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Abstract. This paper presents a fast algorithm for discretization of
decision tables. An important novelty of the proposed solution is the
application of the original algorithm of Boolean function complementa-
tion, which is a basic procedure of the field of logic synthesis, in the
process of discretizing the data. This procedure has already been used
by the author to calculate reducts of decision tables, where the time of
calculation has been significantly reduced. It yields the idea of using the
algorithm of complementation in the process of discretization. The algo-
rithm has been generalized for the discretization of inconsistent decision
tables and is used in the processing of numerical data from various fields
of technology, especially for multimedia data.
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1 Introduction

The largest branch of data mining, widely known as knowledge discovery in
databases, is a rapidly growing discipline of computer science with a wide range
of applications, including telecommunications, biomedical engineering, banking,
etc., and especially the processing of multimedia data.

One of the major applications of data mining algorithms in telecommunica-
tions is anomaly detection in telecommunications networks and systems. Since
the decision of anomaly detection is based on a combination of decision rules
generated by the algorithm for the training data, the algorithm is the standard
procedure for machine learning. The system creates a knowledge base containing
patterns of analyzed anomalies. Then, using the algorithm of decision-making
and classification, it creates a set of decision rules classifying the current data.
A characteristic example of training data is the database for e-mail classifica-
tion [14], which contains 58,042 records represented by 64 attributes, for which
the objective of the algorithm is to obtain decision rules classifying data accord-
ing to the following conditions: y spam, n spam, other, etc.

Another application of data mining algorithms is to support medical diagnosis
of various diseases. Then the main task of the algorithm is the induction of deci-
sion rules on the basis of the medical research results from the database of many
patients. The decision rules induced (also called classifiers) allow diagnosis of new
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patients. A typical example of a database and its analysis is the Breast Cancer
Wisconsin Database (source: Dr. William H. Wolberg, University of Wisconsin
Hospital, Madison, Wisconsin, USA) where the diagnosis of breast cancer for a
new patient is supported by the database of nine attributes and collected for 699
patients [9, 15]. Another example is the analysis of the Pima Indians Diabetes
Database of eight attributes and 768 female patients (source: National Institute
of Diabetes and Digestive and Kidney Diseases, Maryland, USA), where the di-
agnostic binary-valued decision attribute investigates whether the patient shows
signs of diabetes according to World Health Organization criteria [13, 15].

The most common use of data mining algorithms combining various fields
of application is processing of multimedia data. This is particularly evident in
biomedical engineering, where data collected for hundreds of variables describe
medical parameters / measurements of patients and thus there is a need to
process large collections of multimedia data. For example, in the paper [5] the
classification of patients with Alzheimer’s disease was described. It was carried
out basing on brain imaging magnetic resonance imaging (MRI), since it is very
important to use a non-invasive method to obtain images inside the objects.

A significant difficulty in implementing such decision-making systems is de-
termined by efficient discretization of numeric data. For example, the attributes
of the Pima Indians Diabetes Database include: number of times pregnant,
plasma glucose concentration a 2 hours in an oral glucose tolerance test, di-
astolic blood pressure (mm Hg), triceps skin fold thickness (mm) 2-hour serum
insulin (μU/ml) body mass index (weight in kg / (height in m)2) diabetes pedi-
gree function, age (years), and class variable (0 or 1). Most of these features
are numeric, so for a proper analysis of this database it is necessary to dis-
cretize/quantize the data. A similar problem we face in the classification of
electronic mails where records characterizing various network parameters used
to perform anomaly analysis are often given as numeric values.

The primary method of data discretization works by determining the ranges
of numeric data which ultimately represent discrete attributes. Thus, the initial
ranges yielded from a proposed set of cuts are then analyzed in order to obtain
a minimum set of cuts differentiating objects of distinguished decision classes.
Usually the selection of a minimum set of cuts is made by a transformation of
Boolean formula of a conjunction normal form (CNF) into a disjunction normal
form (DNF) [7]. As it is known, this transformation can be reduced to the prob-
lem of searching of all prime implicants of Boolean formula, which is the issue
of the non-polynomial complexity [6,10] and one of the bottlenecks of the rough
set theory [7], e.g. the transformation proposed in [12] is an ineffective Boolean
function minimization procedure. Moreover, recently expanding databases, both
in the number of instances as well as in the number of attributes, noticeably cut
down the effectiveness of the existing data mining algorithms.

An important novelty of the proposed solution in this paper is the applica-
tion of Boolean function complementation algorithm to the transformation of
CNF into DNF. The algorithm has already been used by the author to calcu-
late reducts of decision tables where time of calculation has been significantly
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reduced [3]. It yields the idea of using the algorithm in the process of discretiza-
tion. This application is possible due to the fact that the Boolean expression
is a monotonic CNF which can be represented by a binary matrix. Thus, the
transformation process of CNF into DNF can be reduced to the calculation of
minimum column covers of this matrix [1, 8].

The paper has also resolved the problem of discretization of the inconsistent
decision-making systems, expanding the idea presented in [7].

The structure of the paper is as follows: the second chapter presents the con-
cepts and definitions, the third chapter presents an algorithm of discretization
for consistent decision-making systems by applying logic synthesis procedure, i.e.
fast algorithm Boolean function complementation, then the problem is general-
ized for inconsistent decision-making systems; the paper ends with a summary.

2 Preliminaries

Let A = (U,A ∪ {d}) be a decision system, where U = {u1, u2, . . . , un} is a set
of objects, A = {a1, . . . , am} a set of condition attributes, d – decision attribute.
Values of attributes are determined by a function from the set U to Va, where Va

is a domain of a ∈ A. Then, a function ρ maps the product U ×A into the value
set Va. By ρ(u, a), where u ∈ U , a ∈ A, we denote the value of the attribute a
for an object u. We assume that values of each conditional attribute belong to
a fixed interval of real numbers ρ(u, a) ∈ Va = [la; ra] ⊂ R, decision d is discrete
and mapping U → d is unambiguous (decision system is consistent).

A pair (a, ca(k)), where a ∈ A, ca(k) ∈ Va, which is a real interval [l; r], we call
a cut on a domain Va. Then,

Pa = {[ca0; ca1), [ca1; ca2), . . . , [cat; ca(t+1)]},

we call a partition of Va into t subintervals, where l = ca0 < ca1 < . . . < cat <
ca(t+1) = r and [ca0; ca1)∪ [ca1; ca2)∪ . . .∪ [cat; ca(t+1)] = [l; r]. Cuts are uniquely
defined for each attribute value range and the number of cuts is denoted by t(a).

A set of cuts / partitions P =
⋃

a∈A Pa for a decision system A = (U,A∪{d})
defines a new discrete decision systemAP = (U,AP∪{d}), where set of attributes
AP = {aP : a ∈ A} and ρ(u, aP ) = k, iff ρ(u, a) ∈ [cak; ca(k+1)), u ∈ U and
k ∈ {0, . . . , t(a)}.

3 Decision System Discretization Algorithm

Let A be a decision system given in Table 1 where attribute value domains are
as follows: ρ(ut, a) ∈ [1; 4], ρ(ut, b) ∈ [0; 2].

Discretization of the decision system lies in construction of Pa partitions for
each attribute domain Va. Then, the real value of the attribute is converted into
subinterval consisting given attribute value.

In the first step of the construction we propose a set of cuts determined
by ordered attribute values and different from these values. We assume that
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Table 1. Example of continuous decision system

A a b d

u1 2.6 1.5 0
u2 2.0 0.25 0
u3 1.6 1.0 1
u4 2.8 0.5 1
u5 2.8 1.0 0
u6 3.2 1.5 1
u7 1.8 0.4 0
u8 2.6 0.5 1

subinterval corresponds to only one point, for example the arithmetic mean.
Thus, we obtain the following set of cuts:

ca1 = (a, 1.7), ca2 = (a, 1.9), ca3 = (a, 2.3), ca4 = (a, 2.7), ca5 = (a, 3.0),

cb1 = (b, 0.325), cb2 = (b, 0.45), cb3 = (b, 0.75), cb4 = (b, 1.25).

It may be noted that a single cut defines a new binary conditional attribute;
e.g. for attribute a and cut (a; 1.9) we assume ‘0’ when ρ(ut, a) < 1.9, otherwise
we assume ‘1’. In other words, objects located on different sides of the ρ = 1.9
are distinguished by this cut. Hence, boundary cuts have been omitted since
they do not distinguish any values.

In the second step we obtain a minimal set of cuts. Let C be a set of proposed
cuts, i.e. C = {ca1, ca2, ca3, ca4, ca5, cb1, cb2, cb3, cb4}. Let χ(up, uq) be a discerni-
bility function constructed according to the given set of cuts C and a pair of
objects (up, uq) belonging to different decision classes; e.g. to distinguish object
u1 from u3 we use the cut ca1 or ca2 or ca3 or cb4. Then:

χ(u1, u3) = ca1 ∨ ca2 ∨ ca3 ∨ cb4

χ(u1, u4) = ca4 ∨ cb3 ∨ cb4

χ(u1, u6) = ca4 ∨ ca5

χ(u1, u8) = cb3 ∨ cb4

χ(u2, u3) = ca1 ∨ ca2 ∨ cb1 ∨ cb2 ∨ cb3
...

χ(u7, u8) = ca2 ∨ ca3 ∨ cb2

Thus, to distinguish each pair of objects of different decisions we create
a Boolean expression which is a conjunction of the above formulas. Transform-
ing the resulting Boolean formula, i.e. a product of sums into a sum of products
we obtain all the minimal sets of cuts. In other words, each prime implicant of
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Table 2.

A a b d

u1 1 1 0
u2 0 0 0
u3 0 1 1
u4 1 0 1
u5 1 1 0
u6 2 1 1
u7 0 0 0
u8 1 0 1

Table 3.

A a b d

{u1, u5} 1 1 0
{u2, u7} 0 0 0

u3 0 1 1
{u4, u8} 1 0 1

u6 2 1 1

the constructed Boolean formula corresponds to a minimal set of cuts. After the
transformation of the above formula, we obtain:

ca3ca5cb3 ∨ ca4cb2cb4 ∨ ca2ca5cb1cb3 ∨ ca1ca5cb2cb3 ∨ ca2ca5cb2cb3

∨ ca3ca4cb3cb4 ∨ ca1ca2ca4cb1cb4 ∨ ca1ca3ca4cb1cb4 ∨ ca2ca4cb1cb3cb4

Finally, taking as an example the first set of cuts, i.e. cuts belonging to the first
product {ca3, ca5, cb3} and encoding corresponding subintervals:

Pa = {[1; 2.3), [2.3; 3.0), [3.0; 4]}= {0, 1, 2}
Pb = {[0; 0.75), [0.75; 2]}= {0, 1}

we obtain a discrete decision system which is shown in Table 2. Removing re-
dundant rows we acquire the form of Table 3.

3.1 Efficient Algorithm of Boolean Function Complementation

The method proposed yields a discernibility function which is a monotonic
Boolean formula in CNF. The simplification of the discernibility function is
carried out by transforming the CNF into DNF. Such a transformation is of
non-polynomial computational complexity and therefore it is important to use
efficient algorithms which can handle this task.

An interesting approach proposed by the author is based on the fast com-
plementation algorithm [3]. The key strength of the algorithm lies in Shannon
expansion procedure of monotone function f . Then,

f = xjfxj + fxj (1)

This procedure is fundamental in the field of logic synthesis, however it can
successfully be applied in the field of data mining.

Proposed approach benefits from the transformation (2), i.e. double comple-
mentation of a Boolean function.

∏

k

∑

l

xkl =
∏

k

∑

l

xkl =
∑

k

∏

l

xkl (2)
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Given that the discernibility function fM (conjunction of χ formulas) repre-
senting the CNF is unate (monotone), it can be transformed into the F form
(first complementation) and then considered as a binary matrix M (Fig. 1). In
fact, the task of searching the complement of function F , i.e. F , can be reduced
to the concept of searching of a column cover C of the binary matrix M (second
complementation).

Theorem [4]. Each row i of C, the binary matrix complement ofM , corresponds
to a column cover L of M , where j ∈ L, iff Cij = 1.

The approach presented significantly accelerates calculations and has already
been used by the author to calculate reducts of decision tables. As a result, the
time of calculation has been significantly reduced. An efficient representation of
the algorithm in computational memory allows the authors to achieve results
that cannot be calculated using published methods and systems. Some of the
results and detailed theory can be found in [1–3]. Hence the idea of applying the
algorithm of complementation in the process of discretization.

Example. Lets consider the discernibility function fM as follows:

fM = (x2 + x3 + x4)(x1 + x2)(x3 + x4)(x2 + x3 + x5).

Performing the multiplication and applying absorption law we obtain:

fM = x2x3 + x2x4 + x1x3 + x1x4x5.

The same result can be obtained performing the mentioned approach, i.e.
double complementation of the function fM . Then,

F = fM = x2x3x4 + x1x2 + x3x4 + x2x3x5,

and finally, applying Shannon expansion procedure, we calculate F .
The illustrative diagram of the method has been shown in Fig. 1 and the full

scheme of complementation of F using Shannon expansion in [3].

F =

⎡
⎢⎢⎣
− 0 0 0 −
0 0 − − −
− − 0 0 −
− 0 0 − 0

⎤
⎥⎥⎦ −→ M =

⎡
⎢⎢⎣
0 1 1 1 0
1 1 0 0 0
0 0 1 1 0
0 1 1 0 1

⎤
⎥⎥⎦

↓

F =

⎡
⎢⎢⎣
− 1 1 − −
− 1 − 1 −
1 − 1 − −
1 − − 1 1

⎤
⎥⎥⎦ ←− C =

⎡
⎢⎢⎣
0 1 1 0 0
0 1 0 1 0
1 0 1 0 0
1 0 0 1 1

⎤
⎥⎥⎦

Fig. 1. Diagram of the proposed algorithm
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3.2 Discretization Algorithm of Inconsistent Decision System

The presented algorithm of discretization also works when we deal with an in-
consistent decision system.

We can make the system of Table 1 inconsistent by adding u9, which is a copy
of an object u8 with decision equal ‘0’ (Table 4). For this new decision system
we can propose exactly the same set of cuts C, as for the system from Table 1.
Calculating discernibility function χ(up, uq) for each pair of objects of different
decision classes we have: χ(u8, u9) = ∅. Then, we assume that the conjunction of
all χ(up, uq) does not include χ(u8, u9). In general, we remove all empty functions
χ, which we proceed similarly for all contradictions in the decision table. This is
equivalent to the assignment of all inconsistent pairs of objects to new decision
classes. Then, for decision system from Table 4 we obtain a form presented in
Table 5.

Such an approach is consistent with the theory of rough sets [11] proposed
by Z. Pawlak. Then, the lower approximation of objects with respect to the
decision d is {u1, . . . , u7}, while the upper approximation is the set of all objects.

Finally, encoding partitions:

Pa = {[1; 2.3), [2.3; 2.7), [2.7; 4]}= {0, 1, 2}
Pb = {[0; 0.75), [0.75; 1.25), [1.25; 2]}= {0, 1, 2}

we obtain discrete decision system, which after removing redundant rows takes
the form of Table 6. It should be noted that the objects u8 and u9 remained
inconsistent.

Table 4.

A a b d

u1 2.6 1.5 0
u2 2.0 0.25 0
u3 1.6 1.0 1
u4 2.8 0.5 1
u5 2.8 1.0 0
u6 3.2 1.5 1
u7 1.8 0.4 0
u8 2.6 0.5 1
u9 2.6 0.5 0

Table 5.

A a b d

u1 2.6 1.5 0
u2 2.0 0.25 0
u3 1.6 1.0 1
u4 2.8 0.5 1
u5 2.8 1.0 0
u6 3.2 1.5 1
u7 1.8 0.4 0

{u8, u9} 2.6 0.5 {0,1}

Table 6.

A a b d

u1 1 2 0
{u2, u7} 0 0 0

u3 0 1 1
u4 2 0 1
u5 2 1 0
u6 2 2 1
u8 1 0 1
u9 1 0 0

4 Summary

The key idea of this paper is to use the complement of Boolean function method
from logic synthesis in the field of data mining. Although the methods outlined
in this paper are known, many logic synthesis methods have not been previously
used or have rarely been used in the field of data mining. It is mainly due to
the lack of knowledge of methods and algorithms of logic synthesis and therefore
they are skipped and not used by specialists of data mining. However, they may
have significant impact on the acceleration of the calculations [1–3, 8].
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R. (ed.) Intelligent Decision Support – Handbook of Application and Advances of
the Rough Sets Theory. Kluwer Academic Publishers (1992)

9. Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming.
SIAM News 23(5), 1–18 (1990)

10. Papadimitriou, C.H.: Computational complexity. Academic Internet Publ. (2007)
11. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer

Academic Publishers (1991)
12. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information
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