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Abstract. Feature selection for unsupervised learning is generally
harder than for supervised learning, because the former lacks the class
information of the latter, and thus an obvious way by which to measure
the quality of a feature subset. In this paper, we propose a new method
based on representing data sets by their distance matrices, and judging
feature combinations by how well the distance matrix using only these
features resembles the distance matrix of the full data set. Using articial
data for which the relevant features were known, we observed that the
results depend on the data dimensionality, the fraction of relevant fea-
tures, the overlap between clusters in the relevant feature subspaces, and
how to measure the similarity of distance matrices. Our method consis-
tently achieved higher than 80% detection rates of relevant features for
a wide variety of experimental configurations.

Keywords: Unsupervised feature selection, feature extraction, dimen-
sionality reduction, distance matrix similarity.

1 Introduction

In many machine learning applications, feature selection constitutes an impor-
tant data preprocessing step. The expected benefits of feature selection are nu-
merous, and can be broadly separated into two groups [1]: First, machine learning
algorithms benefit from the removal of noise in the form of irrelevant and re-
dundant features, as this helps to avoid overfitting and thus allows the models
to generalize better. Second, in many application domains (such as biomedical
informatics) feature selection is an important endeavor in its own right, helping
to identify and highlight key aspects of the data. Often, this form of exploratory
data analysis is the basis of subsequent research efforts in the application do-
main (e.g., which of a set of biomarker candidates is relevant for a biomedical
problem).

While there is a substantial amount of literature on feature selection meth-
ods for supervised learning tasks [2–4], there is considerably less on methods
for unsupervised learning. The reason for this discrepency lies in the fact that
supervised problems provide a target value to predict, and it is easy to measure
the performance of an algorithm on a feature set by how well it performs this
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prediction. Features that achieve high performance are more important than
those that do not. Consequently, filter and wrapper methods were developed to
identify features that work well, either individually or as feature sets.

Feature selection for unsupervised learning is hard because it lacks a clear-cut
performance measure. Some approaches, collectively known as subspace cluster-
ing [5], find feature sets that cluster well, although different sets may lead to
different clusters. Other methods implement wrappers around clustering algo-
rithms such as k-means or the EM algorithm, and maximize criteria based on
intra- vs. intercluster separation [6]. Entirely different approaches are to identify
features that cluster well by the entropy of the distribution of all between-points
distances [7, 8], or to cluster the features themselves by their linear dependency,
and then picking representative features from each cluster [9].

This work proposes a different and new direction for feature selection in un-
supervised learning tasks by using distance matrices to assess the relevance of
features. The basis of this work is the observation that the clustering of a data
set is entirely dependent on its spatial arrangement, which— for clustering pur-
poses—can be represented by its distance matrix. The distance matrix of the
entire data set is therefore the “gold standard” against which we can measure
the quality of feature subsets.

We present the derivation and details of our new method in the next section,
and demonstrate its efficacy in Sec. 3. A discussion of these results, along with
concluding remarks, is given in Sec. 4.

2 Concepts and Methods

Our research hypothesis is that the distance matrix of a data set can be used to
identify features in the data set that cluster well. The idea behind this hypothesis
is as follows: Because the spatial arrangement of a data set can be represented by
its distance matrix, relevant features are those for which the restricted distance
matrix (using only these features) closely matches the original distance matrix.
We should then be able to identify these relevant features by a simple greedy
search algorithm. Although this algorithm provides a feature ranking, we can
perform feature selection by choosing only the top-ranked features. In Sec. 2.4,
we propose a method to automatically determine how many of these top-ranked
features to choose.

2.1 Feature Ranking

Throughout this paper, we use X to denote the n×m data matrix, i.e., X con-
tains n rows of data points of dimensionalitym. For an index set S ⊆ {1, . . . ,m},
let X−S be the data set with the columns (features) in S removed. Let D(x)
denote the distance matrix of a data set x, i.e., a symmetric, non-negative matrix
with entry D(x)ij denoting the distance between the ith and jth entries in x.

A simple greedy backwards elimination algorithm for ranking features accord-
ing to their relevance is given by following pseudocode:
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1. Set F ← {1, . . . ,m} to the set of all feature indices. Let S ← ∅ denote
an initially empty set of feature indices. Calculate the full distance matrix
D̃ ← D(X).

2. While |F | > 1 do:

(a) For each j ∈ F , calculate D̃−j ← D(X−(S∪{j})), the distance matrix
with features S ∪ {j} removed.

(b) Calculate j∗ ← argminj∈F sim(D̃, D̃−j) as the feature for which the
current distance matrix and the distance matrix with feature j removed
have the smallest similarity as calculated by a similarity measure sim.

(c) Set F ← F \ {j∗}, S ← S ∪ {j∗}, and recalculate D̃ ← D(X−S).

3. The reverse order in which feature indices are entered into S gives an indi-
cation of their relevance.

In this algorithm, we recalculate the distance matrix for the remaining features
after a feature is removed, rather than keeping one fixed distance matrix (the
one for the entire data set). This is done to remove the contribution of features
that are found to not be as relevant as the others.

2.2 Matrix Similarity Measures

In step 2(b) of the pseudocode above, we need to calculate the similarity between
two distance matrices. There are a number of ways to accomplish this, most
notably by

– the Pearson correlation coefficient ρ of the matrix entries;

– the RV coefficient of matrix similarity [10], which for symmetric square ma-
trices is given by

RV (A,B) :=
tr(A · B)

√
tr(A · A) tr(B ·B)

,

with tr(A) =
∑n

i=1 Aii denoting the trace of a square matrix;

– the symmetric version of the Kullback-Leibler divergence [11], used for mea-
suring the distance between two probability distributions (for this, matrix
entries first have to be normalized to sum 1):

KL(A,B) :=
∑

j,k

Ajk log
Ajk

Bjk
+
∑

j,k

Bjk log
Bjk

Ajk
.

Because the Kullback-Leibler divergence is a distance— rather than a sim-
ilarity—measure, we modified the greedy search described in Sec. 2.1 to dis-
card the most distant feature when using this measure for assessing
matrix similarity.
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Fig. 1. Illustration of Bhattacharyya distance. Two features in five-dimensionals
clusters with distance 50 (left), and two clusters with distance 10 (right).

2.3 Data Generation

In the experiments summarized in Sec. 3, we use artificial data so that we can
control the data dimensionality and the ratio of relevant to irrelevant features.
In particular, the relevant features comprise two multivariate Gaussians of vary-
ing overlap. The irrelevant features contain uniformly distributed noise. Both
relevant and irrelevant features are subsequently scaled to zero mean and unit
variance. All data sets contain 250 items in each of the two clusters.

In preliminary experiments, we observed that our algorithm is susceptible to
the distance between the clusters in the data, with features more easily being
recognized as relevant if the clusters are well separated. In order to quantify the
contribution of this factor to our analyses, we constructed the relevant features
as two multivariate Gaussians, for which the separation can be measured in the
form of the Bhattacharyya distance [12, 13]

dist(G1, G2) =
1

8
(μ1 − μ2)

TΣ−1(μ1 − μ2) +
1

2
log

(
det(Σ)

√
det(Σ1) det(Σ2)

)
.

Here, G1 = (μ1, Σ1) and G2 = (μ2, Σ2) are parametrizations of multivariate
Gaussians, and Σ = 1

2 (Σ1 + Σ2) is the arithmetic mean of the two covariance
matrices. Fig. 1 provides an illustration of this notion of cluster distance.

2.4 Determining Relevant Features

When we plot the distance matrix similarity (or distance, in case of the Kullback-
Leibler measure) vs. the removed features we can observe that there is a noticable
difference between relevant and irrelevant features. Fig. 2 illustrates this obser-
vation for a 20-dimensional data set with 5 relevant features. There seems to be
an exponential increase in the distance between distance matrices, as more and
more features are removed from the data set. This progression no longer holds
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Fig. 2. Kullback-Leibler divergence between full distance matrix and distance matrix
with the worst feature removed, shown as ×. The symbols o mark the predicted next
value, assuming an exponential fit for the previous (left) values of ×. The feature at
position 16 is the first that is deemed relevant by the heuristic of assessing the difference
between × and o.

when the relevant features are reached at index 16 in the figure: An exponential
fit to the previous values would predict a much larger distance than actually ob-
served. Note that only 19 features are shown, because only that many features
are removed from the original set of 20.

We therefore propose to select those features as relevant for which the expo-
nential increase in similarity measure no longer holds. This process can be auto-
mated, with the first relevant feature being the one where there is more than 50%
relative error between actual similarity measure and exponential model fit (cal-
culated using the features up to this point). The value of 50% is a heuristic that
seems to work reasonably well for various combionations of data dimensionality
and number of relevant features.

3 Experiments

The experiments described here test the hypothesis that the greedy feature rank-
ing algorithm in Sec. 2.1 is capable of identifying those features that belong to
the artificially generated signal rather than to the noise. Within this broad setup,
we investigate a number of experimental questions:

– Is one of the three methods for calculating the similarity of distance matrices
(Pearson ρ, RV coefficient, Kullback-Leibler divergence) better suited than
the others?

– What effect does the data dimensionality, in particular the ratio of relevant
to irrelevant features, have on the ability to detect relevant features?

– What influence does the distance between the clusters have on the results?

In the following, we will first rate combinations of these criteria by how well
they can detect the relevant features, i.e., which percentage of the n truly relevant
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Table 1. Percentage of n truly relevant features in the top n ranked features for each
of three similarity measures and different combinations of relevant and total features.
Table entries are averages over 100 runs. Bhattacharyya distance of clusters for all
experiments was ∼ 50.

number of relevant features n (out of total data dimension)
1 (of 10) 2 (of 10) 3 (of 10) 5 (of 50) 10 (of 50) 15 (of 50)

similarity by:
Pearson ρ 0 0.86 0.85 0.798 0.75 0.67

RV coeffient 1 0.9 0.903 0.812 0.775 0.719
K-L divergence 1 0.935 0.953 0.83 0.835 0.792

features are in the top n features as ranked by the greedy search algorithm.
We will then investigate the ability of the heuristic for automatically selecting
relevant features that we described in Sec. 2.4. All experiments were repeated
100 times with different random numbers; the reported numbers are the averages
over these 100 runs.

Table 1 gives a general impression of how well the three similarity/distance
measures work in identifying the relevant features. One can observe that across
all data dimensionalities and number of relevant features, the Kullback-Leibler
divergence seems to be the best suited for measuring the difference between dis-
tance matrices in the greedy feature ranking algorithm. We therefore focus exclu-
sively on this measure for the remainder of this paper. Furthermore, Table 1 also
indicates that for constant data dimensionality (here 10 or 50), the percentage
of truly relevant features among the highly-ranked features sometimes increase
with the number of truly relevant features, and sometimes decreases. This is,
for example, visible in the last row of this table, with the detection percentage
rising from 0.935 to 0.953 for dimension 10, and falling from 0.835 to 0.792 for
dimension 50.

To obtain a better understanding of the interaction between data dimen-
sionality, number of relevant features, and cluster separation, we calculated the
percentage of relevant features detected for all combinations of three data di-
mensions (10, 15, and 20), three number of relevant features (10%, 15%, and
20%), as well as seven different cluster overlaps (Bhattacharyya distances from
10 to 40), but now only for the Kullback-Leibler divergence as distance measure.
The results of this comprehensive investigation is given in Table 2. As expected,
increasing the cluster separation while keeping the dimensionality and number
of relevant features constant (i.e., looking at each row in the table) generally
results in higher numbers of detected relevant features, although there are a
small number of fluctuations. Comparing entries in each 3× 7 block of numbers
for constant dimensionality with the corresponding entries in the other two such
blocks, one can observe that the percentage of truly relevant features in the top
ranked features mostly decreases with increasing data dimensionality. It thus
becomes increasingly harder to identify relevant features in higher-dimensional
spaces.
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Table 2. Percentage of truly relevant features in the top ranked features for each
of three data dimensions, in combination with different percentages of truly relevant
features and Bhattacharyya distances. Table entries are averages over 100 runs.

Bhattacharyya distance between clusters
10 15 20 25 30 35 40

dimensions = 10:

relevant = 10% 0.99 1.00 1.00 1.00 1.00 1.00 1.00
relevant = 20% 0.62 0.69 0.70 0.68 0.81 0.74 0.69
relevant = 30% 0.74 0.80 0.79 0.78 0.81 0.80 0.79

dimensions = 20:

relevant = 10% 0.84 0.84 0.91 0.89 0.90 0.91 0.92
relevant = 20% 0.82 0.86 0.85 0.89 0.84 0.87 0.85
relevant = 30% 0.81 0.83 0.85 0.87 0.86 0.90 0.91

dimensions = 30:

relevant = 10% 0.78 0.82 0.82 0.86 0.90 0.89 0.90
relevant = 20% 0.71 0.77 0.81 0.83 0.83 0.86 0.84
relevant = 30% 0.69 0.74 0.79 0.83 0.86 0.88 0.88

Table 3. Percentage of times (out of 100 runs) that the heuristic of Sec. 2.4 was exactly
correct, or off by at most one, when detecting the correct number of correct features
in the data set. The percentage of relevant features was fixed to 30%.

Bhattacharyya distance between clusters
10 15 20 25 30 35 40

exactly correct:

dimensions = 10 0.56 0.54 0.57 0.48 0.53 0.53 0.61
dimensions = 20 0.32 0.36 0.43 0.49 0.45 0.48 0.51
dimensions = 30 0.05 0.16 0.21 0.26 0.35 0.36 0.24

approximately correct:

dimensions = 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00
dimensions = 20 0.69 0.73 0.81 0.85 0.82 0.83 0.82
dimensions = 30 0.22 0.24 0.48 0.57 0.77 0.77 0.75

The final part of our investigation consisted of checking how often the heuristic
of Sec. 2.4 for determining the number of relevant features was correct. Since this
may be too stringent a requirement, we checked both for the number of times
where the heuristic was exactly correct, and for the number of times where it
was off by at most one. We focused on a subset of the combinations in Table 2,
looking only at the highest percentage of correct features (30%) for all three data
dimensionalities. It can be seen that when settling for the approximate number
of correct features, the heuristic is surprisingly accurate, with more than 75%
correct for all data dimensionalities and large enough Bhattacharyya distances.
The numbers for other percentages of relevant features are slightly lower (data
not shown).
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4 Conclusion

Without a clear-cut measure against which to assess a method’s performance,
unsupervised feature selection is generally harder than supervised feature se-
lection, and less widely investigated. In this paper, we proposed a method for
unsupervised feature selection that uses the distance matrix of a data set as a
proxy for a gold standard against which to measure the performance of feature
subsets. Although we implemented only a very crude greedy search mechanism
for feature ranking, we nevertheless observed that relevant features can be distin-
guished from noise with high accuracy. More sophisticated search strategies, such
as ones based on evoluationary computation, may lead to even better results.
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