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Abstract. The aim of this paper is to analyze the discontinuity pre-
serving behavior of two methods in optical flow. With this objetive, we
have implemented a well-known optical flow method that uses isotropic
TV-L1 regularization. For the second approach, we have modified this
method, by adding a decreasing function in the regularization term, to
avoid smoothing at flow discontinuities. As a consequence, we see a high
improvement and a very accurate discontinuities detection in some se-
quences but not good enough in others. Adapting the weight of the de-
creasing function allows us to better define the flow discontinuities. Nev-
ertheless, the experimental results show that the parameters that yield
a good segmentation of the motion field, may also introduce important
unstabilities. In this sense, the results seem promising, but it is very dif-
ficult to set a unified parameter configuration that works fine for all the
sequences. We evaluate the performance of these approaches with some
standard test sequences, such as the Middlebury benchmark database or
the Yosemite sequence. Looking for the best parameters configuration,
which provides the best contour definition, does not typically mean a
solution which is closer to the ground truth.

Keywords: Optical Flow, Discontinuity Preserving, TV-L1, Variational
Methods, Isotropic Regularization.

1 Introduction

The estimation of optical flow is one of the fundamental challenges in com-
puter vision, which consists in estimating the apparent displacement of the pix-
els through an image sequence. Although there are several approximations to
calculate the optical flow, the variational methods have proven to be among the
most accurate methods in the literature [2].

There are still some limitations in current variational methods like, for in-
stance, occlusions handling, that arise when a portion of the image is visible at
one frame but not in its succesive, the estimation of large displacements or the
preservation of discontinuities in the displacement field. This last topic has been
a major theme in optical flow studies during the last years and is the basis for
our work.

In 1981, Horn and Schunck [4] proposed which is considered the classical
method in variational optical flow solutions, exposing a model to compute the
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flow field of an image sequence by calculating the flow as a minimization problem.
Although their proposal was a breakthrough in the computer vision techniques,
it still had limitations, highlighting that, in many situations, the mere gray
value do not provide enough information to completely determine the motion
field. One of these limitations is not dealing correctly with discontinuities in the
displacement field.

Many authors have proposed improvements to the classical model in order to
cope with motion discontinuities. Typically, many methods use anisotropic dif-
fusion approaches provided that flow contours often appear in conjunction with
high image gradients. For instance, in 1986 Nagel and Enkelmann [5] developed
a new contribution to the literature introducing a new anisotropic diffusion op-
erator that allows respecting the object boundaries during the diffusion process.

In 1990, Perona and Malik [6] contributed with a new definition of scale-space
in computer vision, introducing a technique that realizes it using an anisotropic
diffusion process reducing the image noise without removing significant parts of
the image content. This approach was later used in the field of optical flow by
Alvarez et al. [1]. Their work presented a new variational model that preserves
discontinuities of the flow better than the classical approach.

Later, in 2004, Brox et al. [3] exposed a variational model which is more robust
to the presence of outliers, generalizing the use of continuous L1 functionals. This
method has, among its main features, the ability to cope with constant bright-
ness changes. Another optical flow estimation method was the anisotropic model
introduced in Zach et al. [10] in 2007, which is based on the minimization of a
functional containing a data term, using the pure L1 norm, and a regularization
term using the total variation of the flow. In Wedel et al. [8], this method was
improved with the use of an anisotropic regularization induced by a strictly de-
creasing function. This function is utilized to inhibit the smoothing in the image
areas in where the gradient is strong. Although this is an interesting idea and
it has been used in some other works, like in [9], it has not been deeply studied
yet.

Sánchez et al. [7] conducted a thorough analysis of the variational model
presented in [3], using its own implementation, on some typical test sequences
like Middlebury benchmark database or Yosemite. The source code can be down-
loaded here. In this work, the authors expose the major drawbacks of the method,
especially the effect of creating rounding effects at the flow edges. The authors
proposed to solve this situation with the use of a decreasing function in the
regularization term, as previously proposed in [8] and [9].

In the present work, we study an energy functional to calculate the optical
flow adding this operation in the smoothness term. We will see that it effec-
tively reduces the rounded effects at the flow edges but the results are not so
evident as expected. The parameters must be chosen carefully in order to avoid
a degradation of the motion fields.

In the experimental results we will deal with two different kind of experiments:
on the one hand, we will make a comparison between the best flows of the original
and the new method, to observe the effect at the contours; on the other hand,

https://edit.ipol.im/edit/algo/sms_optic_flow/sms_optic_flow1.0.zip
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we will see the average error evolution with respect to the parameters of the
new model for some standard synthetic sequences. Based on these results, we
observe that, although the improvement is very positive in some sequences, it is
not good enough in other experiments.

In Sect. 2, we explain the method and derive the numerical scheme that we
have implemented. In Sect. 3 we show the experimental results and, finally, the
conclusions in Sect. 4.

2 The Method

Given a set of images, I : Ω ⊂ R
3 → R, of gray values in space and time,

x = (x, y, t)T ∈ Ω, we define the motion field as w = (u(x), v(x), 1)T , being
u(x) and v(x) the x and y displacements, respectively. We use ∇I = (Ix, Iy)

T to
denote the spatial gradient of the image, with Ix, Iy as the first order derivatives
in x and y. In general, we assume that the image intensities remain constant
through the sequence, so the relation I(x+w)− I(x) = 0 holds for the objects
in the images. Our energy functional is as follows:

E(w) =

∫
Ω

Ψ
(
(I(x+w)− I(x))2

)
dx+ γ

∫
Ω

Ψ
(
|∇I(x+w)−∇I(x)|2

)
dx

+ α

∫
Ω

Φ
(
|∇u|2 + |∇v|2

)
dx. (1)

with Ψ
(
s2
)
=

√
s2 + ε2 and Φ

(
s2
)
= e−λ‖∇I‖κ · Ψ (

s2
)
.

When minimizing this energy, the associated Euler-Lagrange equations yield
a system of reaction-diffusion PDEs. The diffusion process allows to fill the
information in homogeneus regions, but it also smoothes the flow at the dis-
continuities. For this reason, we introduce a decreasing function, e−λ‖∇I‖κ

, in
the smoothness term, in order to reduce the regularization at flow edges. The
Euler-Lagrange equations are given by the following expressions:

0 =Ψ ′
D · (I(x+w)− I(x)) · Ix(x+w)

+ γ Ψ ′
G · ((Ix(x+w)− Ix(x)) · Ixx(x+w)

+ (Iy(x+w)− Iy(x)) · Ixy(x+w))− α div (Φ′
S · ∇u) ,

0 =Ψ ′
D · (I(x+w)− I(x)) · Iy(x+w)

+ γ Ψ ′
G · ((Ix(x+w)− Ix(x)) · Ixy(x+w)

+ (Iy(x+w)− Iy(x)) · Iyy(x+w))− α div(Φ′
S · ∇v), (2)

with Ψ ′(s2) = 1
2
√
s2+ε2

and Φ′(s2) = e−λ‖∇I‖κ

2
√
s2+ε2

.
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In order to simplify the equations, we use the following notation:

Ψ ′
D :=Ψ ′

(
(I(x+w)− I(x))

2
)
,

Ψ ′
G :=Ψ ′

(
|∇I(x +w)−∇I(x)|2

)
,

Φ′
S :=Φ′

(
|∇u|2 + |∇v|2

)
. (3)

The above equations are nonlinear because of the argument w and the func-
tions Ψ ′ and Φ′; so, in order to linearize the equations, we follow the same
strategy used in [3] and [7], enclosing our numerical scheme in two fixed point
iterations. We introduce a first index, n, to remove the nonlinearity in w, using
the following first order Taylor expansions:

I(x+wn+1) ≈I(x+wn) + Ix(x +wn)dun + Iy(x+wn)dvn

Ix(x+wn+1) ≈Ix(x+wn) + Ixx(x +wn)dun + Ixy(x+wn)dvn

Iy(x+wn+1) ≈Iy(x+wn) + Ixy(x+wn)dun + Iyy(x+wn)dvn, (4)

As proposed in [3], we work with the motion increments (dun, dvn), so the
optical flow can be iteratively estimated as un+1 = un+dun and vn+1 = vn+dvn.
We introduce a second index, m, that accounts for the nonlinearities of the Ψ ′

and Φ′ functions. Combining both fixed point schemes, the system of equations
reads as:

0 =(Ψ ′
D)n,m · (I(y) + Ix(y)du

n,m+1 + Iy(y)dv
n,m+1 − I(x)

) · Ix(y)
+ γ (Ψ ′

G)
n,m · ((Ix(y) + Ixx(y)du

n,m+1 + Ixy(y)dv
n,m+1 − Ix(x)

) · Ixx(y)
+

(
Iy(y) + Ixy(y)du

n,m+1 + Iyy(y)dv
n,m+1 − Iy(x)

) · Ixy(yn,m)
)

− α div
(
(Φ′

S)
n,m · ∇(un,m + dun,m+1)

)
0 =(Ψ ′

D)n,m · (I(y) + Ix(y)du
n,m+1 + Iy(y)dv

n,m+1 − I(x)
) · Ix(y)

+ γ (Ψ ′
G)

n,m · ((Ix(y) + Ixx(y)du
n,m+1 + Ixy(y)dv

n,m+1 − Ix(x)
) · Ixx(y)

+
(
Iy(y) + Ixy(y)du

n,m+1 + Iyy(y)dv
n,m+1 − Iy(x)

) · Ixy(yn,m)
)

− α div
(
(Φ′

S)
n,m · ∇(vn,m + dvn,m+1)

)
, (5)

with y = x+wn,m.
This system of equations is solved by means of the SOR method and embeded

in a pyramidal structure to allow detecting large displacements. Details on the
implementation can be found in [7].

3 Experimental Results

In this section, we evaluate the method using some standard image sequences. In
particular, we use some images from the Middlebury benchmark database and
other synthetic images. The optical flows are represented using the same color
scheme as in [7].
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First Frame Ground Truth Brox et al. New Model

λ = 0.0049, κ = 1

λ = 0.038, κ = 1

λ = 0.01, κ = 2

λ = 0.001, κ = 2

λ = 0.002, κ = 2

λ = 0.0064, κ = 2

Fig. 1. Results for the Yosemite, Square, Hydrangea, Grove3, Urban2 and Urban3
sequences: In the first column, the image sequence; in the second column, the ground
truth; in the third column, the result given by [7]; and, in the fourth column, the result
given by (5)
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Fig. 2. Each row depicts the AAE for the sequences using different values of κ: 0.2 in
the first column, 1 in the second and 2 in the third



Optic Flow: Improving Discontinuity Preserving 123

In Fig. 1, we show the first frame of the sequences at the first column, their
corresponding ground truths at the second, the best solutions of the original
implementation at the third and, finally, the best solution for the new imple-
mentation. The first row depicts the yosemite sequence. We see that the flow
is better than the original model, especially at the left mountain and in the
separation between the sky and the mountains.

The second row shows a Square sequence, which reaches a very precise solution
at the contours of the square. This solution is very close to the ground truth,
highly improving the best result provided by Brox et al. This experiment shows
that the method with the decreasing function can provide very good solutions
for this kind of sequences.

Furthermore, the third row depicts a perfect example on discontinuity preserv-
ing that can be obtained using the new approximation. We notice that, despite
some problematic areas on the flow, the contour detection is very close to the
ground truth in Hydrangea. On the contrary, we observe some misleading flows
inside the flower, which are probably due to a high value of the image gradi-
ent. The regularization term vanishes in these cases, so there appears outliers
in the flow field. This problematic areas could be solved by adding a small con-
stant value together with the decreasing function, so that it avoids removing the
smoothing process.

The fourth and fifth rows show the results for Urban2 and Urban3 sequences
respectively. We see how the exponential favours the contours detection in the
buildings in both sequences, especially in Urban2.

In Fig. 2, we compare the Average Angular Error (AAE) evolution for the
Yosemite, Square, Hydrangea, Grove3, Urban2 and Urban3 sequences with re-
spect to the λ parameter. We observe that, typically, when λ increases, the AAE
improves and the method provides better results, even for higher values of the
smoothness parameter. In particular, the results for the Square sequence are
surprising since, although λ initially worsen the errors for a large α, it abruptly
attains very good results. On the other hand, when κ increases, the value of λ
must decrease to achieve an optimal solution. In the case of Yosemite, the results
are much more stable with respect to λ and κ parameters than the other graph-
ics. On the other hand, the graphics for Urban2 and Urban3 are more unstable,
which is probably due to the small values of α.

4 Conclusions

In this paper, we have dealt with the problem of discontinuity preserving in
optical flow. We have implemented a simple strategy to reduce the rounded
effects that usually appear at the contours of the flow fields in TV-L1 optical
flow methods.

The expected result was that the decreasing function would enhance edge
detection but, although this actually happened in some sequences, it has been
less important than it was expected. The way the discontinuities are preserved
depends strongly on the value of the λ and κ parameters: it is difficult to find
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unique values that work fine for every image sequence. We have also observed
that the method works fine in circumstances where the decreasing function does
not cancel the regularization term. When this happens, it considerably increases
the errors as we have seen in the experimental results. This problem could be
solved by adding a modification to the method that prevents the cancellation of
the decreasing function.

In a future work, we will examine this idea in depth. We will also study
other strategies for the preservation of discontinuities like, for intance, the use
of diffusion tensors in the smoothness term.
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