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Abstract. This paper treats the nonlinear control of a laboratory model
of a gantry crane, where a trolley can be moved on a rail and the load is
fixed at the end of a rope of variable length. The system is differentially
flat, and the coordinates of the load, which also are the variables to be
controlled, are a flat output. This fact allows us to determine a feedfor-
ward control law in a straightforward manner. Because of friction, the
results achievable by a pure feedforward law are, as expected, not satisfy-
ing. This does not apply to the “pendulum subsystem”, with the position
of the trolley and the length of the rope as input, since it is almost free of
friction. Therefore, a feedforward control for the “pendulum subsystem”
is designed such that it shows an excellent tracking behavior. Finally,
cascaded control is used for the guidance of the overall system.

Keywords: nonlinear control, underactuated mechanical system, differ-
ential flatness, feedforward control

1 Introduction

In this contribution, the design of a nonlinear controller for the laboratory model
of a gantry crane is discussed. At this laboratory model, the motion of the
load is restricted to a vertical plane. The task is to transfer the load from one
rest position to another one. Since the crane is an underactuated mechanical
system, the design of a controller is a lot more difficult compared to a fully
actuated system. Moreover, the system is not input to state linearizable by static
feedback (see [5]). However, the gantry crane is a differentially flat system and
the coordinates of the load are a flat output (see e.g. [1], [2], [3], [4] and references
therein). Since these coordinates are also the variables which are to be controlled,
it is advantageous to use flatness based methods for the controller design.

The paper is structured as follows: Section 2 treats the modeling. After that,
Section 3 deals with differential flatness. In Section 4, the design of reference
trajectories for the load coordinates and a feedforward control are discussed.
Finally, Section 5 deals with a feedforward control of the “pendulum subsystem”
and measurement results are shown.

2 Modeling

In Fig. 1 the laboratory model is shown. The trolley can be moved on a rail
and the load is fixed at the end of a rope of variable length. The length of the
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Fig. 1. Laboratory model

rope can be modified by coiling or uncoiling on a cylinder. The derivation of
the mathematical model is based on the sketch shown in Fig. 2. The driving
force FAn which acts on the trolley and the driving torque MAn which acts on
the cylinder are the control inputs. The variable xD denotes the position of the
trolley, ϕ is the rotation angle of the cylinder and θ describes the pendulum
angle. With RT as the radius of the cylinder and L0 as the length of the rope
for ϕ = 0, the length of the rope is given by L = L0 +RTϕ. The coordinates of
the load are given by xL and yL. The parameters mW and AT are the mass of
the trolley and the moment of inertia of the cylinder. The variable g represents
the gravitational acceleration.

It is important to state that for modeling it was assumed that the rope is
always stretched. This is true as long as the inequality ÿL < g is not violated.
With this assumption, the gantry crane is a rigid multi-body system with holo-
nomic constraints, which allows the usage of the Euler-Lagrange equations in
standard form (see e.g. [6]) for the calculation of the equations of motion. They
read as

d

dt

(
∂T

∂q̇

)T

−
(
∂T

∂q

)T

+

(
∂V

∂q

)T

= Q (1)

with the kinetic energy T , the potential V and the generalized forces Q. The
variable q represents the generalized coordinates.With the choice qT = [xD, ϕ, θ]
one obtains

T =
1

2
mW ẋ2

D +
1

2
AT ϕ̇

2 +
1

2
vT
LmLvL , (2)

where

vL =

⎡
⎣ẋD −RT ϕ̇ sin(θ)− (L0 +RTϕ) θ̇ cos(θ)

RT ϕ̇ cos(θ)− (L0 +RTϕ) θ̇ sin(θ)
0

⎤
⎦ (3)

is the velocity of the load. Furthermore one gets

V = −mLg (L0 +RTϕ) cos(θ) (4)
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Fig. 2. Schematic for the mathematical modeling

and

QT = [FAn,MAn, 0] . (5)

Evaluating the Euler-Lagrange equations yields the equations of motion, which
can be written in the form

M(q)q̈ + g(q, q̇) = Q (6)

with the mass matrix

M(q) =

⎡
⎣ mW +mL −mLRT sin(θ) −mL (L0 +RTϕ) cos(θ)

−mLRT sin(θ) AT +mLR
2
T 0

−mL (L0 +RTϕ) cos(θ) 0 mL (L0 +RTϕ)
2

⎤
⎦
(7)

and

g(q, q̇) =

⎡
⎢⎢⎢⎣
mLθ̇

(
(L0 +RTϕ) θ̇ sin(θ)− 2RT ϕ̇ cos(θ)

)
−mLRT

(
(L0 +RTϕ) θ̇

2 + g cos(θ)
)

mL (L0 +RTϕ)
(
2RT ϕ̇θ̇ + g sin(θ)

)

⎤
⎥⎥⎥⎦ . (8)

Since the mass matrix is positive definite, it can be inverted. Consequently, a
state representation of the form

ẋ = f(x,u) (9)
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with

f(x,u) =

[
q̇

M(q)−1 (Q − g(q, q̇))

]
, (10)

the state xT = [q, q̇] and the input uT = [FAn,MAn] can be derived.

3 Differential Flatness

In the following we first give a definition of flat systems as it can be found for
instance in [2], then we consider the gantry crane.

3.1 Differential Flat Systems

Let us consider a nonlinear finite dimensional system of the form

Si

(
z, ż, z̈, . . . , z(σi)

)
= 0, i = 1, . . . , q , (11)

i.e. a system of ODEs in zT = [z1, . . . , zs] . The quantities zi are called the system
variables and comprise the variables used in the modeling. This system is said
to be differentially flat, if there exists a m-tuple yT = [y1, . . . , ym] of functions

yi = φi

(
z, ż, z̈, . . . , z(αi)

)
, i = 1, . . . ,m , (12)

such that the following two conditions are satisfied:

1. There does not exist any differential equation of the form

R
(
y, ẏ, . . . ,y(β)

)
= 0 . (13)

In this case, y is said to be differentially independent.
2. All system variables can be (locally) expressed by y and its time derivatives,

i.e.
zi = ψi

(
y, ẏ, . . . ,y(γi)

)
, i = 1, . . . , s . (14)

In the case specified, y is called a flat output of the system.

3.2 Flatness based Analysis of the Gantry Crane

The mathematical model of the gantry crane consists of the equations of motion
which we derived in Section 2 as well as the equations

xL = xD − (L0 +RTϕ) sin(θ) (15)

and
yL = (L0 +RTϕ) cos(θ) , (16)

which describe the coordinates of the load as a function of the generalized coordi-
nates. This system is of the form (11) and it can be shown that it is differentially
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flat (see [2]). A flat output is given by yT = [xL, yL]. Consequently, all system
variables and in particular the control inputs can be expressed as functions of
the coordinates of the load and their time derivatives. The parameterization of
the control inputs is given by expressions of the form

FAn = f
(
ẍL, x

(3)
L , x

(4)
L , yL, ẏL, ÿL, y

(3)
L , y

(4)
L

)
(17)

MAn = f
(
ẍL, x

(3)
L , x

(4)
L , yL, ẏL, ÿL, y

(3)
L , y

(4)
L

)
. (18)

4 Trajectory Planning and Feedforward Control

First, this section deals with the design of the desired trajectories which should
be tracked by the load. Then a feedforward control is discussed.

4.1 Reference Trajectories

The reference trajectories xL,d and yL,d for the load coordinates should convey
the load from the initial rest position at the time t = 0 to the final rest position
at the time t = Tend. Thus, the initial and the final values of the reference
trajectories are determined by the initial and the final load position. The time
derivatives of xL,d and yL,d up to a certain order have to be zero at t = 0 and
t = Tend, because the system should be at rest then. Furthermore, in order to
obtain continuous control inputs FAn,d and MAn,d, the reference trajectories
must be at least four times continuously differentiable. Often polynomials in t
are used for the reference trajectories [1].

In the design of the reference trajectories, constraints have to be considered.
First, FAn,d and MAn,d must not exceed the limitations of the control inputs.
Second, the condition ÿL,d < g must hold, since it has been assumed that the
rope is always stretched. Both conditions can be met by choosing a sufficiently
great value for Tend.

4.2 Feedforward Control of the Gantry Crane

A feedforward control can be obtained easily by inserting the reference trajec-
tories into the parameterization of the control inputs given by (17) and (18):

FAn,d = f
(
ẍL,d, x

(3)
L,d, x

(4)
L,d, yL,d, ẏL,d, ÿL,d, y

(3)
L,d, y

(4)
L,d

)
(19)

MAn,d = f
(
ẍL,d, x

(3)
L,d, x

(4)
L,d, yL,d, ẏL,d, ÿL,d, y

(3)
L,d, y

(4)
L,d

)
. (20)

If one implements this feedforward control at the laboratory model, the results
are, as expected, rather poor. The reason is friction which affects the motion
of the trolley and the rotation of the cylinder. Since the friction was not taken
account of in the modeling, there is a considerable difference between the math-
ematical model and the behavior of the laboratory setup.



294 B. Kolar and K. Schlacher

5 Feedforward Control of the “Pendulum Subsystem”

This section deals with the feedforward control of the so called “pendulum sub-
system” of the gantry crane. This concept can be found for example in [1]. The
equations

xD = xL +
ẍLyL
g − ÿL

(21)

and

ϕ =

√(
ẍLyL

g−ÿL

)2

+ y2L − L0

RT
(22)

represent the “pendulum subsystem”. Naturally, the load coordinates also are a
flat output with respect to this system. The tuple ūT = [xD, ϕ] can be interpreted
as an input of the “pendulum subsystem” [1]. Since the friction which occurs
in the pendulum motion is negligible, the real “pendulum subsystem” of the
laboratory model is described almost exactly by (21) and (22). Therefore it can
be expected that a feedforward control for the “pendulum subsystem” yields
much better results than the feedforward control presented in the preceding
section. The feedforward control ūT

d = [xD,d, ϕd] is given by

xD,d = xL,d +
ẍL,dyL,d

g − ÿL,d
(23)

ϕd =

√(
ẍL,dyL,d

g−ÿL,d

)2

+ y2L,d − L0

RT
. (24)

Since xD and ϕ are no control inputs, they have to be used as reference variables
for cascaded control circuits. In [1], the usage of PD-controllers is suggested. The
control inputs are calculated from

FAn = FAn,d − kP,WΔxD − kD,WΔẋD (25)

MAn = MAn,d − kP,TΔϕ− kD,TΔϕ̇ (26)

with ΔxD = xD − xD,d, ΔẋD = ẋD − ẋD,d, Δϕ = ϕ − ϕd and Δϕ̇ = ϕ̇ − ϕ̇d.
The terms FAn,d and MAn,d correspond to a feedforward control of the gantry
crane as discussed in the preceding section. The additional terms stabilize the
input ū about the desired trajectory ūd. All variables which are required for
the calculation of the control inputs FAn and MAn are either part of the state
xT = [q, q̇] or can be calculated from the reference trajectories. Thus, equations
of the form

FAn = f
(
x,yd, ẏd, ÿd,y

(3)
d ,y

(4)
d

)
(27)

MAn = f
(
x,yd, ẏd, ÿd,y

(3)
d ,y

(4)
d

)
(28)

can be derived. It has to be mentioned that neither the pendulum angle θ nor
the associated angular velocity θ̇ occur in this control law.
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Now the controller gains kP,W , kD,W , kP,T and kD,T have to be set properly.
The calculation of the controller gains presented in [1] is based on the lineariza-
tion of the crane about an equilibrium and the singular perturbation theory. In
the following just the results are given.

The parameters kP,W and kD,W are calculated from the equations

kP,W =
mWλW,1λW,2

ε2W
− mLg

Ls
(29)

and

kD,W =
mW (λW,1 + λW,2)

εW
(30)

with εW = 0.1. Here the parameters λW,1 and λW,2 have to be chosen in the

region of
√
g/Ls. The variable Ls is the pendulum length in the equilibrium

which was used for the linearization. The parameters kP,T and kD,T must be set
such that the eigenvalues λT,1 and λT,2 of the matrix

A =

[
0 1

− kP,T

AT+mLR2
T
− kD,T

AT+mLR2
T

]
(31)

have negative real parts. The controller parameters can be calculated from the
eigenvalues with

kP,T =
(
AT +mLR

2
T

)
λT,1λT,2 (32)

and
kD,T = − (

AT +mLR
2
T

)
(λT,1 + λT,2) . (33)

In Fig. 3 measurement results are shown. One can see that the load tracks the
reference trajectory closely. Since the used concept is still a feedforward control,
the tracking behavior is only precise as long as the load is not affected by distur-
bances. The PD-controllers only ensure that ū tracks the desired trajectories ūd.
If there is no disturbance, (21) and (22) coincide with the behavior of the real
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Fig. 3. Measurement results for the feedforward control of the “pendulum subsystem”
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“pendulum subsystem” and therefore the load will track the reference trajectory.
In case of a disturbance, there will be a deviation between the actual and the
desired trajectory which is not counteracted by the controller.

6 Conclusion

In this contribution we have dealt with the nonlinear, flatness based control of a
gantry crane. We derived a mathematical model and a feedforward control law.
Then we discussed a feedforward control for the “pendulum subsystem” and
provided measurement results to demonstrate the excellent tracking behavior
which can be achieved with this approach.
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