further research among them we refer to the following ones:

• Considering social aspects when designing commercial supply chains is so
limited in the current literature. Therefore, to move towards more sustainable
supply chain networks, it is necessary to include the social aspects beside the
environmental and economical dimensions,

• Integrating tactical and operational planning issues into the current strategic
models to broaden the scope of developed models could be another interesting
research direction with significant practical relevance,

• It can be realized that some lessons from best practices in commercial supply
chains (such as applying Milk-run systems when collecting used products) could
be learnt and might be beneficial for reverse logistics,

• Accounting for flexibility in objectives’ target values and/or elasticity in soft
constraints along with imprecise input data and accordingly developing new
mixed flexible-possibilistic approaches to cope with this kind of mixed uncer-
tainty can fill a major methodological gap in this research stream,

• Since most of real life problems are large, and the exact methods can solve only
small to moderate sized problem instances, devising tailored solution approa-
ches including heuristics, meta-heuristics or Mat-heuristics (the interoperation
of meta-heuristics and mathematical programming techniques) would be of
particular interest.
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