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3.1  Mapping of Three-Dimensional Contact Problems  
onto One Dimension: The Basic Idea

The method of dimensionality reduction is based on the observation that certain types 
of three-dimensional contacts can be exactly mapped to one-dimensional linearly 
elastic foundations. Even one of the simplest contact problems offers us a taste of this 
method: If a flat cylindrical indenter is pressed into the surface of an elastic half-space 
(Fig. 3.1a), then the normal stiffness of the contact is proportional to its diameter D:

where E∗ is the effective Young’s modulus and is calculated from

using the Young’s moduli of the contacting bodies E1 and E2 as well as their shear 
moduli ν1 and ν2.1 The proportionality of the stiffness to the diameter can also be 
reproduced quite trivially by a one-dimensional linearly elastic foundation.

The linearly elastic foundation (Fig. 3.1b) is a series of independent, identical 
springs that are fixed to a rigid substrate separated from one another by a distance 
of �x. In order to represent continua, the “discretization step” �x must, of course, 
be sufficiently small, which we always silently imply. The number of springs that 
are in contact with the indenter is equal to D/�x. If we denote the stiffness of a 
single spring as �kz, then the total stiffness of the contact is

(3.1)kz = DE∗,

(3.2)
1

E∗ =
1 − ν2

1

E1
+

1 − ν2
2

E2
,

1 This result can be found in any book dealing with contact mechanics (see, for example [1]).

(3.3)kz = �kz

D

�x
.
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20 3 Normal Contact Problems with…

In order for Eq. (3.1) to also be valid for the indentation into a linearly elastic 
foundation, the stiffness per unit length must be chosen to be equal to effective 
modulus E∗:

According to this, the stiffness of every individual spring is

The proportionality of the stiffness to the diameter of the indenter is then met 
rather trivially in the case of an elastic foundation. In the following, it will be 
shown that the defined elastic foundation is also suitable for the mapping of a 
large number of other contact problems.

3.2  The Rules of Geike and Popov and the Rules of Heß for 
Normal Contact Problems

The relationship between normal force, the indention depth, and the contact radius 
can be reproduced exactly for a broad range of profiles by the reduced contact 
problem of a one-dimensional linearly elastic foundation. Thereby, the surface 
profile must merely be modified according to a few simple rules.

Let us first consider the contact between an elastic sphere with the radius R and 
an elastic half-space (the Herzian contact problem, Fig. 3.2a).2 As early as 2005, 
Popov pointed out in a lecture3 that also for a sphere (or a parabolic indenter) the 
relationship between normal force, the indentation depth, and the contact radius 

(3.4)
�kz

�x
= E∗.

(3.5)�kz = E∗�x.

2 Strictly speaking, a parabolic profile with the radius of curvature R is considered.
3 German–Russian Workshop “Numerical simulation methods in tribology: possibilities and 
 limitations”, Berlin University of Technology, March 14–17, 2005. Published in [2].

a(a) (b)

Fig. 3.1  (a) Contact between a flat, cylindrical indenter and an elastic half-space and (b) the 
one-dimensional model



21

can be exactly described by a one-dimensional model (Fig. 3.2b), provided that the 
radius is scaled by a factor of 1/2. At this point, we will describe the solution for a 
sphere in detail. In the following chapters, however, we will dispense with the 
details of the calculation due to their simplicity and only state the results.

The one-dimensional substitution profile should have the radius of curvature of 
R1 and is given by the equation

If this profile is pressed into the elastic foundation to a depth of d, then we obtain 
the vertical displacement of the foundation at the point x:

The semi-span of the contact area (the “contact radius”) a is given by requiring 
that uz(a) = 0 and is

The contribution of a single spring with a coordinate x to the normal force is

The total normal force is obtained by integration over the contact area:

If we now choose the radius of the “two-dimensional sphere” according to

(3.6)z̃ = g(x) =
x2

2R1
.

(3.7)uz(x) = d − g(x) = d −
x2

2R1
.

(3.8)a =
√

2R1d.

(3.9)fN = �kz · uz(x) = E∗
(

d −
x2

2R1

)

�x.

(3.10)FN =
a

∫

−a

E
∗
(

d −
x

2

2R1

)

dx =

√
2R1d
∫

−
√

2R1d

E
∗
(

d −
x

2

2R1

)

dx =
4
√

2E
∗

3

√

R1d3.

(3.11)R1 = R/2,

R

Fn
Fn

R 1
d

a

(a) (b)

Fig. 3.2  (a) Contact between a sphere and an elastic half-space and (b) the one-dimensional model

3.2 The Rules of Geike and Popov and Heß for Normal Contact Problems



22 3 Normal Contact Problems with…

(“rule of Popov”), then we obtain the exact Herzian relationships for the contact 
radius and the normal force:

In other words, the rule (3.11) means that the cross-section of the original three-
dimensional profile (in our case, the sphere with the radius R) is stretched by a fac-
tor of 2 in the vertical direction.

In his dissertation from 2011, Heß [3] showed that a similar exact mapping is 
possible for an arbitrary axially-symmetric profile. In this chapter, we will apply 
the mapping rules determined by Heß without providing proof of their validity. A 
detailed derivation of these rules is provided in Chap. 17.

The focus of the following investigation is the contact between axially- 
symmetric bodies and an elastic half-space. Let the axis of symmetry be z and the 
surface of the elastic half-space be given by z = 0. We parameterize the surface 
of the half-space using the Cartesian coordinates x and y. Now, we consider an 
axially-symmetric body with the profile

where r =
√

x2 + y2, Cn is a constant, and n represents an arbitrary positive 
 number (not necessarily an integer). We now define a one-dimensional profile 
 according to4

As shown in Chap. 17, the contact between the three-dimensional profile (3.14) 
and the elastic half-space is equivalent to that of the two-dimensional profile 
(3.15) and the linearly elastic foundation (3.4) if the following rule of Heß is 
applied:

where Γ (n) is the gamma function:

(3.12)a =
√

Rd,

(3.13)FN (d) =
4

3
E∗

√

Rd3.

(3.14)z̃ = fn(r)=cnrn,

4 Let it be pointed out here that, as in the introductory examples, a one-dimensional profile is 
generally denoted with g(x) and a three-dimensional profile with f (r). Both are defined as being 
positive from the tip of the indenter upwards, which is additionally introduced as the coordinate z̃ 
(see Fig. 3.4).

(3.15)z̃ = gn(x) = c̃n|x|n.

(3.16)c̃n = κncn, κn =
√

π

2

nΓ ( n
2
)

Γ ( n
2

+ 1
2
)
,

(3.17)Ŵ(n) =
∞

∫

0

tn−1e−tdt.

http://dx.doi.org/10.1007/978-3-642-53876-6_17
http://dx.doi.org/10.1007/978-3-642-53876-6_17
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The exact equivalence between the three-dimensional and one-dimensional prob-
lem is valid for the relationships between the normal force, the contact radius, and 
the indentation depth. In Table 3.1, the values of the scaling factor κn are presented 
for various values of n and in Fig. 3.3 for 0 < n ≤ 5, they are shown graphically.

Here, the values for a conical and a parabolic indenter are pointed out. The cor-
responding scaling factors are κ1 = 1

2
π and κ2 = 2. The latter is, of course, con-

sistent with the rule of Popov, which requires dividing the radius of curvature by 2.
The fact that it is possible to exactly map a three-dimensional contact problem 

to a one-dimensional linearly elastic foundation not only for profiles of the form 
(3.14), but rather for arbitrary superpositions of such forms is extremely impor-
tant. We now consider a superposition of multiple profiles:

In this case, the rule of Heß is applied as follows: From the profile (3.18), a one-
dimensional profile is generated

In Chap. 17, it is shown that by indenting the profile (3.19) into a linearly elastic 
foundation with a stiffness according to (3.4), the relationships between the nor-
mal force, contact radius, and the indentation depth remain the same as those in 
the three-dimensional case.

(3.18)f (r) =
∞

∑

n=1

fn(r) =
∞

∑

n=1

cnrn.

(3.19)f (r) =
∞

∑

n=1

cnrn ⇒ g(x) =
∞

∑

n=1

c̃n|x|n.

Table 3.1  Scaling factor κn for various exponents of the form function

n 0.5 1 2 3 4 5 6 7 8 9 10

κn 1.311 1.571 2 2.356 2.667 2.945 3.2 3.436 3.657 3.866 4.063

Fig. 3.3  Dependence of 
the scaling factor κ on the 
exponent n

3.2 The Rules of Geike and Popov and Heß for Normal Contact Problems

http://dx.doi.org/10.1007/978-3-642-53876-6_17
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The ability to map contacts between three-dimensional, axially-symmetric bodies 
of the form (3.14) to one-dimensional systems results from simple general scaling 
arguments and it is informative to discuss these briefly at this point. From dimen-
sional analysis and self-affinity5 of the profile (3.14), it arises that the contact radius 
and the indentation depth are related by the same exponential power n as z̃ and R:

where κn is a dimensionless constant. By pressing the one-dimensional profile 
(3.15) into the linearly elastic foundation, the indentation depth is trivially deter-
mined according to

By choosing a suitable c̃n = κncn, one can always guarantee that the relation-
ship between the indentation depth and the contact radius is correct in both cases. 
Furthermore, the differential contact stiffness is given in both the one-dimensional 
case as well as the three-dimensional case by

(proof is given by Pharr et al. [4] or Popov [5]). By integrating this equation and 
taking (3.21) into consideration, the following relationship is obtained for both the 
one-dimensional and three-dimensional case:

Inarguably, the force as a function of indentation depth must be the same in both cases:

If we constrain ourselves to the force–displacement relationship, then the abil-
ity to map three-dimensional systems to one-dimensional systems becomes even 
more general and is possible for arbitrary self-affine surfaces, regardless if they are 
axially-symmetric or not: The exponential dependence (3.24) is only contingent 
on the self-affinity and is valid for arbitrary surfaces with given Hurst exponents. 
Obviously, the correct coefficient can always be found by stretching the profile by 
the appropriate factor if the exponent in the force–displacement relationship is cor-
rect. As we will see in Chap. 10, this is also valid for self-affine, fractally rough 
surfaces. This paves the way for the fast calculation of contacts with rough sur-
faces and is, therefore, especially interesting.

Also, the superposition rule (3.19) has a simple physical meaning and requires 
only that the medium exhibits a linear behavior. Let us consider the two profiles 

5 For self-affinity, the following property is understood: If the profile (3.14) is stretched in the 
horizontal direction by the factor C and simultaneously in the vertical direction by a factor Cn, 
then one obtains the original profile. The exponent n is known as the Hurst exponent.

(3.20)d = κncnan,

(3.21)d = c̃nan.

(3.22)
∂FN

∂d
= 2aE∗

(3.23)FN =
∫

dFN = 2E∗
∫

ad(d) = 2E∗
∫

ac̃nnan−1da = 2E∗c̃n

n

n + 1
an+1.

(3.24)FN =
2n

n + 1
E∗c̃−1/n

n d
n+1

n .

http://dx.doi.org/10.1007/978-3-642-53876-6_10
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f1(r) and f2(r) being pressed into an elastic half-space. The first profile requires 
the indentation force F1(a) in order to obtain the contact radius a. The second pro-
file, on the other hand, requires the force F2(a) in order to reach the same contact 
radius a. We denote the corresponding indentation depths with d1(a) and d2(a). If 
we initially consider the indention of f1(r) and then additionally apply f2(r) to the 
same contact area, with the radius a, then it directly follows from the linearity of 
the medium that the necessary force is

The indentation depth, thereby, is

These are exactly the two properties that are necessary for the mapping of super-
imposed profiles according to Eq. (3.19). In order to prevent confusion, we would 
like to stress that the principle of superposition is not valid (or is not exact) if the 
areas of application of both profiles are not the same.

3.3  General Mapping of Axially-Symmetric Profiles

The previous considerations dealt with the simplest mapping rules which are valid for 
contact profiles in the form of power functions. By choosing an arbitrary, positive real 
exponent and using the principle of superposition due to linearity, a large number of 
axially-symmetric contacts are able to be exactly mapped. The equivalence between 
one-dimensional and three-dimensional systems, however, is in no way restricted to 
such systems, but is generally valid for all axially-symmetric contacts with a sim-
ply connected contact area. The calculation of an equivalent profile using the profile 
function of the three-dimensional contact is conducted using the following formula:

the validity of which will be proven in Chap. 17. The fact that in the case of the power 
function (3.14), this rule leads to the simple scaling relation (3.16) is also explained 
here. Except for the explicit application of the formula (3.27), nothing changes in the 
procedure of the reduction method in order to determine the relationships between 
contact radius, indentation depth, and normal force. In the following, we would like 
to explain the procedure step by step using an example. For this, we consider the 
indentation of the following piecewise-defined profile into an elastic half-space:

(3.25)FN (a) = F1(a) + F2(a).

(3.26)d(a) = d1(a) + d2(a).

(3.27)g(x) = |x|
|x|
∫

0

f ′(r)√
x2 − r2

dr,

(3.28)f (r) =
{

0 for 0 ≤ r < b
r2−b2

2R
for b ≤ r ≤ a

.

3.2 The Rules of Geike and Popov and Heß for Normal Contact Problems

http://dx.doi.org/10.1007/978-3-642-53876-6_17
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As can be gathered from Fig. 3.4, we can interpret the profile as an asperity which 
was originally parabolic, the tip of which, however, has been worn down through 
time.

The application of (3.27) requires the derivative of the original profile (3.28)

which, after insertion into (3.27) and subsequent integration, leads to the equiva-
lent one-dimensional profile6

This profile is compared to the original in Fig. 3.5.

(3.29)f
′(r) =

{

0 for 0 ≤ r < b
r

R
for b ≤ r ≤ a

,

6 Frequently, the one-dimensional profile is referred to in the following; this is to be understood, 
of course, as the profile in the one-dimensional model.

(3.30)g(x) =
{

0 for 0 ≤ |x| < b
|x|
R

√
x2 − b2 for b ≤ |x| ≤ a

.

Fig. 3.5  Parabolic indenter 
with “worn” tip: comparison 
between original and 
equivalent profile

Fig. 3.4  Qualitative 
presentation of the 
indentation of a parabolic 
profile with a flattened tip 
into an elastic half-space
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Naturally, the special case of b = 0 coincides with the mapping rule of Popov, 
of which one may be convinced by comparing (3.28) and (3.30) for this case.

For a known equivalent profile, we can now proceed to the solution of the 
contact problem using the aforementioned reduction process. In order to accom-
plish this, we must merely press the rigid profile described by (3.30) into the one-
dimensional linearly elastic foundation, which results in a surface displacement of

The indentation depth, contact radius, and normal force must reveal the exact three-
dimensional dependencies. The indentation depth as a function of contact radius 
results from requiring that the displacement at the edge of the contact approaches zero:

The normal force is the sum of the spring forces

which provides

after integration and rearranging with the help of (3.32). The results (3.32) and (3.34) 
obtained by using the reduction method are exactly those derived by Ejike [6] for the 
three-dimensional problem. For the sake of completeness, let us state the relationship 
between normal force and indentation depth, which after solving (3.32) with respect 
to a and subsequently inserting this into (3.34), results in

Further contact problems that require the explicit application of formula (3.27) for 
the calculation of the equivalent profile can be found in the practice exercises at 
the end of this and the following two chapters.

3.4  The Mapping of Stress

In the one-dimensional contact problem with the linearly elastic foundation, the 
stresses are not able to be directly determined. Although the relationships between 
the force, displacement, and contact radius may be correctly obtained, it seems 

(3.31)uz(x) = d − g(x) = d −
|x|
R

√

x2 − b2.

(3.32)uz(a) = 0 ⇒ d = g(a) =
a

R

√

a2 − b2.

(3.33)FN = E∗
a

∫

−a

[

d − g(x)
]

dx = 2E∗
a

∫

0

d dx −
2E∗

R

a
∫

b

x
√

x2 − b2 dx,

(3.34)FN (a) =
2E∗

3R

(

2a2 + b2
)

·
√

a2 − b2.

(3.35)FN (d) =
√

2E∗b3

3R



2 +

�

1 +
�

2R

b2
d

�2


 ·

�

�

�

�−1 +

�

1 +
�

2R

b2
d

�2

.

3.3 General Mapping of Axially-Symmetric Profiles
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as if the contact-mechanical information dealing with the stress is lost. In reality, 
however, this is not the case. In the aforementioned dissertation by Heß [3], it was 
shown that the stress distribution for an arbitrary three-dimensional contact is able 
to be reproduced for a corresponding one-dimensional problem. The required deri-
vations can be found in Chap. 17. In the present chapter, we will explain the rules 
for the calculation without the necessary evidence.

For the linearly elastic foundation, the spring forces fN (x) are directly given for 
every contact configuration. The distributed load q(x) (or linear force density) is 
also able to be directly defined:

Among others properties, it will be shown in Chap. 17 that the normal stress 
σzz(r) in the contact area of a three-dimensional contact problem may be found 
from the distributed load q(x) using the following integral transformation (the Abel 
transformation):

As an example of the application of this procedure, we once again consider the 
Hertzian contact problem. For the distributed load, it follows from (3.9) that

The derivative is q′(x) = −E∗x/R1 within the contact area and zero outside of it. 
Insertion into (3.37) leads to

which corresponds exactly with the known Herzian solution.
Further examples to the calculation of the stress in axially-symmetric contacts 

according to Eq. (3.37) will be considered in the exercises at the end of this chapter.

3.5  The Mapping of Non-Axially-Symmetric Bodies

The equation for contact stiffness written in the form

(3.36)q(x) =
fN (x)

�x
.

(3.37)σzz(r) =
1

π

∞
∫

r

q′(x)√
x2 − r2

dx.

(3.38)
q(x) = E∗

(

d − x2

2R1

)

, for |x| < a =
√

2R1d.

q(x) = 0, for |x| > a =
√

2R1d

(3.39)

σzz(r) = −
E

∗

πR1

∞
∫

r

xdx
√

x2 − r2
= −

E
∗

πR1

a
∫

r

xdx
√

x2 − r2
= −

2

π
E

∗
(

d

R

)1/2
√

1 −
(

r

a

)2

,

(3.40)kz = 2E∗β

√

A

π

http://dx.doi.org/10.1007/978-3-642-53876-6_17
http://dx.doi.org/10.1007/978-3-642-53876-6_�17
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is also valid for non-circular cross-sections (A is the contact area). The constant β 
is always on the order of magnitude of 1 for “simple” profiles (see [7]):

Equation (3.40) can be written in the form (3.1), if we define the effective diam-
eter D as

This rule allows for non-axially symmetric contacts to be mapped to a one-dimen-
sional contact with a linearly elastic foundation.

3.6 Problems

Problem 1 Solve the problem of the contact between a cone and an elastic half-
space (Fig. 3.6a) using the reduction method. Calculate the contact radius and the 
normal force as a function of the indentation depth.

Solution The form of the cone is described by the equation f (r) = tan θ · r. 
The corresponding scaling factor has the value κ1 = π/2, so that the one-dimen-
sional profile is given by g(x) = (π/2) tan θ · |x|. If the indenter is pressed to a 
depth of d, then the vertical displacement of the foundation at point x is given by 
uz(x) = d − (π/2) tan θ · |x|. We calculate the contact radius by demanding that 
uz(a) = 0 and in this way, obtain the desired dependence on the indentation depth:

(3.41)
circular cross-section: β= 1.000

triangular cross-section: β= 1.034

square cross-section: β= 1.012

(3.42)D = 2β

√

A

π
.

(3.43)a =
2

π

d

tan θ
.

Fig. 3.6  (a) Contact between a rigid conical indenter and an elastic half-space. (b) Pressure 
 distribution for the normal contact between a conical indenter and an elastic half-space

3.5 The Mapping of Non-axially-Symmetric Bodies
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The normal force is obtained by “summing the spring forces”:

Both results correspond exactly, of course, with those of the three-dimensional 
contact problem [8].

Problem 2 Let the profile  f (r) = C · rn be given for a rigid axially-symmetric 
indenter that is pressed into an elastic half-space. Determine the contact radius and 
the normal force in dependence on the indentation depth by using the reduction 
method.

Solution The equivalent one-dimensional profile is g(x) = Cκn|x|n. The contact 
radius is calculated from the condition g(a) = d as

The displacement field is determined by uz(x) = d − Cκn|x|n and for the normal 
force, we obtain

Once again, the results provide the exact dependencies of the three-dimensional 
problem (see Chap. 17).

Problem 3 Analyze the contact between a half-space and a superimposed profile 
of the form f (r) = r2

2R
+ |r| tan θ using the reduction method. Determine the con-

tact radius and the normal force with respect to indentation depth.

Solution The equivalent one-dimensional profile is

The contact radius is determined using the condition

so that the following relationship between the contact radius and displacement 
results:

(3.44)FN = 2E∗
a

∫

0

uz(x)dx = 2E∗
a

∫

0

(d − (π/2)tanθ · x)dx =
2

π
E∗ d2

tan θ
.

(3.45)a =
(

d

Cκn

)1/n

.

(3.46)FN = 2E∗
a

∫

0

uz(x)dx = 2E∗
a

∫

0

(

d − Cκnxn
)

dx =
2n

n + 1

E∗d
n+1

n

(Cκn)
1/n

.

(3.47)g(x) = κ2
x2

2R
+ κ1|x| tan θ =

x2

R
+

π

2
|x| tan θ .

(3.48)g(a) =
a2

R
+

π

2
a tan θ = d,

(3.49)a =
√

(π

4
R tan θ

)2
+ Rd −

π

4
R tan θ .

http://dx.doi.org/10.1007/978-3-642-53876-6_�17
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The one-dimensional displacement field is given by uz(x) = d − x2

R
− π

2
|x| tan θ, 

where we obtain the equation

for the normal force, which leads to the following equation after integration:

Insertion of (3.49) and simple rearrangement with respect to the desired relation-
ship between normal force and indentation depth leads to

Problem 4 Calculate the stress distribution between a flat cylindrical indenter and 
an elastic half-space with the help of the Abel transformation.

Solution We begin by calculating the distributed load in the one-dimensional case. 
For a flat cylindrical indenter, the distributed load is constant and equal to

We obtain the derivative

where δ(x) denotes the Dirac delta function. The integral (3.37) takes the form

For the Dirac delta function equation 
∫

f (x)δ(x − a)dx = f (a) is valid if the 
 integration area contains the point x = a and is otherwise zero. Thus, the  integration 
in (3.55) results in

(3.50)FN = 2E∗
a

∫

0

uz(x)dx = 2E∗
a

∫

0

(

d −
x2

R
−

π

2
|x| tan θ

)

dx

(3.51)FN = 2E∗
(

da −
a3

3R
−

π

4
a2 tan θ

)

.

(3.52)

FN =
π3

R
2(tan θ)3

E
∗

96

(
√

1 +
16d

π2R(tan θ)2
− 1

)

(

1 +
32d

Rπ2(tan θ)2
−

√

1 +
16d

π2R(tan θ)2

)

.

(3.53)q(x) =

{

FN/(2a), for |x| < a

0, for |x| > a
.

(3.54)q′(x) =
FN

2a
(δ(x + a) − δ(x − a)),

(3.55)σzz(r) =
1

π

∞
∫

r

q′(x)√
x2 − r2

dx =
1

π

FN

2a

∞
∫

r

(δ(x + a) − δ(x − a))√
x2 − r2

dx.

(3.56)σzz(r) =
1

π

FN

2a
=

{

− 1√
a2−r2

, for |r| < a

0, for |r| > a
.

3.6 Problems
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This is the exact stress distribution that exists in the three-dimensional contact 
between a rigid flat cylindrical indenter and an elastic half-space [1].

Problem 5 Calculate the stress distribution in a contact between a rigid cone and 
an elastic half-space with the help of the Abel transformation.

Solution We consider the equivalent one-dimensional model from 
Problem 1. The vertical displacement of the foundation at the point x is 
uz(x) = d − (π/2) tan θ · |x|, from which we obtain the distributed load 
q(x) = E∗ · uz(x) = E∗(d − (π/2) tan θ · |x|). In order to calculate the normal 
stress, we insert the derivative q′(x) = −(π/2)E∗tanθ · sign(x) into Eq. (3.37)

Taking the integral results in

which is, of course, also in this case the exact three-dimensional stress distribu-
tion. This is shown graphically in Fig. 3.6b.

Problem 6 Determine the normal force and normal stress for the contact between 
a rigid cylindrical indenter and a concave, parabolic profile (see Fig. 3.7) with the 
help of the reduction method. Instead of using the indentation depth d, the dis-
placement should be formulated based on the geometric values of do and h. It is 
assumed that a complete contact is present.

Solution First, we define the surface displacement within the contact area for the 
axially-symmetric contact. For this, we use the average displacement do in place of 

(3.57)σzz(r) =
1

π

∞
∫

r

q′(x)√
x2 − r2

dx = −
1

2
E∗tanθ

a
∫

r

dx√
x2 − r2

.

(3.58)σzz(r) =







− 1

2
E

∗
tanθ · ln

�

a

r
+

�

�

a

r

�2 − 1

�

, for r < a

0, for r > a

,

Fig. 3.7  Qualitative presentation of a (complete) indentation of a rigid cylindrical indenter with 
a concave, parabolic profile into an elastic half-space
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the indentation depth d, so that f (0) = 0 is guaranteed for the concave profile in 
the same way as for the convex profile. Then, the following is valid:

The original profile contains a quadratic term, which we must simply multiply with the 
corresponding scaling factor in order to arrive at the geometry of the equivalent system:

From the corresponding surface displacement in the one-dimensional model, we 
obtain a normal force of

In order to calculate the normal stress in the original contact, we require the deriv-
ative of the distributed load q′(x) in the reduced dimensions as well as the bound-
ary condition q(a):

Insertion of (3.62) into (3.37) leads to the desired normal stresses after integration 
and elementary rearrangement:

Naturally, the results (3.61) and (3.63) correspond exactly to those of the three-
dimensional, axially-symmetric contact, which is confirmed by comparison 
with the results given by Barber [9], if one takes into account the conversion 
do = d − h. Let it be once again insistently pointed out that a complete contact is 
assumed, which must satisfy the requirement of σzz(0) ≤ 0. Then, from Eq. (3.63), 
the condition do ≥ 2h follows. Due to the fact that the reduction method in the 
form shown here is only suitable for the mapping of complete contacts (and not 
ring-shaped contact areas), this condition does not follow directly from the one-
dimensional model. Furthermore, the exact mapping is only guaranteed for FN (do) 
and not for FN (d), because the maximum displacement (indentation depth) for 
concave profiles occurs on the boundary and not in the middle.

Problem 7 Formulate the method of dimensionality reduction for a transversally-
isotropic medium.

Solution A transversally-isotropic medium is a medium that is isotropic in 
one plane. For crystalline bodies, this includes bodies in the hexagonal class of 

(3.59)uz(r) = do − f (r) = do +
h

a2
r2.

(3.60)g(x) = κ2f (|x|) = −2
h

a2
x2.

(3.61)

FN = 2E∗
a

∫

0

[

do − g(x)
]

dx = 2E∗
a

∫

0

(

do + 2
h

a2
x2

)

dx = 2E∗a

(

do +
2

3
h

)

.

(3.62)q(x) = E∗
(

do + 2
h

a2
x2

)

⇒ q′(x) = 4E∗ h

a2
x and q(a) = E∗(do + 2h).

(3.63)σzz(r) = −
E∗

π
·

do − 2h + 4h
(

r
a

)2

√
a2 − r2

.

3.6 Problems
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crystals. Also, a fiber composite with all fibers oriented in parallel is a transver-
sally-isotropic medium. A linearly transversally-isotropic medium can be com-
pletely defined by 5 elastic moduli. If we denote the axis of symmetry to be “3,” 
then the axes “1” and “2” are “equivalent” and can be chosen arbitrarily within the 
plane which they define. Hooke’s law for such a medium is as follows:

The applicability of the method of dimensionality reduction is based solely on 
the fact that the differential stiffness of a medium is determined exclusively by 
the current contact area. For axially-symmetric profiles, it is given by the stiffness 
of the contact between a flat, rigid cylindrical indenter and the elastic half-space. 
Therefore, the rule for the application of the method of dimensional reduction to 
an arbitrary linearly elastic medium is as follows: First, the stiffness kz of the con-
tact with a flat cylindrical indenter with the diameter D and the equivalent one-
dimensional system as a linearly elastic foundation with a stiffness per unit length 
of kz/D are determined. This method can be applied to any medium for which a 
solution with a rigid cylinder is known.
The solution for the stiffness of a contact between a flat, cylindrical indenter and 
a transversally-isotropic medium (with an axis of symmetry parallel to the normal 
vector) can be directly taken from the work of Yu [10]. It is given by Eq. (3.1) with

where the following relationships are introduced:

(3.64)

σ11 = C11ε11 + C12ε22 + C13ε33

σ22 = C12ε11 + C11ε22 + C13ε33

σ33 = C13(ε11 + ε22) + C33ε33

σ12 = (C11 − C12)ε12

σ23 = 2C44ε23

σ31 = 2C44ε31 .

(3.65)E∗ =
2
(

C̄2
13 − C2

13

)

C̄13(ν1 + ν2)
,

(3.66)ν1 =
[

(

C̄13 − C13

)(

2C̄13 − I0

)

4C33C44

]1/2

+
[

(

C̄13 + C13

)

I0

4C33C44

]1/2

(3.67)ν2 =
[

(

C̄13 − C13

)(

2C̄13 − I0

)

4C33C44

]1/2

−
[

(

C̄13 + C13

)

I0

4C33C44

]1/2

(3.68)C̄13 = (C11C33)
1/2

(3.69)I0 = C̄13 − C13 − 2C44.



35

Insertion of (3.66)–(3.69) into (3.65) results in

Problem 8 Determine the indentation depth and the normal force as a function of 
contact radius for the normal contact between a sphere of radius R and a linearly 
elastic half-space with the help of the reduction method. Contrary to the parabolic 
approximation of Hertz, here the exact spherical form should be taken into account 
and the equivalent profile should be calculated with the general Eq. (3.27).

Solution The exact profile of a sphere with a radius of R is given by the function

The first derivative of (3.71) is

Inserting (3.72) into the general formula (3.27) leads to the equation

for which the elementary integral on the right results by using the substitution 

z(r) =
√

x2 − r2

√
R2 − x2

.  The equivalent profile is

Figure 3.8 shows both of the “equivalent” profiles as well as their parabolic 
approximations. The dashed lines confirm the rule of Popov.

Simultaneously, the surface displacement of the linearly elastic foundation may be 
found with (3.74), which must tend to zero at the contact boundary and in this 
way, determines the indentation depth:

The spring forces, which are proportional to the surface displacement, must be in 
equilibrium with the normal force

(3.70)E∗ =
2
√

C44

(

C11C33 − C2
13

)

√
C11

√

(√
C11C33 − C13

)(

C13 + 2C44 +
√

C11C33

)

.

(3.71)f (r) = R −
√

R2 − r2.

(3.72)f ′(r) =
r√

R2 − r2
.

(3.73)g(x) = x

x
∫

0

r√
R2 − r2 ·

√
x2 − r2

dr = −x

0
∫

z(0)

dz√
1 + z2

,

(3.74)
g(x) = x · arsinh

(

x√
R2 − x2

)

=
1

2
x ln

(

R + x

R − x

)

.

(3.75)uz(a) = 0 ⇒ d = g(a) =
1

2
a ln

(

R + a

R − a

)

.

(3.76)FN = E∗
a

∫

−a

[

d − g(x)
]

dx = 2E∗da − E∗
a

∫

0

x ln

(

R + x

R − x

)

dx.
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A suitable partial integration initially provides

and after insertion of (3.75), the contact force is finally obtained as a function of 
contact radius:

The indentation depth from (3.75) and the normal force from (3.78) correspond 
exactly to the three-dimensional contacts based on the solutions of Segedin [11], 
which are obtained using the Area-functions. Finally, let it be known that we could 
have just as well developed the spherical profile as a series. After multiplying the 
individual terms with the corresponding scaling factor, according to the rules of 
Heß, the equivalent profile (3.74) would have been given in the form of a power 
series. If the integral for the general formula (3.27) is not known, we have, in fact, 
no choice but to use this strategy.
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