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15.1 � Introduction

The application of the method of dimensionality reduction is, of course, limited 
to the spatial scales for which continuum mechanics can be used. Every practical 
application using the method will lose its validity even earlier, due to the finite 
spatial resolution of the surface topography. Therefore, it begs the question of 
whether the interactions on even smaller scales can be summarized into a micro-
scopic “contact law” or “law of friction,” so that also the properties of the smallest 
possible scale can be taken into account in the simulation. A complete method can 
only exist after the coupling to the macroscale as well as to the microscale has 
been accomplished. In this chapter, we explain how the limitations of the finite 
spatial resolution can be eliminated by the introduction of a “microscopic” non-
linear stiffness.

15.2 � Non-Linear Stiffness on the “Microscale”

Let us consider the classical Hertzian problem: a rigid sphere with the radius 
R is pressed into an elastic half-space with the effective modulus of elasticity 
of E*. This problem can be expressed by an equivalent one-dimensional con-
tact between a rigid sphere with the radius R1 = R/2 and the linearly elastic 
foundation with the stiffness per unit length E∗. The dependence of the force on 
the indentation depth is given by the Hertzian Eq. (3.13). However, this is only 
valid if the contact radius is much larger than the discretization step size �x 
of the linearly elastic foundation. As soon as only one spring is in contact, the 
stiffness is constant and the result deviates from that of the Hertzian equation.  
In order for the force-indentation depth relation to remain correct also at 
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smaller forces, the discretization step size can always be chosen to be smaller. 
An alternative solution is based on the idea that the single spring is assigned a 
non-linear stiffness. The introduction of non-linear stiffness for the simulation 
of processes on the microscale is not a new idea. For example, this idea was 
used in [1] and [2] and is the foundation of the concept of “interfacial stiffness,” 
which is currently being used actively by many experts in the field of contact 
mechanics [3–5].

As explained in Sect. 10.8, a completely fractal surface can be replaced (in the 
sense of an average contact stiffness) by a single non-linear spring. This idea does 
not have to be applied to the entire system, but can also be used beginning at a cer-
tain scale. We illustrate this idea using two examples: The Hertzian contact and the 
contact with a randomly rough, fractal surface.

15.3 � Coupling with the Microscale Using the Example  
of the Hertzian Contact

Here, we consider the case of the Hertzian contact, meaning the indentation of a parab-
oloid. As seen in Chap.  3, the original radius R is replaced in the one-dimensional 
model by R1 = R/2. In this way, we obtain the form of the indenter:

As soon as the indentation depth decreases beyond a critical value u(0)
z = g(�x), 

only a single spring is in contact. Here, the dependence of the stiffness on the 
indenter form loses its validity and assumes the behavior of a single spring. If 
we now change the linear force law of a single spring to that effect so that each 
of them reproduces the asymptotic Hertzian behavior, then this problem can be 
avoided. So, we replace the local linear spring behavior with the following non-
linear law for the spring force:

For large values of uz,i, the limiting case of the standard linearly elastic foundation 
results. Figure 15.1 shows the force–indentation depth relationship in the transi-
tional domain of the standard model of linear springs in blue and with the spring 
behavior from Eq. (15.2) in green. The force with respect to the indentation depth 
is now correctly given for both very large and very small forces, regardless of the 
size of the discretization step �x. In the domain where only one spring is in con-
tact, there is a small irregularity that cannot be avoided. As we will see in the next 
section, this procedure works much better for randomly rough surfaces, because 
small irregularities due to statistical scatter are “averaged out.”
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15.4 � Coupling with the Microscale for the Case  
of a Randomly Rough, Fractal Surface 

In Chap.  10, we have investigated fractal surfaces and seen that they follow a 
power law for asymptotically small forces (or indentation depths). For a fractal 
surface with a length L and a roughness h, the force as a function of indentation 
depth is determined according to Eq. (10.48):

We obtain the critical indentation depth when the stiffness corresponds exactly to 
that of a single linear spring. According to this, the following results from (10.30):

From this, it follows that

Insertion into (15.3) results in the critical indentation depth
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Fig. 15.1   Dependence of 
the force on the indentation 
depth plotted logarithmically: 
the exact solution of the 
Hertzian problem, results of 
the classical one-dimensional 
equivalent system with a 
discretization step size of �x,  
and the results for the one-
dimensional equivalent model 
with a stiffness according to 
(15.2)
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In order to correctly map the asymptotic behavior, the force of a single spring, for 
small indentation depths, has to be defined accordingly to (15.3) while for larger 
indentation depths, a linear behavior should be valid. Accordingly, we define

Figure 15.2 shows, analogously to Fig. 15.1, the curve of the normal force with 
respect to the indentation depth for the linear standard model (dotted blue line) 
and with the definition of the single spring according to (15.7). The expected 
approximation in the domain of asymptotically small indentations (10.48) is 
shown as a dotted line.

We have seen that the behavior on the microscales can be “coupled” to the 
reduction method by allowing a single spring to behave non-linearly in the domain 
of small indentations. In addition to the possibility of reducing the discretisation 
step to account for known problems, this procedure can also be used to integrate 
models below the scales of continuum mechanics, or to represent a cut-off domain 
of shorter wavelengths. Surface spectra that exhibit such a cut-off are microscopi-
cally smooth below this wavelength. This means that they form effectively the 
smallest possible asperities with a characteristic radius of curvature so that the 
Hertzian behavior can be used, as in Eq. (15.2).
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Fig.  15.2   Dependence of the force on the indentation depth plotted logarithmically for frac-
tally rough lines. Approximate numerical solution for the average of many surface realizations 
according to Eq. (15.3), numerical results using the reduction method and the reduction method 
with a non-linear spring behavior according to Eq. (15.7). The bend in the blue curve for small 
indentation depths can be corrected using the non-linear spring behavior. Data from the plot are 
N = 2,049, H = 1
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