
115

8.1 � Thermal Conductivity and Resistance

Thermal conductivity is a decisive parameter for the sizing of heat sinks for semi-
conductors or for other elements in electronic circuits. It is defined as

where Q is the heat flux through the element and δT  is the difference in tempera-
ture between both ends. Alternately, the thermal resistance RW is used, which is 
simply the inverse of the thermal conductivity:

The heat flux density �q in an isotropic continuum is proportional to the temperature 
gradient:

where � is the specific thermal conductivity.
The change in temperature in a homogenous medium is described by the heat 

equation

in which ρ is the density and c is the specific heat capacity of the medium. Using 
the thermal diffusivity α = �/ρc, Eq. (8.4) can also be written in the form

(8.1)�W = Q

δT
,

(8.2)RW = 1

�W

= δT

Q
.

(8.3)�q = −�∇T ,

(8.4)ρc
∂T

∂t
= −div �q = ��T ,

(8.5)
∂T

∂t
= α�T .
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In the steady-state case, the temperature distribution must satisfy the Laplace 
equation

the solution of which is the next topic of discussion for various boundary condi-
tions. The results will directly show that also heat conductivity problems can be 
exactly solved within the framework of the method of dimensionality reduction. 
The mappability is not only limited to the thermal conductivity or resistance, but 
rather includes also local parameters, such as the temperature distribution on the 
surface.

8.2 � Temperature Distribution for a Point Heat Source  
on a Conductive Half-Space

We consider a point heat source Q on an isotropic half-space, as shown in Fig. 8.1. 
With the exception of the location of the point source, let the entire surface be ide-
ally insolated (adiabatic) and at an infinite distance, the temperature T0 is reached. 
With these thermal boundary conditions, the solution to the steady-state conduc-
tion problem (see, for example [1]) is

On the surface of the half-space (z = 0), the resulting temperature distribution is

A relationship equivalent to (8.8) appears also in the elastic problem, which was 
shown by Francis [2], among others. The normal surface displacement of an elas-
tic half-space caused by a normal force at the origin is [3]

(8.6)�T = 0,

(8.7)δT(R) := T(R) − T0 = Q

2π�R
with R :=

√

x2 + y2 + z2.

(8.8)δT(r) := T(r) − T0 = Q

2π�r
with r :=

√

x2 + y2.

(8.9)ūz(r) = 1 − ν2

πE

FN

r
.

Fig. 8.1   Point heat source Q 
on a homogeneous half-space 
with the thermal diffusivity α



117

Following this analogy and the interpretation of (8.8) and (8.9) as Green’s func-
tions of the corresponding problem, arbitrary heat flux density distributions q(x, y) 
on the surface of the half-space present no difficulties. In place of the explicit cal-
culation of the integral

we can call on the solution of the (equivalent) elastic problem and transfer this 
directly to the heat transfer problem. For this, we need only undertake the follow-
ing reassignments:

where q(x, y) is the component of the heat flux density that is normal to the sur-
face. Figure 8.2 shows an example of a constant heat flux density (isoflux) on a 
circular area with the radius a. Determining the corresponding temperature distri-
bution on the surface is the goal of Problem 5.

Let it be mentioned that the equivalence is limited to the surface and is not 
valid for the field within the media. This does not, however, affect the heat flux Q 
through the surface, which is calculated by integrating the heat flux density over 
the surface:

In the elastic problem, this is the role of the normal force, which is similarly 
defined as the integral of the normal stress.

It is known from Chap. 3 that every axially-symmetric elastic contact problem 
can be mapped exactly to a one-dimensional model. Due to the existing equiva-
lence between the heat transfer and the elastic contact, characterized by the reas-
signments in (8.11), the dimensionality reduction must also be valid for these 
problems.

(8.10)δT(x, y) = 1

2π�

∫∫

A

q(x̃, ỹ)
√

(x − x̃)2 + (y − ỹ)2

dx̃ dỹ,

(8.11)p(x, y) �→ q(x, y), ūz(x, y) �→ δT(x, y), and E/

(

1 − ν2
)

�→ 2�,

(8.12)Q :=
∫

A

q(x, y)dA.

Fig. 8.2   Constant heat flux density from a circular area of radius a into the half-space; cross-
sectional view in the x–z plane (left), top view (right)

8.2  Temperature Distribution for a Point Heat Source...

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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8.3 � The Universal Dependence of Thermal Conductivity 
and Contact Stiffness

If two half-spaces are in an ideal thermal contact by means of a circular area with 
the radius a and the temperature difference between the two is δT  at an infinite dis-
tance, then the entire steady-state heat flux through the contact area is

and the conductivity of the contact is [1] 

Here, �1 and �2 denote the specific thermal conductivity of the two half-spaces 
and we can summarize �∗ as a type of effective specific thermal conductivity. 
Comparing this to the contact stiffness of a circular contact with the radius a,

shows that there exists the following relationship between the thermal conductivity 
and contact stiffness:

Both properties are proportional to the characteristic length of the contact. Interestingly, 
the validity of Eq. (8.16) goes much beyond the circular contact. It is, likewise, valid for 
individual contacts with arbitrarily formed isothermal contact areas and even remains 
unchanged for the contact between rough surfaces (Sevostianov and Kachanov [4],  
Barber [5]). This universal relation has a very important meaning, because with its help, 
one must not investigate both the thermal and elastic behavior of a contact separately. 
Contact stiffness and thermal conductivity are connected in a simple way.

It is generally known that thermal conduction and electrical conduction are 
equivalent problems. If a constant electric potential difference U is applied at a 
sufficiently large separation distance over the contact between two half-spaces, 
then a steady-state electric current flows through the contact area. If we once again 
assume a circular ideal contact (without impurities), then the entire current must 
flow through this constriction, which is characterized by the so-called constriction 
resistance RE and can be interpreted as the contact resistance. The entire electrical 
current  I through the equipotential contact area is

and the corresponding constriction resistance is

(8.13)Q = 4a�
∗δT

(8.14)�W := Q

δT
= 4a�

∗
with

1

�∗ = 1

�1

+ 1

�2

.

(8.15)kz := dFN

dδ
= 2aE∗

,

(8.16)�W = 2�
∗

E∗ kz.

(8.17)I = 4a

ρ1 + ρ2

U

(8.18)RE := U

I
= ρ1 + ρ2

4a
,
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where ρ1 and ρ2 are the specific resistances of the two bodies. If instead of the 
resistances in Eq. (8.18), we use the inverse of the (specific) electrical conductivi-
ties, this leads to the electrical contact conductivity

Completely identically to the thermal contact, the electrical conductivity is pro-
portional to the contact length. Except for the form factor, the proportionality is 
also valid for contact areas of other forms as well as multiple micro-contacts suf-
ficiently far from one another. For the latter, the contact length is the sum of the 
characteristic diameters for the so-called a-spots  [6].

Of course, the conductivity for arbitrary contacts can also be determined from 
the incremental contact stiffness, because Eq.  (8.16) remains absolutely valid 
when replacing the thermal properties by the analogous electrical properties.

8.4 � The Implementation of the Steady-State Current Flow 
Within the Framework of the Reduction Method

The contact stiffness of arbitrary axially-symmetric bodies and rough contact is 
correctly mapped using the method of dimensionality reduction. A simple way for 
calculating the thermal and electrical conductivity of a (rough) contact consists of 
first determining the contact stiffness using the method of dimensionality reduc-
tion and subsequently calculating the conductivity using Eq. (8.16). Alternatively, 
we can look at every element of the linearly elastic foundation as having a (spe-
cific) conductivity of

The latter is imperative, when mapping contacts with arbitrary thermal or electri-
cal boundary conditions.1 Due to the analogy with the elastic problem in the form 
of the reassignments in Eq. (8.11), both the global relations and the local parame-
ters on the surface can be correctly mapped. According to Eq. (8.11), the thermal 
flow density q(r) takes over the role of the normal stress σzz and temperature, the 
role of the normal surface displacement.

As an example, we want to investigate the thermal contact between two half-
spaces. At an infinite distance, there exists a temperature difference of δT . The 
non-contacting surface is adiabatic and the contact area has a radius of a. We 
would like to determine the heat flux Q, the thermal resistance RW , and the distri-
bution of the heat flux density q within the contact area. In the three-dimensional 

(8.19)�E := I

δV
= 4a�

∗
E with

1

�
∗
E

= 1

�E1

+ 1

�E2

.

(8.20)∆Λ = 2�
∗ · �x.

1  In the following, we constrict ourselves to the mapping of thermal contacts, because these can 
be directly transferred to electrical contacts.

8.3  The Universal Dependence of Thermal Conductivity and Contact Stiffness
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problem, there is a so-called isothermal contact area. This means that every point 
on the contact area has the same temperature. The equivalent elastic problem is 
the indentation of a flat cylinder, the equivalent profile of which remains the same. 
This leads to the fact that the temperature in all of the elements of the foundation 
is the same and also that the heat flux through every element �Q is independent of 
the coordinate:

The flux density  j (per unit length in the one-dimensional system) is equal to

and the entire flux is found by integration of the one-dimensional flux density over 
the contact area:

which corresponds to the three-dimensional result (8.13). The same is true for the 
thermal resistance

Analogously to the elastic contact, we can calculate the three-dimensional heat 
flux density q(r) by using the Abel transformation (3.37) of the one-dimensional 
flux density j(x):

In the present case of a constant, one-dimensional flux density according to (8.22), 
the integral on the right-hand side of (8.25) disappears so that only the three-
dimensional flux density remains:

Also this result corresponds exactly to the three-dimensional distribution. In the 
thermal contact considered, we assume an isothermal contact surface. In the case 
of an axially-symmetric, spatial temperature distribution, we must transfer the 
three-dimensional to a one-dimensional temperature distribution. The respective 
transformation takes place in the familiar way (3.27):

(8.21)�Q(x) = ∆Λ · δT(x) = 2�
∗ · �x · δT .

(8.22)j(x) = �Q(x)

�x
= 2�

∗ · δT

(8.23)Q :=
a

∫

−a

j(x)dx = 2

a
∫

0

2�
∗δT dx = 4a�

∗δT ,

(8.24)RW := δT

Q
= 1

4a�∗ .

(8.25)q(r) := − 1

π

1

r

d

dr

a
∫

r

x · j(x)√
x2 − r2

dx = − 1

π

a
∫

r

j′(x)√
x2 − r2

dx + 1

π

j(a)√
a2 − r2

.

(8.26)q(r) = 1

π

2�
∗δT√

a2 − r2
.

(8.27)
δT1D(x) = δT3D(0) + |x|

|x|
∫

0

δT ′
3D(r)√

x2 − r2
dr.

http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_3
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The constant term on the right-hand side disappeared in the equivalent elastic 
problem by choosing the appropriate coordinates,2 the second term expresses the 
same relationship as that in Eq. (3.27). As it will be seen in the next section, the 
inverse question is also interesting: How can we determine the three-dimensional 
temperature distribution from the one-dimensional distribution? Referring to [7], 
the inverse transformation is

In the mentioned literature, the transformation is given as well as the physical 
interpretation that allows for the calculation of the one-dimensional flux density 
distribution from the three-dimensional distribution:

We would like to clarify its application using a simple example. In this example, 
we assume that a stable constant thermal flux density is given on the surface of the 
half-space within a circle of radius a (see Fig. 8.2) of

and the rest of the surface is adiabatic. We want to find the one-dimensional flux 
density and the one-dimensional and three-dimensional temperature distribution. 
When taking Eq. (8.30) into account, Eq. (8.29) provides the one-dimensional flux 
density

which of course leads to the entire flux of the original contact after integrating 
over the contact length:

In the one-dimensional model, the temperature of the element is proportional to 
the flux density at that point (Eq. 8.22). For this example, it is

2  The point of the indenter is the origin of the coordinate system used for the indenter profile.

(8.28)δT3D(r) = 2

π

r
∫

0

δT1D(x)√
r2 − x2

dx.

(8.29)j(x) = 2

a
∫

x

r · q(r)√
r2 − x2

dr.

(8.30)q(r) = q0 for 0 < r < a,

(8.31)j(x) = 2

a
∫

x

rq0√
r2 − x2

dr = 2q0

√

a2 − x2,

(8.32)Q =
a

∫

−a

j(x)dx = 4q0

a
∫

0

√

a2 − x2 dx = 4q0a2

π/2
∫

0

cos
2 ϕ dϕ = q0πa2

.

(8.33)δT1D(x) = 1

2�∗ j(x) = q0

�∗
√

a2 − x2.

8.4  The Implementation of the Steady-State Current…

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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With the help of Eq. (8.28), it follows that

for which the complete elliptical integral of the second kind is shortened to E. 
Comparing this to the expressions found in literature [8] verifies it to be correct. 
Further applications of the transformation formulas are handled in the problems at 
the end of this chapter.

8.5 � Heat Generation and Temperature in the Contact  
of Elastic Bodies

Until now, we have only investigated cases with no relative motion between the 
bodies. Furthermore, steady-state thermal states have been assumed. We would 
like to continue to respect the latter, but now allow for relative motion between the 
bodies. For this, we consider a stationary point source Q under which a half-space 
moves with a constant speed of v in the x-direction; this is sketched in Fig. 8.3.

While the x, y, z coordinate system is stationary, the x̃, ỹ, z̃ system moves with 
the body. To describe the temperature distribution (measured in the stationary sys-
tem), the Laplace Eq. (8.6) must be supplemented by a convective term:

the steady-state solution of which is [1] 

(8.34)

δT3D(r) = 2q0

π�∗

r
∫

0

√

a2 − x2

√

r2 − x2
dx = 2q0a

π�∗

π/2
∫

0

√

1 − (r/a)2 sin2 ϕ dϕ = 2q0a

π�∗ E

(

r

a

)

,

(8.35)�T = v

α

∂T

∂x
,

(8.36)δT(x, y, z) = T(x, y, z) − T0 = Q

2π�R
e

−v(R−x)
2α with R :=

√

x2 + y2 + z2.

Fig. 8.3   Stationary point 
source under which a half-
space moves at a constant 
speed of v in the x-direction
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In order to calculate the temperature distribution for a distributed thermal flux den-
sity of the surface, Eq. (8.36) must be used as Green’s function. This is especially 
essential for the investigation of frictional contacts, for which the (entire) frictional 
energy is transformed into heat. However, this is only necessary for one part of the 
solution. For the body on which the stationary frictional position is located, we 
can simply use the solution for the stationary case (8.7). Only in the special case 
of very low speeds or very small Péclet numbers

can we add the approximation for the other body and, therefore, take advantage of 
all equivalencies for the entirety of both surfaces (a is the contact radius). We will 
constrict ourselves in the following to such cases.

We will now consider a frictional contact with the frictional coefficient µ, 
for which the contact partners move with a relative speed of v with respect to 
one another. For the heat generated on the contact surface, the following is 
valid:

for which p(x, y) denotes the normal stress distribution and FN , the normal force 
distribution. The heat flows into both half-spaces respectively according to

The distribution between the two sometimes causes difficulties, because the 
weighted function β is generally dependent on x and y in order not to violate the 
continuity of the temperature within the contact area [9]. We circumvent the prob-
lem by assuming that one of the contacts is non-conductive, so that the entire heat 
flows into the other body. We would now like to determine the temperature dis-
tribution on the surface of this body by using the reduction method; its specific 
thermal conductivity is �. We consider an element of the linearly elastic founda-
tion with the coordinate x that is indented by uz(x). The known force acting on 
this element is then fN = E∗�x · uz(x). The frictional power of the element is 
�Q(x) = µνfN (x) = µvE∗�x · uz(x), for which the resulting temperature differ-
ence of the element is

The temperature difference for the three-dimensional model at the point r on the 
surface within the contact area can be obtained using Eq. (8.28). The temperature 
can be calculated even outside of the contact surface. For this, we must simply 
change the upper boundary of the integral in Eq. (8.28):

(8.37)Pe := va

2α
≪ 1,

(8.38)q(x, y) = µvp(x, y) ⇒ Q = µvFN ,

(8.39)q1(x, y) = β · µvp(x, y) and q2(x, y) = (1 − β) · µvp(x, y).

(8.40)δT1D(x) = �Q(x)

2� · �x
= E∗

2�
µ · v · uz(x).

(8.41)δT3D(r) = 2

π

a
∫

0

δT1D(x)√
r2 − x2

dx for r > a.

8.5  Heat Generation and Temperature in the Contact of Elastic Bodies
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Applying this classical transformation to the classical example of a parabolic frictional 
contact is the topic of Problem 1. It is possible that the reader may not see the ben-
efits of the method of dimensionality reduction compared to other methods because of 
the complicated transformations. Therefore, we would like to emphasize the fact that 
the reduction method maps global parameters such as normal force, indentation depth, 
contact area/length, total heat flow rate, and maximum surface temperature as well the 
contact stiffness and resistance seemingly effortlessly and exactly. These relationships 
are at the forefront of the investigation of rough contacts. If only information about 
local parameters is of interest, then this can also be reconstructed using the transfor-
mation rules from the one-dimensional model.

8.6 � Heat Generation and Temperature in the Contact  
of Viscoelastic Bodies

Heat can not only be generated on the surface, but also directly in the material of 
the contacting bodies, assuming that they exhibit viscoelastic properties. One can 
qualitatively approximate the temperature distribution as follows. Let us consider an 
element in a viscoelastic foundation at the point x and assume that it is deformed in 
the vertical direction with the speed u̇z(x, t). Thereby, the force produced is given by

for which an incompressible material is assumed (see Chap. 7).
The heat generation in the element is

If we interpret this heat generation as that produced in the frictional contact, then 
we obtain the temperature in the element according to (8.40):

As an example, we consider a simple viscoelastic medium (Kelvin body). In this 
case, the normal force is given by

and the temperature by

(8.42)fN (x, t) = 4�x

t
∫

0

G(t − t′)u̇z(x, t′)dt′,

(8.43)�Q(x, t) = fN (x, t) · u̇z(x, t) = u̇z(x, t) · 4�x

t
∫

0

G(t − t′)u̇z(x, t′)dt′.

(8.44)δT1D(x, t) = �Q(x, t)

2�∗ · �x
= 2

�∗ u̇z(x, t)

t
∫

0

G(t − t′)u̇z(x, t′)dt′.

(8.45)fN (x, t) = (4Guz(x, t) + 4ηu̇z(x, t))�x

(8.46)δT1D(x, t) = 2

�∗ (Guz(x, t) + ηu̇z(x, t))u̇z(x, t).

http://dx.doi.org/10.1007/978-3-642-53876-6_7
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The temperature is, therefore, dependent on the time and can generally either 
increase or decrease (adiabatic cooling).

8.7  Problems

Problem  1  A non-conducting, rigid body with a smooth surface slides over an 
elastic half-space with a parabolically curved surface of radius R with a speed of 
v0. The modulus of elasticity E, Poisson’s ratio ν, and the thermal conductivity � 
of the half-space are given. Determine the temperature distribution of the surface of  
the half-space using the reduction method and assuming steady-state conditions.

Solution  We have already solved the purely elastic problem multiple times and 
carry over several intermediate results. After converting the three-dimensional pro-
file to a one-dimensional equivalent profile using the rule of Popov and calculating 
the indentation depth into a linearly elastic foundation, we obtain the displacement 
in the one-dimensional system:

for which the relationship between the indentation depth d and the normal force 
FN is given by the Hertzian relation FN = 4

3
E∗R1/2d3/2. According to (8.40), this 

leads to the one-dimensional temperature difference

Insertion of (8.48) into (8.28) results in the three-dimensional distribution of the 
surface temperature within the contact area:

By using the Hertzian relationship between normal force and contact radius and 
taking (8.38) into account, we obtain

(8.47)uz(x) = d − x
2

R
with d = a

2

R
,

(8.48)δT1D(x) = E∗

2�
µ · vo · uz(x) = E∗

2�
µ · vo ·

(

d − x2

R

)

with E∗ = E

1 − ν2
.

(8.49)

δT3D(r) = 2

π

r
�

0

δT1D(x)√
r2 − x2

dx = µvoE∗

π�R

r
�

0

a2 − x2

√
r2 − x2

dx

= µvoE∗

π�R



a2
arcsin

�x

r

�
�

�

�

r

0
+ x

�

r2 − x2

�

�

�

r

0
− r2

π/2
�

0

cos
2 ϕ dϕ



.

= µvoE∗

4�R

�

2a2 − r2
�

(8.50)δT3D(r) = 3Q

16�a3

(

2a2 − r2
)

for 0 < r < a.

8.6 � Heat Generation and Temperature in the Contact of Viscoelastic Bodies
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We obtain the distribution outside of the contact area from (8.41). Because the for-
mula differs from that valid in the contact area only by the upper bound of the 
integral, we can simply carry over the antiderivative in (8.49). After rearrange-
ment, we obtain

The reader may be convinced of the validity of the results by the usage of equiva-
lency [2].

Problem 2  Determine the thermal resistance of the contact from Problem 1. 
Assume a one-dimensional model.

Solution  The thermal resistance, as defined in (8.2), presumes an isothermal 
contact that is not present here. Therefore, we refer here to the maximum surface 
temperature that is present in the middle of the contact. This takes the role of the 
indentation depth in the elastic contact, where the indentation depth is the same for 
both the one-dimensional and three-dimensional models. Therefore, the maximum 
temperature in the middle of the contact is also the same in both models. From 
(8.48), we obtain

and with it, the thermal resistance

This result initially appears to conflict with the universal formula (8.16), because 
this would result in

This is indeed the thermal resistance for a round contact, however, this relationship 
is only (!) valid for isothermal contact areas. Even redefining the thermal resist-
ance with respect to the average temperature instead of the maximum temperature 
does not help. In this case, the thermal resistance is

although the deviation is not very large. The proportionality to the contact length 
is of course always present.

Problem  3  A half-space with a parabolically curved surface having a radius 
of curvature of R is pressed into a second half-space with a flat surface. Before 

(8.51)δT3D(r) = 3Q

8π�a3

[(

2a2 − r2
)

arcsin

(a

r

)

+ a
√

r2 − a2

]

for r > a.

(8.52)δTmax = δT1D(0) = E∗µvoa2

2�R
= 3Q

8�a

(8.53)RW := δTmax

Q
= 3

8�a
.

(8.54)RW := E∗

2� · kz

= E∗

2� · 2E∗a
= 1

4�a
.

(8.55)
δT3D

Q
= 9

32�a
,
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contact, the bodies exhibit the temperatures T1 and T2. Upon bringing the bodies 
together, a heat flux flows through the contact area. If the temperatures far from 
the contact surface are held constant, then a steady-state flow will occur after 
some time. Let it be mentioned that the contact area is isothermal and temperature 
related deformations are neglected. Calculate the dependence of the thermal resist-
ance on the normal force in the case of an elastic contact, which is qualitatively 
shown in Fig. 8.4.

Solution  We can solve the elastic problem and heat conduction problem sepa-
rately with the help of the method of dimensionality reduction. The solution of the 
elastic problem can be found in Chap. 3. The dependence of the normal force on 
the contact radius was

For a round contact with an isothermal contact area Eq. (8.14) is valid with which 
we further express the conductivity by means of the resistance:

We have also already derived this relationship with the reduction method. By 
solving (8.56) with respect to the contact radius and inserting this into (8.57), we 
obtain the desired dependence:

In conclusion, let it be noted that for the complete plastic contact, the result is

Problem 4  Determine the total current, the constriction resistance, and the current 
density distribution for the electrical contact between two half-spaces with the spe-
cific resistances ρ1 and ρ2 within a circular area (radius a). It should be assumed 
that far from the contact, there exist equipotential surfaces within the half-spaces 
having a difference in potential of U. Furthermore, determine the radius b of the 
partial contact area through which half of the total current flows.

(8.56)FN (a) = 4

3
E∗ a3

R
with

1

E∗ = 1 − ν2
1

E1

+ 1 − ν2
2

E2

.

(8.57)RW = 1

4a�∗ with
1

�∗ = 1

�1

+ 1

�2

.

(8.58)RW = (E∗)1/3

�∗(48RFN )1/3
∼ F

−1/3

N .

(8.59)FN ∼ a2 ⇒ RW ∼ F
−1/2

N
.

Fig. 8.4   Qualitative 
presentation of a Hertzian 
contact with steady-state heat 
conduction
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Solution  We have already discussed the equivalent heat conduction problem in 
Sect. 8.4. First, we reduce the electrical contact between two bodies to the steady-
state flow through one body whose effective specific conductivity is

Between the circular equipotential surface, and another at infinity (or at a suffi-
ciently large distance), there exists the potential difference U. Because a con-
stant three-dimensional potential difference exists, no modification whatsoever is 
needed and it can be carried over to the one-dimensional system. Every element 
in the linearly elastic foundation obtains the specific conductivity ∆Λ = 2�

∗ · �x 
and the following partial current flows through each:

By summation of the partial currents through all of the elements in the foundation, 
we obtain the total current:

and from this, the constriction resistance

The three-dimensional distribution of the flux density within the contact area is  
calculated using (8.25), which is trivial due to the constant one-dimensional 
current density:

Of course, all results correspond to those in the three-dimensional problem. For 
this solution of the supplemental problem, we may not assume a one-dimensional 
current density, but must use the determined three-dimensional current density. For 
this, we integrate (8.64) over the three-dimensional contact area with the upper 
radial boundary b and require that the result corresponds to half of the current:

Elementary integration and a few rearrangements lead to

(8.60)�
∗ = 1

ρ1 + ρ2

.

(8.61)�I(x) = ∆Λ · δV(x) = 2�
∗ · �x · U.

(8.62)I =
a

∫

−a

2�
∗δV(x) dx = 4a�

∗U

(8.63)RE := U

I
= 1

4a�∗ = ρ1 + ρ2

4a
.

(8.64)q(r) = 1

π

2�
∗U√

a2 − r2
= I

2πa

1√
a2 − r2

.

(8.65)
I

2πa

b
∫

0

r√
a2 − r2

2πdr
!= I

2
.

(8.66)b = 1

2

√
3 a ≈ 0.866 a.
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Although the radius b divides the surface by the ratio 3:1, meaning that the outer 
ring is only a quarter of the total area, half of the total current flows through it.

Problem 5  Determine the temperature distribution on the surface as well as the 
thermal resistance for the conduction problem (isoflux) shown in Fig. 8.2. Use the 
analogy to the elastic problem, the solution of which is considered to be known. 
According to this, the loading of an elastic half-space by a constant stress p over a 
circular area with the radius a leads to the following normal surface displacements 
(see, for example [3]):

where K and E are the complete elliptical integrals of the second kind:

Solution  According to Eq. (8.11), we must only replace the displacement with the 
temperature, the normal stress with the heat flux density, and the effective modulus 
of elasticity with double the conductivity:

In order to calculate the thermal resistance, we need the maximum surface tem-
perature. This is given in the center and has a value of

where we have taken E(0) = π/2 into account. The resulting thermal resistance is 
then
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