
H. Motoda et al. (Eds.): ADMA 2013, Part II, LNAI 8347, pp. 231–242, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Convolution Neural Network for Relation Extraction*

ChunYang Liu1, WenBo Sun2, WenHan Chao2, and WanXiang Che3

1 National Computer Network Emergency Response Technical Team/Coordination
Center of China, Beijing
lcy@isc.org.cn

2 The Institute of Intelligent Information Processing, Beihang University, Beijing, China
chaowenhan@buaa.edu.cn,
mike891212@gmail.com

3 The Institute of Social Computing and Information Retreival, Harbin Institute of Technology
car@ir.hit.edu.cn

Abstract. Deep Neural Network has been applied to many Natural Language
Processing tasks. Instead of building hand-craft features, DNN builds features
by automatic learning, fitting different domains well. In this paper, we propose
a novel convolution network, incorporating lexical features, applied to Relation
Extraction. Since many current deep neural networks use word embedding
by word table, which, however, neglects semantic meaning among words, we
import a new coding method, which coding input words by synonym dictionary
to integrate semantic knowledge into the neural network. We compared our
Convolution Neural Network (CNN) on relation extraction with the state-of-art
tree kernel approach, including Typed Dependency Path Kernel and Shortest
Dependency Path Kernel and Context-Sensitive tree kernel, resulting in a 9%
improvement competitive performance on ACE2005 data set. Also, we com-
pared the synonym coding with the one-hot coding, and our approach got 1.6%
improvement. Moreover, we also tried other coding method, such as hypernym
coding, and give some discussion according the result.

Keywords: Relation Extraction, Convolution Network, Word Embedding,
Deep Learning.

1 Introduction

Relation extraction focuses on semantic relations between two named entities
in natural language text. Tree Kernel based method is a classic method for relation
extraction, in which it need to parse the sentence to build tree kernel. However, pars-
ing has very high complexity and it is hard to build a correct parse tree for a long
sentence. In Addition, kernel method needs hand-engineering features. As for differ-
ent tasks, we need to construct different kernel functions. Regarding these, an archi-
tecture which is not based on parse tree and can learn features is needed. Deep Neural
Network architecture can achieve both two goals above.

* This research was supported by Research Fund for the Doctoral Program for Higher Educa-

tion of China (New teacher Fund), Contract No. 20101102120016.

232 C. Liu et al.

Recently, Deep Neural Network models have been applied to many NLP tasks,
such as POS Tagging, Name Entity Recognition, Semantic Role Labeling and Senti-
ment Analysis. Collobert et al. developed the SENNA system that shares representa-
tion across task. The SENNA system integrates POS, NER, Language Model and
SRL, which are all sequence labeling tasks. To learn feature vectors automatically,
previous research usually use embedded representation of word as input layer of
CNN. But this method neglects semantic meaning of words, regarding them unique
words separately. In this work, we describe a new representation of word. We use a
unique code to represent words with same semantic meaning, called synonym coding.

We propose a novel CNN architecture with synonym coding for relation extrac-
tion. In experiments, we compared our CNN architecture with the state of art Kernel
methods. We also provide the performance of CNN, coding with word list. Result
shows CNN with synonym coding outperformed word list coding by 1.6% on ACE
2005 dataset, and CNN architecture outperformed kernel method by nearly 15%,
which is a significant improvement compared to kernel methods.

The rest of the article is as follows. First, we describe related work about CNN on
natural language processing. We then detail our CNN architecture and synonym cod-
ing, followed by experiments that evaluate our method. Finally, we conclude with
discussion of future work.

2 Related Work

Early approaches are usually based on patterns and rules, expressed by regular ex-
pression. The pattern methods assume all sentences in the same relation type sharing
similar linguistic context. But in terms of wide variety of natural language forms in
which a given relation may be expressed by multi ways, including syntactic, morpho-
logical and lexical variations. Pattern based methods cannot cover all language forms
[1]. This causes very low recall value.

Several researchers have already attempted to build machine learning approaches
for relation extraction. [2] presented a report of feature vectors based relation classifi-
cation. The authors annotate words with rich features, including:

• Part-of-Speech
• The relation arguments
• The entity mention level
• The entity types
• Parse tree

In addition, they proposed to take advantage of parse tree without its structure infor-
mation. However, entities usually have a long distance in relation extraction. When
building parse tree, long range dependence will involve many unrelated words, which
will sparse feature space. Parse tree structure provides grammar information of words.
To fully using this information, [3] presented tree kernel method to consider structure
of parse tree, and got slightly progress compared with approaches based on feature

 Convolution Neural Network for Relation Extraction 233

vectors. [4] used dependency path, removing many syntactic nodes which have indi-
rect dependency relation with target entities. This work produced a slightly improve-
ment then that used full parse tree. But building parse tree and dependency tree is a
very time-consuming processing, not only when training, but predicting.

Moreover, kernel method needs hard coding of features. To self-adapt different
tasks, researchers import embedded word representation to NLP and obtain some
success.

[5] described a lookup table processing and stack it on a multilayer perceptron for
building language model, resulting in a 20% improvement on perplexity. Language
model is an important build block of machine translation and speech recognition sys-
tems, so this improvement advanced the tasks involving language model. [6] proposed
neural network architecture for machine translation, resulting in enhancing 2 point of
BLEU score. In addition, [7] presented a unity CNN for basic NLP tasks and SLR,
got the state-of-the-art performance. All methods above use a lookup table layer to
learn words’ feature by back-propagation. The input of lookup table is word indexes
which are provided from a wordlist. Each word has a unique index, which means even
words with similar semantic meaning are resolved separately, ignoring semantic in-
formation.

As for compositive applications, [8] trained a deep architecture, auto-encoder, for
sentiment classifier, and surpassed the state-of-the-art. Auto-encoder [9] is one of the
first processing of deep learning architecture. The goal of an auto-encoder is finding a
best representation of input. For sentiment classifier, inputs are words, whose seman-
tic meaning exactly indicates their sentiments. But for relation extraction, different
words play unequal roles to identify a relation type. Some words are indicator of rela-
tion types, some are unrelated with relation. So, although auto-encoder for words can
represent well in many domains, it can’t provide enough specific information for rela-
tion extraction task, such as grammatical structure of sentences.

3 Convolution Network Architecture

Previous research on relation extraction focuses on how grammatical relation, such as
parse tree, expresses semantic relation. Undeniably, parse tree and dependency tree
performs well with large number of empirical features. For semantic information,
WordNet provides us significant improvement on performance of relation extraction
system. But building parse tree is a time consuming task. Moreover, hand-built fea-
tures are rigid considering context.

Ideally, we want to build a relation extraction system without a time consuming
parse tree. Meanwhile, the system should consider of grammatical structures.Also, we
want to avoid hand-built features. Hence, we prefer to find an automatic weight learn-
ing approach to avoid time-consuming feature generation. We found that a deep neur-
al network achieve both two goals.

To including grammatical information, we proposed convolution neural network
(CNN) [10]. In image processing tasks, convolution is used to extract features over
blocks. In language processing, CNN can be used to evaluate grammatical relations

234 C. Liu et al.

between abutting words that probably constitute a phrase. So, CNN can replaces parse
tree to provide grammatical information.

3.1 Word Embedding

Word embedding is a method to project words to vectors. The first step of word em-
bedding is using One-hot coding. One-hot coding in NLP is a coding method that
transfer word index to a binary code whose size is equal to size of wordlist for the
convenience of computing. In one-hot code, only on position of index coded to 1,
other positions are all 0.

One-hot coding method is formalized below:
Define word dictionary is D, the i word in D is . Input sentence is S.
We construct an indice function to index words in the input sentence. s(i) refer to

the i word in the input sentence. Given the notation above, we define one-hot cod-
ing of a word as an identity function:

 C w 1 ,#D (1)

Equation (1) means if and only if i word in D is equal to input word, element is 1.
The other elements are all 0. Synonym coding uses a synonym list instead of wordlist.
So, in synonym code, represents the synonym dictionary. The i synonym clus-
ter is noted by . Synonym code is a vector of # dimension, defined as:

 SC w 1 ,#D (2)

Equation (1) means if and only if i word in D is equal to input word, element is 1.
Although we have synonym list, the list can’t hold all words. So if the input sen-

tence has words beyond . We add the words to and each word composite a sepe-
rate synonym cluster. Since we have notations above, an input sentence of n words
can be mapped into one-hot coding.

 S SC s i , (3)

3.2 Basic Architecture

The type of neural network we employ here is Convolution Neural Network[10].
Convolution Network has been used in one unity NLP architecture. The neural net-
work concluded into 3 main building blocks:

• Input layer
• Convolution Layer
• Classic Neural Network Layers

Before inputting the sentence to the network, sentences will be mapped into syn-
onym code. In terms of variant of sentences length, we define a window around P , P , whose size is noted as wsz. All words in this window will be coded. And the

 Convolution Neural Network for Relation Extraction 235

distance of P , P is noted as b. If b is larger than wsz, we set P to left-most, and set
value on the right-most position to B. If b is smaller than wsz, empty position will
distribute around P , P on average, and set those position to a sign X. Both B and X
will be added to synonym list, participating in coding processing.

Input Layer
For the purpose that words weights can be learnt by back-propagation, we implement
a Lookup Table Layer [11] as the input layer of CNN.

In lookup table layer · , each word w will be mapped into a d-dimension
space:

 LTW s i W · SC s i =W (4)

where W # is a matrix of parameters to belearnt. is the column of
W. and d is the word feature vector size to be chosen by the user. In the first layer of
our architecture an input sentence of n words is transformed into a series of vectors by
applying lookup table to each word.

Fig. 1. Lookup Table Layer and Synonym Coding

In relation extraction, the mention level and type of entity are necessary informa-
tion for classification. So in our experiments, we added Name Entity Type List and
Mention Level List to code the name entity mention level and type. Two lists above
will generate two new features.

When a word is decomposed into K features, it can be represented as a tuple

 , , … (5)

where … , is the dictionary for the feature.
Each feature will be mapped into a new vector space, so each feature need coding
separately. To associate multi features, lookup table for each feature is defined

as · , with the parameters # where is a user-specified vector
size. A word s(i) is then mapped into a d ∑ dimension vector by concatenat-
ing all lookup table outputs:

236 C. Liu et al.

 ,…, , , … , (6)

Convolution Layer
A convolution layer is typically used in a convolution network for vision tasks. When
one want to get a more abstract feature, it’s reasonable to ignore some inputs and
select a subsequence and compute global weights.

Fig. 2. Deep Neural Network Architecture

A typical convolution usually applied on 2D data, which can be visualized to an
image. But in case of our sequential input, convolution layer of our CNN have a se-
quential kernel, which is an exception of typical convolution kernel. A convolution
kernel maps a subsequence to a new vector space. The width of the kernel decides the

 Convolution Neural Network for Relation Extraction 237

dimension of new vector space and step decides number of subsequence involved in
convolution. A convolution computation on one subsequence is:

 Convolution s , ∑ L · s (7)

where , . So the result convolution is a matrix of .
Concatenating convolutions on all subsequence referring of lookup table layer’s

outputs, referring to (6), we’ll get Convolution

 Convolution LTW s , , ,…, (8)

The dimension of each convolution result is number of hidden units. After convo-
lution on whole sequence, it results in a matrix ofR . We then add to the
architecture a layer, which captures the most relevant features over the window by
feeding CNN layers into a Max Layer, which takes the maximum over a row in (8) for
each of the n outputs.

3.3 General Deep Neural Network Architecture

Combining the lookup table layer and convolution layer, we’ll get basic convolution
network. The output of lookup table layer is the input of convolution layer. A max
layer, which is applied to the output of convolution layer, reducing output dimension
to number of hidden unit, is stack on the convolution layer. To classify relation types,
we add a softmax layer to be output layer. Softmax Layer:

 h z ∑ (9)

Where i indicates output unit, and j refers to input of softmax layer.

 ∑ h z =1 (10)

(9) and (10) allows us to interpret outputs as probabilities for each relation type pre-
diction. The size of outputs is the number of classes of relation extraction.
Between convolution layer and output layer, some classic neural network layers can
be added to get more abstract feature. The whole architecture can be summarized in
Figure 2.

The whole network trained by a normal stochastic gradient decent with negative
log-likelihood criterion.

4 Experiments

In this section, we compare the performance of our new CNN architecture with the
performance of tree kernel method. To prove effectiveness of synonym coding, we
also compare CNN with synonym coding input with that without synonym coding.

238 C. Liu et al.

4.1 Date Set

The Automatic Content Extraction (ACE) Evaluation covers the Relation Detection
track. ACE 2005 [12] dataset consists of 599 documents which are related with news,
speech and email. As ACE 2005 defined, all relations are annotated to 7 major types
and 19 subtypes. Our training set covers 6 major types: ART (686 instances), GEN-
AFF (1280 instances), ORG-AFF (395 instances), PART-WHOLE (1009 instances),
PER-SOC (465 instances), PHYS (469 instances), and 18 subtypes. The Metonymy
type includes very small amount of instances, this is not enough to evaluate perfor-
mance on classification for this type. So we abandoned it.

ACE training set provides entity mention level and entity type features, we extract
them and generate their feature list. We also add Part-of-Speech feature generated by
Stanford POS tagger [15]. So we finally have five feature lists: word list (after stem-
ming), POS list, mention level list, entity major type list, entity subtype list.

4.2 Experiments Setup

As for the tree kernel classifier, we use Stanford parser [13] to obtain parse tree and
dependency tree, and implemented all reported tree kernels by LibSVM [19].

For all kernels involved, we use same SVM parameters. We have conducted a 5-
fold cross validation. In addition, we also extract 30% out of all training data to be
test set.

4.3 Result

In the results, we report usual evaluation measure, Precision and Recall, comparing
the performance with kernel-based method on unbalanced corpus.

Table 1. Precision, recall, and F-measure for 5-fold cross validation and test set. Here SPK
denotes the Shortest Path Kernel [16], TDK denotes the Typed Dependency Kernel [17], CK
denotes the Context-Sensitive Tree Kernel[18]

 5-fold cross validation Test set

 Precision Recall F1 Precision Recall F1

CNN 0.868 0.875 0.872 0.837 0.839 0.838

SPK 0.821 0.472 0.599 0.803 0.455 0.581

CK 0.812 0.658 0.727 0.796 0.641 0.710

DTK 0.822 0.702 0.758 0.811 0.688 0.744

 Convolution Neural Network for Relation Extraction 239

The CNN outperforms the tree kernel methods by 9 points on F-measure, which is
a significant improvement.

The state-of-the-art tree kernel gives a 74% F-measure, this is to say, kernel func-
tion is a good method to represent relation. But construction of kernel function need
experiential coding for features. This cannot give the kernel function the best repre-
sentation on given task. The performance of CNN on subtypes, tested by 5-fold cross
validation, is showed in Table 2.

Table 2. Theperformance of CNN, SPK and TDK on subtypes

 Precision Recall F1

CNN 0.748 0.748 0.748

SPK 0.743 0.303 0.430

CK 0.759 0.549 0.637

DTK 0.755 0.599 0.668

Table 2 shows CNN has poor performance on subtypes, because 5 types in sub-

types only have less than 20 instances. Obviously, this is not enough to train a clas-
sifier. The F-measures on 3 subtypes are only about 0.1. But when we evaluate per-
formance on subtypes by F1, which considers the amount of different types, avoiding
unbalanced dataset pulling down the performance, the F1 achieved 74.8%, better than
66.8% of DTK. This shows our architecture is effective on relation extraction.

ACE data set do not has enough words to train a word embedding layer for better
semantic information, so we add synonym list in WordNet to provide more semantic
information for words.

To generate synonym coding, we use Synonym List in WordNet 2.1 [14]. There
are 8049 stemmed words in wordlist conducted from training set. After coding, the
size of list reduces to 6741 words.

We compared CNN with synonym coding with CNN without that, performance
showed in Table 3.

This result shows Synonym coding improve the performance by 1.6% than CNN
without Synonym coding. The synonym coding method is proved to be effective here.

Table 3. Performance of CNN with synonym coding and that without synonym coding

 Precision Recall F1

Synonym 0.837 0.839 0.838

Non-Synonym 0.837 0.813 0.825

Variant of window size and feature dimension may influent performance of CNN,

so we conducted another experiments on different wsz and . The results are
showed in table 4.

240 C. Liu et al.

Table 4. Performance on different window size and different feature dimension

 wsz=7 wsz=15 wsz=21

 P R F1 P R F1 P R F1

15 0.769 0.762 0.765 0.823 0.818 0.821 0.835 0.837 0.836

50 0.766 0.785 0.767 0.825 0.822 0.824 0.837 0.839 0.838

100 0.769 0.756 0.762 0.816 0.807 0.812 0.807 0.802 0.804

On variant window size, result shows that larger wsz will get better performance.

This appearance showed difference against dependency kernel, whose effect reduces
unrelated words. In the dependency tree kernels reported in the first experiment, most
of the node number on dependency path is around 5 or 6, smaller than the minimum
wsz in CNN. This phenomenon can be explained by that words in CNN don’t provide
any grammar structure information, leading to no initial weight of words are given.
But in tree kernel methods, words on dependency path indicate these words are more
important than other words. So CNN needs more other words to learn which words
are more effective. Besides, we also observed that the maximum feature dimension
didn’t give a better performance, but the middle one.

We also used other coding table except synonym table, such as, hypernym table
from WordNet. We use three hierarchies to integrate words into their hypernym. The
result shows in table 5.

Table 5. Performance using synonym table and hypernym table

 Precision Recall F1

Synonym 0.837 0.839 0.838

Hypernym-1 0.828 0.822 0.824

Hypernym-2 0.821 0.815 0.817

Hypernym-3 0.819 0.815 0.817

An interesting phenomenon is that as the semantic hierarchy going up, perfor-

mance of CNN gets no enhance. So, we tried to cluster word feature vectors and got
some interesting results.

Table 6. Sample of word clusters

Cluster36 Cluster88

Neichangshan, F-15e,

RigobertoTiglao, Hezbollah

George W. Bush, High Court, Haditha,

Al Anbar

 Convolution Neural Network for Relation Extraction 241

In these three clusters, we can observe three different topics, which is showed by
words’ semantic meaning obviously. Here we spread out some words in cluster. In
cluster1, most of words are about politics. And In cluster2, weapons are listed. In
training processing, lookup table layer learn words vectors by back-propagation. After
training, the words are clustered by their semantic meaning, like hypernym. But these
clusters are more adaptive to the relation extraction task. Adding hypernym could be
regarded as another hard coding comparing with self-learnt clusters. So Adding
hypernym leads to negative effects on classification. Because of the limited corpus
size, we didn’t get more specific clusters, but we observe the trend of self-
organization on semantic meaning.

In conclusion, CNN with Synonym coding give a better performance than the
state-of-the art kernel method.

5 Discussion and Future Work

From the experiments above, we find that CNN have better performance on relation
extraction. Synonym coding method is also an effective coding method to improve
overall performance. Actually, only 16% words in wordlist are coded to synonym
after synonym coding. In this trend, if we use a larger synonym coding list, which can
code more words, the performance may improve.

Moreover, on a conceptual prospective, synonym coding is just a coding method to
reduce input space before project words to vectors. Other coding method or word
selection method can reduce input space too. For example, if we only consider the
words on dependency path, which compose the advantage of dependency tree kernel
with CNN architecture. Our future work will focus on finding more effective coding
method and word selection.

Although CNN give us a better resolution on relation extraction, there are some
problems about CNN architecture we should notice. The architecture doesn’t give us a
guide how to choose the feature dimension. Here in our method, a convolution layer
is included. We also tried using linear layer to find the divergence with convolution
layer. Result shows convolution layer products better performance, but we cannot find
a way to explain this divergence. So for the future work, we will try to find some
theoretical method to explain the differences when using variant layer and find a guild
line to help us determine the feature dimension.

References

1. Grishman, R.: Information Extraction: Capabilities and Challenges. Lecture Notes of 2012
International Winter School in Language and Speech Technologies, Rovirai Virgili Uni-
versity (2012)

2. Kambhatla, N.: Combining lexical, syntactic, and semantic features with maximum entro-
py models for information extraction. In: The Companion Volume to the Proceedings
of 42st Annual Meeting of the Association for Computational Linguistics, vol. 1, pp.
178–181 (2004)

242 C. Liu et al.

3. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. Journal
Machine Learning Research 3, 1083–1106 (2003)

4. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Proceedings
of the 42nd Annual Meeting on Association for Computational Linguistics, pp. 423–430
(2004)

5. Collobert, R., Weston, J.: Fast Semantic Extraction Using a Novel Neural Network Archi-
tecture. In: Proceedings of the 45th Annual Meeting of the Association of Computational
Linguistics, pp. 560–567 (2008)

6. Schwenk, H., Rousseau, A., Attik, M.: Large, pruned or continuous space language models
on a gpu-forstatistical machine translation. In: Workshop on the Future of Language Mod-
eling for HLT (2012)

7. Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep
neural networks with multitask learning. In: ICML 2008 (2008)

8. Grolot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classifica-
tion: A deep learning approach.In ICML 2011 (2011)

9. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value de-
composition. Biological Cybernetics 59, 291–294 (1988)

10. LeCun, Y., Bengio, Y.: Convolutional Networks for Images, Speech, and Time-Series. The
Handbook of Brain Theory and Neural Networks. MIT Press (1995)

11. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A Neural Probabilistic Language Mod-
el. Journal of Machine Learning Research 3, 1137–1155 (2003)

12. Walker, C., Strassel, S., Medero, J., Maeda, K.: ACE 2005 Multilingual Training Corpus.
Linguistic Data Consortium, Philadelphia (2006)

13. Klein, D., Manning, C.: Accurate Unlexicalized Parsing. In: Proceedings of the 41st Meet-
ing of the Association for Computational Linguistics, pp. 423–430 (2003)

14. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
15. Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-Rich Part-of-Speech Tagging

with a Cyclic Dependency Network. In: Proceedings of HLT-NAACL, pp. 252–259
(2003)

16. Bunescu, R., Mooney, R.: Proceedings of the 19th Conference on Neural Information
Processing Systems (NIPS), Vancouver, BC (2005)

17. Reichartz, F., Korte, H., Paass, G.: Semantic Relation Extraction with Kernels Over Typed
Dependency Trees. In: KDD 2010, Washington, DC (2010)

18. Zhou, G., Zhang, M., Ji, D., Zhu, Q.: Tree Kernel-based Relation Extractionwith Context-
Sensitive Structured Parse Tree Information. In: EMNLP 2010, Prague, pp. 728–736
(2007)

19. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)

	Convolution Neural Network for Relation Extraction
	1 Introduction
	2 Related Work
	3 Convolution Network Architecture
	3.1 Word Embedding
	3.2 Basic Architecture
	3.3 General Deep Neural Network Architecture

	4 Experiments
	4.1 Date Set
	4.2 Experiments Setup
	4.3 Result

	5 Discussion and Future Work
	References

