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Abstract Distributed Decision Making (DDM) is a discipline of decision theory
in which decision making power is distributed among several decision making
units. Supply Chain planning problems usually involve multiple decision makers,
making DDM highly suitable for realistic modelling. Furthermore, due to the
complexity and dynamism of supply chain environments, accounting for uncer-
tainty is important when modelling a supply chain planning problem. This chapter
contributes to existing knowledge on the one hand with a brief literature review of
DDM systems developed in the recent past. On the other hand, it contributes a
proposed DDM coordination mechanism for a supply chain planning problem with
two distributed decision makers, in a multi-echelon context, with multiple product
levels. The DDM system’s performance is evaluated under demand uncertainty by
applying a fuzzy approach. Computational results show that the proposed dis-
tributed model closely approximated the optimal solutions generated by the cen-
tralised model, strengthening the evidence for DDM’s applicability to real
problems. Finally, the fuzzy approach is shown to be a useful tool for decision
makers in evaluating risk in their supply chain planning decisions.
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1 Introduction

A Supply Chain (SC) can be defined as a system of organizations, people, tech-
nology, activities, information and resources involved together in the creation of
value for an end customer by moving a product or service to that customer. It is
imperative that some form of collaboration exists between supply chain members
to coordinate their activities and plans for better results. This coordination or
alignment as it is also known is referred to as collaborative planning. Formally
defined, ‘‘collaborative planning is a joint decision making process for aligning
plans of individual SC members with the aim of achieving coordination in light of
information asymmetry’’ (Stadtler 2009).

Key elements of this definition are that collaborative planning is a decision
making process, and that it is done in light of information asymmetry. The latter
simply means that not all SC members have access to the same information. Jung
et al. (2008) found that most supply chain planning approaches involve some form
of centralized supply chain environment, in which the decision maker has all the
required information. However, exactly that is what is lacking in a collaborative
planning environment according to Stadtler’s definition.

Distributed Decision Making (DDM) is a discipline of decision theory in which
decision making power is distributed among several decision making units. These
decisions are interrelated because one decision affects the outcome of another.
How to structure these distributed decision problems into a coordinated problem is
the central question in Distributed Decision Making. ‘‘DDM can therefore be
characterized as the design and coordination of connected decisions’’ (Schnee-
weiss 2003).

Application of DDM theory to supply chain planning problems started over two
decades ago. New approaches however, continue to be developed in the scientific
community. As part of the Quantitative Modelling Techniques, DDM will be
applied to a centralized supply chain planning model. The centralized model that
serves as the basis for this work is the Production and Distribution Planning Model
developed by Park (2005). Jung et al.’s (2008) work serves as the basis for creating
the distributed model.

The real world complexity and dynamism of Supply Chain environments also
imply there is usually a degree of uncertainty regarding SC planning decisions.
This uncertainty can greatly influence the effectiveness of decisions taken,
meaning it is valuable to consider it in the decision making process. Davis (1993)
recognises three main types of uncertainty, supplier uncertainty, process uncer-
tainty and demand uncertainty. Supply uncertainty results from variability in
suppliers’ performance. Process uncertainty results from unreliability issues in the
production process. The most important type of uncertainty, according to Davis, is
demand uncertainty which arises from volatile demand or inaccurate forecasts.
Coincidently, demand uncertainty was also required to be included in the
Distributed Decision Making model.
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The objective of this chapter is therefore twofold:

1. To convert a centralized supply chain planning model into a distributed deci-
sion making model and compare the performance of both models,

2. To apply fuzzy logic theory (possibility theory approach) to the distributed
model to incorporate demand uncertainty and comment on its performance and
use.

Although the adaptation of Park’s centralised model towards a distributed
model is to be done using a similar method to that of Jung et al., many other
methods exist in the literature. A review of the literature will be performed to
identify existing DDM systems. Especially the coordination mechanisms they
employ are interesting since this determines to great extent how the system works.
A classification of DDM systems based on characteristics taken from earlier
classifications will be attempted to gain a more structured view on the existing
body of work. In addition to simply creating this overview, it is hoped that insights
will be gained as to how to create a DDM model out of Park’s centralized model.

The following steps are of a more practical nature. The centralized model will
have to be decomposed into distributed models after which a coordination
mechanism can be designed. Both model’s performance will then be compared
with the aid of a commercial modelling program and solver, MLP and CPLEX.
The last step to achieve the second objective is model the uncertainty of demand
by applying fuzzy possibility theory.

The rest of this section starts with a description of the search methodology and
corresponding literature review. The overview of existing DDM systems finishes
Sect. 2, and with it the more theoretical half of this report. Section 3 first intro-
duces the generic centralised model before presenting the hands on problem that is
to be solved by all the mathematical models. The centralised model is then
decomposed into distributed models in Sect. 4, after which the coordination
mechanism is also presented. Section 5 has a more elaborate introduction on fuzzy
logic theory and presents the distributed model under uncertainty. Section 6 pre-
sents the computational results for all three models and contains a discussion of
these results, after which Sect. 7 offers some final conclusions and future work.

2 Literature Review

This section contains the theoretical part of this research project. It starts with the
search methodology, followed by the discussion of important Distributed Decision
Making characteristics and the actual analysis of the existing literature on DDM
and mathematical programming.

A Decentralized Production and Distribution Planning Model 319



2.1 Search Methodology

This section outlines the methodology used during the search for relevant scientific
literature regarding DDM. First the search terms used are presented, followed by
the scientific databases that were consulted. The section is concluded by a rep-
resentation of the obtained results.

2.1.1 Search Terms

Distinguishing search terms had to be devised to find relevant material. First of all,
prior work had to preferably be related to some form of operations, production or
supply chain planning. That would fit closer to the problem treated later in the
applied part of this research. Second, it was imperative that the mathematical
models were distributed or decentralized. Because collaborative planning uses
DDM extensively, and coordination mechanisms are essential elements these
search terms were also chosen. To increase the possibility of finding mathematical
models, abbreviations were added to the former. Finally, reviews, surveys and
bodies of knowledge were queried for because they could offer a good starting
point for more articles and search terms. The search terms devised before starting
the search are presented in Table 1.

2.1.2 Scientific Databases and Search Strategy

Four databases of scientific articles were consulted in order to find relevant lit-
erature. These were the following: ScienceDirect, Scopus, Emerald Insight and
IEEE Explorer. The article titles, abstracts and keywords were queried for
matching results. The results for these queries are presented in Sect. 2.1.3. Fur-
thermore, cross checking of oft cited articles was performed to find other relevant
material. This was particularly fruitful for the review and survey type results. For
the subsequent analysis, priority was generally given to those articles that were
most recent and/or cited often.

Table 1 Search terms devised prior to consulting scientific databases

Search terms

Operations planning Distributed decision making Mathematical
model

Review

Production planning Decentralized decision
making

MILP Survey

Supply chain
planning

Collaborative planning ILP Body of
knowledge

Network planning Coordination mechanisms State of art
Distribution planning Minimal information sharing

320 J. Hegeman et al.



2.1.3 Obtained Results

Table 2 shows the number of articles found for a particular combination of search
terms, for different scientific databases. Differences are accountable to the different
search algorithms the databases employ. IEEE explorer e.g., returned many articles
when ‘production planning’ was used. Practically no results were left when the
term was taken out.

Table 3 shows the amount of articles that were eventually selected as reference
articles, sorted by the journal in which they were published. Only the European
Journal of Operational Research provided more than one reference article, with all
others providing a single article. The wide range, from chemical engineering to
computer engineering shows that distributed decision making is applied in a broad
field of disciplines.

Table 2 Number of articles found with combination of search terms, sorted for scientific
database

Search terms combination Science
direct

Scopus Emerald
insight

IEEE
explorer

‘‘Operations planning’’ ‘‘distributed decision making’’ 1 1 2 0
‘‘Production planning’’ ‘‘distributed decision making’’ 3 9 2 5
‘‘Production planning’’ ‘‘decentralized decision

making’’
2 3 5 1

‘‘Decentralized decision making’’ ‘‘review’’ 4 23 73 5
‘‘Decentralized decision making’’ ‘‘survey’’ 2 18 43 2
‘‘Distributed decision making’’ ‘‘review’’ 4 12 34 5
‘‘Distributed decision making’’ ‘‘survey’’ 4 11 13 1
‘‘Decentralized decision making’’ ‘‘production

planning’’ ‘‘review’’
0 0 4 63

‘‘Distributed decision making’’ ‘‘production planning’’
‘‘review’’

0 0 2 67

‘‘Mathematical models’’ ‘‘distributed decision making’’ 2 10 1 2
‘‘Mathematical models’’ ‘‘operations planning’’

‘‘distributed decision making’’
0 2 1 3

‘‘Mathematical models’’ ‘‘coordination mechanisms’’
‘‘distributed decision making’’

0 0 0 4

‘‘Mathematical models’’ ‘‘coordination mechanisms’’
‘‘decentralized decision making’’

0 1 0 0

‘‘Coordination mechanisms’’ ‘‘distributed decision
making’’

4 4 3 2

‘‘Coordination mechanisms’’ ‘‘decentralized decision
making’’

1 14 3 0

‘‘Collaborative planning’’ ‘‘distributed decision
making’’

30 5 2 2

‘‘Collaborative planning’’ ‘‘decentralized decision
making’’

34 2 1 0

A Decentralized Production and Distribution Planning Model 321



The final representation of literature search results is given in Table 4. Not
many conclusions can be drawn from this table, because not enough articles were
analysed to offer a comprehensive picture on the publication dates of articles on
DDM in mathematical modelling.

2.2 Presentation of DDM Characteristics for Analysis
of Literature

Due to the sheer variety in mathematic models developed, it should come as no
surprise that there exists a similar variety of Distributed Decision Making systems.
Various authors have tried to classify those using different distinguishing char-
acteristics. Three of those efforts are discussed here, after which the most relevant
characteristics are chosen for the classification in this research.

2.2.1 Review of Earlier Taxonomies and Classification Attempts

Schneeweiss (2003) developed taxonomy to classify and formally describe various
hierarchical DDM systems in a unified way. It is important to note first, that

Table 3 Reference articles sorted by journal of publication

Journal of publication Number of
reference articles

Percentage
(%)

Computers and Chemical Engineering 1 9
Computers and Industrial Engineering 1 9
Computers in Industry 1 9
European Journal of Operational Research 3 27
International Journal of Production Research 1 9
International Journal of Production Economics 1 9
Journal of Engineering and Technology Management 1 9
OR Spectrum 1 9
Proceedings of the 2009 IEEE International Conference on

Systems, Man, and Cybernetics
1 9

Table 4 Reference articles sorted by year of publication

Year of publication Number of reference articles Percentage (%)

2003 1 9
2005 1 9
2006 1 9
2007 1 9
2008 2 18
2009 3 27
2010 1 9
2012 1 9

322 J. Hegeman et al.



Schneeweiss distinguishes between a Top level and a Base level within the hier-
archy. The Top level is regarded as the leader in the hierarchy that makes the first
decision and the Base level follows the Top level’s instruction. The Base level then
engages in its own local decision making. Now, Schneeweiss identified three key
characteristics that can be used to characterize DDM systems.

The first characteristic is the state of information. This can be either symmetric,
which means that the same information is known to all decision makers in the
system, or asymmetric, which means that certain information may be known to
one, e.g., Top, but unknown to another, Base e.g.

The second characteristic is the grade of anticipation that decision makers show
in their decision making. Two options exist. A reactive anticipation means that the
Top level considers a possible reaction of the base-level with respect to a top-level’s
possible instructions. For non-reactive anticipation, on the other hand, no specific
reaction is taken into account. Reactive anticipation can be perfect, meaning that the
Top level has full knowledge of the Base level’s model and thus its reaction. It can
also be approximate, when the Base level’s model is approximately known by the
Top level. The last possibility is implicit anticipation where only a part of the base
level is anticipated. The grade of anticipation employed shows how much ‘bottom-
up’ influence in the decision making at Top level there is within the hierarchy.

The final characteristic is defined as the configuration of criteria. Coupling
equations of criteria are used to demonstrate the degree of coupling between Top
and Base levels. For any form of Top level criterion in which the Base level’s
criteria are integrated in-, added to- or even make up entirely the Top level
criterion, a DDM is said to be team based. This is because the value of the Top
level criterion depends on the Base level through its definition. Of course, the Base
level has to comply to the Top level’s instructions so a Base level criterion need
not take Top level criteria into account. The three configurations of criteria
mentioned are all common in team based DDM systems.

The other possible configuration is non-team. This happens when a Top level’s
criterion completely ignores the Base level. In this case, each level is thus com-
pletely self-interested and will show what is known as opportunistic behaviour.
The goal is always to increase one’s own benefit, even when detrimental to the
global solution. Based on these criteria, Schneeweiss classifies DDM systems into
three main types. They are shown in Table 5. He notes that many variations to
these general types may occur.

Another notable effort is a framework developed by Stadtler (2009), which is
meant to classify Collaborative Planning approaches along various characteristics.
Three main groups of characteristics are identified, (1) the supply chain structure
and the relationships within the supply chain, (2) the decision situation, or which
decisions take place, when, with which objectives and with which information, and
(3) the characteristics of the collaborative planning schemes. Only the character-
istics relevant to DDM models and in particular coordination mechanisms will be
discussed here.

Within the relationships between supply chain members involved in CP, their
behaviour is important. It can be team, opportunistic (non-team) or somewhere in
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between, and coincides with one of Schneeweiss’s characteristics. However,
Schneeweiss mathematically formalized team and non-team behaviour with the aid
of coupling equations and criterions for Top and Base level, whilst Stadtler merely
pointing out its importance. Nevertheless, its importance is now clearer than ever
and a coordination mechanism must take possible opportunism into account. The
required solution is also important for the coordination mechanism. It can be
limited to aligning flows of materials, or merely finding a feasible solution. Per-
haps an optimal solution for the supply chain as a whole is required, or one step
further, a fair solution for all members involved. This was not part of Schnee-
weiss’s analysis.

Within the decision situation the models that are employed, in which phase
there is collaboration and which objectives are employed are all important.
However, the most important aspect here is referred to as information status.
Which information is shared, how certain can we be of its correctness and is
certain information hidden? The latter corresponds to symmetry or asymmetry.
Recall that Stadtler by definition regards collaborative planning to involve
asymmetric information.

The final group of characteristics is in my opinion the most important with
respect to DDM and coordination mechanisms. The presence of a mediator could
significantly alter the dynamics of collaboration. How the initial solution is defined
is also important. This is mostly done by upstream planning according to Stadtler
(2009), but downstream planning or random initial solutions can also be used. The
number of plans exchanged between levels, consisting of the number of rounds
allowed to reach a solution and the number of offers sent per round can also
change how a system works. Finally, with respect to the final results, being able to
check optimality or not, and the allowing of side payments could affect a coor-
dination mechanism. The latter could e.g., be used to make a solution fairer to all
members.

The final research used for the development of taxonomy is a review on col-
laborative supply chain planning by Frayret (2009). For collaborative planning,
there are three challenges to be dealt with: ‘‘the design of a coordination process, …,
the design of local decision making processes; and the design and utilization of
Advanced Planning and Scheduling systems (APS)’’ (Frayret 2009). The former is
conveniently the main focal point of his classifications. The local decision making

Table 5 Three types of DDM systems as identified by Schneeweiss (2003)

DDM type Information
status

Grade of
anticipation

Configuration of criteria

Top-down hierarchy Symmetric or
asymmetric

Non-reactive
anticipation

Base criterion internalized in top
level criterion (Team)

Tactical-operational
hierarchy

Asymmetric Reactive
anticipation

Base criterion added to top level
criterion (Team)

Standard principal
agent model

Asymmetric Reactive
anticipation

Base criterion ignored by top level
criterion (Non-team)
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processes correspond to what Stadtler referred to as the decision models. APS
systems are inherently linked to coordination techniques according to Frayret
(2009), but will not be considered further as they are outside the scope of this project.

The coordination processes can once again be divided further, into three groups.
The first group is the Coordination Heuristics, which consists of:

(a) Greedy heuristics and information sharing,
(b) Distributed local search,
(c) Distributed search with constraint propagation.

Greedy heuristics and information sharing are the most simple coordination
mechanisms. They include upstream planning and variations of it to improve
performance. Other examples are when more information is shared, even up to the
point where more centralized solving is possible. Distributed local search generally
involves an iterative exchange of information between supply chain partners,
during which the local levels adjust their own initial plans by searching for local
optima. Distributed search occurs when more than one search process is carried out
simultaneously. In the distributed local search the members take their local searches
in turn. In the distributed search this is not the case, making the search faster.

The second group is Agent Based Coordination, which consists of:

(a) Knowledge-based coordination,
(b) Market-based coordination.

Agent Based Coordination is based in agent technology, which uses artificial
intelligence (AI) to develop coordination approaches. Agents are pieces of soft-
ware that represent a certain interest. They can thus be used to represent members
of a supply chain. In knowledge-based coordination, a set of agents use protocols
that tell them how to interact with other agents. These protocols define all possible
actions and model the outcomes of interactions. The protocols thus govern the
coordination. In some cases, additional information known as arguments are sent
to other agents, with the aim of influencing their actions. The other agent based
coordination technique is Market-based coordination. Basically, like in an auction
proposals are sent and received by agents. The contents of these proposals are
modified to increase or decrease benefits, according to their prior success or failure
respectively. Here, the learning or AI aspect of agents becomes clear.

The final coordination technique identified by the author is Mathematical
decomposition (6). He claims the main decomposition approach is Lagrangean
decomposition. Its general idea is that an originally distributed model is turned into
a centralized model, by relaxing the ‘complicating’ constraints where local vari-
ables of two or more coupled decision makers appear. A penalty is assigned to
violating these relaxed constraints by using Lagrangean multipliers. Then, a dis-
tributed and synchronous iterative process is developed to adjust the penalties until
the model converges on a feasible solution. One could view it this way. The ‘local’
models (bear in mind that the model is centralized) communicate through these
Lagrange multipliers. Values that increase other local decision makers’ penalties
are communicated if one’s own non relaxed constraints are violated. The contrary
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is true when there is slack in those constraints. This is done until all hard con-
straints are satisfied and penalties are preferably at a minimum. Details on the
exact working of mathematical decomposition can be found in works by Nishi
et al. (2007), Walther et al. (2008) and Lu et al. (2012).

2.2.2 Selection of Characteristics for Analysis

The state of information is identified by both Schneeweiss and Stadtler, so it seems
very important to include that. Stadtler added the degree of uncertainty and the
type of information (products, costs, other KPI’s) to the existing characteristic of
(a) symmetry of information. Type of information is very specific, so it is ignored.
Degree of uncertainty will also be considered next to symmetry, because the end
goal of this research is a model that accounts for demand uncertainty.

The grade of anticipation of one level’s criteria by another is also interesting
since it greatly influences a Top level’s instruction. The last of Schneeweiss’s
characteristics is the configuration of criteria. How a top level decision maker in a
hierarchy takes the base criteria into account, is not extremely important. Most
important is to know whether it happens or not, because it interests us to know
whether decision makers exhibit team- or opportunistic behaviour in a DMM
system. This was coincidently Stadtler’s only distinction. The exact configuration
is therefore dropped. All three characteristics will be used, but the type identifi-
cation as performed in (Schneeweiss 2003) will not be employed. The reason is
that the characteristics themselves reveal more than a type.

Distinguishing between DDM systems that look for feasible solutions, optimal
supply chain solutions or even fair solutions is very interesting. First, optimality is
much more difficult to achieve than just a feasible solution. Second, requiring a
fair solution has strong implications for the coordination mechanism because the
initial mechanism might not produce a fair solution. Also, ‘‘computational tests
showed that fair solutions sacrifice 37.15 % on average in solution quality’’
(Stadtler 2009). Related to that is the allowing of side payments at the final
solution, as they could diminish that sacrifice. Therefore, these will also be taken
into account. Other characteristics identified by Stadtler that will be looked out for
is the presence of a mediator, solely because it could completely change how
coordination works, how the initial solution is computed, and the number of
rounds and offers used in the communication process. Few or many rounds e.g.,
determine whether or not a system can be operated manually or must be fully
automatic.

To conclude, the coordination mechanism distinction from Frayret will also be
included in the analysis. Although a certain coordination mechanism may imply
one of the earlier characteristics, the actual mechanism will greatly set the studied
works apart. It will also be useful for a reader to see which general coordination
mechanism is employed to decide whether it interests him/her.
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2.3 Analysis of Literature

The articles studied for this project were not all designed for use in supply chain
contexts. However, they do all represent some form of distributed decision making
system. It proved quite difficult to find distributed decision making systems within
the time constraints, so non supply chain systems were also included. Their
techniques are what matter most, not only the application area. Each system was
analysed for identification of the characteristics chosen in Sect. 2.2. The respective
characteristics for each system are summarized in Table 6. The numbers below the
characteristics point out their source, and N/A means that information was not
provided or not applicable.

The first DDM system analysed by Cao and Chen (2006) was a decentralized
facility location problem. They changed a decentralized two level nonlinear pro-
gramming model into an equivalent linear single level model. The result was a
hierarchical model with a coordination mechanism resembling the upstream
planning approach in a supply chain context.

A more advanced system used a distributed local search for local optima. Jung
et al. (2008) developed a decentralized supply chain planning framework based on
minimal-information sharing between the manufacturer and a third party logistics
provider. Each used its own model and kept private information. The coordination
mechanism ensured local solutions converged towards a feasible solution,
although the levels did not cooperate as a team. Each level strived for local
optimisation. However, opportunistic behaviour was not demonstrated as the
information they exchanged was truthful.

While the different levels in Jung et al.’s model had to wait for input from the
other level before proceeding to search for their new local optimum, Gaudreault
et al. (2009) developed a system wherein levels concurrently evaluate other level’s
earlier decisions instead of one local optimum being processed at any given
moment. The authors call this a ‘‘distributed discrepancy search procedure’’ and it
is categorized as a distributed search with constrain propagations. The procedure is
illustrated in Fig. 1. The top level (agent A, closest to the customer) takes lower
levels (tiers further away) into account. This is because the lower levels com-
municate their locally optimal plans upwards. The optimal solution is thus known
to agent A but not to agents B or C. The distributed search for the optimal solution
is like a tree. Each agent computes its optimal solution based on the request by the
agent directly above him (one tier closer to the customer). It is thus possible that
agent C is working on a local solution based on what agent B sent him, whilst at
the same time agent A is computing a new solution based on the locally optimal
response it got from agent B. More than one solution is thus evaluated at a time.

An example of agent based coordination was found in the work of Wernz and
Denshmukh (2010). The specific application was intra-organizational, but the
techniques were interesting nonetheless. First of all, the Top level agent and Base
level agent are in a hierarchical relationship, but the agents make decisions
simultaneously instead of sequentially. There is also two way interaction through
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reward and influence, which is not seen in any of the other studied works. This
anticipation is merely implicit. It would be characterized as a principal agent
system according to the definition by Schneeweiss (2003).

The remaining three studied systems employed mathematical decomposition
through Lagrangean relaxation of constraints. The first of these by Nishi et al.
(2007) was developed to determine the production scheduling and distribution
planning for a single stage production system with parallel distributed production
units. The novelty is in their use of quadratic penalty terms in the objective
function. Walther et al.’s (2008) mathematical decomposition is applied to a
supply chain problem, that of a recycling supply chain looking to assign optimal
quantities of mass for recycling. The mathematical decomposition of the initial
centralized model is performed to create the negotiation mechanism between a
head firm and several recycling companies. In these two systems, a master problem
serves as a top level coordinator. The sub-problems communicate their local
solutions to the master problem to eventually find the optimum. Lu et al.’s (2012)
approach also involves Lagrangean relaxation, but they do not introduce a master
problem to server as a coordinator of the decomposed original central problem.
‘‘Instead, the resulted sub-problems are equally ranked, and a novel self-coordi-
nation scheme is developed which enables the solving of sub-problems is coor-
dinated through peer-to-peer communication, rather than communication between
each sub-problem and the master problem’’ Lu et al. (2012).

Interesting similarities between all studied DDM systems is that all deal with
asymmetric information, the objective is always to find the SC optimum and never
a fair solution, and none of the systems employs a mediator. The biggest differ-
ences are found in the team or opportunistic behaviour demonstrated, and of
course the coordination mechanisms used. The reader is reminded that the over-
view of the classification can be found in Table 6.

Fig. 1 Illustration of distributed discrepancy search procedure, Source (Gaudreault et al. 2009)
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3 Centralized Deterministic Model

This section presents the centralised deterministic model used as the basis for the
applied part of this research project. The model is an adapted form of the pro-
duction and distribution planning model by Park (2005). First the general model
formulation is given, followed by an explanation and the specific configuration of
the planning problem. Computational results are given in Sect. 6.

3.1 General Model Formulation

The centralised planning problem considers a supply chain of manufacturing
plants and retailers, with a planning horizon of five time periods. The manufac-
turing plants produce multiple items with a limited production capacity. For every
item that is produced in a given time period, a plant dependent fixed set-up cost is
incurred that is independent of the lot size. Excess production may be stored at the
plant at a holding cost, for which there is no storage capacity limit. The items are
structured in a three level bill of materials (BOM). Those items at level two and
three of the BOM are consumed for the production of higher level items, according
to amounts defined in the BOM. Only the items at level one, which are the final
products, are delivered to the retailers.

Plants are capable of producing only a given set of items, with the items
distributed over the different plants. Therefore, plants also act as suppliers to each
other for the delivery of items used as subcomponents. Only items that are con-
sumed as subcomponents are delivered in between plants. Consequently, the
planning problem is a multi-stage problem, with the plants capable of being at
various stages, dependent on the items they produce and those items’ positions in
the BOM.

Delivery between plants is regarded to be free of charge and free of capacity
constraints. Delivery from plants to retailers is performed by means of a fleet of
homogeneous vehicles with similar capacities and usage costs. Sending a vehicle
from any plant to a retailer incurs a fixed cost (depreciation of vehicle, insurance,
driver wages) and a variable cost dependent on the transported item, its quantity
and the route (plant—retailer combination). Any one vehicle can only transport
one item type and travel one route per time period. The amount of vehicles used
can change without incurring costs.

The demand for the final products (level one items) is expressed as a ‘core
demand’ and a ‘forecasted demand’. The ‘core demand’ may be considered as the
demand by a retailer’s loyal customer base, and must be satisfied. The ‘forecasted
demand’ contains the ‘core demand’ and is the total amount of final products that
can be sold in a given time period. In the centralised deterministic model, these
demands are known with certainty. Any unsatisfied forecasted demand is con-
sidered a stock-out, for which a stock-out opportunity cost is incurred.
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Backordering is not allowed. Every retailer is allowed to keep a finite amount of
final products in inventory, for which an inventory cost is incurred.

The objective of the centralised planning problem is to maximise profits over
the five time periods. The decision maker has all the data (demand, inventories,
production costs etc.) available to him and plans the production and distribution of
final product items and subcomponent items. A mixed-integer model is used to
solve the centralised production and distribution planning problem. First, the
notations used are presented, followed by the model.

Indices

i ¼ plants; i 2 1; . . .; Ið Þ
j ¼ retailers; j 2 ð1; . . .; JÞ
k ¼ items; k 2 ð1; . . .;KÞ
t ¼ timeperiods; t 2 ð1; . . .; TÞ

Parameters

cik ¼ unit processing cost ofitem k at plant i

sik ¼ setup cost for item k at plant i

oik ¼ processing time for item k at plant i

uik ¼ setup time for item k at plant i

hp
ik ¼ inventory holding cost of item k at plant i per period t

kik ¼
1 if plant i can produce item k

0 if plant i can NOT product item k

�

bik0k ¼ required cuantity of item k for the production of one item k0at plant i

Li ¼ production capacity of plant in time

dijk ¼ unit transportation cost of item k between plant i and retailer j

g ¼ fixed cost per vehicle

B ¼ fixed capacity per vehicle

Ejkt ¼ demand for item k at retailer j in period t that must be filled

Fjkt ¼ total forecast demand for item k at retailer j in period t;Ejktis part of Fjkt

pjk ¼ unit selling price of item k at retailer j

hr
jk ¼ inventory holding cost of item k at retailer j per period t

Wr
j ¼ capacity for units of inventory at retailer j

vjk ¼ stockout cost per unit of item kat retailer j
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Decision Variables

xikt ¼ quantity of item k produced in plant i in period t

yikt ¼
1 if setup must be performed at plant i for item k in period t

0 otherwise

�

ap
ikt ¼ level of inventory of item k at plant i in period t

Cikt ¼ quantity of item k consumed as subcomponent at plant i in period t

qiii0kt ¼ quantity of components k shipped from plant i to plant i0in period t

qjijkt ¼ quantity of item k transported from plant i to retailer j in period t

zijt ¼ number o vehicles required for distribution from plant i to retailer j in period t

Zjkt ¼ supply shortage volume of item k for retailer j in; period t

Sijkt ¼ outcome variable with available supply to be sent to Retailers model

Model

Objective function

Max
X

j

X
k

pjk

X
t

ar
jkt�1 þ

X
i

qjijkt � ar
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t
sikyikt þ
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t
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ikt
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jkar
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X
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vjk Fjkt � ar

jkt�1 þ
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qjijkt � ar

jkt

� �� �� �

�
X

i

X
j

X
t

g � zijt þ
X

i

X
j

X
k

X
t

dijkqjijkt

 !
ð1Þ

Subject to

X
k

xikt � oik þ yikt � uik

� �
� Li 8i8t ð2Þ

xikt �M � yikt 8i8k8t ð3Þ

xikt �M � kik 8i8k8t ð4Þ

Cikt ¼
X

k0
bik0k � xik0t 8i8k8t ð5Þ

Cikt ¼
X

i0
qii0ikt 8i8k8t ð6Þ

ap
ikt ¼ ap

ikt�1 þ xikt �
X

j
qjijkt �

X
i0

qiii0kt 8i8k8t ð7Þ

ar
jkt�1 þ

X
i
qjijkt � ar

jkt �Ejkt 8j8k8t ð8Þ

ar
jkt�1 þ

X
i
qjijkt � ar

jkt �Fjkt 8j8k8t ð9Þ
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X
k

ar
jkt �Wr

j 8j8t ð10Þ
X

k
qjijkt �B � zijt 8i8j8t ð11Þ

ap
ik0 ¼ 0; ar

jk0 ¼ 0; 8i8j8k ð12Þ

xikt � 0; ap
ikt � 0; yikt 2 0; 1f g;Cikt � 0; qiii0kt� 0; qjijkt� 0; ar

jkt � 0;

zijt � 0; and all are integers 8i8j8k8t
ð13Þ

The objective function (1) expresses the total net profit over the time periods,
calculated by subtracting total costs from total revenue. Revenue is the total turnover at
all retailers, calculated by multiplying selling price with sales (ar

jkt�1 þ
P

i
qjijkt � ar

jktÞ.

The costs include production-, inventory holding-, stock-out- and distribution costs.
Constraint (2) represents the capacity limit on production at a plant. Constraint (3)
forces the incurring of setup costs if items are produced. Constraint (4) makes sure
that production of items is only allowed at a plant if that plant is capable of producing
that item. For both these constraints, M is a sufficiently large positive number.
Constraint (5) determines the amount of an item that is consumed for the production
of higher level items, by summing the products of the production quantities of the
higher level items with the amount of lower level items consumed for their pro-
duction. Constraint (7) assures the inventory balance at a plant, with both shipments
to retailers and to other plants taken into account. Constraint (8) ensures that the
‘core demand’ is satisfied, whilst constraint (9) ensures that no more is sold (and thus
ordered from the plants at some point) than the ‘forecasted demand’. Constraint (10)
applies the storage capacity for inventory held by retailers. The amount of vehicles
needed for transportation of items to retailers is calculated in constraint (11).
Constraint (12) then defines the initial inventory levels at both plants and retailers.
Note that these can be changed. The final constraint (13) enforces restrictions of non-
negativity, integer and binary nature of decision variables.

The model calculates optimal production quantities xikt for all items at the
different plants for all time periods and optimal amounts qjijkt to be shipped to the
retailers. It will balance setup with inventory holding costs and delivery costs with
stock-out costs. It can therefore occur that not all forecasted demand is satisfied,
although the inventory storage capacity at retailers exists to minimise the occur-
rence of demand not being satisfied.

3.2 Specific Configuration of Supply Chain

The supply chain that is used for this research project is represented in Fig. 2. The
model’s indices, parameters and decision variables are included to show to which
part of the Supply Chain they pertain. The Supply Chain consists of three
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manufacturing plants and two retailers. There are five time periods and eight items
in this problem. Of the items, only items one and two are of level one, and thus
sold as end products. Their item number is indicated red for this reason. Fur-
thermore, each item has a specific retailer, with retailer one selling item one and
item two being sold by retailer two. The product structure of the final products is
also given in the figure, where the required quantities of a subcomponent can be
found in the top right corner of each item. Items three and four are the level two
items, and items five to eight are at level three.

The item production capabilities are distributed among the plants in such a
manner, that each item is produced at only one plant. Plant one makes items one
and three, plant two makes items two and four, and plant three makes items five to
eight. As a result, plant three supplies plants one and two with level three sub-
components. Plants one and two make their own level two subcomponents and
final products. Because each retailer only sells one product, each plant only
delivers to one retailer. The flow of items is represented by the red arrows in
Fig. 2.

The configuration presented was determined in the assignment. However, the
model has successfully been tested for other configurations. Examples are retailers
selling more than one item, plants ‘competing’ by being able to produce the same
items and common subcomponents in product structures. The flows could there-
fore also include the grey dashed arrows. This generality is a useful characteristic,
should the model ever need to be applied to a different Supply Chain.

Fig. 2 Supply chain configuration used for centralised model
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4 Distributed Deterministic Model

Next, the centralised deterministic model is decomposed into two separate models.
These separate models each pertain to a different decision maker, one that controls
the manufacturing plants and distribution of items, and one that controls the
retailers. A coordination mechanism is developed to link the two models and form
the distributed deterministic model. The distributed decision making process is
also presented to enhance clarity. Computational results are again found in Sect. 6.

4.1 Model Manufacturer

The first decision maker has control over the production of items in the plants, and
their distribution to the retailers. It is assumed that distribution of items is part of
this decision maker’s model because it is generally the manufacturer’s responsi-
bility to deliver a product to its customer. As done for the centralised model, first
the notation is presented, then the model. Additions or changes from the centra-
lised model are highlighted in bold.

Indices

i ¼ plants; i 2 1; 2; 3ð Þ
j ¼ retailers; j 2 ð1; 2Þ
k ¼ items; k 2 ð1; . . .; 8Þ
t ¼ timeperiods; t 2 ð1; . . .; 5Þ

Parameters

cik ¼ unit processing cost of item k at plant i

sik ¼ setup cost for item k at plant i

oik ¼ processing time for item k at plant i

uik ¼ setup time for item k at plant i

hp
ik ¼ inventory holding cost of item k atplant i per period t

kik ¼
1 if plant i can produce item k

0 if plant i can NOT product item k

�

bik0k ¼ required cuantity of item k for the production of one item k0atplanti

Li ¼ production capacity of plant i in time

dijk ¼ unit transportation cost of item k between plant i and retailer j

g ¼ fixed cost per vehicle

B ¼ fixed capacity per vehicle

vijk ¼ unit supply shortage penalty cost of retailer j for item k

Sjjkt ¼ requested supply quantity for item k by retailer j in period t ðreceived from jÞ
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Decision Variables

xikt ¼ quantity of item k produced in plant i in period t

yikt ¼
1 if setup must be performed at plant i for item k in period t

0 otherwise

�

ap
ikt ¼ level of inventory of item k at plant i in period t

Cikt ¼ quantity of item k consumed as subcomponent at plant i in period t

qiii0kt ¼ quantity of components k shipped from plant i to plant i0in period t

qjijkt ¼ quantity of item k transported from plant i to retailer j in period t

zijt ¼ number o vehicles required for distribution from plant i to retailer j in period t

Zjkt ¼ supply shortage volume of item k for retailer j in; period t

Sijkt ¼ outcome variable with available supply to be sent to Retailers model

Model

Objective function

Min
X

i

X
k

X
t
cikxikt þ

X
i

X
k

X
t
sikyikt þ

X
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X
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t
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ikap
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� �

þ
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X
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X
t
g � zijt þ

X
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X
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X
k

X
t
dijkqjijkt

� �

þ
X

j

X
k

X
t
vijkZjkt

ð14Þ

Subject to

X
k

xikt � oik þ yikt � uik

� �
� Li 8i8t ð15Þ

xikt �M � yikt 8i8k8t ð16Þ

xikt �M � kik 8i8k8t ð17Þ

Cikt ¼
X

k0
bik0k � xik0t 8i8k8t ð18Þ

Cikt ¼
X

i0
qii0ikt 8i8k8t ð19Þ

ap
ikt ¼ ap

ikt�1 þ xikt �
X

j
qjijkt �

X
i0

qiii0kt 8i8k8t ð20Þ
X

i
qjijkt þ Zjkt ¼ Sjjkt 8j8k8t ð21Þ

X
k

qjijkt �B � zijt 8i8j8t ð22Þ
X

i
qjijkt ¼ Sijkt 8i8j8k ð23Þ
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ap
ik0 ¼ 0 8i8k ð24Þ

xikt � 0; ap
ikt � 0; yikt 2 0; 1f g;Cikt � 0; qiii0kt� 0; qjijkt � 0;

zijt� 0; Zjkt � 0; and all are integers 8i8j8k8t
ð25Þ

The manufacturer does not know the actual demand for final products. He only
knows the requested supply quantities for each item per period as submitted by the
retailers. This quantity is represented by a new parameter Sjjkt. The manufacturer
must endeavour to fill the requested supply quantities to the best of his ability,
because it contributes to Supply Chain profitability. To make the model strive for
this, a penalty will be incurred for every unit of unfilled requested supply. For this
reason, a shortage penalty cost vijk and a shortage quantity decision variable Zjkt

have been defined.
The manufacturer has no knowledge of actual demand or of retail prices.

Maximising profit is thus not a valid objective for this model. Instead, the man-
ufacturer will try to minimise its costs while meeting supply, because that should
contribute to SC profitability. The objective function (14) now only includes
production, setup and inventory holding costs for the plants, distribution costs and
supply shortage penalty costs. Because having shortage negatively affects the
objective function, the model will try to fill all demand. The penalty cost per unit
of shortage must be high enough for the manufacturer to generally prefer pro-
duction and distributing to incurring the penalty.

Constraints (15–20) are the same as in the centralised model, but constraint (21)
replaces the constraints that ensured filling demand. It makes sure that the amount
of an item shipped from all the plants to a retailer plus any shortage equal the
requested supply quantity by that retailer for that item. If the shipped amounts do
not suffice, shortage is positive and the penalty will be incurred. Constraint (22)
governs the amount of vehicles needed for transportation of items to retailers, like
in the earlier model. Constraint (23) is also new, and calculates the supply of an
item k that is available for a retailer in a period t. This decision variable, Sijkt, is the
connection between the manufacturer’s model and the retailers’ model, because it
will be communicated to the retailers after the manufacturer has solved its local
problem. The retailers then know the available supply quantities that they can use
to satisfy demand with. It will become clear that Sijkt is an input variable for the
retailers’ model, just like Sjjkt is for the manufacturer’s model.

4.2 Model Retailers

The second decision maker has control over the retailers. This is a modelling
choice, as each retailer could also have its own model, in which case the index j of
the retailers would be forsaken. For simplicity, this is not done in this project. The
notation and model are first given, with changes or additions highlighted in bold.
The explanation of the model follows hereafter.
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Indices

j ¼ retailers; j 2 ð1; 2Þ
k ¼ items; k 2 ð1; 2Þ
t ¼ timeperiods; t 2 ð1; . . .; 5Þ

Parameters

Ejkt ¼ demand for item k at retailer j in period t that must be filled

Fjkt ¼ total forecast demand for item k at retailer j in period t;Ejkt is part of Fjkt

pjk ¼ unit selling price of item k at retailer j

hr
jk ¼ inventory holding cost of item k at retailer j per period t

Wr
j ¼ capacity for units of inventory at retailer j

vjk ¼ stockout cost per unit of item k at retailer j

Sijkt ¼ offered supply quantity of item k to ret:j in period t
first iteration it is infinite

then; received from plants

�

Decision Variables

qjkt ¼ quantity of item k requested from plants by retailer j in period t

ar
jkt ¼ level of inventory of item k at retailer j in period t

Model

Objective function
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ð26Þ

Subject to
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jkt�1 þ qjkt � ar

jkt �Ejkt 8j8k8t ð27Þ
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jkt�1 þ qjkt � ar

jkt �Fjkt 8j8k8t ð28Þ

qjkt� Sijkt 8j8k8t ð29Þ
X

k
ar

jkt �Wr
j 8j8t ð30Þ

qjkt ¼ Sjjkt 8j8k8t ð31Þ

ar
jk0 ¼ 0; 8j8k ð32Þ
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qjkt � 0; ar
jkt � 0; and all integers 8j8k8t ð33Þ

First of all, the index i for the plants is no longer present, because it does not
matter for the retailers where their supply comes from, as long as it comes. The
parameter Sijkt is the only new parameter, and it is the available supply of an item
for a retailer in period t, which is received from the manufacturer’s model. Only
for the first iteration of the retailers’ model it is assumed to be infinite. This is
because the distributed search for the optimal solution begins at the retailers, as
will become apparent in the following sections. Because it does not matter from
which plant the supply comes, the decision variable qjijkt is changed into qjkt. The
latter now only represents the item quantities requested by a retailer from the
manufacturer as a whole.

The objective function (26) is programmed to maximise profits by maximising
sales and minimising inventory holding costs and stock-out costs. Constraints (27)
and (28) still exist to ensure ‘core demand’ is satisfied and ‘forecasted demand’ not
exceeded. The small change in these constraints is that

P
i qjijkt is replaced by qjkt.

Constraint (29) enforces that the requested amounts of items from the manufac-
turer are at most what the manufacturer has indicated he can provide. Constraint
(30) is copied from the centralised model. The sixth constraint is newly added to
calculate the input variable for the manufacturer’s model, Sjjkt. It is simply equal to
qjkt, meaning that could also be sent to the manufacturer’s model. However, for
uniformity this is changed into Sjjkt.

4.3 Coordination Mechanism

The characteristics of the coordination mechanism will now be discussed, drawing
from the characteristics identified in Sect. 2. Information sharing in the distributed
model is minimal, with only requested quantities and available quantities shared
between the two decision makers. The exchange of requested and available supply
quantities was inspired by the distributed local search mechanism as developed by
Jung et al. (2008) Other information is kept private, accounting for a state of
information asymmetry. The information exchanged however, is certain, and
truthfully exchanged. The decision makers do not display opportunistic behaviour.

The distributed decision making model can also be characterised as a non-team
model. Neither decision maker takes the other’s interest into account, and tries to
optimise its own objective function. The other’s response is not anticipated either,
making the grade of anticipation non-reactive. Neither decision maker has
knowledge of the other’s model implemented in their own model. This makes
opportunism a lot more difficult too.

The requested and available quantities are exchanged between the two decision
making models directly. No mediator is involved to monitor or perhaps influence
the local decisions that are taken. The distributed model starts with the retailer
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solving his local problem of determining how much to request from the manu-
facturer based on customer demand. That information is then sent to the manu-
facturer who returns his response. If the available supply quantity is enough to at
least fill ‘core demand’, i.e., the retailers’ model has a feasible solution, the iter-
ative exchange starts. The two models exchange updated solutions back and forth
until they reach a feasible solution where all requested items are delivered without
shortage. The initial solution used is one that maximises sales, because it is
generated by the retailers’ model.

After starting the iterative process, the number of iterations is not fixed in the
model. A protocol governing coordination as such has not been programmed.
Iterations will be performed manually, continuing until a feasible solution has or
has not been reached. A stop criterion is therefore not formally defined. Whether
this is a correct choice will become apparent from the computational results, since
they will show how many iterations were performed. The expected/desired result
is a best solution for the Supply Chain as a whole. Fairness is not considered in the
solution, with only the retailers’ model concerned with making money. All the
manufacturer’s model does is minimise costs. He obviously does not know how his
decisions affect revenue, and will only find out after having the final decision is
made.

Side payments are not used to distribute the benefits between the decision
makers and thus make it fair. This is also not required because the goal of the
DDM model is to find the SC optimum. The other goal of side payments is to
ensure each decision maker’s participation. The shortage penalty cost acts as the
incentive for the manufacturer to comply with requests from retailers. This could
also be modelled alternatively, to let the manufacturer make a profit when he
complies with demand, but the penalty method works as well.

4.4 Modifications to Guarantee Feasibility

During initial testing of the distributed models, it was found that unless exorbitant
shortage penalty costs vijk (which were actually higher than the sales price) were
applied, the manufacturer’s model would not supply the item with the lowest
margin in the first period if capacity was tight. With margin, the difference
between the penalty cost and the production-, setup-, inventory holding- and
distribution cost is meant. The reason was that the model preferred to produce
larger batches of one item in the first period, and then in the next period would
start producing the other item. The result was infeasibility in the retailers’ model,
because core demand could not be filled.

It is not realistic for a manufacturer to have complete liberty over supply
quantities for his customers. A reasonable assumption is that the manufacturer and
the retailers have agreed contracts, in which it is agreed that the manufacturer will
endeavour to meet at least a percentage of the requested supply. If such a ‘fill rate’
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is to be incorporated into the manufacturer’s model, the retailers could theoreti-
cally engage in shortage gaming strategies, to ensure they always get enough. This
will not happen because of the model formulation, and the corresponding
assumption of no opportunism, but in reality this would be very probable. That
consideration shows that only in a trusting environment, can DDM really thrive. A
fill rate of 67 % of the initially requested supply quantity is reasonable, and also
enough to satisfy core demand. The fill rate FRjk will be added as a parameter to
the model, so that it can also be changed according to any set of contractual
agreements.

The additional constraint for the manufacturer’s model is then:
X

i
qjijkt�FRjk � Sjinitial

jkt 8j8k8t ð34Þ

The constraint ensures that the delivered quantity of item k is at least the fill rate
multiplied by the initially requested supply. Sjinitial

jkt is entered into the restriction,
because the regular Sjjkt is updated after each iteration. However, the minimum
amount to be filled is the fraction of the initially requested amount, not of the
requested amount in the following iterations.

In reality, this would be easy, because the manufacturer can easily store the
initially requested supply and not change it. However, for the model to function, a
separate initial retailers’ model must be run to ensure that it stores Sjinitial

jkt some-
where where it cannot be changed. In ensuing iterations the retailers’ model
without the generation of Sjinitial

jkt is then run.

4.5 The Decision Making Process

The flow of information and the decision making process is represented graphi-
cally in Fig. 3. The Distributed Model starts with the generation of the initial sales
plan by the retailer, in which he calculates the initially requested supply quantities
Sjinitial

jkt . These quantities are sent to the manufacturer who generates a production
and distribution plan to best satisfy the requested supply quantities, at minimal
cost. If there is no production shortage, then all requested supply can be delivered,
which terminates the procedure. If the manufacturer cannot meet all that is
requested, the available supply quantity per item, retailer and time period is cal-
culated. This is then sent back to the retailer. He generates a new plan, checking
whether he can meet his core customers’ demand. If not, the problem is infeasible.
If he can, then he generates a new request quantity and sends it to the manufac-
turer. The procedure continues until there are no production shortages.
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5 Distributed Model Under Uncertainty

In this section, the distributed deterministic model is adapted to account for
uncertainty in demand. The retailers’ model is the model that takes demand into
account. In contrast, the manufacturer has no knowledge of demand. The adap-
tation to account for uncertainty will therefore be done exclusively on the retailers’
model.

Peidro et al. (2009) found that several approaches exist in scientific literature
for developing SC planning models under uncertainty. Most are based on ana-
lytical approaches, simulation approaches or hybrids of the former two. The
models developed in these approaches generally use probability distributions
based on historical data. The fuzzy set theory , pioneered by Zadeh (1965), and
possibility theory are the other approaches identified. These are not based on
historical data and have been applied with much success to various fields for
modelling of uncertainty. Through requirement, possibility theory shall be applied
to model demand uncertainty in the DDM model.

Fig. 3 Decision making
process distributed model
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Two parameters defined the demand in the retailers’ model; which were ‘core
demand’ and ‘forecasted demand’. In possibility theory, these parameters are
turned into diffuse coefficients. It is plausible that both parameters can turn out to
be somewhat lower, or somewhat higher than initially thought. Consequently, a
membership function that expresses that is required. A triangular or ‘Lambda’
membership function is therefore chosen to represent the fuzzy demand parame-
ters. It has a central value with a membership degree of one, and the membership
degree decreases the further the parameter moves away from the central value.
Outside of two boundary values (one left and one right), the membership degree
turns zero, meaning that it is not plausible that demand will take on values outside
of a certain interval. Taking ‘core demand’ as an example, the triangular fuzzy
coefficient E is defined by three parameters (E1, E2, E3). E1 is the left boundary of
the fuzzy set, E2 the central value for which the membership degree equals one,
and E3 is the right boundary of the set. The membership functions for ‘core
demand’ E and ‘forecasted demand’ F are presented graphically in Fig. 4. One can
see that for values in the interval [E1, E3] and [F1, F3], the membership degree l
is non-zero.

Furthermore, it is reasonable to assume that there is less uncertainty for the
‘core demand’, because it comes from a loyal customer base, than there is for the
‘forecasted demand’. A smaller range of values thus belong to the fuzzy set of
‘core demand than of ‘forecasted demand’. This is expressed by a smaller interval
(a, b) than (c, d), i.e., the range between the boundary values.

The approach used to change the deterministic model into a fuzzy model is the
one used by Jiménez et al. (2007). It was developed to incorporate diffuse coef-
ficients with trapezoidal membership functions into linear programming models.
The triangular function is a simplification of the trapezoidal function, for which the
two central values of the trapezoid are the same and the function is symmetrical.
For the mathematical justification of the method, the reader is referred to the
article by Jiménez et al. (2007).

For triangular functions, Jiménez showed that the expected interval of a diffuse
coefficient ã = (a1, a2, a3), can be calculated by:

Fig. 4 Membership functions of fuzzy parameters for ‘core demand’ ~Ejkt (left) and ‘forecasted
demand’ ~Fjkt (right)
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EI ~að Þ ¼ E~a
1;E

~a
2

� �
¼ 1

2
� a1 þ a2ð Þ; 1

2
� a2 þ a3ð Þ

� �

And the expected value of a diffuse coefficient can then be calculated by:

EV ~að Þ ¼ E~a
1 þ E~a

2

2

	 


Objective functions and constraints with diffuse coefficients in them subse-
quently change, although differently. When a diffuse coefficient appears in the
objective function, it is replaced by its expected value. In a symmetric triangular
membership function this value corresponds with the central value, so no calcu-
lations are really required. Constraints change depending on the relationship
(� ;¼ or � ) defined in the constraint. The ‘satisfy core demand’ and ‘not surpass
forecasted demand’ constraints affected in the retailers’ model are � and �
constraints respectively, which change as follows:

ax� b! 1� að ÞEa
2 þ aEa

1

� �
x� aEb

2 þ ð1� aÞEb
1

ax� b! 1� að ÞEa
1 þ aEa

2

� �
x� aEb

1 þ ð1� aÞEb
2

Where a is a parameter 2 ½0; 1� set by the decision maker. With a he/she can
vary the degree of feasibility of the fuzzy model. A higher value of a makes the
fuzzy coefficients assume values that make it harder to find a feasible solution, thus
covering for more of the uncertainty.

5.1 Retailers’ Model Formulation Under Uncertainty

The Fjkt parameter in the objective function will be replaced with the expected
value, so that the model is also generally valid. Because the newly defined fuzzy
demand parameters only appear on the right hand sides of the constraints, only the
right hand sides of the constraints are affected. The new terms are factored out to
preserve linearity. The new fuzzy retailers’ model is thus formulated as following,
with bold highlighting the changes:

Indices

j ¼ retailers; j 2 ð1; 2Þ
k ¼ items; k 2 ð1; 2Þ
t ¼ timeperiods; t 2 ð1; . . .; 5Þ
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Parameters

~a ¼ degree of feasibility parameter set by decision maker

~c ¼ 1�~að Þ; complement of degree of feasibility parameter set by decision maker

~Ejkt ¼ E1;E2;E3ð Þjkt; demand for item k at retailer j in period t that must be filled

~Fjkt ¼ F1;F2;F3ð Þjkt; total forecast demand for item k at retailer j in period t

pjk ¼ unit selling price of item k at retailer j

hr
jk ¼ inventory holding cost of item k at retailer j per period t

Wr
j ¼ capacity for units of inventory at retailer j

vjk ¼ stockout cost per unit of item k at retailer j

Sijkt ¼ offered supply quantity of item k to ret: j in period t
first iteration it is infinite

then; received from plants

�

Decision Variables

qjkt ¼ quantity of item k requested from plants by retailer j in period t

ar
jkt ¼ level of inventory of item k at retailer j in period t

Model

Objective function

Max
X

j

X
k

pjk

X
t

ar
jkt�1 þ qjkt � ar

jkt

� �

�
X

j

X
k

X
t
hr

jkar
jkt þ

X
j

X
k

X
t
vjk

1
4

F1 þ
1
4

F2 þ
1
4

F2 þ
1
4

F3

	 

� ar

jkt�1 þ qjkt � ar
jkt

� �	 
	 


ð35Þ

Subject to

ar
jkt�1 þ qjkt � ar

jkt �
1
2
aE2 þ

1
2

aE3 þ
1
2

cE1 þ
1
2

cE2 8j8k8t ð36Þ

ar
jkt�1 þ qjkt � ar

jkt �
1
2
aF1 þ

1
2

aF2 þ
1
2

cF2 þ
1
2

cF3 8j8k8t ð37Þ

qjkt � Sijkt 8j8k8t ð38Þ
X

k
ar

jkt �Wr
j 8j8t ð39Þ

qjkt ¼ Sjjkt 8j8k8t ð40Þ

ar
jk0 ¼ 0; 8j8k ð41Þ

qjkt � 0; ar
jkt � 0; and all are integers 8j8k8t ð42Þ
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6 Computational Results

This section discusses the computational results for the centralised deterministic
model, distributed deterministic model and the distributed model under uncer-
tainty. First the experimental design is explained, after which the results are
presented. A discussion of the results follows to end the section.

6.1 Experimental Design

Eight different datasets were used to generate solutions with the different models.
Three parameters were chosen to be varied to create the different sets. First,
demand was given two different behaviours. Both had the same total demand
value, but in one instance the demand was stable over the periods, whereas in the
other it was very erratic, varying from near nothing to high peaks. Second, pro-
duction capacity was varied. Low capacity meant that the production capacity
constraints were very tight, and that it was never really possible to meet all
demand. High capacity was chosen such that there should still be some slackness,
meaning cost considerations would govern the decision more than capacity. These
same costs were the third parameter to be varied. Combinations of low unit pro-
duction costs with high setup costs, and high unit production costs with low setup
costs were made to change the decisions the manufacturer would make regarding
batches. Low setups obviously encouraged smaller batches. The eight combina-
tions created the datasets found in Table 7. Due to space limitations, the details of
the created datasets are not presented here, but can be made available upon
request.

Another very important parameter for the distributed models is the penalty for
production shortage applied to the manufacturer. Its value greatly influences the
outcome of the manufacturer’s decisions, as was already found by the model
choosing not to serve retailers at all if it is chosen too low. Three different values
for the production shortage were used; one that is only 60 % of the sales price, one
of 90 % and the highest penalty is 120 % of the sales price.

The values for these parameters, and all other parameters were entered into a
Microsoft Access database. An Access database was chosen because it can interact
with the modelling program employed, MPL. MPL models can extract data from

Table 7 Datasets used in computations

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Demand behaviour Stable Stable Stable Stable Erratic Erratic Erratic Erratic
Production

capacity
Low Low High High Low Low High High

Production/setup
costs

Low/
high

High/
low

Low/
high

High/
low

Low/
high

High/
low

Low/
high

High/
low
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the database and also export their solutions back to the database. This dual
interaction was very useful for the exchange of the supply quantity variables Sjjkt

and Sijkt. The MPL models were solved with the CPLEX solver on a single desktop
computer with 4 GB RAM, using an academic license.

6.2 Results Centralised Deterministic Model and Distributed
Deterministic Model

The results for the Centralised Deterministic Model (CM) and the Distributed
Deterministic Model (DM) are presented in Table 8. Several observations were
made whilst studying the data.

Table 8 Computational results for centralised model (CM) and distributed model (DM)

Dataset CM DM Absolute gap % Gap Iterations Computation time (s)

vijk = 60 % of sales price
1 116640 111244 5396 4.63 2 17.3
2 141321a 141691 -370 -0.26 2 10.4
3 147545 147545 0 0.00 1 1.1
4 166590 166590 0 0.00 1 0.3
5 123608 121709 1899 1.54 2 1.4
6 149340 144275 5065 3.39 2 500.6
7 148454 131895 16559 11.15 2 7.1
8 166525 165615 910 0.55 2 1.1
vijk = 90 % of sales price
1 116640 115766 874 0.75 2 1.0
2 141321a 141694 -373 -0.26 2 3.4
3 147545 136164 11381 7.71 2 3.0
4 166590 166590 0 0.00 1 0.3
5 123608 121715 1893 1.53 2 0.6
6 149340 144275 5065 3.39 2 0.5
7 148454 131799 16655 11.22 2 1.6
8 166525 165572 953 0.57 2 1.5
vijk = 120 % of sales price
1 116640 115763 877 0.75 2 1.6
2 141321a 141851 -530 -0.38 2 600.6
3 147545 147545 0 0.00 1 2.5
4 166590 166590 0 0.00 1 0.4
5 123608 122437 1171 0.95 2 0.7
6 149340 148460 880 0.59 2 1.1
7 148454 147544 910 0.61 2 1.5
8 166525 165615 910 0.55 2 1.4
a Computation was aborted after 600 s
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1. The biggest percentage gap in the objective value profit between the CM and
the DM is 11.2 %. This occurs twice, whilst the second biggest gap is only
4.6 %. In general, the DM looks to be performing reasonably well compared to
the CM, with many distributed solutions being close to the optimal solution.

2. The biggest percentage gaps occur when setup costs are high in relation to unit
production costs. This corresponds to the odd datasets. The explanation is that
high setup costs may cause the manufacturer to not want to produce a batch of a
certain item, if it has enough in inventory to meet the agreed fill rate. Some of
the forecasted demand can then not be met, resulting in lost sales and a sub-
optimal solution.

3. The DM’s performance did not vary much for the production shortage penalties
vijk of 60 % and 90 % of the sales price. However, for a penalty cost of 120 %
of the sales price, DM performance was always equal or better than for the
lower penalties, and by quite a margin. For this model therefore, a higher
penalty cost seems to lead to better results.

4. Computation times were either very short, or extremely long. Two of the 24
runs of the manufacturer’s model took 500 and 600 s respectively. These did
not occur for the same dataset either, which seems to suggest that some
combinations of data make the problem more difficult to solve optimally,
because solutions are closer together.

5. One run of the CM also took a very long time, and it was aborted after 10 min
(600 s) with a suboptimal solution being accepted. The DM outperformed the
CM for all three shortage penalties. Only in this particular case, the DM per-
formed better as the shortage penalty decreased. These two observations imply
that for that particular dataset, not serving some of the demand was better.
However, I assume that this is due to the dataset configuration and to be
considered an anomaly instead of a rule.

6. The two most important observations come from the iterations column. In some
cases, only one iteration is required because it is optimal for the manufacturer
to deliver everything that is requested. This coincides with a stable demand
behaviour and high production capacity.

7. In all the other runs, only two iterations are sufficient to generate a feasible
solution to the problem. The retailers never order less than the available supply
quantities. With hindsight, this is due to the decomposition choices made for
the centralised model, which requires some further discussion.

Part of the assignment was to apply the same type of coordination mechanism
that Jung et al. (2008) developed for their DDM model. The important difference
between their model and the adaptation of Park’s (2005) model developed in this
chapter, is the model decomposition choices made when decomposing the central
model into two distributed models. The decomposition choice to make the man-
ufacturer responsible for delivering the items to the retailers has meant that the
only consideration for the retailers is minimising inventory and stock-out costs.
This means they will ask for as much as they can possibly sell every period, but no
more. Keeping inventory would come into the equation if the distribution costs
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were also incurred by the retailers. They might then prefer smaller or bigger
shipments to avoid nearly empty vehicles, resulting in inventory at the retailers. In
that case, the retailers might actually change their requested supply quantities after
knowing the available supply quantities, resulting in more iterations. In Jung
et al.’s model, the retailer’s place is taken by a third party logistics provider (3PL).
He does have to take distribution costs into account, so his optimal local solution
may change per received available supply quantity. I want to be clear that the
decomposition choice was made on the argumentation given earlier, realism. The
increased simplicity of the coordination was not taken into account.

Seeing how the distributed model would behave if the retailers’ model included
distribution costs instead of those being part of the manufacturer’s model, would
be very interesting. I expect that the amount of iterations would increase, fol-
lowing the above reasoning on managing distribution-, inventory and stock-out
costs. The coordination mechanism would also change somewhat, although it
would still function in a similar fashion.

Taking all into account, more dynamism in the coordination process would
have been revealing regarding the workings of distributed decision making, but the
current distributed deterministic model performs well enough to be satisfied with
the result.

6.3 Results Distributed Model Under Uncertainty

The optimal solutions for the distributed model under demand uncertainty were
generated with a production penalty value vijk of 120 % of the sales price, because
these gave the best results in the earlier computations. Datasets one, four and five
were chosen at random for the other parameters.

The parameter a was varied between 0.1 and 1. Recall that a solution for
a = 0.1 is very easily found because the uncertain demand parameters take on the
most favourable values. That solution is thus the best possible outcome, but it is
not very likely, and will probably leave the decision maker with unsold items. One
could call it the risky solution. At the other end of the scale, a = 1 gives the worst
possible outcome. However, this solution is also certain to be possible, because the
demand parameters take on the most unfavourable values that the decision makers
believe they can assume. This is thus the risk-averse solution. So, the choice for a
depicts the amount of risk the decision maker is willing to accept in his solutions.
The computational results for different values of a are given in Table 9.

The optimal objective values for a = 0.5 correspond with the objective values
found by the deterministic DM. This is because of the symmetry in the chosen
membership functions. For each dataset, the riskiest solution has the potential to
perform 45 % better than the most risk-averse solution. It is therefore for the
decision maker to decide how much risk he wants to take with his solutions.

The computation times are mostly quite low, with two notable exceptions.
Once, for dataset 1 the entire computation takes 121 s, and for one run with dataset
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4 the solver takes a total of 300 s. These are other datasets than took long in the
deterministic DM however. Consequently, this enforces the belief that long
computation times result from ‘unlucky’ combinations of parameters that give the
solver a hard time in finding the optimal solution. This time however, both longer
runs did finish inside 10 min and were therefore not aborted prematurely.

7 Conclusions

An analysis of recent Distributed Decision Making related work was given in this
chapter. The different works of literature were classified along differing DDM
characteristics, with extra attention given to characteristics related to the coordi-
nation mechanisms used in DDM systems.

Thereafter, a centralised deterministic mixed-integer model was developed for a
Supply Chain planning and distribution problem similar to that of Park (2005), but
with the addition of multiple product levels. This model was further developed into
a distributed deterministic model and a distributed model which accounted for
demand uncertainty by applying possibility theory. The distributed model has
demonstrated that it could approximate very closely the centralised model’s per-
formance, in most cases to within a per cent point. With the fuzzy distributed
model, it was possible to see what the solutions could deliver in terms of objective
value under various risk levels, which showed to be an insightful tool for decision
makers dealing with uncertainty.

It should be noted that the objective of this chapter is not to provide a real large
scale application for the proposed models. The emphasis in this chapter is on
demonstrating how a proposed DDM coordination mechanism for a supply chain
planning problem under uncertainty, can obtain solutions very close to those
obtained by the centralized model. For this reason and for illustrative purposes, we
focus on a small size case study. It is expected that when the size of the problem
grows, the computational time will be greater. Further research may investigate the
application of metaheuristics approaches and other soft computing techniques in
order to handle large scale problems.
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