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Abstract. To analyze the effect of a therapeutic program that provides
intermittent suppression of cancer cells, we suppose that the Gompertz
stochastic diffusion process is influenced by jumps that occur according
to a probability distribution, producing instantaneous changes of the
system state. In this context a jump represents an application of the
therapy that leads the cancer mass to a return state randomly chosen.
In particular, constant and exponential intermittence distribution are
considered for different choices of the return state. We perform several
numerical analyses to understand the behavior of the process for different
choices of intermittence and return point distributions.

1 Introduction

Growing attention is devoted to the analysis of growth models because they play
an important role in many fields such as economy, biology, medicine, ecology.
These models are described generally via a deterministic differential equation in
which it introduces the effect of random oscillations for modeling environmental
fluctuations that are not captured by deterministic models. The curves that
best describe the phenomenon of growth are of exponential type characterized
by the presence of a carring capacity that represents the limit of the size of
the population. Among all the exponential growths, the Gompertz curve plays
an important role because in several contexts it seems to fit experimental data
in a reasonable precise way ([5], [8]). In particular, various stochastic models
based on this curve have been proposed recently to analyze the evolution of a
tumor mass subject to anti-proliferative or pro-apoptotic therapies that alter the
growth rates of cells ([I], [4]).

In this paper, we consider a diffusion process {X(¢), ¢ > 0} based on the
Gompertz model to construct the corresponding process with jumps X ;(¢) in
order to analyze the effect of a therapeutic program that provides intermittent
suppression of cancer cells. The process X ;(t) consists of recurring cycles whose
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duration is described by a random variable, interjump interval, that represents
the time elapsing between successive jumps or applications of the therapy.

The paper is organized as follows. In Section 2 we introduce the model. To
analyze the evolution of X ;(¢) we study its transition probability density func-
tion (pdf), the average state of the system, representing the mean size of the
tumor, and the number of therapy applications to be carried out in time inter-
vals of fixed amplitude. In Section 3, we focus our attention on two probability
distributions for the interjump intervals and for each of these we consider three
distributions for the random variable describing the return point, because we
want to take into account that the therapy would not be precise. Finally, in Sec-
tion 4, various simulations are performed in order to understand the behavior of
the process for different choices of intermittence and return point distributions.

2 The Model

Let {X(¢), t > 0} be the Gompertz stochastic process, it is described by the
following stochastic differential equation

AX(t) = X(¢) [a — B In X ()] dt + o X (t) AW (¢)

where o, 8 > 0 denote growth and decay rates respectively, ¢ > 0 is the am-
plitude of the random fluctuations and W (¢) is a standard Wiener process. The
time homogeneous process X (t) is defined in I = (0, 00) and it is characterized
by a lognormal pdf:

nr — n 2
s tly) = (Inz — M(t|ny)] }
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z/27V2(t) P 2V2(t)

where
2 2 _ 2
M(tly) = e logy + /5 Ca—et, VA =0 (1—e ),
Morever, the moments of X (t) are

n
W (ely) = exp {1 (e )]+

In order to analyze the effect of a therapeutic program that provides intermit-
tent suppression of cancer cells, (cf. [3], [7]), we suppose that X (¢) is influenced
by jumps that occur according to a probability distribution, producing instan-
taneous changes of the system state. More precisely, we define the resulting
process with jumps X ;(¢) as follows (cf. [6]). Starting from X ;(0) = X (0) = =0,
X ;(t) evolves as X (t) as long as a jump occurs leading the process in a state
p > 0 randomly chosen according to the probability density ¢(z); from here,
after a variable time interval, coinciding with the duration of the therapeutic
application, X ;(t) evolves with the same dynamics of X (¢) as long as another
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jump occurs, representing a new application of the therapy, which leads X ;(t)
in p, and so on. The process X j(t) consists of recurring cycles Zy, Zs ... whose
durations are described by the independent and identically distributed random
variables Iy, I, ... with pdf ¢(-). Moreover, we denote by @1, 02, ... the times
in which the jumps occur. The variables I and O}, are related, indeed it results:
©, =1, and for k > 1 one has O, = I} + I + ... I;. Furthermore, for 0 < 7 < t,
&(T)dr ~ P(t < ©; < 7+ dr) represents the probability that a jump occurs
in the infinitesimal interval (7,7 + d7). The transition density of X ;(¢) can be
expressed in terms of the transition pdf of X (¢) via the following relations:

fi(x,tly) = Re(0) f(z, tly) / & (1) Re(T (/ o(z) flx,t —7|2) dz) dr,

3)
where Ry(7) =1 —-P(r < I <t)=1— f:w(s) ds and f(z,t|ly) is given in ().
The first term represents the case in which there aren’t jumps between 0 and ¢.
The second term analyses the case in which at the time 0 < 7 < ¢ the last jump
occurs and then the process starts at p and evolves according to X (¢) to reach
the state z in the time interval of width ¢ — 7.

The moments of X ;(¢), pyl)(ﬂy, 7), follow from (B)):

15 () = Re(©)u™ () + /st ) Bulr (/ #z) "t = 7lz)d ) @

with (™ (t|y) given in (@). Moreover, we consider the stochastic process N (t)
representing the number of therapeutic treatments to be applied until a fixed
time ¢.

In the following we analyze some therapeutic protocols assuming that different
pdf’s characterize the interjump intervals [j.

3 Analysis of Some Intermittent Therapeutic Treatments

In the present section we consider two kinds of intermittent therapeutic treat-
ments defined in terms of the pdf’s characterizing the random variables Ij. In
particular, we assume that the function v is a degenerate pdf (constant inter-
mittence) and an exponential pdf (exponential intermittence). Furthermore, for
the specified ¢ we assume three pdf’s for the random variable p: degenerate, uni-
form and bounded bi-exponential. In the first case we suppose that the therapy
is so precise that the process jumps exactly in the chosen point; otherwise the
therapy would lead the cancer mass in a its neighborhood of a certain amplitude
without any preferences, in the first case; with the other choice the situation is
similar, but p is the favorite point.

3.1 Constant Intermittence Therapeutic Treatment

We assume that intermittent therapeutic treatments are at fixed time inter-
vals of duration 1/, (¢ > 0) so that I can be described by a degenerate pdf
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PY(t) =96 (t ), where §(-) is the Dirac delta-function. In this case the time

instant Oy = k/(, almost surely (a.s.). Let N; the number of treatments to be
applied until the time ¢, one has that

Ny=>H <t k > :
k=1 ¢
where H(z) = [*_ 6(u) du denotes the Heaviside unit step function. Note that
in this caseft(r)zd( *) and Ry(7) = H (1/¢ —t)+ H (7 — 1/¢) so that

n™ (ty), t<1/C
1 (tly) = (5)
fo p(")( ¢ |z>dz, t>1/C.

Hence, ,uJ (t\y) p™ (ty) for t < 1/¢.

Case a): Degenerate p. We suppose that ¢(z) = §(z — p), is a degenerate distri-
bution in p. In this case from (E) one has:

. N
ul? (ty) = p™ (t— Ctp>, t>1/C.

Case b): Uniform p. We consider ¢(z) = ,, for z € [p— 1, p+1]. In this case (B)

becomes:
n 1 ptl N,
W = gy [ (o= V)@ s age
20/, ¢

In particular one has:

n 1 2 2 2 —
ME] )(t\y) — y exp{n 02(1 . e—zﬁ(t—k/g)) 7n0 / a(l B e—ﬁ(t—k/C))}

2 B

1 ne—BE—k/0) 41 ne—BE=k/0) 41

X ettt 4 1) [0+ ~(p-1) ] e
where
1 0%/2 —«

_ —B(t—k/C) | l_{l 1 — o=B(t=k/0) ]

c, e n(p ¥ nx -+ e

BT vt - k/g){ bF0 g )

2 (BK/O) _ eﬁ(tk/o)}

and Erf(z) = \/Qﬂ Iy e=%"ds is the error function.

Case c¢): Bounded bi-exponential p. We assume that ¢(z) = 2(1_16”)6_)‘”_9'
for z € (p — 1, p+1) so that from () it results:

n 1 P el (m N(t
ME])(t|y)= 2(1 — eN) /pl e Mzl ) (t— C()z) dz, t>1/¢C.



A Stochastic Gompertz Model with Jumps for an Intermittent Treatment 65

3.2 Exponential Intermittence Therapeutic Treatment

In this subsection we assume that [; is described by an exponential pdf with
mean 1/¢, i.e. ¢(z) = Ce™ % for > 0. In this case Ry(7) = e~ =7 & (1) = ¢,
consequently, from (@) and (@) one has:

t o0
Fratly) = e~ f(a, tly) + ¢ / dre=Ct=) / fat—7l2)d(z)dz  (6)
0 0
and
o — oGty () dre= (=7 < -7 dz. (7
(ty) = €St (t]y) + ¢ / e / 1Ot~ r2)p(2)dz. (7)

The number of treatments to be applied until the time ¢ is a Poisson process of
parameter (.
Case a): Degenerate p. If ¢(z) = 6(z — p) from (@) the moments of X ;(¢) follow:

) = ) + € [ eI el
If p=1, a =0?/2, from (@) and (7) we have the following closed forms:

frlx, tly) = e_ctf(x,ﬂy) + 22 [Cy (log x) — Ca(logz, t)],
and

g (y) = e~ tly)
¢
C 4/8 28 "232 C TL20'2 C n20.2 _9p
95 (na) e Hzﬁ’ 48 >F(2ﬁ’ 18 © ﬂ
with

91+¢/(28) 2 9
=S (o )en ) ()
1 X -y —1 Buw? 1 pu?
CQ(w’t)_awwkzo(l)k( 5 e e (1) -6 )

L _apn k+1/2 B Bw? 1 o Bw?
(1—e™) eXp{ o2 (1 — e=261) i, k; o2 (1—e-28t) )|

where I'(v) is the Gamma function, I'(a, v) is the Incomplete Gamma function,
D_,(x) is the Parabolic Cylinder function (cf. [2], p. 1028, n. 9.240) and ¥(a, b; x)
is the Kummer’s function of the second kind (cf. [2], p. 1023, n. 9.210.2).

Case b): Uniform p. For ¢(z) = ,, for z € [p— 1, p+ 1] (@) one has:

(n) C ¢ a
(t) = < ey + gy [ arem O [T rfao(epi
.
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Case ¢): Bounded bi-exponential p. When ¢(z) =
I, p+ 1) making use of (@) we obtain:

2(1_1€A,,)e_)‘|z_p| for z € (p —

(n) ¢t (n) Ao e [T Nl )
)= )ty [ drem DN )02
2(1 —¢€ ) 0 p—l1

4 Numerical Results

The aim of this section is to analyze the effects of the proposed intermittent
treatments by comparing the means of the process X ;(t) in the corresponding
of the two therapeutic protocols for the three different return distributions. We
assume that the growth rates of X(¢) are « = 1, 8 = 0.5, furthermore o =
1, y=0.1, p=0.5 and ¢ =0.1.
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Fig.1. The means of X ;(t) are shown with a =1, =05, c =1, y=0.1 and p =
0.5, ¢ = 0.1 for constant (on the left) and exponential (on the right) intermittences and
for different return pdf: degenerate (blue curve), uniform (red curve) and bi-exponential
(magenta curve) for [ = 0.4 and A = 1.

In Fig. [ the means of X ;(¢) are shown when a constant treatment (on the
left) and exponential protocol (on the right) is applied. For both therapeutic
treatments the three different return distributions are compared: degenerate pdf
(blue curve), uniform pdf (red curve) with [ = 0.4 and bi-exponential pdf (ma-
genta curve) for [ = 0.4 and A = 1. Note that, although the red and magenta
curves are below the blue curve, they are comparable, so we can study the only
degenerate case without loss of generality.

Figures 2 and Bl show the mean of X ;(t) for the constant (blue full curve) and
exponential (dashed curve) intermittences in the corresponding of degenerate
distribution of the return point. In particular, in Fig. Bl we choose 1/¢ = 10
(on the left) and 1/¢ = 5 (on the right), whereas in Fig. B 1/¢ = 4 (on the
left) and 1/¢ = 3 (on the right). The green line represents the carrying capacity
of the deterministic Gompertz growth: k = exp{«/f}, the magenta line is k/2
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Fig. 2. The means of X;(t) are shown with « =1, 8 = 0.5, ¢ =1, y = 0.1 and
p = 0.5 for a constant (blue full curve) and exponential (dashed curve) intermittences
with 1/¢ = 10 (on the left) and 1/{ = 5 (on the right) for degenerate return point.
The green, magenta and red lines are k, k/2 and k/3, respectively.

Fig. 3. As in Fig. @ with 1/¢ = 4 (on the left) and 1/¢ = 3 (on the right). The green,
magenta and red lines are k, k/2 and k/3, respectively.

and the red one is k/3. In all cases we note that the mean of the process for the
exponential distribution is less than the mean for the constant case. In particular,
for 1/¢ = 10 (on the left of Fig. ), only for the exponential treatment the mean
size is kept under the level k/2. Its understandable because in the exponential
case the probability of occurrence of more than one jump before of the time 10
is non-zero, while in the constant case it is equal to zero. The mean of the jump
process decreases by reducing the mean of the interjump intervals, however the
better results are obtained for the exponential intermittences (dashed curves). In
particular for 1/¢ = 3 (on the right of Fig.[3]) the exponential treatment reduces
the mean of the tumor size below k/3.
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Conclusions

To analyze the effect of a intermittent treatment in tumor growth we have consid-
ered a return process based on the Gompertz diffusion process. We have assumed
that the time elapsing between successive applications of the therapy is constant
or exponentially distributed; for both cases we have considered that the effect
of the therapy leads the cancer mass to a fixed value or, more generally, to a
random variable of assigned pdf. The performed simulations have showed that
the mean of the considered process is not influenced by the distribution of the
return point. So, the return point can be considered as fixed. In this case we
have analyzed the effectiveness of the two treatments by comparing the mean of
the jump process for different mean durations of interjump intervals. Based on
the considered model and on the chosen parameters, we can conclude that the
exponential protocol produces better effects than the constant one.
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