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Abstract. In this paper, we give a new definition of community which is com-
posed of two parts: community core and the periphery. Community core con-
sists of highly densely connected nodes. And we propose LGSM (Local Greedy 
Search Method) for discovering community structures in social networks. 
LGSM sorts node according to weighted degree. For each node, LGSM derives 
a maximal weighted clique as a seed cluster. Then, LGSM adds new nodes into 
the seed cluster until the weighted edge density is smaller than the threshold 
value. After all community cores are detected, LGSM allots isolated nodes to 
the detected cores, and optimizes the community structure based on modularity. 
Our method is an integrative method, which is applicable not only to discover-
ing overlapping communities, but also to discovering non-overlapping commu-
nity. Experiments illustrate that LGSM can achieve good community structure 
on synthetic and real-world networks and the time complexity is O(|E|lg(|V|)). 

Keywords: overlapping, community core, community structure. 

1 Introduction 

Nowadays, researchers have found that many real-world networks possess community 
structure, such as large-scale social networks, Web graphs, and biological networks. 
This implies that the network are naturally partitioned into groups of nodes with dense 
internal connections while sparse connections among groups [1-5]. For example, 
communities in biological networks may imply functional modules [2]; communities 
in a citation network might indicate related papers on a research topic [2] [6], and 
communities in social networks represent people with common interest or background 
[2] [5]. Identifying these sub-structures within a network can provide insight into the 
network’s function and interaction among communities. In real social networks, every 
individual typically belongs to more than one community, such as the community of 
his family, the community of his joining club, the community of his co-workers.  

Figure 1 is a piece of research collaboration network and its community structure 
which is divided into two communities symbolized by circle and square. Each edge is 
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assigned a nonnegative real value to evaluate the strength of the collaboration. And 
we assume the collaboration is closer, the value is greater. Node 3 is engaged in inter-
disciplinary research. In community C1, we find that node 6 is only connected with 
node 2, and the subgraph consisted of node 0, 1, 2, 3, 4 is highly densely connected. 
We regard the subgraph as the core of C1, and Node 6 as the community periphery.  
Node 3 should belong to C1, and C2 community. 

 

Fig. 1. A weighted network G 

Our main contributions are summarized as follows. 
We propose community a new definition that community equals community  

core and community periphery which characterizes different role of nodes in the 
community.   

We design LGSM (local greedy search method) to find the community structure  
in social networks. LGSM is an integrative method, which is applicable not only to 
discovering overlapping communities, but also to discovering non-overlapping  
community. 

Experimental results show that LGSM algorithm outperforms the most recent, effi-
cient technique, towards both community accuracy and efficiency when the communi-
ty structure is well known. By further experiments on synthetic networks, the results 
also show that LGSM method has high scalability on the graph size. 

The rest of the paper is organized as follows. In section 2 we formulize the concep-
tions used in LGSM. In section 3, we describe the algorithms in detail. In section 4, 
LGSM is applied to different benchmark networks and compare its performance with 
several baseline methods. Section 5 introduces the related works. Finally, we sum-
marize our conclusions and suggest future work in section 6. 

2 Preliminaries 

A social network can be modeled by a weighted graph ( , , )G V E ω= , where V is node 
set, E is edge set. The cardinality of V and E are |V| and |E| respectively. An edge 
between nodes u and v is represented by uve .  Edge weight can be represented as a 

function ω: E→R that assigns each edge uve E∈  a value uv(e )ω . In this paper, higher 

uv(e )ω  value means high linking strength between u and v. In Figure 1, the weight of 

edge <2, 1> is 0.5. 
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2.1 Weighted Degree 

The weighted degree of node v, ( )wd v , is defined as the sum of the weights of its 
incident edges [9], represented  in  (1).  (0)wd  is 2.1 in Figure 1.  

 ( ) uv
,

ω(e )
u v E

wd v
< >∈

=      (1) 

2.2 Weighted Edge Density of Subgraph 

A graph ' '' ( , ),G V E ω=  is a subgraph of the graph G if  ' VV ⊆  and 'E E⊆ . The 

cardinality of 'V  is | 'V |. The weighted edge density of  'G   is calculated by (2) [9].  
For example, C is a subgraph containing node 0, 1, 2, 3, 4, ( )WED C  equals 0.33.  

 ( ) ' uv,

' '

2 (e )
' .

( 1)
u v EWED G

V V

ω
< >∈

×
=

× −


 (2) 

2.3 Local Subset, Boundary Subset and Peripheral Subset 

For a given subgraph  'G  of graph G, nodes in G can be partitioned into three parts 
by 'G : Local Subset L, Boundary Subset B and Peripheral Subset U, defined in (3).  

 
{ | '}

{ | ( )( )( ') ( ) ( ') ( )}uv

L v v G

B v u v u G v G v G e E

U G L B

= ∈
= ∃ ∃ ∈ ∧ ∈ ∧ ∉ ∧ ∈
= − −

 (3) 

For subgraph C, L= {0, 1, 2, 3, 4}, B= {5, 6, 7} and U= {8, 9} 

2.4 Internal Weighted Degree 

The internal weighted degree of node v to 'G , ( )in
v subk G , is defined as the sum of 

weights of edges between v and the nodes in 'G , as shown in (4). For subgraph C, 

and node 3, 5, ( )3 0.9ink C = ,  and ( )5 0.4ink C =  

                ( ) uv
'

' (e )in
v

u G

k G ω
∈

=   (4) 

2.5 Community Core 

The community core is a subgraph whose weighted edge density is greater than a 
given threshold. For a threshold α and a subgraph ' '( , ),C V E ω=  , C  is a community 
core if it satisfies (5). 

                ( ) { }( ) . .WED WED C v s t uv E v CC u Cα α≥ ∧ < < >∈ ∧ ∈ ∧ ∉  (5) 
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If we set α 0.3,  ( )WED C  is 0.33 which is greater than α. And if we add node 5 in-

to C, ( ){5}WED C   is 0.25. The WED is smaller than α. So {5}C   is not a commu-

nity core. It is NP-hard problem to find all subgraphs with weighted edge density 
greater than α. LGSM will adopt a heuristic search strategy to find them. 

3 LGSM Method 

3.1 Obtaining Community Core 

LGSM chooses the seed nodes from the social network and uses local search strategy 
to mine community cores from those seed nodes. Seeds are very important for LGSM. 
A clique has been shown to be a better alternative over an individual node as a seed 
[6], [7].  

Firstly, LGSM employs weighted degree to sort nodes. After choosing a node v, 
LGSM derives the max weighted clique from v and its neighbors as seed subgraph. 
Then all nodes in the remainder network are split into three subsets: L, B and U.  

The second step is to expand the seed subgraph to obtain a community core with its 
weighted edge density greater than a given α.  Here we adopt two heuristic search 
rules, (6) and (7), to expand the seed cluster by selecting the appropriate node v from 
B and adding it into the L. 

           ( ) ( ) ,in in
v uk k v uL BL ≥ ∀ ∈  (6) 

 ( ) ( )(1 ) in
v v

exk LkLβ+ ≥  (7) 

Rule (6) makes the edge density of community core may be greater than α. Rule (7) 
makes some nodes to become overlapping nodes if β is greater than 0. If β equals 0, 
LGSM can mine non-overlapping community structure.  

When a community core is found and cannot be enlarged any more. LGSM will 
choose another seed node and repeats above procedure until all community cores are 
discovered. In LGSM, the seed node cannot be regarded as the overlapping node.  

Here we introduce Edge Density Lemma to prove that the searching method is  
effective. 

 
Lemma 1. For a given subgraph ' '' ( , ),G V E ω=  and its boundary subset B, v B∈ , if 

( ) '' | | ( ')in
vk G V WED G≥ × , then { }( ) ( )' 'WED G v WED G∪ ≥

 
. 

The pseudo code of LGSM is shown in PROGRAM LGSM. When LGSM chooses the 
node having maximal internal weighted degree from subset B and adds it into subset L 
during local search, LGSM compares current ( )WED C  with α.  The result includes three 
cases: 1) If ( )WED C  is greater than α. LGSM repeats the above procedure until 

( )WED C  is smaller than threshold α (from 4 to 10 lines). 2) If ( { })WED C v  is smaller 
than α but greater than ( )WED C . LGSM repeats the above procedure until ( )WED C  
reaches maximum value (from 12 to 17 lines). If the maximum value of ( )WED C  is 
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greater than α, LGSM will repeat the procedure until ( )WED C  is smaller than α (from 18 
to 25 lines). 3) If ( { })WED C v  is smaller than α and also smaller than ( )WED C . LGSM 
will stop searching and choose next seed to repeat above procedure.  

Program LGSM 
input:  

Seed Node v  
α: the threshold of weight edge density 
β: overlapping parameter 

Output:  
Community Core C 

(1)begin 
(2)   C= MaxWeightClique(v); 
(3)   Initialize B, U; 
(4)     if ( ( )WED C α≥ ) then 

(5)        v=max( ( )in
vk C ; 

(6)        while ( ( { })WED C v α≥ ) do 

(7)           C = C∪{u}; 
(8)           update B and U; 

(9)           v=max( ( )in
vk C ; 

(10)       end 
(11)    else 

(12)       v=max( ( )in
vk C ; 

(13)       while ( ( { }) ( )WED C v WED C≥ ) do 

(14)          C = C∪{v}; 
(15)          update B and U; 

(16)          v=max( ( )in
vk C ; 

(17)       end 
(18)       if ( ( )WED C α≥ ) then 

(19)          v=max( ( )in
vk C ; 

(20)          while ( ( { })WED C v α≥ ) do 

(21)             C = C∪{v}; 
(22)             update B and U; 

(23)             v=max( ( )in
vk C ; 

(24)          end 
(25)       end 
(26)    end 
(27)  return C 
(28)end 
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Figure 2 illustrates the process of obtaining a community core. In step 1, LGSM 
finds three cliques: C1= {0, 1, 2}, C2= {0, 3, 4}, C3= {0, 1, 4}. But the weight of C1 
is 1.8 greater than C2, and C3.  So LGSM applies C1 as the seed subgraph.   

In step 4, although node 5 satisfies (6) and (7), the edge density is 0.24 after adding 
node 5. LGSM cannot add it into the community core and stop search. 

 

Fig. 2. Obtaining a community core from node 0 in Figure1 with α=0.3, β=0.2 

3.2 Allotting Isolated Nodes 

After all communities are discovered, each isolated node, which does not belong to 
any community core, is allotted to the core which the isolated node has the maximal 
internal weighted degree to. We get the community structure of the network which is 
called the initial partition. 

3.3 Optimizing Community Structure 

LGSM intends to split large community into small communities because LGSM only 
chooses the node matching (6) and (7) during the expanding process. We select the mod-
ularity [2] [5] [7], Q, as the object function to optimize community structure because of its 
practical effectiveness and efficiency. Suppose the initial partition contains s communities, 
and  iC  and jC  (1<=i, j<=s) are two communities, modularity can be calculated by de-

fining modularity matrix e with s dimension. The diagonal elements iie  equal to the sum 

of weight of edges which fall within iC . And ije  is one-half of the weight sums of the 

edges between nodes in  iC  and nodes in jC . Let 
1

 
s

i ij
j

ea
=

= ,be the fraction of edges 

attached to nodes in  iC . Q can be calculated by (8). 

                     2

1
Q ( )ii i

i s

i
e a

=

=
= −  (8) 

If there are no edges between iC  and jC , merging them can never increase Q. We 

need only consider those pair communities having edges between them. The gain in Q 
upon merging two communities is given by (9). 
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 Q =  +  -2  =2( - )ij ji i j ii jja ea ae aeΔ  (9) 

LGSM merges two communities which can achieve the maximal gain of Q until Q 
reaches its maximal value. 

4 Experiments 

In this section, we evaluate LGSM by using synthetic benchmark datasets and four 
real-world datasets. In overlapping community structure, we compare LGSM with 
EAGEL [8], Game [9], and CFinder [10] methods. In non-overlapping community 
structure, we compare with our method with several representative community detec-
tion methods: DA [14], SM [3], and FM [4]. 

In experiment comparison, Normalized Mutual Information (NMI) is adopted to 
evaluate the quality of clusters generated by different algorithms [5] [7], which is 
currently widely used in measuring the performance of community detection algo-
rithms. Given two community structures A and B of the same network G, A is the real 
and B is the detected. Suppose N is the confusion matrix whose element ijN  is the 

number of nodes in both iC  of A and jC of B, then NMI(A, B) is defined in (10), 

where .iN  is the sum over row i of N and . jN  is the sum over column j of N.  

High value of the NMI(A, B) indicates that the detected partition has high similari-
ty with the real one. The two partitions are exactly equivalent if NMI(A,B)=1 while 
the two partitions are definitely different if NMI(A,B) = 0. 

 ( ) . .1 1

. . .1 .1

2 log( | | / )
NMI A,B

log( / | |) log( / | |)

k k

ij ij ji j

k k

i i ji

i

jj

N N V N N

N N V N N V

= =

= =

−
=

+

 
 

 (10) 

LGSM has two parameters α and β. For a given social network G, and a communi-
ty core C, ( )WED C  should be greater than ( )WED G because G is a sparse network. In 
the following experiments, α is set 5 times of ( )WED G . The parameter of β controls 
the numbers of overlapping nodes. β is given a default value 0.2. 

4.1 Experiments on Synthetic Networks with Overlapping Community 
Structure 

Lancichinetti-Fortunato-Radicchi (LFR) algorithm is used to generate benchmark 
graphs [5][6] [7]with overlapping community structure. Some important parameters 
of the benchmark networks are listed in Table 1. 

Two type weighted networks are generated with the number of node |V|=1000 and 
|V|=5000 [6].  By varying the parameters of the networks, we can analyze the beha-
vior of the algorithms in detail. The mixing parameter μ is taken from the range  
{0.1, 0.3}. The average degree is <k> = 10, while the maximum degree is maxk = 50.  
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Table 1. Important Parameters of LFR algorithm 

Parameters Meaning
|V| number of nodes 

<k> average degree of the nodes 
maxk maximum degree 

μ 
mixing parameter, each node shares a fraction<k> of its 

edges with nodes in other communities 
minc minimum for the community sizes 
maxc maximum for the community sizes
ON fraction of overlapping nodes of the whole network 
Om number of memberships of the overlapping nodes 

And community sizes vary between minc = 20 and maxc = 100.  We set ON to be 
10% of the total number of nodes, Om to vary from 2 to 8 indicating the diversity of 
overlapping nodes. For each network, we generated 10 instantiations. We set α= 0.15 
and apply LGSM to find the overlapping community structure.  

 

Fig. 3. Comparison with EAGLE, Game, and CFinder on computer-generated networks. Each 
point corresponds to an average over 100 graph realizations. 

Figure 3 shows the comparison result. LGSM is better than EAGLE [8], Game [9], 
and CFinder [10] in both type networks. As the Om value increases, a node belongs to 
more communities. Then the community structure becomes fuzzy. This makes that the 
algorithm to detect community structure accurately is becoming more and more diffi-
cult. The accuracy of the methods is reducing with the Om value increasing except 
CFinder, which is not stable in |V|=1000.  

 

Fig. 4. The influence of α and β on prediction accuracy of LGSM. The x-axis varies from 2 to 7 
which is the result of αdivided by 0.05. 
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Then we analyze the influence of α and β on prediction accuracy of the LGSM. 
The value of α is set from 2 times of ( )WED G ,  to 7 times of ( )WED G . And β is set 
0.1 to 0.35. The experiment results are shown in Figure 4.From Figure 4, when μ is 
fixed, the value of α and β has little effect on the prediction accuracy of LGSM. The 
prediction accuracy of LGSM is affected by μ more.  

4.2 Experiments on Synthetic Networks with Non-overlapping Community 
Structure 

In this section we analyze the performance of LGSM in detecting non-overlapping 
community structure. If the value of αis set 0, a node can only belong to one commu-
nity. The community structure is non-overlapping. 

In order to compare with existing algorithms better, LFR algorithm is applied to 
generate two weighted undirected networks with the number of nodes |V|=1000 and 
|V|=5000. For each network, three individual networks are generated with 15, 20 and 
25 as average node degree, with μ varying from 0.1 to 0.6 with a span of 0.1.  

DA [14], SM [3], and FM [4] community detection algorithms are chosen as the 
baseline methods. DA is a global optimization method which employs modularity as 
objection function. SM is a classical spectral clustering method to detect community 
structure. FM is a local optimization method which also uses modularity as objection 
function. All these algorithms are free of parameters. The comparison results are 
shown is Figure 5. It can be observed that the accuracy of DA and LGSM is almost 
same, and they are better than SM, and FM.  

 

Fig. 5. Comparison with FM, DA, and SM algorithms on computer-generated networks and 
each point corresponds to an average over 100 graph realizations 

4.3 Experiments on Real-World Networks with Ground Partition 

In this section, LGSM is applied on four real-world networks: “Karate Club Net-
work”, “Dolphin Social Network”, “American College Football”, and “Books about 
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US Politics” [2] [3], which community structure is all known. Table 1 shows the 
comparison result of LGSM, and existing algorithms such as FM, DM, and SA. As 
can be seen, DA gets best results in most of cases. For “Karate Club”, “American 
Football network”, and “Books about US Politics”, the community structure detected 
by LGSM is as good as that detected by DA. 

Table 2. Comparison LGSM, with representative community detection algorithms and each 
cell is is a NMI value corresponding to the deteced community structure and the ground truth 

Algorithm Karate 
Club 

American  College 
Football Dolphins Books about US 

Politics 

LGSM 0.71 0. 87 0.58 0.49 

FM 0.69 0.71 0.53 0.53 

DA 0.69 0.88 0.62 0.56 

SM 0.69 0.70 0.48 0.49 

4.4 Running Time Complexity 

Finally, we analyze the time complexity of our algorithm LGSM. The complexity of 
computing degree is (| | )O V k< >  where <k> is the average neighbor nodes of each 
node. LGSM applies heap sort to rank nodes, so the time complexity of heap sorting 
is (| | lg(| |))O V V .  

Since the network contains |V| nodes, |V| is the maximal number of seed node. 
When a seed is identified, LGSM derive a clique from its one-order-neighbor-
subgraph. Although the time complexity of finding a clique is high, but LGSM only 
find the clique from one-order-neighbor-subgraph. The real time cost actually low and 
ignored here.  

The next step is to build the boundary subset and choose the nodes according to 
their internal weight degree. Since the seed node has K< >  neighbors and each 
neighbor node has  k< > neighbors, the boundary subset contains 2k< >  nodes at 
most. The complexity of choosing node is 2 )(O k< >  . 

After LGSM updating subset B, the complexity is 2 )(O k< > . Because the average 
diameter of a social network is lg(| |)V [1], the average iterative step of LGSM is 
lg(| |)V . The total complexity is 2(2 | | lg(| |) | | lg(| |))O V k V V V< > + . Since 
|V|*<k>=2|E| and the network is a sparse network, the complexity approx-
imates (| | lg(| |))O E V . 

Table 3. Time Complexity 

Algorithm Time Complexity

LGSM (| | lg(| |))O E V  

FM 
O(|V|2)  or  

O(|V|(|V|+|E|)) 

DA 
O(|V|2) or   

O(|V|(|V|+|E|)) 

SM O(|V|3) 
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To illustrate the running time of the proposed algorithms, we generate five net-
works with the number of nodes |V| ranging from 1,000 to 5,000 with <k> as 20. Fig-
ure 8 shows the running time. We observe that LGSM is faster than DA, FM, and SM. 
Furthermore, we generate larger synthetic networks with the number of nodes |V| 
ranging from 10,000 to 50,000 with <k> as 15, 20 respectively. We can find that 
LGSM can process the network of 50,000 nodes within 800 seconds. 

 

Fig. 6. Runing time on synthetic networks 

5 Related Works 

Community detection has become a challenge task which has received a great deal of 
attention in recent years [5] [6] [7]. And many algorithms are put forward, which can 
be divided into two types: non-overlapping, and overlapping.  

Non-overlapping methods. Agglomerative methods merge nodes into a cluster 
according to some criterion such as node similarity [11], while divisive methods re-
move edges from the network until the network is split into clusters based on edge or 
node properties such as betweenness [2] [3]. These methods need to set a condition to 
stop them [3].  

Modularity, denoted as Q, is a benefit function that measures the quality of a par-
ticular division of a network into communities which is put forward by Girvan and 
Newman [3] [7]. And many optimization approaches are proposed to discover com-
munities in a network [12] [13] [14]. Modularity-based methods suffer from time 
complexity [3] [7].  

Overlapping methods. Chen proposed a game-theoretic framework to find over-
lapping community structure, in which a community is associated with a Nash local 
equilibrium [9].  Palla designed CFinder method based on the clique percolation [10]. 
CFinder begins by identifying all cliques of size k in a network. And all k-cliques, 
sharing k-1 nodes, are regarded as overlapping communities. However it also fails to 
terminate in many large social networks. EAGLE uses the agglomerative framework 
to produce a dendrogram [8]. First, all maximal cliques are found and made to be the 
initial communities. Then, the pair of communities with maximum similarity is 
merged. The optimal cut on the dendrogram is determined by the extended modularity 
[7]. And also its time complexity is high. 
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6 Conclusion and Future Work 

In this paper, we partition community into two parts: community core and community 
periphery according to different roles which the nodes play in a community.  And we 
propose a method, LGSM, to detect community structure in weighted social networks. 
This method is not only suitable for overlapping community detection but also for 
non-overlapping community detection. Experiments on synthetic networks and real-
world networks show that LGSM can get better performance and has lower time 
complexity than the benchmark community detection algorithms. Our future work 
will apply LGSM to investigate the local communities in large-scale online networks 
and to use our method to analyze complex networks in various applications. 
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