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Abstract. The design of DNA strands suitable for bio-molecular computing 
involves several complex constraints which have to be fulfilled to ensure the 
reliability of operations. Two of the most important properties which have to be 
controlled to obtain reliable sequences are self-assembly and self-
complementary hybridizations. These processes have to be restricted to avoid 
undesirable interactions which could produce incorrect computations. Our study 
is focused on six different design criteria that provide reliable and robust DNA 
sequences. We have tackled the problem as a multiobjective optimization 
problem in which there is not only an optimal solution, but a Pareto set of 
solutions. In this paper, we have used the Strength Pareto Evolutionary 
Algorithm 2 (SPEA2) to generate reliable DNA sequences for three different 
real datasets used in bio-molecular computation. Results indicate that our 
approach obtains satisfactory DNA libraries that are more reliable than other 
results previously published in the literature. 
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1 Introduction 

Deoxyribonucleic acid (DNA) computing refers to a computational model proposed 
by Adleman in 1994 [1] which uses DNA molecules as computer storage units and 
their biological reactions as the operators to perform computations. In this context, the 
hybridization between DNA sequences is crucial, because undesirable hybridizations 
usually lead to incorrect computations [2]. Thus, the design of reliable sequences 
which generate specific duplexes while avoiding other undesirable reactions involves 
several conflicting design criteria which cannot be managed by traditional 
optimization techniques [2]. In this case, a design based on multi-objective 
evolutionary algorithms represents the most suitable alternative. Typical existing 
approaches for DNA sequence design problem include a wide range of non-exact 
algorithms, such as evolutionary algorithms, dynamic programming, and heuristic 
methods [2]. However, a design based on multi-objective evolutionary algorithms 
(MOEAs) represents the most appropriate design alternative [3] because MOEAs take 
into account several conflicting objectives simultaneously without the artificial 
adjustments which are included in classical mono-objective optimization methods. 
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In this paper, we consider six different conflicting criteria, two of them taken as 
restrictions and the other four managed as objectives, to generate reliable DNA 
sequences suitable for DNA computing by using the multiobjective standard: Strength 
Pareto Evolutionary Algorithm 2 (SPEA2) [4]. In addition, our results are validated 
by using other works published in the literature. As will be discussed, our MOEA 
generates very promising DNA sequences that surpass the results obtained with other 
relevant approaches previously published. 

The rest of the paper is organized as follows: Section 2 describes the basic 
background on the problem and the multiobjective formulation followed. The SPEA2 
adaptation developed is explained in Section 3. Section 4 is devoted to present and to 
analyze the results, as well as comparing our approach with other methods published 
in the literature. Finally, Section 5 summarizes the conclusions of the paper. 

2 DNA Base-Code Generation for Reliable Computation 

In recent years, there has been an increase in the technologies which are based on 
DNA molecules, such as nanotechnology, DNA sequencing or DNA computing [2]. 
In all those technologies, the design of reliable DNA libraries is a crucial task. One of 
the most important processes for DNA molecules is the Watson-Crick pairing [5], or 
the hybridization between a sequence and its basepairing complement. The problem 
here is to control undesirable hybridizations, because they can produce errors in the 
biological reactions, so they have to be avoided when sequences are designed. 

DNA sequence design problem consists of designing sets of reliable sequences 
which form stable duplexes while avoiding undesirable interactions. Every sequence 
design criteria should contribute to improving reliability, because this property is a 
very important requirement for any system based on DNA sequences. There are 
several biological criteria that can be considered to achieve this purpose. According to 
their biological meaning, design criteria can be classified into four groups [6]. First, 
properties that avoid inconvenient reactions; second, criteria that control the 
generation of secondary structures; third, properties that control the biochemical 
characteristics of DNA sequences; and finally, criteria that restrict the sequences 
composition. From the first group, we have taken the similarity and the h-measure 
objectives. Similarity calculates the inverse Hamming distance between two 
sequences, while h-measure tests the possibility of unintended DNA basepairing. 
Both criteria are checked by considering shifts in sequences under study. Regarding to 
the second category, secondary structures formation, we have included the objectives: 
hairpin, which indicates the probability that the sequence under study can generate 
secondary structures and continuity, which counts the repetitions of identical bases. 
This is important because if one base is repeated several times, an unusual secondary 
structure could be formed. The third category refers to the biochemical characteristics 
of the sequences. It is important to control that every sequence have similar chemical 
features. We have included the following two restrictions from this category: melting 
temperature, which is the temperature at which half of the DNA strands are in the 
double-helical state and half are in a random coil state (dissociated), and GC ratio, 
which indicates the percentage of cytosine (C) and guanine (G) in a sequence. 
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2.1 Multiobjective Formulation 

DNA base-code generation can be naturally formulated as a multiobjective 
optimization problem in which the objectives and constraints are the design criteria 
that every sequence has to satisfy to ensure reliability. We have considered six 
different design criteria to cover a wide range of aspects which contribute to 
reliability [6]. Four are considered as objectives: Similarity and h-measure avoid 
inconvenient reactions between sequences. On the other hand, continuity and hairpin 
control the generation of secondary structures. Finally, melting temperature and GC 
ratio are considered as constraints for the problem and they assure that DNA 
sequences are in the similar bio-chemical ranges. The four objectives have to be 
minimized, so the problem can be described as follows. 

                              Minimize F(X) = (f1(X), f2(X), f3(X), f4(X)) 
                                                          subject to c1(X) and c2(X)                                   (1) 
 
where fi(X) are the objectives previously mentioned (similarity, h-measure, continuity 
and hairpin), ci(X) are the melting temperature and the GC ratio constraints, and X is 
the set of DNA sequences under study. 

A formal definition of each design criterion included in equation (1) is given 
below. 

1) Similarity: This objective computes the similarity in the same direction of two 
given sequences to keep each sequence as unique as possible, including position 
shifts. For a more complete comparison, the target sequence is extended by adding its 
own sequence to the 3’-end with gaps. Moreover, we consider continuous (scont) and 
discontinuous (sdisc) similarities. The mathematical definition for this measure is 
described in (2).  

                                       (2) 

where x and y are parallel sequences and shift indicates a shift of sequence y by i 
bases and g gaps. sdisc is a real value between 0 and 1, and scont is an integer between 1 
and the length of the sequences. Finally, we have to indicate that similarities have to 
surpass a threshold that has to be established by experimentation to be considered. 

2) H-measure: This objective is similar to similarity, but instead of considering 
sequences in parallel, they are managed as complementary. H-measure prevents cross 
hybridization between DNA strands. We consider elongated sequences with gaps for 
a more reliable measure. The mathematical definition is given in (3). 

                                (3) 

where x and y are anti-parallel sequences and shift indicates a shift as in the similarity 
case. hdisc, hcont and the threshold have also analogous values to the similarity measure. 
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3) Continuity: This measure calculates the degree of successive occurrences of the 
same base in a sequence. The measure prohibits consecutive runs of the same base 
over a given threshold. For example, if the threshold is 3, in the sequence 
AGGCAATAAAACGAAATGGGC, only the third subsequence of adenines (A) 
violates the continuity. The mathematical definition for this measure is given in (4).  

                                       (4) 

where x is the sequence under study, max is the difference between the length of the 
sequence and the threshold (T), ca(x,i) is equal to ε if ∃ ε s.t. xi ≠ a, xi+1=a for 1 ≤ j ≤ 
ε, xi+ε+1≠ a, and 0 otherwise. 

4) Hairpin: This restriction represents the probability of secondary structures 
creation. For simplicity, it is calculated through the Hamming distance by considering 
the length of hairpin loop and the number of hybridized pairs. It is assumed that a 
hairpin has at least Rmin bases as a loop and a minimum of Pmin base pairs as a stem. It 
is also considered the penalty for formation of hairpins of various sizes at every 
position in the sequence. In (5) are considered hairpins with r-base loop and p-base 
pairs stem to be formed at position i in the sequence x, if more than half bases in the 
subsequence xi-p…xi hybridize to the subsequence xi+r…xi+r+p. The number of matches 
in these subsequences is defined as the penalty for this hairpin.  

 

                                            (5) 

where the function pinlen (p,r,i) = min(p+i, l–r–i–p) and denotes the maximum 
number of possible basepairs when a hairpin is formed at center p+i+r/2. 

5) GC content: This criterion indicates the percentage of bases C and G in the 
sequence. This is important because the GC content affects to the chemical properties 
of DNA sequences. For example, the GC% of the DNA sequence ACGTT is 40. 

6) Melting temperature, Tm: This measure predicts DNA thermal denaturation, 
which is a key factor for DNA computing. Both sequence and base composition are 
important determinants of DNA duplex stability. There are many ways to calculate 
this relevant feature, but we use the nearest neighbour (NN) model [7]. The 
mathematical description for this measure is provided in (6). 

                                   (6) 

where x is the DNA sequence studied, R is a gas constant and |CT| is the total sequence 
concentration. ∆Hº and ∆Sº refer to predicted enthalpies and entropies. Those values 
were taken from [7]. 
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3 Multiobjective Approach 

We have generated reliable DNA sequences suitable for molecular computing by 
using an adapted version of the Strength Pareto Evolutionary Algorithm 2 (SPEA2), 
which is a population-based algorithm originally created by Zitzler et al. in [4]. The 
pseudocode of the proposed MOEA is shown in Algorithm 1.  

 
Algorithm 1. Pseudocode of SPEA2 

  1: P ⇐ generateRandomPopulation (PSize) 
  2: A ⇐ ∅   //Archive (ArchiveSize) 
  3: while not stop condition satisfied do 
  4:      FitnessAssignment (P, A) 
  5:      EnviromentalSelection (A, P)   //Truncate A if necessary 
  6:      for i=1 to PSize do 
  7:          ind1, ind2 ⇐ tournamentSelection (A)   // ind1≠ind2 
  8:          Pi ⇐ recombination (ind1, ind2, Pcr) 
  9:          Pi ⇐ mutation (Pi, Pm) 
10:     end for 
11: end while 

 
SPEA2 uses a regular population, P, of PSize individuals, and an archive (external 

set, A). The process starts with the random generation of the initial population and the 
initialization of the archive set (lines 1, 2). Each individual in the population is a valid 
DNA library which represents the solution for the specific problem instance which is 
being considered. A solution is composed of a set of n sequences. Each DNA strand is 
composed of m bases each (sequence length). The number of sequences and the 
number of bases per sequence depend on the problem instance. The data structure 
contains the DNA strands used by the genetic operators of our MOEA along with the 
values for each biochemical design criteria. 

In each iteration, all non-dominated solutions (the best solutions) of both, 
population and archive, are copied into a new population, truncating it when the size 
of the new population exceeds PSize solutions (line 5). Previously, a fitness value that 
is the addition of its strength raw fitness and a density estimation is assigned to each 
individual in P and in A (line 4). The raw fitness is based on the concept of Pareto 
dominance. The raw fitness of a solution, R(i), is determined by the strengths of its 
dominators in both archive and population. It is a measure to be minimized, so R(i) = 
0 corresponds to a nondominated individual, while a high R(i) value means that 
solution i is dominated by many individuals. A particular solution is of more quality 
than another if it is dominated by fewer solutions. A solution dominates another if it is 
better, at least, in one of the objectives and it is not worse in any of the others. In case 
of individuals having identical raw fitness, it is used a density estimation technique 
which is based on the distance (in the objective space) to the kth nearest solutions. 
SPEA2 uses binary tournament selection, crossover at two levels (at individual and 
sequence levels) and random mutation (lines 7-9) for improving the population in 
each generation. 
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4 Experimental Evaluation and Results 

The algorithm developed has been adjusted to obtain optimal results by performing a 
complete set of experiments. The value of each parameter (population size PSize, 
archive size ArchiveSize, crossover probability Pcr, mutation probability Pm and 
parent selection strategy) has been fixed after executing 30 independent runs to ensure 
statistical significance. Table 1 shows the algorithm configuration. All experiments 
were performed by using a 2.3GHz Intel PC with 1GB RAM. The algorithm was 
compiled using gcc 4.4.5 compiler. For comparison with other authors [6], we have 
used the same population size and stop condition for the algorithm (3000 individuals 
and 200 iterations respectively). 

Table 1. Algorithm configuration 

SPEA2 configuration 

Archive size (ArchiveSize) PSize/2 
Crossover probability (Pcr) 0.3 
Mutation probability (Pm) 0.5 
Parent selection strategy Binary tournament 

 
We have used three different-sized sets of DNA sequences proposed by different 

authors [8], [9], and [10] which have been used for reliable DNA computing. This fact 
ensures that our algorithm works with several types of instances which have been 
tested to be used for bio-molecular computing. Moreover, we compare our results 
with sequences generated by Shin et al. [6], which use a multiobjective approach with 
the same data sets. We examine the quality of each design criterion for a set of 
sequences taken from the median Pareto front generated by our SPEA2. The 
comparison is not performed in terms of any multiobjective metrics, such as 
hypervolume, because unfortunately no studies have taken multiobjective indicators 
so far. Biochemical constraints and parametrical adjustments for the design criteria 
used in our study were established as explained in the literature [6]. Thus, for H-
measure (H) and similarity (S), we set lower limits for the continuous case equal to 
six bases and 17% for the discontinuous case. For continuity (C), the threshold value 
was 2. Hairpin (P) formation requires at least six basepairings and a six base loop. 
The melting temperature (Tm) was calculated with 1 M salt concentration and 10nM 
DNA concentration. Furthermore, the Tm and the GC ratio are considered constraints 
whose values were taken from the literature. For the results in [8] and in [9], 
sequences have the GC ratio restricted to 50% and the melting temperature between 
46 and 53 degrees. On the other hand, for the work in [10], the range of the GC ratio 
is between 40% and 50% and the melting temperature between 31 and 39 degrees. 
Shin et al. [6] uses the same restrictions. Comparative results are given in Fig. 1 for 
the three data sets under study. Furthermore, in Table 2, we show the comparison of 
sequences generated in [8], sequences generated in [6] and an example taken from the 
median Pareto front of the sequences generated by our approach. Due to the limit in 
the number of pages, we cannot show a similar table for the other two instances (but 
Fig. 1 summarizes these comparisons). 
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Table 2. Comparison of the sequences in [8], [6] and sequences obtained by our proposal 

Seq. (5’→ 3’) C P H S Tm GC 
Sequences obtained in [8] 

ATAGAGTGGATAGTTCTGGG 9 3 55 64 52.6522 45 
CATTGGCGGCGCGTAGGCTT 0 0 69 51 69.2009 65 
CTTGTGACCGCTTCTGGGGA 16 0 60 63 60.8563 60 

GAAAAAGGACCAAAAGAGAG 41 0 58 45 52.7111 40 
GATGGTGCTTAGAGAAGTGG 0 0 58 54 55.3056 50 
TGTATCTCGTTTTAACATCC 16 4 61 50 48.4451 35 
TTGTAAGCCTACTGCGTGAC 0 3 75 55 56.7055 50 

Sequences obtained in [6] 
CTCTTCATCCACCTCTTCTC 0 0 43 58 46.6803 50 
CTCTCATCTCTCCGTTCTTC 0 0 37 58 46.9393 50 
TATCCTGTGGTGTCCTTCCT 0 0 45 57 49.1066 50 
ATTCTGTTCCGTTGCGTGTC 0 0 52 56 51.1380 50 
TCTCTTACGTTGGTTGGCTG 0 0 51 53 49.9252 50 
GTATTCCAAGCGTCCGTGTT 0 0 55 49 50.7224 50 
AAACCTCCACCAACACACCA 9 0 55 43 51.4735 50 

Sequences obtained with SPEA2 
CAACAGATGAGTAACTCCCC 0 0 57 44 47.214 50 
TTCCTTGTTCCTGCTTCCTC 0 0 41 57 49.576 50 
CTTCTCTCCTTCTCTCCTTG 0 0 37 61 46.266 50 

ATGGTTAGTGTAGGAGTGGG 0 0 58 42 48.126 50 
TCTCGTCGTAGTAGTCTTCG 0 0 52 57 47.901 50 
TTCAACCTGCTGTCTTCCCT 0 0 45 55 51.112 50 
TTCTTGTGTTCTGCACTCCC 0 0 48 58 50.125 50 

 

 

Fig. 1. Average fitness comparison between our approach (SPEA2) and other relevant works 
for the three instances tackled. Y axis indicates the average values of each fitness objective. 

In [8], authors proposed a genetic algorithm to design good sequences for 
Adleman’s graph. Shin et al., in [6], proposed NACST/Seq algorithm to improve 
those sequences. Results given in Table 1 and Fig. 1 show that our approach obtains 
sequences with lower similarity (S) and h-measure (H) values, while obtaining 
minimal values for hairpin (P) and continuity (C). This means that sequences obtained 
by our SPEA2 have higher probability to hybridize with its correct complementary 
sequences. Besides, secondary structures are virtually prohibited because values for 
hairpin and continuity are reduced to zero. Moreover, ranges for melting temperature 
and GC ratio are also better, which means more stable sequences. On the other hand, 
results obtained in [9] and in [10] generated sequences to solve other problems 
(travelling salesman problem and knight movement problem) by using other methods. 
Fig. 1 shows that for those instances our approach also obtains sequences with lower 
similarities and h-measures, while obtaining minimal continuities and hairpins.  
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This means that sequences obtained by SPEA2 are more reliable. Secondary 
structures are virtually prohibited because hairpin and continuity are reduced to zero. 
Moreover, ranges for GC ratio and Tm are also better, which means more stable 
sequences. 

5 Conclusions and Future Work 

In this paper, we present SPEA2 for the design of DNA sequences that can be applied 
to reliable molecular computing. SPEA2 can obtain high quality sets of sequences 
which simultaneously minimize similarity, h-measure, hairpin and continuity while 
controlling Tm and GC content. We have used three different real-world instances 
proposed by different authors to ensure the effectiveness of our approach. These data 
sets include different number of sequences, number of bases and bio-chemical 
restrictions, and all of them have been used for reliable computation. After our study, 
we can conclude that our version of SPEA2 can generate better sequences than other 
approaches previously published in the literature. As future work, we are studying 
other multiobjective approaches and restrictions which can contribute to generate 
more reliable sequences for DNA computing. 
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