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9.1  Introduction

The application of the method of dimensionality reduction to adhesive contacts 
between elastic bodies is given by the rule of Heß (Eq. 4.1). However, this rule 
cannot be directly generalized to include contacts between viscoelastic bod-
ies. This can already be seen in the fact that the “separation criterion” from Heß 
contains the modulus of elasticity. The effective modulus of elasticity of elasto-
mers, however, is dependent on the deformation speed or frequency. Therefore, to 
be able to transfer the results of Heß [1] to those of viscoelastic media, a better 
physical understanding of the phenomenon of adhesion is necessary. For this, it is 
helpful to consider a microscopic picture of an adhesive contact. The fundamentals 
of this were already described in Chap. 4. At this point, we will generalize these 
ideas for their application to viscoelastic media.

9.2  Stress Concentration Near the Boundary  
of an Adhesive Contact

We consider an adhesive contact between a rigid flat indenter and an elastic body 
(Fig. 9.1). When the indenter is pulled with an upwards-oriented force F, the fol-
lowing stress distribution develops in the contact area [2]:

with

(9.1)σ = σ0

(

1 −
( r

a

)2
)−1/2

(9.2)
σ0 =

F

2πa2
.
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At the edge near the tip of the crack, for r = a − �r, the distribution has a singu-
larity of the form

As discussed in Chap. 4 and can be seen in the classical works of Griffith [3] and 
Prandtl [4], this singularity is essentially the physical cause for the rupture of the 
adhesive connection between the two bodies. Because the rupture process takes 
place in a very narrow “process zone” near the tip of the crack, only the form of 
the singularity is important for the global equilibrium. The stress distribution far 
from the tip does not play a role. Noteworthy is that the relationship (9.3) does not 
contain the elastic properties of the medium. Therefore, it is also valid for arbi-
trary media with a linear rheology.

In the most simple microscopic examination of an adhesive contact, we can 
think of the bodies as being made of molecules of the characteristic length b. 
Because of the molecular structure, the singularity (9.3) would not exist in reality, 
because the distance to the tip cannot be smaller than the size of the molecules. 
The stress then reaches a high, but finite, maximum on the order of magnitude of

The length b can be interpreted as the size of the “process zone” [5].
The breaking of molecular bonds near the edge of an adhesive contact occurs 

when certain critical values are exceeded. In the elastic case, it does not matter if 
we exceed a critical strain, stress, or work, because all three are distinctly related 
to one another. For the case of elastomers, this is no longer true: For an elasto-
mer, the stress is no longer only a function of strain, but also of the strain rate. 
Depending on which independent value (stress or strain) assumes a critical value, 
we obtain different separation criteria. In this chapter, we discuss two criteria, 
whereby also many other criteria are conceivable. We begin with the case of elas-
tic bodies and later go on to the investigation of viscoelastic bodies.

(9.3)σ = σ0

√

a

2�r
.

(9.4)σmax ≈ σ0

√

a

2b
.
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σ
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Fig. 9.1  a Adhesive contact of an elastic body with a flat indenter; b Enlarged view of the “tip 
of the crack” (the area in immediate vicinity to the edge of the contact)
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9.3  Deformation Criterion

Both the stress and the strain obtain their maximum values in the immediate vicin-
ity of the crack tip—roughly put—within one molecular diameter from the crack 
tip. Thereby, the maximum stress (9.4) leads to a deformation of the material on 
the order of magnitude of

Let us assume that the molecular contact is lost, when the relative displacement of 
the “contacting molecules” in the vertical direction reaches a critical value bc. We 
can then rewrite the approximation (9.5) in the following form:

From this, we obtain the critical value of σ0:

For the adhesion force, we obtain

The maximum vertical displacement of the indenter before separation is given by 
the equation

By defining

(b∗ is the characteristic length on the order of magnitude of the length of a poly-
mer molecule) we bring (9.9) into the form

Note that this equation does not contain the modulus of elasticity; therefore, it also 
valid in the same form for arbitrary media with a linear rheology, as long as the 
assumed deformation criterion for the crack retains its validity. For elastomers in 
the case of the “deformation criterion,” the fracture criterion from Heß (4.1) must 
be replaced by

(9.5)εmax ≈
σmax

E∗ =
σ0

E∗

√

a

2b
.

(9.6)εmax ≈
bc

b
≈

σ0

E∗

√

a

2b
.

(9.7)σ0 ≈
√

2E∗ bc√
ab

.

(9.8)FA = 2πa2σ0 ≈ 2
3/2πE∗bcb−1/2a3/2

.

(9.9)uA =
FA

2aE∗ = 2

1/2πbcb
−1/2

a
1/2

.

(9.10)b∗ = 2π2b2
c/b

(9.11)uA =
√

b∗a.

(9.12)�ℓmax(a) =
√

b∗a.
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9.4  Stress Criterion

Other criteria are also conceivable. For instance, the contact may be lost when the 
tip stress (9.4) reaches a critical value σc:

Because the relationship (9.4) is universally valid for all media with a linear rheol-
ogy, we obtain the adhesion force

For this criterion, the adhesion force is not dependent on the separation speed. 
The Heß criterion (4.1) must be replaced in this case with the requirement that the 
force in the individual springs reaches the critical value

9.5  Adhesive Contacts Without Initial Stress

In this section, we consider a rigid cylindrical indenter with the diameter L, which is 
brought into contact with an elastomer without a normal force in a way that the con-
tacting surfaces adhere. Subsequently, a separation force F(t) is applied. In the one-
dimensional system, a flat profile of the length L is brought into contact with an array 
of viscoelastic elements, defined according to the rules in Chap. 7. In the elastic case, 
the normal force F and the vertical displacement u are related by the equation

For incompressible elastomers, as explained in Chap. 7, this relationship must be 
replaced by the integral relationship

With the help of this equation, we will now discuss the separation process using 
the deformation criterion. If the deformation criterion is valid, the separation will 
always occur upon reaching the critical vertical displacement given by (9.12). It 
is easy to calculate the force exhibited in this state. Let us assume that the speed 
du/dt is zero until the time t = 0 and at this time, it jumps to v0 and remains 
 constant. The force is then given by the equation

(9.13)σmax ≈ σ0

√

a

2b
= σc.

(9.14)FA = 2πa2σ0 = 2
3/2πa3/2b1/2σc.

(9.15)�fz,max = πσc

√
2ab · �x.

(9.16)F = LE∗u.

(9.17)F(t) = 4L

t
∫

−∞

G
(

t − t′
) du

dt′
dt′.

(9.18)F(t) = 4Lv0

t
∫

0

G
(

t − t′
)

dt′ = 4Lv0

t
∫

0

G(ξ)dξ
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and reaches its maximum value at t = uA/v0:

where uA is taken from Eq. (9.11).
We constrict ourselves at this point to the simplest rheology imaginable—that 

of a linearly viscous fluid. The adhesive contact between media that exhibit a more 
complicated rheology will be handled in the problems at the end of this chapter. 
For a linearly viscous medium, Eq. (9.17) can be directly written in the form

For a constant velocity, it is not dependent on time as long as the displacement has 
not reached its critical value (9.11). Therefore, the adhesion force is

It is proportional to the diameter of the contact and to the separation speed. 
This equation is also applicable to pure liquids as long as the capillary effect is 
neglected. Furthermore, cavitation is not taken into account.

9.6 Problems

Problem 1 Determine the force of separation (without initial stress) of a rigid 
cylindrical indenter with the diameter L from a medium that is described by the 
“standard model” (Fig. 9.2). Use the stress and deformation criteria.

Solution 
(a)  Stress criterion. If the stress criterion is applicable, the adhesion force is 

given by Eq. (9.14):

(9.19)FA = 4Lv0

uA/v0
∫

0

G(ξ)dξ ,

(9.20)F(t) = 4Lη
du

dt
.

(9.21)FA = 4Lη
du

dt
.

(9.22)FA = πL3/2b1/2σc.

Fig. 9.2  A simple model 
for an elastomer (“standard 
model”)
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η

9.5 Adhesive Contacts Without Initial Stress
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It is proportional to L3/2 and is dependent on the critical stress and the size 
of the process zone, but not on the separation speed. The dependence of the 
adhesion force on the separation speed is, therefore, an indication that the 
stress criterion is not valid for a flat indenter.

(b)  Deformation criterion. The time-dependent shear modulus for this model is [2]

with τ = η/G2. Insertion into (9.19) results in the adhesion force:

By taking Eq. (9.11) into account, one can write this equation in the following 
explicit form:

By introducing

we can write (9.25) in the form

From this, it is obvious that the separation force is only dependent on the com-
bination of parameters in (9.26). The dependence of the dimensionless force 
fA = FA/

(

23/2L3/2b∗1/2G1

)

 on ζ is presented in Fig. 9.3.
In the curve of the adhesion force function, three domains can be recognized:

I. ζ ≪ G1

G2
. In this case,

is valid. This is the classical result for the adhesion between a rigid cylin-
der and an elastic medium with the shear modulus G1.

II. G1

G2
≤ ζ ≤ 1. In this interval,

(9.23)G(t) = G1 + G2e−t/τ
,

(9.24)

FA = 4Lv0

uA/v0
∫

0

(

G1 + G2e−ξ/τ
)

dξ = 4Lv0

[

G1uA

v0

+ τG2

(

1 − e
− uA

v0τ

)]

= 4G1LuA + 4Lv0η

(

1 − e
− uA

v0τ

)

.

(9.25)FA ≈ 2
3/2LG1

√
b∗L + 4Lv0τG2

(

1 − e
−

√
b∗L

21/2v0τ

)

.

(9.26)ζ =
21/2v0τ√

b∗L
,

(9.27)FA ≈ 2
3/2L3/2b∗1/2

(

G1 + G2ζ

(

1 − e
− 1

ζ

))

.

(9.28)FA ≈ 2
3/2L3/2b∗1/2G1

(9.29)FA ≈ 4Lηv0



137

is valid, which may be expected, as the system behaves like a linearly vis-
cous fluid here and satisfies Eq. (9.21).

III. 1 ≪ ζ. In this domain,

is valid. This is the same relation as (9.28), but with a different shear modulus.

Let it be noted that in interval II, the adhesion force is not dependent on the exact 
microscopic fracture criterion, but only on the viscosity of the medium. The limit-
ing case of a simple viscoelastic body (Kelvin body) is obtained from the general 
expression (9.25) by inserting G2 → ∞. The result is

Because the viscosity exhibits a strong temperature dependence, one may expect 
that in the intermediate interval of separation speeds, the adhesion force increases 
with a decrease in temperature.

Problem 2 A rigid cylinder with the diameter L is pressed into a viscoelastic 
medium described by the “standard model” (Fig. 9.2) with the normal force FN 
and, after a long settling time, pulled away with the speed v0. Determine the adhe-
sion force by using the stress and deformation criteria.

Solution 
(a) Stress criterion. In using the stress criterion, Eq. (9.22) remains valid: The 

adhesion force is the same as the case without initial stress.
(b) Deformation criterion. During the indentation phase, the material reacts 

completely elastic after a long settling time, with the shear modulus G1. 
The indenter presses into the material to a depth of

(9.30)FA ≈ 2
3/2L3/2b∗1/2(G1 + G2)

(9.31)FA ≈ 2
3/2L3/2b∗1/2G1 + 4Lηv0.

Fig. 9.3  Dependence of 
the dimensionless force 
fA = FA/

(
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separation speed ζ for the 
case of an elastomer, which 
is described by the standard 
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Instead of Eq. (9.18), a modified equation must be used:

F(t) is a monotonically increasing function in time: The force increases until the 
fracture criterion (9.12) is reached:

From this, the separation time t̃ can be determined:

Consequently, the adhesion force in the general case is

Substitution of the time-dependent shear modulus for the standard model (9.23) 
results in

I. If v0τ ≪ d1 +
√

b∗L/2, then

and the adhesion force is independent from the indentation force.

II. If v0τ ≫ d1 +
√

b∗L/2, then

In this interval, the adhesion force increases linearly with the indentation force. Let it be 
noted that the boundaries of this interval are dependent on the indentation force itself.

(9.32)
d1 =

FN

4LG1

.

(9.33)F(t) = −FN + 4Lv0

t
∫

0

G
(

t − t′
)

dt′ = −FN + 4Lv0

t
∫

0

G(ξ)dξ .

(9.34)u = −d1 + v0t = uA =
√

b∗L/2.

(9.35)t̃ =
d

1
+ uA

v
0

=
d

1
+

√
b∗L/2

v
0

.

(9.36)FA = −FN + 4Lv0

d1+
√

b∗L/2

v0
∫

0

G(ξ)dξ .

(9.37)

FA = −FN + 4Lv0

d1+
√

b∗L/2

v0
∫

0

(

G1 + G2e−ξ/τ
)

dξ

= 4LG1

√

b∗L/2 + 4Lv0τG02

(

1 − e
− d1+

√
b∗L/2

v0τ

)

.

(9.38)FA ≈ 4LG1

√

b∗L/2 + 4Lv0η

(9.39)FA ≈ FN

G2

G1

+ 4L
√

b∗L/2(G1 + G2).
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Equation (9.37) can be written in the form

where, in addition to the relation (9.26), we have inserted the dimensionless force fA:

and the dimensionless initial force f :

The dependence of (9.40) is presented in Fig. 9.4. While the adhesion force for small 
separation speeds is not dependent on the indentation force, it can be increased sig-
nificantly by the indentation force for sufficiently large separation speeds.

Problem 3 A conical indenter (Fig. 9.5) is pressed into a linearly viscous elasto-
mer to a depth of d0 and subsequently pulled up. Using the deformation criterion 
for the crack, determine the dependence of the contact radius on the indentation 
depth d.

Solution The form of the cone is described by the equation f (r) = tan θ · r. The 
corresponding scaling factor is κ1 = π/2, so that the resulting equivalent one-
dimensional profile is g(x) = (π/2) tan θ · |x|. If the indenter is pressed to a depth 

(9.40)fA ≈ 1 +
G2

G1

ζ

(

1 − e
− 1+f

ζ

)

,

(9.41)fA =
FA

23/2b∗1/2L3/2G1

(9.42)f =
FN

23/2b∗1/2L3/2G1

.

Fig. 9.4  Dependence of 
the dimensionless adhesion 
force on the dimensionless 
speed for four values of the 
dimensionless indentation 
force f = 0; 0.1; 1; 10 and 
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of d0 and then pulled out to a depth of d, then the vertical displacement of the 
foundation at point x is given by

Using the deformation criterion (9.11), we calculate the contact radius a by requir-
ing that uz(a) = −uA:

Introducing

and

we rewrite Eq. (9.44) in the form

From this, we obtain the contact radius

Separation occurs at d̃ = −b̃/4. Thereby, the contact radius is a = b̃/4. Let it be 
noted that this result is independent from the elastic (or rheological) properties and 
is valid for a medium of arbitrary rheology (as long as the deformation criterion is 
valid for the crack).

Problem 4 Discuss the influence of roughness in the case of the contact with a 
linearly viscous medium (Kelvin body).

Solution Assume that the spectrum of the roughness exhibits a cut-off at qmin ≫ 2π/L 
(see more in Problem 2 in Chap. 10). We denote the root mean square of the roughness 
as h. In this case, the contact length is approximately proportional to the normal force

as long as it remains smaller than the system size L, at which point it remains constant:

(9.43)uz(x) = d − (π/2) tan θ · |x|.

(9.44)d − (π/2) tan θ · a = −
√

b∗a.

(9.45)
d̃ =

d

(π/2) tan θ

(9.46)
b̃ =

b∗

(π/2)2 tan2 θ
,

(9.47)d̃ − a = −
√

b̃a.

(9.48)a =
(

d̃ +
b̃

2

)

+

√

√

√

√

d̃b̃ +
(

b̃

2

)2

.

(9.49)Lcont ≈
FN

Gh
,

(9.50)Lcont = L.
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If the indenter is now pulled off quickly, then the force is given predominantly by 
the viscous term (9.29):

For subcritical normal forces, the adhesion force is then

with τ = η/G. For supercritical forces, it is

independently from the indentation force and the roughness. This coincides with 
the adhesion force of a smooth indenter.
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