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4.1  Introduction

The miniaturization of components and the manufacturing of ever smoother surfaces 
are a mark of the constant improvements in micro and nano-technologies today. For 
the length scales associated herewith, the adhesion forces must be doubtlessly taken 
into account. However, adhesion is also important for contacts in which one partner 
is composed of a very soft material. Above all, the adhesion between rough surfaces 
is a central research topic in this respect, as it deals with the friction of rubbers and 
the contact between biological structures.

From a theoretical point of view, one can name two main ansätze which were 
developed in order to describe adhesive contacts for elastic, parabolic bodies. The 
first is the theory of Johnson et al.  [1] (JKR theory), which takes adhesion forces 
within the contact area into account. In this case, the contact radius in the equi-
librium state is calculated from the minimum in the total energy, which in turn, 
is obtained from the elastic deformation energy, the potential of external forces, 
and the surface energy of the contacting bodies. On the other hand, in the theory 
developed by Derjagin et al. [2] (DMT theory), the molecular forces of attraction 
act only within a ring outside of the contact area. They naturally contribute to the 
normal force, however, it is assumed that they cause no deformation. Within the 
framework of DMT theory, the maximum magnitude of the adhesion force corre-
sponds to that which Bradley derived in 1932 [3] for the adhesive contact between 
rigid spheres. Because the JKR theory diverges from the DMT theory, it appears at 
first that the two theories contradict each other. Tabor [4] was able to successfully 
explain this discrepancy by investigating the areas of validity of both theories in 
greater detail and defining them based on a dimensionless parameter. According 
to his findings, DMT theory is suitable for describing the contact of small, rigid 
spheres, while JKR theory is more adept at describing large, soft spheres. Johnson 
and Greenwood [5] created a map of adhesion, which graphically depicts the areas 
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40 4 Normal Contact with Adhesion

of validity for various adhesion theories. Furthermore, they pointed out the fact 
that the JKR theory still provides good results outside of its actual area of valid-
ity. It is possible that this is the reason that the JKR theory is primarily used to 
describe adhesion.

In this chapter, we will discuss how the leading adhesion theory from Johnson, 
Kendall, and Roberts is able to be exactly mapped using the method of dimension-
ality reduction. To begin, we will concentrate on a pure formulation of the simple 
rules of application for the adhesive normal contact and refrain from presenting 
the required evidence. Subsequently, these rules will be explained in more detail, 
which requires a certain understanding of the theoretical background on the adhe-
sion in three-dimensional contacts, which we will also provide. For those not satis-
fied with these short explanations, the entirety of the necessary evidence may be 
found in Chap. 17.

4.2  Rule of Heß for the Adhesive Contact Between  
Axially-Symmetric Bodies

Adhesive contacts of axially-symmetric bodies can also be exactly mapped to a 
one-dimensional equivalent model. The rule for this mapping was developed by 
one of the authors (Heß) [6]. It is based on the basic idea of Johnson, Kendall, 
and Roberts that the contact with adhesion arises from the contact without 
adhesion plus a rigid-body translation. Because both parts of the contact prob-
lem can be mapped to a one-dimensional equivalent model with a modified 
geometry, then this is true of the entire problem. The rule of Heß is as follows: 
If an indenter with the modified form described in Chap. 3 is initially pressed 
into a linearly elastic foundation and then pulled out, as shown in Fig. 4.1, then 
the springs on the edge of the profile will detach upon reaching a critical length

(4.1)�ℓmax(a) =
√

2πa �γ

E∗ ,

Fig. 4.1  Qualitative presentation of the indentation and separation process for the reduction 
method. The model shown exactly maps the adhesive contact of parabolic bodies and therefore, 
exactly mirrors JKR theory

http://dx.doi.org/10.1007/978-3-642-53876-6_17
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where �γ is the separation energy of the bodies per unit area, which will be 
explained later in more detail. Here, it is worth noting that the separation criterion 
is not local, due to its dependence on the changing contact radius.

In order to illustrate the simple application of this rule, we will consider the 
adhesive contact between a flat, cylindrical indenter with the radius a and an elas-
tic half-space (Fig. 4.2).

In this case, all springs will simultaneously detach as soon as the critical length 
(4.1) is reached. The total normal force required to separate the indenter from the 
substrate is then

which corresponds exactly to the three-dimensional result [7]. For the problems at 
the end of this chapter, we will consider this type of contact problem once again 
by supplementing the general structure with relevant alterations. There, as well 
as in Sects. 4.4 and 4.5, there are numerous examples provided. However, before 
we proceed with these examples, we would like to explain the theoretical consid-
erations that lead to Rule (4.1) in more detail. This is done primarily in Sect. 4.4, 
which contains further simple rules which help to determine the normal stress and 
the stability of the system. In this way, critical quantities can be determined very 
simply. We begin the theoretical consideration with the compatibility of the JKR 
theory with the ansätze from linear fracture mechanics. Those only interested in 
the practical application of the method of dimensionality reduction to adhesive 
contacts may continue directly with Sect. 4.4.

4.3  The Adhesive Contact and Griffith Crack

In the theory of Johnson, Kendall, and Roberts, the contact radius of an adhesive 
contact arises from the minimum total energy, which consists of the elastic defor-
mation energy UE, the potential of external forces UP, and the surface energy US. 
In the original publication [1], it was already indicated that this energy ansatz is 
the same as that of Griffith [8, 9], which was once used to investigate fractures in 

(4.2)FA = 2E∗a

√

2πa �γ

E∗ =
√

8πa3E∗�γ ,

Fig. 4.2  Equivalent one-
dimensional system for the 
adhesive contact between a 
flat, cylindrical indenter and 
an elastic half-space

4.2 Rule of Heß for the Adhesive Contact…
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brittle material1 and is nothing more than the first law of thermodynamics. Maugis 
et al. [10, 11] conducted more penetrating thermodynamic considerations and 
proved, among other things, the compatibility of the JKR theory with that of line-
arly elastic fracture mechanics. The free boundary of the adhesive contact may, 
therefore, be referred to as a mode I crack,2 which propagates either inwards or 
outwards based on changes in the contact surface. The decisive steps for the 
energy ansatz are very quickly explained. For this, we consider the adhesive con-
tact between a rigid, curved body and an elastic half-space, according to Fig. 4.3. 
The indenter is loaded by an external force of FN and, with the half-space, forms a 
contact area with a radius of a; in order to avoid confusion with differentials, the 
indentation depth will be denoted by δ in this section.

Initially, we assume that the indentation depth δ and the contact area A which 
describe the equilibrium state of the system are extensive properties. According to the 
first law of thermodynamics, a contribution of work from the external load, causes a 
change in the sum of the elastic deformation energy UE and the surface energy US:

The surface energy is not dependent on the indentation depth and is given by

Here, �γ is the work that must be done per unit area against interatomic forces in 
order to separate the two solids, which is also known under the name of the Dupré 
energy of adhesion. It is dependent on the (specific) surface energies γ1 and γ2 of 
both bodies as well as the energy of the interface γ12:

1 More specifically, Griffith investigated the stability of a crack in the middle of a disc loaded in 
tension.
2 The opening mode (mode I crack) is the separation mode for which the tensile stress acts  
perpendicular to the plane of the crack.

(4.3)dUE(A, δ) + dUS(A) = FN (A, δ)dδ.

(4.4)US(A) = −�γ · A.

(4.5)�γ := γ1 + γ2 − γ12

Fig. 4.3  Qualitative presentation of an adhesive contact between a rigid, curved body and an 
elastic half-space; the boundary of the contact can be referred to as the crack tip
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and can be interpreted as the “effective” interface energy. Insertion of (4.4) into 
(4.3) results in

By means of the Legèndre transformation, we can switch the independent exten-
sive variables δ and FN. In this way, we obtain

in which UK
E  stands for the complementary elastic energy. By separating the total 

derivatives with respect to the corresponding variables, we obtain the laws of 
Castigliano and Engesser:

Furthermore, we now have two different possibilities for calculating the elastic 
energy release rate G:

In equilibrium, the mechanical energy released by a decrease in contact area must 
correspond to the energy required to form the new surface:

Equation (4.10) once again provides the energetic fracture criterion of Griffith. 
Here, the effective interface energy �γ can be interpreted as the critical energy 
release rate Gc at which quasi-static fracture progression begins. The difference 
G − �γ is occasionally called the driving force (with the units of linear force den-
sity) for the tip of the fracture and allows for the kinetic adhesive process to be 
investigated.

The energetic fracture criterion from Griffith in the form of (4.10) contains the 
energy release rate as a parameter and, as a result, is seen as a global fracture cri-
terion. An equivalent criterion, and for our purposes more appropriate due to its 
local characteristic, is found using the concept of stress intensity. Irwin [12] recog-
nized the fundamental fact that the singularities of all stress fields for all fracture 
types are similar in the fracture near field, and therefore, used their intensities for 
the investigation of fracture mechanics. The ligament stresses and the displace-
ments which exist, for example, in the near field of the fracture shown in Fig. 4.4 
with the separation mode I are

(4.6)dUE(A, δ) − �γ · dA = FN (A, δ) dδ.

(4.7)−dUK
E (A, FN ) − �γ · dA = −δ(A, FN ) dFN with UK

E := FNδ − UE ,

(4.8)

(

∂UE

∂δ

)

A

= FN or

(

∂U
K

E

∂FN

)

A

= δ .

(4.9)G :=
(

∂UE

∂A

)

δ

= −
(

∂U
K

E

∂A

)

FN

.

(4.10)G = �γ =: Gc.

(4.11)σzz(η, β = 0) = KI√
2πη

and uz(η, β = ±π) = ± 2
E∗ KI

√

η
2π

.

4.3 The Adhesive Contact and Griffith Crack
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The stress intensity factor KI, which is dependent on the material as well as the 
geometry, length, and loading of the fracture, can be obtained if the ligament stress 
is known:

According to Irwin, fracture propagation occurs only after KI reaches the so-called 
fracture toughness KIc of the material, which must, in turn, be determined experi-
mentally on standardized fracture experiments. Therefore, the local fracture crite-
rion from Irwin for a mode I crack is

Of course, no real material can withstand the (theoretically) infinitely large stress. 
Except for very brittle materials, a relaxation in stress occurs in the area near the 
fracture tip due to inelastic deformation. Furthermore, regardless of the material, a 
small zone always exists in which non-linear microscopic processes occur. As long 
as the combination of the plastic and microscopic zones is much smaller than the 
zone in which KI dominates, the elastic near field will control the processes occur-
ring in this field, allowing the use of the concept of stress intensity. The fact that 
the K concept and the fracture criterion from Griffith are equivalent was proven by 
Irwin for which he calculated the work required to close a fracture of length ∆a3:

Equation (4.14) is for a mode I crack. If a combined fracture load is present for 
which all three separation modes occur, then the individual energy release rates 

(4.12)KI := lim
η →0

√

2πη σzz(η, 0).

(4.13)KI = KIc.

3 The equation is based on a fracture in a planar state of deformation; we may assume that 
locally in an axially-symmetric contact with adhesion, every point on the contact boundary 
exhibits this state.

(4.14)G = K2
I

2E∗ .

Fig. 4.4  Qualitative 
presentation of the ligament 
stress and the opening form 
of a mode I crack
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must be summed. In the case of a fracture interface between two elastically similar 
materials, the following is then valid:

With the help of this generalized presentation, the interaction between adhesion 
and friction can be determined [13].

It may have been the equivalence of the concepts of the fracture mechanism that 
motivated Maugis and Barquins [14, 15] to use Sneddons theory [16] for the mapping 
of adhesive contacts; the analogy between JKR theory and the Griffith theory of frac-
ture mechanics was already proven at this time. Thus, the concept of the stress inten-
sity factor must also exist in Sneddons theory. The original equations from Sneddon 
contain a (still arbitrary) rigid body translation, which is responsible for a singular-
ity in the stress at the contact boundary. The translation is that which results from 
pressing a flat cylindrical indenter into a half-space and corresponds to that of the ini-
tial approximation for a mode I crack. Furthermore, the difference in the normal dis-
placement between the indenter and surface of the half-space outside of the contact 
area is the same as the shape of the fracture in Eq. (4.11), so that a connection exists 
between the rigid body degree of freedom and the intensity factor. For contacts with-
out adhesion, with the assumption that the profile is convex, the Boussinesq condition 
must be met, meaning that the singularity at the contact boundary disappears. The 
only difference between the two theories is the rigid body translation. This causes 
a tensile stress for which the distribution is the same as that under a flat cylindrical 
indenter. This is an essential relationship, which we would like to stress:

The contact with adhesion results from the contact without adhesion plus a rigid body 
translation.

Even the original theory of Johnson, Kendall, and Roberts touches on this princi-
ple, which extends the Hertzian contact by adding adhesion. This theory was dis-
cussed in a generalized form at the beginning of this chapter. It requires, among 
other things, that the energy of the elastic deformation be known, which in turn, 
can be determined in two parts. One of these comes from the non-adhesive inden-
tation process, while the other results from the decompression at a constant con-
tact area. Figure 4.5 explains the superposition of the two loading cases. The 
indentation process with a force Fn.a. occurs without adhesion, so that the resulting 
stresses and surface displacements are for a Hertzian contact. Due to the succes-
sive increase in the relative interface energy, the subsequent unloading from Fn.a. 
to FN occurs for a constant contact area. Because of this, all points in the con-
tact area must undergo a constant displacement. Therefore, the unloading is the 
same as for the contact with a flat indenter, the characteristic stress distribution for 
which is responsible for the infinitely large tensile stress at the contact boundary.

This singularity can be seen in Fig. 4.5b, the stresses for which are shown with 
respect to their mean in the non-adhesive contact. Interestingly, Johnson [17] had 
already recognized the ability to use superposition to describe a contact with adhe-
sion in 1958. The non-physical excess in stress on the boundary, however, led him 

(4.15)G = 1

2E∗

(

K2
I + K2

II

)

+ 1

4

(

1

G1
+ 1

G2

)

K2
III .

4.3 The Adhesive Contact and Griffith Crack
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to rule out adhesion, which was in accord with the experimental works of Bowden 
and Tabor at the time.

4.4  Full Reduction of the Adhesive, Elastic Contact

The central notion of the exact mapping of axially-symmetric contacts with adhe-
sion is the superposition concept described in the last section. According to this, 
the contact without adhesion must merely be superimposed with a rigid body 
translation. This means that the normal stress distribution in the contact area is

where the second term is the stress distribution under a flat indenter described by 
Boussinesq. Remember that the values with the index “n.a.” are those for a contact 
without adhesion for which the same contact radius is reached as that in a contact 
with adhesion. They belong to the (fictitious) indentation process for the JKR the-
ory, which was shown in Fig. 4.5a. The stress intensity factor for the distribution 
in (4.16) can be easily calculated using Eq. (4.12):

By taking into consideration the fact that the concepts of Griffith and Irwin (4.14) 
are equivalent and that the equilibrium condition (4.10) is met, then

(4.16)

σzz(r) = σn.a.(r) + �F

2πa
√

a2 − r2
with �F := Fn.a. − FN = 2E∗a(dn.a. − d),

(4.17)KI (a) = �F

2a
√

πa
.

(4.18)�F =
√

8πE∗a3�γ ,

Fig. 4.5  a Hertzian spherical contact caused by the normal force Fn.a., which leads to the same 
contact radius as in the adhesive case under the load of FN; b Equilibrium state of the adhesive 
contact; more exactly, the critical state under a fixed-load condition is actually shown here



47

with which the indentation depth and the normal force can be directly determined 
for the adhesive case:

The validity of Eqs. (4.19) and (4.20) is in no way limited to the parabolic contact. 
They are generally valid for arbitrary axially-symmetric contacts with a simply 
connected contact area [18].

No additional proof is needed to show that the results of the generalized JKR 
theory can be mapped to one-dimensional models. This is because if arbitrary 
axially-symmetric contacts without adhesion (for simply connected contact areas) 
satisfy the requirements of the reduction method (see Chap. 3), including the flat 
indenter, then this must also be true for their superposition. The adhesive contact 
forms a sort of special case of the rule of superposition described in Sect. 3.2, 
which is valid for the same contact areas. Nevertheless, Sect. 17.3 contains a step-
by-step derivation, including information dealing with stability, which is based on 
the fracture mechanical analogy found by Maugis and Barquins.

The model for the adhesive contact between a parabolic indenter and an elas-
tic half-space is sketched in Fig. 4.1. The loading and unloading process for the 
one-dimensional model, which exactly describes the equilibrium state of the adhe-
sive contact in three dimensions, is simple. As in the case without adhesion, the 
equivalent profile g is first calculated and an appropriately formed indenter is sub-
sequently pressed into a one-dimensional linearly elastic foundation with a force 
Fn.a.. The springs at the contact boundary x = ±a exhibit the non-loaded initial 
length ℓo, while the springs within the contact area are under load. Let us now 
assume that all springs in contact with the indenter adhere to it and for a subse-
quent decrease in normal force, the contact radius remains unchanged. Going from 
the contact boundary towards the center, more and more springs are placed under 
tensile loading. As soon as the change in length of the outer springs reach the max-
imum allowable value

there exists an indifference between the states of adhesion and separation. At the 
points x = ±a, the surface displacement for the one-dimensional model is

This state corresponds exactly to that of the equilibrium state in the three-
dimensional case of adhesive contact. The separation condition (4.21) is a type 
of local fracture criterion for the equivalent model, which is also known as the 

(4.19)d(a) = dn.a.(a) −
√

2πa �γ

E∗ ,

(4.20)FN (a) = Fn.a.(a) −
√

8πE∗a3�γ .

(4.21)�ℓ(±a) = �ℓmax(a) :=
√

2πa �γ

E∗ ,

(4.22)uz(±a) = −�ℓmax(a).

4.4 Full Reduction of the Adhesive…

http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_17
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rule of Heß for the adhesive contact [6, 19]. Alternately, we can define a maxi-
mum spring force instead of a maximum change in length. Upon exceeding this 
force, the springs at the boundary separate. Especially for the numerical appli-
cation, the dependence of the separation condition on the contact half-width 
should be taken into account.

Even the stability of the equilibrium state can be investigated very trivially 
under various boundary conditions within the framework of the reduction method. 
For this (referring to Sect. 17.3), the following inequality is used:

The equals sign in (4.23) defines the state of marginal stability, which allows for 
the critical values to be calculated. According to (4.23), the slope of the equivalent 
profile at the point x = a determines the stability of the system. Depending on the 
boundary condition (fixed-load or fixed-grips), it is to be multiplied with the cor-
responding factor k and compared with the quotient of the separation length and 
contact radius.

With the exception of the stability considerations named above, the imple-
mentation of adhesion using the reduction method requires no additional effort 
whatsoever. In contrast to the non-adhesive contact, only the displacement in 
the one-dimensional model must be extended by the rigid-body portion (see 
Fig. 4.1)

The indentation depth is defined by the displacement at x = 0:

By taking (4.24) and (4.25) into account, the normal force is obtained as a func-
tion of the contact radius in the same way as before, from the sum of the spring 
forces:

The normal stresses in the contact area are obtained also in the same way as in the 
contact without adhesion, from the modified Abel integral of the vertical distrib-
uted load:

In order to make the simple steps of the reduction method clear to the reader, we 
will show the complete mapping of the original theory from Johnson, Kendall, and 
Roberts as an example. In the typical way, the equivalent profile g of the parabolic 

(4.23)
�ℓmax(a)

a
≤ k

∂g(a)

∂a
with k =

{

2/3 for FN = const.

2 for d = const.
.

(4.24)uz(x) := d(a) − g(x) = g(a) − g(x) − �ℓmax(a) for 0 ≤ |x| ≤ a.

(4.25)d(a) := uz(0) = g(a) − �ℓmax(a).

(4.26)FN (a) := E∗
a

∫

−a

uz(x)dx.

(4.27)σzz(r) = 1

π

a
∫

r

q′(x)√
x2 − r2

dx − 1

π

q(a)√
a2 − r2

with q(x) = E∗uz(x).

http://dx.doi.org/10.1007/978-3-642-53876-6_17
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indenters with the radius of curvature must first be determined. According to the 
rule of Popov, we must simply divide the radius of curvature by two:

The surface displacement in the equivalent model, according to Eq. (4.24), is

from which we can determine the indentation depth with respect to contact radius 
according to (4.25). Taking the separation condition (4.21) into account, we obtain

The normal force is the sum of the spring forces

Equations (4.30) and (4.31) will seem familiar to the reader, for they are exactly those 
developed by Johnson, Kendall, and Roberts using the minimum in the total energy.

We investigate the stability of the system with the criterion (4.23). For this, let k not 
be fixed for the time being. The slope of the equivalent profile at the point x = a is

Insertion of (4.32) into (4.23) and taking the separation condition (4.21) into 
account, results in

and after simple rearrangement, the contact radii for which the system is stable are 
obtained:

The marginally stable case characterizes the critical state at which the calculation 
of the critical values is possible: the minimum normal force and minimum inden-
tation depth. In order to accomplish this, the contact radius in Eq. (4.34) must be 
take into account in Eqs. (4.30) and (4.31), from which we obtain

(4.28)f (r) = r2

2R
⇒ g(x) = x2

R
.

(4.29)uz(x) = a2 − x2

R
− �ℓmax(a),

(4.30)d(a) = a2

R
−

√

2πa �γ

E∗ .

(4.31)

FN (a) = E∗
a

∫

−a

uz(x)dx = 2E∗
a

∫

0

(

d − x2

R

)

dx = 4

3
E∗ a3

R
−

√

8πa3E∗�γ .

(4.32)g(a) = a
2

R
⇒ ∂g(a)

∂a

= 2a

R
.

(4.33)

√

2πa �γ

E∗
1

a
≤ k

2a

R
,

(4.34)a ≥
(

πR
2�γ

2k2E∗

)1/3

marginal stability: ac(k) =
(

πR
2�γ

2k2E∗

)1/3

.

(4.35)Fc(k) =
(

1

3k
− 1

)

2πR �γ

k
and dc(k) =

(

1

k
− 2

)(

π2
R �γ 2

4k E∗2

)1/3

.

4.4 Full Reduction of the Adhesive…



50 4 Normal Contact with Adhesion

Until now, we have left the type of boundary condition open. Now, we will assign 
the variable k a value. Under the fixed-load condition, we must set k = 2

3
 and obtain 

the known results:

The critical force in (4.36) is also called the adhesion force and corresponds to 
the minimum in the normal force. Its magnitude, however, is called the maximum 
separation force. Under the fixed-grips condition (k = 2), the indentation depth is 
actually able to be stably decreased even further, until the following three relation-
ships are reached:

The additional index “d” denotes the fixed-grips condition.
For the sake of completeness, let the equilibrium curves (4.30) and (4.31) be 

expanded by a normalized representation. With the respect to the magnitude, the 
critical values are

with F̃N := FN/|Fc|, d̃ := d/|dc|, and ã := a/ac. Because of their complexity due 
to the normal force as a function of the indentation depth, they will not be speci-
fied explicitly, but their trends will be graphically shown with the help of the para-
metric form (4.38). Figure 4.6a shows the trend compared to the adhesive contact 
of a conical profile (shown in Fig. 4.6b). The dashed ends of the functions mark 
the extended domain of stability under the fixed-grips condition.

Comparing the curves reveals that the adhesion forces are negative in both 
cases, but the critical indentation depths (at a constant force) have different signs. 
The solution of the adhesive conical contact and the confirmation of the corre-
sponding curves from Fig. 4.6b is one of the problems at the end of this chapter.

(4.36)ac =
(

9πR
2�γ

8E∗

)1/3

, Fc = − 3

2
πR �γ , dc = −

(

3π2
R �γ 2

64E∗2

)1/3

.

(4.37)ac,d =
(

πR2�γ
8E∗

)1/3
, Fc,d = − 5

6
πR �γ , dc,d = − 3

4

(

π2R �γ 2

E∗2

)1/3
,

(4.38)F̃N (ã) = ã3 − 2ã3/2 and d̃(ã) = 3ã2 − 4ã1/2,

Fig. 4.6  Dependence of the normalized force on the normalized indentation depth for the adhe-
sive contact for a parabolic (a) and a conical indenter (b); for comparison purposes, the trends of 
the respective contacts without adhesion are shown
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Only the calculation of the stress is now needed to completely solve the 
adhesive contact problem for parabolic profiles. For this, we need the linear 
force density in the equivalent model:

By differentiating this with respect to x and then inserting the value at x = a, we obtain

Insertion of (4.40) into (4.27) results initially in

which is then integrated and suitably normalized, resulting in

For the critical state of Fc := FN (ac) = −Fn.a., this stress curve is presented in 
Fig. 4.5b.

The process for mapping the classical contact problems described by Johnson, 
Kendall, and Roberts within the reduction method may seem a bit challenging at 
first. However, the reader will quickly be convinced that, in reality, the opposite is 
the case. The method is composed primarily of just a few steps, which are formu-
lated in Eqs. (4.21)–(4.27) and cannot be simpler. In the next section, the method 
will be used on a more complicated contact problem, which occasionally allows 
for commentary on the influence of roughness on adhesion.

4.5  Example: Adhesion of a Sphere with a Superimposed 
Radial Waveform

It is generally known that the adhesion between (visco-) elastic bodies is signifi-
cantly influenced by the roughness of their surfaces. In the most general cases, 
the adhesion decreases rapidly with an increase in roughness, however, there are 
well-founded experimental results [20, 21], which show effects to the contrary. 
According to this, very soft materials having small scales of roughness exhibit a 
temporary increase in adhesion before a continuous decrease begins. An estab-
lished theoretical reason for this increase is based on the increase in the real con-
tact area, which occurs due to viscoelastic creep processes. A further cause for 
the increase in adhesion was brought to attention by Guduru [22] by theoretically 

(4.39)q(x) = E∗uz(x) = E∗
[

a2 − x2

R
− �ℓmax(a)

]

.

(4.40)q
′(x) = −2E

∗

R
x and q(a) = −E

∗�ℓmax(a) .

(4.41)σzz(r) = −2E∗

πR

a
∫

r

x√
x2 − r2

dx + E∗

π

�ℓmax(a)√
a2 − r2

,

(4.42)

σzz(s)

p̄n.a.

= −3

2

√

1 − s2 + 1

2

(

1 − FN

Fn.a.

)

1

√

1 − s2

with s := r

a
and p̄n.a. := Fn.a.

A
.

4.4 Full Reduction of the Adhesive…
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investigating the adhesive, elastic contact between a half-space and a parabolic 
body with superimposed axially-symmetric waveforms. Due to the waveform, 
defined oscillations occur in the equilibrium curves, bringing about instabilities 
during the separation process. These instabilities can lead to a significant increase 
in the separation force. Experimental investigations [23] confirm the validity of the 
theoretical ansatz from Guduru, which requires a simply connected contact area 
at the beginning of the separation process. This last condition, along with that 
of axial-symmetry, allow this example for a rough contact to be exactly mapped 
using the method of dimensionality reduction, which will be the subject of the fol-
lowing considerations.

The axially-symmetric profile is composed of a parabolic base profile with a 
radius of curvature of R and a radially harmonic profile with the wavelength � and 
the (roughness) amplitude h according to the equation4

The cross-section of the profile in the x-z plane for h
/

� = 0.03 and �
/

R = 0.05 is 
shown in Fig. 4.7. A simply connected contact area at every point in time for the 
indentation and separation process requires a monotonically increasing profile for 
r ≥ 0, which with the help of the derivative

is expressed by the following condition:

4 It is irrelevant if the superimposed profile is pressed into a planar elastic half-space or a para-
bolic body is pressed into an elastic half-space with the corresponding waveform.

(4.43)f (r) = r2

2R
+ h

[

1 − cos

(

2π

�
r

)]

.

(4.44)f ′(r) = r

R
+ h

2π

�
sin

(

2π

�
r

)

,

(4.45)
f
′(r) ≥ 0 ⇒ α := �

2

hR

≥ 4π2
sup









− sin

�

2π

�
r

�

2π
�

r









≈ 8.576.

Fig. 4.7  Profile cross-
section of a parabolic body 
superimposed with a radial 
waveform and its one-
dimensional equivalent
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Although the monotonic requirement (4.45) is obviously not met by the profile in 
Fig. 4.7 (α ≈ 1.667 < 8.576), a simply connected contact area can nevertheless be 
realized for a sufficiently large normal force. The reason for this is the decrease 
in the least upper bound (supremum) in (4.45), if we constrict ourselves to suffi-
ciently large r > rcrit.

In order to determine the one-dimensional equivalent profile, we must make use 
of the conversion formula (see Sect. 3.3).

The integral on the right side leads to the Struve function, so that we obtain

for the equivalent profile. Let us here mention that the series representation of the 
Struve function is

The one-dimensional equivalent profile according to Eq. (4.47) is likewise pre-
sented in Fig. 4.7. Moreover, the original and equivalent profiles are shown for a 
roughness of zero (dashed lines) and present, of course, a constant vertical scaling 
relationship based on the rule of Popov.

Upon obtaining the one-dimensional profile, the three-dimensional problem 
is as good as solved, because now the modified profile must simply be pressed 
with sufficient force into the one-dimensional layer of springs and then the force 
reduced while taking the equilibrium condition (4.22) and the accompanying 
stability test (4.23) into account. The numerical implementation is trivial due 
to the independence of the spring displacement, but nevertheless, agrees exactly 
with the three-dimensional theory! In the following, we conduct an analytical 
approach, which leads to the indentation depth when Eq. (4.47) is taken into 
account:

The surface displacement of the linearly elastic foundation is defined by the dif-
ference between the indentation depth d and the equivalent profile g. Except for 

(4.46)

g(x) := |x|
|x|
∫

0

f ′(r)√
x2 − r2

dr = x2

R
+ s(x)h

s(x)
∫

0

sin (u)
√

s(x)2 − u2
du with s(x) = 2π

�
|x|.

(4.47)g(x) =

x2

R
+

π2

�
|x|h · H0

(

2π

�
|x|

)

(4.48)Hn(x) =
∞

∑

k=0

(−1)k

Ŵ

(

k + 3
2

)

Ŵ

(

k + n + 3
2

)

( x

2

)2k+n+1
.

(4.49)d(a) := g(a) − �ℓmax(a) = a2

R
+ π2ah

�
H0

(

2π

�
a

)

−
√

2πa �γ

E∗ .

4.5 Example: Adhesion of a Sphere with a Superimposed…

http://dx.doi.org/10.1007/978-3-642-53876-6_�3
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the sign, this displacement corresponds to the change in length of the springs. The 
resulting spring forces must maintain equilibrium by summation with the normal 
force:

Insertion of (4.47) and (4.49) into (4.50) results in

after integration and simple rearrangement. By taking the normalized values sug-
gested by Guduru [22] into account:

the equilibrium relations (4.49) and (4.51) can be expressed in dimensionless 
form:

With the normalized contact radius ā as a parameter, the (normalized) normal 
force can be plotted as a function of the (normalized) indentation depth. Figure 4.8 
shows this plot for the parameters

which only exhibits slight oscillating deviations in the equilibrium curve compared 
to the parabolic contact without roughness. The monotonic condition (4.45) is sat-
isfied regardless of the load at any point in time.

If we now increase the size of the roughness and keep all other values the 
same, then a significant change occurs in the equilibrium curve. Oscillations of 
strong amplitude occur and can lead to an increase in the maximum separation 
force. Figure 4.9 presents this curve for the profile discussed at the beginning of 
this section (see Fig. 4.7), which is characterized by a roughness six times larger. 
The maximum separation force is increased by about 19 % with respect to the par-
abolic base profile. The critical indentation depth can be decreased by a further 
10 % by using the fixed grips condition. Furthermore, the equilibrium curves are 

(4.50)FN (a) = E∗
a

∫

−a

[

d − g(x)
]

dx.

(4.51)

FN (a) = 4

3
E

∗ a
3

R
+ E

∗πah

[

2πa

�
H0

(

2πa

�

)

− H1

(

2πa

�

)]

−
√

8πa3E∗�γ

F̄N := 2FN

3πR�γ
, d̄ := d

�
, ā := a

�
, �̄ := �

R
, h̄ := h

�
, �γ := 2π�γ

E∗R

(4.52)d̄
(

ā; �̄; h̄; �γ

)

= ā2
�̄ + π2ā h̄ · H0(2π ā) −

√

ā �γ

�̄
,

(4.53)

F̄N

(

ā; �̄; h̄; �γ

)

= 16

9

ā3
�

3

�γ
+ 4π

3

ā h̄�
2

�γ
[2π ā · H0(2π ā) − H1(2π ā)] − 8

3

√

ā3�
3

�γ
.

(4.54)h̄ = 0.005 , �̄ = 0.05 , �γ = 0.05,
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not continuous throughout the separation process. Due to the constant switching 
from stable to unstable domains, finite jumps occur, which result in energy loss.

As mentioned earlier, the exact solution of contact problems using the method 
of dimensionality reduction requires a simply-connected contact area and cannot 
be immediately transferred to partial contacts. Furthermore, the superimposed 

Fig. 4.8  Normal force with respect to the indentation depth for the adhesive contact of a para-
bolic profile with a superimposed radial waveform. The (small) roughness h = 0.005 � causes 
only a minor difference from the original trend of the JKR theory

Fig. 4.9  Normal force with respect to the indentation depth for the adhesive contact with a 
superimposed radial waveform. The assumed roughness of h = 0.03 � causes strong oscillations, 
resulting in an additional increase in the adhesion force of about 19 % compared to the original 
JKR theory

4.5 Example: Adhesion of a Sphere with a Superimposed…
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waveforms must be axially-symmetric. If one of these requirements is not met, 
significantly divergent results can result. For example, if a planar waveform 
instead of a radial waveform is present, then there will be no jumps in the equilib-
rium curve [24].

4.6 Problems

Problem 1 Investigate the contact between an elastic half-space and a conical 
body defined by f (r) = tan θ · r. Adhesion forces should be taken into account. 
Determine the indentation depth and the normal force with respect to the contact 
radius. Furthermore, determine the critical values under the fixed-load conditions 
and the equilibrium relations in dimensionless parameters.

Solution The equivalent one-dimensional profile is obtained by vertically scaling 
the original profile by a factor of κ1 = π/2 and is equal to g(x) = (π/2) tan θ · |x|. 
From (4.24), the surface displacement can be obtained for the equivalent profile:

The indentation depth is the displacement at the point x = 0:

The sum of the spring forces must counteract the normal force:

We take the condition for calculating the critical contact radius ac at a constant 
contact radius from Eq. (4.23):

for which the right hand side is already extended by the slope of the profile at 
hand. By using the rule of Heß, the critical contact radius is obtained. Insertion 
of this value into the equilibrium relationships (4.56) and (4.57) and then rear-
ranging the equations results in the adhesion force and the critical indentation 
depth:

(4.55)
uz(x) = g(a) − g(x) − �ℓmax(a) = π

2
tan θ · (a − |x|) − �ℓmax(a).

(4.56)d(a) := uz(0) = π

2
tan θ · a − �ℓmax(a) = π

2
tan θ · a −

√

2πa �γ

E∗ .

(4.57)

FN (a) = E∗
a

∫

−a

uz(x)dx = 2E∗
a

∫

0

[

d − g(x)
]

dx = 1

2
πE∗ tan θ · a2 −

√

8πa3E∗�γ .

(4.58)
�ℓmax(ac)

ac

=

2

3

∂g(a)

∂a

∣

∣

∣

∣

a=ac

with

∂g(a)

∂a
=

π

2

tan θ ,

(4.59)ac = 18 �γ

π tan
2 θ · E∗ , Fc = − 54 �γ 2

π tan
3 θ · E∗ , dc = 3 �γ

tan θ · E∗
.
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By introducing the normalized values F̃N := FN/|Fc|, d̃ := d/|dc|, and ã := a/ac, 
we obtain the equilibrium relationships (4.56) and (4.57) in dimensionless form:

With the help of the parametric equations in (4.60), the normalized force can be 
easily plotted as a function of normalized indentation depth, which is shown in 
Fig. 4.6b. The comparison with the parabolic contact shows, above all, a striking 
difference in the critical indentation depth (under fixed-load conditions), which 
have opposing signs. All of the results for this exercise mirror the three-dimen-
sional theory exactly (see [14]).

Problem 2 Determine the maximum separation force for the elastic contact 
between a flat, cylindrical indenter with the radius a and a half-space.

Solution From the original profile f(r) = 0, the equivalent profile g(x) = 0 is 
directly obtained, so that the surface displacement within the contact area corre-
sponds everywhere to the indentation depth according to (4.24). This means that

Because all of the springs exhibit the same change in length based on (4.61), the 
calculation of the normal force is trivial:

The verification of the condition (4.23), however, uncovers the fact that a sta-
ble, quasi-static equilibrium in the form of a controlled fracture is not possible. 
Therefore, all of the springs will adhere to the indenter until they reach the change 
in length of (4.61) and then simultaneously separate (complete rupture). The nor-
mal force according to (4.62) presents simultaneously the adhesion force and the 
magnitude of the maximum separation force

which corresponds with the known result of Kendall [7].

Problem 3 Analyze the influence of the profile form on the adhesion force for a 
single contact within a biological system. For this, assume an axially-symmetric 
profile in the form of a power function with a positive real exponent according to 

In the first step, identify the equilibrium relationships FN (a) and d(a). Then, cal-
culate the critical values for marginal stability from (4.23) for a constant normal 
force and non-dimensionalize the equilibrium relationships.

(4.60)F̃N (ã) = 3ã2 − 4ã3/2 and d̃(ã) = 3ã − 2ã1/2.

(4.61)uz(x) = d(a) = −�ℓmax(a) = −
√

2πa �γ

E∗ .

(4.62)FN (a) = −2E∗a �ℓmax(a) = −
√

8πa3E∗�γ .

(4.63)FA := |FN (ac)| =
√

8πa3E∗�γ ,

(4.64)f (r) = C · rn with n ∈ R
+ .

4.6 Problems
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Solution We obtain the one-dimensional equivalent profile by using the 
 generalized rule of Heß (see Sect. 3.2):

The difference between the value of the function for the equivalent profile at the 
contact boundary and the separation length provides the indentation depth

The surface displacement in the one-dimensional model is then

which expresses, except for the sign, the change in length of the individual 
springs. After multiplication with the stiffness and summation over the contact 
length, the normal force is found:

The critical contact radius is obtained from the (transformed) stability equation for 
the one-dimensional model. It requires only (!) that the profile slope at the contact 
boundary be known, which is given here by

Insertion into (4.23) leads to the critical contact radius

which provides the adhesion force and the critical indentation depth when inserted 
into the equilibrium relationships:

(4.65)g(x) = κnf (|x|) = κnC|x|n with κn =
√

π

2

nŴ( n
2
)

Ŵ( n+1

2
)

.

(4.66)d(a) = g(a) − �ℓmax(a) = κnCan −
√

2πa �γ
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−
√
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1
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n
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http://dx.doi.org/10.1007/978-3-642-53876-6_3
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If normalized by the magnitudes of the critical values F̃N := FN/|Fc|, d̃ := d/|dc|, 
and ã := a/ac, the equilibrium relationship exhibit an especially simple structure

For n = 1, the results correspond to those from Problem 1, while for n = 2, the 
classical results from JKR theory are obtained. The calculation of the critical con-
tact radius as well as the adhesion force go back to Yao and Gao [25] and were 
actually employed to investigate adhesion in biological structures [26]. Extended 
stability considerations can be found in the work by Heß [6].

Problem 4 Determine the normal force and indentation depth with respect to the 
contact radius for the adhesive normal contact between a sphere with the radius 
R and an elastic half-space. In contrast to the parabolic profile approximation in 
JKR theory, the exact spherical form should be considered. Simultaneously, it 
is assumed that only small deformations take place and the material is linearly 
elastic.

Solution This contact problem was already solved in Problem 8 in Chap. 3 for the 
case without adhesion. Referring to this exercise, we can simply take the explicitly 
calculated equivalent profile:

By subtracting the separation length from the value of the function of the equiva-
lent profile at the contact boundary, we obtain the indentation depth

The displacement in the one-dimensional model is then

The calculation of the normal force requires the summation of the contributions 
from the individual springs and can be immediately given with the help of the 
solution of the contact without adhesion as

(4.73)F̃N (ã) = 1

|1 − 2n|
[

3ã
n+1 − 2(n + 1)ã3/2

]

and d̃(ã) = 1

|3 − 2n|
(

3ã
n − 2nã

1/2
)

.

(4.74)f (r) = R −
√

R2 − r2 ⇒ g(x) = 1

2

x ln

(

R + x

R − x

)

.

(4.75)d(a) = g(a) − �1max(a) = 1

2

a ln

(

R + a

R − a

)

−
√

2πa �γ

E∗ .

(4.76)uz(x) := d − g(x) = 1

2
a ln

(
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R − a

)

−
√

2πa �γ

E∗ − 1

2
x ln

(

R + x

R − x

)

.

(4.77)

FN (a) = E∗
a

∫

−a

uz(x)dx = E∗ R2 + a2

2
ln

(

R + a

R − a

)

− E∗Ra −
√

8πa3E∗�γ .

4.6 Problems

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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By introducing the normalized values ˜FN :=
FN

πR �γ
 and ã = a

R
 as well as the 

parameter m := E
∗
R

π �γ
, we can convert Eq. (4.77) into the dimensionless form

The derived relationships agree exactly to those of the three-dimensional theory 
developed by Maugis [27]. For comparative purposes, let the respective normal-
ized form of the JKR equation for a parabolic profile be noted:

Figure 4.10 emphasizes the difference between the spherical contact and the corre-
sponding parabolic approximation. For large values of the parameter m (m > 1, 000), 
they agree well with one another, while for smaller values of m, significant deviations 
are apparent. The maximum separation force is then especially dependent on the elas-
tic properties. The parabolic approximation appears to give acceptable results over 
several orders of magnitude of the parameter m up to a contact radius of a ≈ 0.2R.

With these results, Maugis attempted to describe the contact for small spheres 
with that of a very soft elastic solid and in this way, proved the invalidity of the 
parabolic approximation if the contact radius is on the same order of magnitude 
as the radius of curvature. In this regime, however, the application of the theory of 
linear elasticity is highly questionable, which Lin and Chen [28] discovered on the 
basis of geometric and physical non-linear theory and for which Greenwood [29] 
suggested critical additions.

Problem 5 Determine the indentation depth and the normal force as a function 
of contact radius for the adhesive contact of the axially-symmetric body shown in 
Fig. 4.11 with an elastic half-space. The form of the body is described by a para-
bolic profile with a flattened tip:

(4.78)F̃N (ã) = 1

2
m

(

1 + ã2
)

ln

(

1 + ã

1 − ã

)

− mã −
√

m(2ã)3/2.

(4.79)F̃N (ã) = 4

3
mã3 −

√
m(2ã)3/2.

(4.80)f (r) =
{

0 for 0 ≤ r < b

r
2−b

2

2R
for b ≤ r ≤ a

.

Fig. 4.10  Normal force as a 
function of contact radius in 
the normalized presentation 
for the adhesive contact: 
Comparison between the 
parabolic approximation 
and the exact spherical 
profile for various values of 
m = E

∗
R/(π∆γ )
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Solution The corresponding non-adhesive contact problem was solved in 
Sect. 3.3. It served as an introductory example for the explicit application of the 
generalized formula (3.27) to determine the equivalent profile, which also com-
poses the first step in the mapping of the contact with adhesion. By taking the 
derivative of the original profile into account, we obtained

With the help of (4.81), the indentation depth can be directly given as

The displacements of the contact points in the linearly elastic foundation are still 
obtained by the difference between the indentation depth and the value of the equiv-
alent profile and provides the change in length of the spring (with the exception of 
the sign). Summing the individual spring contributions, leads to the normal force

The critical values (fixed load) in the case of b = 0 are those from the original 
theory for a parabolic body

which we took from (4.36) and renamed. By normalizing by their magnitudes, we 
can convert Eqs. (4.82) and (4.83) into the dimensionless forms

(4.81)g(x) := |x|
|x|
∫

0

f ′(r)√
x2−r2

dr =
{

0 for 0 ≤ |x| < b
|x|
R

√
x2 − b2

for b ≤ |x| ≤ a
.

(4.82)d(a) := g(a) − �ℓmax(a) = a

R
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√

2πa �γ

E∗ .
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√

8πa3E∗�γ .

(4.84)a
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9πR
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2
πR �γ , d

∗ = −
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3π2
R �γ 2

64E∗2
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,

(4.85)d̂
(

â
)

= 3â2

√

√

√

√

1 −
(

b̂

â

)2

− 4â1/2,

Fig. 4.11  Qualitative 
presentation of the adhesive 
contact of a parabolic profile 
with a flattened tip and an 
elastic half-space

4.6 Problems
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where F̂N := FN/|F∗|, d̂ := d/|d∗|, â := a/a∗, and b̂ := b/a∗ were used for the 
normalization. In the special case of b̂ = 0, the resulting equation is (4.38) and for 
the case of b̂ = â, the resulting equations are (4.61) and (4.62). These cases describe 
the parabolic contact and the flat indenter contact, respectively. Their graphical 
trends can be interpreted as extreme values for the general case, which is expressed 
in Fig. 4.12. Here, unstable domains are not visible. The fact that the horizontal 
tangents of the minimums of these curves separate the stability domains is clear. It 
is interesting that for b > 0.7475 a∗, complete separation occurs only after a = b, 
meaning the contact radius corresponds to that of the flattened area of the indenter.

For b < 0.7475 a∗, however, there exists a minimum that marks the adhesion 
force in a way similar to the parabolic contact. Further considerations, especially 
those near the boundary curves shown in Fig. 4.12, are contained in [30].
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