
H. Motoda et al. (Eds.): ADMA 2013, Part I, LNAI 8346, pp. 109–120, 2013.
© Springer-Verlag Berlin Heidelberg 2013

TKS: Efficient Mining of Top-K Sequential Patterns

Philippe Fournier-Viger1, Antonio Gomariz2, Ted Gueniche1,
Espérance Mwamikazi1, and Rincy Thomas3

1 Department of Computer Science, University of Moncton, Canada
2 Dept. of Information and Communication Engineering, University of Murcia, Spain

3 Department of Computer Science, SCT, Bhopal, India
{philippe.fournier-viger,etg8697,eem7706}@umoncton.ca,

rinc_thomas@rediffmail.com, agomariz@um.es

Abstract. Sequential pattern mining is a well-studied data mining task with
wide applications. However, fine-tuning the minsup parameter of sequential
pattern mining algorithms to generate enough patterns is difficult and time-
consuming. To address this issue, the task of top-k sequential pattern mining
has been defined, where k is the number of sequential patterns to be found, and
is set by the user. In this paper, we present an efficient algorithm for this prob-
lem named TKS (Top-K Sequential pattern mining). TKS utilizes a vertical
bitmap database representation, a novel data structure named PMAP (Prece-
dence Map) and several efficient strategies to prune the search space. An exten-
sive experimental study on real datasets shows that TKS outperforms TSP, the
current state-of-the-art algorithm for top-k sequential pattern mining by more
than an order of magnitude in execution time and memory.

Keywords: top-k, sequential pattern, sequence database, pattern mining.

1 Introduction

Various methods have been proposed for mining temporal patterns in sequence databases
such as mining repetitive patterns, trends and sequential patterns [8]. Among them,
sequential pattern mining is probably the most popular set of techniques. Given a user-
defined threshold minsup and a set of sequences, it consists of discovering all subse-
quences common to more than minsup sequences [1]. It is a well-studied data mining
problem with wide applications such as the analysis of web click-streams, program ex-
ecutions, medical data, biological data and e-learning data [5, 8]. Although many studies
have been done on designing sequential pattern mining algorithms [1, 2, 3, 8], an impor-
tant problem is how the user should choose the minsup threshold to generate a desired
amount of patterns. This problem is important because in practice, users have limited
resources (time and storage space) for analyzing the results and thus are often only inter-
ested in discovering a certain amount of patterns, and fine-tuning the minsup parameter is
time-consuming. Depending on the choice of the minsup threshold, algorithms can be-
come very slow and generate an extremely large amount of results or generate none or
too few results, omitting valuable information. To address this problem, it was proposed
to redefine the problem of mining sequential patterns as the problem of mining the top-k

110 P. Fournier-Viger et al.

sequential patterns, where k is the number of sequential patterns to be found and is set by
the user. The current best algorithm for this problem is TSP [4]. However, in our experi-
mental study, (cf. section 4), we found that it does not perform well on dense datasets.
Therefore, an important research question is could we develop a more efficient algorithm
for top-k sequential pattern mining than TSP? In this paper, we address this research
question by proposing a novel algorithm named TKS (Top-K Sequential pattern mining).
TKS is an efficient top-k algorithm for sequential pattern mining. It uses the same vertical
database representation and basic candidate generation procedure as SPAM [3]. Moreo-
ver, TKS incorporates several efficient strategies to prune the search space and rely on a
novel data structure named PMAP (Precedence Map) for avoiding costly bit vector inter-
section operations. An extensive experimental study with five real datasets shows that (1)
TKS outperforms the state-of-the-art algorithm (TSP) by more than an order of magni-
tude in terms of execution time and memory usage. Moreover, we found that TKS has
excellent performance on dense datasets.

The rest of the paper is organized as follows. Section 2 formally defines the prob-
lem of sequential pattern mining and top-k sequential pattern mining, and presents
related work. Section 3 describes the TKS algorithm. Section 4 presents the experi-
mental study. Finally, Section 5 presents the conclusion and discusses future work.

2 Problem Definition and Related Work

The problem of sequential pattern mining was proposed by Agrawal and Srikant [1]
and is defined as follows. A sequence database SDB is a set of sequences S = {s1, s2…,
ss} and a set of items I = {i1, i2, …, im} occurring in these sequences. An item is a sym-
bolic value. An itemset I = {i1, i2, …, im} is an unordered set of distinct items. For ex-
ample, the itemset {a, b, c} represents the sets of items a, b and c. A sequence is an
ordered list of itemsets s = 〈I1, I2, …, In 〉 such that Ik ⊆ I for all 1 ≤ k ≤ n. For example,
consider the sequence database SDB depicted in Figure 1.a. It contains four sequences
having respectively the sequences ids (SIDs) 1, 2, 3 and 4. In this example, each single
letter represents an item. Items between curly brackets represent an itemset. For in-
stance, the first sequence 〈{a, b},{c},{f},{g},{e}〉 indicates that items a and b occurred
at the same time, were followed successively by c, f, g and lastly e. A sequence sa = 〈A1, A2, …, An〉 is said to be contained in another sequence sb = 〈B1, B2,…, Bm〉 if and
only if there exists integers 1 ≤ i1 < i2 < … < in ≤ m such that A1 ⊆ Bi1 , A2 ⊆ Bi2 , …,
An ⊆ Bin (denoted as sa َ sb). The support of a subsequence sa in a sequence database
SDB is defined as the number of sequences s ∈ S such that sa َ s and is denoted by
sup(sa). The problem of mining sequential patterns in a sequence database SDB is to
find all frequent sequential patterns, i.e. each subsequence sa such that sup(sa) ≥ minsup
for a threshold minsup set by the user. For example, Figure 1.b shows six of the 29
sequential patterns found in the database of Figure 1.a for minsup = 2. Several algo-
rithms have been proposed for the problem sequential pattern mining such as PrefixS-
pan [2], SPAM [3], GSP and SPADE [9].

Problem Definition. To address the difficulty of setting minsup, the problem of se-
quential pattern mining was redefined as the problem of top-k sequential pattern min-
ing [4]. It is to discover a set L containing k sequential patterns in a sequence database

 TKS: Efficient Mining of Top-K Sequential Patterns 111

SDB such that for each pattern sa ∈ L, there does not exist a sequential pattern sb ב L |
sup(sb) > sup(sa). For example, for the database of Figure 1.a and k = 10, the top-k
sequential patterns are 〈{g}〉, 〈{a},{f}〉, 〈{a}〉, 〈{b}, {e}〉, 〈{b}, {g}〉, 〈{a}, {e}〉
and〈{e}〉 with a support of 3, and 〈{b}, {f}〉, 〈{b}〉 and 〈{f}〉, with a support of 4. The
definition of this problem is analogous to the definition of other top-k problems in the
field of pattern mining such as top-k frequent itemset mining [1], top-k association rule
mining [6] and top-k sequential rule mining.

The current state-of-the-art algorithm for top-k sequential pattern mining is TSP [4].
Two versions of TSP have been proposed for respectively mining (1) top-k sequential
patterns and (2) top-k closed sequential patterns. In this paper, we are addressing the
first case. Extending our algorithm to the second case will be considered in future
work. The TSP algorithm is based on PrefixSpan [2]. TSP first generates frequent se-
quential patterns containing a single item. Then it recursively extends each pattern s by
(1) projecting the database by s, (2) scanning the resulting projected database to identi-
fy items that appear more than minsup times after s, and (3) append these items to s.
The main benefit of this projection-based approach is that it only considers patterns
appearing in the database unlike “generate-and-test” algorithms [1, 4]. However, the
downside of this approach is that projecting/scanning databases repeatedly is costly,
and that cost becomes huge for dense databases where multiples projections have to be
performed (c.f. experimental study presented in Section 4). Given this limitation, an
important research challenge is to define an algorithm that would be more efficient
than TSP and that would perform well on dense datasets.

SID Sequences ID Pattern Supp.
1
2
3
4

〈{a, b},{c},{f, g},{g},{e}〉 〈{a, d},{c},{b},{a, b, e, f}〉 〈{a},{b},{f},{e}〉 〈{b},{f, g}〉
 p1

p2
p3
p4
p5
p6…

〈{a},{f}〉 〈{a},{c}{f}〉 〈{b},{f,g}〉 〈{g},{e}〉 〈{c},{f}〉 〈{b}〉
3
2
2
2
2
4

Fig. 1. A sequence database (left) and some sequential patterns found (right)

3 The TKS Algorithm

We address this research challenge by proposing a novel algorithm named TKS. TKS
employs the vertical database representation and basic candidate-generation proce-
dure of SPAM [2]. Furthermore, it also includes several efficient strategies to discov-
er top-k sequential pattern efficiently. The next subsection reviews important concepts
of the SPAM algorithm. Then, the following subsection describes the TKS algorithm.

3.1 The Database Representation and Candidate Generation Procedure

The vertical database representation [3] used in TKS is defined as follows. Let SDB
be a sequence database containing q items and m sequences, where size(i) denotes the
number of itemsets in the i-th sequence of SDB. The vertical database representation
V(SDB) of SDB is defined as a set of q bit vectors of size ∑ ሺ݅ሻ௠௜ୀଵ݁ݖ݅ݏ , such that each

112 P. Fournier-Viger et al.

item x has a corresponding bit vector bv(x). For each bit vector, the j-th bit represents

the p-th itemset of the t-th sequence of SDB, such that ∑ ሺ݅ሻ୫୧୬ ሺ଴,௧ିଵሻ௜ୀଵ݁ݖ݅ݏ < j < ∑ ሺ݅ሻ୲௜ୀଵ݁ݖ݅ݏ and p = j - ∑ ሺ݅ሻ୫୧୬ ሺ଴,௧ିଵሻ௜ୀଵ݁ݖ݅ݏ . Each bit of a bit vector bv(x) is set to 1 if
and only if x appears in the itemset represented by this bit, otherwise, it is set to 0. For
example, the left part of Table 1 shows the bit vectors constructed for each item from
the database of Figure 1.

Table 1. The vertical representation (left) and PMAP data structure (right)

item bit vector item pairs of type <item, support>
a 100001001100000 a <a,1, s> <b,2, s>, <b, 2, i>, <c, 2, s>, <d,1, i>, <e,2, s>,

<e,1, i>, <f,2, s>, <f,1, i>, <g,1, s>
b 100000011010010 b <a,1,s>, <b,1,s>,<c, 1,s>, <e,2,s>, <e,1,i>, <f, 4,s>, <f,

1,i>, <g,2,s>
c 010000100000000 c <a,1,s>, <b,1,s>, <e,2,s>, <f,2,s>, <g,1,s>
d 000001000000000 d <a,1,s>, <b,1,s>,<c,1,s>, <e,1,s>, <f,1,s>
e 000010001000100 e <f,1,i>
f 001000001001001 f <e,2,s>, <g,2,i>
g 001100000000001 g <e,1,s>

The procedure for candidate generation [3] is presented in Figure 2. It takes as para-

meter a sequence database SDB and the minsup threshold. It first scans SDB once to con-
struct V(SDB). At the same time, it counts the support of each single item. Then, for each
frequent item s, it calls the procedure “SEARCH”. This procedure outputs the pattern 〈{s}〉 and recursively explore candidate patterns starting with the prefix 〈{s}〉. The
SEARCH procedure (cf. Figure 3) takes as parameters a sequential pattern pat and two
sets of items to be appended to pat to generate candidates. The first set Sn represents
items to be appended to pat by s-extension. The result of the s-extension of a sequential
pattern 〈I1, I2, …, In 〉 with an item x is 〈I1, I2, …, In, {x}〉 [3]. The second set Sn represents
items to be appended to pat by i-extension. The result of the i-extension of a sequential
pattern 〈I1, I2, …, In 〉 with an item x is 〈I1, I2, …, In ∪{x}〉 [3]. For each candidate pat’
generated by extension, SPAM calculates the candidate’s bit vector bv(pat’) by perform-
ing a modified logical AND (see [3] for details) of the bit vectors associated to pat and
the appended item. The support of the candidate is calculated without scanning SDB by
counting the number of bits set to 1 representing distinct sequences in bv(pat’) [3]. If the
pattern pat’ is frequent, it is then used in a recursive call to SEARCH to generate patterns
starting with the prefix pat’. Note that in the recursive call, only items that resulted in a
frequent pattern by extension of pat will be considered for extending pat’ (see [3] for
justification). Moreover, note that infrequent patterns are not extended by the SEARCH
procedure because of the Apriori property (any infrequent sequential pattern cannot be
extended to form a frequent pattern) [3]. The candidate generation procedure is very
efficient in dense datasets because performing the AND operation for calculating the
support does not require scanning the original database unlike the projection-based ap-
proach of TSP, which in the worst case performs a database projection for each item
appended to a pattern. However, there is a potential downside to the candidate generation
procedure of SPAM. It is that it can generate candidates not occurring in the database.
Therefore, it is not obvious that building a top-k algorithm based on this procedure would
result in an efficient algorithm.

 TKS: Efficient Mining of Top-K Sequential Patterns 113

SPAM(SDB, minsup)
1. Scan SDB to create V(SDB) and identify Sinit, the list of frequent items.
2. FOR each item s ∈ Sinit,
3. SEARCH(〈s〉, Sinit, the set of items from Sinit that are lexically larger than s, minsup).

Fig. 2. The SPAM algorithm

SEARCH(pat, Sn, In, minsup)
1. Output pattern pat.
2. Stemp := Itemp := ׎
3. FOR each item j ∈ Sn,
4. IF the s-extension of pat is frequent THEN Stemp := Stemp ∪{i}.
5. FOR each item j∈ Stemp,
6. SEARCH(the s-extension of pat with j, Stemp , elements in Stemp greater than j, min-
sup).
7. FOR each item j ∈ In,
8. IF the i-extension of pat is frequent THEN Itemp := Itemp ∪{i}.
9. FOR each item j ∈ Itemp,
10. SEARCH(i-extension of pat with j, Stemp , all elements in Itemp greater than j, minsup).

Fig. 3. The candidate generation procedure

3.2 The TKS Algorithm

We now present our novel top-k sequential pattern mining algorithm named TKS. It
takes as parameters a sequence database SDB and k. It outputs the set of top-k sequen-
tial patterns contained in SDB.

Strategy 1. Raising Support Threshold. The basic idea of TKS is to modify the
main procedure of the SPAM algorithm to transform it in a top-k algorithm. This is
done as follows. To find the top-k sequential patterns, TKS first sets an internal min-
sup variable to 0. Then, TKS starts searching for sequential patterns by applying the
candidate generation procedure. As soon as a pattern is found, it is added to a list of
patterns L ordered by the support. This list is used to maintain the top-k patterns found
until now. Once k valid patterns are found, the internal minsup variable is raised to the
support of the pattern with the lowest support in L. Raising the minsup value is used
to prune the search space when searching for more patterns. Thereafter, each time a
frequent pattern is found, the pattern is inserted in L, the patterns in L not respecting
minsup anymore are removed from L, and minsup is raised to the value of the least
interesting pattern in L. TKS continues searching for more patterns until no pattern
can be generated, which means that it has found the top-k sequential patterns. It can
be easily seen that this algorithm is correct and complete given that the candidate
generation procedure of SPAM is. However, in our test, an algorithm simply incorpo-
rating Strategy 1 does not have good performance.

114 P. Fournier-Viger et al.

TKS(SDB, k)
1. R := Ø. L := Ø. minsup := 0.
2. Scan SDB to create V(SDB).
3. Let Sinit be the list of items in V(SDB).
4. FOR each item s ∈ Sinit, IF s is frequent according to bv(s) THEN
5. SAVE(s, L, k, minsup).
6. R := R ∪ {<s, Sinit,. items from Sinit that are lexically larger than s>}.
7. WHILE ∃ <r, S1, S2> ∈ R AND sup(r) ≥ minsup DO
8. Select the tuple <r, S1, S2> having the pattern r with the highest support in R.
9. SEARCH(r, S1, S2, L, R, k, minsup).
10. REMOVE <r, S1, S2> from R.
11. REMOVE from R all tuples <r, S1, S2> ∈ R | sup(r) < minsup.
12. END WHILE
13. RETURN L.

Fig. 4. The TKS algorithm

SEARCH(pat, Sn, In, L, R, k, minsup)
1. Stemp := Itemp := ׎
2. FOR each item j ∈ Sn,
3. IF the s-extension of pat is frequent THEN Stemp := Stemp ∪{i}.
4. FOR each item j∈ Stemp,
5. SAVE(s-extension of pat with j, L, k, minsup).
6. R := R ∪ {< s-extension of pat with j, Stemp, all elements in Stemp greater than j>}.
7. FOR each item j ∈ In,
8. IF the i-extension of pat is frequent THEN Itemp := Itemp ∪{i}.
9. FOR each item j ∈ Itemp,
10. SAVE(i-extension of pat with j, L, k, minsup).
11. R := R ∪ {< the s-extension of pat with j, Stemp , all elements in Itemp greater than j >}.

Fig. 5. The modified candidate generation procedure

SAVE(r, L, k, minsup)
1. L := L∪{r}.
2. IF |L| >k THEN
3. IF sup(r) > minsup THEN
4. WHILE |L| > k AND ∃s ∈ L| sup(s) = minsup, REMOVE s from L.
5. END IF
6. Set minsup to the lowest support of patterns in L.
7. END IF

Fig. 6. The SAVE procedure

Strategy 2. Extending the Most Promising Patterns. To improve the performance
of TKS, we have added a second strategy. It is to try to generate the most promising
sequential patterns first. The rationale of this strategy is that if patterns with high sup-
port are found earlier, it allows TKS to raise its internal minsup variable faster, and
thus to prune a larger part of the search space. To implement this strategy, TKS uses
an internal variable R to maintain at any time the set of patterns that can be extended
to generate candidates. TKS then always extends the pattern having the highest sup-
port first.

 TKS: Efficient Mining of Top-K Sequential Patterns 115

The pseudocode of the TKS version incorporating Strategy 1 and Strategy 2 is
shown in Figure 4. The algorithm first initializes the variables R and L as the empty
set, and minsup to 0 (line 1). Then, SDB is scanned to create V(SDB) (line 2). At the
same time, a list of all items in SDB is created (Sinit) (line 3). For each item s, its
support is calculated based on its bit vector bv(s) in V(SDB). If the item is frequent,
the SAVE procedure is called with 〈s〉 and L as parameters to record 〈s〉 in L (line 4
and 5). Moreover, the tuple <s, Sinit, items from Sinit that are lexically larger than s> is
saved into R to indicate that 〈s〉 can be extended to generate candidates (line 6). After
that, a WHILE loop is performed. It recursively selects the tuple representing the
pattern r with the highest support in R such that sup(r) ≥ minsup (line 7 and 8). Then
the algorithm uses the tuple to generate patterns by using the SEARCH procedure
depicted in Figure 5 (line 9). After that, the tuple is removed from R (line 10), as well
as all tuples for patterns that have become infrequent (line 11). The idea of the
WHILE loop is to always extend the rule having the highest support first because it is
more likely to generate rules having a high support and thus to allow to raise minsup
more quickly for pruning the search space. The loop terminates when there is no more
pattern in R with a support higher than minsup. At this moment, the set L contains the
top-k sequential patterns (line 13).

The SAVE procedure is shown in Figure 6. Its role is to raise minsup and update
the list L when a new frequent pattern r is found. The first step of SAVE is to add the
pattern r to L (line 1). Then, if L contains more than k patterns and the support is
higher than minsup, patterns from L that have exactly the support equal to minsup can
be removed until only k rules are kept (line 3 to 5). Finally, minsup is raised to the
support of the rule in L having the lowest support. (line 6). By this simple scheme, the
top-k rules found are maintained in L.

Note that to improve the performance of TKS, in our implementation, sets L and R
are implemented with data structures supporting efficient insertion, deletion and find-
ing the smallest/largest element. In our implementation, we used a Fibonacci heap for
L and R. It has an amortized time cost of O(1) for insertion and obtaining the mini-
mum/maximum, and O(log(n)) for deletion [9].

Strategy 3. Discarding Infrequent Items in Candidate Generation. This strategy
improves TKS’ execution time by reducing the number of bit vector intersections
performed by the SEARCH procedure. The motivation behind this strategy is that we
found that a major cost of candidate generation is performing bit vector intersections
because bit vectors can be very long for large datasets. This strategy is implemented
in two phases. First, TKS records in a hash table the list of items that become infre-
quent when minsup is raised by the algorithm. This is performed in line 6 of the
SAVE procedure by replacing “REMOVE s from L.” by “REMOVE s from L and IF
s contains a single item THEN register it in the hash map of discarded items”. Note
that it is not necessary to record infrequent items discovered during the creation of
V(SDB) because those items are not considered for pattern extension.

Second, each time that the SEARCH procedure considers extending a sequential
pattern pat with an item x (by s-extension or i-extension), the item is skipped if it is
contained in the hash table. Skipping infrequent items allows avoiding performing

116 P. Fournier-Viger et al.

costly bit vector intersections for these items. Integrating this strategy does not affect
the output of the algorithm because appending an infrequent item to a sequential pat-
tern cannot generate a frequent sequential pattern.

Strategy 4. Candidate Pruning with Precedence Map. We have integrated a second
strategy in TKS to reduce more aggressively the number of bit vector intersections.
This strategy requires building a novel structure that we name Precedence Map
(PMAP). This structure is built with a single database scan over SDB. The PMAP
structure indicates for each item i, a list of triples of the form <j, m, x> where m is an
integer representing the number of sequences where j appears after i in SDB by x-
extension (x ∈ ሼ݅, -ሽሻ. Formally, an item i is said to appear after an item j by sݏ
extension in a sequence 〈A1, A2, …, An〉 if j ∈ Ax and i ∈ Ay for integers x and y such
that 1 ≤ x < y ≤ n. An item i is said to appear after an item j by i-extension in a se-
quence 〈A1, A2, …, An〉 if i, j ∈ Ax for an integer x such that 1 ≤ x ≤ n and j is lexico-
graphically greater than i. For example, the PMAP structure built for the sequence
database of Figure 1 is shown in right part of Table 1. In this example, the item f is
associated with the pair <e, 2, s> because e appears after f by s-extension in two se-
quences. Moreover, f is associated with the pair <g, 2, i> because g appears after f by
i-extension in two sequences. To implement PMAP, we first considered using two
matrix (one for i-extensions and one for s-extension). However, for sparse datasets,
several entries would be empty, thus potentially wasting large amount of memory. For
this reason, we instead implemented PMAP as a hash table of hash sets. Another key
implementation decision for PMAP is when the structure should be built. Intuitively,
one could think that constructing PMAP should be done during the first database scan
at the same time as V(SDB) is constructed. However, to reduce the size of PMAP, it is
better to build it in a second database scan so that infrequent items can be excluded
from PMAP during its construction. The PMAP structure is used in the SEARCH
procedure, which we modified as follows. Let a sequential pattern pat being consi-
dered for s-extension (equivalently i-extension) with an item x. If there exists an item
a in pat associated to an entry <x, m, s> in PMAP (equivalently <x, m, i>) and m <
minsup, then the pattern resulting from the extension of pat with x will be infrequent
and thus the bit vector intersection of x with pat does not need to be done. It can be
easily seen that this pruning strategy does not affect the algorithm output, since if an
item x does not appear more than minsup times after an item y from a pattern pat, any
pattern containing y followed by x will be infrequent. Furthermore, x can be removed
from Stemp (equivalently Itemp).

Optimizations of the Bit Vector Representation. Beside the novel strategies that we
have introduced, optimizations can be done to optimize the bit vector representation
and operations. For example, bit vectors can be compressed if they contain contiguous
zeros and it is possible to remember the first and last positions of bits set to 1 in each
bit vector to reduce the cost of intersection. These optimizations are not discussed in
more details here due to the space limitation.

 TKS: Efficient Mining of Top-K Sequential Patterns 117

Correctness and Completeness of the Algorithm. Since SPAM is correct and com-
plete and Strategy 2, 3 and 4 have no influence on the output (only parts of the search
space that lead to infrequent patterns is pruned), it can be concluded that TKS is cor-
rect and complete.

4 Experimental Study

We performed multiple experiments to assess the performance of the TKS algorithm.
Experiments were performed on a computer with a third generation Core i5 processor
running Windows 7 and 1 GB of free RAM. We compared the performance of TKS
with TSP, the state-of-the-art algorithm for top-k sequential pattern mining. All algo-
rithms were implemented in Java. The source code of all algorithms and datasets can
be downloaded as part of the SPMF data mining framework (http://goo.gl/hDtdt). All
memory measurements were done using the Java API. Experiments were carried on
five real-life datasets having varied characteristics and representing four different
types of data (web click stream, text from books, sign language utterances and protein
sequences). Those datasets are FIFA, Leviathan, Bible, Sign and Snake. Table 2 sum-
marizes their characteristics.

Table 2. Datasets’ Characteristics

dataset sequence
count

distinct item
count

avg. seq. length
(items)

type of data

Leviathan 5834 9025 33.81 (std= 18.6) book
Bible 36369 13905 21.64 (std = 12.2) book
Sign 730 267 51.99 (std = 12.3) sign language

 utterances
Snake 163 20 60 (std = 0.59) protein sequences
FIFA 20450 2990 34.74 (std = 24.08) web click stream

Experiment 1. Influence of the k Parameter. We first ran TKS and TSP on each
dataset while varying k from 200 to 3000 (typical values for a top-k pattern mining
algorithm) to assess the influence of k on the execution time and the memory usage of
the algorithms. Results for k =1000, 2000 and 3000 are shown in Table 3. As it can be
seen in this table, TKS largely outperforms TSP on all datasets in terms of execution
time and memory usage. TKS can be more than an order of magnitude faster than
TSP and use up to an order of magnitude less memory than TSP. Note that no result
are given for TSP for the FIFA dataset when k = 2000 and k = 3000 because it run out
of memory. Figure 2 shows detailed results for the Bible and Snake dataset. From this
figure, it can be seen that TKS has better scalability than TSP with respect to k (de-
tailed results are similar for other datasets and not shown due to page limitation).
From this experiment, we can also observe that TKS performs very well on dense
datasets. For example, on the very dense dataset Snake, TKS uses 13 times less mem-
ory than TSP and is about 25 times faster for k = 3000.

118 P. Fournier-Viger et al.

Table 3. Results for k = 1000, 2000 and 3000

Dataset Algorithm
Execution Time (s) Maximum Memory Usage

(MB)
k=1000 k=2000 k=3000 k=1000 k=2000 k=3000

Leviathan TKS 10 23 38 302 424 569
TSP 103 191 569 663 856 974

Bible TKS 16 43 65 321 531 658
TSP 88 580 227 601 792 957

Sign TKS 0.5 0.8 1.2 46 92 134
TSP 4.8 7.6 9.1 353 368 383

Snake TKS 1.1 1.63 1.8 19 38 44
TSP 19 33 55 446 595 747

FIFA TKS 15 34 95 436 663 796
TSP 182 O.O.M. O.O.M. 979 O.O.M. O.O.M.

Fig. 7. Results of varying k for the Bible and Snake datasets

Experiment 2. Influence of the Strategies. We next evaluated the benefit of using
strategies for reducing the number of bit vector intersections in TKS. To do this, we
compared TKS with a version of TKS without Strategy 4 (TKS W4) and without both
Strategy 3 and Strategy 4 (TKS W3W4). We varied k from 200 to 3000 and measured
the execution time and number of bit vector intersection performed by each version of
TKS. For example, the results for the Sign dataset are shown in Figure 8. Results for
other datasets are similar and are not shown due to space limitation. As it can be seen
on the left side of Figure 8, TKS outperforms TKS W4 and TKS W3W4 in execution
time by a wide margin. Moreover, as it can be seen on the right side of Figure 8,
Strategy 3 and Strategy 4 are effective strategies that greatly reduce the number of bit
vector intersections. Note that we also considered the case of removing without Strat-
egy 2. However, the resulting algorithm would not terminate on most datasets. For
this reason, results are not shown.

0

200

400

0 1000 2000 3000

Ru
nt

im
e

(s
)

k

Bible

0

500

1000

1500

0 1000 2000 3000

M
em

or
y

(m
b)

k

TSP

TKS

0

50

0 1000 2000 3000

Ru
nt

im
e

(s
)

k

Snake

0

200

400

600

800

0 1000 2000 3000M
em

or
y

(m
b)

k

TSP

TKS

 TKS: Efficient Mining of Top-K Sequential Patterns 119

Fig. 8. Influence of the strategies for the Sign dataset

Experiment 3. Influence of the Number of Sequences. We also ran TKS and TSP
on the five datasets while varying the number of sequences in each dataset to assess
the scalability of TKS and TSP. For this experiment, we used k=1000, and varied the
database size from 10% to 100 % of the sequences in each dataset. Results are shown
in Figure 9 for the Leviathan dataset, which provides representative results. We found
that both TKS and TSP shown excellent scalability.

Fig. 9. Influence of the number of sequences for the Leviathan dataset

Fig. 10. Comparison of SPAM and TKS runtime for Leviathan (left) and Snake (right)

Experiment 4. Performance Comparison with SPAM. To further assess the effi-
ciency of TKS, we compared its performance with SPAM for the scenario where the
user would tune SPAM with the optimal minimum support threshold to generate k
patterns (which is very hard for a user, in practice). The results for the Leviathan and
Snake dataset are shown in Figure 10. Results for other datasets are not shown due to
space limitation but are similar. We conclude from the results that the execution time
of TKS is very close to that of SPAM for the optimal support and that TKS shows

0

2

4

6

8

10

0 1000 2000 3000

Ru
nt

im
e

(s
)

k

K

1000K

2000K

3000K

0 1000 2000 3000

In
te

rs
ec

ti
on

 c
ou

nt

k

TKS

TKS W3W4

TKS W4

0

50

100

150

10% 40% 70% 100%

Ru
nt

im
e

(s
)

database size

0

200

400

600

800

10% 40% 70% 100%

M
em

or
y

(m
b)

database size

TSP

TKS

0

10

20

30

40

0 1000 2000 3000

Ru
nt

im
e

(s
)

k

0

1

2

3

0 1000 2000 3000

Ru
nt

im
e

(s
)

k

SPAM

TKS
cooc

120 P. Fournier-Viger et al.

similar scalability to SPAM. This is excellent because top-k sequential pattern mining
is a much harder problem than sequential pattern mining since minsup has to be raised
dynamically, starting from 0 [4, 6, 7, 10],

5 Conclusion

We proposed TKS, an algorithm to discover the top-k sequential patterns having the
highest support, where k is set by the user. To generate patterns, TKS relies on a set of
efficient strategies and optimizations that enhance its performance. An extensive ex-
perimental study show that TKS (1) outperforms TSP, the state-of the art algorithm
by more than an order of magnitude in terms of execution time and memory usage,
(2) has better scalability with respect to k and (3) has a very low performance over-
head compared to SPAM. The source code of TKS as well as all the datasets and
algorithms used in the experiment can be downloaded from http://goo.gl/hDtdt.

References

1. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. Int. Conf. on Data Engi-
neering, pp. 3–14 (1995)

2. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Mining Se-
quential Patterns by Pattern-Growth: The PrefixSpan Approach. IEEE Trans. Knowledge
and Data Engineering 16(10), 1–17 (2001)

3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential PAttern mining using a bitmap re-
presentation. In: Proc. 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD 2002), Edmonton, Alberta, July 23-26, pp. 429–435 (2002)

4. Tzvetkov, P., Yan, X., Han, J.: TSP: Mining Top-k Closed Sequential Patterns. Knowledge
and Information Systems 7(4), 438–457 (2005)

5. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algorithms. ACM
Computing Surveys 43(1), 1–41 (2010)

6. Fournier-Viger, P., Wu, C.-W., Tseng, V.S.: Mining Top-K Association Rules. In: Kosseim, L.,
Inkpen, D. (eds.) Canadian AI 2012. LNCS, vol. 7310, pp. 61–73. Springer, Heidelberg (2012)

7. Kun Ta, C., Huang, J.-L., Chen, M.-S.: Mining Top-k Frequent Patterns in the Presence of
the Memory Constraint. VLDB Journal 17(5), 1321–1344 (2008)

8. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann
Publ., San Francisco (2006)

9. Cormen, T.H., Leiserson, C.E., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn.
MIT Press, Cambridge (2009)

10. Fournier-Viger, P., Tseng, V.S.: Mining Top-K Sequential Rules. In: Tang, J., King, I.,
Chen, L., Wang, J. (eds.) ADMA 2011, Part II. LNCS, vol. 7121, pp. 180–194. Springer,
Heidelberg (2011)

	TKS: Efficient Mining of Top-K Sequential Patterns

	1 Introduction
	2 Problem Definition and Related Work
	3 The TKS Algorithm
	3.1 The Database Representation and Candidate Generation Procedure
	3.2 The TKS Algorithm

	4 Experimental Study
	5 Conclusion
	References

