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2.1  Introduction

For a wide class of “typical tribological systems,” there are a number of properties 
that allow for the significant simplification of contact problems and, in this way, 
make fast calculations of multi-scalar systems possible. These simplified proper-
ties, which are used by the method of dimensionality reduction include

 1. The ability to separate the elastic and inertial properties in three-dimensional 
systems

 2. The close analogy between three-dimensional contacts and certain one-dimensional 
problems.

The first of these will be discussed in this chapter, while further chapters are dedi-
cated to the second. The first property can be formulated into three statements:

(a) For sufficiently small velocities, deformations may be considered to be 
quasi-static.

(b) The potential energy, and therewith, the force–displacement ratio, is a local 
property which is only dependent on the configuration of the contact area and 
not on the form or size of the body as a whole.

(c) The kinetic energy, on the other hand, is a global property which is only 
dependent on the form and size of the body and not on the configuration of 
the micro-contacts.

These three listed statements are met in many macroscopic systems. In the 
 following, we will consider them in detail individually.

Chapter 2
Separation of the Elastic and Inertial 
Properties in Three-Dimensional Systems
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2.2  The Quasi-Static State

The separation of the elastic and inertial properties is only valid under the con-
dition that the characteristic loading time T  of a contact is much larger than the 
time that elastic waves in the continuum require to travel a distance on the order of 
magnitude of the diameter D of the contact area:

where c is the speed of sound. For instance, if the characteristic time of 
changes in force in a wheel–rail contact is larger than the characteristic time of 
T = 1 cm/

(

5 × 103 m/s
)

= 2 × 10−6 s (or the frequency is below 500 kHz), then 
they may be considered quasi-static. If this condition is met, then the deformation 
near the contact area is practically the same as in a static contact. This is, of course, 
the same for the contact forces.

If an even more stringent condition is met, namely,

where R is the size of the entire system, then all particles in the continuum, with 
the exception of a small volume near the contact, move as a rigid body. In other 
words, the condition (2.2) means that the characteristic contact time is much larger 
than the period of the normal modes of the system. For a wheel–rail contact, this 
condition is met for frequencies below approximately 2 kHz.

If we continue with the example of a rolling wheel, then the characteristic con-
tact time can be approximated as T ≈ D/v, where v is the linear velocity (driving 
speed). Then, the quasi-static state condition simply means

For a rough contact with a characteristic wavelength of �, the characteristic time is 
T ≈ �/v, so that condition for the quasi-static state is much more restrictive: 
�/v > D/c or

In most tribological systems, we are dealing with the movements of  components 
whose relative velocities (e.g., a train at around 50 m/s) are orders of magnitude 
smaller than the speed of sound in these components (this is around 5 × 103 m/s 
for steel). Under these conditions, one can consider the problem to be quasi-static if 
one is interested in the wavelengths of the roughness that are roughly two orders of 
magnitude smaller than the diameter of the contact area.

2.3  Elastic Energy as a Local Property

Elastic interactions are local in the sense that they play a role only within a volume 
on the same order of magnitude as the diameter of the contact area and, therefore, 
are not dependent on the size or form of the body as a whole. Let us investigate 

(2.1)T > D/c,

(2.2)T > R/c,

(2.3)v < c.

(2.4)v < c
�

D
.
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this somewhat more closely by calculating the potential energy of a deformed con-
tact area. We observe a cylindrical indenter that is pressed into a body by the dis-
tance d (Fig. 2.1).

For the displacement inside the elastic body at a large distance r from the 
indentation point, the following is valid:

The deformation can be estimated as ε ≈
du
dr

≈ −
D·d
r2  and the energy density, as 

E ≈
1
2

Gε2 ≈
1
2

G D2·d2

r4
. Through integration, the elastic energy is

where G is shear modulus of the medium. This integral converges at the upper 
boundary (therefore, it can be set to infinity) and diverges at the lower limit. 
However, because the asymptote (2.5) is only valid for r > D, the elastic energy 
of the deformation within a volume with a linear dimension on the order of mag-
nitude D dominates. In other words, the elastic energy is a local value that is only 
dependent on the configuration and deformation in the vicinity of the micro-
contact. The size and form of the macroscopic body is irrelevant for the contact 
mechanics of this problem.

Incidentally, this property is not self-evident and would not, for example, be 
valid in a two-dimensional system. Instead of having Eq. (2.6), we would have 
the integral 

∫

dr/r in the two-dimensional case, which diverges logarithmically on 
both boundaries. The elastic contact energy for the two-dimensional case is, there-
fore, dependent on the contact configuration as well as the size and form of the 
body as a whole.

2.4  Kinetic Energy as a Global Property

Exactly the opposite is true for the kinetic energy of the body. To illustrate this, 
let us consider a sphere landing on an indenter with a diameter of D (the contact 
radius remains the same) at a velocity of v (Fig. 2.2).

(2.5)u ≈
D · d

r
.

(2.6)U ≃

∫

G
D2 · d2

r4
πr2dr = πGD2

· d2

∫

dr

r2
,

Fig. 2.1  Flat cylindrical 
indenter being pressed into 
an elastic body by a distance 
of d

d

r

D

2.3 Elastic Energy as a Local Property



10 2 Separation of the Elastic and Inertial Properties…

We assume that the condition (2.2) is met so that the elastic deformation in 
the entire body may be considered to be quasi-static. The center of gravity of the 
sphere x and the coordinate of the point of contact ξ are chosen as the generalized 
coordinates of the sphere. Accordingly, the indentation depth is equal to

The potential energy of the sphere is a function of the indentation depth:

where k = E∗D. E∗ is here the effective Young modulus defined in the next 
Chapter [Eq. (3.2)]. The velocity field for a quasi-static indentation is obtained 
from (2.5) by differentiating the indentation depth with respect to time:

The total kinetic energy is then composed of the kinetic energy of the movement 
of the center of mass and the kinetic energy of the deformation relative to the 
center of mass:

with

A more accurate derivation leads to the result of m1 ≈ 0.3 m(D/R)2 for materials 
with ν = 1/3 (see Problem 3 in this chapter). Note that this mass is on the same 
order of magnitude as the mass of a rod with the diameter D and the length R.

We now would like to illustrate the separation of the elastic and inertial prop-
erties of a contact and their accuracy using several concrete dynamic examples. 
The dynamic treatment of the system makes use of the Lagrange function, which 

(2.7)d = x − ξ + R.

(2.8)U =
kd2

2
=

k

2
(x − ξ + R)2,

(2.9)u̇ ≈
D · ḋ

r
=

D ·
(

ẋ − ξ̇
)

r
.

(2.10)K =
mẋ2

2
+

ρ

2

(

ẋ − ξ̇
)2

∫
(

D

r

)2

dV =
mẋ2

2
+

m1

2

(

ẋ − ξ̇
)2

,

(2.11)m1 ≈ ρD2

∫
(

1

r

)2

2πr2dr = 2πρD2R ≈ m

(

D

R

)2

.

Fig. 2.2  Illustrating the 
kinetic energy of an elastic 
body landing on a rigid 
cylindrical indenter at a 
velocity of v

d

v

D

v

R

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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is calculated as the difference between the kinetic energy (2.10) and the potential 
energy (2.8):

where we have introduced a new variable ζ = ξ − R.
We consider three cases:

1. Impact of the body with a stationary, rigid rod. In this case, ζ = 0 is valid for 
the entirety of the impact time and the Lagrange function takes the form

Therefore, the system is equivalent to a rigid body with the mass (m + m1) on a 
spring with the stiffness k, which is equal to the static contact stiffness (Fig. 2.3). 
The mass correction m1 is on the order of magnitude of m(D/R)2 and may be 
neglected for small contact diameters.

2. “Base excitation.” We now assume that the coordinate of the contact area, and 
therefore, the coordinate ζ, is a given function of time: ζ = ζ(t). The Lagrange 
function is then equal to

and the Euler–Lagrange equation for the coordinate of the center of gravity is

The acceleration term on the right-hand side of this equation is on the order of 
magnitude of m1ζ/T2. Within the validity regime of the condition (2.2), we have 
the equation

(2.12)

L = K − U =
mẋ

2

2
+

m1

2

(

ẋ − ξ̇
)2

−
k

2
(x − ξ + R)2

=
mẋ

2

2
+

m1

2

(

ẋ − ζ̇
)2

−
k

2
(x − ζ )2

,

(2.13)L =
(m + m1)ẋ

2

2
−

k

2
x2.

(2.14)L =
mẋ2

2
+

m1

2

(

ẋ − ζ̇ (t)
)2

−
k

2
(x − ζ(t))2

(2.15)(m + m1)
..
x +kx = kζ(t) + m1ζ̈ (t) = �FN (t).

(2.16)

m1

T2
ζ <

m1c2

R2
ζ ≈

mc2D2

2R4
ζ = k

mc2D2

2kR4
ζ ≈ k

2πR3ρc2D2

EDR4
ζ = k

2πD

R
ζ ≪ kζ ,

Fig. 2.3  Model for the 
impact of a sphere on a rigid 
cylindrical rod

m

m 1

k

rigid body

massless spring

2.4 Kinetic Energy as a Global Property
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where c2 = E/ρ has been substituted, E being Young’s modulus. Therefore, the 
acceleration contribution can always be neglected with respect to the elastic con-
tribution for small contact diameters. As in the first case, for sufficiently small 
contact diameter, the system can be modeled as a rigid body with the mass m 
bound to a spring (see Fig. 2.4).

3. Freely oscillating surface. If the body is held and a contact area with the 
diameter D indented and then instantaneously let free, then we obtain the 
Lagrange function by substituting x = 0 into (2.12):

The movement of the surface would be an oscillation with the angular frequency 
ω1:

This frequency, however, is much larger than the natural frequency of the body 
ω2

0 ≈ c2/R2. Therefore, the condition of validity for the Lagrange function (2.17) 
is not met: Resonance oscillations of a free surface cannot be dealt with using this 
approximation.

If the diameter of the contact is dependent on the indentation depth, then the 
corresponding potential energy of the contact U(d) must be used in the Lagrange 
function:

where, as before,

As explained above, the second term in (2.19) can always be neglected as long as 
condition (2.2) is met. The model shown in Fig. 2.5 is the result.

(2.17)L =
m1

2
ζ̇ 2

−
k

2
ζ 2.

(2.18)ω2
1 =

k

m1

≈
ED

2πρD2R
≈

c2

2πDR
.

(2.19)L =
mẋ2

2
+

m1(t)

2

(

ẋ − ζ̇
)2

− U(x − ζ ),

(2.20)m1 ≈
m

2

(

D(t)

R

)2

.

Fig. 2.4  Model of a  
non-stationary contact  
(e.g., a rolling sphere on 
a rough substrate)

m
rigid body

massless spring

F (t)N

k

∆
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Now, we will concentrate on the procedure for non-stationary force effects on 
a small contact area. As an example, we consider a rough sphere rolling on a rigid 
rough surface (although nominally flat) so that the potential energy is not only a 
function of indentation depth, but also an explicit function of time:

Due to the fact that the rolling takes place on a rigid surface, ζ = 0 and the 
Lagrange function takes the form

where we have neglected the mass correction. The corresponding Euler-Lagrange 
equation is then

In this case, the system is equivalent to a rigid body on which the time-dependent 
contact forces act. If it is possible to divide the force into the part for the “smooth 
surface” and a stochastic part, according to the equation

then the equation of motion takes the form

This equation describes a rigid mass m coupled to the surface with a non-linear 
contact force FN ,0(x) being acted upon by the exciting force ∆FN (t). The corre-
sponding model is the same as that in Fig. 2.4 with the exception that a non-linear 
spring is used here.

If the condition (2.2) is not met, but the condition (2.1) is still valid, then the 
body can no longer be treated as a rigid mass, such as in the case of high-frequency 
oscillations; however, the static equations can still be used to determine the contact 
forces. In this case, there is no simple model to describe the entire dynamics of the 
system, because the frequency is too high for the body to be assumed to be rigid. 
Therefore, the complete dynamic problem must be solved. The contact problem, 
however, remains quasi-static and provides a boundary condition for the elastic 
problem (Fig. 2.6). An example of such a dynamic case is presented in Problem 4.

(2.21)L =
mẋ2

2
+

m1(t)

2

(

ẋ − ζ̇
)2

− U(x − ζ , t).

(2.22)L ≈
mẋ2

2
− U(x, t),

(2.23)mẍ = −
∂U

∂x
= FN (x, t).

(2.24)FN (x, t) = FN ,0(x) + �FN (t),

(2.25)m
..
x = FN ,0(x) + �FN (t).

Fig. 2.5  Dynamic model for 
a non-linear (e.g., Hertzian) 
contact m

rigid body

massless spring

2.4 Kinetic Energy as a Global Property



14 2 Separation of the Elastic and Inertial Properties…

2.5 Problems

Problem 1 Determine the contact time for an elastic sphere (radius R) impacting 
a rigid wall. (Hertz 1881, [1]).

Solution The approaching distance between the center of the sphere and the wall, 
starting at the moment of impact, is defined as x. The potential energy of the sys-
tem is given by1 U = (8/15)E∗R1/2d5/2, while the kinetic energy is equal to that 
of a rigid body. During the time of impact, the energy is conserved:

where v0 is the impact velocity. The minimum distance between the center of the 
sphere and the wall x0 corresponds to the time at which the velocity dx/dt disap-
pears, and is equal to

The length of impact τ (while x increases from 0 to x0 and then decreases back to 0) is

Problem 2 Solve Problem 1 assuming that the sphere is glued to a hard cylindrical foot, 
much like a golf tee, with a diameter of D so that the contact radius does not change.

Solution The contact stiffness of a contact with a diameter of D is equal to 
k = E∗D [2] (definition of material parameters see next Chapter) and the sphere 
can be considered to be a rigid mass as a first approximation. During the entire 
contact process, the differential equation

1 Definition of the material parameter E see next chapter.

(2.26)
m

2

(

dx

dt

)2

+
8

15
E∗R1/2x5/2

=
mv2

0

2
,

(2.27)x0 =

(

15

16

mv2
0

E∗R1/2

)2/5

.

(2.28)τ =
2

v0

x0
∫

0

dx
√

1 − (x/x0)
5/2

=
2x0

v0

1
∫

0

dξ
√

1 − ξ5/2
≈

2.94x0

v0

.

Fig. 2.6  Model for the case 
of high-frequency contact 
forces, for which condition 
(2.2) is not met, but the 
weaker condition (2.1) still 
holds true

m

F (t)N

elastic body

massless spring∆
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is sufficient to describe the motion. The solution for the initial conditions x(0) = 0 
and ẋ(0) = v0 is x =

v0

ω
sin(ωt), with ω2 = k/m. The length of time of the contact 

is equal to half of the period of the oscillation

Problem 3 Calculate the mass m1 in Eq. (2.10) in the case of an elastic sphere.

Solution We will assume that the displacement relative to the center of mass in 
the entire volume of the sphere is the same as that in a half-space. If a round area 
with the diameter D is pressed into an elastic half-space by the distance u, then 
displacements result whose asymptotic forms (for r ≫ D) appear as follows [3]:

with

Substitution of (2.34) into the equations for displacements results in

The corresponding velocities, under the assumption that the deformation is quasi-
static, are equal to

(2.29)m
..
x +kx = 0

(2.30)τ =
π

ω
= π

√

m

E∗D
.

(2.31)ux =
1 + ν

2πE

[

xz

r3
−

(1 − 2ν)x

r(r + z)

]

Fz,

(2.32)uy =
1 + ν

2πE

[

yz

r3
−

(1 − 2ν)y

r(r + z)

]

Fz,

(2.33)uz =
1 + ν

2πE

[

2(1 − ν)

r
+

z2

r3

]

Fz

(2.34)Fz = uE∗D.

(2.35)ux =
uD

2π(1 − ν)
x

[

z

r3
−

(1 − 2ν)

r(r + z)

]

,

(2.36)uy =
uD

2π(1 − ν)
y

[

z

r3
−

(1 − 2ν)

r(r + z)

]

,

(2.37)uz =
uD

2π(1 − ν)

[

2(1 − ν)

r
+

z2

r3

]

.

(2.38)u̇x =
u̇D

2π(1 − ν)
x

[

z

r3
−

(1 − 2ν)

r(r + z)

]

,

2.5 Problems
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With the spherical coordinates

The equations (2.38)–(2.40) can be written as follows:

The kinetic energy of the deformation is now calculated as

From this, it follows that

(2.39)u̇y =
u̇D

2π(1 − ν)
y

[

z

r3
−

(1 − 2ν)

r(r + z)

]

,

(2.40)u̇z =
u̇D

2π(1 − ν)

[

2(1 − ν)

r
+

z2

r3

]

.

(2.41)x = r cos θ cos ϕ,

(2.42)y = r cos θ sin ϕ,

(2.43)z = r sin θ ,

(2.44)u̇x =
u̇D

2π(1 − ν)

1

r

{

cos θ cos ϕ

[

sin θ −
(1 − 2ν)

(1 + sin θ)

]}

,

(2.45)u̇y =
u̇D

2π(1 − ν)

1

r

{

cos θ sin ϕ

[

sin θ −
(1 − 2ν)

(1 + sin θ)

]}

,

(2.46)u̇z =
u̇D

2π(1 − ν)

1

r

[

2(1 − ν) + sin2 θ

]

.

(2.47)

K ≈
ρ

2
2π

π/2
∫

0

dθ

2R sin θ
∫

0

(

u̇
2
x
+ u̇

2
y
+ u̇

2
z

)

r
2 cos θdr

=
πρu̇

2
D

2
R

2π2(1 − ν)2

π/2
∫

0

{

cos2 θ

[

sin θ −
(1 − 2ν)

(1 + sin θ)

]2

+

[

2(1 − ν) + sin2 θ

]2
}

sin θ cos θdθ

=
πρu̇

2
D

2
R

2π2(1 − ν)2

(

55

12
−

32

3
ν + 8ν2

− 2 ln 2 · (1 − 2ν)2

)

=
1

2
·

4πρR
3

3

3u̇
2
D

2

4π2R2
·

55
12

−
32
3

ν + 8ν2 − 2 ln 2 · (1 − 2ν)2

(1 − ν)2
.

(2.48)

m1 = m

(

D

R

)2
3

4π2
·

55
12

−
32
3

ν + 8ν2 − 2 ln 2 · (1 − 2ν)2

(1 − ν)2
= m

(

D

R

)2

δ(ν).
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For metallic materials (ν ≈ 1/3) and incompressible media (ν ≈ 1/2), δ(1/3) ≈ 0.3 
and δ(1/2) ≈ 0.38, respectively.

Problem 4 A round rod with the diameter D1 is excited in an area of constant 
diameter D2 ≪ D1 by the harmonic oscillation ξ = ξ0 cos ωt. Calculate the motion 
of the system.

Solution The system diagram is shown in Fig. 2.7, where k = E∗D2.
The equation of motion for the elastic rod is

Here, u(x, t) is the displacement of the point with the initial coordinate x and 
c2 = E/ρ. The displacement of the “base point” we describe with ξ. The boundary 
condition at the left side of the rod is then

A = πD2
1/4 is the cross section of the rod. The solution of Eq. (2.49), taking under 

consideration the unloaded end at the point x = l and the boundary condition 
(2.50) with ξ = ξ0 cos ωt is

If condition (2.2) is met, and therefore ωl/c ≪ 1, then the solution takes the form

where m = ρAl is the mass of the rod. In this limiting case, the displacement is not 
dependent of the coordinate x: The rod moves as a rigid structure with the mass m. 
The deviation from the approximation as a rigid mass, in this case, is of the second 
order of magnitude for ωl/c.

(2.49)
∂2u(x, t)

∂t2
= c2 ∂2u(x, t)

∂x2
.

(2.50)k[u(0, t) − ξ(t)] = AE
∂u

∂x

∣

∣

∣

∣

x=0

.

(2.51)u(x, t) =
kξ0 cos ω

c
(x − l)

k cos ω
c

l − AE ω
c

sin ω
c

l
cos (ωt).

(2.52)u(x, t) =
kξ0 cos (ωt)

k −
AlEω2

c2

=
kξ0 cos (ωt)

k − mω2
,

k

u (0, t)

x
(t)

u ( , t )l

ξ

Fig. 2.7  Diagram for the contact described in Problem 4

2.5 Problems
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