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7.1 � Introduction

Rubber and other elastomers play a large role in many tribological applications. 
They are used where large frictional forces or large deformations are needed. 
These materials are especially used for tires, transportation rollers, shoes, seals, 
rubber bands, in electronic devices (e.g., contacts for keyboards) as well as appli-
cations for adhesion. When compared to purely elastic contacts, the calculation 
of elastomer contacts is made more difficult by the fact that they exhibit a time-
dependent behavior, which is also normally characterized by a large spectrum of 
relaxation times. The correct mechanical description must, therefore, take several 
orders of magnitude in characteristic times into account. The multi-scalar proper-
ties of the surface roughness are supplemented here by the multi-scalar character 
of the relaxation of the material, which makes the numerical simulation of elasto-
mers especially complicated. It is, therefore, important to develop fast simulation 
methods for the calculation of contact and frictional properties for this class of 
materials. In this chapter, we will show how the method of dimensionality reduc-
tion can be generalized to contacts of elastomers with arbitrary linear rheology.

In the first section, we remind the reader of the fundamental definitions that are 
necessary for the description of elastomers, for which we follow the presentation 
of [1]. The general process is then explained using the very simple special case of 
a linearly viscous material for the purposes of understanding. Only afterwards, we 
will continue to the treatment of general viscoelastic materials. The detailed deri-
vations can be found in Chap. 19.

Chapter 7
Contacts with Elastomers
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7.2 � Stress Relaxation in Elastomers

We consider a rubber block, which is loaded under shear stress (Fig.  7.1). The 
shear angle is denoted by ε.1 If the block is deformed quickly by the shear angle of 
ε0, then the stress increases initially to a high level σ(0) and then relaxes slowly to 
a much lower level of σ(∞) (Fig. 7.2b). For elastomers, σ(∞) can be three to four 
orders of magnitude smaller than σ(0). The ratio

is denoted as the time-dependent shear modulus. It is easy to see that this func-
tion completely describes the mechanical properties of a material, provided that 
the material behaves linearly. Let us assume that the block is deformed accord-
ing to an arbitrary function in time ε(t). An arbitrary dependence ε(t) can always 
be presented as the sum of temporally shifted step functions, as shown schemati-
cally in Fig.  7.3. An elementary step function in this presentation at the time t′ 
has the amplitude dε(t′) = ε̇(t′)dt′. The corresponding stress component is 
dσ = G(t − t′)ε̇(t′)dt′, and the total stress at every point in time is, therefore, 
calculated as

Equation  (7.2) shows that the time-dependent shear modulus can be understood 
as a weighted function with deformation changes in the past leading to current 
changes in the stress. Due to this, G(t) is sometimes called the memory function.

If ε(t) changes harmonically:

then a periodic change in the stress with the same frequency is reached after a 
transient period. The relationship between the changes in deformation and stress 
can be very easily presented if the real function cos(ωt) is presented as the sum of 
two complex exponential functions:

Due to the superposition principle, one can first calculate the stresses that are 
caused by the complex oscillations

1  Let it be stressed that the defined value ε is equal to two times the shear component of the 
deformation tensor.

(7.1)G(t) = σ(t)

ε0

(7.2)σ(t) =
t

∫

−∞
G(t − t′)ε̇(t′)dt′.

(7.3)ε(t) = ε̃ cos(ωt),

(7.4)cos(ωt) = 1

2

(

eiωt + e−iωt
)

.

(7.5)ε(t) = ε̃eiωt and ε(t) = ε̃e−iωt .
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Subsequently, these may be summed. If we insert ε(t) = ε̃eiωt into (7.2), then we 
obtain a stress of

By substituting ξ = t − t′, we bring the integral into the following form:

(7.6)σ(t) =
t

∫

−∞
G(t − t′)iωε̃eiωt′dt′.

(7.7)σ(t) = iωε̃eiωt

∞
∫

0

G(ξ)e−iωξ dξ

Fig. 7.1   Shear deformation of a rubber block. ε0 is the shear angle

t t

(a) (b)

Fig. 7.2   If a rubber block is quickly deformed at time t = 0 by ε0, then the stress increases ini-
tially to a high level and then relaxes with time to a much lower stress

Fig. 7.3   Presentation of a 
time-dependent function as 
a superposition of multiple 
temporally displaced step 
functions

t

t
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or

For a harmonic excitation in the form of a complex exponential function eiωt, the 
stress is proportional to the deformation. The proportionality coefficient

is generally a complex value and is called the complex shear modulus. Its real 
component G

′(ω) = Re Ĝ(ω) is called the storage modulus, and its imaginary 
component G′′(ω) = Im Ĝ(ω) is called the loss modulus. Further details as to the 
definition and measurement methods of the time-dependent shear modulus and the 
complex shear modulus can be found in the book [1].

7.3 � Application of the Method of Dimensionality Reduction 
in Viscoelastic Media: The Basic Idea

If the indentation or slip speed for the dynamic loading of an elastomer is lower than 
the lowest speed of sound (which is related to the smallest relevant modulus of elastic-
ity), then the contact can be considered to be quasi-static. If this condition is met and 
an area of the elastomer is excited with an angular frequency of ω, then the material 
exhibits a linear relationship between stress and deformation, and therefore, between 
force and displacement. Thereby, the medium can be considered to be an elastic body 
with the effective shear modulus of G(ω). All theorems that are valid for elastic bodies 
must also be valid for harmonically excited viscoelastic media. More importantly, the 
incremental stiffness is proportional to the diameter of the contact area, which forms 
the mathematical basis for the applicability of the method of dimensionality reduction. 
Because of this, an elastomer can be mapped to a one-dimensional system, for which 
the individual springs can be chosen according to (3.5):

The only difference to the elastic contact is the fact that the effective modulus of 
elasticity is now a function of frequency. Elastomers can be often considered to be 
incompressible media. In this case, ν = 1/2 and

In the case of rubber, the stiffness of the individual “springs” of the linearly elastic 
foundation is equal to four-fold the shear modulus multiplied by the discretiza-
tion step size. In the one-dimensional equivalent system, we obtain the following 
spring force for a harmonic excitation:

(7.8)σ(t) = Ĝ(ω)ε̃eiωt = Ĝ(ω)ε(t).

(7.9)Ĝ(ω) = iω

∞
∫

0

G(ξ)e−iωξ dξ

(7.10)�kz = E∗�x.

(7.11)�kz = E∗(ω)�x = E(ω)

1 − ν2
�x = 2G(ω)

1 − ν
�x ≈ 4G(ω)�x.

(7.12)fN (x, ω) = E∗(ω)�x · uz(x, ω) ≈ 4G(ω)�x · uz(x, ω).

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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The reverse transformation into the time domain results in the force law

In the next section, we will explain this general, but somewhat formally described, 
idea by using the simplest example of the linearly viscous medium. We discuss 
how the viscoelastic contact problem can be reduced to the elastic contact problem 
and, subsequently, how this can be mapped to a one-dimensional system.

7.4 � Radok’s Method of the Functional Equations

In 1955, Lee [2] published a method for solving viscoelastic contact problems by 
reducing them to elastic problems. This procedure is advantageous because con-
tacts between elastic bodies are comparatively simpler to solve and the solution to 
many problems can already be found in many textbooks. The procedure was later 
generalized by Radok [3] and entered the literature as the principle of the func-
tional equations.

The basic idea of the method is conceivably simple. Beginning with a given 
viscoelastic problem, the material properties are replaced by those of an elas-
tic body. However, all other influences, such as geometric configuration, remain 
unchanged. Subsequently, the elastic problem is solved. One obtains the solution 
to the viscoelastic problem by once again replacing the elastic properties in the 
elastic solution by the viscoelastic properties. This substitution takes place in the 
Laplace domain and takes the most effort. The entire algorithm is presented sche-
matically in Fig. 7.4.

We will explain the procedure by using a concrete example. Let us consider a 
linearly viscous, incompressible body with the viscosity η, which is also large 

(7.13)fN (x, t) = 4�x

t
∫

−∞
G(t − t′)u̇z(x, t′)dt′.

Viscoelastic
contact problem

Replacing the
material
properties

Solution of the
viscoelastic
problem

Laplace - domain

?

Replacing the
material
properties

Solution of the
elastic problem

comparable
elastic problem

Fig. 7.4   Principle of the functional equations (schematic presentation)

7.3  Application of the Method of Dimensionality …
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enough that the half-space approximation is valid. The body is loaded on the sur-
face by a constant point-loaded normal force. How will the surface of the body be 
deformed? The comparable elastic problem is simply the loading of a linearly 
elastic, incompressible half-space by a constant normal force. The solution to the 
problem can be found in many textbooks on elasticity theory or contact mechanics 
(e.g., [4] or [1]). If G is the shear modulus, FN is the normal force, and r is the dis-
tance to the point of force application, then the normal displacement of the surface 
can be given by the expression2

This equation is the solution to the comparable elastic problem. The solution now 
undergoes a Laplace transformation. For the description of the viscoelastic prob-
lem, contrary to elastic problems, it is necessary to specify the history of the nor-
mal force. We assume that the force begins loading at the time t = 0 and is then 
constant with the magnitude FN:

where

is the Heaviside function. The application of the Laplace transformation, the 
replacement of the material properties, and the reverse transformation are carried 
out in Chap. 19. We obtain the following surface deformation as the solution to the 
viscous contact problem:

If one differentiates (7.17) with respect to time, the velocity is obtained with 
which the surface is deformed in response to the external force:

If we consider (7.18) as a solution and compare this with that of the elastic prob-
lem, then it is easy to recognize how the two equations are related. Apparently, 
the elastic solution (7.14) switches to the viscous solution (7.18) when the shear 
modulus G is replaced by the shear viscosity η and the deformation u, by the defor-
mation velocity u̇. We would like to stress that the transition to this form is only 
valid for linearly viscous materials using the force law (7.15). Figure 7.5 presents 
this process schematically.

2  Let us once again remember that we are dealing with an incompressible, viscous medium; 
therefore, the corresponding elastic medium is also incompressible and it is assumed that 
ν = 1/2.

(7.14)u(r) = FN

4πGr
.

(7.15)F(t) = FN H(t),

(7.16)H(t) =
{

1, t > 0

0, t < 0

(7.17)u(r, t) = FN t

4πηr
.

(7.18)u̇(r) = FN

4πηr
.

http://dx.doi.org/10.1007/978-3-642-53876-6_19
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One could also derive Eq.  (7.18) without the Laplace transformation directly 
from the following analogy. The deformation of the surface of an elastic body is 
uniquely determined due to the equilibrium equation

as well as the stress distribution on the surface. In this equation, the first Lamé 
coefficient is � = 2νG/(1 − 2ν) [4]. The corresponding “equilibrium equation” 
for the creeping flow of a linearly viscous fluid (Navier-Stokes equation without 
the inertial term) is [5]

By integrating this equation once with respect to time and assuming that the 
medium is in a non-deformed state at time t = 0, we obtain

With the exception of the constants, this equation corresponds identically with 
Eq. (7.19) for an elastic continuum. If a displacement now occurs in a particular 
contact area, then the displacement fields in the elastic and viscous case will be 
identical.3 This implication is exact and is not only valid for a linearly viscous 
fluid, but also for a medium with an arbitrary linear rheology. It was Lee and 
Radok that first came to this conclusion and based upon this, developed the study 
of contact mechanics of viscoelastic media [2].

(7.19)G��u + (� + G)∇(∇ · �u) = 0

(7.20)η��̇u + (ξ + η)∇(∇ · �̇u) = 0.

(7.21)η��u + (ξ + η)∇(∇ · �u) = 0.

3  We stress, thereby, that we use the “non-penetration” boundary conditions and gravitation and 
capillary effects are completely neglected.

viscous contact
problem

viscous half-space

elastic half-space

Replacing the
material
properties

r

F

r
F

viscous solution

elastic solution

u (r) =
FN

4

r
u (r) =

FN

4 G

r ?

comparable
elastic problem

Replacing the
material
properties

Fig.  7.5   Solution of the viscous contact problem with Radok’s principle of the functional 
equations

7.4  Radok’s Method of the Functional Equations
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If we are additionally looking for the relationship between the forces and dis-
placements, then we must take into account the fact that the stress in an elastic 
continuum is a linear function of the gradient of the displacement field �u, while 
in a fluid, it is a linear function of the gradient of the velocity field �̇u. The fact that 
the equilibrium equations and the expressions for stress have the same form means 
that all relations that are valid for the relationship between force and displacement 
for a given stress distribution in the case of an elastic body are also valid for force 
and velocity in the case of a fluid. From this, it directly follows that the solution 
(7.18) for the velocity field in a fluid is obtained from the solution (7.14) for the 
displacement in an elastic continuum by replacing u → u̇ and G → η.

7.5 � Formulation of the Reduction Method for Linearly 
Viscous Elastomers

In this section, the results thus far will be used to demonstrate the application of 
the reduction method on elastomers. As in the previous section, the procedure will 
be first shown using a concrete example, the indentation of a rigid indenter into a 
linearly viscous incompressible half-space. The comparable elastic problem was 
closely examined in the previous chapter using the reduction method for an elas-
tic half-space. The elastic half-space is mapped to a chain of independent linear 
spring elements, whose stiffness is

where incompressibility has already been taken into account. The corresponding 
force law for the ith element of the linearly elastic foundation is

This equation can be seen as the solution of the comparable elastic problem. It 
must now be transferred to the viscous solution by replacing the material proper-
ties. The detour by way of the Laplace transformation is not necessary here. We 
can, as in the previous section, simply conduct the substitution u → u̇, G → η in 
Eq. (7.23) and obtain the solution

Obviously, this describes the force law of a linear damper with a damping coef-
ficient of

The geometry of the indenter must be scaled as in the elastic case [6].
With this, the following may be summarized. The formulation of the reduction 

method for a linearly viscous material is obtained from that of the elastic mate-
rial by replacing the springs by dampers with a damping coefficient of �dz. In 
Fig. 7.6, the procedure is schematically presented.

(7.22)�kz = 4G�x,

(7.23)fN ,i = 4G�x · uz,i.

(7.24)fN ,i = 4η�x · u̇z,i.

(7.25)�dz = 4η�x.
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Transferring this to a real viscoelastic material model (i.e., with viscous and 
elastic components) is done completely analogously and will be shortly explained 
in the next section and in detail in Chap. 19. In this case, the springs in the elas-
tic formulation are replaced by spring–damper combinations, whose mathematical 
description can be obtained by replacing the material parameters in the Laplace 
domain.

7.6 � The General Viscoelastic Material Law

In the previous sections, we have referred to the very simple special case of a lin-
early viscous material. The reason for this is the simplicity of the procedure and 
the clarity of the results. In this section, we show the results for the general case of 
an isotropic viscoelastic material. The exact derivations can be found in Chap. 19. 
The behavior of elastomers can be described by the relationships between defor-
mation and stress with respect to compression

and shear

(7.26)σii(t) =
t

∫

0

K(t − t′)ε̇ii(t
′)dt′

(7.27)sik(t) = 2

t
∫

0

G(t − t′)ėik(t
′)dt′,

Fig. 7.6   Formulation 
of the reduction method 
for a linearly viscous 
incompressible material Reduction

method

F

viscous

F Radok

Reduction

method
elastic

7.5  Formulation of the Reduction Method for Linearly Viscous Elastomers

http://dx.doi.org/10.1007/978-3-642-53876-6_19
http://dx.doi.org/10.1007/978-3-642-53876-6_19
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whereby we have denoted the shear component of the stress tensor with eik, in 
order to differentiate it from the previously introduced shear angle ε. The functions 
K(t) and G(t) are the corresponding relaxation functions. In Chap. 19, it will be 
shown how contacts with materials having this behavior can be solved using the 
reduction method. The springs in the linearly elastic foundation are replaced with 
elements having the characteristic

for which L−1 is the inverse Laplace transformation.4 If the problem is limited to 
incompressible viscoelastic media (the compression modulus K is set to infinity), 
then the expression simplifies to

which agrees with Eq. (7.13).

7.7 � Problems

Problem 1  The face (radius a) of a rigid, smooth cylindrical indenter is pressed 
into a linearly viscous half-space (viscosity η) with a constant force FN (Fig. 7.7). 
Determine the indentation velocity and the indentation depth δ as a function of 
time with the help of the reduction method.

Solution  The equivalent one-dimensional indenter is a rectangle with a width of 
2a pressed into a chain of independent dampers. The distance between the damp-
ers is �x and the damping coefficient is �dz = 4η�x. The external force is evenly 
distributed over the dampers so that every damper experiences a force of

With this, all dampers are compressed with the velocity

The indentation depth is obtained by integrating with respect to time and is equal to

(7.28)

fN (t) = 4�x

t
∫

0

V(t − t′)u̇z(t
′)dt′, V(t) := L

−1

{

G∗(s)(K∗(s) + G∗(s))
K∗(s) + 4G∗(s)

}

,

4  The details of the notation are explained in detail in Chap.19.

(7.29)fN (t) = 4�x

t
∫

0

G(t − t′)u̇z(t
′)dt′,

(7.30)f = �x

2a
FN .

(7.31)δ̇ = f

�dz

= FN

8aη
.

http://dx.doi.org/10.1007/978-3-642-53876-6_19
http://dx.doi.org/10.1007/978-3-642-53876-6_19
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Equation (7.31) can be obtained directly from the comparable elastic problem

if the indentation depth and shear modulus are replaced by the velocity and shear 
viscosity in the result for the comparable elastic problem [1] (compare Chap. 17, 
Eq. 17.28):

It is easy to see that the equation is valid for an arbitrary-axially symmetric indenter 
as well a is considered to be the instantaneous value for the contact radius:

Problem 2  A rigid cone is pressed into a linearly viscous half-space (viscosity η) 
with a constant force FN (Fig. 7.8). Determine the indentation depth as a function 
of time with the help of the reduction method.

Solution  The surface of the cone can be described by the equation

The equivalent one-dimensional system (as described in Sect. 3.2) is

(7.32)δ(t) = FN t

8aη
.

(7.33)FN = 8Gaδ

(7.34)FN = 8ηaδ̇.

(7.35)FN (t) = 8ηa(t)δ̇(t).

(7.36)f (r) = tan θ · |r|.

(7.37)g(x) = π

2
tan θ · |x|.

Fig. 7.7   Indentation of a 
cylindrical indenter into a 
viscous half-space

a

Fig. 7.8   Indentation of a 
cone into a viscous half-space

7.7  Problems

http://dx.doi.org/10.1007/978-3-642-53876-6_17
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If the indenter is pressed to a depth of δ, then the vertical displacement of the foun-
dation at point x is given by uz(x) = δ − (π/2) tan θ · |x|. The contact radius is cal-
culated by requiring that uz(a) = 0, resulting in

Equation (7.35) is also valid in this case. By inserting (7.38) into this equation, we 
obtain

Separating the variables and integrating with the initial condition δ(0) = 0 results 
in

The indentation depth as a function of time is then described by the equation

Problem 3  A rigid axially-symmetric paraboloid is pressed into a half-space (vis-
cosity η) with a constant force FN (Fig. 7.9). Determine the indentation speed and 
indentation depth with the help of the reduction method.

Solution  The surface of the paraboloid is described by the equation

The one-dimensional indenter is a parabola that (according to Sect. 3.2) is scaled 
by a factor of 2:

If the indenter is now pressed to a depth of δ, then the contact radius is

(7.38)a = 2

π

δ

tan θ
.

(7.39)FN = 16η

π tan θ
δδ̇.

(7.40)FN t = 8η

π tan θ
δ2.

(7.41)δ(t) =
√

π tan θ

8

FN

η
t.

(7.42)f (r) = r2

2R
.

(7.43)g(x) = x2

R
.

(7.44)a =
√

Rδ.

Fig. 7.9   Indentation of an 
axially-symmetric paraboloid 
into a viscous half-space

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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In this case, the force is also found using Eq.  (7.35). Inserting (7.44) into (7.35) 
results in

Integration with the initial condition δ(0) = 0 results in

The indentation depth as a function of time is then

Differentiating with respect to time results in the indentation speed as a function of 
time:

This result is the exact solution to the corresponding three-dimensional problem 
and is also able to be derived without using the reduction method [7].

Problem 4  A rigid conical indenter is pressed into a viscoelastic (Kelvin body 
with the shear modulus G and the viscosity η) half-space with a constant force FN. 
Find the dependence of the indentation depth on time.

Solution  The equivalent one-dimensional indenter is given by Eq. (7.37) and the 
contact radius by Eq.  (7.38) (it is not dependent on the rheological properties of 
the medium). To determine the force, we must now use the superposition of the 
elastic component (Eq. 3.44)

and the viscous component (Eq. 7.39):

This equation can be written in the form

where τ = η/G is the relaxation time of the medium. Integration with the initial 
condition δ(0) = 0 results in

(7.45)FN = 8ηR1/2δ1/2δ̇.

(7.46)FN t = 16

3
ηR1/2δ3/2.

(7.47)δ =
(

3FN t

16ηR1/2

)2/3

.

(7.48)δ̇ = 2

3

(

3FN

16ηR1/2

)2/3

t−1/3.

(7.49)FN ,el = 8G

π

δ2

tan θ

(7.50)FN = 8G

π

δ2

tan θ
+ 16η

π tan θ
δδ̇.

(7.51)
π tan θ · FN

8G
= δ2 + 2τδδ̇ = δ2 + τ

d
(

δ2
)

dt
,

(7.52)δ2(t) = π tan θ · FN

8G

(

1 − e−t/τ
)

.

7.7  Problems

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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Problem 5  A rigid cylindrical indenter is pressed into an elastomer, which is 
described by the “standard model” [1] (Fig.  7.10). Find the dependence of the 
indentation depth on time.

Solution  The standard model for an elastomer is shown in Fig.  7.10. It consists 
of a Maxwell element (a stiffness G2 and damper η in series) and a stiffness G1 
attached in parallel.

The one-dimensional opposing side is a foundation of elements with a sepa-
ration distance of �x, the individual components of which can be characterized 
by the parameters 4G1�x, 4G2�x, and 4η�x. The equivalent one-dimensional 
indenter is a rectangle with the width 2a. The normal force is

where u1 satisfies the following equation:

and τ = η/G2. Solving the equation with the initial conditions uz(0) = 0 and 
u1(0) = 0 results in

In the special case of G2 ≫ G1, we obtain the result for the Kelvin body:
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