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Abstract. In our contribution we are concerned with a real-world ve-
hicle routing problem (VRP), showing characteristics of VRP with time
windows, multiple depots and site dependencies. An analysis of transport
request data reveals that the problem is over-constrained with respect
to time constraints, i.e. maximum route durations and time windows for
delivery at customer sites. Our results show that ant colony optimisa-
tion combined with stochastic ranking provides appropriate means to
deal with the over-constrained problem. An essential point in our in-
vestigations was the development of problem-specific heuristics, guiding
ants in the construction of solutions. Computational results show that
the combination of a refined distance heuristic, taking into account the
distances between customer sites when performing pickup operations at
depots, and a look-ahead heuristic, estimating the violation of maximum
route durations and delivery time windows when performing pickup op-
erations, provides the best results for the VRP under consideration.

Keywords: logistics, heuristics, routing, ant colony optimisation, con-
straint satisfaction.

1 Introduction

In their daily business, forwarding companies are confronted with the necessity
to minimise transport cost. Capacity utilisation of vehicles has to be maximised,
while total travel times have to be minimised. The real-world problems can
be abstracted into vehicle routing problems (VRPs), providing the models to
study the efficiency of optimisation algorithms. In its basic variant the VRP is
concerned with assigning transport requests to a homogeneous fleet of vehicles
starting from a single depot and to construct optimal routes for these vehicles.
The introduction of constraints gives rise to a whole family of VRP variants,
considering vehicle capacities, time windows for deliveries, multiple depots, site
dependencies etc. In this paper we are concerned with a real-world VRP, show-
ing characteristics of three general types of vehicle routing problems as classified
by [8]: vehicle routing problem with time windows (VRPTW), multi-depot ve-
hicle routing problem (MDVRP) and side dependent vehicle routing problem
(SDVRP). In the VRPTW, time windows are assigned to customer sites, con-
straining the possible delivery dates. In the MDVRP, vehicles start their routes
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from multiple depots, and SDVRP imposes constraints on the accessibility of
customer sites - a customer site requires specific vehicle types and excludes oth-
ers. All of these VRP variants consider vehicle capacities. The vehicle routing
problem with multiple depots and time windows MDVRPTW has been tackled
by [2,9,4]. To the best of our knowledge there is no existing research paper on
MDVRPTW with site dependencies.

In order to solve real-world VRPs, a variety of metaheuristic approaches have
been proposed, amongst them ant colony optimisation (ACO). In a number of
research publications ACO showed good performance when applied to large-scale
and real-world instances. [3] used a multi ants colony system to solve time de-
pendent VRP and tested their algorithm on a real-world case. [10] enhanced a
savings based ant system by decomposing the VRP into smaller sub-problems.
[11] investigated into the application of ACO to real-world VRP instances ex-
hibiting characteristics of VRP with time windows, time dependent VRP, dy-
namic VRP and VRP with pickup and delivery. They conclude that ”... ACO
has been shown to be one of the most successful metaheuristics for the VRP and
its application to real-world problems demonstrates that it has now become a
fundamental tool in applied operations research.”

Real-world VRP are characterised by a considerable amount of constraints
that have to be observed during vehicle routing optimisation. Therefore, ACO
has been integrated with several constraint handling mechanisms, amongst them
constraint programming and penalty-based techniques. Of particular interest
is the approach presented by [7] and [5] where ACO has been combined with
stochastic ranking, a constraint handling mechanism originally proposed by [12].
In stochastic ranking a stochastic bubble sort algorithm ranks solutions accord-
ing to their objective value or their amount of constraint violation, respectively.
Top ranked solutions, including feasible and infeasible solutions, pass informa-
tion to the next iteration (via pheromones in the case of ACO). [7] used ACO
in combination with stochastic ranking to solve single machine job scheduling
problems. Despite its low computational complexity stochastic ranking showed
good performance when applied to weakly or moderately constrained problems.

In this paper we use an ACO algorithm integrated with stochastic ranking in
order to solve a real-world VRP. To the best of our knowledge the application of
ACO combined with stochastic ranking to VRP has not been reported before.
The remainder of this paper is structured as follows. In section 2 we describe the
real-world VRP under consideration. Our problem solving approach is outlined
in section 3. In section 4 we discuss computational results, pointing out the
importance of strong, problem-specific heuristics guiding the ACO algorithm in
the construction of solutions. Our conclusions are presented in section 5.

2 Problem Description

Throughout the paper we discuss a particular real-world VRP instance, where
398 customers have to be supplied from two depots. The optimisation objective
is the minimisation of travel times. We investigate a static planning problem



Solving a Vehicle Routing Problem 261

with single day planning horizons, i.e. at the time of optimisation all transport
requests to be scheduled for the next day are known in advance. Each customer
may request several shipments per day. In the considered problem instance we are
dealing with 789 transport requests. A fleet of 265 vehicles is available to supply
the customers. The fleet is inhomogeneous: four types of vehicle are available,
with many different vehicle capacities within each type. Each vehicle is assigned
to a depot, at the beginning and at the end of a route the vehicle has to be
located at its depot.

2.1 Data Model

In the following we describe the core entities making up the data model for our
VRP instance. A vehicle is characterised through its type, capacity (measured
in pallet spaces), a list of up to 3 shifts and the distance matrix relevant for the
vehicle. Examples for vehicle types are semitrailer or road train. A shift is spec-
ified through an origin (the site where the vehicle starts its shift), a destination
(the site where the vehicle has to be at the end of the shift), a shift start time
and a shift end time. In the considered problem instance the origin as well as the
destination of a shift is the depot where the vehicle is assigned to. Each entry in
a distance matrix specifies the travel time between a pair of sites. We are using
two different distance matrices, reflecting vehicle type specific travel times.

A customer site or depot is characterised through its geographic coordinates,
up to 2 time windows, a service time and a list of supported vehicle types. Time
windows specify the opening hours of a site, whereas the service time defines the
average time required for a loading/unloading operation. The list of supported
vehicle types specifies which vehicle types are able to access the site for load-
ing/unloading operations. Finally a transport request is characterised through
an origin, a destination and the amount of pallet spaces the load requires.

2.2 Constraints

Four types of constraints narrow the space of feasible solutions: (1) Loading/
unloading operations should not be performed outside of specified time windows,
(2) vehicle shifts limit the maximum duration of routes, (3) the supported vehicle
types of a customer site / depot impose site dependency constraints on vehicles
and (4) the total load of a vehicle must not exceed its capacity.

An analysis of transport request data reveals that the problem is
over-constrained. We looked at the duration of transport for individual requests,
i.e. the travel time from depot to customer site and back to the depot, plus
service times for loading at depot and unloading at customer site. By compar-
ing transport times with duration of vehicle shifts we noticed that in the worst
case 146 transport requests cannot be fulfilled without violation of shift con-
straints. Worst case means that only vehicles using the distance matrix with
longer travel times are used to fulfil requests with long transport times. In the
best case 108 transport requests violate shift constraints, employing as much as
possible vehicles using the distance matrix with shorter travel times.
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3 Solving the Vehicle Routing Problem

3.1 Solution Construction

ACO algorithms are constructive solution methods, where a number of artificial
ants move through a construction graph, that represents a particular problem.
In our application a vertex in the construction graph corresponds to a logical
customer site or to a logical depot. A logical depot represents the pickup location
of a specific transport request, the origin of a vehicle’s shift or the destination
of a vehicle’s shift. Examples: two requests with pickup at the same physical
depot result in two different logical depots. Two vehicles with a single shift
and shift origins / destinations at the same physical depot give rise to four
different logical depots, two for shift origins and two for shift destinations. Due
to the fact that customers may request multiple transports we had to introduce
logical customer sites, one for each request. Example: a physical customer site
requests three transports, resulting in three logical customer sites with the same
geographic coordinates. With the above definition of a vertex in the construction
graph at hand, a solution generated by an ant corresponds to a path through
the construction graph connecting all vertices.

Ants generate solutions iteratively by following artificial pheromone trails
through the construction graph. At each iteration, ants re-enforce ”good solu-
tions” (according to an objective function) with additional pheromone deposits,
thus increasing the probability for segments of good solutions to be re-used in
subsequent iterations. However, it is not just pheromone trails that guide ants
during the construction of solutions. A problem-specific heuristic function also
influences the choices made by ants. Such a heuristic is especially important in
early iterations, when sufficient pheromone information is not yet available. The
importance of pheromones and heuristics is expressed in equation 1, describing
an ant’s probability to move from vertex i to vertex j in the construction graph.

pi,j =
ταi,j · ηβi,j

∑
k∈Ni

ταi,k · ηβi,k
(1)

In equation 1, τi,j denotes the pheromone value on the edge from vertex i to
vertex j, and ηi,j is the heuristic value associated with the move from vertex i
to vertex j. The parameters α and β are weights for the influence of pheromones
and heuristic values. The neighbourhood of vertex i, i.e. all vertices reachable
with a single move, is denoted by Ni.

Our ACO implementation is based on the MAX-MIN ant system originally
proposed by [13]. To avoid pre-mature convergence of search the MAX-MIN
algorithm introduces upper and lower boundaries on pheromone values, thus
limiting differences in pheromone trail intensities. We modified the MAX-MIN
algorithm with adaptive values for α and β, resulting in faster convergence and
better solution qualities [1]. Solution construction in ACO algorithms conceptu-
ally supports concurrent computation, with ants determining solutions in par-
allel. We have exploited this feature with the implementation of a concurrency
mechanism, based on the Reduction design pattern described in [6].



Solving a Vehicle Routing Problem 263

3.2 Heuristics

To study the influence of different heuristics on solution quality and convergence
we have implemented the following standard heuristics: tightest time window,
earliest due date, earliest start time and shortest distance (travel time). Applying
these heuristics or combinations thereof to the problem specified in section 2 we
noticed that the results are not very satisfactory, as the standard heuristics are
not able to ensure that transport requests with deliveries to customer sites in
close proximity to each other are grouped together in as few routes as possible.
This is achieved with a refined distance heuristic, considering the travel time
between customer sites when evaluating pickups at depots.

Time windows at customer sites and vehicle shifts constrain the space of feasi-
ble solutions. An efficient heuristic should consider these time constraints when
guiding ants in the construction of solutions. Pickup operations are of particular
interest, as they increase the vehicle’s workload. We have implemented a look-
ahead heuristic for the evaluation of pickup operations, estimating the time of
arrival at the shift destination and calculating the violation of time constraints.
Due to the over-constrained nature of the problem we had to introduce a toler-
ance with respect to delays. A move whose look-ahead return value exceeds the
tolerance is discarded as infeasible.

3.3 Stochastic Ranking of Solutions

In stochastic ranking, the evaluation of a solution s generated by an ant takes
into account the objective function O(s) and the amount of constraint violation
of s. After each iteration, the solutions constructed by the ants in the iteration
are added to a fixed size ranking list. A stochastic bubble sort algorithm sorts
the ranking list, where a probability parameter Pf denotes the probability for a
pair of solutions to be compared according to their objective values, cf. [7,12].
Hence with probability 1−Pf the pair of solutions is compared according to their
respective amount of constraint violation. After the ranking procedure the list is
pruned, i.e. all solutions with a rank higher than the size of the list are removed.
The remaining solutions in the list will deposit pheromones, influencing ants’
decisions in future iterations. The amount of a pheromone deposit is given by
equation 2, with L denoting the size of the ranking list.

Δτi,j = 1/ (L ·O(s)) if(i, j) ∈ s; 0 otherwise (2)

4 Discussion of Computational Results

Two questions were guiding our computational experiments. (1) What is the
influence of different heuristics on algorithm performance, and (2) what is the
relationship between solution quality and computation time. All experiments
used the problem instance described in section 2 and they were performed on an
Intel Core Duo CPU with 1.99 GHz running under Windows XP. The parameter
Pf was set to 0.4, as this value yielded the best results.
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Fig. 1. Runtime performance for solutions with globally best P (s) and O(s) with look-
ahead and refined distance heuristic. Look-ahead tolerance set to 5400 s.
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Fig. 2. Runtime performance for solutions with globally best P (s) and O(s) with look-
ahead and simple distance heuristic. Look-ahead tolerance set to 5400 s.

To examine the runtime performance all experiments were carried out with the
following numbers of iterations: 1, 50, 100, 150, 200, 300, 400, 500 and 700.
Solutions found in the first iteration are especially interesting, as the quality
of these solutions solely depends on the chosen heuristics. For each number of
iterations we performed 5 independent runs, calculating mean values as well
as worst/best values for globally best O(s) and P (s), where P (s) denotes the
amount of constraint violation for solution s. Figure 1 reports the results for the
best heuristics we have found, namely a combination of look-ahead and refined
distance heuristic. The look-ahead tolerance was set to 5400 s, yielding the best
results for our problem instance. We notice a strong reduction in constraint
violation with increasing runtime, whereas the objective function does not show
such a reduction.

Figure 2 shows a different picture. It depicts results obtained with a combi-
nation of look-ahead (tolerance set to 5400 s) and a simple distance heuristic
with ηi,j = 1/ti,j, where ti,j denotes the time required for travelling from ver-
tex i to vertex j. The reduction of O(s) in figure 2 is significant, and we note
a strong reduction in P (s). However, looking at the initial values for O(s) and
P (s), found in the first iteration, we notice that the simple distance heuristic
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Fig. 3. Runtime performance for solutions with globally best P (s) and O(s) with look-
ahead and refined distance heuristic. Look-ahead tolerance set to 14400 s.

produces very bad initial solutions compared to the refined distance heuristic.
Starting from these low quality solutions the optimisation algorithm is able to
reduce O(s) and P (s) simultaneously. With good initial cost values found by the
refined distance heuristic, the algorithm, with Pf = 0.4 biased towards reduction
of constraint violation, significantly reduces the amount of constraint violation
while maintaining the quality level of objective values from early iterations.

This finding is also reflected in figure 3, where we report results obtained with
a relaxed look-ahead (tolerance set to 14400 s) and a refined distance heuristic.
Again the refined distance heuristic is able to produce good initial values for
O(s), being further reduced in the first iterations, but steadying throughout the
remainder of the optimisation. Due to the relaxed look-ahead the values for O(s)
are lower than in figure 1: the algorithm uses the larger space of feasible solutions,
i.e. solutions not violating the look-ahead tolerance, to produce solutions with
lower values for O(s). However, this comes at the expense of increased constraint
violation.

5 Conclusions

When choosing ant colony optimisation to solve real-world VRP, tailored heuris-
tics are an important aspect in order to achieve satisfactory results. Our inves-
tigations showed that the application of problem-specific heuristics significantly
improved the quality of solutions, compared to the usage of simple heuristics
like shortest distance. In our experiments with a real-world, over-constrained
VRP we focussed on the evaluation of globally best solutions with respect to
objective value or constraint violation, respectively. However, the algorithmic
approach presented in this paper provides more solutions than just globally best
ones. The ranking list allows a user to choose from a multitude of solutions,
balancing the trade-off between low objective value and low constraint viola-
tion in a different way. The probability parameter Pf provides the simple means
to adjust the bias of the optimisation algorithm towards reduction of objective
value or constraint violation. Based on our results we consider the combination
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of ant colony optimisation with stochastic ranking to be the basis of a useful
tool, flexibly supporting logistics practitioners in the solving of vehicle routing
problems, even if they are over-constrained.
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