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12.1 � Introduction

Friction is a dissipative process, in which mechanical energy is transformed into 
heat. This can be both unwanted as well as purposefully taken advantage of. Even 
at very small amplitudes of tangential oscillations, the small slip displacements at 
the border of the contact area always lead to energy dissipation. This effect is the 
physical mechanism of damping in periodically forced frictionally engaged joints, 
for example, in leaf springs for commercial and transportation vehicles. Similar 
effects are generally exhibited in all frictionally engaged joints and are, there-
fore, of great interest. For the investigation of damping caused by dry friction, a 
dynamic tangential contact is of interest. The exact coincidence of the frictional 
damping in a true three-dimensional contact and its one-dimensional representation 
in the framework of the method of dimensionality reduction follows from general 
theorems concerning tangential contacts. This chapter is an illustration how the use 
of the MDR makes dynamic tangential problems simple without loss of exactness.

12.2 � Damping by Dry Friction

In the following, a dynamic tangential contact is considered, the movement of 
which is damped by Coulomb friction. An elastic parabolic indenter is loaded with 
the normal force FN and oscillates subsequently in the tangential direction. As dis-
cussed in Chap. 5, this problem can be mapped to an equivalent one-dimensional 
problem. In this equivalent problem, all elements are considered independently of 
one another. We can, therefore, begin with the energy dissipation of a single ele-
ment, as illustrated in Fig. 12.1. Afterwards, the results will be generalized to the 
entire system.
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Let the spring be compressed in the vertical direction by uz. It possesses a nor-
mal spring stiffness of kz = E∗�x (see Eq. (3.5)) and a tangential spring stiffness 
of kx = G∗�x (see Eq. (5.4)). If the top of the spring is moved to the side by A, 
then the bottom of the spring remains in a state of stick as long as the spring force 
in the tangential direction is smaller than the maximum force of static friction:

The critical value of the displacement is

where we have introduced the constant κ:

If A is larger than the critical value A > Ak, then the bottom of the spring remains 
in a state of stick until the critical displacement is achieved and slips for the 
remainder of the distance Ag = A − Ak . The work done by the frictional force is 
then

Now, we consider an oscillating spring having a peak-to-peak amplitude of 2A. 
If the top of the spring is brought back by this amplitude, then the bottom of the 
spring sticks until the top has moved by a distance of 2Ak and then slips a distance 
of 2A − 2Ak (see Fig. 12.2).

In further oscillations, this distance always remains the same and is traversed 
two times per period. Therefore, the frictional work done per period for a cyclical 
movement is

Now, we consider a system of independent springs. The critical amplitude for a 
spring with the coordinate x is given by

(12.1)Fx = kxA < µFN = µkzuz.

(12.2)Ak = µ
kz

kx

uz = µκuz,

(12.3)κ :=
kz

kx

=
E∗

G∗ =
2 − ν

2(1 − ν)
.

(12.4)W = (A − Ak)µkzuz.

(12.5)Wcycle = 4(A − Ak)µkzuz.

(12.6)Ak(x) = µuz(x)κ .

Fig. 12.1   (a) Contact of a 
spring with a rigid substrate. 
(b) The top of the spring 
is moved from the original 
position to the right by a 
distance of A

(a)

(b)
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The work of the frictional contact during one period for a cyclical movement with 
the amplitude 2A is

Within the framework of the method of dimensionality reduction, a parabolic 
indenter with the profile z̃ = r2/(2R) is replaced with the profile z̃ = x2/R. If the 
indentation depth of the indenter is equal to d, then the spring with the coordinate 
x is indented by

Therefore, the work of the frictional contact of one spring is

The entire energy dissipated during one period is then the integral over the slip 
domain in the contact:

The geometric relation a =
√

Rd is valid for the outer radius of the contact. The 
lower boundary of the integral is determined by the springs that are in the stick 
state exactly at their maximum displacement: µkzuz(c) = Akx. Therefore, by using 
Eq.  (12.8), we obtain c =

√
Rd − AR/(µκ). The entire work done is then calcu-

lated as

(12.7)�W(x) = 4(A − Ak(x))µuz(x) · kz = 4µE∗(A − µκuz(x))uz(x)�x.

(12.8)uz(x) = d −
x2

R
.

(12.9)
�W(x) = 4µE∗

(

A − µκ

(

d −
x2

R

))(

d −
x2

R

)

�x.

(12.10)W = 2

a
∫

c

4µE∗
(

A − µκ

(

d −
x2

R

))(

d −
x2

R

)

dx.

(12.11)

W = 8E
∗
R

1/2κ−3/2µ−1/2





Ak0(A − Ak0)
�

(Ak0)
1/2 − (Ak0 − A)1/2

�

+ 1
3
(2Ak0 − A)

�

(Ak0)
3/2 − (Ak0 − A)3/2

�

− 1
5

�

(Ak0)
5/2 − (Ak0 − A)5/2

�



,

Fig. 12.2   The slip 
movement of a periodically 
oscillating frictional contact
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with Ak0 = µκd. If the oscillation amplitudes are small, then the equation can be 
converted to a Taylor series:

The leading term of this series is

which corresponds exactly to the results from Mindlin et al. [1].

12.3 � Damping of Elastomers for Normal Oscillations

In elastomers, energy is also dissipated for the vertical oscillation of contact part-
ners. We consider an axially-symmetric indenter that is pressed into an elastomer 
to a depth of d by an average normal force of FN so that the (static) contact radius 
a is formed. If the indenter is now moved according to a harmonic law

with a small amplitude A, then this movement leads to energy dissipation. Within the 
framework of the reduction method, a contact with a diameter of 2a is replaced by 
a contact with a viscoelastic foundation having a length of L = 2a using Eq. (7.29):

The oscillation of an element of the form u1 = (A/2)eiωt leads to the force 
f1 = 4G(ω) · ∆x · u1 and an oscillation of the form u2 = (A/2)e−iωt leads to the 
force f2 = 4G(−ω) · ∆x · u2. Due to linearity, an oscillation of

leads to the force

The average power of this force averaged over one period is equal to

(12.12)

W = 8E∗R1/2κ−3/2µ−1/2A
5/2

k0

(

1

12

(

A

Ak0

)3

+
1

48

(

A

Ak0

)4

+
3

320

(

A

Ak0

)5
)

.

(12.13)W ≈
2

3
κ−2E∗R1/2µ−1d−1/2A3

,

(12.14)d = d0 + A cos ωt = d0 +
A

2

(

eiωt + e−iωt
)

(12.15)fN (t) = 4∆x

t
∫

0

G
(

t − t′
)

u̇z

(

t′
)

dt′.

(12.16)�d(t) =
A

2

(

eiωt + e−iωt
)

= u1 + u2

(12.17)fN = f1 + f2 = 2A · �x ·
(

G(ω)eiωt + G(−ω)e−iωt
)

.

(12.18)

�P =
〈

fN · �ḋ
〉

=
〈

2A · �x ·
(

G(ω)eiωt + G(−ω)e−iωt
)

A

2

(

iωe
iωt − iωe

−iωt
)

〉

,

http://dx.doi.org/10.1007/978-3-642-53876-6_7


193

and yields

By writing the complex shear modulus in the form

and taking into account that G′(−ω) = G′(ω) and G′′(−ω) = −G′′(ω), we obtain 
the average energy dissipation power of one spring:

The dissipation power in the entire contact area is then

12.4  Problems

Problem 1  Determine the attenuation behavior of the horizontal oscillation of a 
mass, the movement of which is impeded by a frictionally engaged joint with a 
sphere (see Fig. 12.3). The initial displacement of the mass is A(0) = A0.

Solution  In principle, we are dealing with an oscillator with frictional damping. 
For a harmonic oscillation, the total energy is equal to the maximum potential 
energy:

where A is the amplitude of the oscillation. The change in this energy during 
one period T = 2π/ω is equal to the work done by the frictional dissipation (see 
Eq. (12.13)):

(12.19)�P = iωA2 · �x · (−G(ω) + G(−ω)).

(12.20)G(ω) = G′(ω) + iG′′(ω)

(12.21)�P = 2ωA2G′′(ω) · �x.

(12.22)P = 2ωA2G′′(ω)L = 4ωA2G′′(ω)a.

(12.23)U =
kxA2

2
,

(12.24)�U = −
2

3
κ−2E∗R1/2µ−1d−1/2A3

.

Fig. 12.3   Spherical contact 
between an elastic sphere and 
a rigid mass m

frictionless

m
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The change in potential energy per unit time is then

Rearranged with respect to the amplitude and assuming that kx = G∗2
√

Rd (see 
Eq. (5.1)), the differential equation reads

The solution to this differential equation with the initial condition A(0) = A0 is

For an amplitude at which complete slip is first exhibited (A0 ≈ Ak0 = µκd), the 
following is valid:

The attenuation behavior of the amplitude per period is presented schematically 
in Fig. 12.4. It is clear that the oscillations are only slowly (according to a power 
law) damped by dry friction. This means that it is recommended to integrate a fur-
ther damping mechanism into vibration sensitive systems.

(12.25)
dU

dt
=

�U

T
= −

1

T

2

3
κ−2 · E∗R1/2µ−1d−1/2A3

.

(12.26)
dA

dt
= −

1

3

A2

κTµd
.

(12.27)A =
A0

1 + 1
3

A0

κTµd
t
.

(12.28)A =
A0

1 + 1
3T

t
.

Fig. 12.4   The dependence 
of amplitude with respect to 
time 0

t
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