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Abstract. In this paper we focus on developing the formal methods and
techniques necessary to model and classify a collective animal behaviour.
The benefits of using set theory are the possibility of a formal examina-
tion of the local problems and to organize individuals as elements of the
considered classes, defined globally. In order to describe collective activity
of animals, we proposed concepts of actions, behaviour and structures.
To govern collective behaviour of animals we propose three key relations
and mappings determined taxonomic order on them.
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1 Introduction

Group behaviour is a term coined in sociology, referring to the human activity,
and thus an intelligent individuals living in groups. The observation of such
behaviour, its description and modelling, cause many difficulties mainly due to
the numerous and complex interactions between both, members of the group
and its environment. Due to interaction the behaviour of the members of the
group must be treated as a system of behaviours rather than the behaviour of
separate and unrelated individuals.

At first we model a collective animal behaviour because such situations are
much simpler than in humans.

There are a lot of authors who believe that many aspects of collective be-
haviour could be modelled mathematically and using mathematical abstractions
drawn interesting and useful comparisons between diverse systems. An interest-
ing and complete overview of the work in this area can be found in [13]. While
examining group behaviour, we have to deal with a set of elements which are, for
example, shoal of fish or a flock of birds. Hence, using the formal abstractions
which provides a set theory seems most appropriate approach. In the literature
on this subject [2, 7, 8, 10, 13] we often find a formulation of the relationships
both between members of the group and its environment. It seems to be obvious
that to describe them we should use the relations, but the literature on this
subject there are the wide road of using functions [7–11, 15] , and does not find
even narrow trail of relations and set theory. Deployment of relationships and
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use the set theory allows for standardization approach to modelling the collec-
tive behaviour in varied distributed systems. The benefits of using set theory
are the possibility of a formal examination of the local problems and to organize
individuals as elements of the considered classes, defined globally.

2 Basic Concepts and Notation

Let’s consider a flock of birds in the air or a fish school in the water. Birds
or fish form a set of elements, which we denote as X . Any element x ∈X has
individual size but together they form different shapes and sizes which often far
exceed the size and range of relationship of individual element. Let us to define a
neighbourhood abstraction for set X , wherein an individual can identify a subset
of other individuals around it by a variety of relationships and share state with
them. Let N denotes neighbourhood, then

N ∈ Map(X,SubX) (1)

where SubX means a family of subsets of X.
Furthermore, if N(x) indicates the neighbourhood of x then, using the neigh-

bourhood relation (here denoted as η ) we can define a collection of individuals
which are neighbours of the given x as

N(x) = {y | y ∈ X ∧ xηy}, (2)

and we can denote the set of neighbours of all nodes that belong to the set S as:

N(S) = {y | y ∈ X ∧ (∃x∈S | xηy)}. (3)

The neighbourhood relation is symmetric

(∀x, y ∈ X)(x η y ⇒ y η x). (4)

which implies, that if an individual x remains in a neighbourhood relation with
y (i.e. x is in interaction with y) then the individual y is also in interaction with
x. This results in neighbourhood integrity.

Watching the starlings’ flock we can observe how complex configurations arise
from repeated actions/interactions between the individual birds. Several authors
[8, 10, 12, 13] proposed a models in which individual’s activity follow a few simply
rules (realize a simply actions) which change its state. As a result, we observe
mesmerizing collective behaviour of flock.

In order to describe collective activity of animals, we proposed concepts of
actions, behaviour and structures. Action is considered as the property of each
individual in group. The behaviour, on the other hand, is an external attribute,
which can be considered either as an outcome of actions performed by the whole
group or its subset. Action is a ternary relation which can be defined (× means
Cartesian product) as follows:

Act : X×State → State. (5)
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Fig. 1. Different formation of migrating birds: (a) line, (b) wedge and (c) delta

Let Act(X) be a set of possible actions of elements of set X and R be an
equivalence relation on X . We define behaviour beh as a set of actions which are
equivalent in sense to realize a common goal rel

beh : [rel] = {act ∈ Act | actR rel}. (6)

Next, behaviours beh form a quotient set

Beh : Act(X)/R = {[rel] ⊂ Act(X) | actR rel}, (7)

which consists of equivalent classes (6).
Similar approach has been applied to modelling the structure as a result of

collective activity. Let Stat(X) be a set of possible states of elements of set X
and S be an equivalence relation on X . We define structure struc as a set of
states of individuals which are equivalent in sense of collective activity col

struc : [col] = {stat ∈ State | statS col}. (8)

Next, structures struc form a quotient set

Struc : State(X)/S = {[col] ⊂ State(X) | statS col}, (9)

which consists of equivalent classes (8).
As an examples of action act we can mention a change of direction of indivi-

dual’s movement as a result of repulsion, alignment or attraction for fish schools
or bird flocks, and leaving a pheromone in the case of an ant reinforced its trail.
Flocking starlings is one of the most spectacular examples of behaviour in all
of nature. Predator - prey interactions like flash expansions of schooling fish
forming vacuoles, bait balls cruising parabolas or vortices [8], and ant bridges
building [9] are another good examples of patterns of behaviour beh. The ca-
nonical examples of structure struct are migrating birds formation in the sky
[10]. Delta (skein) of ducks or V-shaped formation of geese [12] and finally line
of oystercatchers flock as shown on Fig.1.
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3 Relations, Mappings and Orders

The contribution of this paper is to introduce a novel, based on set theory,
relational way of thinking about the modelling of collective animal behaviour.
In the previous chapter we consider sets, now it’s time to define the relations
on it, which determine how simple behavioural rules of individuals can result
in complex behavioural patterns reinforced by a number of set/group members
(cardinality of set).

Our approach is solidified in three key relations called subordination (π),
tolerance (ϑ) and collision (κ). These relations allow us to think about collective
group activity directly in terms of relationships between individuals and their
group vicinity. Three relations mentioned above are defined as follows:

Subordination π = {< x, y >;x, y ∈ Act | xπ y} (10)

The expression xπ y - means that action x is subordinated to the action y, in
other words action y dominate over action x.

Tolerance ϑ = {< x, y >;x, y ∈ Act | xϑ y} (11)

The expression xϑ y - states that actions x and y tolerate each other,

Collision κ = {< x, y >;x, y ∈ Act | xκ y} (12)

The expression xκ y- means that actions x and y are in collision one to another.
In [4] we can find detailed study on properties of mentioned above relations.

Here, we formulate them succinctly as:

π ∪ ϑ ∪ κ ⊂ Act×Act 
= ∅ (13)

ι ∪ (π · π) ⊂ π (14)

where ι ⊂ Act×Act is the identity on the set Action. Moreover,

π ∪ ϑ−1 ∪ (ϑ · π) ⊂ ϑ (15)

where ϑ−1 is the converse of ϑ so,

ϑ−1 = {< x, y >∈ X × Y | y ϑ x} (16)

Collision holds
κ
−1 ∪ {π · κ} ⊂ κ ⊂ ϑ , (17)

where ϑ , is the complement of ϑ so,

ϑ , = {< x, y >∈ X × Y |< x, y >/∈ ϑ}. (18)

The axiom (13) indicates that all these three relations are binary on nonempty set
Act. The axiom (14) describes fundamental properties of subordination relation
which is reflexive and transitive. Therefore it is also ordering relation on the set
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Act. The axiom (8) states that subordination implies the tolerance. Hence we
can obtain:

{∀x, y ∈ Act | xπ y ⇒ xϑ y} (19)

and subordinated actions must tolerate all actions tolerated by dominants

{∀x, y, z ∈ Act | {xπ y ∧ y ϑ z} ⇒ xϑ z}. (20)

There are evident coincidences between relations (10)-(12) and proposed in
[10, 13, 14] three rules which determine the individual animal movement:

a) adopt the same direction as your neighbours,
b) remain close to your neighbours,
c) avoid collisions with your neighbours.

Subordination (π) is an extension of alignment rules - a). Tolerance (ϑ) is an
extension of cohesion (birds)/attraction (fish) rules - b). Finally, collision (κ) is
an extension of dispersion (birds)/ repulsion (fish) rules - c).

What is the advantage of employing relations to model animal collective be-
haviour? At the top of the list is topology. The most common mathematical
models of animal collective behaviour employ metric distance model while using
relation allows us to see distance as a property of topological space. A second
factor is model plasticity. In traditional attempt we should determine the con-
stant values of three radii and weighting factors of alignment, dispersion and
repulsion forces. Relational attempt provides more sophisticated and powerful
tools as: cardinality of each relation π, ϑ,κ which can vary widely within diffe-
rent neighbourhoods; intensity quotients for each relation bounded with the way
things are going in the group. This is the part of the story, but not all of it.

Relations also emphasize the importance of local decisions when we attempt
to express the essence of distributed, large group of animal, behaviour patterns.
Relational framework enables to firmly determine a relationship between sizes
of neighbourhood and float border between local and global perceiving perspec-
tives. To really crack the problem of collective animal behaviour, we need to
figure out, how individuals faced with decisions and instructed by three simple
rules of thumb, retain association between distinct sets of structure and be-
haviour patterns. The answer is - enforcement of order, as a result of countless
conspecific and environmental factors.

Concerning the group of individuals (flock, herd, school), we define its subsets
(2)-(3) and (10)-(12) (it’s worth to remind here, that relation can be considered
as a set). Since only subordination (10) is a transitive (see (14)), it is appropriate
to employ the theory of set ordering [5].

Let X be a set of action

Dπ ∈ Map(X,SubX) (21)

where Map is used to mean a mapping of a set X into a SubX (family of subsets
of X). The (21) allows us to define four additional mappings of any elements x∈X :

Aπ(x) = {y ∈ X | x ∈ Dπ(y)}, (22)
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Fig. 2. Metric vs. topological distance in reference to fish school

Mπ(x) = Dπ(x) ∩ Aπ(x), (23)

Nπ(x) = Dπ(x) ∪ Aπ(x), (24)

Cπ(x) = X \Nπ(x). (25)

In fact, follows from (13)-(14), the mapping Dπ(x) (descendants) possess the
following properties:

∪D�
π(Dπ(x)) ⊂ Dπ(x), transivity, (26)

Mπ(x) ⊂ {x}, antisymmetry, (27)

Mπ(x) 
= ∅, weak reflexivity, (28)

Nπ(x) = ∅, connectness, (29)

wehere, D�
π∈Map (Sub(X), Sub (Sub(X)) indicates an extension of Dπ.

We conclude this section with the remark, that set of action (5) is weakly-ordered
by any mapping D�(x) iff the conditions (26), (28) are fulfilled. Further, if (27)
holds, then set Act is partially ordered since:

M�(x) = {x}, (30)

Finally, the set of actions Act is ordered totally when all four (26)-(29) conditions
are fulfilled.
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4 Conclusion

The novel mathematical tools for modelling of collective animal behaviour, based
on relations and set theory, are the main purpose of this paper. As it has been
argued in literature [2, 8, 10, 13], the behaviour of the large group of similar an-
imals may be determined by simple behavioural rules of individuals. Realization
of these rules can result in complex behavioural patterns and in the emergent
properties, reinforced by a number of group members.

In both cases: of flock of starlings and school of fish, the results obtained
by replacing a metric space by a topological space, allow better modelling of
rapid changes of movement direction of a flock/school sub-groups. Adjusting
the balance between subordination towards tolerance, by weakening (π) and
strengthening (ϑ), and increasing cardinality/intensity quotients of (ϑ) relation,
result in the very spectacular patterns of collective behaviour.

When considering emergence of structure in the flock of migrating birds or
structure of shoaling fish, these phenomena are associated with mappings, which
ordered subordination relation, since only this (π) relation is transitive. The V
structure is the result of well-ordered and strength subordination (π). While
we also strengthening tolerance (ϑ), the V structure becomes to be a delta.
Going in opposite direction, i.e. completely eliminating (ϑ) but totally ordered
subordination (π), we obtain a line of oystercatchers flock (see fig.1).

The existence of mapping (21) is the necessary, but not sufficient, condition for
emergence of the structure. In case of flock of birds, the mapping results from
aerodynamic rules and tends toward minimization of the energy consumption
[1, 12]. A fish structure, commonly known as a bait ball, is a result of predators’
activity and tends toward minimization of the surfaces exposed to attack. It is
worth to notice, that mapping (21) works globally, since it is determined on X ,
and it is opposed to local (and individual) activity.

There is a plenty of empirical evidence that the proposed relational model
approximates well many collective behaviours of animal group. But we also know
that this model is not perfect and can fail catastrophically for some animal
groups. There are two hopes for avoiding such situation: understanding better
phenomena of group behaviour and improvement of methods and tools used for
modelling of these processes. And the latter will still be the focus of our future
work.

References

1. Alexander, R.M.: Hitching a lift hydrodynamically - in swimming, flying and cy-
cling. J. Biol. 3(2), article7; BioMed Central Ltd. (2004)

2. Blondel, V., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in multi-
agent coordination, consensus, and flocking. In: Proc. of 44th IEEE Conf. Decision
and Control and 2005 Eur. Control Conf (CDC-ECC 2005), pp. 2996–3000 (2005)

3. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proceedings of National Academy of Sciences 99(12), 7821–7826 (2002)



Modelling of Collective Animal Behavior Using Relations and Set Theory 117

4. Jaron, J.: Systemic Prolegomena to Theoretical Cybernetics: Scientific Papers
of Institute of Technical Cybernetics, no. 45, Wroclaw University of Technology
(1978)

5. Kuratowski, K., Mostowski, M.: Set Theory, with introduction to descriptive set
theory; Studies in Logic and the Foundations of Mathematics, vol. 86. PWN-
Warsaw, North-Holland, Amsterdam, New York (1976)

6. Nikodem, J., Chaczko, Z., Nikodem, M., Klempous, R.: Smart and Cooperative
Neighbourhood for Spatial Routing in Wireless Sensor Networks. In: Madarász, L.,
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