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Foreword

Contact and friction are phenomena that are of extreme importance in uncountable 
technical applications. Simultaneously, they are phenomena which cause difficul-
ties in their theoretical consideration and numerical simulation. This book presents 
a method that trivializes two classes of contact problems to such a degree that they 
become accessible even for first semester engineering students who possess an 
elementary understanding of mathematics and physics. Furthermore, this method 
presents a very simple way to numerically simulate contact and frictional forces.

The “trivialization” occurs with the help of the method of dimensionality 
reduction, which is the primary focus of this book. This method is based on the 
analogy between certain classes of three-dimensional contacts and contacts with 
one-dimensional elastic or viscoelastic foundations. Within the framework of the 
method of dimensionality reduction, three-dimensional contacts are replaced by a 
series of one-dimensional elastic or viscoelastic elements. In doing this, we would 
like to strongly accentuate the fact that this is not an approximation: Certain mac-
roscopic contact properties correspond exactly with those of the original three-
dimensional contact.

The method of dimensionality reduction offers a two-fold reduction: First, a 
three-dimensional system is replaced by a one-dimensional system, and second, 
the resulting degrees of freedom for the one-dimensional system are independ-
ent of one another. Both of these properties lead to an enormous simplification 
in the treatment of contact problems and a qualitative acceleration of numerical 
simulations.

The method of dimensionality reduction distinguishes itself by four essential 
properties: It is powerful, it is simple, it is proven, and it is counterintuitive. It is 
difficult to be convinced of its validity. Every expert in the field of contact mechan-
ics who has not yet engaged himself in the detailed proofs of the reduction method 
would immediately form the opinion that it cannot possibly work. It appears to 
completely contradict a healthy intuition that a system with another spatial dimen-
sion, and furthermore, independent degrees of freedom can correctly agree with a 
three-dimensional system with spatial interactions. And nevertheless, it works! This 
book is dedicated to the reasons for and under which limitations this is the case.
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In writing this book, we have followed two main goals. The first is the simplest 
possible presentation of the rules of application of the method. The second is to 
prove the assertions of the reduction method with strict mathematical evidence, so 
that even the most rigorous practitioner in contact mechanics may be convinced of 
the correctness of this method. We have attempted to keep these two goals sepa-
rated. We attempted to keep the mathematical proofs to a minimum in the chapters 
in which the fundamentals of practical application are explained. This is primarily  
in Chap. 3, but also in the immediately following Chaps. (4–7) as well as  
Chap. 10, which is dedicated to the contact mechanics of rough surfaces. It is clear 
to us that this has not been possible at every point.

Above all, the method of dimensionality reduction offers the engineer a prac-
tical tool. In order to stress the practicality of the method even more, we have 
included many problems at the end of most chapters, which serve for a better 
understanding of the use of the reduction method and its areas of application. 
Therefore, this book can also be used as a textbook in a tribologically oriented 
course of studies.

http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_4
http://dx.doi.org/10.1007/978-3-642-53876-6_7
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1

1.1 � Goal of This Book

The goal of this book is to describe the method of dimensionality reduction in 
contact mechanics and friction. Contacts between three-dimensional bodies arise 
in a wide variety of applications. Therefore, their simulation, both analytically and 
numerically, are of major importance. From a mathematical point of view, con-
tacts are described using integral equations having mixed boundary conditions. 
Furthermore, the stress distribution, the displacements of the surface, and even 
the shape of the contact domain are generally not known in such problems [1]. 
It is, therefore, astounding that a large number of classical contact problems can 
be mapped to one-dimensional models of contacts with a properly defined lin-
early elastic foundation (Winkler foundation). This means that the results of the 
one-dimensional model correspond exactly to those of a three-dimensional model. 
According to this mapping concept, solving contact-mechanical problems is trivi-
alized is such a way as to require no special knowledge other than the fundamen-
tals of algebra and calculus.

The healthy intuition of a specialist in contact mechanics completely discards 
the possibility of such an exact mapping of a three-dimensional problem with 
extensive interactions to the banal one-dimensional foundation of independent ele-
ments (spring or spring–dashpot combinations). Yet even the finest intuition must 
come to terms with mathematical truths: It has been rigorously proven mathemat-
ically for a large variety of contact problems that the one-dimensional mapping 
of three-dimensional contact problems results in an exact solution [2]. This book 
offers the required evidence for interested readers.

Just like every model, the method of dimensionality reduction has its domain 
of application. There are problems which cannot be exactly solved with this 
method as well as domains for which the method is not exact, but provides a 
very good approximation. Of course, there are also boundaries beyond which this 

Chapter 1
Introduction

© Springer-Verlag Berlin Heidelberg 2015 
V.L. Popov and M. Heß, Method of Dimensionality Reduction  
in Contact Mechanics and Friction, DOI 10.1007/978-3-642-53876-6_1

Valentin L. Popov and Markus Heß



2 1  Introduction

method is no longer applicable. The method of dimensionality reduction provides 
exact solutions for normal and tangential contacts with arbitrary axially- 
symmetric bodies. Already here, the following argument may be voiced: “That 
may well be, but contact problems with axially-symmetric bodies can also be 
solved in three-dimensions. The method of dimensionality reduction does not 
present anything new!” This statement is fundamentally correct. However, the 
abundance of exact solutions for three-dimensional problems is strewn through-
out the one-hundred year development of contact mechanics in hundreds of 
original publications. The authors of this book deal with contact mechanics on 
a daily basis and still we must admit that it took us months and years to gather 
and assemble the necessary solutions. The method of dimensionality reduction 
places this abundance of knowledge at the disposal of every engineer in a simple 
form, here and now, effectively and without reservation. It is, therefore, correct to 
say that “the method of dimensionality reduction is nothing new for axially-sym-
metric bodies.” However, it reproduces the results of a three-dimensional contact 
problem exactly, thereby, lending itself to being a kind of pocket edition of con-
tact mechanics.

We would like to add that many contact problems with axially symmetric 
bodies are solved “in principle,” however, their application is extremely difficult 
when, for example, it comes to dynamic contacts. Also here, the method of reduc-
tion of dimensionality can be helpful, because due to its trivial formulation, it can 
be applied very easily either analytically or numerically and provides a convenient 
“thinking tool.”

A second large field of application for this method is the contact between rough 
surfaces. Not all problems involving rough surfaces can be solved with the reduc-
tion method, but only those that deal with forces and relative displacements, such 
as problems dealing with contact stiffness, electrical or heat conduction, and fric-
tional force. The area of application is limited but very large and includes many 
problems which have meaningful implications in engineering. There are no exact 
solutions when it comes to rough surfaces. Therefore, we are dependent on com-
parisons with three-dimensional numerical solutions for the purpose of verifica-
tion. Due to the fact that this method is meant to be an engineering tool, it was 
very important for us to ensure its applicability for rough surfaces. For this pur-
pose, extensive three-dimensional simulations of rough surfaces with elastic [3] 
and viscous [4] media were conducted in the Department of System Dynamics and 
the Physics of Friction at the Technische Universität Berlin. In doing this, we have 
investigated the entire spectrum of rough surfaces, from “white noise” to smooth 
single contacts (see Chap.  10). Over this span, the reduction method results in 
either an (asymptotically) exact solution or a very good approximation. Here as 
well, the book presents evidence to these findings.

The mapping of real contact area remains beyond the realm of application. The 
method of dimensionality reduction is able to map contact areas for the very short 
initial stage of indentation, but not in a general case [5].

http://dx.doi.org/10.1007/978-3-642-53876-6_10
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With this book, we wish to introduce practitioners to methods which are in our 
opinion extremely simple, elegant, and effective. We are certain that they will find 
direct application in numerical simulation methods in the future.

The prospective primary application of this method lies not in the field where 
it yields exact solutions, but rather in the field of the contact mechanics and fric-
tion of rough surfaces. The most important advantage is the speed at which the 
calculations may be carried out, due to the one-dimensionality and the independ-
ent degrees of freedom. Therefore, it allows for a direct simulation of multi-scaled 
systems for which both the macroscopic system dynamics as well as the micro-
scopic contact mechanics can be combined into one model.

1.2 � Method of Dimensionality Reduction as the Link 
Between the Micro- and Macro-Scales

Since the classical works of Bowden and Tabor [6], it is generally known that the 
surface roughness has a deciding influence on tribological contacts. Without rough-
ness, these contacts would have completely different properties. If this were the 
case, Coulomb’s law would not even be approximately valid. Furthermore, adhe-
sive forces would be orders of magnitude larger than those typically observed in 
macroscopic tribological systems. The world of atomically smooth surfaces exhib-
its an entirely different nature than that of the real world with rough surfaces! As 
early as the 1950s, it was determined that the roughness of real surfaces features a 
complicated multi-scaled structure, which can be characterized as being “fractal.”  
Many physical surfaces (e.g., fractured or worn surfaces or surfaces produced using 
current technologies) have fractal characteristics, meaning they exhibit rough-
nesses on all scales from the atomic to the macroscopic. Above all, it became clear 
through the works of Archard [7] that this fractality has a significant influence on 
the properties of real contacts and is the actual cause for the approximate valid-
ity of Coulomb’s law. Contact mechanics is, therefore, a multi-scaled phenomenon. 
This multi-scaled nature begs the question: Which methods can be used to take all 
relevant scales of a dynamic system into account? One of the possibilities consists 
of dividing the considered scales into three domains: Micro, Meso, and Macro. On 
the macroscopic scales, the system is simulated explicitly with a typical “mono-
scale method,” for instance, finite element methods. On the smallest microscales, 
the approach remains the same as in the past and a “microscopic law of friction” is 
defined. This can either be determined through molecular-dynamic simulations or 
through empirical observation. The scales between micro and “macro” must some-
how be bridged with a method which reproduces these scales with sufficient accu-
racy but is no more extensive than necessary so that the respective simulations are 
able to be carried out on realistic time scales. For this, the method of dimensionality  
reduction described in this book is an excellent candidate.

1.1  Goal of This Book
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1.3 � Structure of the Book

The method of dimensionality reduction is relatively new. The most important 
goal of this book is initially to present the method as clear and simply as possible 
so that a large number of engineers can become familiar with the constructs of the 
method as well as its application. The book is structured in a way as to accomplish 
this goal.

In Chap. 2, all general prerequisites for the application of the reduction method 
are discussed. Those who wish to gain a general idea immediately and what 
opportunities this method has to offer may begin reading in Chap.  3, where the 
fundamental concepts and rules of its use are illustrated with many examples. The 
ideas formulated in Chap.  3 for normal contact problems without adhesion are 
generalized in Chap. 4 to contacts with adhesion. Chap. 5 follows with the treat-
ment of the tangential contact.

Chapters  3–5 initially handle only axially-symmetric profiles. The advantage 
is that the functionality of the reduction method can be more simply understood 
using these profiles. All methods in these chapters are absolutely exact. The pure 
mathematical arguments for the validity of this method are very important to us. 
However, we do not want to immediately assail the reader, who may be most inter-
ested in the practical application of the method, with formal mathematical proofs. 
Those interested in the strict mathematical proofs may find them in the appendix 
(Chaps. 17 and 18).

After Chap. 6, which is dedicated to the rolling contact, comes a chapter which 
describes one of the central aspects of the reduction method: In Chap. 7, the rules 
of use for the method of dimensionality reduction are described for the application 
to elastomers, the mathematical derivations of which can be found in Chap. 19 in 
the appendix. Also in this chapter, we are dealing with an exact mapping of three-
dimensional bodies onto one dimension.

In addition to purely mechanical properties, the method of dimensionality 
reduction can be used to describe the electrical and thermal conduction of con-
tacts. These aspects are discussed in Chap. 8. In Chap. 9, the contact between elas-
tomers is extended to include adhesion effects.

The chapters dedicated to axially-symmetric profiles should not merely be 
seen as a preparation for the more complex topics: Axially-symmetric profiles 
appear very often in engineering applications and are of outstanding independent 
importance. Nevertheless, the primary concern of this method is the description 
of rough surfaces, which Chap. 10 covers in detail. This chapter belongs likewise 
to the core of the book. In contrast to the axially-symmetric profiles, however, the 
solutions in this case cannot be verified by comparison with an analytical solu-
tion because these solutions are unknown. Therefore, in the case of rough surfaces, 
we have used comparisons to numerical solutions of respective three-dimensional 
problems.

In Chap.  11, the simulation of friction is explained and illustrated within the 
framework of the method of dimensionality reduction. Chapters  12–15 serve 

http://dx.doi.org/10.1007/978-3-642-53876-6_2
http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_4
http://dx.doi.org/10.1007/978-3-642-53876-6_5
http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_5
http://dx.doi.org/10.1007/978-3-642-53876-6_17
http://dx.doi.org/10.1007/978-3-642-53876-6_18
http://dx.doi.org/10.1007/978-3-642-53876-6_6
http://dx.doi.org/10.1007/978-3-642-53876-6_7
http://dx.doi.org/10.1007/978-3-642-53876-6_19
http://dx.doi.org/10.1007/978-3-642-53876-6_8
http://dx.doi.org/10.1007/978-3-642-53876-6_9
http://dx.doi.org/10.1007/978-3-642-53876-6_10
http://dx.doi.org/10.1007/978-3-642-53876-6_11
http://dx.doi.org/10.1007/978-3-642-53876-6_12
http://dx.doi.org/10.1007/978-3-642-53876-6_15
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simultaneously as case studies and exemplifications of important general topics. 
For example, it is illustrated in Chap. 12 that also dynamic tangential contacts are 
exactly mapped by the method of dimensionality reduction. Chapter 13 explains 
the important idea of the “hybrid model.” As we already mentioned in Sect. 1.2, an 
explicit scheme of the multi-scale mechanics must be inserted between the mac-
roscopic system dynamics and the microscopic law of friction. The role of this 
middle domain is assumed by the method of dimensionality reduction. However, 
for the entire construction to work properly, the middle domain must be coupled 
on one side to the macroscopic system dynamics and on the other, to the micro-
scales. In Chap. 13, the coupling to the macroscales is described and supported by 
an example. A further example follows in Chap. 14. Several ideas as to the cou-
pling to the microscales are discussed in Chap.  15. This topic, however, is still 
widely open.

Because the method of dimensionality reduction is, above all, an engineer-
ing tool, we have given ourselves the liberty of addressing several questions with 
respect to potential extension and simplification of the practical applications of 
the method in Chap. 16. In doing so, we have ventured into such topics as plas-
tic deformation, fracturing, and the description of non-isotropic and non-randomly 
rough surfaces or heterogeneous materials. With this chapter, we would like to 
show that the method of dimensionality reduction has quite a large potential for 
further development.
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2.1 � Introduction

For a wide class of “typical tribological systems,” there are a number of properties 
that allow for the significant simplification of contact problems and, in this way, 
make fast calculations of multi-scalar systems possible. These simplified proper-
ties, which are used by the method of dimensionality reduction include

	1.	The ability to separate the elastic and inertial properties in three-dimensional 
systems

	2.	The close analogy between three-dimensional contacts and certain one-dimensional 
problems.

The first of these will be discussed in this chapter, while further chapters are dedi-
cated to the second. The first property can be formulated into three statements:

(a)	 For sufficiently small velocities, deformations may be considered to be 
quasi-static.

(b)	 The potential energy, and therewith, the force–displacement ratio, is a local 
property which is only dependent on the configuration of the contact area and 
not on the form or size of the body as a whole.

(c)	 The kinetic energy, on the other hand, is a global property which is only 
dependent on the form and size of the body and not on the configuration of 
the micro-contacts.

These three listed statements are met in many macroscopic systems. In the 
following, we will consider them in detail individually.

Chapter 2
Separation of the Elastic and Inertial 
Properties in Three-Dimensional Systems
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8 2  Separation of the Elastic and Inertial Properties…

2.2 � The Quasi-Static State

The separation of the elastic and inertial properties is only valid under the con-
dition that the characteristic loading time T  of a contact is much larger than the 
time that elastic waves in the continuum require to travel a distance on the order of 
magnitude of the diameter D of the contact area:

where c is the speed of sound. For instance, if the characteristic time of 
changes in force in a wheel–rail contact is larger than the characteristic time of 
T = 1 cm/

(

5 × 103 m/s
)

= 2 × 10−6 s (or the frequency is below 500 kHz), then 
they may be considered quasi-static. If this condition is met, then the deformation 
near the contact area is practically the same as in a static contact. This is, of course, 
the same for the contact forces.

If an even more stringent condition is met, namely,

where R is the size of the entire system, then all particles in the continuum, with 
the exception of a small volume near the contact, move as a rigid body. In other 
words, the condition (2.2) means that the characteristic contact time is much larger 
than the period of the normal modes of the system. For a wheel–rail contact, this 
condition is met for frequencies below approximately 2 kHz.

If we continue with the example of a rolling wheel, then the characteristic con-
tact time can be approximated as T ≈ D/v, where v is the linear velocity (driving 
speed). Then, the quasi-static state condition simply means

For a rough contact with a characteristic wavelength of �, the characteristic time is 
T ≈ �/v, so that condition for the quasi-static state is much more restrictive: 
�/v > D/c or

In most tribological systems, we are dealing with the movements of components 
whose relative velocities (e.g., a train at around 50  m/s) are orders of magnitude 
smaller than the speed of sound in these components (this is around 5 × 103 m/s 
for steel). Under these conditions, one can consider the problem to be quasi-static if 
one is interested in the wavelengths of the roughness that are roughly two orders of 
magnitude smaller than the diameter of the contact area.

2.3 � Elastic Energy as a Local Property

Elastic interactions are local in the sense that they play a role only within a volume 
on the same order of magnitude as the diameter of the contact area and, therefore, 
are not dependent on the size or form of the body as a whole. Let us investigate 

(2.1)T > D/c,

(2.2)T > R/c,

(2.3)v < c.

(2.4)v < c
�

D
.
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this somewhat more closely by calculating the potential energy of a deformed con-
tact area. We observe a cylindrical indenter that is pressed into a body by the dis-
tance d (Fig. 2.1).

For the displacement inside the elastic body at a large distance r from the 
indentation point, the following is valid:

The deformation can be estimated as ε ≈

du
dr

≈ −

D·d
r2  and the energy density, as 

E ≈

1
2

Gε2
≈

1
2

G D2
·d2

r4
. Through integration, the elastic energy is

where G is shear modulus of the medium. This integral converges at the upper 
boundary (therefore, it can be set to infinity) and diverges at the lower limit. 
However, because the asymptote (2.5) is only valid for r > D, the elastic energy 
of the deformation within a volume with a linear dimension on the order of mag-
nitude D dominates. In other words, the elastic energy is a local value that is only 
dependent on the configuration and deformation in the vicinity of the micro-
contact. The size and form of the macroscopic body is irrelevant for the contact 
mechanics of this problem.

Incidentally, this property is not self-evident and would not, for example, be 
valid in a two-dimensional system. Instead of having Eq.  (2.6), we would have 
the integral 

∫

dr/r in the two-dimensional case, which diverges logarithmically on 
both boundaries. The elastic contact energy for the two-dimensional case is, there-
fore, dependent on the contact configuration as well as the size and form of the 
body as a whole.

2.4 � Kinetic Energy as a Global Property

Exactly the opposite is true for the kinetic energy of the body. To illustrate this, 
let us consider a sphere landing on an indenter with a diameter of D (the contact 
radius remains the same) at a velocity of v (Fig. 2.2).

(2.5)u ≈

D · d

r
.

(2.6)U ≃

∫

G
D2

· d2

r4
πr2dr = πGD2

· d2

∫

dr

r2
,

Fig. 2.1   Flat cylindrical 
indenter being pressed into 
an elastic body by a distance 
of d

d

r

D

2.3  Elastic Energy as a Local Property
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We assume that the condition (2.2) is met so that the elastic deformation in 
the entire body may be considered to be quasi-static. The center of gravity of the 
sphere x and the coordinate of the point of contact ξ are chosen as the generalized 
coordinates of the sphere. Accordingly, the indentation depth is equal to

The potential energy of the sphere is a function of the indentation depth:

where k = E∗D. E∗ is here the effective Young modulus defined in the next 
Chapter [Eq. (3.2)]. The velocity field for a quasi-static indentation is obtained 
from (2.5) by differentiating the indentation depth with respect to time:

The total kinetic energy is then composed of the kinetic energy of the movement 
of the center of mass and the kinetic energy of the deformation relative to the 
center of mass:

with

A more accurate derivation leads to the result of m1 ≈ 0.3 m(D/R)2 for materials 
with ν = 1/3 (see Problem 3 in this chapter). Note that this mass is on the same 
order of magnitude as the mass of a rod with the diameter D and the length R.

We now would like to illustrate the separation of the elastic and inertial prop-
erties of a contact and their accuracy using several concrete dynamic examples. 
The dynamic treatment of the system makes use of the Lagrange function, which 

(2.7)d = x − ξ + R.

(2.8)U =

kd2

2
=

k

2
(x − ξ + R)2,

(2.9)u̇ ≈

D ·
˙d

r
=

D ·

(

ẋ −
˙ξ
)

r
.

(2.10)K =

mẋ2

2
+

ρ

2

(

ẋ −
˙ξ
)2

∫
(

D

r

)2

dV =

mẋ2

2
+

m1

2

(

ẋ −
˙ξ
)2

,

(2.11)m1 ≈ ρD2

∫
(

1

r

)2

2πr2dr = 2πρD2R ≈ m

(

D

R

)2

.

Fig. 2.2   Illustrating the 
kinetic energy of an elastic 
body landing on a rigid 
cylindrical indenter at a 
velocity of v

d

v

D

v

R

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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is calculated as the difference between the kinetic energy (2.10) and the potential 
energy (2.8):

where we have introduced a new variable ζ = ξ − R.
We consider three cases:

1.	 Impact of the body with a stationary, rigid rod. In this case, ζ = 0 is valid for 
the entirety of the impact time and the Lagrange function takes the form

Therefore, the system is equivalent to a rigid body with the mass (m + m1) on a 
spring with the stiffness k, which is equal to the static contact stiffness (Fig. 2.3). 
The mass correction m1 is on the order of magnitude of m(D/R)2 and may be 
neglected for small contact diameters.

2.	 “Base excitation.” We now assume that the coordinate of the contact area, and 
therefore, the coordinate ζ, is a given function of time: ζ = ζ(t). The Lagrange 
function is then equal to

and the Euler–Lagrange equation for the coordinate of the center of gravity is

The acceleration term on the right-hand side of this equation is on the order of 
magnitude of m1ζ/T2. Within the validity regime of the condition (2.2), we have 
the equation

(2.12)

L = K − U =

mẋ
2

2
+

m1

2

(

ẋ −
˙ξ
)2

−

k

2
(x − ξ + R)2

=

mẋ
2

2
+

m1

2

(

ẋ −
˙ζ
)2

−

k

2
(x − ζ )2

,

(2.13)L =

(m + m1)ẋ
2

2
−

k

2
x2.

(2.14)L =

mẋ2

2
+

m1

2

(

ẋ −
˙ζ (t)

)2
−

k

2
(x − ζ(t))2

(2.15)(m + m1)
..
x +kx = kζ(t) + m1ζ̈ (t) = �FN (t).

(2.16)

m1

T2
ζ <

m1c2

R2
ζ ≈

mc2D2

2R4
ζ = k

mc2D2

2kR4
ζ ≈ k

2πR3ρc2D2

EDR4
ζ = k

2πD

R
ζ ≪ kζ ,

Fig. 2.3   Model for the 
impact of a sphere on a rigid 
cylindrical rod

m

m 1

k

rigid body

massless spring

2.4  Kinetic Energy as a Global Property
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where c2
= E/ρ has been substituted, E being Young’s modulus. Therefore, the 

acceleration contribution can always be neglected with respect to the elastic con-
tribution for small contact diameters. As in the first case, for sufficiently small 
contact diameter, the system can be modeled as a rigid body with the mass m 
bound to a spring (see Fig. 2.4).

3.	 Freely oscillating surface. If the body is held and a contact area with the 
diameter D indented and then instantaneously let free, then we obtain the 
Lagrange function by substituting x = 0 into (2.12):

The movement of the surface would be an oscillation with the angular frequency 
ω1:

This frequency, however, is much larger than the natural frequency of the body 
ω2

0 ≈ c2/R2. Therefore, the condition of validity for the Lagrange function (2.17) 
is not met: Resonance oscillations of a free surface cannot be dealt with using this 
approximation.

If the diameter of the contact is dependent on the indentation depth, then the 
corresponding potential energy of the contact U(d) must be used in the Lagrange 
function:

where, as before,

As explained above, the second term in (2.19) can always be neglected as long as 
condition (2.2) is met. The model shown in Fig. 2.5 is the result.

(2.17)L =

m1

2
˙ζ 2

−

k

2
ζ 2.

(2.18)ω2
1 =

k

m1

≈

ED

2πρD2R
≈

c2

2πDR
.

(2.19)L =

mẋ2

2
+

m1(t)

2

(

ẋ −
˙ζ
)2

− U(x − ζ ),

(2.20)m1 ≈

m

2

(

D(t)

R

)2

.

Fig. 2.4   Model of a  
non-stationary contact  
(e.g., a rolling sphere on 
a rough substrate)

m
rigid body

massless spring

F (t)N

k

∆
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Now, we will concentrate on the procedure for non-stationary force effects on 
a small contact area. As an example, we consider a rough sphere rolling on a rigid 
rough surface (although nominally flat) so that the potential energy is not only a 
function of indentation depth, but also an explicit function of time:

Due to the fact that the rolling takes place on a rigid surface, ζ = 0 and the 
Lagrange function takes the form

where we have neglected the mass correction. The corresponding Euler-Lagrange 
equation is then

In this case, the system is equivalent to a rigid body on which the time-dependent 
contact forces act. If it is possible to divide the force into the part for the “smooth 
surface” and a stochastic part, according to the equation

then the equation of motion takes the form

This equation describes a rigid mass m coupled to the surface with a non-linear 
contact force FN ,0(x) being acted upon by the exciting force ∆FN (t). The corre-
sponding model is the same as that in Fig. 2.4 with the exception that a non-linear 
spring is used here.

If the condition (2.2) is not met, but the condition (2.1) is still valid, then the 
body can no longer be treated as a rigid mass, such as in the case of high-frequency 
oscillations; however, the static equations can still be used to determine the contact 
forces. In this case, there is no simple model to describe the entire dynamics of the 
system, because the frequency is too high for the body to be assumed to be rigid. 
Therefore, the complete dynamic problem must be solved. The contact problem, 
however, remains quasi-static and provides a boundary condition for the elastic 
problem (Fig. 2.6). An example of such a dynamic case is presented in Problem 4.

(2.21)L =

mẋ2

2
+

m1(t)

2

(

ẋ −
˙ζ
)2

− U(x − ζ , t).

(2.22)L ≈

mẋ2

2
− U(x, t),

(2.23)mẍ = −

∂U

∂x
= FN (x, t).

(2.24)FN (x, t) = FN ,0(x) + �FN (t),

(2.25)m
..
x = FN ,0(x) + �FN (t).

Fig. 2.5   Dynamic model for 
a non-linear (e.g., Hertzian) 
contact m

rigid body

massless spring

2.4  Kinetic Energy as a Global Property
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2.5  Problems

Problem 1  Determine the contact time for an elastic sphere (radius R) impacting 
a rigid wall. (Hertz 1881, [1]).

Solution  The approaching distance between the center of the sphere and the wall, 
starting at the moment of impact, is defined as x. The potential energy of the sys-
tem is given by1 U = (8/15)E∗R1/2d5/2, while the kinetic energy is equal to that 
of a rigid body. During the time of impact, the energy is conserved:

where v0 is the impact velocity. The minimum distance between the center of the 
sphere and the wall x0 corresponds to the time at which the velocity dx/dt disap-
pears, and is equal to

The length of impact τ (while x increases from 0 to x0 and then decreases back to 0) is

Problem 2  Solve Problem 1 assuming that the sphere is glued to a hard cylindrical foot, 
much like a golf tee, with a diameter of D so that the contact radius does not change.

Solution  The contact stiffness of a contact with a diameter of D is equal to 
k = E∗D [2] (definition of material parameters see next Chapter) and the sphere 
can be considered to be a rigid mass as a first approximation. During the entire 
contact process, the differential equation

1  Definition of the material parameter E see next chapter.

(2.26)
m

2

(

dx

dt

)2

+

8

15
E∗R1/2x5/2

=

mv2
0

2
,

(2.27)x0 =

(

15

16

mv2
0

E∗R1/2

)2/5

.

(2.28)τ =

2

v0

x0
∫

0

dx
√

1 − (x/x0)
5/2

=

2x0

v0

1
∫

0

dξ
√

1 − ξ5/2
≈

2.94x0

v0

.

Fig. 2.6   Model for the case 
of high-frequency contact 
forces, for which condition 
(2.2) is not met, but the 
weaker condition (2.1) still 
holds true

m

F (t)N

elastic body

massless spring∆
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is sufficient to describe the motion. The solution for the initial conditions x(0) = 0 
and ẋ(0) = v0 is x =

v0

ω
sin(ωt), with ω2

= k/m. The length of time of the contact 
is equal to half of the period of the oscillation

Problem 3  Calculate the mass m1 in Eq. (2.10) in the case of an elastic sphere.

Solution  We will assume that the displacement relative to the center of mass in 
the entire volume of the sphere is the same as that in a half-space. If a round area 
with the diameter D is pressed into an elastic half-space by the distance u, then 
displacements result whose asymptotic forms (for r ≫ D) appear as follows [3]:

with

Substitution of (2.34) into the equations for displacements results in

The corresponding velocities, under the assumption that the deformation is quasi-
static, are equal to

(2.29)m
..
x +kx = 0

(2.30)τ =

π

ω
= π

√

m

E∗D
.

(2.31)ux =

1 + ν

2πE

[

xz

r3
−

(1 − 2ν)x

r(r + z)

]

Fz,

(2.32)uy =

1 + ν

2πE

[

yz

r3
−

(1 − 2ν)y

r(r + z)

]

Fz,

(2.33)uz =

1 + ν

2πE

[

2(1 − ν)

r
+

z2

r3

]

Fz

(2.34)Fz = uE∗D.

(2.35)ux =

uD

2π(1 − ν)
x

[

z

r3
−

(1 − 2ν)

r(r + z)

]

,

(2.36)uy =

uD

2π(1 − ν)
y

[

z

r3
−

(1 − 2ν)

r(r + z)

]

,

(2.37)uz =

uD

2π(1 − ν)

[

2(1 − ν)

r
+

z2

r3

]

.

(2.38)u̇x =

u̇D

2π(1 − ν)
x

[

z

r3
−

(1 − 2ν)

r(r + z)

]

,

2.5  Problems
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With the spherical coordinates

The equations (2.38)–(2.40) can be written as follows:

The kinetic energy of the deformation is now calculated as

From this, it follows that

(2.39)u̇y =

u̇D

2π(1 − ν)
y

[

z

r3
−

(1 − 2ν)

r(r + z)

]

,

(2.40)u̇z =

u̇D

2π(1 − ν)

[

2(1 − ν)

r
+

z2

r3

]

.

(2.41)x = r cos θ cos ϕ,

(2.42)y = r cos θ sin ϕ,

(2.43)z = r sin θ ,

(2.44)u̇x =

u̇D

2π(1 − ν)

1

r

{

cos θ cos ϕ

[

sin θ −

(1 − 2ν)

(1 + sin θ)

]}

,

(2.45)u̇y =

u̇D

2π(1 − ν)

1

r

{

cos θ sin ϕ

[

sin θ −

(1 − 2ν)

(1 + sin θ)

]}

,

(2.46)u̇z =

u̇D

2π(1 − ν)

1

r

[

2(1 − ν) + sin2 θ

]

.

(2.47)

K ≈

ρ

2
2π

π/2
∫

0

dθ

2R sin θ
∫

0

(

u̇
2
x
+ u̇

2
y
+ u̇

2
z

)

r
2 cos θdr

=

πρu̇
2
D

2
R

2π2(1 − ν)2

π/2
∫

0

{

cos2 θ

[

sin θ −

(1 − 2ν)

(1 + sin θ)

]2

+

[

2(1 − ν) + sin2 θ

]2
}

sin θ cos θdθ

=

πρu̇
2
D

2
R

2π2(1 − ν)2

(

55

12
−

32

3
ν + 8ν2

− 2 ln 2 · (1 − 2ν)2

)

=

1

2
·

4πρR
3

3

3u̇
2
D

2

4π2R2
·

55
12

−

32
3

ν + 8ν2
− 2 ln 2 · (1 − 2ν)2

(1 − ν)2
.

(2.48)

m1 = m

(

D

R

)2
3

4π2
·

55
12

−

32
3

ν + 8ν2
− 2 ln 2 · (1 − 2ν)2

(1 − ν)2
= m

(

D

R

)2

δ(ν).
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For metallic materials (ν ≈ 1/3) and incompressible media (ν ≈ 1/2), δ(1/3) ≈ 0.3 
and δ(1/2) ≈ 0.38, respectively.

Problem 4  A round rod with the diameter D1 is excited in an area of constant 
diameter D2 ≪ D1 by the harmonic oscillation ξ = ξ0 cos ωt. Calculate the motion 
of the system.

Solution  The system diagram is shown in Fig. 2.7, where k = E∗D2.
The equation of motion for the elastic rod is

Here, u(x, t) is the displacement of the point with the initial coordinate x and 
c2

= E/ρ. The displacement of the “base point” we describe with ξ. The boundary 
condition at the left side of the rod is then

A = πD2
1/4 is the cross section of the rod. The solution of Eq. (2.49), taking under 

consideration the unloaded end at the point x = l and the boundary condition 
(2.50) with ξ = ξ0 cos ωt is

If condition (2.2) is met, and therefore ωl/c ≪ 1, then the solution takes the form

where m = ρAl is the mass of the rod. In this limiting case, the displacement is not 
dependent of the coordinate x: The rod moves as a rigid structure with the mass m. 
The deviation from the approximation as a rigid mass, in this case, is of the second 
order of magnitude for ωl/c.

(2.49)
∂2u(x, t)

∂t2
= c2 ∂2u(x, t)

∂x2
.

(2.50)k[u(0, t) − ξ(t)] = AE
∂u

∂x

∣

∣

∣

∣

x=0

.

(2.51)u(x, t) =

kξ0 cos ω
c
(x − l)

k cos ω
c

l − AE ω
c

sin ω
c

l
cos (ωt).

(2.52)u(x, t) =

kξ0 cos (ωt)

k −

AlEω2

c2

=

kξ0 cos (ωt)

k − mω2
,

k

u (0, t)

x
(t)

u ( , t )l

ξ

Fig. 2.7   Diagram for the contact described in Problem 4

2.5  Problems
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3.1 � Mapping of Three-Dimensional Contact Problems  
onto One Dimension: The Basic Idea

The method of dimensionality reduction is based on the observation that certain types 
of three-dimensional contacts can be exactly mapped to one-dimensional linearly 
elastic foundations. Even one of the simplest contact problems offers us a taste of this 
method: If a flat cylindrical indenter is pressed into the surface of an elastic half-space 
(Fig. 3.1a), then the normal stiffness of the contact is proportional to its diameter D:

where E∗ is the effective Young’s modulus and is calculated from

using the Young’s moduli of the contacting bodies E1 and E2 as well as their shear 
moduli ν1 and ν2.1 The proportionality of the stiffness to the diameter can also be 
reproduced quite trivially by a one-dimensional linearly elastic foundation.

The linearly elastic foundation (Fig. 3.1b) is a series of independent, identical 
springs that are fixed to a rigid substrate separated from one another by a distance 
of �x. In order to represent continua, the “discretization step” �x must, of course, 
be sufficiently small, which we always silently imply. The number of springs that 
are in contact with the indenter is equal to D/�x. If we denote the stiffness of a 
single spring as �kz, then the total stiffness of the contact is

(3.1)kz = DE∗,

(3.2)
1

E∗

=

1 − ν2
1

E1
+

1 − ν2
2

E2
,

1  This result can be found in any book dealing with contact mechanics (see, for example [1]).

(3.3)kz = �kz

D

�x
.

Chapter 3
Normal Contact Problems with  
Axially-Symmetric Bodies  
Without Adhesion

© Springer-Verlag Berlin Heidelberg 2015 
V.L. Popov and M. Heß, Method of Dimensionality Reduction  
in Contact Mechanics and Friction, DOI 10.1007/978-3-642-53876-6_3

Valentin L. Popov and Markus Heß
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In order for Eq.  (3.1) to also be valid for the indentation into a linearly elastic 
foundation, the stiffness per unit length must be chosen to be equal to effective 
modulus E∗:

According to this, the stiffness of every individual spring is

The proportionality of the stiffness to the diameter of the indenter is then met 
rather trivially in the case of an elastic foundation. In the following, it will be 
shown that the defined elastic foundation is also suitable for the mapping of a 
large number of other contact problems.

3.2 � The Rules of Geike and Popov and the Rules of Heß for 
Normal Contact Problems

The relationship between normal force, the indention depth, and the contact radius 
can be reproduced exactly for a broad range of profiles by the reduced contact 
problem of a one-dimensional linearly elastic foundation. Thereby, the surface 
profile must merely be modified according to a few simple rules.

Let us first consider the contact between an elastic sphere with the radius R and 
an elastic half-space (the Herzian contact problem, Fig. 3.2a).2 As early as 2005, 
Popov pointed out in a lecture3 that also for a sphere (or a parabolic indenter) the 
relationship between normal force, the indentation depth, and the contact radius 

(3.4)
�kz

�x
= E∗.

(3.5)�kz = E∗�x.

2  Strictly speaking, a parabolic profile with the radius of curvature R is considered.
3  German–Russian Workshop “Numerical simulation methods in tribology: possibilities and 
limitations”, Berlin University of Technology, March 14–17, 2005. Published in [2].

a(a) (b)

Fig.  3.1   (a) Contact between a flat, cylindrical indenter and an elastic half-space and (b) the 
one-dimensional model
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can be exactly described by a one-dimensional model (Fig. 3.2b), provided that the 
radius is scaled by a factor of 1/2. At this point, we will describe the solution for a 
sphere in detail. In the following chapters, however, we will dispense with the 
details of the calculation due to their simplicity and only state the results.

The one-dimensional substitution profile should have the radius of curvature of 
R1 and is given by the equation

If this profile is pressed into the elastic foundation to a depth of d, then we obtain 
the vertical displacement of the foundation at the point x:

The semi-span of the contact area (the “contact radius”) a is given by requiring 
that uz(a) = 0 and is

The contribution of a single spring with a coordinate x to the normal force is

The total normal force is obtained by integration over the contact area:

If we now choose the radius of the “two-dimensional sphere” according to

(3.6)z̃ = g(x) =

x2

2R1
.

(3.7)uz(x) = d − g(x) = d −

x2

2R1
.

(3.8)a =

√

2R1d.

(3.9)fN = �kz · uz(x) = E∗

(

d −

x2

2R1

)

�x.

(3.10)FN =

a
∫

−a

E
∗

(

d −

x
2

2R1

)

dx =

√

2R1d
∫

−

√

2R1d

E
∗

(

d −

x
2

2R1

)

dx =

4
√

2E
∗

3

√

R1d3.

(3.11)R1 = R/2,

R

Fn
Fn

R 1
d

a

(a) (b)

Fig. 3.2   (a) Contact between a sphere and an elastic half-space and (b) the one-dimensional model

3.2  The Rules of Geike and Popov and Heß for Normal Contact Problems



22 3  Normal Contact Problems with…

(“rule of Popov”), then we obtain the exact Herzian relationships for the contact 
radius and the normal force:

In other words, the rule (3.11) means that the cross-section of the original three-
dimensional profile (in our case, the sphere with the radius R) is stretched by a fac-
tor of 2 in the vertical direction.

In his dissertation from 2011, Heß [3] showed that a similar exact mapping is 
possible for an arbitrary axially-symmetric profile. In this chapter, we will apply 
the mapping rules determined by Heß without providing proof of their validity. A 
detailed derivation of these rules is provided in Chap. 17.

The focus of the following investigation is the contact between axially-
symmetric bodies and an elastic half-space. Let the axis of symmetry be z and the 
surface of the elastic half-space be given by z = 0. We parameterize the surface 
of the half-space using the Cartesian coordinates x and y. Now, we consider an 
axially-symmetric body with the profile

where r =

√

x2
+ y2, Cn is a constant, and n represents an arbitrary positive 

number (not necessarily an integer). We now define a one-dimensional profile 
according to4

As shown in Chap. 17, the contact between the three-dimensional profile (3.14) 
and the elastic half-space is equivalent to that of the two-dimensional profile 
(3.15) and the linearly elastic foundation (3.4) if the following rule of Heß is 
applied:

where Γ (n) is the gamma function:

(3.12)a =

√

Rd,

(3.13)FN (d) =

4

3
E∗

√

Rd3.

(3.14)z̃ = fn(r)=cnrn,

4  Let it be pointed out here that, as in the introductory examples, a one-dimensional profile is 
generally denoted with g(x) and a three-dimensional profile with f (r). Both are defined as being 
positive from the tip of the indenter upwards, which is additionally introduced as the coordinate z̃ 
(see Fig. 3.4).

(3.15)z̃ = gn(x) = c̃n|x|
n.

(3.16)c̃n = κncn, κn =

√

π

2

nΓ ( n
2
)

Γ ( n
2

+

1
2
)
,

(3.17)Ŵ(n) =

∞
∫

0

tn−1e−tdt.

http://dx.doi.org/10.1007/978-3-642-53876-6_17
http://dx.doi.org/10.1007/978-3-642-53876-6_17
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The exact equivalence between the three-dimensional and one-dimensional prob-
lem is valid for the relationships between the normal force, the contact radius, and 
the indentation depth. In Table 3.1, the values of the scaling factor κn are presented 
for various values of n and in Fig. 3.3 for 0 < n ≤ 5, they are shown graphically.

Here, the values for a conical and a parabolic indenter are pointed out. The cor-
responding scaling factors are κ1 =

1
2
π and κ2 = 2. The latter is, of course, con-

sistent with the rule of Popov, which requires dividing the radius of curvature by 2.
The fact that it is possible to exactly map a three-dimensional contact problem 

to a one-dimensional linearly elastic foundation not only for profiles of the form 
(3.14), but rather for arbitrary superpositions of such forms is extremely impor-
tant. We now consider a superposition of multiple profiles:

In this case, the rule of Heß is applied as follows: From the profile (3.18), a one-
dimensional profile is generated

In Chap. 17, it is shown that by indenting the profile (3.19) into a linearly elastic 
foundation with a stiffness according to (3.4), the relationships between the nor-
mal force, contact radius, and the indentation depth remain the same as those in 
the three-dimensional case.

(3.18)f (r) =

∞

∑

n=1

fn(r) =

∞

∑

n=1

cnrn.

(3.19)f (r) =

∞

∑

n=1

cnrn
⇒ g(x) =

∞

∑

n=1

c̃n|x|
n.

Table 3.1   Scaling factor κn for various exponents of the form function

n 0.5 1 2 3 4 5 6 7 8 9 10

κn 1.311 1.571 2 2.356 2.667 2.945 3.2 3.436 3.657 3.866 4.063

Fig. 3.3   Dependence of 
the scaling factor κ on the 
exponent n

3.2  The Rules of Geike and Popov and Heß for Normal Contact Problems

http://dx.doi.org/10.1007/978-3-642-53876-6_17
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The ability to map contacts between three-dimensional, axially-symmetric bodies 
of the form (3.14) to one-dimensional systems results from simple general scaling 
arguments and it is informative to discuss these briefly at this point. From dimen-
sional analysis and self-affinity5 of the profile (3.14), it arises that the contact radius 
and the indentation depth are related by the same exponential power n as z̃ and R:

where κn is a dimensionless constant. By pressing the one-dimensional profile 
(3.15) into the linearly elastic foundation, the indentation depth is trivially deter-
mined according to

By choosing a suitable c̃n = κncn, one can always guarantee that the relation-
ship between the indentation depth and the contact radius is correct in both cases. 
Furthermore, the differential contact stiffness is given in both the one-dimensional 
case as well as the three-dimensional case by

(proof is given by Pharr et al. [4] or Popov [5]). By integrating this equation and 
taking (3.21) into consideration, the following relationship is obtained for both the 
one-dimensional and three-dimensional case:

Inarguably, the force as a function of indentation depth must be the same in both cases:

If we constrain ourselves to the force–displacement relationship, then the abil-
ity to map three-dimensional systems to one-dimensional systems becomes even 
more general and is possible for arbitrary self-affine surfaces, regardless if they are 
axially-symmetric or not: The exponential dependence (3.24) is only contingent 
on the self-affinity and is valid for arbitrary surfaces with given Hurst exponents. 
Obviously, the correct coefficient can always be found by stretching the profile by 
the appropriate factor if the exponent in the force–displacement relationship is cor-
rect. As we will see in Chap. 10, this is also valid for self-affine, fractally rough 
surfaces. This paves the way for the fast calculation of contacts with rough sur-
faces and is, therefore, especially interesting.

Also, the superposition rule (3.19) has a simple physical meaning and requires 
only that the medium exhibits a linear behavior. Let us consider the two profiles 

5  For self-affinity, the following property is understood: If the profile (3.14) is stretched in the 
horizontal direction by the factor C and simultaneously in the vertical direction by a factor Cn, 
then one obtains the original profile. The exponent n is known as the Hurst exponent.

(3.20)d = κncnan,

(3.21)d = c̃nan.

(3.22)
∂FN

∂d
= 2aE∗

(3.23)FN =

∫

dFN = 2E∗

∫

ad(d) = 2E∗

∫

ac̃nnan−1da = 2E∗c̃n

n

n + 1
an+1.

(3.24)FN =

2n

n + 1
E∗c̃−1/n

n d
n+1

n .

http://dx.doi.org/10.1007/978-3-642-53876-6_10
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f1(r) and f2(r) being pressed into an elastic half-space. The first profile requires 
the indentation force F1(a) in order to obtain the contact radius a. The second pro-
file, on the other hand, requires the force F2(a) in order to reach the same contact 
radius a. We denote the corresponding indentation depths with d1(a) and d2(a). If 
we initially consider the indention of f1(r) and then additionally apply f2(r) to the 
same contact area, with the radius a, then it directly follows from the linearity of 
the medium that the necessary force is

The indentation depth, thereby, is

These are exactly the two properties that are necessary for the mapping of super-
imposed profiles according to Eq. (3.19). In order to prevent confusion, we would 
like to stress that the principle of superposition is not valid (or is not exact) if the 
areas of application of both profiles are not the same.

3.3 � General Mapping of Axially-Symmetric Profiles

The previous considerations dealt with the simplest mapping rules which are valid for 
contact profiles in the form of power functions. By choosing an arbitrary, positive real 
exponent and using the principle of superposition due to linearity, a large number of 
axially-symmetric contacts are able to be exactly mapped. The equivalence between 
one-dimensional and three-dimensional systems, however, is in no way restricted to 
such systems, but is generally valid for all axially-symmetric contacts with a sim-
ply connected contact area. The calculation of an equivalent profile using the profile 
function of the three-dimensional contact is conducted using the following formula:

the validity of which will be proven in Chap. 17. The fact that in the case of the power 
function (3.14), this rule leads to the simple scaling relation (3.16) is also explained 
here. Except for the explicit application of the formula (3.27), nothing changes in the 
procedure of the reduction method in order to determine the relationships between 
contact radius, indentation depth, and normal force. In the following, we would like 
to explain the procedure step by step using an example. For this, we consider the 
indentation of the following piecewise-defined profile into an elastic half-space:

(3.25)FN (a) = F1(a) + F2(a).

(3.26)d(a) = d1(a) + d2(a).

(3.27)g(x) = |x|

|x|
∫

0

f ′(r)
√

x2
− r2

dr,

(3.28)f (r) =

{

0 for 0 ≤ r < b
r2

−b2

2R
for b ≤ r ≤ a

.

3.2  The Rules of Geike and Popov and Heß for Normal Contact Problems

http://dx.doi.org/10.1007/978-3-642-53876-6_17
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As can be gathered from Fig. 3.4, we can interpret the profile as an asperity which 
was originally parabolic, the tip of which, however, has been worn down through 
time.

The application of (3.27) requires the derivative of the original profile (3.28)

which, after insertion into (3.27) and subsequent integration, leads to the equiva-
lent one-dimensional profile6

This profile is compared to the original in Fig. 3.5.

(3.29)f
′

(r) =

{

0 for 0 ≤ r < b
r

R
for b ≤ r ≤ a

,

6  Frequently, the one-dimensional profile is referred to in the following; this is to be understood, 
of course, as the profile in the one-dimensional model.

(3.30)g(x) =

{

0 for 0 ≤ |x| < b
|x|
R

√

x2
− b2 for b ≤ |x| ≤ a

.

Fig. 3.5   Parabolic indenter 
with “worn” tip: comparison 
between original and 
equivalent profile

Fig. 3.4   Qualitative 
presentation of the 
indentation of a parabolic 
profile with a flattened tip 
into an elastic half-space
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Naturally, the special case of b = 0 coincides with the mapping rule of Popov, 
of which one may be convinced by comparing (3.28) and (3.30) for this case.

For a known equivalent profile, we can now proceed to the solution of the 
contact problem using the aforementioned reduction process. In order to accom-
plish this, we must merely press the rigid profile described by (3.30) into the one-
dimensional linearly elastic foundation, which results in a surface displacement of

The indentation depth, contact radius, and normal force must reveal the exact three-
dimensional dependencies. The indentation depth as a function of contact radius 
results from requiring that the displacement at the edge of the contact approaches zero:

The normal force is the sum of the spring forces

which provides

after integration and rearranging with the help of (3.32). The results (3.32) and (3.34) 
obtained by using the reduction method are exactly those derived by Ejike [6] for the 
three-dimensional problem. For the sake of completeness, let us state the relationship 
between normal force and indentation depth, which after solving (3.32) with respect 
to a and subsequently inserting this into (3.34), results in

Further contact problems that require the explicit application of formula (3.27) for 
the calculation of the equivalent profile can be found in the practice exercises at 
the end of this and the following two chapters.

3.4 � The Mapping of Stress

In the one-dimensional contact problem with the linearly elastic foundation, the 
stresses are not able to be directly determined. Although the relationships between 
the force, displacement, and contact radius may be correctly obtained, it seems 

(3.31)uz(x) = d − g(x) = d −

|x|

R

√

x2
− b2.

(3.32)uz(a) = 0 ⇒ d = g(a) =

a

R

√

a2
− b2.

(3.33)FN = E∗

a
∫

−a

[

d − g(x)
]

dx = 2E∗

a
∫

0

d dx −

2E∗

R

a
∫

b

x
√

x2
− b2 dx,

(3.34)FN (a) =

2E∗

3R

(

2a2
+ b2

)

·

√

a2
− b2.

(3.35)FN (d) =

√

2E∗b3

3R



2 +

�

1 +

�

2R

b2
d

�2




·

�

�

�

�

−1 +

�

1 +

�

2R

b2
d

�2

.

3.3  General Mapping of Axially-Symmetric Profiles
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as if the contact-mechanical information dealing with the stress is lost. In reality, 
however, this is not the case. In the aforementioned dissertation by Heß [3], it was 
shown that the stress distribution for an arbitrary three-dimensional contact is able 
to be reproduced for a corresponding one-dimensional problem. The required deri-
vations can be found in Chap. 17. In the present chapter, we will explain the rules 
for the calculation without the necessary evidence.

For the linearly elastic foundation, the spring forces fN (x) are directly given for 
every contact configuration. The distributed load q(x) (or linear force density) is 
also able to be directly defined:

Among others properties, it will be shown in Chap. 17 that the normal stress 
σzz(r) in the contact area of a three-dimensional contact problem may be found 
from the distributed load q(x) using the following integral transformation (the Abel 
transformation):

As an example of the application of this procedure, we once again consider the 
Hertzian contact problem. For the distributed load, it follows from (3.9) that

The derivative is q′(x) = −E∗x/R1 within the contact area and zero outside of it. 
Insertion into (3.37) leads to

which corresponds exactly with the known Herzian solution.
Further examples to the calculation of the stress in axially-symmetric contacts 

according to Eq. (3.37) will be considered in the exercises at the end of this chapter.

3.5 � The Mapping of Non-Axially-Symmetric Bodies

The equation for contact stiffness written in the form

(3.36)q(x) =

fN (x)

�x
.

(3.37)σzz(r) =

1

π

∞
∫

r

q′(x)
√

x2
− r2

dx.

(3.38)
q(x) = E∗

(

d −

x2

2R1

)

, for |x| < a =

√

2R1d.

q(x) = 0, for |x| > a =

√

2R1d

(3.39)

σzz(r) = −

E
∗

πR1

∞
∫

r

xdx
√

x2
− r2

= −

E
∗

πR1

a
∫

r

xdx
√

x2
− r2

= −

2

π
E

∗

(

d

R

)1/2
√

1 −

(

r

a

)2
,

(3.40)kz = 2E∗β

√

A

π
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is also valid for non-circular cross-sections (A is the contact area). The constant β 
is always on the order of magnitude of 1 for “simple” profiles (see [7]):

Equation (3.40) can be written in the form (3.1), if we define the effective diam-
eter D as

This rule allows for non-axially symmetric contacts to be mapped to a one-dimen-
sional contact with a linearly elastic foundation.

3.6  Problems

Problem 1  Solve the problem of the contact between a cone and an elastic half-
space (Fig. 3.6a) using the reduction method. Calculate the contact radius and the 
normal force as a function of the indentation depth.

Solution  The form of the cone is described by the equation f (r) = tan θ · r. 
The corresponding scaling factor has the value κ1 = π/2, so that the one-dimen-
sional profile is given by g(x) = (π/2) tan θ · |x|. If the indenter is pressed to a 
depth of d, then the vertical displacement of the foundation at point x is given by 
uz(x) = d − (π/2) tan θ · |x|. We calculate the contact radius by demanding that 
uz(a) = 0 and in this way, obtain the desired dependence on the indentation depth:

(3.41)
circular cross-section: β= 1.000

triangular cross-section: β= 1.034

square cross-section: β= 1.012

(3.42)D = 2β

√

A

π
.

(3.43)a =

2

π

d

tan θ
.

Fig.  3.6   (a) Contact between a rigid conical indenter and an elastic half-space. (b) Pressure 
distribution for the normal contact between a conical indenter and an elastic half-space

3.5  The Mapping of Non-axially-Symmetric Bodies
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The normal force is obtained by “summing the spring forces”:

Both results correspond exactly, of course, with those of the three-dimensional 
contact problem [8].

Problem 2  Let the profile  f (r) = C · rn be given for a rigid axially-symmetric 
indenter that is pressed into an elastic half-space. Determine the contact radius and 
the normal force in dependence on the indentation depth by using the reduction 
method.

Solution  The equivalent one-dimensional profile is g(x) = Cκn|x|
n. The contact 

radius is calculated from the condition g(a) = d as

The displacement field is determined by uz(x) = d − Cκn|x|
n and for the normal 

force, we obtain

Once again, the results provide the exact dependencies of the three-dimensional 
problem (see Chap. 17).

Problem 3  Analyze the contact between a half-space and a superimposed profile 
of the form f (r) =

r2

2R
+ |r| tan θ using the reduction method. Determine the con-

tact radius and the normal force with respect to indentation depth.

Solution  The equivalent one-dimensional profile is

The contact radius is determined using the condition

so that the following relationship between the contact radius and displacement 
results:

(3.44)FN = 2E∗

a
∫

0

uz(x)dx = 2E∗

a
∫

0

(d − (π/2)tanθ · x)dx =

2

π
E∗

d2

tan θ
.

(3.45)a =

(

d

Cκn

)1/n

.

(3.46)FN = 2E∗

a
∫

0

uz(x)dx = 2E∗

a
∫

0

(

d − Cκnxn
)

dx =

2n

n + 1

E∗d
n+1

n

(Cκn)
1/n

.

(3.47)g(x) = κ2
x2

2R
+ κ1|x| tan θ =

x2

R
+

π

2
|x| tan θ .

(3.48)g(a) =

a2

R
+

π

2
a tan θ = d,

(3.49)a =

√

(π

4
R tan θ

)2
+ Rd −

π

4
R tan θ .
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The one-dimensional displacement field is given by uz(x) = d −

x2

R
−

π
2
|x| tan θ, 

where we obtain the equation

for the normal force, which leads to the following equation after integration:

Insertion of (3.49) and simple rearrangement with respect to the desired relation-
ship between normal force and indentation depth leads to

Problem 4  Calculate the stress distribution between a flat cylindrical indenter and 
an elastic half-space with the help of the Abel transformation.

Solution  We begin by calculating the distributed load in the one-dimensional case. 
For a flat cylindrical indenter, the distributed load is constant and equal to

We obtain the derivative

where δ(x) denotes the Dirac delta function. The integral (3.37) takes the form

For the Dirac delta function equation 
∫

f (x)δ(x − a)dx = f (a) is valid if the 
integration area contains the point x = a and is otherwise zero. Thus, the integration 
in (3.55) results in

(3.50)FN = 2E∗

a
∫

0

uz(x)dx = 2E∗

a
∫

0

(

d −

x2

R
−

π

2
|x| tan θ

)

dx

(3.51)FN = 2E∗
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a3
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−

π

4
a2 tan θ

)

.

(3.52)
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π3
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√
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16d
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32d
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√
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16d
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)

.

(3.53)q(x) =
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FN/(2a), for |x| < a

0, for |x| > a
.

(3.54)q′(x) =

FN

2a
(δ(x + a) − δ(x − a)),
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π
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r

q′(x)
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x2
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dx =

1

π

FN
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r
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dx.
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1
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1
√
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, for |r| < a

0, for |r| > a
.
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This is the exact stress distribution that exists in the three-dimensional contact 
between a rigid flat cylindrical indenter and an elastic half-space [1].

Problem 5  Calculate the stress distribution in a contact between a rigid cone and 
an elastic half-space with the help of the Abel transformation.

Solution  We consider the equivalent one-dimensional model from 
Problem 1. The vertical displacement of the foundation at the point x is 
uz(x) = d − (π/2) tan θ · |x|, from which we obtain the distributed load 
q(x) = E∗

· uz(x) = E∗(d − (π/2) tan θ · |x|). In order to calculate the normal 
stress, we insert the derivative q′(x) = −(π/2)E∗tanθ · sign(x) into Eq. (3.37)

Taking the integral results in

which is, of course, also in this case the exact three-dimensional stress distribu-
tion. This is shown graphically in Fig. 3.6b.

Problem 6  Determine the normal force and normal stress for the contact between 
a rigid cylindrical indenter and a concave, parabolic profile (see Fig. 3.7) with the 
help of the reduction method. Instead of using the indentation depth d, the dis-
placement should be formulated based on the geometric values of do and h. It is 
assumed that a complete contact is present.

Solution  First, we define the surface displacement within the contact area for the 
axially-symmetric contact. For this, we use the average displacement do in place of 

(3.57)σzz(r) =

1

π

∞
∫

r

q′(x)
√

x2
− r2

dx = −

1

2
E∗tanθ

a
∫

r

dx
√
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− r2

.

(3.58)σzz(r) =




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−

1
2

E
∗tanθ · ln

�

a

r
+

�

�

a

r

�2
− 1

�

, for r < a

0, for r > a

,

Fig. 3.7   Qualitative presentation of a (complete) indentation of a rigid cylindrical indenter with 
a concave, parabolic profile into an elastic half-space
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the indentation depth d, so that f (0) = 0 is guaranteed for the concave profile in 
the same way as for the convex profile. Then, the following is valid:

The original profile contains a quadratic term, which we must simply multiply with the 
corresponding scaling factor in order to arrive at the geometry of the equivalent system:

From the corresponding surface displacement in the one-dimensional model, we 
obtain a normal force of

In order to calculate the normal stress in the original contact, we require the deriv-
ative of the distributed load q′(x) in the reduced dimensions as well as the bound-
ary condition q(a):

Insertion of (3.62) into (3.37) leads to the desired normal stresses after integration 
and elementary rearrangement:

Naturally, the results (3.61) and (3.63) correspond exactly to those of the three-
dimensional, axially-symmetric contact, which is confirmed by comparison 
with the results given by Barber [9], if one takes into account the conversion 
do = d − h. Let it be once again insistently pointed out that a complete contact is 
assumed, which must satisfy the requirement of σzz(0) ≤ 0. Then, from Eq. (3.63), 
the condition do ≥ 2h follows. Due to the fact that the reduction method in the 
form shown here is only suitable for the mapping of complete contacts (and not 
ring-shaped contact areas), this condition does not follow directly from the one-
dimensional model. Furthermore, the exact mapping is only guaranteed for FN (do) 
and not for FN (d), because the maximum displacement (indentation depth) for 
concave profiles occurs on the boundary and not in the middle.

Problem 7  Formulate the method of dimensionality reduction for a transversally-
isotropic medium.

Solution  A transversally-isotropic medium is a medium that is isotropic in 
one plane. For crystalline bodies, this includes bodies in the hexagonal class of 

(3.59)uz(r) = do − f (r) = do +
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a2
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√
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crystals. Also, a fiber composite with all fibers oriented in parallel is a transver-
sally-isotropic medium. A linearly transversally-isotropic medium can be com-
pletely defined by 5 elastic moduli. If we denote the axis of symmetry to be “3,” 
then the axes “1” and “2” are “equivalent” and can be chosen arbitrarily within the 
plane which they define. Hooke’s law for such a medium is as follows:

The applicability of the method of dimensionality reduction is based solely on 
the fact that the differential stiffness of a medium is determined exclusively by 
the current contact area. For axially-symmetric profiles, it is given by the stiffness 
of the contact between a flat, rigid cylindrical indenter and the elastic half-space. 
Therefore, the rule for the application of the method of dimensional reduction to 
an arbitrary linearly elastic medium is as follows: First, the stiffness kz of the con-
tact with a flat cylindrical indenter with the diameter D and the equivalent one-
dimensional system as a linearly elastic foundation with a stiffness per unit length 
of kz/D are determined. This method can be applied to any medium for which a 
solution with a rigid cylinder is known.
The solution for the stiffness of a contact between a flat, cylindrical indenter and 
a transversally-isotropic medium (with an axis of symmetry parallel to the normal 
vector) can be directly taken from the work of Yu [10]. It is given by Eq. (3.1) with

where the following relationships are introduced:

(3.64)

σ11 = C11ε11 + C12ε22 + C13ε33

σ22 = C12ε11 + C11ε22 + C13ε33

σ33 = C13(ε11 + ε22) + C33ε33

σ12 = (C11 − C12)ε12

σ23 = 2C44ε23

σ31 = 2C44ε31 .

(3.65)E∗

=

2
(

¯C2
13 − C2

13

)

¯C13(ν1 + ν2)
,

(3.66)ν1 =

[

(

¯C13 − C13

)(

2 ¯C13 − I0

)

4C33C44

]1/2

+

[

(

¯C13 + C13

)

I0

4C33C44

]1/2

(3.67)ν2 =

[

(

¯C13 − C13

)(

2 ¯C13 − I0

)

4C33C44

]1/2

−

[

(

¯C13 + C13

)

I0

4C33C44

]1/2

(3.68)¯C13 = (C11C33)
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(3.69)I0 =
¯C13 − C13 − 2C44.
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Insertion of (3.66)–(3.69) into (3.65) results in

Problem 8  Determine the indentation depth and the normal force as a function of 
contact radius for the normal contact between a sphere of radius R and a linearly 
elastic half-space with the help of the reduction method. Contrary to the parabolic 
approximation of Hertz, here the exact spherical form should be taken into account 
and the equivalent profile should be calculated with the general Eq. (3.27).

Solution  The exact profile of a sphere with a radius of R is given by the function

The first derivative of (3.71) is

Inserting (3.72) into the general formula (3.27) leads to the equation

for which the elementary integral on the right results by using the substitution 

z(r) =

√

x2
− r2

√

R2
− x2

.  The equivalent profile is

Figure  3.8 shows both of the “equivalent” profiles as well as their parabolic 
approximations. The dashed lines confirm the rule of Popov.

Simultaneously, the surface displacement of the linearly elastic foundation may be 
found with (3.74), which must tend to zero at the contact boundary and in this 
way, determines the indentation depth:

The spring forces, which are proportional to the surface displacement, must be in 
equilibrium with the normal force
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2
a ln
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A suitable partial integration initially provides

and after insertion of (3.75), the contact force is finally obtained as a function of 
contact radius:

The indentation depth from (3.75) and the normal force from (3.78) correspond 
exactly to the three-dimensional contacts based on the solutions of Segedin [11], 
which are obtained using the Area-functions. Finally, let it be known that we could 
have just as well developed the spherical profile as a series. After multiplying the 
individual terms with the corresponding scaling factor, according to the rules of 
Heß, the equivalent profile (3.74) would have been given in the form of a power 
series. If the integral for the general formula (3.27) is not known, we have, in fact, 
no choice but to use this strategy.

References

	 1.	K.L. Johnson, Contact Mechanics, Nachdruck der 1. Auflage (s.l.: Cambridge University 
Press, Cambridge, 2001), p. 6

	 2.	V.L. Popov, S.G. Psakhie, Numerical simulation methods in tribology. Tribol. Int. 40(6), 
916–923 (2007)

	 3.	M. Heß, Über die exakte Abbildung ausgewählter dreidimensionaler Kontakte auf Systeme 
mit niedrigerer räumlicher Dimension (Cuvillier, Berlin, 2011)

	 4.	G.M. Pharr, W.C. Oliver, F.R. Brotzen, On the generality of the relationship among contact stiff-
ness, contact area, and elastic modulus during indentation. J. Mater. Res. 7(3), 613–617 (1992)

(3.77)FN = 2E∗a

[

d −

R

2
+

R2
− a2

4a
ln

(

R + a

R − a

)]

(3.78)FN (a) = E∗

R2
+ a2

2
ln

(

R + a

R − a

)

− E∗Ra.

Fig. 3.8   Exact spherical 
form and parabolic 
approximation (Hertz) 
including the  
one-dimensional  
equivalents



37

	 5.	V.L. Popov, Contact Mechanics and Friction. Physical Principles and Applications (Springer, 
Berlin Heidelberg 2010), pp. 69–70.

	 6.	U.B.C.O. Ejike, The stress on an elastic half-space due to sectionally smooth-ended punch.  
J. Elast. 11(4), 395–402 (1981)

	 7.	R.B. King, Elastic analysis of some punch problems for a layered medium. Int. J. Solids 
Struct. 23(12), 1657–1664 (1987)

	 8.	A.E.H. Love, Boussinesq’s problem for a rigid cone. Q. J. Math. 10, 161–175 (1939)
	 9.	J.R. Barber, Indentation of the semi-infinite elastic solid by a concave rigid punch. J. Elast. 

6(2), 149–159 (1976)
	10.	H.Y.A. Yu, Concise treatment of indentation problems in transversely isotropic half-spaces. 

Int. J. Solids Struct. 38(10), 2213–2232 (2001)
	11.	C.M. Segedin, The relation between load and penetration for a spherical punch. Mathematika 

4, 156–161 (1957)

References



39

4.1 � Introduction

The miniaturization of components and the manufacturing of ever smoother surfaces 
are a mark of the constant improvements in micro and nano-technologies today. For 
the length scales associated herewith, the adhesion forces must be doubtlessly taken 
into account. However, adhesion is also important for contacts in which one partner 
is composed of a very soft material. Above all, the adhesion between rough surfaces 
is a central research topic in this respect, as it deals with the friction of rubbers and 
the contact between biological structures.

From a theoretical point of view, one can name two main ansätze which were 
developed in order to describe adhesive contacts for elastic, parabolic bodies. The 
first is the theory of Johnson et al.  [1] (JKR theory), which takes adhesion forces 
within the contact area into account. In this case, the contact radius in the equi-
librium state is calculated from the minimum in the total energy, which in turn, 
is obtained from the elastic deformation energy, the potential of external forces, 
and the surface energy of the contacting bodies. On the other hand, in the theory 
developed by Derjagin et al. [2] (DMT theory), the molecular forces of attraction 
act only within a ring outside of the contact area. They naturally contribute to the 
normal force, however, it is assumed that they cause no deformation. Within the 
framework of DMT theory, the maximum magnitude of the adhesion force corre-
sponds to that which Bradley derived in 1932 [3] for the adhesive contact between 
rigid spheres. Because the JKR theory diverges from the DMT theory, it appears at 
first that the two theories contradict each other. Tabor [4] was able to successfully 
explain this discrepancy by investigating the areas of validity of both theories in 
greater detail and defining them based on a dimensionless parameter. According 
to his findings, DMT theory is suitable for describing the contact of small, rigid 
spheres, while JKR theory is more adept at describing large, soft spheres. Johnson 
and Greenwood [5] created a map of adhesion, which graphically depicts the areas 
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of validity for various adhesion theories. Furthermore, they pointed out the fact 
that the JKR theory still provides good results outside of its actual area of valid-
ity. It is possible that this is the reason that the JKR theory is primarily used to 
describe adhesion.

In this chapter, we will discuss how the leading adhesion theory from Johnson, 
Kendall, and Roberts is able to be exactly mapped using the method of dimension-
ality reduction. To begin, we will concentrate on a pure formulation of the simple 
rules of application for the adhesive normal contact and refrain from presenting 
the required evidence. Subsequently, these rules will be explained in more detail, 
which requires a certain understanding of the theoretical background on the adhe-
sion in three-dimensional contacts, which we will also provide. For those not satis-
fied with these short explanations, the entirety of the necessary evidence may be 
found in Chap. 17.

4.2 � Rule of Heß for the Adhesive Contact Between  
Axially-Symmetric Bodies

Adhesive contacts of axially-symmetric bodies can also be exactly mapped to a 
one-dimensional equivalent model. The rule for this mapping was developed by 
one of the authors (Heß) [6]. It is based on the basic idea of Johnson, Kendall, 
and Roberts that the contact with adhesion arises from the contact without 
adhesion plus a rigid-body translation. Because both parts of the contact prob-
lem can be mapped to a one-dimensional equivalent model with a modified 
geometry, then this is true of the entire problem. The rule of Heß is as follows: 
If an indenter with the modified form described in Chap. 3 is initially pressed 
into a linearly elastic foundation and then pulled out, as shown in Fig. 4.1, then 
the springs on the edge of the profile will detach upon reaching a critical length

(4.1)�ℓmax(a) =

√

2πa �γ

E∗

,

Fig.  4.1   Qualitative presentation of the indentation and separation process for the reduction 
method. The model shown exactly maps the adhesive contact of parabolic bodies and therefore, 
exactly mirrors JKR theory

http://dx.doi.org/10.1007/978-3-642-53876-6_17
http://dx.doi.org/10.1007/978-3-642-53876-6_3
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where �γ is the separation energy of the bodies per unit area, which will be 
explained later in more detail. Here, it is worth noting that the separation criterion 
is not local, due to its dependence on the changing contact radius.

In order to illustrate the simple application of this rule, we will consider the 
adhesive contact between a flat, cylindrical indenter with the radius a and an elas-
tic half-space (Fig. 4.2).

In this case, all springs will simultaneously detach as soon as the critical length 
(4.1) is reached. The total normal force required to separate the indenter from the 
substrate is then

which corresponds exactly to the three-dimensional result [7]. For the problems at 
the end of this chapter, we will consider this type of contact problem once again 
by supplementing the general structure with relevant alterations. There, as well 
as in Sects. 4.4 and 4.5, there are numerous examples provided. However, before 
we proceed with these examples, we would like to explain the theoretical consid-
erations that lead to Rule (4.1) in more detail. This is done primarily in Sect. 4.4, 
which contains further simple rules which help to determine the normal stress and 
the stability of the system. In this way, critical quantities can be determined very 
simply. We begin the theoretical consideration with the compatibility of the JKR 
theory with the ansätze from linear fracture mechanics. Those only interested in 
the practical application of the method of dimensionality reduction to adhesive 
contacts may continue directly with Sect. 4.4.

4.3 � The Adhesive Contact and Griffith Crack

In the theory of Johnson, Kendall, and Roberts, the contact radius of an adhesive 
contact arises from the minimum total energy, which consists of the elastic defor-
mation energy UE, the potential of external forces UP, and the surface energy US. 
In the original publication [1], it was already indicated that this energy ansatz is 
the same as that of Griffith [8, 9], which was once used to investigate fractures in 

(4.2)FA = 2E∗a

√

2πa �γ

E∗

=

√

8πa3E∗�γ ,

Fig. 4.2   Equivalent one-
dimensional system for the 
adhesive contact between a 
flat, cylindrical indenter and 
an elastic half-space

4.2  Rule of Heß for the Adhesive Contact…
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brittle material1 and is nothing more than the first law of thermodynamics. Maugis 
et al. [10, 11] conducted more penetrating thermodynamic considerations and 
proved, among other things, the compatibility of the JKR theory with that of line-
arly elastic fracture mechanics. The free boundary of the adhesive contact may, 
therefore, be referred to as a mode I crack,2 which propagates either inwards or 
outwards based on changes in the contact surface. The decisive steps for the 
energy ansatz are very quickly explained. For this, we consider the adhesive con-
tact between a rigid, curved body and an elastic half-space, according to Fig. 4.3. 
The indenter is loaded by an external force of FN and, with the half-space, forms a 
contact area with a radius of a; in order to avoid confusion with differentials, the 
indentation depth will be denoted by δ in this section.

Initially, we assume that the indentation depth δ and the contact area A which 
describe the equilibrium state of the system are extensive properties. According to the 
first law of thermodynamics, a contribution of work from the external load, causes a 
change in the sum of the elastic deformation energy UE and the surface energy US:

The surface energy is not dependent on the indentation depth and is given by

Here, �γ is the work that must be done per unit area against interatomic forces in 
order to separate the two solids, which is also known under the name of the Dupré 
energy of adhesion. It is dependent on the (specific) surface energies γ1 and γ2 of 
both bodies as well as the energy of the interface γ12:

1  More specifically, Griffith investigated the stability of a crack in the middle of a disc loaded in 
tension.
2  The opening mode (mode I crack) is the separation mode for which the tensile stress acts  
perpendicular to the plane of the crack.

(4.3)dUE(A, δ) + dUS(A) = FN (A, δ)dδ.

(4.4)US(A) = −�γ · A.

(4.5)�γ := γ1 + γ2 − γ12

Fig.  4.3   Qualitative presentation of an adhesive contact between a rigid, curved body and an 
elastic half-space; the boundary of the contact can be referred to as the crack tip
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and can be interpreted as the “effective” interface energy. Insertion of (4.4) into 
(4.3) results in

By means of the Legèndre transformation, we can switch the independent exten-
sive variables δ and FN. In this way, we obtain

in which UK
E  stands for the complementary elastic energy. By separating the total 

derivatives with respect to the corresponding variables, we obtain the laws of 
Castigliano and Engesser:

Furthermore, we now have two different possibilities for calculating the elastic 
energy release rate G:

In equilibrium, the mechanical energy released by a decrease in contact area must 
correspond to the energy required to form the new surface:

Equation (4.10) once again provides the energetic fracture criterion of Griffith. 
Here, the effective interface energy �γ can be interpreted as the critical energy 
release rate Gc at which quasi-static fracture progression begins. The difference 
G − �γ is occasionally called the driving force (with the units of linear force den-
sity) for the tip of the fracture and allows for the kinetic adhesive process to be 
investigated.

The energetic fracture criterion from Griffith in the form of (4.10) contains the 
energy release rate as a parameter and, as a result, is seen as a global fracture cri-
terion. An equivalent criterion, and for our purposes more appropriate due to its 
local characteristic, is found using the concept of stress intensity. Irwin [12] recog-
nized the fundamental fact that the singularities of all stress fields for all fracture 
types are similar in the fracture near field, and therefore, used their intensities for 
the investigation of fracture mechanics. The ligament stresses and the displace-
ments which exist, for example, in the near field of the fracture shown in Fig. 4.4 
with the separation mode I are

(4.6)dUE(A, δ) − �γ · dA = FN (A, δ) dδ.

(4.7)−dUK
E (A, FN ) − �γ · dA = −δ(A, FN ) dFN with UK

E := FNδ − UE ,

(4.8)

(

∂UE

∂δ

)

A

= FN or

(

∂U
K

E

∂FN

)

A

= δ .

(4.9)G :=

(

∂UE

∂A

)

δ

= −

(

∂U
K

E

∂A

)

FN

.

(4.10)G = �γ =: Gc.

(4.11)σzz(η, β = 0) =

KI
√

2πη
and uz(η, β = ±π) = ±

2
E∗

KI

√

η
2π

.

4.3  The Adhesive Contact and Griffith Crack
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The stress intensity factor KI, which is dependent on the material as well as the 
geometry, length, and loading of the fracture, can be obtained if the ligament stress 
is known:

According to Irwin, fracture propagation occurs only after KI reaches the so-called 
fracture toughness KIc of the material, which must, in turn, be determined experi-
mentally on standardized fracture experiments. Therefore, the local fracture crite-
rion from Irwin for a mode I crack is

Of course, no real material can withstand the (theoretically) infinitely large stress. 
Except for very brittle materials, a relaxation in stress occurs in the area near the 
fracture tip due to inelastic deformation. Furthermore, regardless of the material, a 
small zone always exists in which non-linear microscopic processes occur. As long 
as the combination of the plastic and microscopic zones is much smaller than the 
zone in which KI dominates, the elastic near field will control the processes occur-
ring in this field, allowing the use of the concept of stress intensity. The fact that 
the K concept and the fracture criterion from Griffith are equivalent was proven by 
Irwin for which he calculated the work required to close a fracture of length ∆a3:

Equation (4.14) is for a mode I crack. If a combined fracture load is present for 
which all three separation modes occur, then the individual energy release rates 

(4.12)KI := lim
η →0

√

2πη σzz(η, 0).

(4.13)KI = KIc.

3  The equation is based on a fracture in a planar state of deformation; we may assume that 
locally in an axially-symmetric contact with adhesion, every point on the contact boundary 
exhibits this state.

(4.14)G =

K2
I

2E∗

.

Fig. 4.4   Qualitative 
presentation of the ligament 
stress and the opening form 
of a mode I crack
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must be summed. In the case of a fracture interface between two elastically similar 
materials, the following is then valid:

With the help of this generalized presentation, the interaction between adhesion 
and friction can be determined [13].

It may have been the equivalence of the concepts of the fracture mechanism that 
motivated Maugis and Barquins [14, 15] to use Sneddons theory [16] for the mapping 
of adhesive contacts; the analogy between JKR theory and the Griffith theory of frac-
ture mechanics was already proven at this time. Thus, the concept of the stress inten-
sity factor must also exist in Sneddons theory. The original equations from Sneddon 
contain a (still arbitrary) rigid body translation, which is responsible for a singular-
ity in the stress at the contact boundary. The translation is that which results from 
pressing a flat cylindrical indenter into a half-space and corresponds to that of the ini-
tial approximation for a mode I crack. Furthermore, the difference in the normal dis-
placement between the indenter and surface of the half-space outside of the contact 
area is the same as the shape of the fracture in Eq. (4.11), so that a connection exists 
between the rigid body degree of freedom and the intensity factor. For contacts with-
out adhesion, with the assumption that the profile is convex, the Boussinesq condition 
must be met, meaning that the singularity at the contact boundary disappears. The 
only difference between the two theories is the rigid body translation. This causes 
a tensile stress for which the distribution is the same as that under a flat cylindrical 
indenter. This is an essential relationship, which we would like to stress:

The contact with adhesion results from the contact without adhesion plus a rigid body 
translation.

Even the original theory of Johnson, Kendall, and Roberts touches on this princi-
ple, which extends the Hertzian contact by adding adhesion. This theory was dis-
cussed in a generalized form at the beginning of this chapter. It requires, among 
other things, that the energy of the elastic deformation be known, which in turn, 
can be determined in two parts. One of these comes from the non-adhesive inden-
tation process, while the other results from the decompression at a constant con-
tact area. Figure  4.5 explains the superposition of the two loading cases. The 
indentation process with a force Fn.a. occurs without adhesion, so that the resulting 
stresses and surface displacements are for a Hertzian contact. Due to the succes-
sive increase in the relative interface energy, the subsequent unloading from Fn.a. 
to FN occurs for a constant contact area. Because of this, all points in the con-
tact area must undergo a constant displacement. Therefore, the unloading is the 
same as for the contact with a flat indenter, the characteristic stress distribution for 
which is responsible for the infinitely large tensile stress at the contact boundary.

This singularity can be seen in Fig. 4.5b, the stresses for which are shown with 
respect to their mean in the non-adhesive contact. Interestingly, Johnson [17] had 
already recognized the ability to use superposition to describe a contact with adhe-
sion in 1958. The non-physical excess in stress on the boundary, however, led him 

(4.15)G =

1

2E∗

(

K2
I + K2

II

)

+

1

4

(

1

G1
+

1

G2

)

K2
III .

4.3  The Adhesive Contact and Griffith Crack
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to rule out adhesion, which was in accord with the experimental works of Bowden 
and Tabor at the time.

4.4 � Full Reduction of the Adhesive, Elastic Contact

The central notion of the exact mapping of axially-symmetric contacts with adhe-
sion is the superposition concept described in the last section. According to this, 
the contact without adhesion must merely be superimposed with a rigid body 
translation. This means that the normal stress distribution in the contact area is

where the second term is the stress distribution under a flat indenter described by 
Boussinesq. Remember that the values with the index “n.a.” are those for a contact 
without adhesion for which the same contact radius is reached as that in a contact 
with adhesion. They belong to the (fictitious) indentation process for the JKR the-
ory, which was shown in Fig. 4.5a. The stress intensity factor for the distribution 
in (4.16) can be easily calculated using Eq. (4.12):

By taking into consideration the fact that the concepts of Griffith and Irwin (4.14) 
are equivalent and that the equilibrium condition (4.10) is met, then

(4.16)

σzz(r) = σn.a.(r) +

�F

2πa
√

a2
− r2

with �F := Fn.a. − FN = 2E∗a(dn.a. − d),

(4.17)KI (a) =

�F

2a
√

πa
.

(4.18)�F =

√

8πE∗a3�γ ,

Fig. 4.5   a Hertzian spherical contact caused by the normal force Fn.a., which leads to the same 
contact radius as in the adhesive case under the load of FN; b Equilibrium state of the adhesive 
contact; more exactly, the critical state under a fixed-load condition is actually shown here
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with which the indentation depth and the normal force can be directly determined 
for the adhesive case:

The validity of Eqs. (4.19) and (4.20) is in no way limited to the parabolic contact. 
They are generally valid for arbitrary axially-symmetric contacts with a simply 
connected contact area [18].

No additional proof is needed to show that the results of the generalized JKR 
theory can be mapped to one-dimensional models. This is because if arbitrary 
axially-symmetric contacts without adhesion (for simply connected contact areas) 
satisfy the requirements of the reduction method (see Chap. 3), including the flat 
indenter, then this must also be true for their superposition. The adhesive contact 
forms a sort of special case of the rule of superposition described in Sect.  3.2, 
which is valid for the same contact areas. Nevertheless, Sect. 17.3 contains a step-
by-step derivation, including information dealing with stability, which is based on 
the fracture mechanical analogy found by Maugis and Barquins.

The model for the adhesive contact between a parabolic indenter and an elas-
tic half-space is sketched in Fig. 4.1. The loading and unloading process for the 
one-dimensional model, which exactly describes the equilibrium state of the adhe-
sive contact in three dimensions, is simple. As in the case without adhesion, the 
equivalent profile g is first calculated and an appropriately formed indenter is sub-
sequently pressed into a one-dimensional linearly elastic foundation with a force 
Fn.a.. The springs at the contact boundary x = ±a exhibit the non-loaded initial 
length ℓo, while the springs within the contact area are under load. Let us now 
assume that all springs in contact with the indenter adhere to it and for a subse-
quent decrease in normal force, the contact radius remains unchanged. Going from 
the contact boundary towards the center, more and more springs are placed under 
tensile loading. As soon as the change in length of the outer springs reach the max-
imum allowable value

there exists an indifference between the states of adhesion and separation. At the 
points x = ±a, the surface displacement for the one-dimensional model is

This state corresponds exactly to that of the equilibrium state in the three-
dimensional case of adhesive contact. The separation condition (4.21) is a type 
of local fracture criterion for the equivalent model, which is also known as the 

(4.19)d(a) = dn.a.(a) −

√

2πa �γ

E∗

,

(4.20)FN (a) = Fn.a.(a) −

√

8πE∗a3�γ .

(4.21)�ℓ(±a) = �ℓmax(a) :=

√

2πa �γ

E∗

,

(4.22)uz(±a) = −�ℓmax(a).

4.4  Full Reduction of the Adhesive…

http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_17
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rule of Heß for the adhesive contact [6, 19]. Alternately, we can define a maxi-
mum spring force instead of a maximum change in length. Upon exceeding this 
force, the springs at the boundary separate. Especially for the numerical appli-
cation, the dependence of the separation condition on the contact half-width 
should be taken into account.

Even the stability of the equilibrium state can be investigated very trivially 
under various boundary conditions within the framework of the reduction method. 
For this (referring to Sect. 17.3), the following inequality is used:

The equals sign in (4.23) defines the state of marginal stability, which allows for 
the critical values to be calculated. According to (4.23), the slope of the equivalent 
profile at the point x = a determines the stability of the system. Depending on the 
boundary condition (fixed-load or fixed-grips), it is to be multiplied with the cor-
responding factor k and compared with the quotient of the separation length and 
contact radius.

With the exception of the stability considerations named above, the imple-
mentation of adhesion using the reduction method requires no additional effort 
whatsoever. In contrast to the non-adhesive contact, only the displacement in 
the one-dimensional model must be extended by the rigid-body portion (see 
Fig. 4.1)

The indentation depth is defined by the displacement at x = 0:

By taking (4.24) and (4.25) into account, the normal force is obtained as a func-
tion of the contact radius in the same way as before, from the sum of the spring 
forces:

The normal stresses in the contact area are obtained also in the same way as in the 
contact without adhesion, from the modified Abel integral of the vertical distrib-
uted load:

In order to make the simple steps of the reduction method clear to the reader, we 
will show the complete mapping of the original theory from Johnson, Kendall, and 
Roberts as an example. In the typical way, the equivalent profile g of the parabolic 

(4.23)
�ℓmax(a)

a
≤ k

∂g(a)

∂a
with k =

{

2/3 for FN = const.

2 for d = const.
.

(4.24)uz(x) := d(a) − g(x) = g(a) − g(x) − �ℓmax(a) for 0 ≤ |x| ≤ a.

(4.25)d(a) := uz(0) = g(a) − �ℓmax(a).

(4.26)FN (a) := E∗

a
∫

−a

uz(x)dx.

(4.27)σzz(r) =

1

π

a
∫

r

q′(x)
√

x2
− r2

dx −

1

π

q(a)
√

a2
− r2

with q(x) = E∗uz(x).

http://dx.doi.org/10.1007/978-3-642-53876-6_17
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indenters with the radius of curvature must first be determined. According to the 
rule of Popov, we must simply divide the radius of curvature by two:

The surface displacement in the equivalent model, according to Eq. (4.24), is

from which we can determine the indentation depth with respect to contact radius 
according to (4.25). Taking the separation condition (4.21) into account, we obtain

The normal force is the sum of the spring forces

Equations (4.30) and (4.31) will seem familiar to the reader, for they are exactly those 
developed by Johnson, Kendall, and Roberts using the minimum in the total energy.

We investigate the stability of the system with the criterion (4.23). For this, let k not 
be fixed for the time being. The slope of the equivalent profile at the point x = a is

Insertion of (4.32) into (4.23) and taking the separation condition (4.21) into 
account, results in

and after simple rearrangement, the contact radii for which the system is stable are 
obtained:

The marginally stable case characterizes the critical state at which the calculation 
of the critical values is possible: the minimum normal force and minimum inden-
tation depth. In order to accomplish this, the contact radius in Eq. (4.34) must be 
take into account in Eqs. (4.30) and (4.31), from which we obtain

(4.28)f (r) =

r2

2R
⇒ g(x) =

x2

R
.

(4.29)uz(x) =

a2
− x2

R
− �ℓmax(a),

(4.30)d(a) =

a2

R
−

√

2πa �γ

E∗

.

(4.31)

FN (a) = E∗

a
∫

−a

uz(x)dx = 2E∗

a
∫

0

(

d −

x2

R

)

dx =

4

3
E∗

a3

R
−

√

8πa3E∗�γ .

(4.32)g(a) =

a
2

R
⇒

∂g(a)

∂a

=

2a

R
.

(4.33)

√

2πa �γ

E∗

1

a
≤ k

2a

R
,

(4.34)a ≥

(

πR
2�γ

2k2E∗

)1/3

marginal stability: ac(k) =

(

πR
2�γ

2k2E∗

)1/3

.

(4.35)Fc(k) =

(

1

3k
− 1

)

2πR �γ

k
and dc(k) =

(

1

k
− 2

)(

π2
R �γ 2

4k E∗
2

)1/3

.

4.4  Full Reduction of the Adhesive…
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Until now, we have left the type of boundary condition open. Now, we will assign 
the variable k a value. Under the fixed-load condition, we must set k =

2
3
 and obtain 

the known results:

The critical force in (4.36) is also called the adhesion force and corresponds to 
the minimum in the normal force. Its magnitude, however, is called the maximum 
separation force. Under the fixed-grips condition (k = 2), the indentation depth is 
actually able to be stably decreased even further, until the following three relation-
ships are reached:

The additional index “d” denotes the fixed-grips condition.
For the sake of completeness, let the equilibrium curves (4.30) and (4.31) be 

expanded by a normalized representation. With the respect to the magnitude, the 
critical values are

with ˜FN := FN/|Fc|, ˜d := d/|dc|, and ã := a/ac. Because of their complexity due 
to the normal force as a function of the indentation depth, they will not be speci-
fied explicitly, but their trends will be graphically shown with the help of the para-
metric form (4.38). Figure 4.6a shows the trend compared to the adhesive contact 
of a conical profile (shown in Fig. 4.6b). The dashed ends of the functions mark 
the extended domain of stability under the fixed-grips condition.

Comparing the curves reveals that the adhesion forces are negative in both 
cases, but the critical indentation depths (at a constant force) have different signs. 
The solution of the adhesive conical contact and the confirmation of the corre-
sponding curves from Fig. 4.6b is one of the problems at the end of this chapter.

(4.36)ac =

(

9πR
2�γ

8E∗

)1/3

, Fc = −

3

2
πR �γ , dc = −

(

3π2
R �γ 2

64E∗
2

)1/3

.

(4.37)ac,d =

(

πR2�γ
8E∗

)1/3
, Fc,d = −

5
6
πR �γ , dc,d = −

3
4

(

π2R �γ 2

E∗
2

)1/3
,

(4.38)˜FN (ã) = ã3
− 2ã3/2 and ˜d(ã) = 3ã2

− 4ã1/2,

Fig. 4.6   Dependence of the normalized force on the normalized indentation depth for the adhe-
sive contact for a parabolic (a) and a conical indenter (b); for comparison purposes, the trends of 
the respective contacts without adhesion are shown
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Only the calculation of the stress is now needed to completely solve the 
adhesive contact problem for parabolic profiles. For this, we need the linear 
force density in the equivalent model:

By differentiating this with respect to x and then inserting the value at x = a, we obtain

Insertion of (4.40) into (4.27) results initially in

which is then integrated and suitably normalized, resulting in

For the critical state of Fc := FN (ac) = −Fn.a., this stress curve is presented in 
Fig. 4.5b.

The process for mapping the classical contact problems described by Johnson, 
Kendall, and Roberts within the reduction method may seem a bit challenging at 
first. However, the reader will quickly be convinced that, in reality, the opposite is 
the case. The method is composed primarily of just a few steps, which are formu-
lated in Eqs. (4.21)–(4.27) and cannot be simpler. In the next section, the method 
will be used on a more complicated contact problem, which occasionally allows 
for commentary on the influence of roughness on adhesion.

4.5 � Example: Adhesion of a Sphere with a Superimposed 
Radial Waveform

It is generally known that the adhesion between (visco-) elastic bodies is signifi-
cantly influenced by the roughness of their surfaces. In the most general cases, 
the adhesion decreases rapidly with an increase in roughness, however, there are 
well-founded experimental results [20, 21], which show effects to the contrary. 
According to this, very soft materials having small scales of roughness exhibit a 
temporary increase in adhesion before a continuous decrease begins. An estab-
lished theoretical reason for this increase is based on the increase in the real con-
tact area, which occurs due to viscoelastic creep processes. A further cause for 
the increase in adhesion was brought to attention by Guduru [22] by theoretically 

(4.39)q(x) = E∗uz(x) = E∗

[

a2
− x2

R
− �ℓmax(a)

]

.

(4.40)q
′(x) = −

2E
∗

R
x and q(a) = −E

∗�ℓmax(a) .

(4.41)σzz(r) = −

2E∗

πR

a
∫

r

x
√

x2
− r2

dx +

E∗

π

�ℓmax(a)
√

a2
− r2

,

(4.42)

σzz(s)

p̄n.a.
= −

3

2

√

1 − s2
+

1

2

(

1 −

FN

Fn.a.

)

1
√

1 − s2
with s :=

r

a
and p̄n.a. :=

Fn.a.

A
.
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investigating the adhesive, elastic contact between a half-space and a parabolic 
body with superimposed axially-symmetric waveforms. Due to the waveform, 
defined oscillations occur in the equilibrium curves, bringing about instabilities 
during the separation process. These instabilities can lead to a significant increase 
in the separation force. Experimental investigations [23] confirm the validity of the 
theoretical ansatz from Guduru, which requires a simply connected contact area 
at the beginning of the separation process. This last condition, along with that 
of axial-symmetry, allow this example for a rough contact to be exactly mapped 
using the method of dimensionality reduction, which will be the subject of the fol-
lowing considerations.

The axially-symmetric profile is composed of a parabolic base profile with a 
radius of curvature of R and a radially harmonic profile with the wavelength � and 
the (roughness) amplitude h according to the equation4

The cross-section of the profile in the x-z plane for h
/

� = 0.03 and �
/

R = 0.05 is 
shown in Fig. 4.7. A simply connected contact area at every point in time for the 
indentation and separation process requires a monotonically increasing profile for 
r ≥ 0, which with the help of the derivative

is expressed by the following condition:

4  It is irrelevant if the superimposed profile is pressed into a planar elastic half-space or a para-
bolic body is pressed into an elastic half-space with the corresponding waveform.

(4.43)f (r) =

r2

2R
+ h

[

1 − cos

(

2π

�
r

)]

.

(4.44)f ′(r) =

r

R
+ h

2π

�
sin

(

2π

�
r

)

,

(4.45)
f
′(r) ≥ 0 ⇒ α :=

�
2

hR

≥ 4π2 sup









− sin

�

2π

�
r

�

2π
�

r









≈ 8.576.

Fig. 4.7   Profile cross-
section of a parabolic body 
superimposed with a radial 
waveform and its one-
dimensional equivalent
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Although the monotonic requirement (4.45) is obviously not met by the profile in 
Fig. 4.7 (α ≈ 1.667 < 8.576), a simply connected contact area can nevertheless be 
realized for a sufficiently large normal force. The reason for this is the decrease 
in the least upper bound (supremum) in (4.45), if we constrict ourselves to suffi-
ciently large r > rcrit.

In order to determine the one-dimensional equivalent profile, we must make use 
of the conversion formula (see Sect. 3.3).

The integral on the right side leads to the Struve function, so that we obtain

for the equivalent profile. Let us here mention that the series representation of the 
Struve function is

The one-dimensional equivalent profile according to Eq. (4.47) is likewise pre-
sented in Fig. 4.7. Moreover, the original and equivalent profiles are shown for a 
roughness of zero (dashed lines) and present, of course, a constant vertical scaling 
relationship based on the rule of Popov.

Upon obtaining the one-dimensional profile, the three-dimensional problem 
is as good as solved, because now the modified profile must simply be pressed 
with sufficient force into the one-dimensional layer of springs and then the force 
reduced while taking the equilibrium condition (4.22) and the accompanying 
stability test (4.23) into account. The numerical implementation is trivial due 
to the independence of the spring displacement, but nevertheless, agrees exactly 
with the three-dimensional theory! In the following, we conduct an analytical 
approach, which leads to the indentation depth when Eq. (4.47) is taken into 
account:

The surface displacement of the linearly elastic foundation is defined by the dif-
ference between the indentation depth d and the equivalent profile g. Except for 

(4.46)

g(x) := |x|

|x|
∫

0

f ′(r)
√

x2
− r2

dr =

x2

R
+ s(x)h

s(x)
∫

0

sin (u)
√

s(x)2
− u2

du with s(x) =

2π

�
|x|.

(4.47)g(x) =
x2

R
+

π2

�
|x|h · H0

(

2π

�
|x|

)

(4.48)Hn(x) =

∞

∑

k=0

(−1)k

Ŵ

(

k +

3
2

)

Ŵ

(

k + n +

3
2

)

( x

2

)2k+n+1
.

(4.49)d(a) := g(a) − �ℓmax(a) =

a2

R
+

π2ah

�
H0

(

2π

�
a

)

−

√

2πa �γ

E∗

.

4.5  Example: Adhesion of a Sphere with a Superimposed…

http://dx.doi.org/10.1007/978-3-642-53876-6_�3
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the sign, this displacement corresponds to the change in length of the springs. The 
resulting spring forces must maintain equilibrium by summation with the normal 
force:

Insertion of (4.47) and (4.49) into (4.50) results in

after integration and simple rearrangement. By taking the normalized values sug-
gested by Guduru [22] into account:

the equilibrium relations (4.49) and (4.51) can be expressed in dimensionless 
form:

With the normalized contact radius ā as a parameter, the (normalized) normal 
force can be plotted as a function of the (normalized) indentation depth. Figure 4.8 
shows this plot for the parameters

which only exhibits slight oscillating deviations in the equilibrium curve compared 
to the parabolic contact without roughness. The monotonic condition (4.45) is sat-
isfied regardless of the load at any point in time.

If we now increase the size of the roughness and keep all other values the 
same, then a significant change occurs in the equilibrium curve. Oscillations of 
strong amplitude occur and can lead to an increase in the maximum separation 
force. Figure 4.9 presents this curve for the profile discussed at the beginning of 
this section (see Fig. 4.7), which is characterized by a roughness six times larger. 
The maximum separation force is increased by about 19 % with respect to the par-
abolic base profile. The critical indentation depth can be decreased by a further 
10 % by using the fixed grips condition. Furthermore, the equilibrium curves are 

(4.50)FN (a) = E∗

a
∫

−a

[

d − g(x)
]

dx.

(4.51)

FN (a) =

4

3
E

∗

a
3

R
+ E

∗πah

[

2πa

�
H0

(

2πa

�

)

− H1

(

2πa

�

)]

−

√

8πa3E∗�γ

¯FN :=

2FN

3πR�γ
, ¯d :=

d

�
, ā :=

a

�
, ¯� :=

�

R
, ¯h :=

h

�
, �γ :=

2π�γ

E∗R

(4.52)¯d
(

ā;
¯�;

¯h; �γ

)

= ā2
¯� + π2ā ¯h · H0(2π ā) −

√

ā �γ

¯�
,

(4.53)

¯FN

(

ā;
¯�;

¯h; �γ

)

=

16

9

ā3
�

3

�γ
+

4π

3

ā ¯h�
2

�γ
[2π ā · H0(2π ā) − H1(2π ā)] −

8

3

√

ā3�
3

�γ
.

(4.54)¯h = 0.005 , ¯� = 0.05 , �γ = 0.05,
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not continuous throughout the separation process. Due to the constant switching 
from stable to unstable domains, finite jumps occur, which result in energy loss.

As mentioned earlier, the exact solution of contact problems using the method 
of dimensionality reduction requires a simply-connected contact area and cannot 
be immediately transferred to partial contacts. Furthermore, the superimposed 

Fig. 4.8   Normal force with respect to the indentation depth for the adhesive contact of a para-
bolic profile with a superimposed radial waveform. The (small) roughness h = 0.005 � causes 
only a minor difference from the original trend of the JKR theory

Fig.  4.9   Normal force with respect to the indentation depth for the adhesive contact with a 
superimposed radial waveform. The assumed roughness of h = 0.03 � causes strong oscillations, 
resulting in an additional increase in the adhesion force of about 19 % compared to the original 
JKR theory

4.5  Example: Adhesion of a Sphere with a Superimposed…
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waveforms must be axially-symmetric. If one of these requirements is not met, 
significantly divergent results can result. For example, if a planar waveform 
instead of a radial waveform is present, then there will be no jumps in the equilib-
rium curve [24].

4.6  Problems

Problem  1 Investigate the contact between an elastic half-space and a conical 
body defined by f (r) = tan θ · r. Adhesion forces should be taken into account. 
Determine the indentation depth and the normal force with respect to the contact 
radius. Furthermore, determine the critical values under the fixed-load conditions 
and the equilibrium relations in dimensionless parameters.

Solution  The equivalent one-dimensional profile is obtained by vertically scaling 
the original profile by a factor of κ1 = π/2 and is equal to g(x) = (π/2) tan θ · |x|. 
From (4.24), the surface displacement can be obtained for the equivalent profile:

The indentation depth is the displacement at the point x = 0:

The sum of the spring forces must counteract the normal force:

We take the condition for calculating the critical contact radius ac at a constant 
contact radius from Eq. (4.23):

for which the right hand side is already extended by the slope of the profile at 
hand. By using the rule of Heß, the critical contact radius is obtained. Insertion 
of this value into the equilibrium relationships (4.56) and (4.57) and then rear-
ranging the equations results in the adhesion force and the critical indentation 
depth:

(4.55)
uz(x) = g(a) − g(x) − �ℓmax(a) =

π

2
tan θ · (a − |x|) − �ℓmax(a).

(4.56)d(a) := uz(0) =

π

2
tan θ · a − �ℓmax(a) =

π

2
tan θ · a −

√

2πa �γ

E∗

.

(4.57)

FN (a) = E∗

a
∫

−a

uz(x)dx = 2E∗

a
∫

0

[

d − g(x)
]

dx =

1

2
πE∗ tan θ · a2

−

√

8πa3E∗�γ .

(4.58)
�ℓmax(ac)

ac

=
2

3

∂g(a)

∂a

∣

∣

∣

∣

a=ac

with
∂g(a)

∂a
=

π

2
tan θ ,

(4.59)ac =

18 �γ

π tan2 θ · E∗

, Fc = −

54 �γ 2

π tan3 θ · E∗

, dc =

3 �γ

tan θ · E∗

.
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By introducing the normalized values ˜FN := FN/|Fc|, ˜d := d/|dc|, and ã := a/ac, 
we obtain the equilibrium relationships (4.56) and (4.57) in dimensionless form:

With the help of the parametric equations in (4.60), the normalized force can be 
easily plotted as a function of normalized indentation depth, which is shown in 
Fig. 4.6b. The comparison with the parabolic contact shows, above all, a striking 
difference in the critical indentation depth (under fixed-load conditions), which 
have opposing signs. All of the results for this exercise mirror the three-dimen-
sional theory exactly (see [14]).

Problem  2 Determine the maximum separation force for the elastic contact 
between a flat, cylindrical indenter with the radius a and a half-space.

Solution  From the original profile f(r) = 0, the equivalent profile g(x) = 0 is 
directly obtained, so that the surface displacement within the contact area corre-
sponds everywhere to the indentation depth according to (4.24). This means that

Because all of the springs exhibit the same change in length based on (4.61), the 
calculation of the normal force is trivial:

The verification of the condition (4.23), however, uncovers the fact that a sta-
ble, quasi-static equilibrium in the form of a controlled fracture is not possible. 
Therefore, all of the springs will adhere to the indenter until they reach the change 
in length of (4.61) and then simultaneously separate (complete rupture). The nor-
mal force according to (4.62) presents simultaneously the adhesion force and the 
magnitude of the maximum separation force

which corresponds with the known result of Kendall [7].

Problem 3 Analyze the influence of the profile form on the adhesion force for a 
single contact within a biological system. For this, assume an axially-symmetric 
profile in the form of a power function with a positive real exponent according to 

In the first step, identify the equilibrium relationships FN (a) and d(a). Then, cal-
culate the critical values for marginal stability from (4.23) for a constant normal 
force and non-dimensionalize the equilibrium relationships.

(4.60)˜FN (ã) = 3ã2
− 4ã3/2 and ˜d(ã) = 3ã − 2ã1/2.

(4.61)uz(x) = d(a) = −�ℓmax(a) = −

√

2πa �γ

E∗

.

(4.62)FN (a) = −2E∗a �ℓmax(a) = −

√

8πa3E∗�γ .

(4.63)FA := |FN (ac)| =

√

8πa3E∗�γ ,

(4.64)f (r) = C · rn with n ∈ R
+ .

4.6  Problems
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Solution  We obtain the one-dimensional equivalent profile by using the 
generalized rule of Heß (see Sect. 3.2):

The difference between the value of the function for the equivalent profile at the 
contact boundary and the separation length provides the indentation depth

The surface displacement in the one-dimensional model is then

which expresses, except for the sign, the change in length of the individual 
springs. After multiplication with the stiffness and summation over the contact 
length, the normal force is found:

The critical contact radius is obtained from the (transformed) stability equation for 
the one-dimensional model. It requires only (!) that the profile slope at the contact 
boundary be known, which is given here by

Insertion into (4.23) leads to the critical contact radius

which provides the adhesion force and the critical indentation depth when inserted 
into the equilibrium relationships:

(4.65)g(x) = κnf (|x|) = κnC|x|n with κn =

√

π

2

nŴ( n
2
)

Ŵ( n+1
2

)
.

(4.66)d(a) = g(a) − �ℓmax(a) = κnCan
−

√

2πa �γ

E∗

.

(4.67)uz(x) := d − g(x) = κnC
(

an
− |x|n

)

−

√

2πa �γ

E∗

,

(4.68)FN (a) = 2E∗

a
∫

0
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d − g(x)
]

dx = 2E∗

n

n + 1
κnCan+1

−

√

8πa3E∗�γ .

(4.69)
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1
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n + 1

[

(

3

2nκnC
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(2π �γ )n+1E∗
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]
1

2n−1

,

(4.72)dc =
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2

3
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)

[

9π �γ

2n2E∗

(

1

κnC

)1/n
]

n
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.

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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If normalized by the magnitudes of the critical values ˜FN := FN/|Fc|, ˜d := d/|dc|, 
and ã := a/ac, the equilibrium relationship exhibit an especially simple structure

For n = 1, the results correspond to those from Problem 1, while for n = 2, the 
classical results from JKR theory are obtained. The calculation of the critical con-
tact radius as well as the adhesion force go back to Yao and Gao [25] and were 
actually employed to investigate adhesion in biological structures [26]. Extended 
stability considerations can be found in the work by Heß [6].

Problem 4 Determine the normal force and indentation depth with respect to the 
contact radius for the adhesive normal contact between a sphere with the radius 
R and an elastic half-space. In contrast to the parabolic profile approximation in 
JKR theory, the exact spherical form should be considered. Simultaneously, it 
is assumed that only small deformations take place and the material is linearly 
elastic.

Solution  This contact problem was already solved in Problem 8 in Chap. 3 for the 
case without adhesion. Referring to this exercise, we can simply take the explicitly 
calculated equivalent profile:

By subtracting the separation length from the value of the function of the equiva-
lent profile at the contact boundary, we obtain the indentation depth

The displacement in the one-dimensional model is then

The calculation of the normal force requires the summation of the contributions 
from the individual springs and can be immediately given with the help of the 
solution of the contact without adhesion as

(4.73)˜FN (ã) =

1

|1 − 2n|

[

3ã
n+1

− 2(n + 1)ã
3/2

]

and ˜d(ã) =

1

|3 − 2n|

(

3ã
n
− 2nã

1/2
)

.

(4.74)f (r) = R −

√

R2
− r2

⇒ g(x) =

1

2
x ln

(

R + x

R − x

)

.

(4.75)d(a) = g(a) − �1max(a) =

1

2
a ln

(

R + a

R − a

)

−

√

2πa �γ

E∗

.

(4.76)uz(x) := d − g(x) =

1

2
a ln

(

R + a

R − a

)

−

√

2πa �γ

E∗

−

1

2
x ln

(

R + x

R − x

)

.

(4.77)

FN (a) = E∗

a
∫

−a

uz(x)dx = E∗

R2
+ a2

2
ln

(

R + a

R − a

)

− E∗Ra −

√

8πa3E∗�γ .

4.6  Problems
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60 4  Normal Contact with Adhesion

By introducing the normalized values F̃N :=
FN

πR �γ
 and ã =

a
R
 as well as the 

parameter m :=

E
∗

R

π �γ
, we can convert Eq. (4.77) into the dimensionless form

The derived relationships agree exactly to those of the three-dimensional theory 
developed by Maugis [27]. For comparative purposes, let the respective normal-
ized form of the JKR equation for a parabolic profile be noted:

Figure 4.10 emphasizes the difference between the spherical contact and the corre-
sponding parabolic approximation. For large values of the parameter m (m > 1, 000), 
they agree well with one another, while for smaller values of m, significant deviations 
are apparent. The maximum separation force is then especially dependent on the elas-
tic properties. The parabolic approximation appears to give acceptable results over 
several orders of magnitude of the parameter m up to a contact radius of a ≈ 0.2R.

With these results, Maugis attempted to describe the contact for small spheres 
with that of a very soft elastic solid and in this way, proved the invalidity of the 
parabolic approximation if the contact radius is on the same order of magnitude 
as the radius of curvature. In this regime, however, the application of the theory of 
linear elasticity is highly questionable, which Lin and Chen [28] discovered on the 
basis of geometric and physical non-linear theory and for which Greenwood [29] 
suggested critical additions.

Problem 5 Determine the indentation depth and the normal force as a function 
of contact radius for the adhesive contact of the axially-symmetric body shown in 
Fig. 4.11 with an elastic half-space. The form of the body is described by a para-
bolic profile with a flattened tip:

(4.78)˜FN (ã) =

1

2
m

(

1 + ã2
)

ln

(

1 + ã

1 − ã

)

− mã −

√

m(2ã)3/2.

(4.79)˜FN (ã) =

4

3
mã3

−

√

m(2ã)3/2.

(4.80)f (r) =

{

0 for 0 ≤ r < b

r
2
−b

2

2R
for b ≤ r ≤ a

.

Fig. 4.10   Normal force as a 
function of contact radius in 
the normalized presentation 
for the adhesive contact: 
Comparison between the 
parabolic approximation 
and the exact spherical 
profile for various values of 
m = E

∗

R/(π∆γ )
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Solution  The corresponding non-adhesive contact problem was solved in 
Sect. 3.3. It served as an introductory example for the explicit application of the 
generalized formula (3.27) to determine the equivalent profile, which also com-
poses the first step in the mapping of the contact with adhesion. By taking the 
derivative of the original profile into account, we obtained

With the help of (4.81), the indentation depth can be directly given as

The displacements of the contact points in the linearly elastic foundation are still 
obtained by the difference between the indentation depth and the value of the equiv-
alent profile and provides the change in length of the spring (with the exception of 
the sign). Summing the individual spring contributions, leads to the normal force

The critical values (fixed load) in the case of b = 0 are those from the original 
theory for a parabolic body

which we took from (4.36) and renamed. By normalizing by their magnitudes, we 
can convert Eqs. (4.82) and (4.83) into the dimensionless forms

(4.81)g(x) := |x|
|x|
∫

0

f ′

(r)
√

x2
−r2

dr =

{

0 for 0 ≤ |x| < b
|x|
R

√

x2
− b2 for b ≤ |x| ≤ a

.

(4.82)d(a) := g(a) − �ℓmax(a) =

a

R

√

a2
− b2

−

√

2πa �γ

E∗

.

(4.83)FN (a) = E∗

a
∫

−a

uz(x)dx =

2E∗

3R

(

2a2
+ b2

)
√

a2
− b2

−

√

8πa3E∗�γ .

(4.84)a
∗

=
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9πR
2�γ

8E∗

)1/3

, F
∗
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2
πR �γ , d

∗

= −

(

3π2
R �γ 2

64E∗
2

)1/3

,

(4.85)ˆd
(

â
)

= 3â2

√

√

√

√

1 −

(

ˆb

â

)2

− 4â1/2,

Fig. 4.11   Qualitative 
presentation of the adhesive 
contact of a parabolic profile 
with a flattened tip and an 
elastic half-space

4.6  Problems

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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where ˆFN := FN/|F∗

|, ˆd := d/|d∗

|, â := a/a∗, and ˆb := b/a∗ were used for the 
normalization. In the special case of ˆb = 0, the resulting equation is (4.38) and for 
the case of ˆb = â, the resulting equations are (4.61) and (4.62). These cases describe 
the parabolic contact and the flat indenter contact, respectively. Their graphical 
trends can be interpreted as extreme values for the general case, which is expressed 
in Fig.  4.12. Here, unstable domains are not visible. The fact that the horizontal 
tangents of the minimums of these curves separate the stability domains is clear. It 
is interesting that for b > 0.7475 a∗, complete separation occurs only after a = b, 
meaning the contact radius corresponds to that of the flattened area of the indenter.

For b < 0.7475 a∗, however, there exists a minimum that marks the adhesion 
force in a way similar to the parabolic contact. Further considerations, especially 
those near the boundary curves shown in Fig. 4.12, are contained in [30].
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5.1 � Introduction

The fundamental property that allows the reduction of three-dimensional con-
tacts to one-dimensional ones is the proportionality of the incremental stiffness to 
the diameter of the contact area. This property is exhibited by both normal and 
tangential contacts. The idea behind dimensionality reduction can, therefore, be 
directly transferred to tangential contacts.

The tangential stiffness of a round contact with the diameter D between two 
elastic half-spaces is given by the equation [1]

where G∗ is defined as

G1 and G2 denote the shear moduli of the contacting bodies. Thereby, it should be 
noted that it is assumed that materials are “elastically similar”:

which allows the tangential contact problem to be decoupled from the normal con-
tact problem [2]. This condition is identically met for the important case of a con-
tact between a rigid body and an incompressible elastomer (both sides of Eq. (5.3) 
are zero in this case).

Now, we consider a linearly elastic foundation consisting of springs with the 
stiffness

(5.1)kx = DG∗,

(5.2)
1

G∗

=

(2 − ν1)

4G1
+

(2 − ν2)

4G2
.

(5.3)
1 − 2ν1

G1
=

1 − 2ν2

G2
,

(5.4)�kx = G∗�x,
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where �x is the distance between the springs. The stiffness (5.1) is trivially repro-
duced with this foundation. In this chapter, we will show that the one-dimensional 
elastic foundation with the normal stiffness defined in Chap. 3 and the tangential 
stiffness (5.4) can also be used to exactly map tangential contacts with Coulomb 
friction for arbitrarily axially-symmetric profiles. We begin our considerations 
with the contact between parabolic bodies.

5.2 � Tangential Contact with Friction for Parabolic Bodies

We consider a rigid three-dimensional parabolic body with the radius of curvature 
R that is pressed into an elastic half-space with the normal force FN and subse-
quently loaded in the horizontal direction with the force Fx. We assume that the 
frictional forces acting in the contact can be simply described using Coulomb’s 
law of friction with a constant coefficient of friction µ. From the theory of three-
dimensional contact problems, it is known that even the application of an arbitrar-
ily small force results in the formation of a slip domain at the boundary of the 
contact area, while the inner domain initially sticks [1]. With increasing tangential 
force, the stick domain shrinks until slip is initiated in the entire contact area. In 
this section, we investigate the one-dimensional mapping of the aforementioned 
three-dimensional contact problem (Fig. 5.1).

As before, let the indentation depth of the rigid body into the linearly elastic 
foundation be denoted by d. The vertical displacement of a spring at a distance x 
from the middle point of the contact is

The radius R1 must be set to R1 = R/2 according to the rules of the reduction 
method. The elastic force of a single spring at the point x is

The contact radius is obtained from the condition uz(a) = 0:

(5.5)uz(x) = d −

x2

2R1
.

(5.6)fN (x) = E∗uz(x)∆x =

(

d −

x2

2R1

)

E∗∆x.

(5.7)a =

√

2R1d =

√

Rd.

Fig. 5.1   One-dimensional 
mapping of contact 
loaded both normally and 
tangentially

R1

d

z
Fx

FN
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Until now, we have only used the results known from Chap. 3. Now, we denote the 
horizontal displacement of the parabolic indenter with respect to the foundation 
with ux. Then, the horizontal component of the force acting on a sticking spring is

We determine the boundary of the sticking domain x = ±c from the condition that 
the tangential force achieves its maximum value:

or

From this, it follows that

Solving with respect to ux results in

This result agrees with the result for the three-dimensional contact problem [1].
The slip condition outside of the sticking domain means that every point here 

fulfills Coulomb’s law of friction:

Now, we calculate the normal and tangential forces acting in the entire contact 
area. For the normal force, we once again obtain the Hertzian result:

The tangential force is calculated as

From this, the relationship between the loading and the radius of the contact area 
can be determined:

(5.8)fx(x) = ∆kxux = G∗∆x · ux.

(5.9)fx(c) = µfN (c)

(5.10)G∗∆x · ux = µ

(

d −

c2

2R1

)

E∗∆x.

(5.11)c2
= 2R1

(

d −

G∗

E∗

ux

µ

)

.

(5.12)ux = µ
E∗

G∗

(

d −

c2

2R1

)

= µ
E∗

G∗

(

d −

c2

R

)

.

(5.13)fx(x) = µfN (x) for c < |x| < a.

(5.14)FN =

a
∫

−a

(

d −

x2

2R1

)

E∗dx =

4

3
E∗(2R1)

1/2d3/2
=

2E∗a3

3R1
.

(5.15)

Fx = 2

c
∫

0

G
∗

uxdx + 2

a
∫

c

µ

(

d −

x
2

2R1

)

E
∗dx =

2E
∗

a
3µ

3R1

(

1 −

(

c

a

)3
)

= µFN

(

1 −

(

c

a

)3
)

.

(5.16)
c

a
=

(

1 −

Fx

µFN

)1/3

.
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This result also agrees exactly with that of the three-dimensional problem [1].
We obtain the displacement above which the entire contact area exhibits slip by 

inserting c = 0 into Eq. (5.12):

which, of course, also agrees exactly with that of the three-dimensional case.

5.3 � Tangential Contact with Friction for Arbitrary 
Axially-Symmetric Bodies

In the last section, it was proven that the tangential contact with partial slip for 
two parabolic bodies can be exactly mapped using the method of dimensionality 
reduction. The generalization to tangential contacts of arbitrarily formed, axially-
symmetric bodies is the topic of this chapter; the complete proofs including all 
assumptions can be found in Chap. 18.

In order to solve the classical three-dimensional contact problem, Cattaneo [3] 
and Mindlin [4] initially calculated the tangential displacement in the direction of 
the applied tangential force, which results from the state of full slip. Subsequently, 
they superimposed the corresponding tangential stress distribution with a second 
one of the same form, but with the opposite direction. In this way, constant tan-
gential displacements were obtained for an inner circular area and the tangential 
stresses in the outer domain that are proportional to the normal stresses, which are 
the boundary conditions for the tangential contact with partial slip. Although the 
way was paved to solve tangential contact problems with the method of Cattaneo 
and Mindlin, its application to other geometries appeared exceedingly difficult, 
because they required explicit knowledge/calculation of the tangential displace-
ments. Not until 50  years later did Truman et al. [5], using this method, suc-
cessfully derive the solution to the tangential contact problem between a conical 
indenter and an elastic half-space. In the same year, Jäger [6] arrived at the conclu-
sion that within the framework of Cattaneo-Mindlin theory, every axially-symmet-
ric tangential contact problem can be completely described by the normal contact 
problem so that an explicit calculation of the tangential displacement is unneces-
sary. Thereby, we remember that elastically similar materials (5.3) are assumed 
everywhere in this chapter, which allows the contact problem to be decoupled. 
Furthermore, it is assumed that the frictional stresses point in the direction of the 
applied tangential force, which strictly speaking, violates a part of Coulomb’s 
law of friction. Due to the addition of a slippage component perpendicular to the 
applied force, the tangential stresses and slip are not opposite each other at every 
point in the slip domain. In [7, 8], as well as Chap. 18, it is explained why we can 
neglect this deviation.

(5.17)ux,max = ux = µ
E∗

G∗

d,

http://dx.doi.org/10.1007/978-3-642-53876-6_18
http://dx.doi.org/10.1007/978-3-642-53876-6_18


69

Due to the principle of superposition from Jäger [6, 9], the tangential stresses 
are equivalent to the difference between the actual normal stress and those that 
correspond to a smaller contact radius (the stick radius c) multiplied with the coef-
ficient of friction. The same is true for the tangential force Fx and the relative tan-
gential displacement ux:

It is proven in Chap. 18 that based on the Eqs.  (5.18)–(5.20), these relationships 
can be obtained from the method of dimensionality reduction. Thus, the method 
already introduced within the framework of the tangential contact for a parabolic 
body is generally valid. It consists primarily of two central ansätze:

1.	 In the one-dimensional equivalent model, the tangential spring forces at the 
boundary of the stick domain must assume the maximum possible value for the 
static frictional force

	 For a given tangential displacement ux, the radius of the stick domain c can be 
obtained.

2.	 The tangential force is given analogously to the normal force from the sum of 
the tangential spring forces and, therewith, the tangential distributed load

	 On the right side, the piecewise-defined function

has already been inserted.

Also, based on the superposition from Jäger, the three-dimensional tangential 
contact with partial slip can be replaced by two three-dimensional normal con-
tacts. This technique has already been used in various numerical simulations. 
It is directly evident that such a superposition also retains its validity for the 
equivalent one-dimensional normal contact. Nevertheless, it is preferred, and 
requires less effort, to directly map the three-dimensional partial slip problem to a 

(5.18)τzx(r) = µ
[

σzz(a, r) − σzz(c, r)
]

(5.19)Fx = µ[FN (a) − FN (c)]

(5.20)ux = µ
E∗

G∗

[d(a) − d(c)].

(5.21)fx(c) = µ fN (c) ⇔ qx(c) = µ q(c).

(5.22)Fx =

a
∫

−a

qx(x)dx = 2c G∗ux + 2µ

a
∫

c

q(x)dx.

(5.23)qx(x) =







G∗ux for |x| ≤ c

µ q(x) for c < |x| ≤ a

0 for |x| > a

5.3  Tangential Contact with Friction for Arbitrary …
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one-dimensional partial slip problem, rather than mapping two three-dimensional 
normal contacts and superimposing them.

Now, we consider an axially-symmetric indenter which has a profile with a 
form given by a power function with a positive real exponent

and is initially pressed into an elastic half-space with the normal force FN and sub-
sequently, maintaining the normal force, loaded with the tangential force Fx. We 
are now looking for the radius of the stick domain c and the relative tangential 
displacement ux of both bodies. For the normal contact, one can take the solutions 
from Problem 2 in Chap. 3:

Let us remember that the relationships above arise from the indentation of the 
(rigid) profile

which is vertically scaled by the factor κn, into a one-dimensional linearly elastic 
foundation.

The extension to the tangential contact requires that the spring elements be 
independent from one another in the tangential direction and possess the stiff-
ness �kx = G∗�x. As in the three-dimensional contact problem, Coulomb’s law 
of friction is also locally valid in the one-dimensional model. By the addition of a 
tangential force, the tangential springs in the area near the edge of the contact area 
(c < |x| ≤ a) slide because the vertical spring forces, and therefore, the maximum 
frictional forces, are locally too small to satisfy the condition fx(x) < µ fN (x). In 
this domain, the spring forces (normal and tangential) at every point are directly 
proportional to one another: fx(x) = µ fN (x). Within this radius (|x| ≤ c), all of the 
tangential spring elements stick and, therefore, experience the same tangential dis-
placement ux. In summary, the distribution of the tangential spring forces can be 
expressed by means of the piecewise defined distributed load

We determine the tangential displacement ux as a function of the radius of the stick 
domain c from the condition (5.21)

(5.24)z̃(r) = f (r) = Cnrn

(5.25)d(a) = Cnκnan

(5.26)FN (a) =

2n

n + 1
E∗κnCnan+1.

(5.27)g(x) = κnCn|x|
n,

(5.28)qx(x) =







G∗ux for |x| ≤ c

µ E∗κnCn(a
n
− |x|n) for c < |x| ≤ a

0 for |x| > a

.

(5.29)qx(c) = µq(c) ⇒ ux(c) = µ
E∗

G∗

κnCn

(

an
− cn

)

.
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The sum of all tangential spring forces must correspond to the applied tangential 
force, which Eq. (5.22) provides when taking (5.29) into account:

Solving with respect to the characteristic ratio of the contact radii and using (5.26) 
leads to

For n = 2, the result of the classical contact problem from Cattaneo and Mindlin 
is obtained, but also the special case of a flat, cylindrical indenter can be obtained 
from (5.31) if we consider n → ∞. As long as the tangential force Fx is smaller 
than the maximum static force of friction µFN, then the entire contact will stick 
in this case. However, if this limit is reached, then complete sliding initiates. 
Figure 5.2 shows Eq. (5.31) graphically for the above named geometries (parabo-
loid and flat indenter) as well as the conical profile (n = 1). The gray curve is for 
an exponent of n = 6 and signifies the family of curves for increasing n.

Using the now known radius of stick, one can also determine the tangential dis-
placement with respect to the input values. After inserting (5.31) into (5.29) and 
using (5.26), it follows that

Naturally, Eq. (5.32) for n = 2 is the result for the tangential contact of a sphere [1]. 
For the tangential contact between a flat, cylindrical indenter and a half-space, the limit 
of ux as n → ∞ must once again be found, which leads to the elementary result of

(5.30)Fx =

2n

n + 1
µE∗κnCnan+1

[

1 −

( c

a

)n+1
]

.

(5.31)
c

a
=

(

1 −

Fx

µFN

)
1

1+n

.

(5.32)ux =

n + 1

2n

µFN

G∗a

[

1 −

(

1 −

Fx

µFN

)
n

n+1

]

.

(5.33)lim
n→∞

ux(n) =

Fx

2G∗a
.

Fig. 5.2   Radius of stick 
c as a function of applied 
tangential force Fx for a 
conical, parabolic, and flat 
cylindrical indenter
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The direct proportionality between force and displacement is shown in Fig.  5.3. 
The slope triangle on the curve for the flat, cylindrical indenter indicates the com-
pliance. For extremely small tangential forces, for which the slip domain is con-
strained to a very small ring, Eq. (5.33) is valid for all profiles, regardless of the 
form function exponent.

Let it once more be emphasized that the one-dimensional ansätze (5.21) and 
(5.22) allow for the exact mapping of tangential contacts for arbitrary axially-
symmetric bodies. Profiles that we can describe by a power series as well as those 
that are piecewise defined are also included here. The latter, however, can cause 
difficulties, because the one-dimensional profile cannot be found simply through 
scaling, but must be found by integration (see Problem 3).

5.4 � Mapping of Stresses in the Tangential Contact

Due to the principle of superposition from Jäger, the tangential stresses can be 
obtained, completely analogously to the normal stresses, from the Abel-like inte-
gral transformation of the tangential distributed load qx(x):

The proof for this is presented in Chap. 18. It follows from the alternate presen-
tation of the piecewise-defined, linear force density from (5.23) as the difference 
between two vertical distributed loads and subsequent use of (5.18).

As an example, we want to use Eq.  (5.34) on the classical tangential contact 
between a parabolic body and a plane. In the first step, we define the tangential 

(5.34)τzr(r) =

1

π

1

r

d

dr

a
∫

r

x · qx(x)
√

x2
− r2

dx =

1

π

a
∫

r

q′

x(x)
√

x2
− r2

dx −

1

π

qx(a)
√

a2
− r2

.

Fig. 5.3   Tangential 
displacement ux plotted with 
respect to the tangential force 
Fx (normalized)
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linear load for the one-dimensional model, which we already implicitly drew upon 
for the calculation of the tangential force in (5.15):

In order to keep the effort required to a minimum, we use the integral expression 
on the right side of (5.34),1 which requires the derivative of the linear load:

By inserting (5.36) into (5.34), we must differentiate between the two cases 
0 ≤ r < c and c ≤ r ≤ a and, therefore, obtain

After simple integration, we obtain

where H(x) is the Heaviside step function. It is generally known that Eq.  (5.38) 
corresponds to the exact distribution of the tangential stress in a three-dimensional 
contact [1].

5.5 � Mapping of Local Slip

The micro-slip in the outer area of a tangential contact is generally described by 
the local slip sx,3D(r). This denotes the tangential relative displacement of the sur-
face points in the slip domain of the contact area, which is required for the calcula-
tion of wear and other tribological processes. For the sake of clarity, the constant 
tangential displacement of all points within the sticking domain will be denoted in 
the section with

(5.35)qx(x) =















G∗ux for |x| ≤ c

µ E∗

�

d −

x2

R

�

for c < |x| ≤ a

0 for |x| > a

.

1  Let it be noted that in special cases of non-differentiable form functions, only the first integral 
expression in (5.34) may be used.

(5.36)q
′

x(x) =

{

0 for |x| ≤ c ∨ |x| > a

−2µE
∗

x

R
for c < |x| ≤ a

.

(5.37)τzr(r) = −

2µE
∗

Rπ
·















a
�

c

x
√

x2
− r2

dx for 0 ≤ r < c

a
�

r

x
√

x2
− r2

dx for c ≤ r ≤ a

.

(5.38)τzr(r) = −

2µE∗

Rπ

[
√

a2
− r2

· H
(

1 −

r

a

)

−

√

c2
− r2

· H
(

1 −

r

c

)]

,

(5.39)ux(r) = δx = const. for 0 ≤ r ≤ c .
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The fact that this displacement can be mapped exactly by the method of dimen-
sional reduction has already been shown. In a similar way, the local slip in the slip 
domain can be reproduced as

Once again, Jäger’s principle of superposition is at the center of our considera-
tions. Using this, the following equation for the slip of an axially-symmetric con-
tact obtained from the slip in a one-dimensional model sx,1D(x) can be easily 
understood:

Here, ux(x) is the tangential displacement of the surface of the linearly elastic 
foundation.

For the classical tangential contact of a parabolic body with a plane, the appli-
cation of the transformation (5.41) will be explained in the following. For this, we 
first introduce slip in the one-dimensional model. From the tangential distributed 
load according to (5.35), the tangential displacements can be directly found for the 
equivalent system. This is because both are proportional to each other, whereby 
the effective shear modulus G∗ is the proportionality factor:

With this, the following is valid for the one-dimensional slip:

Insertion of (5.43) into (5.41) results initially in

and after simple calculation, we find the three-dimensional slip from Johnson [7] 
in the domain of micro-slip:

(5.40)sx,3D(r) := ux(r) − δx for c < r ≤ a .

(5.41)sx,3D(r) =

2

π

r
∫

0

sx,1D(x)
√

r2
− x2

dx with sx,1D(x) = ux(x) − δx.

(5.42)ux(x) =



















δx for |x| ≤ c

µ
E

∗

G∗

�

d(a) −

x
2

R

�

� �� �

=uz(x)

for c < |x| ≤ a .

(5.43)sx,1D(x) := ux(x) − δx =







0 for |x| ≤ c

µ
E

∗

G∗

�

d(c) −

x
2

R

�

for c < |x| ≤ a
.

(5.44)sx,3D(r) =

2µE
∗

πRG∗

r
∫

c

c
2
− x

2

√

r2
− x2

dx for c < r ≤ a

(5.45)sx,3D(r) =

µE∗

πRG∗

[(

2c2
− r2

)

·

(π

2
− arcsin

(c

r

))

− c ·

√

r2
− c2

]

.
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5.6  Problems

Problem 1  Determine the radius of stick and the relative tangential displacement 
with respect to the tangential force for the tangential contact between an elastic 
cone and an elastic half-space. Elastically similar materials are assumed. It is also 
assumed that the normal contact problem for which tangential loading is investi-
gated has already been solved (see Problem 1 in Chap. 3)

Solution  The equivalent one-dimensional contact problem consists of a rigid 
cross-section of a conical indenter scaled vertically by a factor of κ1 = π/2,  
which is pressed into a one-dimensional linearly elastic foundation and subse-
quently loaded with a tangential force. All tangential spring elements whose spring 
forces have not yet reached the spatially-dependent maximum static force of fric-
tion µ fN (x) undergo the respective displacement ux. In the outer ring, the vertical 
spring forces, and therefore, the force of static friction, is so small that partial slid-
ing occurs. At the stick–slip limit, the tangential spring forces must assume the 
maximum force of static friction

which results in constant tangential displacement of all points in the stick domain:

In equilibrium, the tangential force Fx must be equal to the sum of the tangential 
spring forces:

By taking the results of the normal contact problems into account (see Problem 1 
from Chap. 3), Eqs. (5.47) and (5.48) can be brought into the following form:

(5.46)G∗∆x ux(c) = µ E∗∆x
[

d − g(c)
]

,

(5.47)ux(x) = µ
π

2

E∗ tan θ

G∗

(a − c) for |x| ≤ c.

(5.48)

Fx = G∗

a
∫

−a

ux(x) dx = 2G∗

c
∫

0

ux(x) dx + 2µE∗

a
∫

c

uz(x) dx

=

π

2
µE∗ tan (θ) a2

[

1 −

( c

a

)2
]

.

(5.49)
c

a
=

√

1 −

Fx

µFN

(5.50)ux =

µFN

G∗a

[

1 −

√

1 −

Fx

µFN

]

.

5.6  Problems

http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_3


76 5  Tangential Contact

Of course, these equations also result from (5.31) and (5.32) for n = 1 and corre-
spond exactly with the three-dimensional solution from Truman et al. [5].

Problem 2  Calculate the tangential stress distribution within the contact area for 
the tangential contact handled in Problem 1 with the help of the Abel transforma-
tion in Eq. (5.34).

Solution  The calculation of the three-dimensional tangential stress from the one-
dimensional model requires setting up the equation for and subsequently differ-
entiating the tangential linear load. The linear load was already implicitly used to 
find the tangential force in Eq. (5.48). Its derivative is

Inserting (5.51) into Eq. (5.34) initially provides

and after integration and simple rearrangement,

The tangential stress distribution, normalized by the mean value in the case of 
complete sliding, is plotted in Fig.  5.4 for sizes of the stick domain. The finite 
value at the point r = 0 is

(5.51)q
′

x(x) =

{

0 for |x| ≤ c and |x| > a

−µE
∗ π

2
tan θ · sign(x) for c < |x| ≤ a

.

(5.52)τzr(r) = −

1

2
µE

∗ tan θ ·















a
�

c

1
√

x2
− r2

dx for 0 ≤ r < c

a
�

r

1
√

x2
− r2

dx for c ≤ r ≤ a

,

(5.53)

τzr(r) = −

1

2
µE∗ tan θ

[

arcosh
(a

r

)

· H
(

1 −

r

a

)

− arcosh
(c

r

)

· H
(

1 −

r

c

)]

.

(5.54)

lim
r→0

−τzr(r)

µpm

= lim
r→0

[

arcosh

(

a

r

)

− arcosh

(

c

r

)]

= lim
r→0

ln

(

a +

√

a2
− r2

c +

√

c2
− r2

)

= ln

(

a

c

)

.

Fig. 5.4   Normalized 
tangential stress distribution 
with respect to the size 
of the stick domain 
c/a = 0.1, 0.2, . . . , 1
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Problem 3  A flat, cylindrical indenter with rounded edges is initially pressed into 
an elastic half-space with the normal force FN and subsequently loaded with a 
(presently unknown) tangential force Fx, which results in a given relative tangen-
tial displacement ux of the two bodies. It is assumed that the bodies are composed 
of elastically similar materials and that the profile of the indenter is given by the 
following (see Fig. 5.5):

Determine the indentation depth and normal force as a function of contact radius 
with the help of the reduction method. Furthermore, calculate the tangential dis-
placement and tangential force as a function of the stick radius.

Solution  In the first step, the one-dimensional equivalent profile must be deter-
mined. The piecewise-defined function according to (5.55) requires the application 
of the generalized formula (3.27)

Calculating the integral in Eq.  (5.56) requires nothing more than elementary 
mathematics:

Nevertheless, we must remember that (5.56) has to be extended axis-symmetri-
cally to the domain of −a ≤ x ≤ 0. Then, we obtain

The normalized original and equivalent profiles are shown in Fig. 5.6.

(5.55)f (r) =

{

0 for 0 ≤ r < b
1

2R
(r − b)

2 for b ≤ r ≤ a
.

(5.56)g(x) = x

x
�

0

f ′

(r)
√

x2
− r2

dr =







0 for 0 ≤ x < b
x

R

x
�

b

r − b
√

x2
− r2

dr for b ≤ x ≤ a
.

(5.57)

x
∫

b

r − b
√

x2
− r2

dr =

√

x2
− b2

− b arccos

(

b

x

)

.

(5.58)g(x) =







0 for |x| < b

|x|
R

√

x2
− b2

−

b|x|

R
arccos

�

b

|x|

�

for b ≤ |x| ≤ a
.

Fig. 5.5   Tangential contact 
of a flat indenter with 
rounded edges (radius R)
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The indentation depth as a function of the contact radius is found from the one-
dimensional profile using

while the dependence of the normal force on the contact radius is found from the 
sum of all spring forces in the contact for the one-dimensional model:

Integration, taking (5.59) into account, and rearranging results in

The limiting case of b = 0 is a parabolic profile. As expected, the Eqs. (5.59) and 
(5.61) reproduce in this limit the Hertzian relations.

The boundary between slip and stick can be found using Eq.  (5.21), in other 
words, requiring that the tangential spring force reaches the maximum possible 
force of static friction at the point x = c. With the help of (5.58) and (5.59), one of 
the relationships is found:

(5.59)d = g(a) =

a

R

√

a2
− b2

−

ba

R
arccos

(

b

a

)

,

(5.60)

FN = 2E∗

a
∫

0

[

d − g(x)
]

dx

= 2E∗

b
∫

0

d dx + 2E∗

a
∫

b

[

d −

(

x

R

√

x2
− b2

−

bx

R
arccos

(

b

x

))]

dx.

(5.61)FN =

4

3
E∗

a3

R





�

1 −

1

4

�

b

a

�2
�

�

1 −

�

b

a

�2

−

3

4

b

a
arccos

�

b

a

�



.

(5.62)

ux = µ
E∗

G∗

a

R

[

√

a2
− b2

− b arccos

(

b

a

)

−

c

a

(

√

c2
− b2

− b arccos

(

b

c

))]

.

Fig. 5.6   Flat indenter 
with rounded edges: 
Comparison between the 
three-dimensional and 
one-dimensional profiles
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Now, it is only left to find the dependence between the tangential force and the 
stick radius. For this, we look at a distributed load in the one-dimensional model

and integrate this over the contact width in the reduced model:

The integral on the right-hand side already appeared in the calculation of the nor-
mal force in (5.60). After calculating the antiderivative and taking the lower limit 
of integration into account, we obtain

We can be directly convinced of the correctness of Eq.  (5.65) if we consider the 
principle of superposition by Jäger. According to (5.19), the tangential force is 
equivalent to the difference between the current normal force and one that would 
result in a stick radius c multiplied by the coefficient of friction. Using Eq. (5.61), 
this relationship can be easily verified. Figure 5.7 shows the normalized depend-
ence of the stick radius on the tangential force for various cases. The limiting case 
of b = 0 corresponds to the classical result of Cattaneo and Mindlin. In contrast, 
if the contact area is only slightly larger than the flat section (b = 0.95a), then the 
curve approaches that of a flat indenter. A comparison is shown in Fig. 5.2.

(5.63)

qx(x) =















G∗ux for |x| ≤ c

µ E∗

�

d −

|x|

R

�

√

x2
− b2

− b arccos

�

b

|x|

���

for c < |x| ≤ a

0 for |x| > a

(5.64)

Fx =

a
∫

−a

qx(x)dx = 2cG∗ux + 2µE∗

a
∫

c

[

d −

x

R

(

√

x2
− b2

− b arccos

(

b

x

))]

dx.

(5.65)

Fx = µ
E

∗

3R

[

(

4a
2
− b

2
)
√

a2
− b2

− 3a
2
b arccos

(

b

a

)]

− µ
E

∗

3R

[

(

4c
2
− b

2
)
√

c2
− b2

− 3c
2
b arccos

(

b

c

)]

.

Fig. 5.7   Stick radius c as a 
function of applied tangential 
force Fx for a flat indenter 
with rounded edges
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Although it has not yet been mentioned, it was assumed in the above calcu-
lations that b ≤ c ≤ a, and therefore, partial sliding within the flat section is not 
possible. Figure  5.7 emphasizes the validity of this assumption. As soon as the 
slip domain includes the rounded edges, then the transition to complete slip takes 
place. For the analogous planar contact problem, a corresponding behavior was 
analytically proven [10] and verified by finite element calculations [11].

Problem 4  Determine the integral form for the normal and tangential stress distribu-
tion for the contact between a flat indenter with rounded edges having a radius of cur-
vature of R and a half-space (see Fig. 5.5). Assume a constant distributed loading of the 
one-dimensional model and visualize the numeric solutions of the integral expressions.

Solution  The vertical distributed load in the one-dimensional model is directly pro-
portional to the normal displacement of the surface and according to Eq. (5.58) is

The derivative is required for the calculation of the normal stress distribution. 
Because of axial symmetry, we only have to determine this for positive x:

According to Eq. (3.37) from Chap. 3, the normal stress is

These integral relations are identical to those of the three-dimensional theory. 
They must be solved numerically. Figure 5.8 shows the distribution of the normal 
stress in normalized form, where pm := FN/πa2 is the mean stress. Several ratios 
of the length of the flatness b and the contact radius a are shown. For b = 0, we 
understandably obtain the Hertzian results, while for b → a, we obtain the singu-
larity at the edges of the contact for a flat, cylindrical indenter (with sharp edges). 
The presence of rounded edges guaranties a finite maximum in stress, which 
decreases with b/a towards the center.

The calculation of the tangential stress follows completely analogously. The 
tangential distributed load of the linearly elastic foundation was already shown in 
Problem 3 so that we must now only focus on 0 ≤ x ≤ a and differentiate (5.63) 
with respect to x:

(5.66)q(x) =















d for |x| ≤ b

E∗

�

d −

|x|

R

�

√

x2
− b2

− b arccos

�

b

|x|

���

for b < |x| ≤ a

0 for |x| > a

.

(5.67)q′

(x) =







0 for 0 ≤ x < b ∨ x > a

−

E∗

R

�

2
√

x2
− b2

− b arccos

�

b

x

��

for b ≤ x ≤ a
.

(5.68)σzz(r) =



















−

E
∗

πR

a
�

b

2
√

x2
− b2

− b arccos (b/x)
√

x2
− r2

dx for 0 ≤ r < b

−

E
∗

πR

a
�

r

2
√

x2
− b2

− b arccos (b/x)
√

x2
− r2

dx for b ≤ r ≤ a

.

(5.69)q′

x(x) =

{

0 for 0 ≤ x < c ∨ x > c

−

µE∗

R

[

2
√

x2
− b2

− b arccos

(

b
x

)]

for c ≤ x ≤ a
.
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Insertion of (5.69) into (5.34) results in the distribution of the tangential stress 
in integral form, which corresponds to (5.68) with the exception of the integral 
boundaries:

Numerically solving (5.70) leads to the normalized trend in Fig. 5.9 for the chosen 
values b ≤ c ≤ a. A comparison with Fig. 5.8 allows the principle of superposi-
tion from Jäger to be clearly seen; especially for b = 0 and the arbitrarily chosen 
ratio of stick to contact radius c/a = 0.5, the classical solution from Cattaneo and 
Mindlin is evident.

(5.70)τzr(r) =



















−

µE
∗

πR

a
�

c

2
√

x2
− b2

− b arccos (b/x)
√

x2
− r2

dx for 0 ≤ r < c

−

µE
∗

πR

a
�

r

2
√

x2
− b2

− b arccos (b/x)
√

x2
− r2

dx for c ≤ r ≤ a

.

Fig. 5.8   Distribution of 
the normalized stress for 
the contact in Fig. 5.5; the 
cases shown are those from 
Problem 3: b/a = 0 (Hertzian 
pressure distribution) as well 
as b/a = 0.5, 0.8, and 0.95

Fig. 5.9   Distribution of 
the tangential stress for the 
chosen values; the values are 
normalized by the average 
tangential stress in the case of 
complete sliding
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The equations for the normal and tangential stresses according to (5.68) and 
(5.70) obtained from the distributed load in the one-dimensional model, occur 
identically in the three-dimensional theory [12].

Problem 5  An elastic sphere is pressed onto a rigid half-space, for which the 
direction of the indentation force always remains the same (Fig. 5.10). Determine 
the conditions under which the entire contact area sticks.

Solution  In contrast to the three-dimensional case, the solution is trivial within the 
framework of the reduction method. Due to the fact that every sticking spring is 
loaded by the angle α, there is no sliding if the angle is smaller than the frictional 
angle [1]:

The result is, as expected, exactly the same as that for the three-dimensional 
solution.

Problem 6  Fretting wear. Consider a rotationally symmetric profile which is 
brought into contact with a rigid surface and then oscillates in tangential direction 
with a given amplitude u(0)

x . For small oscillation amplitudes, the wear occurs only 
in a circular slip zone at the border of the contact area. With increasing number of 
cycles, the wear profile tends to a limiting form, in which no further wear occurs. 
Under assumption of a constant coefficient of friction, the limiting form of the 
wear profile does not depend on the particular wear criterion. Using the method of 
dimensionality reduction, determine analytically this limiting form (for details see 
[13]).

Solution  Assume that the friction can be described by a local formulation of the 
Amonton’s law: The surfaces in contact are in the sticking state if tangential stress 
τ is smaller than normal pressure p multiplied with a constant coefficient of fric-
tion µ, and the tangential stress remains constant after the onset of sliding:

At the circular border of the stick region with radius c, the critical condition 
τ(c) = µp(c) is fulfilled. Inside this region, the condition τ < µp is valid. Due to 
wear outside of the sticking region, the local pressure in the sticking region will 
increase and outside decrease further, independently of whether the experiment is 

(5.71)tan α < µ.

(5.72)
τ < µp, stick

τ = µp, slip
.

Fig. 5.10   Elastic sphere 
that is pressed by an inclined 
force onto a rigid half-space F

α
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done under conditions of constant normal force or constant indentation depth d. 
This will lead to a progressive wear outside of the region of stick. The wear pro-
cess will advance until the pressure in the sliding region becomes zero. In this 
limiting state, the inner parts of the contact will still remain in the sticking state, 
while the wear rate in the outer parts of the contact tends to zero. The final state 
of no wear can be considered as a sort of “shakedown” state, in which no fur-
ther inelastic processes occur. The detailed kinetics of the profile depends on the 
wear criterion used as well as on the loading conditions (controlled force or con-
trolled indentation). In the most cases, the Reye-Archard-Khrushchov wear crite-
rion is used, stating that the wear volume is proportional to the dissipated energy. 
According to this wear criterion, the wear rate vanishes if either the relative dis-
placement �ux of the bodies or tangential stress in contact is zero. In non-adhesive 
contacts, the latter means vanishing of the normal pressure p. The no-wear condi-
tion thus reads:

From these conditions, it follows that the pressure in the final state is non-zero 
only inside the stick area and vanishes outside.

Given a three-dimensional profile z = f (r), we first determine the equivalent 
one-dimensional profile according to (3.27)

The back transformation is given by the integral

The profile (5.74) is pressed to a given indentation depth d into an elastic founda-
tion. The resulting vertical displacements of springs are given by

and the linear force density

The contact radius a is given by the condition

(5.73)No wear condition:

{

either p = 0

or �ux = 0
.

(5.74)g(x) = |x|

|x|
∫

0

f ′

(r)
√

x2
− r2

dr.

(5.75)f (r) =

2

π

r
∫

0

g(x)
√

r2
− x2

dx.

(5.76)uz(x) = d − g(x)

(5.77)q(x) = E∗uz(x) = E∗(d − g(x)).

(5.78)g(a) = d.
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The distribution of normal pressure p = −σzz in the initial three-dimensional 
problem can be calculated using the integral transformation (3.37):

If the profile is moved tangentially by u(0)
x , the springs will be stressed both in the 

normal and tangential direction, and the radius c of the stick region will be given 
by the condition that the tangential force kxu(0)

x  is equal to the coefficient of fric-
tion µ multiplied with the normal force kzuz(c):

Let us denote the initial three-dimensional profile as f0(r), the corresponding 
one-dimensional image as g0(x) and the limiting shakedown shapes as f

∞
(r) and 

g
∞

(x) correspondingly. As discussed above, the pressure outside the stick area 
must vanish in the limiting shakedown state: p(r) = 0, for r > c. From (5.79), it 
follows that

From the condition (5.76), it then follows that the one-dimensional profile in the 
shakedown state has the form

This shape is schematically shown in Fig.  5.11. The three-dimensional limiting 
shape can now be calculated by the back transformation (5.75):

Let us apply Eq.  (5.83) to a parabolic indenter. In this case, the initial profile 
is f0(r) = r2

/

(2R), and the corresponding one-dimensional MDR-image is 
g0(x) = x2

/

R. The radius of the stick region is given by the condition (5.80):

(5.79)p(r) = −

1

π

∞
∫

r

q′(x)
√

x2
− r2

dx =

E∗

π

∞
∫

r

g′(x)
√

x2
− r2

dx.

(5.80)G∗u(0)
x = µE∗(d − g(c)).

(5.81)g′(x) = 0 and g(x) = const = g0, for c < x < a.

(5.82)g
∞

(x) =

{

g0(x), for 0 < x < c

d, for c < x < a
.

(5.83)

f
∞

(r) =







f0(r) for 0 < r < c
2

π

c
�

0

g0(x)
√

r2
− x2

dx +

2

π
d

r
�

c

1
√

r2
− x2

dx, for c < r < a
.

Fig. 5.11   One-dimensional 
MDR-image of the final 
“shakedown” profile
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According to (5.83), the limiting three-dimensional profile has the form

Normalizing all vertical coordinates by the indentation depth d and horizontal 
coordinates by the contact radius of the initial profile, a0 =

√

Rd,

we can rewrite these equations in the dimensionless form

The non-dimensional form of the limiting profile thus depends only on one param-
eter 0 < c̃ < 1. The contact radius, and thus the outer radius of the wear region, is 
given by the condition ˜f

∞
(ã) =

˜f0(ã):

(5.84)c =

√

√

√

√R

(
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G∗
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(0)
x

µ

)

.
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
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�
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r

�2
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.

(5.86)
˜f = f

/

d, ˜d = d
/

d = 1

r̃ = r
/

a0, x̃ = x
/

a0, c̃ = c
/

a0, ã = a
/

a0,
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1 −
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(5.88)1 −
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ã2

2

)

arcsin
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ãc̃

π

√
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(
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ã

)2
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ã2

2
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Fig. 5.12   3D profiles in 
the final state according to 
Eq. (5.87). Parameters: 9 
linearly increasing c̃ from 
0.1 to 0.9
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In the limiting case c̃ = 0, the contact radius becomes ã =

√

2.
The total force can be calculated as

or, under consideration of (5.84),

Profiles (5.87) are shown in Fig. 5.12 for a representative set of parameters.
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a
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c
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(

d − x2
/

R
)
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3R

)
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Rolling contacts are found in a multitude of engineering applications, such as 
wheel–rail or tire–street contacts, ball bearings, gears, and various transport 
mechanisms. In this chapter, it will be shown that the tangentially loaded, three-
dimensional rolling contact can also be mapped to a one-dimensional equivalent 
system. In this way, the method of dimensionality reduction allows complex prob-
lems, such as the oscillating rolling contact, to be investigated.

6.1 � The Mapping of Steady-State Rolling Contacts

The starting point is the Hertzian contact between an elastic half-space and a rigid 
sphere with the radius R. As shown in Chap. 3, this is mapped with the method of 
dimensionality reduction to an appropriate one-dimensional contact with a linearly 
elastic foundation. The foundation consists of a number of identical and independent 
springs with a sufficiently small separation distance Δx. The normal and tangential 
spring stiffness of the foundation is based on the original three-dimensional system as

Furthermore, the radius of curvature of the equivalent model is chosen as in 
Sect. 3.2 to be

This is known as the “rule of Popov”. Under these assumptions, the one-
dimensional model gives the exact relations between force, contact region, and 
indentation depth as well as the displacement for both the normal and tangential 
contacts. In the following, it will be shown that a three-dimensional rolling contact 
also behaves in the same way.

(6.1)�kz = E
∗�x =

2G

1 − ν
�x, �kx =

4G

2 − ν
�x.

(6.2)R1 = R/2.
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In this case, a rigid sphere is pressed into a linearly elastic foundation with 
the normal force FN and loaded by the tangential force Fx. It is assumed that dry 
friction with the coefficient of friction of µ takes place between the two surfaces. 
Furthermore, the sphere rotates with an angular velocity of ω and its center point 
moves with the velocity of v in the positive x-direction (Fig.  6.1a). Thus, the 
model corresponds to a driven wheel.

The normal force causes an indentation with the depth d and the contact radius a:

At the leading edge, the springs of the equivalent system are completely relaxed. 
As the sphere continues to roll forward, the tangential loading on an arbitrary 
spring fx increases. Its normal force initially increases as well until the deepest 
point of the sphere rolls past it and the force once again decreases. As a result, the 
contact is divided into a stick region with the diameter 2c at the leading edge and a 
slip domain on the trailing edge of the sphere (Fig. 6.1b).

For further considerations, the coordinate ξ has been chosen, which moves 
with the sphere and has its origin exactly at the leading edge of the contact area 
(Fig. 6.1b). The tangential displacement ux(ξ) of a sticking spring at the position 
ξ relative to the leading edge of the contact area then corresponds to the distance 
�v1t between the sphere and substrate (attachment points of the springs) at this 
point. With ξ = vt, it follows that

and, therewith, the tangential force of the springs in the sticking domain 
0 ≤ ξ ≤ 2c is

In the rest of the contact area, from the boundary of the stick region to the trailing 
edge of the contact area, the springs are in a state of slip. The tangential force in 
the slip domain 2c ≤ ξ ≤ 2a is then

(6.3)a =

√

2R1d.

(6.4)ux(ξ) = �v1 · t = �v1

ξ

vt
t =

�v1

v
ξ ,

(6.5)fx = �kxux = �kx

�v1

v
ξ .

(6.6)fx = µfN = µ�kzuz,

(a) (b)

Fig.  6.1   (a) Rolling contact between a sphere and an elastic half-space and (b) the one-
dimensional equivalent system with constantly moving coordinate ξ, which has its origin at the 
leading edge of the contact area
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where the normal displacement uz of a spring at position ξ is given by the indenta-
tion depth d and the approximate profile of the sphere

At the boundary of the sticking domain ξ = 2c, the sticking condition is exactly met:

from which the radius of the sticking domain is obtained:

Taking the contact radii a and c into account, the normal force FN and the tangen-
tial force Fx can be determined by integrating over the entire contact area. Again, 
the normal force corresponds identically to the three-dimensional Hertzian contact 
problem [1]:

By using Eqs. (6.5) to (6.9), the tangential force is obtained:

Dividing Eq. (6.11) by Eq. (6.10) leads initially to

Rearranging this equation, we obtain the same expression for the radius of the 
stick region as in the original three-dimensional rolling contact [1]:

Therefore, the results show that the modeling of steady-state rolling contacts using 
the method of dimensionality reduction also provides the exact relation between 

(6.7)uz(ξ) = d −

(a − ξ)2

2R1

=

(

2aξ − ξ2
)

2R1

.

(6.8)fx(2c) = µfN (2c) ⇒ �kx

�v1

v
2c = µ�kz

(

4ac − 4c
2
)

2R1

,

(6.9)c = a −

2R1(1 − ν)

µ(2 − ν)

�v1

v
.
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3R1

=

4

3
E
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=
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∫
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ξdξ +
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2R1
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=

4G
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3
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(6.12)
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= µ

(

1 −

(

c
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.

(6.13)
c

a
=

(

1 −

Fx

µFN

)1/3

.
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loading and the sizes of the stick and slip regions. Describing the foundation as 
being linearly elastic with the corresponding spring stiffness and taking the “rule 
of Popov” into account allows for these rolling contacts to be investigated.

6.2 � Rules for the Exact Mapping of Rolling Contacts

The two requirements for the exact mapping of the three-dimensional rolling contact 
are correctly choosing the spring stiffness of the linearly elastic foundation (6.1) and 
following the “rule of Popov” for the one-dimensional radius (6.2). In addition to the 
slip and stick regions and their dependence on loading, the relative velocity between 
the sphere and foundation (attachment point of the springs) is a very important value 
for the rolling contact. The velocity difference is caused by the slip as well as the 
elastic deformation. By rearranging (6.9) and inserting (6.13), we obtain

Comparing this result with the slip of the original three-dimensional system [2]

we obtain the following relation between the one-dimensional and the three-
dimensional results:

Therefore, in addition to (6.1) and (6.2), there is another rule to be considered, 
according to which the one-dimensional result must be scaled in order to deter-
mine the correct relative velocity of the three-dimensional rolling contact:

This is due to the asymmetry in the tangential stress distribution and is valid for 
both the steady-state rolling as well as the oscillating rolling contact at sufficiently 
high amplitudes.

6.3 � Shakedown and Creep in Oscillating Rolling Contacts

The results in the previous section serve as the foundation in the following for the 
investigation of the oscillating rolling contact. This contact is a general model for 
frictional contacts and allows solutions to be obtained for technical applications 

(6.14)
�v1

v
=

2 − ν

1 − ν

µa

R

(

1 −

(

1 −

Fx

µFN

)1/3
)

.

(6.15)s =

�v

v
=

ωR − v

v
=

(4 − 3ν)

4(1 − ν)

µa

R
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(

1 −

Fx

µFN
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)

,

(6.16)
�v1

v
=
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(4 − 3ν)
s ⇒ �v1 =

4(2 − ν)

(4 − 3ν)
�v.

(6.17)�v =

(4 − 3ν)

4(2 − ν)
�v1.



91

such as bolted connections, shrink fit assemblies, and mounts under the influence 
of vibrations. Examples are press-fitted hubs and bearings, joint flanges on drive 
shafts, and blade roots in turbines.

The tangential loading capacity of force-locked connections is essentially 
dependent on the normal force FN and the coefficient of friction µ. According to 
Coulomb’s law of friction, a connection fails if the tangential force Fx surpasses 
the maximum force of static friction:

Vibrations can cause a failure to occur in such connections at even lower values 
of tangential force. Partial slip with gradual frictional fatigue (fatigue fretting) 
and induced complete (macroscopic) slip in the contact are examples of this. The 
method of dimensionality reduction allows for models to be described analytically 
and also the microslip as well as the maximum tangential loading (as opposed to 
Eq. (6.18)) to be predicted.

The starting point for describing and investigating this effect is the Hertzian 
contact, which is composed of an elastic sphere with the radius R and a mova-
ble, rigid substrate. Using the method of dimensionality reduction, the sphere is 
mapped to a linearly elastic foundation with the radius R1 and the spring stiff-
nesses �kz and �kx, which are given by Eqs. (6.1) and (6.2). The sphere is pressed 
with the normal force FN to the indentation depth of d into the rigid substrate, 
which results in the contact radius a (given by Eq.  (6.3)). Furthermore, dry fric-
tion is assumed to exist between the two surfaces with the coefficient of friction of 
µ and the movable substrate is loaded with the tangential force Fx (Fig. 6.2a). In 
Chap. 5, it was shown that this, in addition to the elastic properties of the sphere, 
causes a slip of the springs in the region c < |x| < a of

and a tangential displacement Ustat of the rigid substrate:

(6.18)Fx > Fmax = µFN .

(6.19)c = a

(

1 −

Fx

µFN

)1/3

(6.20)Ustat = µ
2 − ν

2(1 − ν)
d

(

1 −

(

1 −

Fx

µFN

)2/3
)

.

(a) (b)

Fig. 6.2   (a) Rolling contact between an elastic one-dimensional sphere and a moving rigid sub-
strate. (b) Oscillating rolling motion with the rolling path of the center of mass of the sphere W 
as the oscillation amplitude

6.3  Shakedown and Creep in Oscillating Rolling Contacts
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In order to investigate the influence of the vibrations, this static tangential contact 
is superimposed with an oscillating rolling motion of the sphere with the period T 
and the oscillation amplitude W, which indicates the rolling path of the center of 
mass of the sphere in the tangential direction (Fig. 6.2b). Based on the properties 
described in Chap. 2, the influence of inertial forces may be neglected. By treating 
this problem in a quasi-static manner, the results can be transferred to an arbitrary 
cyclical loading of frictionally actuated connections of this form.

In the following, we would like to restrict ourselves to tangential forces that lie 
below the maximum force of static friction in Eq. (6.18) and consider only oscilla-
tion amplitudes that are smaller than the original contact area:

Therefore, without rolling of the sphere, there would be no complete (macro-
scopic) slip in the contact and in the dynamic case, the center of the contact 
would not move beyond the original contact area. Moreover, the pure rolling of 
the sphere causes no driving moment whatsoever. In this way, no additional force 
results and without tangential loading of the rigid foundation, no tangential dis-
placement would result. Thus, the movement resembles that of an oscillatory 
rocking of the contact partners of a frictional contact for which the macroscopic 
loading remains constant.

In contrast, the local loading changes due to the oscillation. In the course of the 
back and forth movements of the elastic sphere, the normal force fN decreases and 
with it, the local maximum tangential force of the springs fmax = µfN on the cur-
rent trailing edge of the rolling contact. Furthermore, the domains at the edges of 
the contact periodically separate from the substrate (Fig. 6.3).

Initially, this causes a small additional displacement of the rigid substrate and 
an increase in the size of the domain of partial slip. In the case of sufficiently 
small oscillation amplitudes W, the displacement of the rigid substrate ceases after 
a certain number of oscillation periods. At this point, the system has reached a new 
equilibrium state in which no partial slip occurs, regardless of whether the oscil-
latory rolling continues or not. One such behavior is characterized as so-called 
shakedown. The concept of shakedown was suggested by Melan for plastic media 
[3] and transferred to frictional contacts by Klarbring [4]. According to this, a sys-
tem has reached a shakedown state at time t0 after an initial slip motion, if no slip 
occurs for all times t > t0. A necessary condition for shakedown is the existence of 

(6.21)Fx ≤ µFN , W ≤ a.

Fig. 6.3   One-dimensional model of the frictional contact. Oscillatory rolling of an elastic sphere 
with the alternate separation of the domains at the edges of the contact and the decrease in the 
local maximum force of static friction on the current trailing edge

http://dx.doi.org/10.1007/978-3-642-53876-6_2
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a constant shakedown displacement for which the maximum force of static friction 
from Eq. (6.18) is not exceeded. There are no restrictions to the number of load-
ing cycles until reaching the shakedown state. Therefore, it is also possible that the 
final displacement of the system lies below the shakedown level [5] if the oscilla-
tion ceases too early.

In the case of the oscillating frictional contact, the shakedown displacement is 
influenced by the oscillation amplitude and the tangential force and is increased by 
�U with respect to the static displacement Ustat in Eq. (6.20) [6]:

The contact area is constant after shakedown is achieved and is characterized by 
three characteristic radii a, b, and c (Fig. 6.4b). The radius a remains unchanged 
whereas the stick radius c, within which the tangential spring force is below the 
corresponding maximum force of static friction, decreases. Therefore, the domain 
c < |x| < a, in which partial slip occurs, is larger than that for the static case.

Now, an additional slip radius b appears, which marks the domain in which the 
local tangential force is equal to zero due to the periodic separation. In summary, 
the three individual contact radii are now 
the contact radius:

the slip radius:

and the stick radius:

Within the stick domain 0 < |x| < c, the resulting tangential force of the springs is

In the domain of partial slip c < |x| < b, the tangential force is exactly equal to 
the force of static friction from Eq.  (6.18) at the trailing edge for the maximum 

(6.22)U = Ustat + �U.

(6.23)a =

√

2R1d,

(6.24)b = a − W ,

(6.25)c =

√

2R1

(

d −

2(1 − ν)

µ(2 − ν)
U

)

− W .

(6.26)fx = �kxU.

(a) (b)

Fig. 6.4   One-dimensional model of a frictional contact. (a) The contact area in the original state 
with two contact radii before rolling. (b) The contact area with three contact radii in the new 
equilibrium state

6.3  Shakedown and Creep in Oscillating Rolling Contacts
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deflection of the sphere. This force is found using the displacement of the springs 
in the normal direction uz from Eq. (6.7):

By integrating over the entire symmetric contact area

we obtain the analytical relationship between loading, oscillation amplitude, and 
displacement:

Experiments and three-dimensional simulations yield a small correction [7]:

Figure 6.5 illustrates Eq.  (6.30) in normalized form and shows the displacement 
of the rigid substrate U as a function of the tangential force Fx for various oscilla-
tion amplitudes W. The maximum value of the displacement of the static tangen-
tial contact ux,max from Sect.  5.2 is used to normalize the displacement U. This 
is increased by �U with respect to the static displacement Ustat (shown by the 
dashed line in Fig.  6.5), due to the rolling. The displacements for various oscil-
lation amplitudes exhibit their own corresponding maximums (shown by the  

(6.27)

fx = µfN (x + W) = µ�kzuz(x + W)

= µ�kz

(
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(x + W)2

2R1

)

.

(6.28)Fx = 2

c
∫

0

4G

2 − ν
Udx + 2

b
∫

c

µ
2G

1 − ν

(

d −

(x + W)2
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dx,

(6.29)Fx = µFN

(

1 −

(
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2(1 − ν)

µ(2 − ν)

U

d

)3/2
)

−

8G

(2 − ν)
UW .

(6.30)Fx = µFN

(
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(

1 −

2(1 − ν)

µ(2 − ν)

U

d

)3/2
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−

16

3

G

(2 − ν)
UW .

Fig. 6.5   Normalized 
displacement 
u = U/ux,max with 
ux,max = µd(2 − ν)/2(1 − ν) 
as a function of tangential 
force Fx for various oscillation 
amplitudes W after shakedown 
has been achieved. The 
rolling causes an increase in 
displacement of ∆u compared 
to static displacement ustat
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dotted line in Fig. 6.5). This shows which maximum displacements can be reached 
before complete slip occurs due to the rolling motion and the frictional contact 
fails (hatched area).

In this limiting case, the stick radius c vanishes so that from Eq.  (6.25), the 
maximum displacement can be obtained as a function of oscillation amplitude:

By inserting (6.31) into (6.30), the maximum tangential loading capacity of the 
oscillating rolling contact can also be obtained:

Equation (6.32) makes it clear that by considering only the macroscopic loading, 
the tangential loading capacity obtained for the case of the oscillating rolling con-
tact is too high, because the actual loading capacity Flim has been decreased by 
�Fx when compared to the maximum possible force of static friction Fmax from 
Eq. (6.18).

If the tangential forces or amplitudes in Eq. (6.32) are surpassed, then the fric-
tional contact fails. The entire contact area exhibits slip, which leads to complete 
sliding of the substrate. A common parameter for this so-called induced creep is 
the displacement per rotation amplitude �UT1, which increases with tangential 
force and oscillation amplitude

Numerical simulations show that the displacement is proportional to the supercriti-
cal component ∆W = W − Wlim of the oscillation amplitude [6]:

and that the proportionality constant κ is a function of the tangential force, and 
with it, the static displacement Ustat from Eq.  (6.20). Linear regression analysis 
allows for the function to be approximated, for which the following expression for 
the displacement per period can be obtained [6, 7]:

In order to determine the corresponding three-dimensional displacement, it must 
be remembered that the rule of (6.17) must be considered due to the proportional-
ity to creepage:

(6.31)Ulim = µ
(2 − ν)

2(1 − ν)

(

d −

W
2
lim

R

)

.

(6.32)Flim = µFN − µ
4

3

2G

1 − ν
dWlim = Fmax − �Fx.

(6.33)�UT1 = �UT1(Fx, W).

(6.34)�UT1 = κ · (W − Wlim)

(6.35)�UT1 =

√

µ
(2 − ν)

(1 − ν)

Ustat

R
(W − Wlim).

(6.36)�UT =

(4 − 3ν)

4(2 − ν)
�UT1 =

(4 − 3ν)

4(2 − ν)

√

µ
(2 − ν)

(1 − ν)

Ustat

R
(W − Wlim).
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The induced creep stops immediately after the end of the rolling motion. The 
effect explains not only why frictionally engaged contacts fail under the influ-
ence of vibrations, but also allows for the generation and control of the smallest 
movements.

6.4  Problems

Problem 1  Determine the minimum vibration amplitude required to free a fric-
tionally engaged joint for a loading FN = 1 kN and Fx = 180 N. The connection 
should be modeled as a Hertzian contact between a rigid substrate and an elastic 
steel sphere (ν = 0.3, E = 210 GPa, µ = 0.3, and R = 10 cm).

Solution  Using (6.10), we obtain the following for the Hertzian contact: 
d = 4.73 µm and a = 0.69 mm. Solving Eq.  (6.32) with Flim = 180 N results in 
the maximum amplitude before failure

With Eq. (6.31), the maximum displacement before failure can also be found:

Alternatively, the maximum amplitude and maximum displacement can be simply 
obtained from the diagram in Fig. 6.5 with the relationship Fx/µFN ≈ 0.6:

and

Problem  2  Determine the displacement and maximum loading for the friction-
ally engaged connection described in Problem 1 at an oscillation amplitude of 
W = 0.14 mm.

Solution  Numerically solving Eq. (6.30) provides the displacement:

We obtain the maximum loading from Eq. (6.32) with Wlim = 0.14 mm:

(6.37)Flim = µFN − µ
4

3

2G

1 − ν
dWlim ⇒ Wlim = 0.28 mm.

(6.38)Ulim = µ
(2 − ν)

2(1 − ν)

(

d −

W
2
lim

R

)

= 1.45 µm.

(6.39)Wlim/a ≈ 0.4 ⇒ Wlim ≈ 0.28 mm

(6.40)ulim = Ulim/(µd(2 − ν)/2(1 − ν)) ≈ 0.85 ⇒ Ulim ≈ 1.46 µm.

(6.41)

Fx = µFN

(

1 −

(

1 −

2(1 − ν)

µ(2 − ν)

U

d

)3/2
)

−

16

3

G

2 − ν
UW ⇒ U = 0.98 µm.

(6.42)Flim = µFN − µ
4

3

2G

1 − ν
dWlim = 238 N.
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Alternatively, with the values of Fx/µFN ≈ 0.6 and W/a ≈ 0.2 from the diagram 
in Fig. 6.5, we obtain

Likewise, the maximum loading can simply be taken from the diagram. For the 
amplitude of W/a ≈ 0.2, we obtain the following from the dotted line:

Problem 3  A micro-actuated drive is realized as an oscillating rolling contact 
(ν = 0.3, E = 400 GPa, µ = 0.1, and R = 10 mm) with a frequency of 100 Hz. 
Determine the necessary oscillation amplitude to produce a speed of v = 0.3 µm/s 
for a loading of FN = 1 N and Fx = 0.05 N.

Solution  For the Hertzian contact, we obtain d = 66.3 nm and a = 25.74 µm

using Eq. (6.10). The static displacement is given by Eq. (6.20):

By solving Eq. (6.32) with Flim = 0.05 N, we obtain the maximum amplitude

The necessary speed at 100 Hz leads to a displacement per period of �UT:

Rearranging Eq. (6.36) and inserting the necessary values results in the amplitude 
in question
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7.1 � Introduction

Rubber and other elastomers play a large role in many tribological applications. 
They are used where large frictional forces or large deformations are needed. 
These materials are especially used for tires, transportation rollers, shoes, seals, 
rubber bands, in electronic devices (e.g., contacts for keyboards) as well as appli-
cations for adhesion. When compared to purely elastic contacts, the calculation 
of elastomer contacts is made more difficult by the fact that they exhibit a time-
dependent behavior, which is also normally characterized by a large spectrum of 
relaxation times. The correct mechanical description must, therefore, take several 
orders of magnitude in characteristic times into account. The multi-scalar proper-
ties of the surface roughness are supplemented here by the multi-scalar character 
of the relaxation of the material, which makes the numerical simulation of elasto-
mers especially complicated. It is, therefore, important to develop fast simulation 
methods for the calculation of contact and frictional properties for this class of 
materials. In this chapter, we will show how the method of dimensionality reduc-
tion can be generalized to contacts of elastomers with arbitrary linear rheology.

In the first section, we remind the reader of the fundamental definitions that are 
necessary for the description of elastomers, for which we follow the presentation 
of [1]. The general process is then explained using the very simple special case of 
a linearly viscous material for the purposes of understanding. Only afterwards, we 
will continue to the treatment of general viscoelastic materials. The detailed deri-
vations can be found in Chap. 19.

Chapter 7
Contacts with Elastomers
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7.2 � Stress Relaxation in Elastomers

We consider a rubber block, which is loaded under shear stress (Fig.  7.1). The 
shear angle is denoted by ε.1 If the block is deformed quickly by the shear angle of 
ε0, then the stress increases initially to a high level σ(0) and then relaxes slowly to 
a much lower level of σ(∞) (Fig. 7.2b). For elastomers, σ(∞) can be three to four 
orders of magnitude smaller than σ(0). The ratio

is denoted as the time-dependent shear modulus. It is easy to see that this func-
tion completely describes the mechanical properties of a material, provided that 
the material behaves linearly. Let us assume that the block is deformed accord-
ing to an arbitrary function in time ε(t). An arbitrary dependence ε(t) can always 
be presented as the sum of temporally shifted step functions, as shown schemati-
cally in Fig.  7.3. An elementary step function in this presentation at the time t′ 
has the amplitude dε(t′) = ε̇(t′)dt′. The corresponding stress component is 
dσ = G(t − t′)ε̇(t′)dt′, and the total stress at every point in time is, therefore, 
calculated as

Equation  (7.2) shows that the time-dependent shear modulus can be understood 
as a weighted function with deformation changes in the past leading to current 
changes in the stress. Due to this, G(t) is sometimes called the memory function.

If ε(t) changes harmonically:

then a periodic change in the stress with the same frequency is reached after a 
transient period. The relationship between the changes in deformation and stress 
can be very easily presented if the real function cos(ωt) is presented as the sum of 
two complex exponential functions:

Due to the superposition principle, one can first calculate the stresses that are 
caused by the complex oscillations

1  Let it be stressed that the defined value ε is equal to two times the shear component of the 
deformation tensor.

(7.1)G(t) =

σ(t)

ε0

(7.2)σ(t) =

t
∫

−∞

G(t − t′)ε̇(t′)dt′.

(7.3)ε(t) = ε̃ cos(ωt),

(7.4)cos(ωt) =

1

2

(

eiωt
+ e−iωt

)

.

(7.5)ε(t) = ε̃eiωt and ε(t) = ε̃e−iωt .
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Subsequently, these may be summed. If we insert ε(t) = ε̃eiωt into (7.2), then we 
obtain a stress of

By substituting ξ = t − t′, we bring the integral into the following form:

(7.6)σ(t) =

t
∫

−∞

G(t − t′)iωε̃eiωt′dt′.

(7.7)σ(t) = iωε̃eiωt

∞
∫

0

G(ξ)e−iωξ dξ

Fig. 7.1   Shear deformation of a rubber block. ε0 is the shear angle

t t

(a) (b)

Fig. 7.2   If a rubber block is quickly deformed at time t = 0 by ε0, then the stress increases ini-
tially to a high level and then relaxes with time to a much lower stress

Fig. 7.3   Presentation of a 
time-dependent function as 
a superposition of multiple 
temporally displaced step 
functions

t

t

7.2  Stress Relaxation in Elastomers
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or

For a harmonic excitation in the form of a complex exponential function eiωt, the 
stress is proportional to the deformation. The proportionality coefficient

is generally a complex value and is called the complex shear modulus. Its real 
component G

′(ω) = Re ˆG(ω) is called the storage modulus, and its imaginary 
component G′′(ω) = Im ˆG(ω) is called the loss modulus. Further details as to the 
definition and measurement methods of the time-dependent shear modulus and the 
complex shear modulus can be found in the book [1].

7.3 � Application of the Method of Dimensionality Reduction 
in Viscoelastic Media: The Basic Idea

If the indentation or slip speed for the dynamic loading of an elastomer is lower than 
the lowest speed of sound (which is related to the smallest relevant modulus of elastic-
ity), then the contact can be considered to be quasi-static. If this condition is met and 
an area of the elastomer is excited with an angular frequency of ω, then the material 
exhibits a linear relationship between stress and deformation, and therefore, between 
force and displacement. Thereby, the medium can be considered to be an elastic body 
with the effective shear modulus of G(ω). All theorems that are valid for elastic bodies 
must also be valid for harmonically excited viscoelastic media. More importantly, the 
incremental stiffness is proportional to the diameter of the contact area, which forms 
the mathematical basis for the applicability of the method of dimensionality reduction. 
Because of this, an elastomer can be mapped to a one-dimensional system, for which 
the individual springs can be chosen according to (3.5):

The only difference to the elastic contact is the fact that the effective modulus of 
elasticity is now a function of frequency. Elastomers can be often considered to be 
incompressible media. In this case, ν = 1/2 and

In the case of rubber, the stiffness of the individual “springs” of the linearly elastic 
foundation is equal to four-fold the shear modulus multiplied by the discretiza-
tion step size. In the one-dimensional equivalent system, we obtain the following 
spring force for a harmonic excitation:

(7.8)σ(t) =
ˆG(ω)ε̃eiωt

=
ˆG(ω)ε(t).

(7.9)ˆG(ω) = iω

∞
∫

0

G(ξ)e−iωξ dξ

(7.10)�kz = E∗�x.

(7.11)�kz = E∗(ω)�x =

E(ω)

1 − ν2
�x =

2G(ω)

1 − ν
�x ≈ 4G(ω)�x.

(7.12)fN (x, ω) = E∗(ω)�x · uz(x, ω) ≈ 4G(ω)�x · uz(x, ω).

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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The reverse transformation into the time domain results in the force law

In the next section, we will explain this general, but somewhat formally described, 
idea by using the simplest example of the linearly viscous medium. We discuss 
how the viscoelastic contact problem can be reduced to the elastic contact problem 
and, subsequently, how this can be mapped to a one-dimensional system.

7.4 � Radok’s Method of the Functional Equations

In 1955, Lee [2] published a method for solving viscoelastic contact problems by 
reducing them to elastic problems. This procedure is advantageous because con-
tacts between elastic bodies are comparatively simpler to solve and the solution to 
many problems can already be found in many textbooks. The procedure was later 
generalized by Radok [3] and entered the literature as the principle of the func-
tional equations.

The basic idea of the method is conceivably simple. Beginning with a given 
viscoelastic problem, the material properties are replaced by those of an elas-
tic body. However, all other influences, such as geometric configuration, remain 
unchanged. Subsequently, the elastic problem is solved. One obtains the solution 
to the viscoelastic problem by once again replacing the elastic properties in the 
elastic solution by the viscoelastic properties. This substitution takes place in the 
Laplace domain and takes the most effort. The entire algorithm is presented sche-
matically in Fig. 7.4.

We will explain the procedure by using a concrete example. Let us consider a 
linearly viscous, incompressible body with the viscosity η, which is also large 

(7.13)fN (x, t) = 4�x

t
∫

−∞

G(t − t′)u̇z(x, t′)dt′.

Viscoelastic
contact problem

Replacing the
material
properties

Solution of the
viscoelastic
problem

Laplace - domain

?

Replacing the
material
properties

Solution of the
elastic problem

comparable
elastic problem

Fig. 7.4   Principle of the functional equations (schematic presentation)

7.3  Application of the Method of Dimensionality …
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enough that the half-space approximation is valid. The body is loaded on the sur-
face by a constant point-loaded normal force. How will the surface of the body be 
deformed? The comparable elastic problem is simply the loading of a linearly 
elastic, incompressible half-space by a constant normal force. The solution to the 
problem can be found in many textbooks on elasticity theory or contact mechanics 
(e.g., [4] or [1]). If G is the shear modulus, FN is the normal force, and r is the dis-
tance to the point of force application, then the normal displacement of the surface 
can be given by the expression2

This equation is the solution to the comparable elastic problem. The solution now 
undergoes a Laplace transformation. For the description of the viscoelastic prob-
lem, contrary to elastic problems, it is necessary to specify the history of the nor-
mal force. We assume that the force begins loading at the time t = 0 and is then 
constant with the magnitude FN:

where

is the Heaviside function. The application of the Laplace transformation, the 
replacement of the material properties, and the reverse transformation are carried 
out in Chap. 19. We obtain the following surface deformation as the solution to the 
viscous contact problem:

If one differentiates (7.17) with respect to time, the velocity is obtained with 
which the surface is deformed in response to the external force:

If we consider (7.18) as a solution and compare this with that of the elastic prob-
lem, then it is easy to recognize how the two equations are related. Apparently, 
the elastic solution (7.14) switches to the viscous solution (7.18) when the shear 
modulus G is replaced by the shear viscosity η and the deformation u, by the defor-
mation velocity u̇. We would like to stress that the transition to this form is only 
valid for linearly viscous materials using the force law (7.15). Figure 7.5 presents 
this process schematically.

2  Let us once again remember that we are dealing with an incompressible, viscous medium; 
therefore, the corresponding elastic medium is also incompressible and it is assumed that 
ν = 1/2.

(7.14)u(r) =

FN

4πGr
.

(7.15)F(t) = FN H(t),

(7.16)H(t) =

{

1, t > 0

0, t < 0

(7.17)u(r, t) =

FN t

4πηr
.

(7.18)u̇(r) =

FN

4πηr
.

http://dx.doi.org/10.1007/978-3-642-53876-6_19
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One could also derive Eq.  (7.18) without the Laplace transformation directly 
from the following analogy. The deformation of the surface of an elastic body is 
uniquely determined due to the equilibrium equation

as well as the stress distribution on the surface. In this equation, the first Lamé 
coefficient is � = 2νG/(1 − 2ν) [4]. The corresponding “equilibrium equation” 
for the creeping flow of a linearly viscous fluid (Navier-Stokes equation without 
the inertial term) is [5]

By integrating this equation once with respect to time and assuming that the 
medium is in a non-deformed state at time t = 0, we obtain

With the exception of the constants, this equation corresponds identically with 
Eq. (7.19) for an elastic continuum. If a displacement now occurs in a particular 
contact area, then the displacement fields in the elastic and viscous case will be 
identical.3 This implication is exact and is not only valid for a linearly viscous 
fluid, but also for a medium with an arbitrary linear rheology. It was Lee and 
Radok that first came to this conclusion and based upon this, developed the study 
of contact mechanics of viscoelastic media [2].

(7.19)G��u + (� + G)∇(∇ · �u) = 0

(7.20)η�˙
�u + (ξ + η)∇(∇ ·

˙
�u) = 0.

(7.21)η��u + (ξ + η)∇(∇ · �u) = 0.

3  We stress, thereby, that we use the “non-penetration” boundary conditions and gravitation and 
capillary effects are completely neglected.

viscous contact
problem

viscous half-space

elastic half-space

Replacing the
material
properties

r

F

r
F

viscous solution

elastic solution

u (r) =
FN

4

r
u (r) =

FN

4 G

r ?

comparable
elastic problem

Replacing the
material
properties

Fig.  7.5   Solution of the viscous contact problem with Radok’s principle of the functional 
equations

7.4  Radok’s Method of the Functional Equations
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If we are additionally looking for the relationship between the forces and dis-
placements, then we must take into account the fact that the stress in an elastic 
continuum is a linear function of the gradient of the displacement field �u, while 
in a fluid, it is a linear function of the gradient of the velocity field ˙�u. The fact that 
the equilibrium equations and the expressions for stress have the same form means 
that all relations that are valid for the relationship between force and displacement 
for a given stress distribution in the case of an elastic body are also valid for force 
and velocity in the case of a fluid. From this, it directly follows that the solution 
(7.18) for the velocity field in a fluid is obtained from the solution (7.14) for the 
displacement in an elastic continuum by replacing u → u̇ and G → η.

7.5 � Formulation of the Reduction Method for Linearly 
Viscous Elastomers

In this section, the results thus far will be used to demonstrate the application of 
the reduction method on elastomers. As in the previous section, the procedure will 
be first shown using a concrete example, the indentation of a rigid indenter into a 
linearly viscous incompressible half-space. The comparable elastic problem was 
closely examined in the previous chapter using the reduction method for an elas-
tic half-space. The elastic half-space is mapped to a chain of independent linear 
spring elements, whose stiffness is

where incompressibility has already been taken into account. The corresponding 
force law for the ith element of the linearly elastic foundation is

This equation can be seen as the solution of the comparable elastic problem. It 
must now be transferred to the viscous solution by replacing the material proper-
ties. The detour by way of the Laplace transformation is not necessary here. We 
can, as in the previous section, simply conduct the substitution u → u̇, G → η in 
Eq. (7.23) and obtain the solution

Obviously, this describes the force law of a linear damper with a damping coef-
ficient of

The geometry of the indenter must be scaled as in the elastic case [6].
With this, the following may be summarized. The formulation of the reduction 

method for a linearly viscous material is obtained from that of the elastic mate-
rial by replacing the springs by dampers with a damping coefficient of �dz. In 
Fig. 7.6, the procedure is schematically presented.

(7.22)�kz = 4G�x,

(7.23)fN ,i = 4G�x · uz,i.

(7.24)fN ,i = 4η�x · u̇z,i.

(7.25)�dz = 4η�x.
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Transferring this to a real viscoelastic material model (i.e., with viscous and 
elastic components) is done completely analogously and will be shortly explained 
in the next section and in detail in Chap. 19. In this case, the springs in the elas-
tic formulation are replaced by spring–damper combinations, whose mathematical 
description can be obtained by replacing the material parameters in the Laplace 
domain.

7.6 � The General Viscoelastic Material Law

In the previous sections, we have referred to the very simple special case of a lin-
early viscous material. The reason for this is the simplicity of the procedure and 
the clarity of the results. In this section, we show the results for the general case of 
an isotropic viscoelastic material. The exact derivations can be found in Chap. 19. 
The behavior of elastomers can be described by the relationships between defor-
mation and stress with respect to compression

and shear

(7.26)σii(t) =

t
∫

0

K(t − t′)ε̇ii(t
′)dt′

(7.27)sik(t) = 2

t
∫

0

G(t − t′)ėik(t
′)dt′,

Fig. 7.6   Formulation 
of the reduction method 
for a linearly viscous 
incompressible material Reduction

method

F

viscous

F Radok

Reduction

method
elastic

7.5  Formulation of the Reduction Method for Linearly Viscous Elastomers

http://dx.doi.org/10.1007/978-3-642-53876-6_19
http://dx.doi.org/10.1007/978-3-642-53876-6_19
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whereby we have denoted the shear component of the stress tensor with eik, in 
order to differentiate it from the previously introduced shear angle ε. The functions 
K(t) and G(t) are the corresponding relaxation functions. In Chap. 19, it will be 
shown how contacts with materials having this behavior can be solved using the 
reduction method. The springs in the linearly elastic foundation are replaced with 
elements having the characteristic

for which L−1 is the inverse Laplace transformation.4 If the problem is limited to 
incompressible viscoelastic media (the compression modulus K is set to infinity), 
then the expression simplifies to

which agrees with Eq. (7.13).

7.7 � Problems

Problem 1  The face (radius a) of a rigid, smooth cylindrical indenter is pressed 
into a linearly viscous half-space (viscosity η) with a constant force FN (Fig. 7.7). 
Determine the indentation velocity and the indentation depth δ as a function of 
time with the help of the reduction method.

Solution  The equivalent one-dimensional indenter is a rectangle with a width of 
2a pressed into a chain of independent dampers. The distance between the damp-
ers is �x and the damping coefficient is �dz = 4η�x. The external force is evenly 
distributed over the dampers so that every damper experiences a force of

With this, all dampers are compressed with the velocity

The indentation depth is obtained by integrating with respect to time and is equal to

(7.28)

fN (t) = 4�x

t
∫

0

V(t − t′)u̇z(t
′)dt′, V(t) := L

−1

{

G∗(s)(K∗(s) + G∗(s))

K∗(s) + 4G∗(s)

}

,

4  The details of the notation are explained in detail in Chap.19.

(7.29)fN (t) = 4�x

t
∫

0

G(t − t′)u̇z(t
′)dt′,

(7.30)f =

�x

2a
FN .

(7.31)˙δ =

f

�dz

=

FN

8aη
.

http://dx.doi.org/10.1007/978-3-642-53876-6_19
http://dx.doi.org/10.1007/978-3-642-53876-6_19
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Equation (7.31) can be obtained directly from the comparable elastic problem

if the indentation depth and shear modulus are replaced by the velocity and shear 
viscosity in the result for the comparable elastic problem [1] (compare Chap. 17, 
Eq. 17.28):

It is easy to see that the equation is valid for an arbitrary-axially symmetric indenter 
as well a is considered to be the instantaneous value for the contact radius:

Problem 2  A rigid cone is pressed into a linearly viscous half-space (viscosity η) 
with a constant force FN (Fig. 7.8). Determine the indentation depth as a function 
of time with the help of the reduction method.

Solution  The surface of the cone can be described by the equation

The equivalent one-dimensional system (as described in Sect. 3.2) is

(7.32)δ(t) =

FN t

8aη
.

(7.33)FN = 8Gaδ

(7.34)FN = 8ηa ˙δ.

(7.35)FN (t) = 8ηa(t) ˙δ(t).

(7.36)f (r) = tan θ · |r|.

(7.37)g(x) =

π

2
tan θ · |x|.

Fig. 7.7   Indentation of a 
cylindrical indenter into a 
viscous half-space

a

Fig. 7.8   Indentation of a 
cone into a viscous half-space

7.7  Problems

http://dx.doi.org/10.1007/978-3-642-53876-6_17
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If the indenter is pressed to a depth of δ, then the vertical displacement of the foun-
dation at point x is given by uz(x) = δ − (π/2) tan θ · |x|. The contact radius is cal-
culated by requiring that uz(a) = 0, resulting in

Equation (7.35) is also valid in this case. By inserting (7.38) into this equation, we 
obtain

Separating the variables and integrating with the initial condition δ(0) = 0 results 
in

The indentation depth as a function of time is then described by the equation

Problem 3  A rigid axially-symmetric paraboloid is pressed into a half-space (vis-
cosity η) with a constant force FN (Fig. 7.9). Determine the indentation speed and 
indentation depth with the help of the reduction method.

Solution  The surface of the paraboloid is described by the equation

The one-dimensional indenter is a parabola that (according to Sect. 3.2) is scaled 
by a factor of 2:

If the indenter is now pressed to a depth of δ, then the contact radius is

(7.38)a =

2

π

δ

tan θ
.

(7.39)FN =

16η

π tan θ
δ ˙δ.

(7.40)FN t =

8η

π tan θ
δ2.

(7.41)δ(t) =

√

π tan θ

8

FN

η
t.

(7.42)f (r) =

r2

2R
.

(7.43)g(x) =

x2

R
.

(7.44)a =

√

Rδ.

Fig. 7.9   Indentation of an 
axially-symmetric paraboloid 
into a viscous half-space

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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In this case, the force is also found using Eq.  (7.35). Inserting (7.44) into (7.35) 
results in

Integration with the initial condition δ(0) = 0 results in

The indentation depth as a function of time is then

Differentiating with respect to time results in the indentation speed as a function of 
time:

This result is the exact solution to the corresponding three-dimensional problem 
and is also able to be derived without using the reduction method [7].

Problem 4  A rigid conical indenter is pressed into a viscoelastic (Kelvin body 
with the shear modulus G and the viscosity η) half-space with a constant force FN. 
Find the dependence of the indentation depth on time.

Solution  The equivalent one-dimensional indenter is given by Eq. (7.37) and the 
contact radius by Eq.  (7.38) (it is not dependent on the rheological properties of 
the medium). To determine the force, we must now use the superposition of the 
elastic component (Eq. 3.44)

and the viscous component (Eq. 7.39):

This equation can be written in the form

where τ = η/G is the relaxation time of the medium. Integration with the initial 
condition δ(0) = 0 results in

(7.45)FN = 8ηR1/2δ1/2
˙δ.

(7.46)FN t =

16

3
ηR1/2δ3/2.

(7.47)δ =

(

3FN t

16ηR1/2

)2/3

.

(7.48)˙δ =

2

3

(

3FN

16ηR1/2

)2/3

t−1/3.

(7.49)FN ,el =

8G

π

δ2

tan θ

(7.50)FN =

8G

π

δ2

tan θ
+

16η

π tan θ
δ ˙δ.

(7.51)
π tan θ · FN

8G
= δ2

+ 2τδ ˙δ = δ2
+ τ

d
(

δ2
)

dt
,

(7.52)δ2(t) =

π tan θ · FN

8G

(

1 − e−t/τ
)

.

7.7  Problems

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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Problem 5  A rigid cylindrical indenter is pressed into an elastomer, which is 
described by the “standard model” [1] (Fig.  7.10). Find the dependence of the 
indentation depth on time.

Solution  The standard model for an elastomer is shown in Fig.  7.10. It consists 
of a Maxwell element (a stiffness G2 and damper η in series) and a stiffness G1 
attached in parallel.

The one-dimensional opposing side is a foundation of elements with a sepa-
ration distance of �x, the individual components of which can be characterized 
by the parameters 4G1�x, 4G2�x, and 4η�x. The equivalent one-dimensional 
indenter is a rectangle with the width 2a. The normal force is

where u1 satisfies the following equation:

and τ = η/G2. Solving the equation with the initial conditions uz(0) = 0 and 
u1(0) = 0 results in

In the special case of G2 ≫ G1, we obtain the result for the Kelvin body:

References

1.	V.L. Popov, Kontaktmechanik und Reibung, 2nd edn. (Springer, Berlin, 2010)
2.	E.H. Lee, Quart. Appl. Math. 13(183), 1 (1955)
3.	J.R.M. Radok, Quart. Appl. Math. 15, 198 (1957)
4.	L.D. Landau, E.M. Lifschitz, Lehrbuch der Theoretischen Physik, Band VII Elastizitätstheorie, 

1st edn. (Akademie, Berlin, 1965)

(7.53)FN = 8G1auz + 8G2a(uz − u1),

(7.54)uz = u1 + τ u̇1

(7.55)u1(t) =

FN

8G1a

(

1 − exp

(

−

G1t

τ(G1 + G2)

))

,

(7.56)uz(t) =

FN

8G1a

(

1 −

G2

G1 + G2

exp

(

−

G1t

τ(G1 + G2)

))

.

(7.57)uz(t) =

FN

8G1a

(

1 − exp

(

−

G1t

η

))

.

Fig. 7.10   Standard model 
for an elastomer consisting 
of a spring and a parallely 
attached Maxwell element 21G G



113

5.	L.D. Landau, E.M.Lifschitz, Lehrbuch der Theoretischen Physik, Band 6: Hydrodynamik, 
Akademie-Verlag, Berlin, 5. Auflage, 1991

6.	S. Kürschner, A.E. Filippov, Phys. Mesomech. 15, 270–274 (2012)
7.	S. Kürschner, V.L. Popov, A.E. Filippov, in 53. Tribologie-Fachtagung (Gesellschaft für 

Tribologie e.V., Göttingen, 2012), pp. 3/1–3/11

References



115

8.1 � Thermal Conductivity and Resistance

Thermal conductivity is a decisive parameter for the sizing of heat sinks for semi-
conductors or for other elements in electronic circuits. It is defined as

where Q is the heat flux through the element and δT  is the difference in tempera-
ture between both ends. Alternately, the thermal resistance RW is used, which is 
simply the inverse of the thermal conductivity:

The heat flux density �q in an isotropic continuum is proportional to the temperature 
gradient:

where � is the specific thermal conductivity.
The change in temperature in a homogenous medium is described by the heat 

equation

in which ρ is the density and c is the specific heat capacity of the medium. Using 
the thermal diffusivity α = �/ρc, Eq. (8.4) can also be written in the form

(8.1)�W =

Q

δT
,

(8.2)RW =

1

�W

=

δT

Q
.

(8.3)�q = −�∇T ,

(8.4)ρc
∂T

∂t
= −div �q = ��T ,

(8.5)
∂T

∂t
= α�T .
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In the steady-state case, the temperature distribution must satisfy the Laplace 
equation

the solution of which is the next topic of discussion for various boundary condi-
tions. The results will directly show that also heat conductivity problems can be 
exactly solved within the framework of the method of dimensionality reduction. 
The mappability is not only limited to the thermal conductivity or resistance, but 
rather includes also local parameters, such as the temperature distribution on the 
surface.

8.2 � Temperature Distribution for a Point Heat Source  
on a Conductive Half-Space

We consider a point heat source Q on an isotropic half-space, as shown in Fig. 8.1. 
With the exception of the location of the point source, let the entire surface be ide-
ally insolated (adiabatic) and at an infinite distance, the temperature T0 is reached. 
With these thermal boundary conditions, the solution to the steady-state conduc-
tion problem (see, for example [1]) is

On the surface of the half-space (z = 0), the resulting temperature distribution is

A relationship equivalent to (8.8) appears also in the elastic problem, which was 
shown by Francis [2], among others. The normal surface displacement of an elas-
tic half-space caused by a normal force at the origin is [3]

(8.6)�T = 0,

(8.7)δT(R) := T(R) − T0 =

Q

2π�R
with R :=

√

x2
+ y2

+ z2.

(8.8)δT(r) := T(r) − T0 =

Q

2π�r
with r :=

√

x2
+ y2.

(8.9)ūz(r) =

1 − ν2

πE

FN

r
.

Fig. 8.1   Point heat source Q 
on a homogeneous half-space 
with the thermal diffusivity α
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Following this analogy and the interpretation of (8.8) and (8.9) as Green’s func-
tions of the corresponding problem, arbitrary heat flux density distributions q(x, y) 
on the surface of the half-space present no difficulties. In place of the explicit cal-
culation of the integral

we can call on the solution of the (equivalent) elastic problem and transfer this 
directly to the heat transfer problem. For this, we need only undertake the follow-
ing reassignments:

where q(x, y) is the component of the heat flux density that is normal to the sur-
face. Figure 8.2 shows an example of a constant heat flux density (isoflux) on a 
circular area with the radius a. Determining the corresponding temperature distri-
bution on the surface is the goal of Problem 5.

Let it be mentioned that the equivalence is limited to the surface and is not 
valid for the field within the media. This does not, however, affect the heat flux Q 
through the surface, which is calculated by integrating the heat flux density over 
the surface:

In the elastic problem, this is the role of the normal force, which is similarly 
defined as the integral of the normal stress.

It is known from Chap. 3 that every axially-symmetric elastic contact problem 
can be mapped exactly to a one-dimensional model. Due to the existing equiva-
lence between the heat transfer and the elastic contact, characterized by the reas-
signments in (8.11), the dimensionality reduction must also be valid for these 
problems.

(8.10)δT(x, y) =

1

2π�

∫∫

A

q(x̃, ỹ)
√

(x − x̃)2
+ (y − ỹ)2

dx̃ dỹ,

(8.11)p(x, y) �→ q(x, y), ūz(x, y) �→ δT(x, y), and E/

(

1 − ν2
)

�→ 2�,

(8.12)Q :=

∫

A

q(x, y)dA.

Fig. 8.2   Constant heat flux density from a circular area of radius a into the half-space; cross-
sectional view in the x–z plane (left), top view (right)

8.2  Temperature Distribution for a Point Heat Source...

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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8.3 � The Universal Dependence of Thermal Conductivity 
and Contact Stiffness

If two half-spaces are in an ideal thermal contact by means of a circular area with 
the radius a and the temperature difference between the two is δT  at an infinite dis-
tance, then the entire steady-state heat flux through the contact area is

and the conductivity of the contact is [1] 

Here, �1 and �2 denote the specific thermal conductivity of the two half-spaces 
and we can summarize �∗ as a type of effective specific thermal conductivity. 
Comparing this to the contact stiffness of a circular contact with the radius a,

shows that there exists the following relationship between the thermal conductivity 
and contact stiffness:

Both properties are proportional to the characteristic length of the contact. Interestingly, 
the validity of Eq. (8.16) goes much beyond the circular contact. It is, likewise, valid for 
individual contacts with arbitrarily formed isothermal contact areas and even remains 
unchanged for the contact between rough surfaces (Sevostianov and Kachanov [4],  
Barber [5]). This universal relation has a very important meaning, because with its help, 
one must not investigate both the thermal and elastic behavior of a contact separately. 
Contact stiffness and thermal conductivity are connected in a simple way.

It is generally known that thermal conduction and electrical conduction are 
equivalent problems. If a constant electric potential difference U is applied at a 
sufficiently large separation distance over the contact between two half-spaces, 
then a steady-state electric current flows through the contact area. If we once again 
assume a circular ideal contact (without impurities), then the entire current must 
flow through this constriction, which is characterized by the so-called constriction 
resistance RE and can be interpreted as the contact resistance. The entire electrical 
current  I through the equipotential contact area is

and the corresponding constriction resistance is

(8.13)Q = 4a�
∗δT

(8.14)�W :=

Q

δT
= 4a�

∗ with
1

�∗

=

1

�1

+

1

�2

.

(8.15)kz :=

dFN

dδ
= 2aE∗,

(8.16)�W =

2�
∗

E∗

kz.

(8.17)I =

4a

ρ1 + ρ2

U

(8.18)RE :=

U

I
=

ρ1 + ρ2

4a
,
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where ρ1 and ρ2 are the specific resistances of the two bodies. If instead of the 
resistances in Eq. (8.18), we use the inverse of the (specific) electrical conductivi-
ties, this leads to the electrical contact conductivity

Completely identically to the thermal contact, the electrical conductivity is pro-
portional to the contact length. Except for the form factor, the proportionality is 
also valid for contact areas of other forms as well as multiple micro-contacts suf-
ficiently far from one another. For the latter, the contact length is the sum of the 
characteristic diameters for the so-called a-spots  [6].

Of course, the conductivity for arbitrary contacts can also be determined from 
the incremental contact stiffness, because Eq.  (8.16) remains absolutely valid 
when replacing the thermal properties by the analogous electrical properties.

8.4 � The Implementation of the Steady-State Current Flow 
Within the Framework of the Reduction Method

The contact stiffness of arbitrary axially-symmetric bodies and rough contact is 
correctly mapped using the method of dimensionality reduction. A simple way for 
calculating the thermal and electrical conductivity of a (rough) contact consists of 
first determining the contact stiffness using the method of dimensionality reduc-
tion and subsequently calculating the conductivity using Eq. (8.16). Alternatively, 
we can look at every element of the linearly elastic foundation as having a (spe-
cific) conductivity of

The latter is imperative, when mapping contacts with arbitrary thermal or electri-
cal boundary conditions.1 Due to the analogy with the elastic problem in the form 
of the reassignments in Eq. (8.11), both the global relations and the local parame-
ters on the surface can be correctly mapped. According to Eq. (8.11), the thermal 
flow density q(r) takes over the role of the normal stress σzz and temperature, the 
role of the normal surface displacement.

As an example, we want to investigate the thermal contact between two half-
spaces. At an infinite distance, there exists a temperature difference of δT . The 
non-contacting surface is adiabatic and the contact area has a radius of a. We 
would like to determine the heat flux Q, the thermal resistance RW , and the distri-
bution of the heat flux density q within the contact area. In the three-dimensional 

(8.19)�E :=

I

δV
= 4a�

∗

E with
1

�
∗

E

=

1

�E1

+

1

�E2

.

(8.20)∆Λ = 2�
∗

· �x.

1  In the following, we constrict ourselves to the mapping of thermal contacts, because these can 
be directly transferred to electrical contacts.

8.3  The Universal Dependence of Thermal Conductivity and Contact Stiffness
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problem, there is a so-called isothermal contact area. This means that every point 
on the contact area has the same temperature. The equivalent elastic problem is 
the indentation of a flat cylinder, the equivalent profile of which remains the same. 
This leads to the fact that the temperature in all of the elements of the foundation 
is the same and also that the heat flux through every element �Q is independent of 
the coordinate:

The flux density  j (per unit length in the one-dimensional system) is equal to

and the entire flux is found by integration of the one-dimensional flux density over 
the contact area:

which corresponds to the three-dimensional result (8.13). The same is true for the 
thermal resistance

Analogously to the elastic contact, we can calculate the three-dimensional heat 
flux density q(r) by using the Abel transformation (3.37) of the one-dimensional 
flux density j(x):

In the present case of a constant, one-dimensional flux density according to (8.22), 
the integral on the right-hand side of (8.25) disappears so that only the three-
dimensional flux density remains:

Also this result corresponds exactly to the three-dimensional distribution. In the 
thermal contact considered, we assume an isothermal contact surface. In the case 
of an axially-symmetric, spatial temperature distribution, we must transfer the 
three-dimensional to a one-dimensional temperature distribution. The respective 
transformation takes place in the familiar way (3.27):

(8.21)�Q(x) = ∆Λ · δT(x) = 2�
∗

· �x · δT .

(8.22)j(x) =

�Q(x)

�x
= 2�

∗

· δT

(8.23)Q :=

a
∫

−a

j(x)dx = 2

a
∫

0

2�
∗δT dx = 4a�

∗δT ,

(8.24)RW :=

δT

Q
=

1

4a�∗

.

(8.25)q(r) := −

1

π

1

r

d

dr

a
∫

r

x · j(x)
√

x2
− r2

dx = −

1

π

a
∫

r

j′(x)
√

x2
− r2

dx +

1

π

j(a)
√

a2
− r2

.

(8.26)q(r) =

1

π

2�
∗δT

√

a2
− r2

.

(8.27)
δT1D(x) = δT3D(0) + |x|

|x|
∫

0

δT ′

3D(r)
√

x2
− r2

dr.

http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_3
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The constant term on the right-hand side disappeared in the equivalent elastic 
problem by choosing the appropriate coordinates,2 the second term expresses the 
same relationship as that in Eq. (3.27). As it will be seen in the next section, the 
inverse question is also interesting: How can we determine the three-dimensional 
temperature distribution from the one-dimensional distribution? Referring to [7], 
the inverse transformation is

In the mentioned literature, the transformation is given as well as the physical 
interpretation that allows for the calculation of the one-dimensional flux density 
distribution from the three-dimensional distribution:

We would like to clarify its application using a simple example. In this example, 
we assume that a stable constant thermal flux density is given on the surface of the 
half-space within a circle of radius a (see Fig. 8.2) of

and the rest of the surface is adiabatic. We want to find the one-dimensional flux 
density and the one-dimensional and three-dimensional temperature distribution. 
When taking Eq. (8.30) into account, Eq. (8.29) provides the one-dimensional flux 
density

which of course leads to the entire flux of the original contact after integrating 
over the contact length:

In the one-dimensional model, the temperature of the element is proportional to 
the flux density at that point (Eq. 8.22). For this example, it is

2  The point of the indenter is the origin of the coordinate system used for the indenter profile.

(8.28)δT3D(r) =

2

π

r
∫

0

δT1D(x)
√

r2
− x2

dx.

(8.29)j(x) = 2

a
∫

x

r · q(r)
√

r2
− x2

dr.

(8.30)q(r) = q0 for 0 < r < a,

(8.31)j(x) = 2

a
∫

x

rq0
√

r2
− x2

dr = 2q0

√

a2
− x2,

(8.32)Q =

a
∫

−a

j(x)dx = 4q0

a
∫

0

√

a2
− x2 dx = 4q0a2

π/2
∫

0

cos2 ϕ dϕ = q0πa2.

(8.33)δT1D(x) =

1

2�∗

j(x) =

q0

�∗

√

a2
− x2.

8.4  The Implementation of the Steady-State Current…

http://dx.doi.org/10.1007/978-3-642-53876-6_3


122 8  Heat Transfer and Heat Generation

With the help of Eq. (8.28), it follows that

for which the complete elliptical integral of the second kind is shortened to E. 
Comparing this to the expressions found in literature [8] verifies it to be correct. 
Further applications of the transformation formulas are handled in the problems at 
the end of this chapter.

8.5 � Heat Generation and Temperature in the Contact  
of Elastic Bodies

Until now, we have only investigated cases with no relative motion between the 
bodies. Furthermore, steady-state thermal states have been assumed. We would 
like to continue to respect the latter, but now allow for relative motion between the 
bodies. For this, we consider a stationary point source Q under which a half-space 
moves with a constant speed of v in the x-direction; this is sketched in Fig. 8.3.

While the x, y, z coordinate system is stationary, the x̃, ỹ, z̃ system moves with 
the body. To describe the temperature distribution (measured in the stationary sys-
tem), the Laplace Eq. (8.6) must be supplemented by a convective term:

the steady-state solution of which is [1] 

(8.34)

δT3D(r) =

2q0

π�∗

r
∫

0

√

a2
− x2

√

r2
− x2

dx =

2q0a

π�∗

π/2
∫

0

√

1 − (r/a)2 sin2 ϕ dϕ =

2q0a

π�∗

E

(

r

a

)

,

(8.35)�T =

v

α

∂T

∂x
,

(8.36)δT(x, y, z) = T(x, y, z) − T0 =

Q

2π�R
e

−v(R−x)
2α with R :=

√

x2
+ y2

+ z2.

Fig. 8.3   Stationary point 
source under which a half-
space moves at a constant 
speed of v in the x-direction
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In order to calculate the temperature distribution for a distributed thermal flux den-
sity of the surface, Eq. (8.36) must be used as Green’s function. This is especially 
essential for the investigation of frictional contacts, for which the (entire) frictional 
energy is transformed into heat. However, this is only necessary for one part of the 
solution. For the body on which the stationary frictional position is located, we 
can simply use the solution for the stationary case (8.7). Only in the special case 
of very low speeds or very small Péclet numbers

can we add the approximation for the other body and, therefore, take advantage of 
all equivalencies for the entirety of both surfaces (a is the contact radius). We will 
constrict ourselves in the following to such cases.

We will now consider a frictional contact with the frictional coefficient µ, 
for which the contact partners move with a relative speed of v with respect to 
one another. For the heat generated on the contact surface, the following is 
valid:

for which p(x, y) denotes the normal stress distribution and FN , the normal force 
distribution. The heat flows into both half-spaces respectively according to

The distribution between the two sometimes causes difficulties, because the 
weighted function β is generally dependent on x and y in order not to violate the 
continuity of the temperature within the contact area [9]. We circumvent the prob-
lem by assuming that one of the contacts is non-conductive, so that the entire heat 
flows into the other body. We would now like to determine the temperature dis-
tribution on the surface of this body by using the reduction method; its specific 
thermal conductivity is �. We consider an element of the linearly elastic founda-
tion with the coordinate x that is indented by uz(x). The known force acting on 
this element is then fN = E∗�x · uz(x). The frictional power of the element is 
�Q(x) = µνfN (x) = µvE∗�x · uz(x), for which the resulting temperature differ-
ence of the element is

The temperature difference for the three-dimensional model at the point r on the 
surface within the contact area can be obtained using Eq. (8.28). The temperature 
can be calculated even outside of the contact surface. For this, we must simply 
change the upper boundary of the integral in Eq. (8.28):

(8.37)Pe :=

va

2α
≪ 1,

(8.38)q(x, y) = µvp(x, y) ⇒ Q = µvFN ,

(8.39)q1(x, y) = β · µvp(x, y) and q2(x, y) = (1 − β) · µvp(x, y).

(8.40)δT1D(x) =

�Q(x)

2� · �x
=

E∗

2�
µ · v · uz(x).

(8.41)δT3D(r) =

2

π

a
∫

0

δT1D(x)
√

r2
− x2

dx for r > a.

8.5  Heat Generation and Temperature in the Contact of Elastic Bodies
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Applying this classical transformation to the classical example of a parabolic frictional 
contact is the topic of Problem 1. It is possible that the reader may not see the ben-
efits of the method of dimensionality reduction compared to other methods because of 
the complicated transformations. Therefore, we would like to emphasize the fact that 
the reduction method maps global parameters such as normal force, indentation depth, 
contact area/length, total heat flow rate, and maximum surface temperature as well the 
contact stiffness and resistance seemingly effortlessly and exactly. These relationships 
are at the forefront of the investigation of rough contacts. If only information about 
local parameters is of interest, then this can also be reconstructed using the transfor-
mation rules from the one-dimensional model.

8.6 � Heat Generation and Temperature in the Contact  
of Viscoelastic Bodies

Heat can not only be generated on the surface, but also directly in the material of 
the contacting bodies, assuming that they exhibit viscoelastic properties. One can 
qualitatively approximate the temperature distribution as follows. Let us consider an 
element in a viscoelastic foundation at the point x and assume that it is deformed in 
the vertical direction with the speed u̇z(x, t). Thereby, the force produced is given by

for which an incompressible material is assumed (see Chap. 7).
The heat generation in the element is

If we interpret this heat generation as that produced in the frictional contact, then 
we obtain the temperature in the element according to (8.40):

As an example, we consider a simple viscoelastic medium (Kelvin body). In this 
case, the normal force is given by

and the temperature by

(8.42)fN (x, t) = 4�x

t
∫

0

G(t − t′)u̇z(x, t′)dt′,

(8.43)�Q(x, t) = fN (x, t) · u̇z(x, t) = u̇z(x, t) · 4�x

t
∫

0

G(t − t′)u̇z(x, t′)dt′.

(8.44)δT1D(x, t) =

�Q(x, t)

2�∗

· �x
=

2

�∗

u̇z(x, t)

t
∫

0

G(t − t′)u̇z(x, t′)dt′.

(8.45)fN (x, t) = (4Guz(x, t) + 4ηu̇z(x, t))�x

(8.46)δT1D(x, t) =

2

�∗

(Guz(x, t) + ηu̇z(x, t))u̇z(x, t).

http://dx.doi.org/10.1007/978-3-642-53876-6_7
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The temperature is, therefore, dependent on the time and can generally either 
increase or decrease (adiabatic cooling).

8.7  Problems

Problem  1  A non-conducting, rigid body with a smooth surface slides over an 
elastic half-space with a parabolically curved surface of radius R with a speed of 
v0. The modulus of elasticity E, Poisson’s ratio ν, and the thermal conductivity � 
of the half-space are given. Determine the temperature distribution of the surface of  
the half-space using the reduction method and assuming steady-state conditions.

Solution  We have already solved the purely elastic problem multiple times and 
carry over several intermediate results. After converting the three-dimensional pro-
file to a one-dimensional equivalent profile using the rule of Popov and calculating 
the indentation depth into a linearly elastic foundation, we obtain the displacement 
in the one-dimensional system:

for which the relationship between the indentation depth d and the normal force 
FN is given by the Hertzian relation FN =

4
3
E∗R1/2d3/2. According to (8.40), this 

leads to the one-dimensional temperature difference

Insertion of (8.48) into (8.28) results in the three-dimensional distribution of the 
surface temperature within the contact area:

By using the Hertzian relationship between normal force and contact radius and 
taking (8.38) into account, we obtain

(8.47)uz(x) = d −

x
2

R
with d =

a
2

R
,

(8.48)δT1D(x) =

E∗

2�
µ · vo · uz(x) =

E∗

2�
µ · vo ·

(

d −

x2

R

)

with E∗

=

E

1 − ν2
.

(8.49)

δT3D(r) =

2

π

r
�

0

δT1D(x)
√

r2
− x2

dx =

µvoE∗

π�R

r
�

0

a2
− x2

√

r2
− x2

dx

=

µvoE∗

π�R



a2 arcsin

�x

r

�
�

�

�

r

0
+ x

�

r2
− x2

�

�

�

r

0
− r2

π/2
�

0

cos2 ϕ dϕ



.

=

µvoE∗

4�R

�

2a2
− r2

�

(8.50)δT3D(r) =

3Q

16�a3

(

2a2
− r2

)

for 0 < r < a.

8.6 � Heat Generation and Temperature in the Contact of Viscoelastic Bodies
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We obtain the distribution outside of the contact area from (8.41). Because the for-
mula differs from that valid in the contact area only by the upper bound of the 
integral, we can simply carry over the antiderivative in (8.49). After rearrange-
ment, we obtain

The reader may be convinced of the validity of the results by the usage of equiva-
lency [2].

Problem 2  Determine the thermal resistance of the contact from Problem 1. 
Assume a one-dimensional model.

Solution  The thermal resistance, as defined in (8.2), presumes an isothermal 
contact that is not present here. Therefore, we refer here to the maximum surface 
temperature that is present in the middle of the contact. This takes the role of the 
indentation depth in the elastic contact, where the indentation depth is the same for 
both the one-dimensional and three-dimensional models. Therefore, the maximum 
temperature in the middle of the contact is also the same in both models. From 
(8.48), we obtain

and with it, the thermal resistance

This result initially appears to conflict with the universal formula (8.16), because 
this would result in

This is indeed the thermal resistance for a round contact, however, this relationship 
is only (!) valid for isothermal contact areas. Even redefining the thermal resist-
ance with respect to the average temperature instead of the maximum temperature 
does not help. In this case, the thermal resistance is

although the deviation is not very large. The proportionality to the contact length 
is of course always present.

Problem  3  A half-space with a parabolically curved surface having a radius 
of curvature of R is pressed into a second half-space with a flat surface. Before 

(8.51)δT3D(r) =

3Q

8π�a3

[(

2a2
− r2

)

arcsin

(a

r

)

+ a
√

r2
− a2

]

for r > a.

(8.52)δTmax = δT1D(0) =

E∗µvoa2

2�R
=

3Q

8�a

(8.53)RW :=

δTmax

Q
=

3

8�a
.

(8.54)RW :=

E∗

2� · kz

=

E∗

2� · 2E∗a
=

1

4�a
.

(8.55)
δT3D

Q
=

9

32�a
,
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contact, the bodies exhibit the temperatures T1 and T2. Upon bringing the bodies 
together, a heat flux flows through the contact area. If the temperatures far from 
the contact surface are held constant, then a steady-state flow will occur after 
some time. Let it be mentioned that the contact area is isothermal and temperature 
related deformations are neglected. Calculate the dependence of the thermal resist-
ance on the normal force in the case of an elastic contact, which is qualitatively 
shown in Fig. 8.4.

Solution  We can solve the elastic problem and heat conduction problem sepa-
rately with the help of the method of dimensionality reduction. The solution of the 
elastic problem can be found in Chap. 3. The dependence of the normal force on 
the contact radius was

For a round contact with an isothermal contact area Eq. (8.14) is valid with which 
we further express the conductivity by means of the resistance:

We have also already derived this relationship with the reduction method. By 
solving (8.56) with respect to the contact radius and inserting this into (8.57), we 
obtain the desired dependence:

In conclusion, let it be noted that for the complete plastic contact, the result is

Problem 4  Determine the total current, the constriction resistance, and the current 
density distribution for the electrical contact between two half-spaces with the spe-
cific resistances ρ1 and ρ2 within a circular area (radius a). It should be assumed 
that far from the contact, there exist equipotential surfaces within the half-spaces 
having a difference in potential of U. Furthermore, determine the radius b of the 
partial contact area through which half of the total current flows.

(8.56)FN (a) =

4

3
E∗

a3

R
with

1

E∗

=

1 − ν2
1

E1

+

1 − ν2
2

E2

.

(8.57)RW =

1

4a�∗

with
1

�∗

=

1

�1

+

1

�2

.

(8.58)RW =

(E∗)1/3

�∗(48RFN )1/3
∼ F

−1/3

N .

(8.59)FN ∼ a2
⇒ RW ∼ F

−1/2

N
.

Fig. 8.4   Qualitative 
presentation of a Hertzian 
contact with steady-state heat 
conduction

8.7  Problems
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Solution  We have already discussed the equivalent heat conduction problem in 
Sect. 8.4. First, we reduce the electrical contact between two bodies to the steady-
state flow through one body whose effective specific conductivity is

Between the circular equipotential surface, and another at infinity (or at a suffi-
ciently large distance), there exists the potential difference U. Because a con-
stant three-dimensional potential difference exists, no modification whatsoever is 
needed and it can be carried over to the one-dimensional system. Every element 
in the linearly elastic foundation obtains the specific conductivity ∆Λ = 2�

∗

· �x 
and the following partial current flows through each:

By summation of the partial currents through all of the elements in the foundation, 
we obtain the total current:

and from this, the constriction resistance

The three-dimensional distribution of the flux density within the contact area is  
calculated using (8.25), which is trivial due to the constant one-dimensional 
current density:

Of course, all results correspond to those in the three-dimensional problem. For 
this solution of the supplemental problem, we may not assume a one-dimensional 
current density, but must use the determined three-dimensional current density. For 
this, we integrate (8.64) over the three-dimensional contact area with the upper 
radial boundary b and require that the result corresponds to half of the current:

Elementary integration and a few rearrangements lead to

(8.60)�
∗

=

1

ρ1 + ρ2

.

(8.61)�I(x) = ∆Λ · δV(x) = 2�
∗

· �x · U.

(8.62)I =

a
∫

−a

2�
∗δV(x) dx = 4a�

∗U

(8.63)RE :=

U

I
=

1

4a�∗

=

ρ1 + ρ2

4a
.

(8.64)q(r) =

1

π

2�
∗U

√

a2
− r2

=

I

2πa

1
√

a2
− r2

.

(8.65)
I

2πa

b
∫

0

r
√

a2
− r2

2πdr
!

=

I

2
.

(8.66)b =

1

2

√

3 a ≈ 0.866 a.
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Although the radius b divides the surface by the ratio 3:1, meaning that the outer 
ring is only a quarter of the total area, half of the total current flows through it.

Problem 5  Determine the temperature distribution on the surface as well as the 
thermal resistance for the conduction problem (isoflux) shown in Fig. 8.2. Use the 
analogy to the elastic problem, the solution of which is considered to be known. 
According to this, the loading of an elastic half-space by a constant stress p over a 
circular area with the radius a leads to the following normal surface displacements 
(see, for example [3]):

where K and E are the complete elliptical integrals of the second kind:

Solution  According to Eq. (8.11), we must only replace the displacement with the 
temperature, the normal stress with the heat flux density, and the effective modulus 
of elasticity with double the conductivity:

In order to calculate the thermal resistance, we need the maximum surface tem-
perature. This is given in the center and has a value of

where we have taken E(0) = π/2 into account. The resulting thermal resistance is 
then
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9.1 � Introduction

The application of the method of dimensionality reduction to adhesive contacts 
between elastic bodies is given by the rule of Heß (Eq. 4.1). However, this rule 
cannot be directly generalized to include contacts between viscoelastic bod-
ies. This can already be seen in the fact that the “separation criterion” from Heß 
contains the modulus of elasticity. The effective modulus of elasticity of elasto-
mers, however, is dependent on the deformation speed or frequency. Therefore, to 
be able to transfer the results of Heß [1] to those of viscoelastic media, a better 
physical understanding of the phenomenon of adhesion is necessary. For this, it is 
helpful to consider a microscopic picture of an adhesive contact. The fundamentals 
of this were already described in Chap. 4. At this point, we will generalize these 
ideas for their application to viscoelastic media.

9.2 � Stress Concentration Near the Boundary  
of an Adhesive Contact

We consider an adhesive contact between a rigid flat indenter and an elastic body 
(Fig. 9.1). When the indenter is pulled with an upwards-oriented force F, the fol-
lowing stress distribution develops in the contact area [2]:

with

(9.1)σ = σ0

(

1 −

( r

a

)2
)

−1/2

(9.2)
σ0 =

F

2πa2
.
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At the edge near the tip of the crack, for r = a − �r, the distribution has a singu-
larity of the form

As discussed in Chap. 4 and can be seen in the classical works of Griffith [3] and 
Prandtl [4], this singularity is essentially the physical cause for the rupture of the 
adhesive connection between the two bodies. Because the rupture process takes 
place in a very narrow “process zone” near the tip of the crack, only the form of 
the singularity is important for the global equilibrium. The stress distribution far 
from the tip does not play a role. Noteworthy is that the relationship (9.3) does not 
contain the elastic properties of the medium. Therefore, it is also valid for arbi-
trary media with a linear rheology.

In the most simple microscopic examination of an adhesive contact, we can 
think of the bodies as being made of molecules of the characteristic length b. 
Because of the molecular structure, the singularity (9.3) would not exist in reality, 
because the distance to the tip cannot be smaller than the size of the molecules. 
The stress then reaches a high, but finite, maximum on the order of magnitude of

The length b can be interpreted as the size of the “process zone” [5].
The breaking of molecular bonds near the edge of an adhesive contact occurs 

when certain critical values are exceeded. In the elastic case, it does not matter if 
we exceed a critical strain, stress, or work, because all three are distinctly related 
to one another. For the case of elastomers, this is no longer true: For an elasto-
mer, the stress is no longer only a function of strain, but also of the strain rate. 
Depending on which independent value (stress or strain) assumes a critical value, 
we obtain different separation criteria. In this chapter, we discuss two criteria, 
whereby also many other criteria are conceivable. We begin with the case of elas-
tic bodies and later go on to the investigation of viscoelastic bodies.

(9.3)σ = σ0

√

a

2�r
.

(9.4)σmax ≈ σ0

√

a

2b
.

a
r

0

σ

σ

(a) (b)

Fig. 9.1   a Adhesive contact of an elastic body with a flat indenter; b Enlarged view of the “tip 
of the crack” (the area in immediate vicinity to the edge of the contact)
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9.3 � Deformation Criterion

Both the stress and the strain obtain their maximum values in the immediate vicin-
ity of the crack tip—roughly put—within one molecular diameter from the crack 
tip. Thereby, the maximum stress (9.4) leads to a deformation of the material on 
the order of magnitude of

Let us assume that the molecular contact is lost, when the relative displacement of 
the “contacting molecules” in the vertical direction reaches a critical value bc. We 
can then rewrite the approximation (9.5) in the following form:

From this, we obtain the critical value of σ0:

For the adhesion force, we obtain

The maximum vertical displacement of the indenter before separation is given by 
the equation

By defining

(b∗ is the characteristic length on the order of magnitude of the length of a poly-
mer molecule) we bring (9.9) into the form

Note that this equation does not contain the modulus of elasticity; therefore, it also 
valid in the same form for arbitrary media with a linear rheology, as long as the 
assumed deformation criterion for the crack retains its validity. For elastomers in 
the case of the “deformation criterion,” the fracture criterion from Heß (4.1) must 
be replaced by

(9.5)εmax ≈

σmax

E∗

=

σ0

E∗

√

a

2b
.

(9.6)εmax ≈

bc

b
≈

σ0

E∗

√

a

2b
.

(9.7)σ0 ≈

√

2E∗

bc
√

ab
.

(9.8)FA = 2πa2σ0 ≈ 23/2πE∗bcb−1/2a3/2.

(9.9)uA =

FA

2aE∗

= 2
1/2πbcb

−1/2
a

1/2
.

(9.10)b∗

= 2π2b2
c/b

(9.11)uA =

√

b∗a.

(9.12)�ℓmax(a) =

√

b∗a.

9.3  Deformation Criterion
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9.4 � Stress Criterion

Other criteria are also conceivable. For instance, the contact may be lost when the 
tip stress (9.4) reaches a critical value σc:

Because the relationship (9.4) is universally valid for all media with a linear rheol-
ogy, we obtain the adhesion force

For this criterion, the adhesion force is not dependent on the separation speed. 
The Heß criterion (4.1) must be replaced in this case with the requirement that the 
force in the individual springs reaches the critical value

9.5 � Adhesive Contacts Without Initial Stress

In this section, we consider a rigid cylindrical indenter with the diameter L, which is 
brought into contact with an elastomer without a normal force in a way that the con-
tacting surfaces adhere. Subsequently, a separation force F(t) is applied. In the one-
dimensional system, a flat profile of the length L is brought into contact with an array 
of viscoelastic elements, defined according to the rules in Chap. 7. In the elastic case, 
the normal force F and the vertical displacement u are related by the equation

For incompressible elastomers, as explained in Chap. 7, this relationship must be 
replaced by the integral relationship

With the help of this equation, we will now discuss the separation process using 
the deformation criterion. If the deformation criterion is valid, the separation will 
always occur upon reaching the critical vertical displacement given by (9.12). It 
is easy to calculate the force exhibited in this state. Let us assume that the speed 
du/dt is zero until the time t = 0 and at this time, it jumps to v0 and remains 
constant. The force is then given by the equation

(9.13)σmax ≈ σ0

√

a

2b
= σc.

(9.14)FA = 2πa2σ0 = 23/2πa3/2b1/2σc.

(9.15)�fz,max = πσc

√

2ab · �x.

(9.16)F = LE∗u.

(9.17)F(t) = 4L

t
∫

−∞

G
(

t − t′
) du

dt′
dt′.

(9.18)F(t) = 4Lv0

t
∫

0

G
(

t − t′
)

dt′ = 4Lv0

t
∫

0

G(ξ)dξ
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and reaches its maximum value at t = uA/v0:

where uA is taken from Eq. (9.11).
We constrict ourselves at this point to the simplest rheology imaginable—that 

of a linearly viscous fluid. The adhesive contact between media that exhibit a more 
complicated rheology will be handled in the problems at the end of this chapter. 
For a linearly viscous medium, Eq. (9.17) can be directly written in the form

For a constant velocity, it is not dependent on time as long as the displacement has 
not reached its critical value (9.11). Therefore, the adhesion force is

It is proportional to the diameter of the contact and to the separation speed. 
This equation is also applicable to pure liquids as long as the capillary effect is 
neglected. Furthermore, cavitation is not taken into account.

9.6  Problems

Problem 1  Determine the force of separation (without initial stress) of a rigid 
cylindrical indenter with the diameter L from a medium that is described by the 
“standard model” (Fig. 9.2). Use the stress and deformation criteria.

Solution 
(a)	� Stress criterion. If the stress criterion is applicable, the adhesion force is 

given by Eq. (9.14):

(9.19)FA = 4Lv0

uA/v0
∫

0

G(ξ)dξ ,

(9.20)F(t) = 4Lη
du

dt
.

(9.21)FA = 4Lη
du

dt
.

(9.22)FA = πL3/2b1/2σc.

Fig. 9.2   A simple model 
for an elastomer (“standard 
model”)

21G G

η

9.5  Adhesive Contacts Without Initial Stress
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It is proportional to L3/2 and is dependent on the critical stress and the size 
of the process zone, but not on the separation speed. The dependence of the 
adhesion force on the separation speed is, therefore, an indication that the 
stress criterion is not valid for a flat indenter.

(b)	� Deformation criterion. The time-dependent shear modulus for this model is [2]

with τ = η/G2. Insertion into (9.19) results in the adhesion force:

By taking Eq.  (9.11) into account, one can write this equation in the following 
explicit form:

By introducing

we can write (9.25) in the form

From this, it is obvious that the separation force is only dependent on the com-
bination of parameters in (9.26). The dependence of the dimensionless force 
fA = FA/

(

23/2L3/2b∗1/2G1

)

 on ζ is presented in Fig. 9.3.
In the curve of the adhesion force function, three domains can be recognized:

I.	 ζ ≪

G1

G2
. In this case,

is valid. This is the classical result for the adhesion between a rigid cylin-
der and an elastic medium with the shear modulus G1.

II.	 G1

G2
≤ ζ ≤ 1. In this interval,

(9.23)G(t) = G1 + G2e−t/τ ,

(9.24)

FA = 4Lv0

uA/v0
∫

0

(

G1 + G2e−ξ/τ
)

dξ = 4Lv0

[

G1uA

v0

+ τG2

(

1 − e
−

uA
v0τ

)]

= 4G1LuA + 4Lv0η

(

1 − e
−

uA
v0τ

)

.

(9.25)FA ≈ 23/2LG1

√

b∗L + 4Lv0τG2

(

1 − e
−

√

b∗L

21/2v0τ

)

.

(9.26)ζ =

21/2v0τ
√

b∗L
,

(9.27)FA ≈ 23/2L3/2b∗1/2
(

G1 + G2ζ

(

1 − e
−

1
ζ

))

.

(9.28)FA ≈ 23/2L3/2b∗1/2G1

(9.29)FA ≈ 4Lηv0
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is valid, which may be expected, as the system behaves like a linearly vis-
cous fluid here and satisfies Eq. (9.21).

III.	 1 ≪ ζ. In this domain,

is valid. This is the same relation as (9.28), but with a different shear modulus.

Let it be noted that in interval II, the adhesion force is not dependent on the exact 
microscopic fracture criterion, but only on the viscosity of the medium. The limit-
ing case of a simple viscoelastic body (Kelvin body) is obtained from the general 
expression (9.25) by inserting G2 → ∞. The result is

Because the viscosity exhibits a strong temperature dependence, one may expect 
that in the intermediate interval of separation speeds, the adhesion force increases 
with a decrease in temperature.

Problem 2  A rigid cylinder with the diameter L is pressed into a viscoelastic 
medium described by the “standard model” (Fig.  9.2) with the normal force FN 
and, after a long settling time, pulled away with the speed v0. Determine the adhe-
sion force by using the stress and deformation criteria.

Solution 
(a)	 Stress criterion. In using the stress criterion, Eq. (9.22) remains valid: The 

adhesion force is the same as the case without initial stress.
(b)	 Deformation criterion. During the indentation phase, the material reacts 

completely elastic after a long settling time, with the shear modulus G1. 
The indenter presses into the material to a depth of

(9.30)FA ≈ 23/2L3/2b∗1/2(G1 + G2)

(9.31)FA ≈ 23/2L3/2b∗1/2G1 + 4Lηv0.

Fig. 9.3   Dependence of 
the dimensionless force 
fA = FA/

(

2
3/2

L
3/2

b
∗1/2

G1

)

 
on the dimensionless 
separation speed ζ for the 
case of an elastomer, which 
is described by the standard 
model, where G2/G1 = 1,000 
is chosen
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Instead of Eq. (9.18), a modified equation must be used:

F(t) is a monotonically increasing function in time: The force increases until the 
fracture criterion (9.12) is reached:

From this, the separation time t̃ can be determined:

Consequently, the adhesion force in the general case is

Substitution of the time-dependent shear modulus for the standard model (9.23) 
results in

I.	 If v0τ ≪ d1 +

√

b∗L/2, then

and the adhesion force is independent from the indentation force.

II.	 If v0τ ≫ d1 +

√

b∗L/2, then

In this interval, the adhesion force increases linearly with the indentation force. Let it be 
noted that the boundaries of this interval are dependent on the indentation force itself.

(9.32)
d1 =

FN

4LG1

.

(9.33)F(t) = −FN + 4Lv0

t
∫

0

G
(

t − t′
)

dt′ = −FN + 4Lv0

t
∫

0

G(ξ)dξ .

(9.34)u = −d1 + v0t = uA =

√

b∗L/2.

(9.35)t̃ =

d1 + uA

v0

=

d1 +

√

b∗L/2

v0

.

(9.36)FA = −FN + 4Lv0

d1+

√

b∗L/2

v0
∫

0

G(ξ)dξ .

(9.37)

FA = −FN + 4Lv0

d1+

√

b∗L/2

v0
∫

0

(

G1 + G2e−ξ/τ
)

dξ

= 4LG1

√

b∗L/2 + 4Lv0τG02

(

1 − e
−

d1+

√

b∗L/2

v0τ

)

.

(9.38)FA ≈ 4LG1

√

b∗L/2 + 4Lv0η

(9.39)FA ≈ FN

G2

G1

+ 4L
√

b∗L/2(G1 + G2).
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Equation (9.37) can be written in the form

where, in addition to the relation (9.26), we have inserted the dimensionless force fA:

and the dimensionless initial force f :

The dependence of (9.40) is presented in Fig. 9.4. While the adhesion force for small 
separation speeds is not dependent on the indentation force, it can be increased sig-
nificantly by the indentation force for sufficiently large separation speeds.

Problem 3  A conical indenter (Fig. 9.5) is pressed into a linearly viscous elasto-
mer to a depth of d0 and subsequently pulled up. Using the deformation criterion 
for the crack, determine the dependence of the contact radius on the indentation 
depth d.

Solution  The form of the cone is described by the equation f (r) = tan θ · r. The 
corresponding scaling factor is κ1 = π/2, so that the resulting equivalent one-
dimensional profile is g(x) = (π/2) tan θ · |x|. If the indenter is pressed to a depth 

(9.40)fA ≈ 1 +

G2

G1

ζ

(

1 − e
−

1+f
ζ

)

,

(9.41)fA =

FA

23/2b∗1/2L3/2G1

(9.42)f =

FN

23/2b∗1/2L3/2G1

.

Fig. 9.4   Dependence of 
the dimensionless adhesion 
force on the dimensionless 
speed for four values of the 
dimensionless indentation 
force f = 0; 0.1; 1; 10 and 
G2/G1 = 1,000
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of d0 and then pulled out to a depth of d, then the vertical displacement of the 
foundation at point x is given by

Using the deformation criterion (9.11), we calculate the contact radius a by requir-
ing that uz(a) = −uA:

Introducing

and

we rewrite Eq. (9.44) in the form

From this, we obtain the contact radius

Separation occurs at ˜d = −
˜b/4. Thereby, the contact radius is a =

˜b/4. Let it be 
noted that this result is independent from the elastic (or rheological) properties and 
is valid for a medium of arbitrary rheology (as long as the deformation criterion is 
valid for the crack).

Problem 4  Discuss the influence of roughness in the case of the contact with a 
linearly viscous medium (Kelvin body).

Solution  Assume that the spectrum of the roughness exhibits a cut-off at qmin ≫ 2π/L 
(see more in Problem 2 in Chap. 10). We denote the root mean square of the roughness 
as h. In this case, the contact length is approximately proportional to the normal force

as long as it remains smaller than the system size L, at which point it remains constant:

(9.43)uz(x) = d − (π/2) tan θ · |x|.

(9.44)d − (π/2) tan θ · a = −

√

b∗a.

(9.45)
˜d =

d

(π/2) tan θ

(9.46)
˜b =

b∗

(π/2)2 tan2 θ
,

(9.47)˜d − a = −

√

˜ba.

(9.48)a =

(

˜d +

˜b

2

)

+

√

√

√

√

˜d ˜b +

(

˜b

2

)2

.

(9.49)Lcont ≈

FN

Gh
,

(9.50)Lcont = L.

http://dx.doi.org/10.1007/978-3-642-53876-6_10
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If the indenter is now pulled off quickly, then the force is given predominantly by 
the viscous term (9.29):

For subcritical normal forces, the adhesion force is then

with τ = η/G. For supercritical forces, it is

independently from the indentation force and the roughness. This coincides with 
the adhesion force of a smooth indenter.
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(9.51)FA = 4v0ηLcont.

(9.52)FA = FN

4v0η

Gh
= FN

4v0τ

h
,

(9.53)FA = 4v0ηL,

9.6  Problems



143

10.1 � Introduction

In addition to the strict geometrically defined cases that were mapped in Chap. 3 with 
the method of dimensionality reduction, we would now like to devote ourselves to the 
question of whether rough surfaces can also be handled with a reduction method. The 
importance of surface roughness for tribological processes was already emphasized 
by Bowden and Tabor [1] in the 1940s and since that time has become generally 
accepted. The most important fundamental work dealing with the contact mechan-
ics of rough surfaces was conducted in the 1950s by Archard [2] and in the 1960s 
by Greenwood and Williamson [3]. However, the contact mechanics of rough sur-
faces remains even today a current and to some extent a controversial topic. In this 
chapter, we will show that there exist theoretical as well as empirical reasons for why 
the method of dimensionality reduction is also able to be applied to randomly rough 
surfaces. In this way, the method presents itself as a practical tool for the fast calcula-
tion of contact problems. While we could always call on the known analytical solu-
tions in the previous chapters for comparison, we will carry out the validation in this 
chapter using a standard numerical method. The missing analytical framework high-
lights, thereby, exactly the application potential for the reduction method for unsolved 
problems, especially those for which the solutions push the boundaries of being fea-
sible with the current level of computing power. The main reason for the unavaila-
ble possibility of simulating realistic contact mechanics is, as mentioned in Chap. 1, 
the multi-scalar character of contact problems due to the roughness of the contact-
ing bodies. For instance, if the contact mechanics of a 1 cm × 1 cm large compo-
nent are completely described with FEM and we have the requirement that all scales 
down to the order of magnitude of 1 nm must be discretized, then we would have to 
solve a system with roughly 1014 elements and in the process of doing so, we would 
have merely mapped the surface. Using the reduction method, we would only have 
107 degrees of freedom. Additionally, the problem to be solved in three dimensions is 
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an integral equation, while the one-dimensional case collapses to independent linear 
algebraic equations. This chapter is on the one hand, dedicated to an explanation of 
the functionality of the method of dimensionality reduction in the case of contacts 
between two rough bodies. On the other hand, the verification of the method is under-
taken by comparison with three-dimensional results.

10.2 � Randomly Rough, Statistically Isotropic Surfaces

The type of roughness can range from regular profiles to so-called “randomly 
rough” surfaces. The most exact way to characterize the roughness of a surface is 
to specify a particular surface profile. An equally valid alternative is to specify the 
complete Fourier spectrum of the surface. In doing so, the individual Fourier com-
ponents are characterized by their amplitude and phase. However, if we assume 
that the phases are random, then the type of surface topography, in a statistical 
sense, is explicitly defined by the magnitude of the Fourier components. Such 
surfaces are called “randomly rough.” Of course, randomly rough surfaces form 
only a subclass of all possible types of roughness. In this chapter, however, we will 
assume for the sake of simplicity that we are only dealing with this type of sur-
faces. One may show that the magnitude of the Fourier components for randomly 
rough surfaces is correlated to the so-called power spectrum of the surface topog-
raphy C2D(�q). This is defined according to

where z(�x) is the height profile (measured from the mean, so that �z� = 0). Here, 
�·� means the average over a statistical ensemble. Furthermore, we assume that the 
surface topography is statistically homogeneous and isotropic. Under these condi-
tions, the power spectrum C2D(�q) is only dependent on the magnitude q of the wave 
vector �q. At this point, we would like to emphasize that the method of dimensional-
ity reduction can, in principle, also be applied to anisotropic surface topographies.

In a similar way, the power spectrum C1D(q) of a one-dimensional rough line is 
introduced:

The surface topography for the two-dimensional case is reconstructed with the 
help of the power spectrum according to

with

(10.1)C2D(�q) =

1

(2π)2

∫

〈

z(�x)z
(

�0
)〉

e−i�q·�xd2x,

(10.2)C1D(q) =

1

2π

∫

�z(x)z(0)�e−iqxdx.

(10.3)
z(�x) =

∑

�q

B2D(�q) exp (i(�q · �x + φ(�q))),

(10.4)B2D(�q) =

2π

L

√

C2D(�q) =
¯B2D (−�q)
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and the phases φ(�q) = −φ(−�q) randomly distributed over the interval [0, 2π).
In the one-dimensional case,

with

and randomly distributed phases φ(q) = −φ(−q) over the interval [0, 2π). Fast 
numerical strategies are based on the fast Fourier transform (FFT)  instead of the 
direct calculation of the summations (10.3) or (10.5).

10.3 � Fractal, Self-Affine Surfaces

Many natural or man-made surfaces exhibit on certain spatial scales a property, 
which is called fractality, the presence of roughness on all spatial scales. A fractal 
surface z(x, y) is called self-affine if it “looks the same” after proper magnifica-
tion. Mathematically, this means that the surface obtained by a proper scaling of 
in-plane and out-of-plane coordinates cannot be distinguished from the original 
surface:

Here, ψ is an arbitrary magnification and H is the so-called Hurst exponent. In the 
special case of H = 1, the surface is known as being self-similar. In the case of 
0 < H < 1, the power spectrum is [4]

Here, C0 is a constant and L is the length of the system.1

One parameter equivalent to the Hurst exponent is the fractal dimension Df  [4], 
where

The fractal description of a surface is only then complete if one defines the bound-
aries qmin and qmax of the interval of wavenumbers for which Eq. (10.8) is valid. In 
other words, the domain of the spatial scales is defined (from 2π/qmax to 2π/qmin)  
as that where the property of self-affinity (10.7) is present. In Fig. 10.1 the power 

(10.5)
z(x) =

∑

q

B1D(q)exp(i(qx + φ(q)))

(10.6)B1D(q) =

√

2π

L
C1D(q) =

¯B1D (−q)

(10.7)z′(x, y) = ψHz
(

x
/

ψ ,y
/

ψ
)

.

(10.8)C2D(q) = C0(Lq)−2H−2.

1  As can be seen in the further considerations, this relationship between the Hurst exponent and 
the form of the power spectrum is valid over an even larger interval: 0 < H < 2.

(10.9)Df = 3 − H.

10.2  Randomly Rough, Statistically Isotropic Surfaces
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spectrum of a fractal, self-affine surface is schematically presented as a function of 
the “dimensionless wavenumber” Lq/(2π).

The minimum wavenumber in the power spectrum—independent of the type of 
spectrum—is fundamentally determined by the size L of the system and is equal 
to 2π/L (Fig. 10.1a, blue, solid line). Smaller wavenumbers are excluded, because 
the wavelength of the roughness cannot exceed the size of the system. The prop-
erty of self-affinity may also end at a smaller scale than that of the system (or at 
a wavenumber qmin = qcutoff, larger than L/(2π)). This is shown with the green 
line in Fig. 10.1 . The surfaces with and without cut-off for the long wavelengths 
have a different macroscopic appearance, as is illustrated in Fig. 10.1b. The sur-
faces without cut-off show the unevenness up to the largest scale of the system as 
a whole (Fig. 10.1b, upper image). The macroscopic unevenness is superimposed 
with roughness of ever smaller scales. This surface topography shows the property 
of self-affinity on all existing scales (limited only by the size of the system as a 
whole and by discretization). A surface with a long wavelength cut-off, on the con-
trary, contains no long wavelength components and is, therefore, “nominally flat.” 
It exhibits roughness beginning only below a certain wavelength (Fig. 10.1b, lower 
image). Contact mechanical properties of these two types of surface topographies 
can be very different from one another. In this chapter, we will focus our attention 
on “real fractal” surfaces without long wavelength cut-off.

10.4 � Generating the Equivalent One-Dimensional System

Now, how can a given three-dimensional system with a randomly rough surface 
be transformed into a one-dimensional line so that the essential contact mechani-
cal properties are not lost? In the motivation of this conversion, we use several 

0 1 2 3 4 5
L|q|

C(q) qcutoff

2
L

L

2 qcutoff

(a) (b)

Fig.  10.1   (a) Power spectrum of a fractally rough surface. The spectrum decays at higher 
frequencies according to the power function (10.8). It can be limited by a cut-off wave vector 
(green). (b) Cross-section through an arbitrarily generated realization of a fractally rough surface 
with (below) and without (above) a characteristic cut-off wave vector
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ideas from the model of Greenwood and Williamson [3]. The results and quality 
of the equivalent system, however, prove to be much better than the Greenwood–
Williamson model itself.

In the model from Greenwood and Williamson individual micro-contacts are 
considered independently from one another. Under these conditions, only the dis-
tribution of the height of the asperities and their radii of curvature play a role. We 
obtain a first rough idea of the conversion rule if we demand that the one-dimen-
sional equivalent system has the same statistical distribution of heights and radii of 
curvature as the three-dimensional original counterpart.2 Let the starting point be 
an isotropic, three-dimensional surface and its power spectrum C2D. The root mean 
square of the roughness for such a surface is

while that for a rough line is

It is easy to see that these are the same if

This is known as the rule of Geike [5]. With this, the power spectrum for a fractal 
line with a Hurst exponent of H is calculated as

This new power spectrum in one dimension fulfills further interesting equivalen-
cies. The root mean square slopes and profile curvatures are also the same in both 
cases. Furthermore, a line having a power spectrum according to (10.13) also 
retains the property of self-affinity with the same Hurst exponent:

As was described in Sect. 10.6, this is the key property that makes it possible to 
map a three-dimensional system exactly to a one-dimensional system.

We will see empirically that the conversion rule (10.12), initially motivated 
by geometry, leads to the same results in both one and three dimensions in the 

2  We will later see that the interactions between the asperities play no role in the method of 
dimensionality reduction: The only property that is required is the self-affinity of the surface, 
regardless of whether the profile is regular or randomly rough.

(10.10)h2
2D =

〈

z2
〉

2D
=

∞
∫

−∞

∞
∫

−∞

C2D(�q)d2q = 2π

∞
∫

0

qC2D(|�q|)dq,

(10.11)h2
1D =

〈

z2
〉

1D
=

∞
∫

−∞

C1D(q)dq = 2

∞
∫

0

C1D(q)dq.

(10.12)C1D(q) = πqC2D(q).

(10.13)C1D(q) =

πC0

L
(L · q)−2H−1.

(10.14)z′(x) = ψHz
(

x
/

ψ
)

.
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case of a fractal surface, where the correct conversion coefficient in (10.12) is not 
necessarily “π” and can depend on the Hurst exponent:

The reasons for this are of various natures. One is purely formal and has to do 
with the discrete numerical implementation of the rule mentioned above. We will 
explain this problem below. The deeper physical reasons will be touched upon in 
Sect. 10.5.

In the discrete realization of rough surfaces with a discrete mesh distance �x 
according to (10.3) and (10.5), the RMS-roughness is determined as follows:

If the summation in (10.16) is taken over a quadratic mesh with a step size of 
�q = 2π/L from qmin = 2π/L to qmax = π/�x and the spectral density is able to 
be presented in the form (10.8), then

with the number of points N = L/(2 · �x), for which we have used the general 
rule of conversion (10.15).

The two RMS-roughnesses are the same on average if �(H) is chosen as 
follows:

The dependence of the factor �(H) on the exponent H is presented in Fig. 10.2.
The conversion factor �(H) presented in Fig. 10.2 only guarantees the invari-

ance of the RMS-roughness. The correct conversion factor that is necessary for 
the invariance of the contact mechanical properties can, at this time, only be deter-
mined empirically by comparison with direct three-dimensional simulations. This 
will be conducted in the next section.

(10.15)C1D(q) = �(H)qC2D(q).

(10.16)

〈

z2
2D(�x)

〉

=

∑

�q

|B2D(q)|2 =

4π2

L2

∑

�q

C2D(�q),

(10.17)

〈

z2
1D(x)

〉

=

∑

q

|B1D(q)|2 =

2π

L

∑

q

C1D(q).

(10.18)

〈

z
2
2D(�x)

〉

=

4π2
C0

L2(2π)2H+2

N
∑

n=−N ,m=−N

not n=m=0

1
(

n2
+ m2

)H+1
,

(10.19)
〈

z2
1D(x)

〉

= �(H)
8π2C0

L2(2π)2H+2

N
∑

n=1

1

n2H+1
,

(10.20)�(H) =

1

2

∑N
n=−N ,m=−N
not n=m=0

1

(n2
+m2)

H+1

∑N
n=−N

1

|n|

2H+1

.
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10.5 � Numerical Results of the Boundary Element Method 
and the Method of Dimensionality Reduction

In this section, the three-dimensional problem of an elastic half-space and a rigid 
indenter with a self-affine, fractal surface will be initially solved numerically. 
These results will then be subsequently compared to those of a one-dimensional 
calculation based on the procedure of the method of dimensionality reduction. It 
will be confirmed that the conversion formula for the spectral density has the form 
(10.15) and the conversion coefficient �(H) will be determined empirically.

The three-dimensional reference to be compared with the one-dimensional 
solution is presented in Fig. 10.3. A rigid indenter is brought into contact with an 
elastic half-space. Let the roughness of surface of the indenter be self-affine and 

Fig. 10.2   Multiplicator 
�(H) in Eq. (10.15) as a 
function of the exponent 
H for various values of N: 
N = 10, N = 100, N = 1,000 
according to Eq. (10.20). 
The conversion factor �(H) 
presented here guarantees 
only the invariance of the 
RMS-roughness. With this, 
the contact mechanical 
properties are not yet given

-1 -0.5 0 0.5 1 1.5 2 2.5 3
2

3

4

N=10,100,1000

λ

H

Fig. 10.3   Three-dimensional 
problem: a fractally rough 
indenter is pressed into an 
elastic half-space

10.5  Numerical Results of the Boundary Element Method…
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fractal on all scales from the discretization step �x up to the size L of the system. 
Then,

Now, if the indenter is pressed into the elastic half-space with a normal force FN, 
then the highest points come into contact first, while at a sufficiently high normal 
force, approximately the entire area is in contact. At complete contact, the stiffness 
reaches the saturation value 1.1419E∗L. It is, therefore, logical to normalize the 
incremental stiffness

using this value:

Here, d is the indentation depth (measured from the first point of contact).
For a better orientation in this multi-parameter problem, we will first show that 

for the sake of having the correct units, there are certain limitations for the form of 
the dependencies between the normal force and normal stiffness. Numerical simu-
lations always show that for small forces, the stiffness is a power function of the 
normal force. We take this empirical fact as our working thesis and assume that 
the stiffness–force relation is dependent only on the effective modulus of elastic-
ity E∗ and the RMS-roughness. Under these assumptions, it is easy to show that 
the problem only contains the following independent dimensionless variables: The 
dimensionless stiffness ¯kz = kz/(1.1419E∗L), dimensionless force FN/

(

E∗L2
)

, 
and dimensionless roughness h/L. The general form of a power function that con-
nects these three variables is

where ζ is a dimensionless constant and α and δ, exponents; all constants can now 
only depend on the Hurst exponent. A further scaling property determines the 
relationship between the exponents α and δ: If the “vertical” scale of the rough-
ness is multiplied with an arbitrary factor, then the contact configuration does not 
change if the force and the indentation depth are simultaneously multiplied by the 
same factor. This means, however, that the stiffness remains unchanged in the pro-
cess. Consequently, the following relationship must be met: α + δ = 0, meaning 
δ = −α. Therefore, the possible form of the stiffness–force relation is reduced to

(10.21)qmin =
2π

L
, qmax =

π

�x
.

(10.22)kz =

∂FN

∂d

(10.23)¯kz =

kz

1.1419E∗L
.

(10.24)
kz

1.1419E∗L
= ζ

(

FN

E∗L2

)α(

h

L

)δ

,

(10.25)
kz

1.1419E∗L
= ζ

(

FN

E∗Lh

)α

.
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If we define the dimensionless force according to

then we come to the following dimensionless form of the stiffness–force relation:

We will now verify this relation in three dimensions using a numerical solution 
and subsequently compare this to the one-dimensional solution obtained using the 
method of dimensionality reduction.

The authors produced the numerical solution of this indentation problem in 2012 
in [6]. It is presented in Fig. 10.4 and will serve in the following as a reference. The 
stiffness does not increase any further as soon as a sufficiently large portion of the 
surface comes into contact (Fig. 10.5d, e). In these cases, the rough indenter behaves 

(10.26)F3D =

FN

E∗Lh
,

(10.27)¯kz = ζF3D
α

.

Fig.  10.4   Normal stiffness with respect to normal force for the three-dimensional con-
tact problem from Fig.  10.3. Results are from [6]. The curves correspond to Hurst exponents 
{1, 0.8, 0.6, 0.4, 0.2, 0 } in the direction of the arrow
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Fig. 10.5   Resulting real contact areas in the contact problem in Fig. 10.3 (H = 0.4). With increas-
ing normal force (from left to right), new areas come into contact. For very large forces, the 
effective contact configuration is that of the entire system (here, a square) so that the stiffness is 
saturated. Thereby, the real contact surface may still be much smaller that the apparent contact area

10.5  Numerical Results of the Boundary Element Method…



152 10  Normal Contact of Rough Surfaces

effectively as a flat square indenter (see Sect. 7.3 in [7]), even before complete mate-
rial contact has been reached. For smaller forces, the relationship between force and 
stiffness transitions to a power law dependence of the form in (10.27).

The asymptotic behavior for smaller stiffnesses is determined by the discretiza-
tion and is, therefore, not shown in Fig. 10.4.

We now continue to the same problem in one dimension. A rough line is pro-
duced according to Eq.  (10.13) and analyzed for various indentation depths, as 
shown in Fig. 10.6.

In the one-dimensional case, the stiffness and normal force may be directly 
taken or added together. When all of the springs come into contact, then the total 
stiffness is equal to LE∗. Also in one dimension, we normalize the stiffness by the 
saturation value:

In doing so, it is guaranteed that the saturation value of the stiffness corresponds 
exactly to the three-dimensional contact. We define the normalized force anagou-
lously to Eq. (10.26)

The result from the one-dimensional indentation process is presented in Fig. 10.7. 
The saturation of the stiffness at large normal forces is easy to see. For intermedi-
ately large down to small forces, a power law dependence can be seen.

In the one-dimensional system, the computation time is so extremely low that 
systems of much higher resolution may be mapped, with a much higher qmax and 
correspondingly small normal forces and stiffnesses. One can see a very good 

(10.28)k1D =

∂FN

∂d

1

E∗L
.

(10.29)F1D =

FN

E∗Lh1D

.

d

L1 L7L6L5L4L3L2

Fig.  10.6   Indentation of a one-dimensional rough line. In the one-dimensional system, all 
degrees of freedom are independent from one another and the stiffness is simply proportional to 
the entire “contact length.” 

http://dx.doi.org/10.1007/978-3-642-53876-6_7
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agreement for the forces that can be calculated in both one and three dimen-
sions. The reduction method extends the force domain that can be investigated to 
much smaller forces. These results suggest that the power law dependence would 
continue asymptotically for arbitrarily small forces. In actuality, geometric and 
physical arguments can be found with which this dependence can not only be con-
firmed, but also allow for an analytical expression α = (H + 1)−1 to be found for 
the exponent in (10.25) that is valid in the physically relevant domain H > 0.5 
(see Sect. 10.6). The prefactor ζ (H) in Eq. (10.27) must be obtained from numeri-
cal data and is approximated as 1.7

/

(H + 1). With this, we obtain

10.6 � Self-Affinity and the Method of Dimensionality 
Reduction

In Chap. 3, we have seen that the possibility of mapping a three-dimensional 
contact problem to a one-dimensional problem in the case of axially-symmetric 
profiles of the form z ∝ rn is only due to the self-similarity of the profile. The 
arguments used there can be easily generalized. It can be shown that similar argu-
ments are valid for all self-affine surfaces, whether the surfaces are isotropic, 
regularly rough, or random. Here, we will explain these arguments once more 
especially for the application to randomly rough, fractal, self-affine surfaces.

Fractal surfaces without a long wavelength cut-off have distinctive roughness 
features on all scales, including that of the entire system. Therefore, for small 
contact forces, the entire contact area (which may exhibit an arbitrarily compli-
cated, fractal inner structure) is localized to the area around a single point within 

(10.30)k ≈

1.7

H + 1
F

1
H+1 .

Fig. 10.7   Normal force–
stiffness curves for the  
one-dimensional contact 
problem in Fig. 10.6. 
The results are from 
Pohrt/Popov/Filippov [8]. 
The values of the Hurst 
exponents H are the same as 
those in Fig. 10.4
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the apparent contact area. Now, we conduct the following transformation of the 
surface:

In accordance with the definition of self-affinity, this transformation produces the 
same surface (or at least one with the same statistical properties). This means that 
this transformation leaves the “contact state,” including contact force and stiffness 
∂F/∂d, unchanged:

Insertion of (10.31) and (10.32) into (10.25) results in

This relationship was found by Pohrt and Popov and was published in [8].3 These 
scaling arguments are not dependent on the dimensionality of the system and are 
equally valid for both the original three-dimensional case as well as the mapped 
one-dimensional case. The constant ζ can, of course, be different in both cases. 
Exactly as in the case of the axially-symmetric body, equivalence can be obtained 
by means of a conversion factor �(H) in (10.15).

So, we see that the method of dimensionality reduction produces exact results 
in both asymptotically limiting cases of very small and very large forces.

10.7 � Contact Mechanics for Self-Affine Surfaces for 
−1 < H < 3

Self-affine surfaces are often investigated over the interval of Hurst exponents of 
0 < H < 1. Equation (10.8), however, can formally be used also over a larger inter-
val. In doing so, the parameter H loses the general meaning of the “Hurst expo-
nent,” which is a parameter that describes the property of self-affinity [Eq. (10.7)]. 
However, investigations of surfaces generated using (10.16) show that surfaces gen-
erated in this way posess the property of self-affinity with the Hurst exponent H in 
the larger interval 0 < H < 2 as is typically assumed. In the following, we want to 
go beyond this interval and investigate contacts between surfaces with power spectra 
according to Eq. (10.8) with the parameter H in the interval −1 < H < 3.

(10.31)

L′

= ψL

z′

= ψHz.

d′

= d

(10.32)
F ′

= F

k′

= k.

(10.33)α =

1

1 + H
.

3  It was only after the appearance of paper [8] and of the German edition of this book, the authors 
were called attention to the fact that dependencies (10.27) an (10.33) have been derived already in 
1993 in [9] using almost the same arguments.
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To note is the fact that the value H = −1 corresponds to a constant power spec-
trum that is independent of wavelength. Many surfaces have this property beginning 
at a certain “roll-off” wave vector. Thus, H = −1 corresponds to a rough surface with 
a pure “roll-off.” At H > 2, the spectral density decreases so fast that practically only 
the components with the largest wavelengths remain: We are dealing with a single 
smooth asperity. In this limiting case, the Hertzian contact theory should be valid. 
Thus, the chosen interval −1 < H < 3 covers practically all thinkable types of rough 
surfaces beginning with spectrums described by white noise down to smooth surfaces.

Numerical simulations show that for all values of H over the said interval, the 
contact stiffness is a power function (10.25) of the normal force. The values of the 
exponent α that are obtained from the directly simulated three-dimensional cases 
are presented in Fig.  10.8 as crosses. The solid line shows the exponents α that 
result from the corresponding one-dimensional simulations. For H < 0, α is prac-
tically constant and lies near

For such surfaces, the stiffness is approximately proportional to the normal force, 
a result that is predicted by many contact theories of rough surfaces [2–4].

Over the interval 0 < H < 2, the exponent α can be described very well with 
the “Pohrt–Popov” law  (10.33) [8]. In this interval, the surface exhibits the prop-
erty of self-affinity.

For H > 2, we are dealing with a Hertzian contact and the exponent is that of 
the Hertzian contact:

Because three-dimensional and one-dimensional calculations provide the same 
exponent α, it is always possible to choose a conversion factor �(H) in (10.15) 
so that the one-dimensional and the three-dimensional relationships correspond 

(10.34)α ≈ 0.9.

(10.35)α =

1

3
.

Fig. 10.8   Exponent α from 
(10.25) as a function of the 
Hurst exponent for a rough 
surface. The crosses are 
the results from a three-
dimensional BEM study. The 
solid line was produced using 
the reduction method
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exactly. Due to the fact that the saturation value of the stiffness for a complete 
contact is not dependent on the conversion process, it is always “automatically” 
correct. The value of the conversion factor �(H) which guarantees the identical 
contact properties in both the three-dimensional and one-dimensional cases can, 
until now, only be determined by a comparison with three-dimensional, numerical 
results. The best results (at this time) are presented  in Fig. 10.9.

The calculated stiffnesses for these values of �(H) for Hurst exponents over the 
interval 0 < H < 2 are presented in Fig. 10.10. In the transitional domain from power 

Fig. 10.9   The best results at present for the value of the conversion factor �(H) in (10.15) that lead 
to agreement in the contact stiffness for both the three-dimensional and one-dimensional cases
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Fig.  10.10   The dependencies of the stiffness on the normal force calculated with the factor 
�(H) from Fig. 10.9 for Hurst exponents over the interval 0 < H < 2 show that the exact agree-
ment between one-dimensional and three-dimensional results is valid for small forces and in the 
saturation domain. The three-dimensional calculations were conducted on a square mesh with 
513 × 513 discretization points



157

law to saturation, the results for the three-dimensional and one-dimensional calcula-
tions correspond almost identically in the proximity of H = 2/3, while there are devi-
ations for very small (H ≈ 0) and very large (H ≈ 2) values of the Hurst exponent. 
In contrast to the axially-symmetric case, the method of dimensionality reduction 
is not exact in the application to randomly rough surfaces, but presents a very good 
approximation.

The conversion factor �(H) is dependent on the Hurst exponent. This depend-
ence means that it must be possible to formulate a general rule for the conversion 
of arbitrary power spectra that are not necessarily self-affine. This conversion must 
have the form of an integral transformation:

where K
(

q, q′

)

 is a homogeneous zero order function of q and q′. The exact form 
of the transformation is not yet known.

10.8 � Equivalence Between Rough Self-Affine  
and Axially-Symmetric Contacts with the Same  
Hurst Exponent

In Chap. 3 and the current chapter, it was shown that both axially-symmetric and 
randomly rough, fractal surfaces may be described using the reduction method. 
This provides another possibility to drastically reduce the computational costs of 
the numerical simulation of rough contacts by replacing the rough surface by a 
single asperity. In the following, this idea will be shortly explained.

Let us consider a three-dimensional, pointed, axially-symmetric indenter of the 
form

with 0 < n ≤ 1, as can be seen in Fig. 10.11. It is easy to recognize that this form 
is also “self-affine,” because the key property (10.7) is also met here. Indeed, if 
we investigate such an indenter near r = 0 and zoom in or out, then it appears 
unchanged and the following is valid:

Such form can also be understood as being a self-affine surface, however, with-
out the property of being randomly rough. The Hurst exponent in this somewhat 
abstract self-affine roughness is

Furthermore, we want to assume that the indentation behavior can be suffi-
ciently described within the framework of half-space theory also with this pointed 

(10.36)C1D(q) =

qmax
∫

q

C2D(q
′

)K(q, q
′

)dq
′,

(10.37)z(r) = Q3D · rn,

(10.38)z′(r) = ψnz
(

r
/

ψ
)

.

(10.39)H = n.

10.7  Contact Mechanics for Self-affine Surfaces for – 1 < H < 3
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indenter. We know the following relationship between the acting normal force and 
contact stiffness for three-dimensional, axially-symmetric bodies from Chap. 3:

This can be rearranged into the form from Eq. (10.25):

After setting this equal to Eq. (10.30), it results that the axially-symmetric, three-
dimensional indenter behaves exactly like a fractal surface if the prefactor Q3D in 
Eq. (10.37) is chosen to be

By applying the rule of Heß, we directly obtain the corresponding prefactor for the 
equivalent one-dimensional indenter through multiplication with κ(H):

Table  10.1 summarizes the equivalencies once more. The three-dimensional, 
axially-symmetric case was solved in the 1950s and 60s by Galin and Sneddon 
[10]. By using the rule of Heß, we arrive at the one-dimensional system. For 
the randomly rough surfaces in one and three dimensions, there exist power law 
dependencies whose prefactors can be approximated using Eq. (10.30) so that the 
conversion to the analytically solved axially-symmetric cases can be undertaken 
using Eqs. (10.42) or (10.43), respectively.

(10.40)
∂F

∂d
= k = 2E∗

(

(n + 1)F

2Q3DE∗nκ(n)

)
1

n+1

∝ F
1

n+1 .

(10.41)

k

E∗L
=

2

L

(

(H + 1)F

2Q3DE∗Hκ(H)

)
1

H+1

=

2

L

(

(H + 1)Lh

2Q3DHκ(H)

)
1

H+1
(

F

E∗hL

)
1

H+1

.

(10.42)Q3D =

(

2(H + 1)

1.9412L

)H+1
(H + 1)L

2Hκ(H)
h.

(10.43)Q1D =

(

2(H + 1)

1.9412L

)H+1
(H + 1)L

2H
h.

Fig. 10.11   Cross-section of 
an axially-symmetric indenter 
having the form (10.37) with 
n = 0.6

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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The equivalency of the axially-symmetric indenter to a fractally rough surface 
is, of course, only valid for the average of several realizations. The fact that fractal 
surfaces are randomly rough (in other words, exhibit different phases), results in 
the reality that two realizations with the same Hurst exponent may differ in stiff-
ness behavior. In the cited investigations, standard deviations on the order of 30 % 
were observed, both in one and three dimensions (see Fig. 14.1). The equivalent 
system of an axially-symmetric indenter, on the other hand, is deterministic and 
exhibits no deviations.

10.9  Problems

Problem 1  In electric cars, aluminum cables are becoming more frequently used 
in the place of copper cables. Let us imagine such a massive conductor that has 
been fractured by careless mounting and is pressed back together slightly offset 
from the original configuration. How large is the additional electrical resistance 
that is now exhibited by the cable? (Fig. 10.12).

Solution  Through the offset, the contacting surfaces do not match one another and 
the current can only flow through the contact areas. According to the analogy from 
Barber ([11], also see Sect. 8.3), the electrical resistance can be obtained from the 
contact stiffness using

where R is the electrical contact resistance (or constriction resistance) and ρ1 and ρ2 
are the specific resistances of the contacting bodies. For identical materials, we obtain

(10.44)
k

E∗

=

(ρ1 + ρ2)

2R
,

(10.45)
1

R
=

k

E∗ρ
.

Table 10.1   Relationships and equivalencies for the fractal contact problem

10.8  Equivalence Between Rough Self-affine…

http://dx.doi.org/10.1007/978-3-642-53876-6_14
http://dx.doi.org/10.1007/978-3-642-53876-6_8
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With k according to Eq. (10.30):

we obtain the additional constriction resistance:

Fractured surfaces typically exhibit a Hurst exponent of 0.8.

Problem 2  Approximate the stiffness of a “fractal” surface that exhibits a distinct 
long wavelength cut-off. There are no roughnesses having a wavelength � > �cutoff, 
where �cutoff ≪ L. How does the contact stiffness k(FN ) behave for such a surface at 
small forces?

Solution  A surface with a cut-off wavelength �cutoff exhibits many local maxi-
mums or asperities that come into contact first (see Fig.  10.1b, bottom). The 
various maximums are separated by a characteristic distance �cutoff. For the inden-
tation with small forces, we want to assume that no elastic coupling takes place 
between the asperities. This assumption is supported by the fact that the few 
highest asperities are not necessarily near one another. Furthermore, we want to 
assume that the height distribution of the asperities is exponential. The existing 
contact configuration corresponds to connecting the stiffnesses of all asperities in 
parallel that have come into contact at the current indentation depth. The approach 
to this problem is analogous to the model of Greenwood and Williamson [3] with 
the difference that the behavior of the contact of the indenting asperities is not 

(10.46)k =

1.9412

H + 1
E∗L

(

FN

E∗Lhrms

)
1

H+1

,

(10.47)R =

(H + 1)ρ

1.9412L

(

FN

E∗Lhrms

)
−1

H+1

.

Fig. 10.12   A solid electrical 
conductor, which was 
fractured and pressed back 
together slightly offset
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Hertzian, but rather the behavior of a fractal indenter without long wavelength cut-
off. Therefore, we have

for the individual tips of the roughness, where

The combined surface now consists of a large number of such individual systems, 
the maximums of which are distributed exponentially, with the probability density

At a given indentation depth, we obtain the total force as the integral of the height 
distribution multiplied by the individual force per asperity, where N0 is the total 
number of asperities:

The derivative with respect to d = −h finally results in the total stiffness

and we obtain

for the total stiffness with respect to the total force.
So, there is a linear relationship between normal force and contact stiffness for 

systems with long wavelength cut-off. The prefactor of this relationship is depend-
ent only on the type of distribution of the highest asperities. It is noteworthy that 
all dependencies on the Hurst exponent are eliminated in Eq. (10.55). The linear 
dependence (10.55) is valid also if Hertzian behavior is assumed instead of frac-
tal asperities. This relationship has been confirmed by numerical studies by other 

(10.48)F(d) = �d
H+1

H

(10.49)� = E∗h−

1
H L

(

1.1419
H

H + 1
ζ

)
H+1

H

.

(10.50)φ(z) =

{

�e
−�z

, z > 0

0, else.

(10.51)FG = N0�

∞
∫

h

φ(z)(z − h)
H+1

H dz,

(10.52)
FG = N0��

−1−

1
H Γ

(

2 +

1

H

)

︸ ︷︷ ︸

S(H)

e−�h,

(10.53)FG = S(H)e−�h.

(10.54)kG =

∂FG

∂d
= −

∂FG

∂h
= S(H)�e−�h,

(10.55)kG(FG) = �FG

10.9  Problems
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authors and becomes even more valid the larger the system is in comparison to the 
chosen cut-off wavelength, meaning the more asperities being accounted for in the 
spatial average.

Problem 3  Given is a sphere with radius R, the surface of which is covered with a 
roughness (Hurst exponent H, RMS-height h). Determine the contact stiffness as a 
function of normal force (Fig. 10.13).

Solution  This problem may be solved analytically in one dimension by taking 
the equivalency between random roughness and an axially-symmetric indenter 
into account and by using the generalized rule of Heß. The original system of the 
sphere with the superimposed roughness is first replaced by an equivalent three-
dimensional system in the form of an axially-symmetric indenter of the form

where Q3D is determined by (10.42). This three-dimensional indenter can be con-
verted to an axisymmetric one-dimensional system according to the rule of Heß as

The force as a function of contact radius a is

(10.56)z(r) =

r2

2R
+ Q3DrH ,

(10.57)
z(x) =

κ(2)

2R
︸︷︷︸

τ2

x2
+

(

2(H + 1)

1.9412L

)H+1
(H + 1)L

2H
h

︸ ︷︷ ︸

τH

|x|H .

(10.58)

F(a) = 2E∗



a · z(a) −

a
�

0

z(a)da





= 2E∗

�

2

3
τ2a3

+ τH

�

H

H + 1

�

aH+1

�

.

Fig. 10.13   A numerically 
generated sphere having a 
surface roughness, H = 0.7
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With k = 2aE∗ and (10.57), we obtain

In Fig.  10.14, this dependence is presented together with the complete three-
dimensional numerical solution. For very small forces, the system behavior is 
expectedly dominated by the roughness. For larger forces, the influence of the 
roughness vanishes and the combined system behaves like a smooth Hertzian con-
tact. A more detailed discussion can be found in [12].
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11.1 � Introduction

The frictional force can be determined in one of two ways: Either by a direct cal-
culation of the tangential force components and determining their mean or by 
calculating the energy dissipation that is caused by material deformation. If the 
average power 

〈

˙W
〉

 is dissipated during a macroscopic steady-state motion, then 
the entirety of the power dissipation can be attributed to the frictional force (from 
the macroscopic point of view). Therefore,

The frictional force is determined from the ratio of the power dissipation to the 
velocity:

In the previous chapters, we have seen that within the framework of the method of 
dimensionality reduction, the relationships between force and displacement can be 
correctly determined in both the normal and tangential directions. This means that 
also the energy dissipation, and with it the frictional force, must be mappable. In 
this chapter, we discuss in detail how the frictional forces between an elastomer 
and a rigid surface (smooth or rough) can be modeled.

Throughout the entire chapter, we will assume that the elastomer can be 
described as an incompressible medium with a general linear rheology:

(11.1)
〈

Ẇ
〉

= FRv.

(11.2)FR =

〈

Ẇ
〉

v
.

(11.3)σ(t) =

t
∫

−∞

G(t − t′)ε̇(t′)dt′,

Chapter 11
Frictional Force

© Springer-Verlag Berlin Heidelberg 2015 
V.L. Popov and M. Heß, Method of Dimensionality Reduction  
in Contact Mechanics and Friction, DOI 10.1007/978-3-642-53876-6_11

Valentin L. Popov, Silvio Kürschner and Markus Heß



166 11  Frictional Force

where σ(t) is the shear stress, ε(t) is the shear angle, and G(t) is the time-dependent 
shear modulus ([1], Chap. 15). Using the reduction method, this medium is 
replaced by a one-dimensional foundation, for which the forces in the individual 
elements are defined according to Eq. (7.13):

We begin our considerations with a qualitative discussion of energy dissipation 
and the frictional forces in the contact between simple axially-symmetric profiles 
(or their one-dimensional equivalents).

11.2 � Energy Dissipation in an Elastomer with Linear 
Rheology

We consider the contact between a rigid cylindrical indenter with the diameter D 
and a viscoelastic half-space, the rheology of which is characterized by a com-
plex, frequency-dependent shear modulus ˆG(ω) (see Eq.  (7.9)). We assume that 
the indenter moves periodically according to d = d0(t + cos ωt)/2. The oscillating 
component of the movement is equal to

The force acting on the indenter is calculated as

where

On the right side of Eq. (11.7), we have substituted ν = 1/2, therefore, requiring 
incompressibility. The average power dissipation is calculated as the time-aver-
aged product between the force and the velocity:

The angled brackets denote a temporal average. After insertion of ˆG(ω) = G
′(ω) + iG

′′(ω)

iG
′′(ω), we obtain

(11.4)fN (t) = 4�x

t
∫

−∞

G(t − t
′)u̇z(t

′)dt
′.

(11.5)�d(t) =

d0

2
cos ωt =

d0

4

(

e
iωt

+ e
−iωt

)

.

(11.6)�F(t) =

d0

4

(

DE
∗(ω)eiωt

+ DE
∗(−ω)e−iωt

)

,

(11.7)E∗(ω) =

2

1 − ν
G(ω) = 4G(ω).

(11.8)

〈

˙W
〉

=

〈

�F(t) ·

d(�d(t))

dt

〉

=

Dd
2
0

4

〈(

G(ω)eiωt
+ G(−ω)e−iωt

)

(

iωe
iωt

− iωe
−iωt

)〉

.

(11.9)

〈

˙W
〉

=

1

2
Dd

2

0
ωG

′′(ω).
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The force–displacement relations used for the derivation of this equation are 
identical to those in the one-dimensional case. Thus, the result (11.9) is also valid 
in the one-dimensional equivalent model. 

11.3 � Frictional Force Between a Rigid Axially-Symmetric 
Indenter and an Elastomer

11.3.1 � Parabolic Indenter

We will illustrate the basic idea of the calculation of the frictional force using the 
example of an axially-symmetric parabolic profile

If this profile is pressed into a viscoelastic half-space to a depth of d and then 
tangentially moved with the velocity v, then a contact area is formed with the 
characteristic radius

The size of the contact area (for the given indentation depth) is not dependent 
on the elastic properties of the medium. Equation (11.11) is valid for the normal 
indentation into an arbitrary linearly viscous medium. As a qualitative approxima-
tion, it is also valid for tangential motion, independent of the rheological proper-
ties of the viscoelastic medium and the tangential velocity.

For a tangential motion with the velocity v, the material near the contact area is 
loaded with the characteristic frequency

The approximation for the normal force is

The dissipation power can be approximated using Eq. (11.9):

Therefore, the following approximation results for the tangential force:

(11.10)z̃(r) =

r2

2R
.

(11.11)a =

√

Rd.

(11.12)ω ≈

2π

�
v ≈

π

a
v.

(11.13)FN ≈

4

3

∣

∣E∗(ω)
∣

∣R1/2d3/2
=

16

3
|G(ω)|R1/2d3/2.

(11.14)
〈

˙W
〉

≈

1

2
Dd2ωG′′(ω) ≈ ad2ωG′′(ω) ≈ πvd2G′′(ω).

(11.15)Fx =

〈

˙W
〉

v
≈ πd

2
G

′′(ω).

11.2  Energy Dissipation in an Elastomer with Linear Rheology
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Even if the tangential force is not proportional to the normal force, we can 
formally define the coefficient of friction as

Equations (11.11)–(11.16) are equally valid in both the three-dimensional system 
and its equivalent one-dimensional system. At the same time, it must be stressed 
that we are not dealing with a rigorous derivation, but rather a qualitative approxi-
mation that will be more precisely refined in the following, more exact, treatment.

We now introduce the average gradient of the profile:

By introducing the average gradient, Eq. (11.16) can be written in the form

which is a very universal qualitative approximation, except for the fact that the 
coefficient may change.

11.3.2 � Axially-Symmetric Indenter with an Arbitrary Form

As a second example, we consider an arbitrary axially-symmetric profile having 
the form

The contact radius as a function of indentation depth d is given by the following 
general equation:

where κn is defined according to (3.16). The normal force is given by Eq. (3.24):

(11.16)µ =

Fx

FN

≈

3π

16

G′′(ω)

|G(ω)|

(

d

R

)1/2

=

3π

16

G′′(ω)

|G(ω)|

( a

R

)

.

(11.17)|∇z|3D =

a
∫

0

r

R
2πrdr

a
∫

0

2πrdr

=

2

3

a

R
.

(11.18)µ =

9π

32

G′′(ω)

|G(ω)|
|∇z|3D,

(11.19)z̃(r) = cnr
n
.

(11.20)a =

(

d

kncn

)1/n

, c̃n = κncn,

(11.21)FN =

2n

n + 1
E

∗

c̃
−1/n

n
d

n+1

n
=

8n

n + 1
|G(ω)|c̃−1/n

n
d

n+1

n .
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As before, the tangential force is calculated using (11.15). The resulting 
coefficient of friction is

where we have once again introduced the average gradient |∇z|3D =

2n
n+1

cnan−1. 
For the interesting case of the conical indenter (n = 1, κn = π/2), we obtain

(11.22)µ =

Fx

FN

≈

π(n + 1)

8n
c̃

1/n

n
d

n−1

n

G
′′(ω)

|G(ω)|
=

π(n + 1)2κn

16n2

G
′′(ω)

|G(ω)|
|∇z|3D,

(11.23)µ =

π2

8

G′′(ω)

|G(ω)|
|∇z|3D.

Fig. 11.1   Frictional contact 
between a viscoelastic 
element and an inclined rigid 
plane

FN
Fz

Fx

11.4 � The Half-Space Approximation

Everywhere in this book, we assume that the surface deformation is small. 
Especially, the slope of the surface is assumed to be small at all points. Only under 
this condition is the linear relationship between the surface stresses and displace-
ments of the medium valid (and with them the classical solutions to the contact 
problems). This assumption also has direct implications to the application of the 
reduction method, which we would like to explain at this point.

We now consider a rigid line with the inclination angle θ in contact with an ele-
ment of a linearly elastic foundation, as shown in Fig. 11.1. The force components 
in the x-direction and z-direction are given by the equations

From this, it follows that

For small inclination angles, it follows from Eqs.  (11.24) and (11.25) that the 
order of magnitude of the horizontal and vertical displacements are related as

(11.24)�Fx = kxux + γxu̇x = �FN sin θ ,

(11.25)�Fz = kzuz + γzu̇z = �FN cos θ .

(11.26)�Fx = �Fz tan θ .

(11.27)|ux| ≈ |uz|tan θ ≪ |uz|.

11.3  Frictional Force Between a Rigid Axially-Symmetric…
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In the same approximation, one can assume that �Fz ≈ �FN. We come to the 
conclusion that we can restrict ourselves in the half-space approximation to con-
sidering the vertical displacement. From this, the vertical force is calculated next. 
The horizontal force component is subsequently obtained by multiplying the result 
with the local slope of the rigid surface.

11.5 � Calculation of the Frictional Force with a Conical 
Indenter Within the Framework of the Method 
of Dimensionality Reduction

For contacts with a one-dimensional foundation, the calculations can be carried 
out completely analytically for the simplest cases. As an example, we consider a 
rigid wedge-shaped indenter of the form

which is pressed into a viscoelastic foundation to a depth of d and moved tangen-
tially with the velocity v (Fig. 11.2a) so that its form is described at time t by the 
equation

For convenience, we have introduced the coordinate x̃ in the frame of reference 
that moves with the rigid indenter.

To simplify our task, we assume that the elastomer is a simple viscoelastic 
material (Kelvin body), which can be modeled as parallelly connected springs and 
dampers (Fig.  11.2b). If the three-dimensional medium is characterized by the 
shear modulus G and the viscosity η, then the the single elements of the viscoelas-
tic foundation must be chosen according to the rule (11.4) as parallelly connected 
springs with a stiffness Δkz and dampers with the damping coefficient Δγ, where

(11.28)z̃ = g(x) = c|x|,

(11.29)z̃ = g(x + vt) = g(x̃).

(11.30)�kz = 4G�x, �γ = 4η�x.

d

-a

z

x~a21
x

z

x
v

(a) (b)

Fig. 11.2   (a) Contact between an elastomer and rigid conical indenter, which is moved tangen-
tially with the velocity v. (b) Rheological model for a viscoelastic medium
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We denote the coordinates of the boundary of the contact area as x̃ = −a1 and 
x̃ = a2 (Fig. 11.2a). Vertical displacements uz in the entire contact area are deter-
mined by the purely geometric condition

The vertical velocities are

and the force acting on one element is

The left boundary of the contact area is determined by the condition uz (−a1) = 0 
and the right boundary, from the condition fN (a2) = 0. From this, it follows that

where we have introduced the relaxation time

We can consider two velocity domains:

In the first, the right contact point lies to the right of the tip of the cone. In the 
second, it coincides with the tip.

Velocity domain I: The total normal force is

(11.31)uz(x, t) = d − g(x + vt) = d − g(x̃).

(11.32)
∂uz(x, t)

∂t
= −

∂g(x + vt)

∂t
= −vg′(x̃)

(11.33)

fN (x̃) = �kz · uz + �γ · u̇z = 4
[

G · (d − g(x̃)) − ηvg′(x̃)
]

�x.

(11.34)a1 = d/c, a2 = d/c − vτ ,

(11.35)τ = η/G.

(11.36)I: v <
d

cτ
,

(11.37)II: v >
d

cτ
.

(11.38)

FN = 4

a2
∫

−a1

[

G(d − g(x̃)) − ηvg′(x̃)
]

dx̃

= 4

0
∫

−a1

[

G(d + cx̃) + ηvc
]

dx̃ + 4

a2
∫

0

[

G(d − cx̃) − ηvc
]

dx̃

= 4G
{

d(a1 + a2) + τvc(a1 − a2) −

c

2

(

a2
1 + a2

2

)}

=

4G

c

[

d2
+

1

2
(cvτ )2

]

.

11.5  Calculation of the Frictional Force with a Conical Indenter…
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The tangential force is calculated as

The resulting coefficient of friction is

By taking into account that c = |∇z| and (cvτ )/d ≈ vτ/a ≈ ωτ , this result cor-
responds qualitatively with the approximation (11.23), however, there are minor 
deviations from the simple approximation.

Velocity domain II: The normal force is

and the coefficient of friction is

This limiting case is also valid for the case of a contact with a linear fluid (G = 0). 
In this case, FN = 4dηv and the coefficient of friction is constant.

If we express the indentation depth as a function of normal force in Eq. (11.38) 
and set it equal to Eq. (11.40), then we obtain a coefficient of friction of

with

(11.39)

Fx = −4

a2
∫

−a1

g′(x̃)
[

G(d − g(x̃)) − ηvg′(x̃)
]

dx̃

= 4c

0
∫

−a1

[

G(d + cx̃) + ηvc
]

dx̃ − 4c

a2
∫

0

[

G(d − cx̃) − ηvc
]

dx̃

= 4Gc
{

d(a1 − a2) + τvc(a1 + a2) −

c

2

(

a2
1 − a2

2

)}

= 4Gc
[

2d(vτ) −

c

2
(vτ )2

]

.

(11.40)µ =

Fx

FN

= c

[

2
(

cvτ
d

)

−

1
2

(

cvτ
d

)2
]

[

1 +

1
2

(

cvτ
d

)2
] .

(11.41)

FN = 4

0
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−a1

[

G(d − g(x̃)) − ηvg′(x̃)
]

dx̃ = 4

0
∫

−a1

[

G(d + cx̃) + ηvc
]

dx̃

= 4G
{

da1 + τvca1 −

c

2
a2

1

}

=

4G

c

[

d2

2
+ cdvτ

]

(11.42)µ = c = const.

(11.43)µ =

Fx

FN

=

{

c
[

23/2ψ
√

1 − ψ2
− ψ2

]

, ψ2 < 1/3

c, ψ2 > 1/3
,

(11.44)ψ2
=

2cGv2τ 2

FN

.
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According to this, the coefficient of friction is a universal function of the param-
eter combination ψ and is dependent on the viscosity, shear modulus, velocity, 
normal force, and average surface gradient. For values of ψ larger than a critical 
value, the coefficient of friction remains constant (Fig. 11.3).

11.6 � Correction Coefficient for the Conversion from Three-
Dimensional to One-Dimensional Profiles

In Sect. 11.3, we have shown that the frictional force for axially-symmetric, three-
dimensional profiles must agree with the corresponding one-dimensional profiles, 
based on a qualitative approximation. With such qualitative arguments, however, 
the equivalence can only be shown up to a constant coefficient; the constant must 
be obtained either through a comparison between exact one-dimensional and 
three-dimensional solutions or through a comparison with numerical solutions. In 
this section, we carry out such a comparison between exact one-dimensional and 
numerically obtained three-dimensional solutions in the simplest case of a linearly 
viscous medium.

In the first example, we consider a three-dimensional, conical indenter, the sur-
face of which we once again define as f (r) = tan θ · |r|. This cone is pressed into 
a viscous half-space with a constant external force and tangentially moved with a 
constant velocity. Initially, the cone sinks further into the viscous medium. At a cer-
tain depth, however, the external force is compensated for by the vertical component 
of the reaction force between the indenter and the viscous medium. A steady-state 
process is achieved for which we determine the coefficient of friction. We have sim-
ulated this process using the boundary element method for various velocities. The 
result for a cone with tan θ = 0.1 is drawn in Fig. 11.4 as a blue curve.

Fig. 11.3   The coefficient 
of friction (normalized 
by the surface gradients) 
for a conical indenter as 
a function of the variable 
ψ = vτ

√

2cG/FN
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11.5  Calculation of the Frictional Force with a Conical Indenter…
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In the previous section, we already found an analytical solution for a one-dimen-
sional consideration. We must simply adapt this to the simplified material model by 
taking the missing elastic properties as G → 0 into account. According to (11.42), 
we obtain a very simple result for the (one-dimensional) coefficient of friction µ1,D :  
It is identical to the slope of the one-dimensional profile. However, this is a factor of 
π/2 larger than that in the original three-dimensional system. Therefore,

This result is shown in Fig.  11.4 as the red curve. To check this, the analytical 
result was verified using numerical simulations with the reduction method. Both 
results correspond exactly. In Fig. 11.4, the numerically determined results from 
the reduction method are identified as black diamonds. By comparing the one-
dimensional results with those of the boundary element method, we obtain the cor-
rection factor for a conical indenter:

In a second example, we consider an indenter having the form of a rotated parabo-
loid, the surface of which is defined according to Eq. (11.10). A boundary element 
calculation was also carried out for this indenter for various tangential velocities. 
The results are presented in Fig. 11.5 as a blue curve.

(11.45)µ1D =

π

2
tan θ .

(11.46)
µ3D

µ1D

= 0.55.
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Fig. 11.4   The coefficient of friction for tangential displacements of an imbedded cone with the 
slope tanθ = 0.1
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Now, we take the results from the problems at the end of this chapter for the 
corresponding one-dimensional consideration. In the first example problem, we 
adapt the material model by setting G → 0. Additionally, we replace 1/(2R) = c 
and obtain the analytical solution from Eq. (11.67):

In Fig. 11.5, this is shown as a red curve. Also in this case, we have verified the 
results by conducting a corresponding simulation using the reduction method. 
These are shown in Fig. 11.5 as black diamonds.

By comparing the one-dimensional results with those of the boundary element 
method, we obtain the correction factor for the parabolic indenter:

The results of the reduction method scaled with this factor are shown as black 
circles.

We see that the coefficient of friction calculated using the equivalent one-
dimensional model is larger than that in the three-dimensional original sys-
tem. To obtain the correct coefficient of friction for the original system, the 

(11.47)µ1D =
2

3/2

3

√

cF

ηv
.

(11.48)
µ3D

µ1D

= 0.67.

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03
Boundary Elements
MDR (analytic)
MDR (numeric)
0.55*MDR (num.)

Sliding velocity

C
oe

ff
ic

ie
nt

 o
f 

Fr
ic

tio
n

Fig. 11.5   The coefficient of friction for tangential displacement of an imbedded rotated parabo-
loid with the radius of curvature of c = 0.1 m−1
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one-dimensional result must be multiplied by a correction factor which is depend-
ent on the exponent n in the case of the axially-symmetric profile and on the Hurst 
exponent H in the case of a rough surface. For Hurst exponents near 1, one may 
expect (in support of the results for the conical profile) that the conversion factor is 
approximately equal to 0.5. A more detailed discussion can be found in [2].

11.7 � Contacts Between Rough Surfaces

In a contact between a rigid surface and an elastomer, energy can only be dissi-
pated through deformation of the elastomer. For this reason, the roughness of the 
rigid surface and that of the surface of the elastomer play completely different 
roles. This is illustrated in Fig. 11.6. If the elastomer slides over a smooth, rigid 
plane (Fig. 11.6a), then there is no time-dependent change in the deformation state 
of the elastomer, and therefore, no energy dissipation: There is no friction. In con-
trast, if the elastomer is slid over a rough surface (Fig. 11.6b), then the local defor-
mation state of individual areas of the elastomer is time-dependent and energy is 
dissipated. From this, it follows that the roughness of the elastomer surface plays 
no direct role in this case: The friction is primarily determined by the roughness 
of the rigid surface. We will see, however, that for a certain interval of indenta-
tion force, the elastomer friction is dependent on the real contact length. This is, 
in turn, dependent on the roughness of the elastomer. In considering the elastomer 
friction between two rough surfaces, we begin with the contact between a rigid, 
rough surface and an elastomer, the surface of which we assume to be flat.

11.8 � Contact of a Flat, Smooth Elastomer with a Nominally 
Flat, Rough Body

We now discuss the friction with a nominally flat, but rough, profile and initially 
assume that the normal force is so large that complete contact is obtained with the 
elastomer. For the force, we have the equations

(11.49)FN = 4

L
∫

0

[

G
(

d − g
(

x̃
))

− ηvg′

(

x̃
)]

dx̃,

(11.50)Fx = −4

L
∫

0

g′

(

x̃
)[

G
(

d − g
(

x̃
))

− ηvg′

(

x̃
)]

dx̃.

Fig. 11.6   (a) A rough rubber 
block on a smooth rigid plane 
and (b) a smooth rubber 
block on a rough, rigid plane

(a) (b)
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The integral extends over the entire length L of the system. Due to the macroscopic 

homogeneity of the profile, the integrals 
L
∫

0

ηvg′

(

x̃
)

dx̃ and 
L
∫

0

g′

(

x̃
)

G
(

d − g
(

x̃
))

dx̃ 

vanish. The integral 
L
∫

0

Gg
(

x̃
)

dx̃ also vanishes, because we define the profile so that its 

mean is equal to zero. Therefore,

According to this, the coefficient of friction is

For a complete contact, it is proportional to the velocity and the RMS-surface gra-
dient. If the indentation depth is much larger than the roughness of the profile, 
then one can gather from Eq. (11.33) that contact separation occurs at the trailing 
edge of microcontacts when the condition

is met, where ∇z is the characteristic value of the surface gradient. At this point, 
the coefficient of friction achieves an approximately constant value of µ ≈ ∇z. By 
taking Eq. (11.51) into account, this condition can be written as

(11.51)FN = 4Gdl,

(11.52)Fx = 4ηv

L
∫

0

[

g′(x̃)
]2

dx̃ = 4ηv
〈

∇z2
〉

L.

(11.53)µ =

ηv
〈

∇z2
〉

Gd
=

vτ
〈

∇z2
〉

d
=

4GLvτ

FN

〈

∇z2
〉

.

(11.54)d/(τv∇z) ≈ 1

(11.55)
4GτvL∇z

FN

=

4ηvL∇z

FN

≈ 1.

11.9 � Contact Between a Rough Elastomer and a Rigid, 
Rough Surface

The general case of a contact between two rough surfaces can be analyzed numer-
ically. Therefore, we restrict ourselves in this chapter to a qualitative discussion 
of an elastomer with a large enough roughness. If the roughness of the elastomer 
is so large that in the relevant force interval, complete contact is not achieved, 
then the indentation depth in Eq.  (11.54) is dependent on the normal force. This 
dependence can be derived from Eq. (10.30) (for 0.4 < H < 1):

Inserting this into the criterion (11.54) results in

(11.56)d ≈ h
(H + 1)2

1, 9412H

(

FN

4GLh

)
H

H+1

.

(11.57)

19, 412H

(H + 1)2

τv∇z

h
1

H+1

(

4GL

FN

)
H

H+1

≈ 1.

11.8  Contact of a Flat, Smooth Elastomer with a Nominally Flat, Rough Body
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We note that even if the length of the system L explicitly appears in this equation, 
the criterion is independent from this length, as h ∝ LH is valid for fractal surfaces 
and the length is canceled out. This equation determines the order of magnitude of 
the velocity at which a saturation value is achieved for the coefficient of friction.

11.10  Problems

Problem 1  Determine the coefficient of friction between a parabolic profile and a 
viscoelastic half-space (Kelvin body) within the framework of the reduction method.

Solution  The derivation in Sect.  11.5 is independent of the specific form of the 
indenter, up to and including Eq. (11.33), and it is also valid in the case of a para-
bolic indenter. Only the exact form of the profile must be inserted, in this case 
z̃ = x̃2/(2R1). For the coordinates of the boundary points (Fig. 11.7), we obtain

The total normal force is calculated as

(11.58)a1 =

√

2R1d, a2 =

√

2R1d + (vτ )2
− vτ .

(11.59)

FN = 4
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∫
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Fig. 11.7   Contact between 
an elastomer and a rigid, 
parabolic indenter that is 
moved tangentially at a 
velocity v
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with

For the tangential force, we obtain

The resulting coefficient of friction is

(11.60)ξ =
ντ

(2R1d)1/2
.

(11.61)

Fx = − 4
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2G

R2

1

a2
∫

−a1

x̃
[(

a2

1
− x̃2

)

− 2τνx̃
]

dx̃

=

2Gντ

3R2

1

[

2(2R1d)3/2
− 3(2R1d)ντ − 2(ντ)3

+ 2

(

2R1d + (ντ)2

)3/2
]

=

8G

3
d2ξ

[

2 − 3ξ − 2ξ3
+ 2

(

1 + ξ2

)3/2
]

=

2G(ντ)4

3R2

1

ξ−3

[

2 − 3ξ − 2ξ3
+ 2

(

1 + ξ2

)3/2
]

.

(11.62)
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Equation (11.59) can be written in the form

where

and the coefficient of friction (11.62) can be written in the form

where we have introduced the normalized coefficient of friction µ̃:

Equations (11.63) and (11.65), in parametric form, determine the dependence of 
the dimensionless coefficient of friction (11.66) on the dimensionless velocity 
(11.64). This “master curve” is plotted in Fig. 11.8. It reaches a maximum of 0.703 
at ζ = 1.11 and then decreases once again. This decrease, however, is not due to the 

(11.63)
ζ =

ξ
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1 − ξ3
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)3/2

]1/3
,

(11.64)ζ = ντ
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4G

3FN R1

)1/3

;
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]
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]4/3
,

(11.66)µ̃ = µ

(

32R2
1G

3FN
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.

Fig. 11.8   The normalized 
frictional coefficient between 
a viscoelastic medium and 
a parabolic indenter as a 
function of the dimensionless 
velocity
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frequency dependence of the shear modulus, but rather is a result of the decrease of 
the effective surface gradient. The asymptotic behavior at very small and very large 
velocities is described by the following equations:

Problem 2  Calculate the frictional force between a conical indenter and an elas-
tomer, the rheology of which is described by the Maxwell element (spring and 
damper attached in parallel, Fig. 11.9).

Solution  The geometry of the problem is shown is Fig. 11.2a. We denote the “outer 
coordinate” of the Maxwell element as u and the coordinate of the connection 
between G and η as u1. The dynamics of the element and the force relationships are 
described by two equations:

with τ  =  η/G. In the entire contact area, the displacement u is given by the 
Eq. (11.31):

and with this, the vertical velocity is given by Eq. (11.32):

Left of the first contact point, the springs are in the non-stressed state with u = 0 
and u1 = 0. At the initial contact at x̃ = −a1 = −d/c, the change in the coordi-
nate x̃ of a given element begins according to x̃ = −a1 + vt. The solution to 
Eq. (11.69) with said initial conditions is

(11.67)µ ≈





ντ
R1

, ζ ≪ 1,

2
3/2

3

�

FN

4GR1ντ

�1/2

, ζ ≫ 1.

(11.68)fN = 4Gu1�x,

(11.69)4Gu1 = 4η(u̇ − u̇1), or u̇1 +

1

τ
u1 = u̇,

(11.70)u(x, t) = d − g(x + vt) = d − g(x̃)

(11.71)
∂u(x, t)

∂t
= −vg′(x + vt) = −vg′(x̃).

(11.72)u1 = e−

t
τ

t
∫

0

u̇
(

t̃
)

e
t̃
τ dt̃.

Fig. 11.9   The Maxwell 
element

G
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Through the substitution x̂ = −a1 + vt̃, it can be brought into the form

The force acting on the element is

The right contact point is determined from the condition fN  =  0, or in explicit 
form,

After a simple calculation, it follows that

We obtain the following for the force in individual springs:

Calculating the integral results in

The entire normal and tangential forces are now

(11.73)u1 = −e−

x̃
vτ

x̃
∫

−a1

g′

(

x̂
)

e
x̃

vτ dx̂.

(11.74)fN = 4Gu1�x = −4G�xe
x̃

vτ

x̃
∫

−a1

g′

(

x̂
)

e
x̃

vτ dx̂.

(11.75)

0
∫

−a1

(−c)e
x̂

vτ dx̂ +

a2
∫

0

ce
x̂

vτ dx̂ = 0.

(11.76)a2 = vτ ln

(

2 − e−

d
cvτ

)

.

(11.77)fN = 4G�x



















e
−

x̃

vτ

x̃
�

−a1

ce
x̂

vτ dx̂, x̃ < 0

e
−

x̃

vτ

�

0
�

−a1

ce
−

x̂

vτ dx̂ −

x̃
�

0

ce
x̂

vτ dx̂

�

, x̃ > 0

.

(11.78)fN = 4Gcvτ�x

{

1 − e
−

d

cvτ e
−

x̃

vτ , x̃ < 0

e
−

x̃

vτ

(

2 − e
−

d

cvτ

)

− 1, x̃ > 0
.

(11.79)

FN = 4Gcvτ�x





0
�

−a1

�

1 − e−

d
cvτ e−

x̃
vτ

�

dx̃ +

a2
�

0

�

e−

x̃
vτ

�

2 − e−

d
cvτ

�

− 1

�

dx̃



,

(11.80)

Fx = 4Gcvτ�x



c

0
�

−a1

�

1 − e
−

d

cvτ e
−

x̃

vτ

�

dx̃ − c

a2
�

0

�

e
−

x̃

vτ

�

2 − e
−

d

cvτ

�

− 1

�

dx̃



.
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Calculating these integrals finally provides

and we obtain a coefficient of friction of

This dependence is presented in Fig. 11.10.
We note that for a Maxwell element, the relations G′′

= G ωτ

1+(ωτ)2 and 
|G| = G ωτ

√

1+(ωτ)2
 are valid so that the “rheological factor” in Eq.  (11.23) 

decreases with the frequency:

which corresponds qualitatively with the obtained solution.

Problem 3  Determine the frictional force between a rigid, rough surface and an 
elastomer in complete contact.

(11.81)FN = 4Gvτ�x
[

d − cvτ ln

(

2 − e−

d
cvτ

)]

,

(11.82)Fx = 4Gcvτ�x

(

d − 2cvτ

(

1 − e
−

d

cvτ

)

+ cvτ ln

(

2 − e
−

d

cvτ

))

,

(11.83)µ = c

d

cvτ
− 2

(

1 − e
−

d

cvτ

)

+ ln

(

2 − e
−

d

cvτ

)

d

cvτ
− ln

(

2 − e
−

d

cvτ

) .

(11.84)
G′′(ω)

|G(ω)|
=

1
√

1 + (ωτ)2
,

Fig. 11.10   Dependence of 
the normalized coefficient of 
friction with respect to the 
variable cvτ/d for a conical 
indenter in contact with the 
Maxwell medium
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Solution  If the normal force is so large that the surface of the elastomer is in 
contact at all points with the rough surface, then the coefficient of friction can be 
calculated using the following equation [3]:

For a viscoelastic elastomer, the following is valid:

Problem 4  Friction between elastomers and differently shaped rough bodies. 
Determine the frictional force between a rigid, rough curved surface (rough sphere 
or rough cone) and an elastomer (Kelvin body).

Solution  Let us consider a rigid indenter having the form

consisting of the macroscopic power-shaped profile

and a superimposed roughness h(x), as shown in Fig. 11.11. n = 1 corresponds to 
a conical and n = 2 to a parabolic indenter. Coordinates x and z are measured from 
the minimum of the macroscopic form, so that g0(0) = 0. The ensemble average of 

(11.85)µ =

L2

2FN

∫

dqq3C2D(q)

2π
∫

0

dϕ cos ϕ Im
[

4G(qν cos (ϕ))
]

.

(11.86)µ = ην
L2

FN

∫

2πC2D(q)q4dq.

(11.87)z = g(x) = g0(x) + h(x)

(11.88)g0(x) = cn|x|
n
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Fig. 11.11   One-dimensional contact between a visco-elastic body and (a) a rough ‘cone’; (b) a 
rough ‘sphere’
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the rough profile is assumed to be zero: �h(x)� = 0. The roughness is assumed to 
be a self-affine fractal having the power spectral density C1D ∝ q−2H−1, where q 
is the wave vector and H, the Hurst exponent. This one-dimensional power density 
corresponds to the two-dimensional power density of the form C2D ∝ q−2H−2. The 
spectral density is assumed to be defined in the interval from qmin = 2π/L, where L 
is some reference length, to the upper cut-off wave vector qmax = π/Δx. The spac-
ing Δx determines the upper cut-off wave vector.

Surface topography can be characterized by the rms roughness h0, which is 
dominated by the long wavelength components of the power spectrum and the 
rms gradient of the surface ∇z, dominated by the short wavelength part of the 
spectrum. Throughout this book, we will assume that the indentation depth of 
the indenter, d, is much larger than the rms value of the roughness, h0 ≪ d. This 
means that the large-scale configuration of the contact is primarily determined by 
the macroscopic form of the indenter and does not depend on the roughness.

According to the method of dimensionality reduction, the Kelvin body can be 
modeled as a series of parallel springs with stiffness Δkz and dash pots with damp-
ing constant Δγ (Fig. 11.12b), where

The rigid indenter is pressed into a viscoelastic foundation to the depth d and is 
moved in the tangential direction with velocity ν (Fig. 11.12a), so that at time t it 
is described by the equation

For convenience, we introduced the coordinate x̃ = x + νt in the coordinate sys-
tem moving together with the rigid indenter. The normal force in each particular 
element of the viscoelastic foundation is given by

where u is the vertical displacement of the element of the viscoelastic foundation. 
For elements in contact with the rigid surface, this means that

(11.89)�kz = 4G�x, �γ = 4η�x.

(11.90)z = g(x + νt) − d = g(x̃) − d.

(11.91)f = −4�x[Gu(x) + ηu̇(x, t)],

(11.92)f = 4�x
[

G(d − g(x̃)) − ηνg′(x̃)
]

.

d

-a

z

x~a21
x

z

x
v

(a) (b)

Fig. 11.12   (a) A “large scale picture” of a contact of an elastomer and a rigid conical indenter 
which is moving with velocity ν. (b) Rheological model for a viscoelastic medium
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The normal and the tangential forces are determined by the equations

We first consider the force of friction at very low velocities. The contact configuration is 
then approximately equal to the static contact. The uppermost left and uppermost right 
points −a1 and a2 of the contact (see Fig. 11.12a) are then both determined by the con-
dition g(−a1) − d ≈ g(a2) − d = 0. Because of the relation g(−a1) = g(a2), 

the integrals 4
a2
∫

−a1

ηvg′(x̃)dx̃ and 
a2
∫

−a1

g′

(x̃)G(d − g(x̃))dx̃ in (11.93) and (11.94) 

vanish. Therefore, 

We assume that the gradient of the macroscopic shape of the indenter is much 
smaller than that of the roughness, 

〈

g′

0(x)
2
〉

≪

〈

h′(x)2
〉

, so that

where ∇z is the rms value of the surface gradient and Lcont = a1 + a2, the contact 
length. For the coefficient of friction, we get

where τ = η/G is the relaxation time. This equation shows that both the macro-
scopic shape of the indenter and the microscopic properties of surface topography 
determine the coefficient of friction: The contact length is primarily determined by 
the macroscopic properties (shape of the body and the normal force) while the rms 
gradient is primarily determined by the roughness at the smallest scale.

Consider the opposite case of high sliding velocities. The detachment of elasto-
mer from the indenter occurs when the normal force (which is the sum of elastic 
and viscous force, Eq. (11.92)) vanishes. If the rms value of elastic force and vis-
cous force become of the same order of magnitude, the detachment will occur in 

(11.93)FN = 4

a2
∫

−a1

[

G(d − g(x̃)) − ηνg′(x̃)
]

dx̃,

(11.94)Fx = −4

a2
∫

−a1

g′(x̃)
[

G(d − g(x̃)) − ηνg′(x̃)
]

dx̃.

(11.95)FN = 4

a2
∫

−a1

G(d − g(x̃))dx̃ ≈ 4

a2
∫

−a1

G(d − g0(x̃))dx̃,

(11.96)Fx = 4ηv

a2
∫

−a1

[

g′(x̃)
]2

dx̃ ≈ 4ηv

a2
∫

−a1

[

g′

0(x̃)
2
+ h′(x̃)2

]

dx̃.

(11.97)Fx ≈ 4ηv

a2
∫

−a1

h′(x)2dx̃ ≈ 4ηv∇z2Lcont,

(11.98)µ ≈

4Lcontvη

FN

∇z
2

=

4GLcontvτ

FN

∇z
2,
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almost all points with a negative surface gradient, thus, a one-sided detachment of 
the elastomer from the indenter will take place. Characteristic rms values of three 
terms in Eq. (11.92) are proportional to Gd, Gh, and ηv∇z. If the indentation depth 
is much larger than the roughness of the profile, d ≫ h, then the condition for one-
sided detachment of the elastomer from the indenter reads Gd ≈ ηv∇z or

In that case, the friction coefficient achieves an approximately constant value of

Details of a derivation of this result can be found in [4].

For the macroscopic power law shape (11.88), the indentation depth and contact 
radius are given by

which follows from (Eq. (3.20) and (3.24)). Substituting the contact length 
Lcont = 2a into Eq. (11.98), we obtain the coefficient of friction at low velocities:

where we introduced dimensionless variables

(11.99)d
/

(τv∇z) ≈ 1.

(11.100)µ ≈

√

2∇z.

(11.101)a =

(

FN (n + 1)

8Gcnn

)
1

n+1

, d =

(

FN (n + 1)c
1/n
n

8Gn

)
1

n+1

,

(11.102)µ̃ = ξ ,

(11.103)µ̃ =

µ
√

2∇z
, ξ =

vτ∇z
√

2

(

8G

FN

)
n

n+1
(

n + 1

cnn

)
n

n+1

.

Fig. 11.13   Dependence of 
µ̃ on ξ for conical indenter 
and parabolic indenter. The 
solid line corresponds to the 
analytical approximation 
(11.104) with α = 1.5. 
Source [5]
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It is easily seen that we can get both limits (11.102) and (11.100) by writing

where α is a dimensionless fitting parameter. Numerical simulations carried out 
in [5] show that the best fit is achieved with α = 1.5 independently on the mac-
roscopic shape of the indenter (see Fig.  11.13). This generalized law of friction 
describes dependence of the frictional force on velocity, normal force, and mate-
rial parameters.
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12.1 � Introduction

Friction is a dissipative process, in which mechanical energy is transformed into 
heat. This can be both unwanted as well as purposefully taken advantage of. Even 
at very small amplitudes of tangential oscillations, the small slip displacements at 
the border of the contact area always lead to energy dissipation. This effect is the 
physical mechanism of damping in periodically forced frictionally engaged joints, 
for example, in leaf springs for commercial and transportation vehicles. Similar 
effects are generally exhibited in all frictionally engaged joints and are, there-
fore, of great interest. For the investigation of damping caused by dry friction, a 
dynamic tangential contact is of interest. The exact coincidence of the frictional 
damping in a true three-dimensional contact and its one-dimensional representation 
in the framework of the method of dimensionality reduction follows from general 
theorems concerning tangential contacts. This chapter is an illustration how the use 
of the MDR makes dynamic tangential problems simple without loss of exactness.

12.2 � Damping by Dry Friction

In the following, a dynamic tangential contact is considered, the movement of 
which is damped by Coulomb friction. An elastic parabolic indenter is loaded with 
the normal force FN and oscillates subsequently in the tangential direction. As dis-
cussed in Chap. 5, this problem can be mapped to an equivalent one-dimensional 
problem. In this equivalent problem, all elements are considered independently of 
one another. We can, therefore, begin with the energy dissipation of a single ele-
ment, as illustrated in Fig. 12.1. Afterwards, the results will be generalized to the 
entire system.

Chapter 12
Frictional Damping
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Let the spring be compressed in the vertical direction by uz. It possesses a nor-
mal spring stiffness of kz = E∗�x (see Eq. (3.5)) and a tangential spring stiffness 
of kx = G∗�x (see Eq. (5.4)). If the top of the spring is moved to the side by A, 
then the bottom of the spring remains in a state of stick as long as the spring force 
in the tangential direction is smaller than the maximum force of static friction:

The critical value of the displacement is

where we have introduced the constant κ:

If A is larger than the critical value A > Ak, then the bottom of the spring remains 
in a state of stick until the critical displacement is achieved and slips for the 
remainder of the distance Ag = A − Ak . The work done by the frictional force is 
then

Now, we consider an oscillating spring having a peak-to-peak amplitude of 2A. 
If the top of the spring is brought back by this amplitude, then the bottom of the 
spring sticks until the top has moved by a distance of 2Ak and then slips a distance 
of 2A − 2Ak (see Fig. 12.2).

In further oscillations, this distance always remains the same and is traversed 
two times per period. Therefore, the frictional work done per period for a cyclical 
movement is

Now, we consider a system of independent springs. The critical amplitude for a 
spring with the coordinate x is given by

(12.1)Fx = kxA < µFN = µkzuz.

(12.2)Ak = µ
kz

kx

uz = µκuz,

(12.3)κ :=

kz

kx

=

E∗

G∗

=

2 − ν

2(1 − ν)
.

(12.4)W = (A − Ak)µkzuz.

(12.5)Wcycle = 4(A − Ak)µkzuz.

(12.6)Ak(x) = µuz(x)κ .

Fig. 12.1   (a) Contact of a 
spring with a rigid substrate. 
(b) The top of the spring 
is moved from the original 
position to the right by a 
distance of A

(a)

(b)
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The work of the frictional contact during one period for a cyclical movement with 
the amplitude 2A is

Within the framework of the method of dimensionality reduction, a parabolic 
indenter with the profile z̃ = r2/(2R) is replaced with the profile z̃ = x2/R. If the 
indentation depth of the indenter is equal to d, then the spring with the coordinate 
x is indented by

Therefore, the work of the frictional contact of one spring is

The entire energy dissipated during one period is then the integral over the slip 
domain in the contact:

The geometric relation a =

√

Rd is valid for the outer radius of the contact. The 
lower boundary of the integral is determined by the springs that are in the stick 
state exactly at their maximum displacement: µkzuz(c) = Akx. Therefore, by using 
Eq.  (12.8), we obtain c =

√

Rd − AR/(µκ). The entire work done is then calcu-
lated as

(12.7)�W(x) = 4(A − Ak(x))µuz(x) · kz = 4µE∗(A − µκuz(x))uz(x)�x.

(12.8)uz(x) = d −

x2

R
.

(12.9)
�W(x) = 4µE∗

(

A − µκ

(

d −

x2

R

))(

d −

x2

R

)

�x.

(12.10)W = 2

a
∫

c

4µE∗

(

A − µκ

(

d −

x2

R

))(

d −

x2

R

)

dx.

(12.11)

W = 8E
∗

R
1/2κ−3/2µ−1/2




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�

(Ak0)
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�
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3/2
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�

−
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�
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�



,

Fig. 12.2   The slip 
movement of a periodically 
oscillating frictional contact
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with Ak0 = µκd. If the oscillation amplitudes are small, then the equation can be 
converted to a Taylor series:

The leading term of this series is

which corresponds exactly to the results from Mindlin et al. [1].

12.3 � Damping of Elastomers for Normal Oscillations

In elastomers, energy is also dissipated for the vertical oscillation of contact part-
ners. We consider an axially-symmetric indenter that is pressed into an elastomer 
to a depth of d by an average normal force of FN so that the (static) contact radius 
a is formed. If the indenter is now moved according to a harmonic law

with a small amplitude A, then this movement leads to energy dissipation. Within the 
framework of the reduction method, a contact with a diameter of 2a is replaced by 
a contact with a viscoelastic foundation having a length of L = 2a using Eq. (7.29):

The oscillation of an element of the form u1 = (A/2)eiωt leads to the force 
f1 = 4G(ω) · ∆x · u1 and an oscillation of the form u2 = (A/2)e−iωt leads to the 
force f2 = 4G(−ω) · ∆x · u2. Due to linearity, an oscillation of

leads to the force

The average power of this force averaged over one period is equal to

(12.12)

W = 8E∗R1/2κ−3/2µ−1/2A
5/2

k0

(

1

12

(

A

Ak0

)3

+

1

48

(

A

Ak0

)4

+

3

320

(

A

Ak0

)5
)

.

(12.13)W ≈

2

3
κ−2E∗R1/2µ−1d−1/2A3,

(12.14)d = d0 + A cos ωt = d0 +

A

2

(

eiωt
+ e−iωt

)

(12.15)fN (t) = 4∆x

t
∫

0

G
(

t − t′
)

u̇z

(

t′
)

dt′.

(12.16)�d(t) =

A

2

(

eiωt
+ e−iωt

)

= u1 + u2

(12.17)fN = f1 + f2 = 2A · �x ·

(

G(ω)eiωt
+ G(−ω)e−iωt

)

.

(12.18)

�P =

〈

fN · � ˙d
〉

=

〈

2A · �x ·

(

G(ω)eiωt
+ G(−ω)e−iωt

)

A

2

(

iωe
iωt

− iωe
−iωt

)

〉

,
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and yields

By writing the complex shear modulus in the form

and taking into account that G′(−ω) = G′(ω) and G′′(−ω) = −G′′(ω), we obtain 
the average energy dissipation power of one spring:

The dissipation power in the entire contact area is then

12.4  Problems

Problem 1  Determine the attenuation behavior of the horizontal oscillation of a 
mass, the movement of which is impeded by a frictionally engaged joint with a 
sphere (see Fig. 12.3). The initial displacement of the mass is A(0) = A0.

Solution  In principle, we are dealing with an oscillator with frictional damping. 
For a harmonic oscillation, the total energy is equal to the maximum potential 
energy:

where A is the amplitude of the oscillation. The change in this energy during 
one period T = 2π/ω is equal to the work done by the frictional dissipation (see 
Eq. (12.13)):

(12.19)�P = iωA2
· �x · (−G(ω) + G(−ω)).

(12.20)G(ω) = G′(ω) + iG′′(ω)

(12.21)�P = 2ωA2G′′(ω) · �x.

(12.22)P = 2ωA2G′′(ω)L = 4ωA2G′′(ω)a.

(12.23)U =

kxA2

2
,

(12.24)�U = −

2

3
κ−2E∗R1/2µ−1d−1/2A3.

Fig. 12.3   Spherical contact 
between an elastic sphere and 
a rigid mass m

frictionless

m

12.3  Damping of Elastomers for Normal Oscillations
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The change in potential energy per unit time is then

Rearranged with respect to the amplitude and assuming that kx = G∗2
√

Rd (see 
Eq. (5.1)), the differential equation reads

The solution to this differential equation with the initial condition A(0) = A0 is

For an amplitude at which complete slip is first exhibited (A0 ≈ Ak0 = µκd), the 
following is valid:

The attenuation behavior of the amplitude per period is presented schematically 
in Fig. 12.4. It is clear that the oscillations are only slowly (according to a power 
law) damped by dry friction. This means that it is recommended to integrate a fur-
ther damping mechanism into vibration sensitive systems.

(12.25)
dU

dt
=

�U

T
= −

1

T

2

3
κ−2

· E∗R1/2µ−1d−1/2A3.

(12.26)
dA

dt
= −

1

3

A2

κTµd
.

(12.27)A =

A0

1 +

1
3

A0

κTµd
t
.

(12.28)A =

A0

1 +

1
3T

t
.

Fig. 12.4   The dependence 
of amplitude with respect to 
time 0

t
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13.1 � Introduction

In practical applications, mechanical models are frequently considered in which 
macroscopic frictional contacts are present. The typical procedure used to describe 
frictional contacts is to formulate a suitable law of friction, which is then subse-
quently applied in a macroscopic simulation of the system dynamics. However, 
it is often difficult to formulate a useable law of friction, as the frictional force 
is not only a function of the instantaneous state of motion of the system, but is 
also dependent on the previous history of the system motion. Here, the method of 
dimensionality reduction opens up a new path: The simulations using the reduc-
tion method are carried out so quickly that one can completely forego the previ-
ous formulation of the frictional law. The calculation of the contact and frictional 
forces is then carried out directly within the framework of the macroscopic simu-
lation of the system dynamics. Models that combine both the macrosimulations 
and microsimulations into one are termed hybrid models in the following. In this 
chapter, it will be explained how the method of dimensionality reduction is used 
for formulation of hybrid models.

13.2 � Hybrid Models: Foregoing the Formulation  
of an Explicit Law of Friction

Existing laws of friction are as different and numerous as the various applications 
of frictional processes. The most well-known, and also the most universal, law of 
friction is Coulomb’s lawof dry friction, which says that the frictional force is lin-
early proportional to the normal force by a prefactor known as thecoefficient of 
friction μ. However, even Coulomb was aware of the fact that the coefficient of 

Chapter 13
The Coupling to Macroscopic Dynamics
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friction is in no way constant, but rather increases with contact time and is also 
dependent on the sliding velocity. Many other factors, such as the roughness, tem-
perature, and Stribeck effects must be taken into account in a more exact model. 
Especially in dynamic processes, where one or more of the above named factors 
may change with respect to time, it has been essential until now to formulate an 
explicit law of friction and implement this law in the dynamic (numerical) mod-
eling. For instance, frequently used frictional relationships are the Dieterichlaw 
of friction [1, 2], often used to describe tectonic friction, or the so-called elasto–
plastic model [3, 4], used to describe the friction in stick-slip micro-drives, just to 
name a few. Moreover, the Prandtl–Tomlinson model (orginal publication see [5] 
and its English translation [6]) is also worth mentioning. It is used, among other 
things, to describe the friction on the tip of an atomic force microscope. Most of 
these models required several empirical or material-dependent parameters and, 
nevertheless, do not lead to the desired results for dynamic simulations.

Characteristic properties, such as “preliminary slip” (a displacement before com-
plete slip begins) as well as velocity and state dependence of the frictional force may 
be described by the above friction laws. According to these laws, this behavior is 
a product of surface roughness and the resulting micro-slip areas. This microscopic 
picture of the contact, however, is almost always used only in a “conceptual sense”: 
The exact contact mechanics is not considered, which has not been possible until 
now, as no effective simulation methods exist for the calculation of the contacts 
between rough surfaces. However, the consideration of real microscopic contacts is 
essential and results in the correct description of frictional forces and the formulation 
of a realistic law of friction without the countless adjustment parameters for every 
special case. The reduction method offers the tool with which this can be accom-
plished. In this chapter, we will show that using this method, relatively complicated 
dynamic behavior can be described without adjustment parameters of any kind.

The general procedure for developing a hybrid model is described in the fol-
lowing. First, a dynamic model is developed that describes the considered sys-
tem. Contact and frictional forces, which are dependent on contact area as well as 
time, are part of the equations of motion. The macroscopic model is now coupled 
to the microscopic contact model. The microscopic part of the model describes 
the frictional force using the reduction method, which is obtained from the time-
dependent spring forces. Due to the one-dimensionality and the independence of 
the degrees of freedom in the reduction method, the calculation of the contact and 
frictional forces is carried out so fast that it can be conducted for every time step in 
the macroscopic simulation of the system dynamics.

Now, we consider a single macroscopic contact (either smooth or rough). Let N 
be the number of springs in the contact. Every spring exhibits an individual defor-
mation in both the vertical uz,i and horizontal ux,i directions at every point in time t,  
with i = 1, . . . , N. With this, each spring is subjected to a force component in both 
the horizontal and vertical direction according to Eqs. (3.9) and (5.8):

(13.1)
fz,i = �kzuz,i

fx,i = �kxux,i.

http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_5
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Noteworthy is the fact that even if Coulomb’s law of friction with a constant coef-
ficient of friction is assumed on the microscale, the macroscopic behavior can be 
much more complicated. In this chapter, we constrict ourselves to the considera-
tion of the simplest law from Coulomb on the microscale: Movement of a spring 
occurs only after the tangential force fx,i = �kxux,i surpasses a threshold

Afterwards, the spring slips and sticks again in a new state in which

The total frictional force in every time step can be determined with

A link between this calculation and the macroscopic simulation is shown schemat-
ically in Fig. 13.1.

(13.2)fx,i = µfz,i.

(13.3)ux,i = µ
fz,i

�kx

= µ
E

∗

G∗

uz,i.

(13.4)Fr =

N
∑

i=1

fx,i.

Fig. 13.1   A possible 
algorithm for implementing 
the reduction method in a 
dynamic contact without an 
explicit law of friction

In:      Parameter of differential equation,
NT (number of time steps)

Out:   Desired system parameter

Compute displacement of springs
and

and
Compute all spring forces

If

no

yes

Compute the overall friction force

Compute one time step of
differential equation

If isNT
reached

Define
and

no

yes

Return

13.2  Hybrid Models: Foregoing the Formulation…
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Let it be once again noted that the macroscopic law of friction that results 
from the dynamic simulation is not Coulomb’s simple law of friction, even if 
this law is assumed on the microscale. In particular, it will exhibit a “preliminary 
slip” and energy dissipation before the onset of macroscopic sliding. In the fol-
lowing section, the procedure described here will be explained using the simu-
lation of an existing stick–slip micro-drive that has already been experimentally 
investigated.

13.3 � Simulation of a Micro-Drive

Stick–slip micro-drives serve to move objects using an asymmetric, periodic exci-
tation. In Fig.  13.2a and b, one such conveyor is presented schematically. The 
main part of the setup is a steel runner with a mass of m mounted between six 
actuators in the form of ruby hemispheres. These ruby hemispheres, mounted 
onto piezoelectric elements, oscillate as shown in Fig. 13.2c synchronously with 
an amplitude following a saw-tooth curve. In the slow forwards motion, the 
actuator sticks to the runner; in the quick backwards motion, the actuator slips 
(partially). In this way, a motion is achieved in the x-direction. For the micro-
drive described here, the runner is pressed into the force sensor during the for-
ward motion. This micro-drive has been investigated in detail experimentally and 
numerically with the explicitly formulated empirical law of friction in [7, 8]. In 
the following, however, the actuator contacts are simulated using the reduction 
method and the general motion of the runner is determined using a simple Euler 
method.

actuator

runner

spring
linear

bearing

force
sensor

preload

(a)
(b)

(c)

Fig. 13.2   (a) Top view of the cross-section of the runner with the actuators. (b) Side view of the 
runner. (c) Saw-toothed excitation signal for the actuators
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13.3.1 � Creating a Macroscopic Model

For a better understanding, let it be initially assumed that we are dealing with a 
runner being excited by only one actuator (see Fig. 13.3).

Using Newton’s second law and assuming that the runner can only move in the 
x-direction, we obtain

The force sensor is shown as a linear spring with the stiffness k. The frictional 
force is brought about by the actuator and changes with respect to its displacement.

13.3.2 � Creating a Microscopic Model

The actuator is described as being a tangential contact with a parabolic body 
according to Sect. 5.2. The frictional force found in Eq. (13.5) is then the sum of 
the individual spring forces. The linearly elastic foundation contains N individual 
springs. Then, we obtain

First, the deformations of the springs, must be determined at an arbitrary time t. 
This deformation is the difference between the displacement of the runner and the 
movement of the actuator based on the saw-tooth function xs (t):

The individual springs can be in either a state of stick or one of slip, depending on 
whether or not the stick criterion µfz > fx is met. The springs in a state of slip will 
stick in a new equilibrium position. The displacements of the springs are calculated as

(13.5)m
..
x = −kx + Fr(t).

(13.6)Fr(t) =

N
∑

i=1

fx,i(t).

(13.7)ux,i(t) = x(t) − xs(t).

(13.8)ux,i(t) =

{

x − xs stick
µfz,i

�kx
slip

.

frictionless

(a) (b)

Fig. 13.3   (a) Stick–slip micro-drive with only one actuator. (b) Free-body diagram of the runner

13.3  Simulation of a Micro-Drive
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With Eqs. (13.1) and (13.7), the frictional force can now be determined. If an iter-
ative technique is used to solve the differential equation, such as the Euler method 
or Runge–Kutta method, then the frictional force must be determined anew 
for every time step. By direct modeling of the contact, the continuously chang-
ing properties can now be simulated. In particular, both the effect of damping by 
the dry friction and the appearance of the so-called 0-amplitude result in a natural 
way from the dynamic simulation. The 0-amplitude is the maximum amplitude of 
the saw-tooth function at which the runner does not move despite the excitation. 
The extensive details to the implementation and the results of the simulation can 
be found in [9]. Here, only example results will be demonstrated. The material 
parameters used are shown in Table 13.1.

In Fig. 13.4, the traveled distance is shown as a function of time for one actu-
ator with a preloading force of FN =  0.1  N and an amplitude for the saw-tooth 
function of A0 = 100 nm.

Two effects may be seen: First, the step-wise forward movement of the 
runner. In the slip phase, the quick backwards movement of the actuator also 
causes the runner to reverse its course. The following stick phase is superim-
posed with an oscillation around the overall displacement. The damping of this 
vibration is described very well by Coulomb’s damping (Problem 1 in Chap. 12). 
Furthermore, it is able to be seen that the runner reaches a saturation position. 
This can be explained by the fact that the displacement of the runner by the actu-
ator is in equilibrium with the opposing force of the spring of the force sensor. 
The force produced, corresponding to the average maximum displacement, is 
denoted as Fgen.

Table 13.1   Material and 
geometric data used for the 
numerical simulation

Young’s modulus of steel E1 200 GPa

Young’s modulus of ruby E2 370 GPa

Poisson’s ratio v1, v2 0.3

Coefficient of friction µ 0.3

Radius of ruby hemisphere 0.5 mm

Mass of the runner m 3 g

Fig. 13.4   Motion of the 
runner with respect to time

...

.

.

.

.

.

.

.

.

..

http://dx.doi.org/10.1007/978-3-642-53876-6_12


203

For the purpose of comparison, experimental data for the force Fgen as a 
function of the saw-tooth amplitude for three different normal forces are shown 
in Fig.  13.5a. The numerical data are produced using a model with six actua-
tors. Once again, two effects are seen: on the one hand, the 0-amplitude can be 
easily seen as the amplitude for which no generated force can be detected. This 
amplitude of the saw-tooth function is roughly interpreted as the displacement 
of a classical tangential contact for which slip is not yet exhibited, ux,max accord-
ing to Eq.  (5.17). Of course, the 0-amplitude increases with increasing normal 
force. Secondly, it can be noticed that for large amplitudes, a saturated force level 
develops.

Let it be noted that in the comparison between the numerical and experimen-
tal values, no adjustment parameter was used. A discrepancy can be seen in the 
0-amplitude. Although, the general forms are similar, the numerically calculated 
amplitudes are smaller than those experimentally measured. This is due to the fact 
that only simplified smooth excitation spheres were simulated. Taking the rough-
ness into account, however, is not a problem when using the method of dimension-
ality reduction and the discrepancies are eliminated. In summary, let it be stressed 
that the reduction method offers an efficient and simple way to describe dynamic 
systems without an explicit law of friction.

13.4  Problems

Problem  1  Develop an algorithm to implement the equation of motion of the 
mass m for the model in Fig. 13.6, consisting of a body with a spherical profile of 
radius R, Young’s modulus E, and Poison’s ratio v. Keep in mind that the normal 
force changes with respect to time: FN (t) = FN ,0 + �FN cos ωt. Furthermore, 

.

.

. ..
.

(a) (b)

Fig.  13.5   (a) Experimental dependence of the force generated with respect to the amplitude.  
(b) Numerical dependence of the force generated with respect to the amplitude

13.3  Simulation of a Micro-Drive

http://dx.doi.org/10.1007/978-3-642-53876-6_5
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the coefficient of friction μ is valid on the microscale. Proceed analogously to the 
hybrid model presented above.

Solution  The macroscopic model is obtained from Newton’s second law. It reads

Due to the fact that the normal force varies with respect to time, this is implicitly 
valid also for the frictional force Fr. Microscopically, the frictional force and the 
contact area can be described by the reduction method as follows: From the nor-
mal force FN (t) = FN ,0 + �FN cos ωt, the indentation depth of the sphere can be 
determined, and from this, the individual spring deformations in the horizontal and 
vertical directions ux,i and uz,i can be found. For these, we obtain

Here, dX is the distance that the mass travels forward during one time step and 
xi are the coordinates of the individual springs with respect to the middle of the 
contact. The radius in the one-dimensional model is divided by two according 
to the procedure of the reduction method. The normal force in every individual 
spring is then fz,i = �kzuz,i. Whether a particular spring is currently in stick or 
slip state is determined from the stick condition fz,i = µfz,i. If the frictional force 
fx,i = �kxux,i is larger than that from the stick condition, a new spring deforma-
tion must be calculated ux,i = µfz,i/∆kx . The total frictional force is the sum of the 
spring forces:

(13.9)m
..

X = F − Fr .

(13.10)

d =

(

3

4

FN(t)

E∗

√

R

)
2
3

ux,i(t + �t) = ux,i(t) + dX

uz,i = d −

x
2
i

R
.

(13.11)Fr =

N
∑

i=1

fx,i,

Fig. 13.6   Model for a point 
mass with a circular contact 
surface
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where N is the total number of springs. The adapted algorithm from Fig.  13.1, 
would then be as Fig. 13.7.

Fig. 13.7   Algorithm for 
calculating the differential 
Eq. (13.9) Out: Desired system parameter

NT (number of time steps)

no

yes

If isNT
reached

yes

no

Return

13.4  Problems
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14.1 � Introduction

Technical surfaces typically have roughness ranging from the size of the system 
to the nanometer scale. During sliding or rolling on rough surfaces, vibration 
occurs that results in audible and inaudible acoustic emission. In 2006 Ford und 
Thompson [1] used a one-dimensional model for the analysis of the acoustic emis-
sion of a rolling wheel. This model was identical to the method of dimensional-
ity reduction, although Ford and Thompson chose to call it two-dimensional. They 
compared the results obtained with the one-dimensional model with results of 
boundary element simulations and found very good agreement in the entire spectral 
range. They came to the conclusion that the 1D-model “might have an unexpect-
edly wide range of applicability.”

The method of dimensionality reduction can be applied not only for analysis 
of mean values of forces but also of their fluctuations. This is confirmed by the 
results shown in Fig. 14.1. This figure shows the results of simulations in which 
a rigid indenter with random self-affine roughness (with Hurst exponents ranging 
from H = 0.4 to H = 1) was pressed into an elastic half-space. The three-dimen-
sional calculations were performed with the boundary element method. 60 random 
surfaces were generated and the mean values as well as the standard deviation of 
the contact stiffness were computed for each normal force. The same calculation 
was performed with the equivalent one-dimensional model for 500 random reali-
zations. The comparison of the results shows very similar behavior of the stand-
ard deviation in both the three-dimensional and one-dimensional model. Because 
the rolling or sliding motion continuously brings new parts of the surfaces into 
contact, this can be interpreted as contacts with different random realizations of 
the roughness. This suggests that the one-dimensional model can describe the 
dynamic behavior of rolling contacts.

Chapter 14
Acoustic Emission in Rolling Contacts
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In this chapter, the force fluctuations due to surface roughness of the contacting 
bodies will be investigated using the method of dimensionality reduction.

14.2 � Acoustic Emission Resulting from the Rolling  
of a Wheel—An Analytical Solution

The system under consideration is a cylindrical steel wheel with a radius R and 
mass m that is loaded with a constant normal force FN and is rolling on a steel rail 
with a velocity v0. The rail is assumed to have the same transverse radius of cur-
vature such that the entire problem can be reduced to the rolling of a sphere with 
a radius R on a half-space. The wheel and the rail both have surface roughness 
that can be characterized by an isotropic power spectrum. The dynamics of the 
wheel assembly and car structure is not considered here and is only represented 
through the constant normal force. Thus, we obtain our model which will be stud-
ied numerically and analytically in the following: An elastic, rough sphere rolls on 
a rigid, flat surface. The roughness-induced normal acceleration of the sphere is 
determined. This three-dimensional, dynamic contact problem is difficult to solve 
with traditional methods (e.g., finite elements or boundary elements) due to the 
extremely large computational cost. In the framework of the reduction method, 
however, an almost complete analytical solution is possible.

Let us consider the one-dimensional representation of the rolling wheel on a rough 
surface (Fig. 14.2). The form of the wheel is given by the macroscopic substitute profile

with

(14.1)z = Z0(x − x̃)

(14.2)Z0(x) =

x2

R
,
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Fig. 14.1   (a) Relative standard deviation of the stiffness as a function of normal force for 60 realiza-
tions of three-dimensional boundary element simulations, as presented in [2]. (b) Relative standard 
deviation in the one-dimensional case, computed with 500 realizations. Data provided by R. Pohrt
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where x̃  is the coordinate of the wheel center. The profile of the rough surface is 
given by

The numerical analysis of this system can proceed without additional assumptions. 
For the analytical solution, however, we will make some additional simplifica-
tions. First we assume that the indentation depth d is much larger than the rms 
value of the roughness. Under this assumption, the coordinates of the left and right 
boundaries of the contact depend only weakly on x̃ and we will assume that

where a is the Hertzian contact radius for the contact of a sphere with a smooth 
plane. We also assume that the indentation depth remains approximately constant 
and experiences only small deviations from its mean value. This corresponds to 
a constant contact radius a. The normal force is then calculated according to the 
rules of the reduction method as

The second part of this equation does not depend on x̃. It follows that

which results in

Let us now assume that the rough profile is given by the customary Eq. (10.5)

(14.3)z = h(x).

(14.4)
x1 = x̃ − a,

x2 = x̃ + a,

(14.5)

FN (x̃) = E∗

x̃+a
∫

x̃−a

(h(x) − Z0(x − x̃))dx = E∗

x̃+a
∫

x̃−a

h(x)dx − E∗

x̃+a
∫

x̃−a

Z0(x − x̃)dx.

(14.6)
dFN (x̃)

dx̃
= E∗

[

h(x̃ + a) − h(x̃ − a)
]

,

(14.7)FN (x̃) = E∗

∫

[

h(x̃ + a) − h(x̃ − a)
]

dx̃.

(14.8)h(x) =

π/�x
∑

q=−π/�x

B1D(q)exp(i(qx + φ(q))),

Fig. 14.2   One-dimensional 
representation of the rolling 
wheel on a rough surface
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where

the discretization step is given by �q = 2π/L, and the random phases 
φ(�q) = −φ(−�q) are equally distributed on the interval [0, 2π). It follows that

and

From this equation, we see immediately that the spectral density C1D(q) of the 
roughness and the spectral density CF(q) of the normal force are connected by the 
following relationship:

In the case of a randomly self-affine rough surface with the spectral density 
C2D(q) = Aq−2H−2, the equivalent one-dimensional spectral density is given by 
the rule of Geike [Eq. (10.12)] as C1D(q) = πqC2D(q) = πAq−2H−1. The spectral 
density of the force is then given by

This dependence is shown for H = 0.7 in Fig.  14.3. Under the assumption 
that qa ≫ 1, sin2(qa) is a quickly oscillating function with the mean value 1/2. 
Averaging over these oscillations gives

This relation makes it possible to deduce the spectral density of the contact force 
from the spectral density of the roughness, and vice versa.

(14.9)B1D(q) =

√

2π

L
C1D(q) =

¯B1D (−q),

(14.10)

h(x̃ + a) − h(x̃ − a) =

π/�x
∑

q=−π/�x

B1D(q)exp(i(qx̃ + φ(q)))
[

exp(iqa) − exp(−iqa)
]

=

π/�x
∑

q=−π/�x

2iB1D(q)exp(i(qx̃ + φ(q)))sin(qa)

(14.11)FN (x̃) = E∗

π/�x
∑

q=−π/�x

2

q
B1D(q) sin(qa) exp (i(qx̃ + φ(q))).

(14.12)CF(q) =

4E∗2

q2
C1D(q) sin2(qa).

(14.13)CF(q) ≈

4E∗2

q2
Aπq−2H−1 sin 2(qa).

(14.14)�CF(q)� =

2E∗2

q2
C1D(q).
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14.3 � Acoustic Emission Resulting from Rolling  
of a Wheel—A Dynamic Simulation

With the reduction method, we can easily perform full dynamic simulations of the 
rolling motion. In this section, we present the results of such simulations. They 
are also an example of the hybrid models as described in the previous chapter. The 
rolling of the wheel with the velocity v0 is modelled by shifting the “spherical pro-
file” in the positive x-direction with the velocity v0, while the roughness profile 
remains stationary:

This profile is explicitly time-dependent and results in variations of the contact 
force Fcont, which in turn causes vertical motion. The equation of motion of the 
wheel

is solved numerically, with re-computation of Fcont (using the reduction method) 
in every integration step. The time step of the dynamic simulation is set to 
�t = �x/v0, so that the system moves by one spatial discretization unit dur-
ing every time step. The immediate result of the dynamic simulation is the time 
dependence of the vertical coordinate of the wheel z(t). The second derivative of 
the coordinate produces the normal acceleration a(t). Since the acceleration is, 
like the roughness, a statistical quantity, we will characterize it through its spectral 
density, which is computed as follows:

Here, FFT(a) denotes the fast Fourier transform of the acceleration, and T  is the 
total simulation time.

(14.15)z(x, t) =

(x − v0t)2

R
+ h(x).

(14.16)m
..
z(t) = Fcont − FN

(14.17)A = |FFT(a)|2
�t2

T
.

Fig. 14.3   Dependence of the 
power spectrum of the normal 
force on the wave number
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The parameters that were used for the simulation are summarized in Table 14.1. 
The roughness was randomly self-affine and had the power spectrum

with wave numbers in the interval

The constant in (14.18) was chosen such that the average roughness of the profile, 
defined as h =

√

〈

h(x)2
〉

, was exactly equal to h0.

The simulation was run 300 times with different realizations of the rough pro-
files. The averaged result of the spectral density of the acceleration as a function of 
frequency is shown in Fig. 14.4.

The spectrum of the acceleration can be divided in four regions:

1.	 In the first region there is a sharp, quickly decaying maximum.
2.	 Then follows a “plateau” with an oscillating substructure.
3.	 There is a sharp rise at the beginning of the third region, which falls lin-

early in double-logarithmic coordinates. This region also shows an oscillating 
substructure.

4.	 The last region with a different slope than region 3 continues to the maximum 
frequency ωmax = qmaxv0.

(14.18)C1D = const · q−2H−1

(14.19)qmin < |q| < qmax.

Table 14.1   Parameters of 
the simulation

E = 210 GPa Elastic modulus of steel

ν = 1/3 Poisson’s number of 
steel

R = 0.5 m Radius of wheel

M = 500 kg Mass of wheel

h0 = 0.5 µm Roughness

Fig. 14.4   A typical dependence of the spectral density of the acceleration on the frequency
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The third region has an oscillating substructure with a constant period of �ω3 (in 
the frequency domain!). The origin of this region and its substructure was already 
explained by the above analytical treatment. The oscillation results from the factor 
sin2(qa) in (14.12), where �ω3 = π/a. The slope (in double-logarithmic axes) in 
region 3 is equal to α = −2H − 3, which follows directly from Eq. (14.13).

The other regions were not predicted by the analytical treatment; they arise due 
to non-linearity of the system dynamics of the contact, which was neglected for 
the analytical calculation. Only in the direct numerical simulation do these effects 
become apparent.

In the following, we discuss the physical nature of the above four regions.

1.	 The first peak of the spectral density coincides exactly with the resonance fre-
quency of the wheel ωeigen =

√

2aE∗/m. Parameter studies show that this fre-
quency does not depend on any of qmin, qmax, v0 or H. This confirms that the 
peak is in fact the eigen frequency of the wheel.

2.	 The “plateau” after the resonance peak may or may not have a substructure, 
depending on the parameters.

3.	 Power-law region.

The third region begins with a sharp rise in the power spectrum. It seems plau-
sible to suppose that this rise is linked to the cutoff (i.e., the value of qmin) in 
the assumed roughness spectrum. It turns out that the rise, and therefore the 
start of the third region, is indeed found at the frequency

which is directly dependent on the smallest wave number in the roughness 
spectrum. This relationship was confirmed by variation of both the velocity and 

(14.20)ωjump = qminv0,
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the cut-off wave number. At small velocities, the jump moves closer to the reso-
nance peak, and the plateau “2” may disappear entirely.

4.	 “Break” in the spectral density

The third and fourth regions are separated by a “break.” The fourth region is 
related to the finite simulation. If the rolling of the wheel is simulated over a 
very long distance, the frequency of the “break” moves further to the right, and 
will probably disappear entirely with sufficiently long distances. This can be 
seen in Fig.  14.5, where the results of simulations with different rolling dis-
tances are shown. A possible explanation is that the last region is due to the 
spectrum of the finite “window function,” which decreases very slowly at high 
frequencies. In any case, region 4 seems to be an artifact of the simulation that 
can be reduced by using more elements.
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15.1 � Introduction

The application of the method of dimensionality reduction is, of course, limited 
to the spatial scales for which continuum mechanics can be used. Every practical 
application using the method will lose its validity even earlier, due to the finite 
spatial resolution of the surface topography. Therefore, it begs the question of 
whether the interactions on even smaller scales can be summarized into a micro-
scopic “contact law” or “law of friction,” so that also the properties of the smallest 
possible scale can be taken into account in the simulation. A complete method can 
only exist after the coupling to the macroscale as well as to the microscale has 
been accomplished. In this chapter, we explain how the limitations of the finite 
spatial resolution can be eliminated by the introduction of a “microscopic” non-
linear stiffness.

15.2 � Non-Linear Stiffness on the “Microscale”

Let us consider the classical Hertzian problem: a rigid sphere with the radius 
R is pressed into an elastic half-space with the effective modulus of elasticity 
of E*. This problem can be expressed by an equivalent one-dimensional con-
tact between a rigid sphere with the radius R1 = R/2 and the linearly elastic 
foundation with the stiffness per unit length E∗. The dependence of the force on 
the indentation depth is given by the Hertzian Eq. (3.13). However, this is only 
valid if the contact radius is much larger than the discretization step size �x 
of the linearly elastic foundation. As soon as only one spring is in contact, the 
stiffness is constant and the result deviates from that of the Hertzian equation.  
In order for the force-indentation depth relation to remain correct also at 
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smaller forces, the discretization step size can always be chosen to be smaller. 
An alternative solution is based on the idea that the single spring is assigned a 
non-linear stiffness. The introduction of non-linear stiffness for the simulation 
of processes on the microscale is not a new idea. For example, this idea was 
used in [1] and [2] and is the foundation of the concept of “interfacial stiffness,” 
which is currently being used actively by many experts in the field of contact 
mechanics [3–5].

As explained in Sect. 10.8, a completely fractal surface can be replaced (in the 
sense of an average contact stiffness) by a single non-linear spring. This idea does 
not have to be applied to the entire system, but can also be used beginning at a cer-
tain scale. We illustrate this idea using two examples: The Hertzian contact and the 
contact with a randomly rough, fractal surface.

15.3 � Coupling with the Microscale Using the Example  
of the Hertzian Contact

Here, we consider the case of the Hertzian contact, meaning the indentation of a parab-
oloid. As seen in Chap.  3, the original radius R is replaced in the one-dimensional 
model by R1 = R/2. In this way, we obtain the form of the indenter:

As soon as the indentation depth decreases beyond a critical value u(0)
z = g(�x), 

only a single spring is in contact. Here, the dependence of the stiffness on the 
indenter form loses its validity and assumes the behavior of a single spring. If 
we now change the linear force law of a single spring to that effect so that each 
of them reproduces the asymptotic Hertzian behavior, then this problem can be 
avoided. So, we replace the local linear spring behavior with the following non-
linear law for the spring force:

For large values of uz,i, the limiting case of the standard linearly elastic foundation 
results. Figure 15.1 shows the force–indentation depth relationship in the transi-
tional domain of the standard model of linear springs in blue and with the spring 
behavior from Eq. (15.2) in green. The force with respect to the indentation depth 
is now correctly given for both very large and very small forces, regardless of the 
size of the discretization step �x. In the domain where only one spring is in con-
tact, there is a small irregularity that cannot be avoided. As we will see in the next 
section, this procedure works much better for randomly rough surfaces, because 
small irregularities due to statistical scatter are “averaged out.”

(15.1)g(x) =

x2

R
.

(15.2)fi = E∗

{

4
3

R1/2u
3/2

z,i , if uz,i < u
(0)
z,i =

�x2

R
(

�x3

3R
+ �x · uz,i

)

, if uz,i ≥

�x2

R

.
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15.4 � Coupling with the Microscale for the Case  
of a Randomly Rough, Fractal Surface 

In Chap.  10, we have investigated fractal surfaces and seen that they follow a 
power law for asymptotically small forces (or indentation depths). For a fractal 
surface with a length L and a roughness h, the force as a function of indentation 
depth is determined according to Eq. (10.48):

We obtain the critical indentation depth when the stiffness corresponds exactly to 
that of a single linear spring. According to this, the following results from (10.30):

From this, it follows that

Insertion into (15.3) results in the critical indentation depth

(15.3)F(d) = E∗h−

1
H L

(

1.9412
H

(H + 1)2

)
H+1

H

d
H+1

H .

(15.4)kkrit = �xE∗

= kkrit1.1419E∗L =

1.9412E∗L

H + 1

(

Fkrit

E∗hL

)
1

H+1

.

(15.5)Fkrit = E∗hL

(

H + 1

1.9412L
�x

)H+1

.

(15.6)u
(0)
z,j =

(H + 1)2

1.9412H

(

H + 1

1.9412

�x

L

)H

h.

Fig. 15.1   Dependence of 
the force on the indentation 
depth plotted logarithmically: 
the exact solution of the 
Hertzian problem, results of 
the classical one-dimensional 
equivalent system with a 
discretization step size of �x,  
and the results for the one-
dimensional equivalent model 
with a stiffness according to 
(15.2)
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In order to correctly map the asymptotic behavior, the force of a single spring, for 
small indentation depths, has to be defined accordingly to (15.3) while for larger 
indentation depths, a linear behavior should be valid. Accordingly, we define

Figure 15.2 shows, analogously to Fig. 15.1, the curve of the normal force with 
respect to the indentation depth for the linear standard model (dotted blue line) 
and with the definition of the single spring according to (15.7). The expected 
approximation in the domain of asymptotically small indentations (10.48) is 
shown as a dotted line.

We have seen that the behavior on the microscales can be “coupled” to the 
reduction method by allowing a single spring to behave non-linearly in the domain 
of small indentations. In addition to the possibility of reducing the discretisation 
step to account for known problems, this procedure can also be used to integrate 
models below the scales of continuum mechanics, or to represent a cut-off domain 
of shorter wavelengths. Surface spectra that exhibit such a cut-off are microscopi-
cally smooth below this wavelength. This means that they form effectively the 
smallest possible asperities with a characteristic radius of curvature so that the 
Hertzian behavior can be used, as in Eq. (15.2).

(15.7)fi = E∗











h−
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H L
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1.9412H
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H
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H+1
H

z,i , if uz,i < u
(0)
z,i

−

�
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1.9412
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16.1 � Introduction

The most valuable aspect of the method of dimensionality reduction is the fact 
that it is a practical tool for many engineering applications. In several applica-
tions, such as the contact mechanics of axially-symmetric bodies, it provides exact 
results. In this field, it summarizes not only the multitude of exact three-dimen-
sional solutions in a simple, compact way, but at the same time, is also distin-
guished by its extremely simple numerical implementation. This trait is also true 
for other types of problems, such as the contact of randomly rough surfaces. Here, 
the method provides asymptotically exact results (for very small and very large 
forces). In the transitional domain, the results are not exact, but offer a very good 
approximation, the accuracy of which exceeds that of the typically available val-
ues for material and surface parameters.

In this chapter, we would like to discuss several ideas that are also only valid to 
“engineering accuracy,” but expand the possibilities of the reduction method and 
can further simplify its application. At no point in this chapter, a claim to a final 
and ultimate truth will be made. Our goal is much more to make the simulation of 
good approximations possible for instances in which simulations have not yet been 
possible.

16.2 � Linear Scans for Direct Application  
in the One-Dimensional Model 

In order to apply the method of dimensionality reduction to contacts between rough 
surfaces, it is necessary to convert the two-dimensional topography into the effec-
tive one-dimensional topography. The conversion rule for self-affine surfaces is 
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given by Eq. (10.15) with the factor �(H), which has been determined empirically 
until now and is presented in Fig. 10.9. The factor �(H) for typical Hurst exponents 
in the interval H = 0.3 to H = 0.7 varies only slightly around a value of 2. Every 
practitioner that has once measured a rough surface and attempted to determine its 
fractal dimension would know that the scatter for such measurements normally far 
exceeds the possible variation of the coefficient �(H). Using an exact coefficient, 
such as 2, would be purely pedantic and simply an exaggeration of the actual accu-
racy of the surface data available to engineers. For practical purposes, therefore, we 
can recommend the simple conversion formula

On the other hand, it will be shown in Chap. 20 Eq. (20.23) that the one-dimen-
sional power spectrum of a linear cross-section is approximately given by a two-
dimensional surface by using Eq.  (16.1). This means that the one-dimensional 
spectrum used in the method of dimensionality reduction corresponds to the spec-
trum of a one-dimensional cross-section of the original, as a first order approxima-
tion. In this approximation, the entire procedure is simplified extremely: First, the 
determination of the two-dimensional topography is no longer necessary, because 
the one-dimensional cross-section is sufficient. Second, the chain of transforma-
tions is also no longer necessary: (a) Determining the two-dimensional power 
spectrum, (b) the conversion to the one-dimensional power spectrum, and (c) the 
generation of the one-dimensional profile. Now, the one-dimensional cross-section 
can directly be used.

16.3 � Anisotropy: Linear Scans in the Direction of Motion?

Until now, we have only investigated isotropic surfaces, either axially-symmet-
ric or statistically isotropic. However, tribological surfaces are frequently non- 
isotropic. Even if the surfaces are manufactured to be isotropic, they become non-
isotropic during the tribological process itself, because the sliding direction causes 
a certain directionality in the material. As we have seen in Chaps. 3 and 10, the 
correct reproducibility of force-displacement relationship of a three-dimensional 
contact using a one-dimensional equivalent system is based solely on the scaling 
properties of the self-affine surface. These are not only limited to isotropic sur-
faces but are applicable to all self-affine surfaces, regardless of whether we are 
dealing with single non-isotropic “peaks” or rough surfaces. However, this is only 
valid for the normal contact problem. For tangential contact problems, and espe-
cially for friction, anisotropy is of crucial importance. It then begs the question of 
whether or not it is possible to produce a one-dimensional system in such a way 
that it maps the anisotropy of a two-dimensional surface. For this, a separate rough 
line must be generated for every sliding direction. However, each line must still 
exhibit the same normal stiffness. This requirement is met easily, because the stiff-
ness is only dependent on the RMS-roughness, as seen in Eq. (10.25), and not on 

(16.1)C1D(q) = 2qC2D(q).
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the RMS-surface gradients. If, for example, the linear cross-section is considered 
to be self-affine but non-isotropic, then all of them will exhibit the same RMS-
roughness and Hurst exponent, and therefore, the same dependence of the normal 
stiffness on force. Simultaneously, they will exhibit different RMS-surface gradi-
ents and different frictional forces. The exact conversion method for non-isotropic 
surfaces is not yet known and is the topic of current research. A simple rough rule, 
however, can already be formulated.

On the basis of the previous paragraphs, we can here form the following 
hypotheses, which can be used as an initial approximation for the production of a 
one-dimensional replacement system for a non-isotropic two-dimensional surface. 
In the case of isotropic surfaces, it has been shown that the one-dimensional cross-
section is directly suited to be used as the one-dimensional equivalent profile. We 
have seen that this is essentially due to the fact that the cross-sections have the 
same RMS-roughness and RMS-surface gradient as the two-dimensional original 
and, furthermore, exhibit the same Hurst exponent. Based on this, it is guaranteed 
that the normal stiffness can be correctly reproduced. For elastomers, it is then also 
assured that the characteristic value of the coefficient of friction (in the middle 
velocity domain, in which the loss modulus is larger than the storage modulus) can 
be reproduced correctly. In this domain, it obviously depends on the RMS-surface 
gradient in the direction of motion [1]. This is, however, exactly the RMS-surface 
gradient of a section in the direction of motion! The linear cross-section, there-
fore, exhibits the correct normal stiffness and the correct characteristic value of the 
coefficient of friction, and this for an arbitrary direction of motion. If this hypoth-
esis (perhaps in a somewhat modified form) can be substantiated, we would have 
a very simple and effective tool for the simulation of non-isotropic rough surfaces.

16.4 � Can the Method of Dimensionality Reduction  
also be Applied to Non-Randomly Rough Surfaces?

In all previous chapters, we have assumed randomly rough surfaces, which present 
only a subclass of possible rough surface profiles. The simple method shown in 
Sect. 16.2 for the generation of a one-dimensional equivalent profile begs the ques-
tion of whether the one-dimensional cross-sections of non-randomly rough surfaces 
are also suited to be used as one-dimensional equivalent profiles. The fact that this 
can by all means be a good approximation has already been made clear in an example 
of an axially-symmetric profile. In Sect. 3.3, a flattened sphere was considered and 
the exact equivalent profile was determined using the generalized conversion formula. 
However, it differs from the simple linear cross-section of the three-dimensional pro-
file, stretched vertically by a factor of two, only slightly (Fig. 16.1). Our hypothesis 
consists of the consideration that the one-dimensional cross-section through a rough 
surface is also a good approximation for a representative one-dimensional profile for 
non-randomly rough surfaces. If this hypothesis is confirmed, then it will open up 
wide applications for the treatment of correlated (e.g., worn) profiles.

16.3  Anisotropy: Linear Scans in the Direction of Motion?
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16.5 � Heterogeneous Systems

Many real tribological systems are heterogeneous systems, such as a brake pad. 
The current version of the method of dimensionality reduction can only by applied 
to homogeneous systems. A heterogeneous system must first be homogenized 
before it can be treated with the methods described in this book. It is of interest to 
obtain an exact, explicit description of the heterogeneity. The main ideas of how 
this could be done are discussed in [2].

16.6 � Fracture and Plastic Deformation  
in the Method of Dimensionality Reduction

The simple feature indicating that a physical quantity can be simulated very 
easily using a one-dimensional mapping, is the proportionality of this quantity 
to the diameter of the contact. This property can be trivially “one-dimension-
alized.” Therefore, parameters such as stiffness and electrical/thermal conduc-
tivity are easily mappable to one-dimensional systems. Also the dependence 
of the total force on the macroscopic displacement falls into this category and 
is given excellently by the reduction method. Parameters that do not have this 
property, such as contact area, cannot be mapped (at least not without limit-
ing assumptions). Plastic and fracture behavior do not appear at first glance to 
belong to the properties to which the reduction method can be directly applied. 
In reality, there is a set of systems for which also plastic deformation and frac-
ture processes can be included (at least half quantitatively) to solvable problems 
for the method of dimensionality reduction. This will always be the case when 
the critical forces for plastic deformation or fracture are linearly dependent on 
the contact radius. In the work [3], for instance, the strength of microcontacts 

Fig. 16.1   The three-
dimensional profile of a 
flattened sphere f, its exact 
one-dimensional equivalent 
profile g and the two-fold 
scaled profile of a linear 
cross-section through the 
center of the sphere h in a 
normalized presentation
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for Au–Au and Au–Pt in tension and Au–Au in shear were investigated. The 
fracture force was proportional to the contact radius for contacts with a radius 
of 10–100 nm:

where � is a constant. This property can be directly mapped using the method of 
dimensionality reduction by defining the fracture criterion for individual springs in 
the linearly elastic foundation as follows:

The strong dependence of the fracture strength on the size of the contact on the 
nanoscale appears to be more the rule than the exception.

Incidentally, this is not only valid for the fracture force, but also for the force at 
which plastic deformation initiates. The authors of the work [4], for example, have 
investigated the indentation of polydimethylsiloxane (PDMS) and determined that 
the hardness was inversely proportional to the contact radius for a wide interval 
of indentation depths (which corresponded to three orders of magnitude). In other 
words, the force scaled practically linearly with respect to the size of the contact. 
Similar results were found for the nanoindentation of gold [5]. For such materials, 
the condition for plastic deformation of the surface can be implemented similarly 
to (16.3). A more detailed discussion of description of plastic deformation and 
fracture in the framework of MDR can be found in [6].
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17.1 � Introduction

In this chapter, the complete proofs will be shown that allow for the exact mapping of 
frictionless, axially-symmetric contact problems with and without adhesion to one-
dimensional contacts. The starting point is the three-dimensional theory for the calcu-
lation of axially-symmetric contacts, which we will change step-by-step in a way that 
the one-dimensional properties may be clearly seen. We assume simply connected, 
and therefore, circular contact areas. Let us first consider the indentation of a rigid, 
axially-symmetric indenter into an elastic half-space according to Fig. 17.1a. Here, 
the profile of the indenter is defined as z̃ = f (r), where the z̃-axis is positive in 
the upwards direction starting at the tip of the indenter. The indentation depth d 
denotes the maximum surface displacement that is always present at the tip of the 
indenter in the case of a convex profile. In addition to the indentation depth d, the 
contact depth dc may be seen in the figure. The contact depth is

The mixed boundary conditions are

where uz, σzz, and τrz correspond to the components of the displacement and stress 
tensors at the surface. Galin [1] and Sneddon [2] solved this classical elasticity 
problem using integral transformations, obtaining the following equations, which 
are only dependent on the form of the indenter:

(17.1)dc = f (a).

(17.2)
uz(r, 0) = d − f (r), 0 ≤ r ≤ a

σzz(r, 0) = 0, r > a

τrz(r, 0) = 0

,

(17.3)d = a

a
∫

0

f ′(r)
√

a2
− r2

dr +

π

2
χ(a)
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The function χ(x) is calculated from the form function f (r) according to

With the exception of the profile of a flat, cylindrical indenter, the contact radius a 
is not known in the equations above; its calculation requires an additional condi-
tion, which we will discuss later.

By expressing the indentation depth d in right-hand side of Eq. (17.7) using Eq. 
(17.3), we obtain a relationship that is important for the application of the reduc-
tion method:

with

(17.4)FN = πE∗

a
∫

0

χ(x) dx

(17.5)

σzz(r, 0) =

E
∗

2

1

r

d

dr

a
�

r

χ(x)x
√

x2
− r2

dx =

E
∗

2





a
�

r

χ ′(x)
√

x2
− r2

dx −

χ(a)
√

a2
− r2



, 0 < r < a

(17.6)uz(r, 0) =

a
∫

0

χ(x)
√

r2
− x2

dx, r > a.

(17.7)χ(x) =

2

π

d

dx

x
�

0

r(d − f (r))
√

x2
− r2

dr =

2

π



d − x

x
�

0

f ′(r)
√

x2
− r2

dr



.

(17.8)χ(x) = χ(a) +

2

π

[

g(a) − g(x)
]

,

(17.9)g(x) = x

x
∫

0

f ′(r)
√

x2
− r2

dr for x > 0.

Fig. 17.1   (a) Contact between a rigid, axially-symmetric indenter and an elastic half-space. (b) 
The equivalent one-dimensional system
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By taking Eq. (17.8) into account, the conditional equation for the normal force 
(17.4) can be formulated in the following syntax:

We can physically redefine this equation if we interpret the integrand as the dis-
placement within an equivalent system:

which is sketched in Fig. 17.1b. It consists of a series of equally-spaced longitudi-
nal springs having the stiffness �kz = E∗�x, into which a rigid profile is indented, 
which is described by Eq. (17.9) and its mirrored image about the y-axis:

which we have additionally supplemented by g(0) := lim
x→0

g(x) = 0.

The contribution of a single spring to the normal force at the point xi is

Summing the force components in the loaded springs and subsequently taking the 
limit �x → 0 then leads to Eq. (17.10):

From Eq. (17.11) with the help of Eq. (17.3), the following equation results:

from which we can calculate the indentation depth for both the contacts with and 
without adhesion by taking the conditions into account which will be discussed in 
the next section. The dependencies between the indentation depth, contact radius, 
and normal force resulting from the presented reduced contact are all exactly those 
that would result in a three-dimensional, axially-symmetric contact.

In the three-dimensional problem, the indentation depth is equal to the dis-
placement at the point r = 0. The same is valid for the equivalent one-dimensional:

Nevertheless, there exists a fundamental difference, because in the one-dimensional 
case the indentation depth and the contact depth are identical, which allows for a much 
simpler calculation.

(17.10)FN = 2E∗

a
∫

0

[

g(a) +

π

2
χ(a) − g(x)

]

dx = 2E∗

a
∫

0

[

d − g(x)
]

dx.

(17.11)uz, 1D(x) :=

π

2
χ(x) = g(a) +

π

2
χ(a) − g(x) = d − g(x),

(17.12)g(x) = |x|

|x|
∫

0

f ′(r)
√

x2
− r2

dr for x ∈ R,

(17.13)fN (xi) = E∗�x · uz, 1D(xi).

(17.14)FN = E∗

a
∫

−a

uz, 1D(x)dx = E∗

a
∫

−a

[

d − g(x)
]

dx.

(17.15)uz, 1D(a) = d − g(a) =

π

2
χ(a),

(17.16)uz, 3D(r)
∣

∣

r=0
= d = uz, 1D(x)

∣

∣

x=0
.

17.1  Introduction
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Let it be noted here that, generally, also contacts with concave profiles may be 
mapped if we require, as mentioned above, that the contact area is simply con-
nected and in the place of the indentation depth at the contact boundary, continue 
to use the displacement at the center of the contact as the characteristic value (see 
Problem 6 in Chap. 3).

17.2 � Normal Contacts Without Adhesion

First, only contacts without adhesion will be considered. Later, we will see that 
using the method of dimensionality reduction for non-adhesive contacts lays at the 
same time the foundation for mapping adhesive contacts. Boussinesq [3] already 
indicated that the normal stresses at the edge of the contact between a half-space 
and a convexly formed indenter must vanish. Sneddon [2] showed that this prop-
erty leads to

if the stresses at the edge of the contact are observed using Eq. (17.5). With this, 
the missing equation for the calculation of the contact radius is found for contacts 
without adhesion. This is equally valid for the one-dimensional model, due to the 
fact that after insertion of (17.17) into (17.15), only a trivial condition remains for 
the determination of the indentation depth within the framework of the reduction 
method:

With this relation, the equation for calculating the normal force can be further 
simplified:

The calculation of the equivalent profile from the original, according to  
Eq. (17.12) and subsequent evaluation of Eqs. (17.18) and (17.19) form the central 
premise for calculating the exact solution to three-dimensional contact problems 
using the method of dimensionality reduction.1 In Chap. 3, the procedure is 
explained using many examples. If at all, the only difficulty lies in calculating the 
equivalent profile from the original according to (17.9) and (17.12), respectively. 
Depending on the type of profile function, even this step may be further simplified, 
which we would like to explain in the following.

(17.17)χ(a) = 0

(17.18)uz, 1D(a) = 0 ⇒ d = g(a).

(17.19)

FN = E∗

a
∫

−a

uz, 1D(x)dx = E∗

a
∫

−a

[

g(a) − g(x)
]

dx = 2E∗

a
∫

0

[

g(a) − g(x)
]

dx.

1  Assuming convex profiles.

http://dx.doi.org/10.1007/978-3-642-53876-6_3
http://dx.doi.org/10.1007/978-3-642-53876-6_3
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17.2.1 � Single-Term Profiles—Power Function

We first assume an indenter with the form

where the exponent n is an arbitrary positive real number. Insertion of (17.20) into 
(17.12) and subsequent integration results in

For the introduced exponent n of the power function, the coefficient κn is

where Ŵ(n) denotes the gamma function. According to (17.21), the function g, and 
with it the equivalent profile, arises from a simple vertical scaling of the original 
profile by the factor κn. We can physically interpret the scaling factor, if we calcu-
late the indentation depth from the condition (17.18):

According to Eq. (17.23), the scaling factor specifies the relation between the 
indentation depth d and the contact depth dc. With this, we can write the nor-
mal surface displacement in the one-dimensional model according to (17.11) as 
follows:

We can see from the parentheses that the one-dimensional displacement is deter-
mined from the corresponding scaling of the three-dimensional relative displace-
ment with respect to the contact boundary, which is graphically supported by 
comparing the subfigures in Fig.  17.1. The geometry of the equivalent model, 
therefore, requires only a simple modification of the original profile (rule of Heß 
[4]):

Figure 3.3 from Chap. 3 shows the graphical trend of the change in the scaling fac-
tor κn with respect to the exponent n.

(17.20)z̃ = f (r) = cnrn,

(17.21)g(x) = ncn|x|

|x|
∫

0

rn−1

√

x2
− r2

dr = κncn|x|
n

= κnf (|x|).

(17.22)κn := n

π/2
∫

0

(sin u)n−1du =

√

π

2

nŴ( n
2
)

Ŵ( n+1
2

)
,

(17.23)d = κnf (a) = κncnan
= κndc.

(17.24)uz, 1D(x) := d − g(x) = κn(f (a) − f (x)) = κn(dc − f (x)).

(17.25)

f (r) = cnrn
�→ g(x) = c̃n|x|

n with c̃n = κncn and κn =

√

π

2

nŴ( n
2
)

Ŵ( n+1
2

)
.
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17.2.2 � The Special Case of the Flat, Cylindrical Indenter

In the case of a flat, cylindrical indenter being pressed into an elastic half-space, 
the normal displacement at the edge of the contact is not differentiable. Because of 
this, the Boussinesq condition (17.17) is violated and we may not use Eqs. (17.18) 
or (17.19). However, the contact radius a is already known. The profile is then

which after insertion of Eq. (17.12), leads to

For the normal force, we turn back to Eq. (17.14):

for which we intentionally show the intermediate step in order to make it clear that 
this equation corresponds to the contact between a one-dimensional profile and a 
linearly elastic foundation.

17.2.3 � Superposition Principle for Multi-Termed Profiles

For profiles in the form of power functions (with arbitrary positive real exponents), 
using the general transformation formula (17.12), leads to a constant scaling rela-
tionship. Due to the superposition principle, we can use the especially simple 
mapping rules also for multi-termed profiles. In the following, we will consider a 
multi-termed profile function in the form of a power series according to

One such profile, for example, was used by Segedin [5] for investigating the 
contact radius of a spherical indenter with an elastic half-space. In contrast to 
the Hertzian approximation, he defined the spherical profile as a Taylor series. 
Insertion of (17.29) into (17.11) and taking (17.12) into account leads to the nor-
mal displacement in the equivalent model

In doing so, we have switched the integral and the summation in the first step and, 
subsequently, conducted the integration analogously to Eq. (17.21). According to 
Eq. (17.18), the displacement in the equivalent model at the point x = ±a must 
vanish for non-adhesive contacts, for which the indentation depth may be found:

(17.26)z̃ = f (r) = 0,

(17.27)z̃ = g(x) = 0.

(17.28)FN = 2E∗

a
∫

0

d dx = E∗

a
∫

−a

d dx = 2E∗ad,

(17.29)
z̃ = f (r) = c1r1

︸︷︷︸

f1(r)

+ c2r2

︸︷︷︸

f2(r)

+ · · · + ckrk

︸︷︷︸

fk(r)

+ · · · =

∞

∑

n=1

cnrn.

(17.30)uz, 1D(x) = d − |x|

|x|
∫

0

∞

∑

n=1

ncnrn−1

√

x2
− r2

dr = d −

∞

∑

n=1

κnfn(|x|).
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This presents nothing other than the superposition of the indentation depths dn 
which every single term in the profile would produce. As already described in 
Chap. 3, the application of the superposition principle requires identical contact 
areas, which is the case here (circular area with the radius a). Because the reduc-
tion method is valid for each one of these single profiles, it must automatically be 
valid for the sum of these, which is shown on the right-hand side of Eq. (17.31). 
This is, of course, also true for the mapping of the normal force as a function of 
the contact radius. If we first insert (17.31) into (17.30) and then use the result in 
the conditional Eq. (17.19) for the normal force, we obtain

Mapping profiles in the form of power series is valuable also for a complete other 
reason. If there is no closed solution for the integral in the generalized transforma-
tion formula (17.12), but the original profile can be defined as a series, then we 
can always determine the equivalent profile in this way. Only piecewise-defined 
profiles require that the transformation formula be explicitly applied.

17.3 � Normal Contacts with Adhesion According  
to the Generalized JKR Theory

In the following, the proofs of the ansätze used in Chap. 4 will be shown for the 
exact mapping of the adhesion theory by Johnson et al. [6] as well as their 
generalizations to arbitrary axially-symmetric contacts. Thereby, we make use of the 
method from Maugis and Barquins [7], which exploits the analogy to linearly elastic 
fracture mechanics. We begin by using Eqs. (17.5) and (17.6) from Sneddon, which 
were defined in the immediate proximity to the contact area:

where �uz(r) := f (r) − d + uz(r) is the difference between the normal displace-
ment of the indenter and that of the half-space surface outside of the contact area 
and, as usual, ε ≪ 1 is valid. This relationship corresponds exactly to that for the 
near field in the proximity of a mode I crack, the intensity of which is only expressed 
by the so-called stress intensity factor KI. The latter realization prompted Irwin [8] to 
define a fracture criterion. According to this, propagation of the fracture occurs only 

(17.31)d =

∞

∑

n=1

κnfn(a) =

∞

∑

n=1

dn(a) =

∞

∑

n=1

gn(a).

(17.32)FN =

∞

∑

n=1

E∗

a
∫

−a

[

gn(a) − gn(x)
]

dx =

∞

∑

n=1

Fn(a).

(17.33)σzz(r = a − εa) ≈ −

E∗

2a

χ(a)
√

2ε

(17.34)�uz(r = a + εa) ≈ −χ(a)
√

2ε,

17.2  Normal Contacts Without Adhesion

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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after KI, which is generally dependent on material, geometry, length, and loading of 
the crack, reaches the so-called fracture toughness, which is able to be experimen-
tally determined from standardized fracture tests. The relationship between KI(a) 
and the yet unknown modified rigid body translation χ(a) is

the right side of which arises from (17.15).
Irwin not only recognized that the description of a singular stress field using the 

intensity factor is the same for all fundamental fracture modes, but also discovered 
the connection to the energetic ansatz from Griffith [9]. Thus, the elastic energy 
release rate G and the stress intensity factor for a mode I crack in a state of plane 
strain are related according to

This form results in

after insertion of (17.35).
In a state of equilibrium, the elastic energy release rate must be equal to the 

Dupré energy of adhesion �γ:

The latter presents a relative surface energy, which is dependent on the surface ener-
gies γ1 and γ2 of the two bodies as well as the interface energy γ12, according to

After insertion of (17.37) into (17.38), we obtain

This relationship takes the place of the Boussinesq condition (17.17) for contacts 
with adhesion. With its help, the (equilibrium) displacement can be given in the 
one-dimensional model according to Eq. (17.11) in the form

In contrast to the non-adhesive case, the equilibrium of all contacting springs is 
lengthened by an additional �ℓmax(a), which we can simply see from the springs 
at the boundary (see Fig. 17.2b). The indentation depth is the displacement at the 
point x = 0, for which we obtain a central requirement for the one-dimensional 
model by taking (17.41) into account:

(17.35)

KI(a) = lim
ε→0

√

2πaε · σzz(a − εa) = −

√

πE∗χ(a)

2
√

a
= −

E∗

√

πa
uz,1D(a),

(17.36)G =

K2
I (a)

2E∗

.

(17.37)G =

E∗

2πa
u2

z,1D(a)

(17.38)G = �γ .

(17.39)�γ := γ1 + γ2 − γ12.

(17.40)uz,1D(a) = −�ℓmax(a) with �ℓmax(a) :=

√

2πa �γ

E∗

.

(17.41)uz, 1D(x) = g(a) − g(x) − �ℓmax(a).
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The normal force still results from the sum of the individual spring forces accord-
ing to (17.14):

Due to this “new” definition of the indentation depth (17.42), which is supple-
mented by an additional rigid body translation, the normal force contains (in con-
trast to the contact without adhesion) an “unloading” component, as exhibited by 
the movement of a flat, cylindrical indenter. If we denote the apparent values with 
“n.a.” that would lead to the same contact radius a in a non-adhesive contact, as 
that resulting in an adhesive contact, we can alternately formulate (17.42) and 
(17.14) as

These two equations lead to the fundamental relationship

which, as mentioned above, exhibits the same structure which characterizes a flat 
indenter contact (see Sect.  17.2.2, especially Eq.  (17.28)). With the help of the 
“apparent values,” the procedure for exactly mapping the contact with adhesion is 
explained very quickly. In the first step, the equivalent profile must be determined 
according to (17.12) and subsequently indented into the uniaxial layer of springs. 
The loading phase resulting in a contact radius of a is exactly the same as in the 
contact without adhesion. We denote the corresponding normal force and indenta-
tion depth with Fn.a. and dn.a., respectively. In the second step, we now assume 
that all springs in contact adhere to the indenter and we successively reduce the 
normal force. Then, more springs will be loaded in tension starting from the edge 
of the contact and continuing towards the center, during which the contact radius 
remains unchanged. As soon as the springs at the edge of the contact reach the 

(17.42)d := uz, 1D(0) = g(a) − �ℓmax(a).

FN := E∗

a
∫

−a

uz, 1D(x)dx = E∗

a
∫

−a

[

d − g(x)
]

dx.

(17.43)d(a) = dn.a.(a) − �ℓmax(a)

(17.44)FN (a) = Fn.a.(a) − 2E∗a �ℓmax(a).

(17.45)�F := Fn.a. − FN = 2E∗a(dn.a. − d) = 2E∗a �d,

Fig. 17.2   Qualitative presentation of the indentation (a) and separation (b) processes using the 
reduction method for the example of a conical contact

17.3   Normal Contacts with Adhesion...
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critical elongation of �ℓmax(a), the state between adherence and separation is 
achieved. This equilibrium state, defined by the triplet FN,d-a corresponds exactly 
with that of the three-dimensional contact with adhesion. Figure 17.2 shows the 
indentation and separation process for the example of a conical contact. Let it be 
emphasized that the critical displacement at the contact boundary for the critical 
state is dependent on the contact half-width a (according to Eq. (17.40)). Equation 
(17.40) is known as the rule of Heß for adhesive contacts [4].

The implementation of adhesion within the framework of the method of dimen-
sionality reduction requires only the investigation of the edge of the contact, accord-
ing to the procedure above. Due to the dependence of the separation criterion on the 
contact radius, the stability of the contact should be correctly given by a numeri-
cal investigation. Nevertheless, we would like to derive a further criterion, which 
appears to be helpful for the explicit calculation of critical values and differentiates 
between the typical fixed-load and fixed-grips conditions, depending on which value 
is controlled. The starting point of the consideration is the elastic energy release rate 
in the form (17.37). The stability of the equilibrium state requires that the change in 
the energy release rate with respect to the contact area is larger than zero [10]:

In this case, the crack will always reclose after a variation or perturbation. 
Applying (17.46) to (17.37) results in

We can obtain the derivatives in (17.47) from Eqs. (17.14) and (17.15). For the 
calculation at a constant normal force, we first rearrange Eq. (17.14):

and then differentiate both sides with respect to a. Then, the left side becomes zero 
and we can rearrange with respect to the desired derivative. For the various bound-
ary conditions, we obtain

Reinserting this back into Eq. (17.47) leads first to the inequality

which, after using the rule of Heß (17.40), leads to a stability criterion for 
equilibrium:

(17.46)
∂G

∂A

∣

∣

∣

∣

FN

> 0 or
∂G

∂A

∣

∣

∣

∣

d

> 0 .

(17.47)
uz,1D(a)

a
> 2

∂uz,1D(a)

∂a

∣

∣

∣

FN

or
uz,1D(a)

a
> 2

∂uz,1D(a)

∂a

∣

∣

∣

d
.

(17.48)FN (a) = 2E∗

a
∫

0

[

g(a) − g(x)
]

dx + 2E∗a uz,1D(a)

(17.49)
∂uz,1D(a)

∂a

∣

∣

∣

∣

FN

= −

uz,1D(a)

a
−

∂g(a)

∂a
or

∂uz,1D(a)

∂a

∣

∣

∣

∣

d

= −

∂g(a)

∂a
.

(17.50)
uz,1D(a)

a
> −k

∂g(a)

∂a
with k =

{

2/3 for FN = const

2 for d = const
,

(17.51)

�ℓmax(a)

a
< k

∂g(a)

∂a
with k =

{

2/3 for FN = const

2 for d = const
.
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The critical contact radii, for which the maximum separation force and minimum inden-
tation depth result, correspond to the marginally stable state. By replacing “<” by “=” 
in Eq. (17.51), the conditional equations may be found for the critical contact radii:

According to this, the (weighted) slope of the equivalent profile at the edge of the 
contact is compared to the quotient of the fracture length to the contact radius, 
which can be carried out without any difficulty.

17.4 � The Mapping of Stresses

While in the three-dimensional contact, the normal displacement of a point on the 
contact surface is dependent on the stress distribution within the entire contact 
area, the one-dimensional contact with the linearly elastic foundation exhibits a 
direct proportionality between the spring force and the displacement at point x. If 
we take the “linear character” of the foundation into account, then the distributed 
load in the equivalent model may be defined as

The normal stress distribution σzz(r) of the initial three-dimensional contact does 
not appear in the equivalent one-dimensional model. Nevertheless, the exact stress 
distribution may be obtained from the “spring forces” using Eq. (17.5). We can 
also write Eq. (17.7) as

After the insertion of (17.54) into (17.5) and taking (17.53) into account, the con-
ditional equation is found for the normal stress distribution, which requires only 
the knowledge of the distributed load in the equivalent system:

This formula is valid for both contacts with and without adhesion, because  
Eq. (17.54) may contain an additional rigid body displacement component. After 
partial integration and subsequent differentiation with respect to r, we obtain a for-
mulation equivalent to (17.55), which has been used the most in this book.2

(17.52)
�ℓmax(a)

a
= k

∂g(a)

∂a
with k =

{

2/3 for FN = const

2 for d = const
.

(17.53)q(x) = E∗uz, 1D(x) = E∗

[

d − g(x)
]

.

(17.54)χ(x) =

2

π

[

d − g(x)
]

.

(17.55)σzz(r) =

1

π

1

r

d

dr

a
∫

r

x · q(x)
√

x2
− r2

dx.

2  For piecewise-defined profile functions, it may be necessary to modify the equation.

(17.56)σzz(r) =

1

π

a
∫

r

q′(x)
√

x2
− r2

dx −

1

π

q(a)
√

a2
− r2

.

17.3   Normal Contacts with Adhesion...
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The first term in Eq. (17.56) provides the Abel transformation (of the second kind) 
of q′(x). The second term, on the other hand, describes the influence of the super-
imposed rigid body displacement. This leads to a discontinuity in the distributed 
load at the edge of the contact, and therefore, to a stress distribution as that under a 
flat, cylindrical indenter.
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The derivation for the exact mapping of the tangential contact of axially-symmetric 
bodies requires only the knowledge of one of Jäger’s superposition principles. Before 
we go into this in more detail, let us mention the usual restrictions. According to 
these, the influence of the tangential stress on the normal displacement as well as the 
influence of the normal stress on the tangential displacement of the surface should be 
neglected. It is well known that such a decoupling of the contact problem is only able 
to be undertaken when Dundurs’ second constant βD is as follows:

According to this, either elastically similar materials must be assumed, or the con-
tact is assumed to be between two incompressible materials or an incompressible 
material and a rigid body.

Assuming the validity of Eq.  (18.1), we now consider an axially-symmetric 
indenter, which is initially pressed into an elastic half-space with the normal force 
FN and subsequently loaded by a tangential force Fx in the x-direction. Depending 
on the tangential loading, the size of the inner stick domain, and with it the stick-
ing contact radius c, will change. Points within this circular domain experience a 
constant displacement

The tangential stress must fulfill Coulomb’s law of friction:

In Eq.  (18.4), we have used the assumptions found in the classical theory of 
Cattaneo [1] and Mindlin [2], which states that the frictional stresses in the slip 

(18.1)βD :=

(1 − 2ν1)G2 − (1 − 2ν2)G1

2(1 − ν1)G2 + 2(1 − ν2)G1

≪ 1.

(18.2)ux(r) = const.

(18.3)τzx(r) ≤ µp(r) for 0 ≤ r ≤ c,

(18.4)τzx(r) = µp(r) for c < r ≤ a.
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domain are all oriented in the direction of the applied tangential force. With the 
exception of the unrealistic case of ν1 = ν2 = 0, this assumption violates the con-
dition that at every position in the slip domain, the slip is oriented in the direction 
opposing the tangential stresses. The reason for this is the presence of an additional 
slip motion perpendicular to the direction of the applied force. For the classical 
contact of parabolic bodies, however, it could be proven that this component may 
be neglected [3, 4]. We assume that this approximation is also valid for the gener-
alization of the Cattaneo–Mindlin theory for arbitrary axially-symmetric contacts.

Jäger [5] considered the surface displacement within the contact area as the 
superposition of differential rigid body displacements, as is exhibited by the flat 
cylindrical indenter. Using this idea, he could derive the solution of the generalized 
axially-symmetric normal contact from the stress distribution beneath the flat cylin-
drical indenter, and with it, the equations from Sneddon [6]. In the same way, he 
investigated the tangential contact, whereby he took the above mentioned approxi-
mations into account, among other things, neglecting the influence of the lateral 
slip component. In this way, he could prove that the tangential contact problem can 
be completely reduced to the normal contact problem within the framework of the 
Cattaneo–Mindlin theory. The tangential stresses result from the coefficient of fric-
tion µ multiplied by the difference between the current normal stress distribution 
and the normal stress distribution that would lead to the (smaller) stick radius c:

Completely analogously, the following equations are valid for the tangential force 
and the tangential displacement within the stick domain:

Let it be noted that Jäger consequently assumed elastically identical materials 
(E1 = E2 =: E, ν1 = ν2 =: ν) in his pioneering work [5], for which the character-
istic stiffness ratio in Eq. (18.7) is replaced by

By simply assuming elastically similar materials,1 Ciavarella [7, 8] could show the 
validity of Eqs. (18.5)–(18.7). Deviating from the procedure of Jäger, Ciavarella’s 
solution was obtained by the comparison of the integrals of the fundamental solu-
tions of Boussinesq [9] and Cerruti [10].

Due to the fact that the axially-symmetric tangential contact with partial slip 
can be represented by two normal contacts, it must also be exactly mappable 
using the reduction method. Furthermore, it is in no way necessary to analyze two 

(18.5)τzx(r) = −µ
[

p(a, r) − p(c, r)
]

.

(18.6)Fx = µ[FN (a) − FN (c)],

(18.7)ux = µ
E∗

G∗

[d(a) − d(c)].

(18.8)
E∗

G∗

=

2 − ν

2(1 − ν)
.

1  Elastically similar materials are characterized by βD = 0.
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normal contacts, which we will show in the following. Thereby, we assume that 
the Boussinesq condition (17.17) is met. Then, the following equation results by 
using Eq. (18.7) and taking into account both Eq. (17.3) and the conditional equa-
tion of the form function g(x) of the equivalent profile (17.12):

where we have additionally multiplied by the spring separation distance �x. Let us 
now remember the modeling of the one-dimensional linearly elastic foundation by 
independent spring elements in the normal and tangential direction, which possess 
the normal stiffness �kz = E∗�x and the tangential stiffness �kx = G∗�x. Then, 
on the left side of (18.9), we have exactly the spring force of a tangential element 
within the stick contact radius |x| ≤ c. The right side, on the other hand, is charac-
terized by the normal force in the vertical element at the point |x| = c (at the bound-
ary of the stick domain) multiplied with the coefficient of friction. Equation (18.7) 
of the superposition principle of Jäger is then synonymous with the condition

It says clearly that the tangential spring forces in the one-dimensional equivalent 
model assume the maximum possible value for the force of static friction at the 
boundary of the stick domain. From this dynamic boundary condition, the stick radius 
c of the three-dimensional contact can be determined for a given displacement ux.

In an equally trivial way, we can obtain the connection between the condi-
tional equation for the tangential force (18.6) and the reduction method if we take 
Eq. (17.10) into account:

After splitting the integration domain of the first integral in (18.11) into the subdo-
mains 0 ≤ x ≤ c and c < x ≤ a and rearranging the equation, we obtain

The integrals in (18.12) can be replaced by the expressions in (17.53) and (18.9), 
where the alternate calculation of the tangential force in the three-dimensional 
contact is found using the one-dimensional contact:

While the first term in Eq. (18.13) represents the summation of the tangential spring 
force components in the stick domain |x| ≤ c displaced by a constant in the x-direc-
tion, the second term represents the contribution of the frictional forces during slip in 

(18.9)G∗�x ux = µ E∗�x
[

g(a) − g(c)
]

,

(18.10)fx(c) = µ fN (c).

(18.11)Fx = µ



2E∗

a
�

0

�

g(a) − g(x)
�

dx − 2E∗

c
�

0

�

g(c) − g(x)
�

dx



.

(18.12)Fx = 2

c
∫

0

µE∗

[

g(a) − g(c)
]

dx + 2µ

a
∫

c

E∗

[

g(a) − g(x)
]

dx.

(18.13)Fx = 2c G∗ux + 2µ

a
∫

c

q(x)dx.
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the domain c < |x| ≤ a. In this domain, Coulomb’s law of friction must be locally 
met, meaning that the one-dimensional, tangential distributed load qx(x) is pro-
portional to the vertical distributed load q(x) at every point. Until now, it has been 
proven that the relationships between the tangential force Fx, the tangential displace-
ment ux, and the stick radius c are exactly mapped by the one-dimensional model.

Finally, let us consider a method for the calculation of the three-dimensional 
tangential stress distribution from the tangential distributed load in the equivalent 
system. This piecewise-defined function is

where it is shown that the vertical distributed load q(x) is dependent on the con-
tact radius a. The constant tangential displacement of the surface within the stick 
radius can be determined by using Eq. (18.9):

Continuing in this way, the piecewise-defined force density from (18.14) can also 
be given in the form

where H(x) denotes the Heaviside function. With this, the tangential distributed 
load in the one-dimensional model is the difference between the actual vertical 
distributed load and the distributed load that would lead to the contact half-width c 
multiplied by the coefficient of friction µ. Applying the (modified) Abel transfor-
mation according to (17.55), Eq. (18.16) results in

According to the superposition principle from Jäger, especially Eq.  (18.5), the 
right side describes the distribution of tangential stress for the three-dimensional 
contact problem, so that the remaining conditional equation is found. The three-
dimensional tangential stress distribution results (completely analogously to the 
normal stress distribution) from the (modified) Abel transformation of the tangen-
tial force density of the one-dimensional linearly elastic foundation2:

(18.14)qx(x) =







G∗ux for |x| ≤ c

µq(a, x) for c < |x| ≤ a

0 for |x| > a

,

(18.15)G∗ux = µ q(a, c).

(18.16)qx(x) = µ
[

q(a, x) · H(a − |x|) − q(c, x) · H(c − |x|)
]

,

(18.17)
1

π

1

r

d

dr

a
∫

r

x · qx(x)
√

x2
− r2

dx = µ
[

σzz(a, r) − σzz(c, r)
]

.

2  Let it be emphasized that in the special case of non-differentiable profiles, only the first inte-
gral expression in (18.18) may be used.

(18.18)τzr(r) =

1

π

1

r

d

dr

a
∫

r

x · qx(x)
√

x2
− r2

dx =

1

π

a
∫

r

q′

x(x)
√

x2
− r2

dx.
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Let it be once again stressed that contacts were investigated that meet the 
Boussinesq condition (17.17).
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19.1 � Introduction

In Chap. 7, it was shown how the reduction method can be applied to contact problems 
with elastomers. Here, Radok’s principle of functional equations plays an important 
role. This principle proceeds from a solution of a similar elastic problem which then is 
carried over to the original problem by replacing the material properties. This method 
is possible because within the framework of linear theory, the geometric, material spe-
cific, and loading specific influences can be decoupled to a certain degree.

In this appendix, it will be shown in detail how with Radok’s method of 
functional equations the replacement of the material properties should be carried 
out. In this chapter, we assume that we are looking for the solution to a contact 
problem with an elastomer described by the linear viscoelastic material law. On 
the other hand, we require that the solution to a similar elastic problem is known.

In the second section, the fundamental solution will be derived for the normal 
contact problem with a linearly viscous material. In the third section, the simplifica-
tion for the incompressible linearly viscous model is undertaken, which is consid-
ered in Chap. 7. In the fourth section, we show how to use the general viscoelastic 
material law. In the last two sections, possible ways of simplification are shown.

19.2 � The Fundamental Solution for the Linearly Viscous 
Material Model

In this section, the replacement of the material properties for the linearly viscous 
material law is shown. The method is very close to that in the publication by 
Radok [1] and was also published in part in [2]. In order not to make the fol-
lowing explanations too abstract, we consider a concrete problem, namely the 
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deformation of the surface of a linearly viscous half-space being acted upon by 
a single constant force. If one additionally considers this force as a unit force, the 
solution is known as the fundamental solution. This, in turn, is the basis of many 
(numerical) methods, for example, the boundary element method.

Radok’s principle of functional equations first requires that a similar elastic 
problem is solved. In this case, we are looking for the fundamental solution for 
the normal contact problem with a linearly elastic half-space. This can be found in 
many textbooks on the theory of elasticity (e.g., [3]):

We express Poisson’s ratio ν using the modulus of compression K and the shear 
modulus G:

It is assumed that the normal force FN is applied at time t = 0 so that its temporal 
change can be described as in Chap. 7 with the Heaviside function H(t):

Now, we consider the isotropic linearly elastic material, which presents the founda-
tion for the similar elastic problem. The stress–strain relationships form the basis of 
this description, as can be found in textbooks on the theory of elasticity (e.g., [3]):

The Kronecker delta δik and Einstein’s summation convention are used. The elastic 
properties are described by the compression modulus K and the shear modulus G.  
The stress tensor is denoted by σ, which is separated into the spherical tensor 
σllδik/3 and the stress deviator sik := σik − σllδik/3. This decomposition arises 
from the separate consideration of pure compression, described by the spherical 
tensor, and that of pure shear, described by the stress deviator. The strain tensor ε 
is decomposed in the same way into its spherical tensor and strain deviator eik. The 
advantage of this decomposition lies in the possibility of considering the compres-
sion and shear separately:

As preparation, we now express the right sides of these equations as the series

and

(19.1)u(r) =

FN (1 − ν)

2πGr
.

(19.2)u(r) =

F(t)

πr

3K + 4G

2G(6K + 2G)
.

(19.3)F(t) = FN H(t).

(19.4)
1

3
σllδik + sik = Kεllδik + 2Geik .

(19.5)σii = 3Kεii, sik = 2Geik .

(19.6)P :=

p
∑

n=0

pn

∂n

∂tn

(19.7)
Q :=

q
∑

n=0

qn

∂n

∂tn

http://dx.doi.org/10.1007/978-3-642-53876-6_7
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of linear differential operators with respect to time with constant coefficients 
pn, qn. Both equations from (19.5) consist of only one term of order zero. For the 
first equation in (19.5), one obtains

and for the second,

Radok’s procedure fundamentally allows that also the left sides of Eq. (19.5) are 
expressed as series of time-dependent differential operators in the same way. In this 
way, integral relationships between stress and strain can be taken into account. For 
reasons of clarity, we forgo the generalization, which is unnecessary here.

In the next step, the solution to the similar elastic problem (19.2) is subjected 
to the Laplace transformation L{u}(s) =

∫

∞

0 u(t)e−stdt, for which the evolution of 
the loading (19.3) must be taken into account:

Thereby, we have denoted the Laplace transformed function u with a star and will 
also use this notation in the following considerations. In the Laplace domain, the 
material properties are expressed according to (19.8) and (19.9) by the respective 
differential operators:

Next, we consider the stress–strain relations for the isotropic, linearly viscous mate-
rial, which is the actual problem to be solved. This can be found, for instance, in [4]:

In order to avoid confusion, the quantities already used for the elastic appli-
cation are denoted with a tilde. Also here, the stress tensor σ and strain tensor ε 
are decomposed into the spherical tensor and the deviator. Furthermore, the time 
derivative of the strain tensor appears, which is denoted as ε̇. The material con-
stants are the modulus of compression ˜K, the volume viscosity ζ, and the shear 
viscosity η. The separate consideration of compression and shear provides

The right sides of these equations are also expressed in series of differential opera-
tors with respect to time. To prevent confusion, we denote the appearing symbols 
with a tilde. In the case of the first equation from (19.13), a term of zero and first 
order are to be taken into account, respectively:

(19.8)σii = Pεii, P = 3K

(19.9)sik = Qeik , Q = 2G.

(19.10)u∗(s) := L{u}(s) =

FN

πrs

3K + 4G

2G(6K + 2G)
.

(19.11)u∗(s) =

FN

πrs

P + 2Q

Q(2P + Q)
.

(19.12)
1

3
σllδik + sik =

˜Kεllδik + ζ ε̇llδik + 2ηėik .

(19.13)σii = 3K̃εii + 3ζ ε̇ii, sik = 2ηėik .

(19.14)σii = P̃εii, P̃ = 3K̃ + 3ζ
∂

∂t

19.2  The Fundamental Solution for the Linearly Viscous Material Model
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and in the case of the second, only one term of first order:

The preparatory work is finished and the properties of the elastic material in the 
solution can now be replaced with those of the linearly viscous medium. This is 
done by replacing the differential operators P and Q by ˜P and ˜Q in Eq. (19.11):

and subsequently substituting the properties of the viscous material (in the form of 
the Laplace transformed Eqs. (19.14) and (19.15):

To avoid confusion, we denote the solution to the viscous problem in the Laplace 
domain with z∗.

The remaining task consists of taking the reverse transformation into the time 
domain: L−1

{z∗(s)} =

1
2π i

∫ γ+i∞

γ−i∞
estz∗(s)ds (where γ is a real number that ensures 

the convergence of the integral). This is possible using tables of Laplace trans-
forms, for example, those found in [5]. For this purpose, Eq. (19.17) must be split:

Using the reverse transformation L−1
{z∗(s)}, the following is obtained:

There are two influences that may be noticed in the solution. First, there exists 
a linear term that is only influenced by the shear viscosity. The second term 
shows an exponential behavior. The amplitude of this term is determined by the 
compressibility and the characteristic time by the ratio of the elastic and viscous 
parameters in Eq. (19.18).

19.3 � The Fundamental Solution for the Linearly Viscous, 
Incompressible Material Model

In this section, the respective solution is derived for the incompressible model, 
which is the topic of Chap. 7. After the preparatory work in the previous sec-
tion, the necessary simplifications are easy to find. By allowing the modulus of 

(19.15)sik = Q̃eik , Q̃ = 2η
∂

∂t
.

(19.16)z∗(s) := u∗(s)
∣

∣

P �→
˜P

Q �→
˜Q

=

FN

πrs

˜P∗

+ 2 ˜Q∗

˜Q∗

(

2 ˜P∗

+
˜Q∗

)

(19.17)z
∗(s) =

FN

4πrηs2

3 ˜K + 3ζ s + 4ηs
(

3 ˜K + 3ζ s + ηs

) .

(19.18)z
∗(s) =

FN

4πrη

[ ω

s2(s + ω)
+

3ζ + 4η

3ζ + η

1

s(s + ω)
, ω :=

3 ˜K

3ζ + η
.

(19.19)z(r, t) := L
−1

{

z∗(s)
}

=

FN

4πr

[

t

η
+

1

˜K

(

1 − e−ωt
)

]

.
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compression to tend towards infinity K → ∞, one obtains the result for the 
incompressible case directly from Eq. (19.19):

One also obtains the same result if incompressibility is forced on the solution to 
the similar elastic problem, by substituting ν = 1

/

2 directly into Eq.  (19.1). We 
have already used the resulting equation in Chap. 7 as a starting point. Through 
this, the rearrangements following the equation are drastically simplified.

19.4 � Applying the Reduction Method to the General 
Linearly Viscoelastic Material Model

In this section, we provide the derivation of the reduction method for general vis-
coelastic materials. In the process, however, we restrict ourselves to the linear the-
ory as done thus far. This theory is limited to small deformations. For the sake of 
clarity, we now consider a concrete example, namely the description of the nor-
mal contact of a rigid indenter with a viscoelastic half-space using the reduction 
method. The problem itself is not especially of interest but it can be carried over to 
other cases completely analogously, for example, to tangential or rolling contacts. 
More complicated is the generalization to the contact between two deformable 
bodies. Here, the problem lies not in the reduction method, but rather in the com-
plicated description of the behavior of the material. In principle, however, such 
problems are able to be solved as well (see, for example [6]).

We describe the behavior of the viscoelastic material by the relaxation function, 
which we have thus far separated into pure compression and pure shear [7]:

At this point, we assume that the shear relaxation function G(t), also known as the 
time-dependent shear modulus, is related to the shear angle and not the strain ten-
sor, analogously to the elastic case. Here, we follow the considerations of Lee and 
Radok [8]. From this convention, a factor 2 results in Eq. (19.22). This fact, how-
ever, is handled in literature in various ways. If the time-dependent shear modu-
lus is based directly on the strain tensor, then this must be taken into account in 
Eq. (19.22) and in the following results.

With the conventional notation for the occurring (one-sided) convolution 
integrals

(19.20)z(r, t) =

FN t

4πηr
.

(19.21)σii(t) =

t
∫

τ=0

K(t − τ)ε̇ii(τ )dτ ,

(19.22)sik(t) = 2

t
∫

τ=0

G(t − τ)ėik(τ )dτ .

19.3  The Fundamental Solution for the Linearly Viscous…

http://dx.doi.org/10.1007/978-3-642-53876-6_7


250 19  Appendix 3: Replacing the Material Properties with Radok’s Method…

we can write both expressions as

and now simply conduct a Laplace transformation:

Analogously to Eqs. (19.14) and (19.15), we can interpret these as

In contrast to the previous considerations, the viscoelastic behavior of the material 
is not described by a series of linear differential operators, but rather by the relaxa-
tion function.

After we have described the viscoelastic material in this way, we turn to the procedure 
of Radok in the next step: Identifying a similar elastic problem. In this case, the similar 
elastic problem is the normal contact between a rigid indenter and an elastic half-space 
described by the reduction method. The results can be taken from Sect. 3.1. The half-
space is mapped to a chain of independent spring elements. For every individual ele-
ment, the following relation is valid for the force on the spring fN and its deformation u:

As previously, we denoted the width of the spring element as �x and the effective modu-
lus of elasticity E∗. The product E∗�x is obviously the spring stiffness of the element. 
Now, we take into account that one contact partner is rigid and describe the elastic behav-
ior of the other partner using the compression modulus K and the shear modulus G.  
The resulting equation is the solution to the similar elastic problem:

Now, we assume that u(t) = 0 for t < 0, conduct a Laplace transformation of the 
equation, and replace the elastic constants according to Eqs. (19.8) and (19.9). In 
this way, we obtain

From this equation, we can determine the viscoelastic solution by replacing P with 
˜P∗ and Q with ˜Q∗

(19.23)(f ∗ g)(t) :=

t
∫

τ=0

f (t − τ)g(τ )dτ ,

(19.24)σii(t) = (K ∗ ε̇ii)(t), sik(t) = 2(G ∗ ėik)(t)

(19.25)σ ∗

ii
(s) = sK

∗(s)ε∗

ii
(s), s

∗

ik
(s) = 2sG

∗(s)e∗

ik
(s).

(19.26)σ ∗

ii (s) =
˜P∗(s)ε∗

ii(s),
˜P∗(s) = sK∗(s),

(19.27)s∗

ik(s) =
˜Q∗(s)e∗

ik(s),
˜Q∗(s) = 2sG∗(s).

(19.28)fN (t) = E∗�x · u(t).

(19.29)fN (t) =

2G(6K + 2G)

3K + 4G
�x · u(t).

(19.30)f ∗

N (s) =

Q(2P + Q)

P + 2Q
�x · u∗(s).

(19.31)f ∗

N (s) =

˜Q∗(s)
(

2 ˜P∗(s) +
˜Q∗(s)

)

˜P∗(s) + 2 ˜Q∗(s)
�x · z∗(s),

http://dx.doi.org/10.1007/978-3-642-53876-6_3
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substituting the relaxation function according to (19.26) and (19.27),

and rearranging

Using the reverse transformation into the time domain, we obtain the relation-
ship between the normal force and the deformation for the general viscoelastic 
material:

where

is the Laplace reverse transformation of the resulting fraction. This contains both 
relaxation functions.

By comparing Eq. (19.34) with (19.28), it is noticeable how the description of 
the general viscoelastic contact problem is undertaken within the framework of the 
reduction method: In the linearly elastic foundation, the linear spring elements are 
replaced with force law according to Eqs. (19.34) and (19.35).

At this point, however, we have steered clear of the main difficulty. This con-
sists in the reverse transformation according to Eq.  (19.35). In most cases, in 
which describing the behavior of the material with the relaxation function is sensi-
ble, the reverse transformation (19.35) causes remarkable difficulties.

In the following two sections, we will demonstrate with which assumptions the 
solution may be simplified.

19.5 � Simplification: The Incompressible, Viscoelastic 
Material Model

In many cases the considered elastomer can be viewed, at least approximately, as 
being incompressible. We will investigate such a case in this section. We start with 
Eq. (19.35) and write

(19.32)f ∗

N (s) =

2sG∗(s)(2sK∗(s) + 2sG∗(s))

sK∗(s) + 4sG∗(s)
�x · z∗(s)

(19.33)f ∗

N (s) = 4�x
G∗(s)(K∗(s) + G∗(s))

K∗(s) + 4G∗(s)
·

(

sz∗(s)
)

.

(19.34)fN (t) = 4�x(V ∗ ż)(t) = 4�x

t
∫

τ=0

V(t − τ)ż(τ )dτ ,

(19.35)V(t) := L
−1

{

G∗(s)(K∗(s) + G∗(s))

K∗(s) + 4G∗(s)

}

(19.36)

G∗(s)(K∗(s) + G∗(s))

K∗(s) + 4G∗(s)
=

(

K∗(s) + 4G∗(s)

G∗(s)(K∗(s) + G∗(s))

)

−1

=

(

1

G∗(s)
+

3

K∗(s) + G∗(s)

)

−1

.

19.4  Applying the Reduction Method…
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Now, it is taken into account that for an incompressible material, K∗

→ ∞. Then, 
the second fraction tends to zero and we obtain1

In this way, Equation (19.34) is simplified to

By comparing Eq. (19.38) with (19.28), it is recognizable how the formulation of 
the incompressible viscoelastic material can be conducted within the framework 
of the reduction method. The spring elements of the linearly elastic foundation are 
replaced by a force law according to Eq. (19.38).

19.6 � Simplification: Approximation of the Relaxation 
Function by Discrete Models

In this section, an additional way of handling the relaxation function is shown. 
Hereby, we restrict ourselves, however, to the general procedure without going 
into further detail. Gross showed already in [9] that the relaxation functions K 
and G can by approximated by a generalized Maxwell element or equivalently 
by a generalized Kelvin–Voigt element. These elements can be described by a 
few known functions for which a Laplace transformation can be simply con-
ducted. When these functions are inserted into Eq.  (19.35), rational functions in 
the Laplace domain result. These, in turn, may be reformed into a few types of 
standard functions using partial fraction decomposition and transformed back into 
the time domain using tables of Laplace transforms. In this way, the generalized 
viscoelastic material law can be approximated with a generalized Maxwell model 
or Kelvin–Voigt model. The remaining problem, however, consists of finding the 
poles of the rational functions. For details, let the reader be referred to [7, 9–11]. 
A relatively current application may be found, for instance, in [12].
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20.1 � Introduction

The power spectra of rough surfaces are necessary “input parameters” for the cal-
culation of contact and frictional properties. The power spectrum of a randomly 
rough surface can be determined using the Fourier transform of a measured two-
dimensional surface topography. The experimental determination of the entire sur-
face topography, for instance, with an atomic force microscope can, however, be 
very time intensive. Therefore, it begs the question, whether or not it is possible 
to determine the entire two-dimensional power spectrum from a limited number 
of one-dimensional scans. For isotropically randomly rough surfaces, all of the 
necessary information is, in fact, already contained in the one-dimensional scans 
of the surface. These can be used to obtain the required surface information more 
quickly and with less hassle.

20.2 � Definitions

The two-dimensional power spectrum of a surface is defined as

where �r is the two-dimensional radius vector. z(�r) = z(x, y) is the surface profile 
defined over the rectangular area x ∈ [0, Lx), y ∈

[

0, Ly

)

 with the discretization 
step sizes �x, �y and with a mean of zero, so that �z(�r)� = 0; here, 〈.〉 denotes the 
average over the statistical ensemble. �q =

(

qx, qy

)

 is the wave vector. We assume 
that the surface topography is randomly rough and statistically homogeneous and 
isotropic. Under these conditions, the power spectrum is only dependent on the 

(20.1)C2D(�q) =

1

(2π)2

∫

〈

z(�r)z
(

�0
)〉

e−i�q·�rd2r,
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magnitude q =

√

q2
x + q2

y
 of the wave vector �q. Individual realizations of the ran-

domly rough surface with the given power spectrum were generated with the help 
of the expression

with a random phase φ(�q) = −φ(−�q), which exhibits a uniform distribution over 
the interval [0, 2π) and

The summation in (20.2) is done with the discretization step sizes �qx = 2π/Lx 
and �qy = 2π/Ly, in the respective directions.

We define the power spectrum C1D(q) similarly to a one-dimensional “surface,” 
or a rough line

The “line topography” in the one-dimensional case is calculated as follows with 
the help of the power spectrum:

with

the discretization step size �q = 2π/L, and the phase φ(q) = −φ(−q), which is 
uniformly distributed over the interval [0, 2π).

20.3 � Relationship Between the One-Dimensional  
and the Two-Dimensional Power Spectra

Let z(x, y) be a rough surface that is generated with the power spectrum C2D(q):

(20.2)z(�r) =

π/�x
∑

qx=−π/�x

π/�y
∑

qy=−π/�y

B2D(�q)exp(i(�q · �r + φ(�q)))

(20.3)B2D(�q) =

2π
√

LxLy

√

C2D(�q) =
¯B2D (−�q).

(20.4)C1D(q) =

1

2π

∫

�z(x)z(0)�e−iqxdx.

(20.5)z(x) =

π/�x
∑

q=−π/�x

B1D(q)exp(i(qx + φ(q))),

(20.6)B1D(q) =

√

2π

L
C1D(q) =

¯B1D (−q),

(20.7)

z(x, y) =

π/�x
∑

qx=−π/�x

π/�y
∑

qy=−π/�y

B2D

(√

q2
x + q2

y

)

exp
(

i
(

qxx + qyy + φ
(

qx, qy

)))

.
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We consider a linear cross-section through this surface. Because the surface is sta-
tistically homogeneous, every cross-section is statistically equivalent so that the 
cross-section at y = 0 may be taken without reducing the generality:

This is a rough line with the length Lx and the discretization step size ∆x. To deter-
mine the power spectrum of this line using the definition (20.4), we write

Due to the fact that the mean 
〈

exp
(

i
(

qxx + φ
(

qx, qy

)))

exp
(

i
(

φ

(

q′

x, q′

y

)))〉

 

always vanishes, with the exception of the cases qx = −q′

x and qy = −q′

y, we obtain

In the discrete case, the integral should be understood in the sense of a discrete 
sum:

Therefore, the following identity is valid:

It follows that

By taking the relation ∆qy = 2π/Ly into account and writing the sum in the form 
of an integral, we obtain

(20.8)z(x, 0) =

π/�x
∑

qx=−π/�x

π/�y
∑

qy=−π/�y

B2D

(√

q2
x + q2

y

)

exp
(

i
(

qxx + φ
(

qx, qy

)))

.

(20.9)

C1D(q) =

1

2π

∫

�z(x, 0)z(0, 0)�e−iqxdx

=

1

2π

∫ π/�x
∑

qx ,q′

x=−π/�x

π/�y
∑

qy ,q′

y=−π/�y

B2D

(√

q2
x

+ q2
y

)

B2D

(√

q′2
x

+ q′2
y

)

〈

exp
(

i
(

qxx + φ
(

qx, qy

)))

exp
(

i

(

φ

(

q
′

x
, q

′

y

)))〉

e
−iqxdx.

(20.10)C1D(q) =

1

2π

∫ π/�x
∑

qx=−π/�x

π/�y
∑

qy=−π/�y

∣

∣

∣
B2D

(√

q2
x + q2

y

)∣

∣

∣

2

eiqxxe−iqxdx.

(20.11)

∫

(. . .)dx ⇒

∑

(. . .)�x.

(20.12)

∫

eiqxxe−iqxdx ⇒

∑

(

eiqxxe−iqx
)

�x = δqx ,qLx.

(20.13)

C1D(q) =

Lx

2π

π/�y
∑

qy=−π/�y

∣

∣

∣
B2D

(√

q2
+ q2

y

)∣

∣

∣

2

=

π/�y
∑

qy=−π/�y

C2D

(√

q2
+ q2

y

)2π

Ly

.

(20.14)C1D(q) =

π/�y
∫

−π/�y

C2D

(√

q2
+ q2

y

)

dqy.

20.3  Relationship Between the One-Dimensional...
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In the domain of small wave vectors

this equation can be written in the following form using the substitution of 
q̃ =

√

q2
+ q2

y
:

This relationship was derived in 1973 by Nayak [1]. The solution of this integral 
equation with respect to C2D(q) is known in the closed integral form [2] as

20.4 � One-Dimensional and Two-Dimensional Power 
Spectra for Randomly Rough, Self-Affine Surfaces

For self-affine fractal surfaces, we can calculate the integrals (20.16) and (20.17) 
analytically very easily. The power spectrum of a self-affine surface has the form

Insertion into (20.16) results in

with

Here, Γ (x) is the gamma function. This dependence is presented graphically in 
Fig. 20.1.

Insertion of Eq. (20.19) into Eq. (20.17) for the back transformation results in

Due to the identity

(20.15)q ≪ qy,max =

π

�y
,

(20.16)C1D(q) = 2

∞
∫

q

C2D(q̃)q̃dq̃
√

q̃2
− q2

.

(20.17)

C2D(q) =

1

π

∞
∫

q

√

q̃2
− q2

{

C′

1D(q̃)

q̃
−

C′′

1D(q̃)

q̃2

}

dq̃ = −

1

π

∞
∫

q

C′

1D(q̃)
√

q̃2
− q2

dq̃.

(20.18)C2D(q) = Aq−2(H+1).

(20.19)C1D(q) = ζ(H) · qC2D(q),

(20.20)ζ(H) = 2

∞
∫

1

ξ−2H−1

√

ξ2
− 1

dξ =

√

π
Ŵ

(

1
2

+ H
)

Ŵ(1 + H)
.

(20.21)C2D(q) = C2D(q)
√

π
Ŵ

(

1
2

+ H
)

Ŵ(1 + H)

(1 + 2H)

π

∞
∫

1

ξ−2H−2

√

ξ2
− 1

dξ .

(20.22)
√

π
Ŵ

(

1
2

+ H
)

Ŵ(1 + H)

( 1
2

+ H)

π

√

πŴ(H + 1)

Ŵ(H +

3
2
)

≡ 1,
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Equation (20.21) is, as expected, identically met.
For the interval of practically relevant values of Hurst exponents 

H ∼
= 0.5 . . . 0.75, one can assume an approximately constant value for the factor: 

ζ ≃ 2.

This is also the rule that is used over this interval of Hurst exponents for the appli-
cation of the method of dimensionality reduction for the conversion of three-
dimensional spectral densities to one-dimensional spectral densities (see Fig. 10.9) 
so that the method of dimensionality reduction can simply use the profile from the 
one-dimensional cross-section as a first order approximation without the need to 
convert the spectral densities!
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Cut-off, 160
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A
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velocity dependence, 139
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Adhesive contact
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Force law
for 1D equivalent system, 252

Ford, 207
Fractal dimension, 145
Fractal surface

self-affine, 145
Fractality, 3, 145
Fracture, 224
Fracture criterion

deformation criterion, 133, 136, 137
for equivalent model, 47
of Griffith, 43
stress criterion, 134, 135, 137

Fracture mechanics, 42
Francis, 116
Fretting wear, 82

limiting form, 82
Frictional angle, 82
Frictional force, 2, 165

anisotropic, 223
Frictionally engaged joint

damping, 193
loosening, 96
maximum loading, 96

Functional equations, 103, 245
principle of, 103

G
Galin, 158, 227
Gao, 59
Generalized law of friction, 188
Greenwood, 39, 60, 143
Greenwood-Williamson model, 147, 160
Griffith, 41, 132, 234
Gross, 252
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H
Half-space approximation, 104, 169
Heat capacity

specific, 115
Heat conduction, 115
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Heat source
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Heterogeneous systems, 224
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D
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DMT theory, 39
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E
Ejike, 27
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energy dissipation, 166
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stress relaxation, 100

Elastomer friction, 178
3D simulations, 173
coefficient of friction, 173
with a conical indenter, 170
correction coefficient, 173
dependence on normal force, 173
dependence on roughness, 173
dependence on sliding velocity, 173
influence of roughness, 176, 177
with a parabolic indenter, 167
with a rough cone, 184
with a rough sphere, 184
with a rough surface, 176

Electrical current, 118
Electrical resistance

in contact of rough surfaces, 159
Energy dissipation, 166
Engesser, 43
Equivalent model, 167
Equivalent profile, 35, 77, 88, 146, 208
Equivalent system, 229
Exact solutions for

axially-symmetric bodies, 227
normal contact with adhesion, 233
normal contact without adhesion, 227, 230
tangential contact, 239

F
Fast Fourier transform (FFT), 145
Fixed-grips, 48
Fixed-grips condition, 236
Fixed-load, 48
Fixed-load condition, 236
Flux density

one-dimensional, 120, 121
three-dimensional, 121
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I
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J
Jäger, 68, 79, 81, 239
JKR theory, 39, 233
Johnson, 233

K
Kelvin body, 111, 137, 140, 170, 178, 184
Kelvin-Voigt element

generalized, 252
Kendall, 57, 233
Klarbring, 92

L
Laplace transformation, 103, 247

reverse transformation, 248
Law of friction
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