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Abstract. The paper formalizes the concept of the unfolding for un-
bounded hybrid Petri nets and introduces the algorithm for its comput-
ing. The unfolding is a useful partial-order based method for analysis
and verification of the Petri net properties. This technique can cope well
with the so-called state space explosion problem, especially for the Petri
nets with a lot of concurrency.
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1 Introduction

Petri nets are a mathematical and graphical tool for modeling concurrent, par-
allel and/or distributed systems. An unfolding is a useful structure for checking
properties of the Petri nets. Our goal it to update the algorithm for computing
unfolding for discrete Petri nets to continuous and unbounded hybrid Petri nets.

This article extends our previous work [14] by introducing unfoldings for or-
dinary unbounded hybrid Petri nets. Unbounded hybrid Petri nets have infinite
state space and thus similar set of problems with reachability arises as for un-
bounded discrete Petri nets [12].

The article consists of the following. The definitions and notations of the
hybrid Petri nets are given in Section 2. Section 3 contains definitions and nota-
tions of unfoldings. Section 4 presents algorithm for unfolding construction with
examples. Section 5 concludes the paper.

2 Hybrid Petri Nets

The concept of the continuous and hybrid Petri nets has been presented by David
and Alla in 1987 [3,5,6,4]. It is a fluidification of the discrete Petri net. Some
places can hold a real valued marking. This paper assumes that the reader is
familiar with the basic theory of the Petri nets [1,2]. The Petri net is persistent
when enabled transitions can only be disabled by its own firing.

2.1 Continuous Petri Nets

Continuous Petri net [6] is defined as a 5-tuple RC = (P, T, Pre, Post,M0),
where P is a finite set of places and T is a finite set of transitions. P �= ∅,
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T �= ∅ and P ∩ T = ∅. Pre : P × T → Q+ is the input incidence matrix.
Post : P × T → Q+ is the output incidence matrix. M0 : P → R+ is the initial
marking1. Let p ∈ P, t ∈ T : Pre(p, t) is the weight of the arc p → t; Post(p, t)
is the weight of the arc t → p. If the arc does not exist, the weight is 0. In a
graphical representation of the continuous Petri net places are represented by
double circles and transitions are represented by empty rectangles (Fig. 1).
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Fig. 1. The unbounded continuous Petri net

The continuous marking m ∈ (R+)|P | is a vector of non-negative real numbers.
A transition t ∈ T is enabled in a marking m, iff ∀p ∈ •t : m(p) > 0. Enabling
of the transition does not depend on the arc weight, it is sufficient that every
input place has a non-zero marking. The enabling degree q of the transition t
for the marking m is the maximal amount that the transition can fire in one go,
i.e. q(t,m) = minp∈•t (m(p)/Pre(p, t)). Firing the transition t with a quantity

α < q(t,m), α ∈ R+ is denoted as m
αt→ m′. [t]α represents α ∈ R+ firings

of the transition t at one go. The new marking m′ = m + α.C(P, t), where
C = Post − Pre is a token-flow matrix. The marking m′ is reachable from the
marking m.

Let m be a marking. The set P of places may be divided into two subsets:
P+(m) the set of places p ∈ P such that m(p) > 0, and the set of places p such
that m(p) = 0. A continuous macro-marking is the union of all markings m with
the same set P+(m) of marked places. Since each continuous macro-marking is
based on the Boolean state of every place (marked or not marked), the number
of continuous macro-markings is less than or equal to 2n, where n is the number
of places.

2.2 Hybrid Petri Nets

Hybrid Petri net [6] is a 6-tuple RH = (P, T, Pre, Post,M0, h), where P is a finite
set of discrete and continuous places, T is a finite set of discrete and continuous
transitions. P �= ∅, T �= ∅ and P ∩ T = ∅. Pre : P × T → Q+ or N is the
input incidence matrix. Post : P ×T → Q+ or N is the output incidence matrix.

1 Notation Q+ corresponds to the non-negative rational numbers and notation R+

corresponds to the non-negative real numbers (both including zero).
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Let p ∈ P, t ∈ T : Pre(p, t) is the weight of the arc p → t; Post(p, t) is the
weight of the arc t → p. If the arc does not exist, the weight is 0. A graphical
representation of the hybrid Petri net is shown in Fig. 2. M0 : P → R+ or N is
the initial marking. A function h : P ∪ T → {D,C} is called a hybrid function,
that indicates for every node whether it is a discrete node (sets PD and TD) or
a continuous one (sets PC and TC). In the definitions of Pre, Post and m0, the
set N corresponds to the case where p ∈ PD and the set Q+ to the case where
p ∈ PC . For the discrete places p ∈ PD and the continuous transitions t ∈ TC

must hold Pre(p, t) = Post(p, t).
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Fig. 2. The unbounded hybrid Petri net

The hybrid marking for the hybrid Petri net is a couple m = (mD,mC),
where mD denotes the marking of the discrete places and mC denotes the con-
tinuous macro-marking of the continuous places. The discrete transition t ∈
TD is enabled in a marking m, iff ∀p ∈ •t : m(p) ≥ Pre(p, t). The enabling
degree q of the discrete transition t for the marking m is integer q(t,m) =
minp∈•t (m(p)/Pre(p, t)). For continuous places p ∈ •t ∧ p ∈ PC the edge p → t
is a treshold for marking in the place p for enabling the discrete transition t.
A continuous transition t ∈ TC is enabled in a marking m, iff ∀p ∈ •t ∧ p ∈ PD :
m(p) ≥ Pre(p, t) and ∀p ∈ •t ∧ p ∈ PC : m(p) > 0. The enabling degree q of the
continuous transition t for the marking m is q(t,m) = minp∈•t (m(p)/Pre(p, t)).

3 Unfoldings

The unfolding [9,7,8,10,11] is a useful partial-order method for analysis and
verification of the Petri net properties. This technique can cope well with the
so-called state space explosion [12], specially for the Petri nets with a lot of
concurrency. The state space of the Petri net is represented by an acyclic net with
a simpler structure than the Petri net. The unfolding represents all reachable
states of the Petri net and can be infinite if the Petri net has a cycle. However
it can be truncated before it starts to repeat.

Our approach combines the macro-markings from the so-called case graph for
the continuous Petri nets [6,13] with the idea of the coverability unfolding for the



Algorithm for Computing Unfoldings of Unbounded Hybrid Petri Nets 431

unbounded discrete Petri nets [15]. Continuous conditions in the unfolding can
have associated a symbol representing the macro-marking thus some nonzero real
marking. Discrete conditions in the unfolding can have associated a symbol ω
representing that the corresponding place is unbounded.

A net is a triple N = (P, T, F ), where P is a finite set of places and T is a
finite set of transitions. P �= ∅, T �= ∅ and P ∩ T = ∅. F ⊆ (P × T ) ∪ (T × P ) is
a flow relation.

An occurrence net is a net O = (B,E,G), where B is a set of occurence of
places, E is a set of occurrence of transitions. O is acyclic and G is the acyclic
flow relation, i.e. for every x, y ∈ B ∪ E : xG+y ⇒ ¬yG+x, where G+ is a
transitive closure of G. Let us denote x < y, iff xG+y, and x ≤ y, iff x < y or
x = y. The relation <, resp. ≤ is a partial order relation. Nodes x, y ∈ (P ∪ T )
are in a conflict relation, denoted by x#y, iff ∃t1, t2 ∈ T : t1 �= t2 ∧• t1 ∩• t2 �=
∅ ∧ t1 ≤ x ∧ t2 ≤ y. Nodes x, y ∈ (P ∪ T ) are in a concurrency relation, denoted
by x co y, if neither x < y nor y < x nor x#y. For every b ∈ B : |•b| ≤ 1. For
every x ∈ (B ∪ E) : ¬(x#x), i.e. no element is in confict with itself. The set
of elements {y ∈ (B ∪ E)|y < x} is finite, i.e. O is finitely preceded. Min(O)
denotes the set of minimal elements of B ∪E with respect to the relation ≤, i.e.
the elements with an empty preset.

A homomorfism from the occurrence net O to the hybrid Petri net RH =
(P, T, Pre, Post,M0, h) is a mapping p : B∪E → P ∪T such that p(B) ⊆ P and
p(E) ⊆ T , i.e. preserves the nature of nodes. For every e ∈ E : p(•e) =• p(e) ∧
p(e•) = p(e)•, i.e. p preserves the environment of transitions. The restriction of
p to Min(O) is a bijection between Min(O) and M0.

A hybrid branching process of the unbounded hybrid Petri net RH is a quadru-
ple πH = (B,E,G, p, d, w) = (O, p, d, w), where O is the labelled occurrence net
and p(x) = y denotes labelling element x as element y. A mapping d : E →
{m1, . . . ,m|P |} ∪ {0} labels transitions occurrences with symbol mi indicating
maximal firing degree or with 0 indicating arbitrary lower degree (that will not
be depicted). A mapping w : B → {ω, 1} labels discrete places occurrences with
symbol ω indicating an unbounded discrete place or with 1 otherwise (that will
not be depicted). The type of the node determines its graphical representation.
Every node e ∈ E : p(e) ∈ TC is represented by double rectangle and every
node b ∈ B : p(b) ∈ PC is represented by double circle with the name of the
corresponding marking.

A hybrid branching process π′
H = (O′, p′, d′, w′) is a prefix of πH , denoted by

π′
H � πH , if O′ = (B′, E′, G′) is a subnet of O satisfying Min(O) belongs to

O′; if e ∈ E′ and (b, e) ∈ G or (e, b) ∈ G then b ∈ B′; if b ∈ B′ and (e, b) ∈ G
then e ∈ E′; p′ is the restriction of p to B′ ∪ E′. For every RH there exists a
unique (up to isomorphism) maximal (w.r.t. �) branching process that is called
unfolding.

A configuration of the occurrence net O is a set of the transitions occurrences
C ⊆ E such that for all e1, e2 ∈ C : ¬(e1#e2), i.e. C is conflict-free. For every
e1 ∈ C : e2 ≤ e1 ⇒ e2 ∈ C, i.e. C is causally closed. A local configuration [e] for
the transition occurrence e ∈ E is a set [e] = {e′ ∈ E|e′ ≤ e}.
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A set of places occurrences D ⊆ B is called a co-set, iff for all distinct d1, d2 ∈
D : d1 co d2. A cut is the maximal (w.r.t. set inclusion) co-set. For every d1, d2 ∈
D, if p(d1) = p(d2) then d1 = d2. Let C be the finite configuration of the hybrid
branching process πH . Then Cut(C) = (Min(O) ∪ C•) \•C is a cut. A set
Mark(C) = p(Cut(C)) is the reachable hybrid macro marking of the hybrid
Petri net RH .

An adequate order � is a strict well-founded partial order on the local con-
figurations such that for two transitions occurrences e1, e2 ∈ E : [e1] ⊂ [e2] ⇒
[e1] � [e2]. The transition occurrence e1 ∈ E is a cut-off transition induced by �,
iff there is a corresponding transition e2 ∈ E with Mark([e1]) = Mark([e2]) and
[e2]� [e1]. The order � is a refined partial order from [9]. For the hybrid branching
process πH and every e1, e2 ∈ E : p(e1) ∈ TD ∧ p(e2) ∈ TC ⇒ [e1] � [e2]. For
every e1, e2 ∈ E : d(e1) �= 0 ∧ d(e2) = 0 ⇒ [e1] � [e2].

The hybrid branching process is complete, iff for every reachable hybrid macro
marking M ∈ [M0 > of the hybrid Petri net RH there is the configuration C
of πH such that M = Mark(C) and for every transition t ∈ T enabled in M
there is the finite configuration C and the transition occurrence e ∈ C such that
M = Mark(C), p(e) = t and C ∪ {e} is the configuration.
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Fig. 3. The prefix of the unfolding of the unbounded continuous Petri net from Fig. 1
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Fig. 4. The main segment of the finite prefix of the unfolding of the unbounded hybrid
Petri net from Fig. 2. The whole prefix is not depicted because of size limitations.

4 Algorithm

The algorithm 1 is a modified and extended algorithm presented in [8]. It con-
structs the finite and complete prefix of the unfolding of the unbounded hybrid
Petri net. A function InitializePrefix() initializes the prefix pref with instances
of the places from M0. A function PossibleExtensions() finds the set of possible
extensions of the hybrid branching process pref using possible transitions fir-
ings for the hybrid Petri net, including continuous transitions firings with the
maximal degree. The decision version of this function is NP-complete in the size
of the prefix pref. A function MinimalExtension() chooses the transition occur-
rence with minimal local configuration with respect to the order � from the set
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Algorithm 1. The finite prefix of the unfolding for the unbounded hybrid
Petri net.
Input: The unbounded hybrid Petri net RH = (P, T, Pre, Post,M0, h)
Output: The finite prefix pref = (O, p, d, w) of the unfolding
begin

InitializePrefix(pref);
pe = PossibleExtensions(pref);
cutoff = ∅;
while pe �= ∅ do

e = MinimalExtension(pe);
if [e ] ∩ cutoff = ∅ then

Extend(pref, e);
pe = PossibleExtensions(pref);
if IsCutoff(e) then cutoff = cutoff ∪ {e };

else
pe = pe \ {e };

end

end

end

of possible extensions. A function Extend() appends new instance of the tran-
sition occurrence and new instances of the output places of the transition. The
function also detects an unbounded discrete place by comparing the new and the
previous discrete state. The label of the unbounded discrete place is propagated
further once denoted. A function IsCutoff determines whether the transition oc-
currence is a cut-off transition. The algorithm is finite because the number of
continuous, resp. discrete macro markings in the continuous, resp. discrete part
of the hybrid Petri net is finite and it transforms all transitions occurrences into
cut-off transitions [9].

An example of the finite prefix of the unfolding created by the algorithm 1
for the unbounded continuous Petri net in Fig. 1 is in Fig. 3. All reachable
continuous macro markings are represented by cuts.

The image in Fig. 2 shows very simple, yet typical example from the applica-
tion domain of the hybrid Petri nets, where the discrete part enables or disables
the continuous transitions. An example of the complete and finite prefix of the
unfolding created by the algorithm 1 for the unbounded hybrid Petri net in Fig. 2
is in Fig. 4. The image shows only the most interesting part of the whole prefix
because of size limitations. It can be seen how the unbounded discrete place is
detected and propagated further.

5 Conclusion and Future Work

We have introduced the algorithm for computation of the unfolding for the or-
dinary unbounded hybrid Petri nets and shown the corresponding definitions.
Some information regarding reachability is lost due to the abstraction in the
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continuous and discrete macro markings. Nevertheless, advantages of the un-
folding remain. Analysis of the partial order between the transitions occurrences
and checking on persistency by analysing the conflicts between the transitions
occurrences in the unfolding is simpler due to absence of cycles. It preserves
concurrency and explicitly represents conflicts.

In the future we plan to develop algorithms for analysing properties of the
hybrid Petri nets from the unfolding.
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