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Abstract. The Hough transform is an efficient method for extracting
lines in images. Precision of detection relies on how to find and locate
accurately the peak in Hough space after the voting process. In this pa-
per, a statistical method is proposed to improve peak localization by
considering quantization error and image noise, and by considering the
coordinate origin selection. The proposed peak localization is based on
butterfly analysis: statistical standard variances and statistical means
are computed and used as parameters of fitting and interpolation pro-
cesses. We show that accurate peak parameters are achieved. Experi-
mental results compare our results with those provided by other peak
detection methods. In summary, we show that the proposed peak local-
ization method for the Hough transform is both accurate and robust in
the presence of quantization error and image noise.
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1 Introduction

The Hough transform (HT) [5,11] is an efficient method for extracting geometric
features in an image containing noisy, missing, and extraneous data. However,
without further considerations, the HT requires a heavy computational load. In
order to improve its efficiency, many proposals have been published, such as fast
HT [16], adaptive HT [12], or special architectures [1] aiming at reducing the
amount of computation and storage for real-time implementations. The proba-
bilistic HT [15] and the randomized HT [24] only use selected sampling pixels for
voting in the Hough space (also known as accumulator array). In addition, image
noise and parameter quantization cause peak spreading in the Hough space.

Numerous methods are focused on peak enhancement in the accumulator
array; the emphasis is here on generated distinct peaks and finding of those
peaks. By modifying the HT voting scheme, peaks in the accumulator array
are enhanced, and peak detection becomes easier. Edge information [3,9,17] and
image preprocessing techniques [7,10,20] are used to guide the voting process.
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By assigning different weights to votes, peaks becomes more distinct and peak
finding becomes easier.

After finding a peak, there are two kinds of common methods to compute
accurate peak parameters: simply select the absolute peak cell (θ,ρ) as potential
solution, or take a weighted average [14,22] also including adjacent cells (θi,ρi).
Two alternative accurate peak localization methods are presented in [18,19],
where two different smoothing windows are employed. Weighted averaging is
used to compute the θ value, and linear interpolation for the ρ value.

Recently, the butterfly distribution [8] in the accumulator array attracted at-
tention. Several methods are motivated by the butterfly shape of a peak in
Hough space. The butterfly shape was used for complete line segment detection
in [2,4,23]. By analysing a butterfly pattern, the parameters of a line segment
are extracted from the butterfly’s characteristics; a local operator method [13]
for peak enhancement proves to be more robust to image noise.

This paper proposes a novel statistical method for locating peaks in Hough
space. The image centre is selected as the coordinates origin. After voting, the cell
distribution is analysed around a peak in Hough space. By considering image
noise and quantization error, the statistical mean and standard variance are
computed and used to estimate a peak’s parameters. An accurate peak is finally
computed by fitting and interpolation.

The rest of the paper is organized as follows. Section 2 introduces an analysis of
peak distribution in Hough space. Section 3 describes our peak finding and peak
localization method based on statistical mean and variance. Section 4 compares
by providing experimental results. Section 5 concludes.

2 Analysis of Peak Distribution

After voting, distribution of cells with voting values around a peak in Hough
space resemble the shape of a butterfly. See Fig. 1. Those butterfly patterns (but-
terflies for short) have been analysed widely [8] in terms of shape and direction,
also for understanding the width and length of the corresponding line segment.

Fig. 1. Pixel contributions to cells. Left: Image space. Right: Hough space.
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Fig. 2. Voting values for a noisy line segment in an image, with a peak at value 67

The technique presented in this paper is based on analysing the statistical struc-
ture of a butterfly.

Hough Space. A pixel in image space votes for many cells in Hough space.
Let Hij be the voting value at cell (i, j) in Hough space, i.e. at θ = i and ρ = j,
where i and j are increments along ρ and θ coordinates. A peak at a cell (i, j)
is formed by having a set of approximately collinear pixels voting for the same
cell. See Fig. 2.

Although collinear pixels all contribute to the same peak, different pixels on
a line also contribute to different parts around a peak in Hough space. Figure 1
illustrates that pixels left of the perpendicular point PP contribute to the left-
bottom part and the right-upper part from the peak in the butterfly region B.
Pixels right of the perpendicular point PP contribute to the left-upper part and
the right-bottom part from the peak in the butterfly region B.

Butterfly Distribution around a Peak. When mapping one noise-free and
zero-thickness line segment into Hough space with infinitesimal quantization, an
ideal butterfly is produced which has two wings. The two wings are symmetrical
and connect at the symmetric point or peak (θpeak, ρpeak)= λ. Within an ideal
butterfly, the sum

∑
j Hij , i.e. for a variation in ρ-coordinates, remains identical,

but the value of cell is changed in the same sum
∑

j Hij . A program for analysing
the Hough space needs to detect the symmetric point.

However, in the presence of image and quantization noise, valid (i.e. generated
by the corresponding noisy line segment) voting values around a peak do not
form an ideal symmetric point. For every column around a peak, sums of valid
values in cells are only approximately equal. A butterfly is composed of column
intervals of length cwing

i = ci containing valid values Hwing
ij = Hij , or of length

cpeak (i.e. only in a single column i) with valid values Hpeak, satisfying

cwing
i > cpeak and Hwing

ij < Hpeak (1)

Values cwing
i , Hwing

ij , cpeak, and Hpeak depend on the number of pixels in the
image in the corresponding noisy line segment.
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Since the sum of valid values is approximately identical for every column
around a peak, the standard variance σ is selected for measuring the degree of
voting scatter of each column. The smaller the standard variance is, the more
clustered the voting is. The butterfly’s symmetric point is defined by the mini-
mum σ in all contributing columns.

Selection of the Origin in Image Space. Let M and N be width and height
of the image space, respectively. In standard Hough transform, the origin in
image space is selected to be at a corner of the image, identified with the origin
of the coordinate system as used for representing image data. In this case, the
range of ρ in the Hough space is from −√

M2 +N2 to
√
M2 +N2, and the range

of θ is [0, 180◦).
If the image centre is selected to be the origin, the range of ρ changes into the

interval

[−
√
M2 +N2

2
,

√
M2 +N2

2
]

Thus, it is reduced to half of its previous size.
The Hough transform equation is then as follows:

ρ = (u− M

2
) cos θ + (v − N

2
) sin θ (2)

where (u, v) is a pixel coordinate in image space. The location of the origin in
the image influences the distance from the perpendicular point Pp to the line
segment. By practical experience, this translation of the origin causes a smaller
butterfly-like region of valid values of one peak.

Suppose that a line is far away from its perpendicular point; then the butterfly
distribution is totally different with respect to either the image corner O or the
image centre O′. In case of selecting O as the origin of the image, peak and both
wings may not be very distinct in Hough space; several columns may have only
one valid cell with the same maxima. The likelihood of such a case is reduced by

Fig. 3. Butterfly distribution for different coordinate origins. First and second, from
the left: Image corner as origin, and butterfly in HT space. Third and fourth: Same line
segment and image centre as origin, and corresponding butterfly in HT space.



A Statistical Method for Peak Localization in Hough Space 115

selecting O′ as the coordinate origin. In general, if O′ is the origin, a butterfly
region is more distinctly defined by two wings and a symmetrical point.

Figure 3 shows butterfly region distributions for both origin options. In case
of the image corner origin, the perpendicular point is far away from the line
segment; column interval at the peak has a similar width as column intervals
at the ends of the wings in the butterfly region B. It is difficult to detect the
peak. In case of the image centre origin, the distance from Pp to line segment
is reduced; column intervals in wings of the butterfly are wider, thus defining a
more distinct peak.

3 Peak Detection

In this paper, the proposed peak detection procedure combines finding of a peak
(“roughly”) with localizing it precisely. After voting for all cells in the accumu-
lator array, the first step is to find a possible peak in the Hough space. Then, for
peak localization, accurate peak parameters are estimated by considering peak
spreading in the accumulator cells around a found peak.

Peak Finding. The most common method [13] for peak finding is to determine
a global threshold first, and to select cells that received more votes than the
threshold. Another methods is to identify a peak as a local maxima.

In this paper, a combined local-global method is used for finding an initial
peak λ0, to be accurately localized in the following. The initial peak λ0 is decided
by using the sum of all the nine voting values in a sliding 3× 3 window over the
whole accumulator array; the window having the maximum sum contains the
initial peak λ0 at its central cell.

Peak Localization. We aim to detect a final peak λ̂ as the symmetrical point of
the butterfly (identified by λ0) through our proposed peak localization method
which allows us to detect a symmetrical point (as defined above) not only by
cell coordinates but even at subcell accuracy (i.e. in real coordinates). The size
of a cell is defined by the applied quantization of the Hough space. Our method
aims at overcoming the accuracy limitations defined by the quantization setting.
Figure 4 illustrates a symmetrical point of a butterfly at subcell accuracy, which
identifies a location between adjacent cells, in general with real coordinates.

Let W denote a chosen window, symmetric to λ0, for approximating the but-
terfly region B. In our experiments we decided for an 11× 11 window W .

We compute the coordinates θpeak and ρpeak of the peak λ̂ by using fitting
and interpolation techniques. Regarding fitting, we fit a curved function with the
σi-values for the column intervals in window W ; the θpeak-value is defined by
the minimum. Regarding interpolation, we compute all mi-values of the column
intervals in window W for computing ρpeak at the obtained θpeak-value.

Statistical meansm and variances σ are used as input parameters for those two
fitting or interpolation processes. For completeness we provide the basic formulas
for the statistical mean mi and variance σi of column intervals symmetric to the
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found initial peak λ0:

mi =
∑

W

[Hij · ρj ]/
∑

W

Hij (3)

σi =

√∑

W

[Hij · (ρj −mi)2]/
∑

W

Hij (4)

Window W defines the range of i- and j-values in those sums.

Fig. 4. The symmetric point of a butterfly with subcell accuracy

Fig. 5. Function fitting for an 11× 11 window W symmetric to the initial peak
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Fitting for θpeak. Around λ0, the localization of the θ-value of the peak is
where the voting is “most clustered”, as defined by our model in (1).

Since the statistical variance can measure the degree of voting scatter for each
θ column, the standard derivation of every column in W , i.e. symmetric to the
found peak λ0, is computed. The θpeak-value at subcell accuracy is computed by
fitting a curved function to these standard variances:

1. Compute statistical standard variances σi for each column interval left and
right of λ0 within window W .

2. Fit a curved function f with the θi and σi values:

f : σ = f(θ)

3. Detect θpeak where this fitted function f has its minima.

θpeak = θ|f ′(θ) = 0

A result is illustrated in Fig. 5. The initial peak λ0 was found at (θ, ρ) = (26, 56)
with the described peak finding method, and the σi-values shown in the bottom
part are computed for the shaded cells symmetric to λ0. A curved function is
fitted to those values, the minimum of the function f at θpeak = 25.0264 is of
real type, thus not located at a cell but of subcell accuracy.

Interpolation for ρpeak. We calculate the statistical means of θi-values in
W , i.e. in column intervals left and right of λ0. The final ρpeak is computed by
intersection an interpolated line with the vertical line θpeak = 25.0264:

1. Compute statistical means mi, for each column interval left and right of λ0

in window W .

Fig. 6. Linear interpolation for detecting the ρ-value at subcell accuracy
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2. Fit a line g with the computed statistical means mi as follows:

g : ρ = g(θ) � b1θ + b0

3. Compute ρpeak corresponding to the intersection point with the interpolated
line:

ρpeak = g(θpeak)

A result is illustrated in Fig. 6. The computed mi-values are used for fitting
a line, an intersection point is decided then with the defined vertical line at
θpeak. The ρ coordinate of the intersection point is the final ρpeak-value. In the
shown example, the interpolated ρpeak-value equals 54.9872, and is again a real

type for subcell accuracy. The final peak λ̂ = (θpeak, ρpeak) is thus detected at
(25.0264, 54.9872).

4 Experimental Results

In this section, the proposed peak detection method for the Hough transform is
applied at first to a set of simulated data to test the accuracy of line detection.
Then we apply the method for real-world data, and selected the detection of
lane borders in image sequences recorded for driver assistance purposes.

Test on Simulated Images. We generate M ×N = 200× 200 binary images
that contain 500 randomly generated black pixels as noise. The four endpoint
coordinates of one line segment are also produced randomly, and line parameters
(θ, ρ) are computed and recorded as ground truth. Black pixels on the line are
generated by moving a pixel randomly (i.e. not exactly on the line) by 1 pixel
along its normal. A simulated image is shown in Fig. 7, left.

The image centre is selected as the coordinate origin. The accumulator array
is quantized by using steps (�θ,�ρ) = (2, 2). Each pixel votes for all possible
cells in the Hough space. After voting, the line parameters are detected with
the proposed peak finding and peak localization method. A detection result is
shown in Fig. 7, right.

Fig. 7. Line segment detection in simulated images. Left: Input image. Right: Detected
line.
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Table 1. Comparison of detection errors

Detection errors
SHT LSF F&I

Mean error (0.633, 0.656) (0.063, 0.056) (0.169, 0.119)

Error variance (0.802, 0.797) (0.082, 0.075) (0.210, 0.150)

Fig. 8. Comparison of results for 100 generated images

In order to test the detection accuracy, we compare the detection results with
the proposed peak localization method (F&I) with results obtained either by
applying a standard HT (SHT), which takes the absolute peak (i.e. with its cell
coordinates) as line parameters, or by applying a least-square fit (LSF) to the
generated line segment pixels, which is regarded as the optimal solution.

For a test for 100 random line segments we report mean error and the error
variance. To be precise, the error is measured for both parameters separately,
and it is the difference between ground truth value and calculated value. See
Table 1. Figure 8 also shows the detection results for the different methods for
the 100 input images.

The standard HT is very sensitive to parameter quantization and image noise.
Detection errors are larger. By using the fitting and interpolation techniques,
we achieve subcell accuracy. By using statistical mean and variance as discussed
above, we ensured robustness to image noise. Detection results with the proposed
method are actually very close to results obtained by least-square fitting to the
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Fig. 9. F&I lane detection results for four frames of real world images

randomly digitized line segments, even under the given coarse quantization and
image noise of the reported experiment.

Real World Test. We use image sequences for testing, published in Set 3 of
EISATS [6]. These are publicly available long sequences of traffic scenes recorded
in Denmark, where lane borders appear to be mostly straight.

One sequence contains 800 frames. When processing these images for line
detection, images are first resized to M ×N = 320× 256, then the image centre
is selected as the coordinate origin, and only pixels in the 60% lower part are
processed because lane borders are located at the bottom of the whole image.
Lane detection results for four images of this data set are shown in Fig. 9.

In a given image, the existence of multiple lines leads to overlays of multiple
butterflies in Hough space. We applied multiple-line detection in order to detect
accurately every line. The process is as follows: First, a peak (θpeak, ρpeak) is
detected by our proposed method, second, a set of pixels contributing to this
peak is selected in image space by considering the line parameters and a line
thickness, third, the votes of those pixels are removed in accumulator space by
decreasing the value in corresponding cells by 1. Then the next peak is found,
and so forth until the voting value of the found peak is smaller than a given
threshold.

Results show that lane markings are accurately detected if they are “domi-
nantly straight” in the recorded image. With the proposed method, providing
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Fig. 10. SHT lane detection results for the same four frames as shown in Fig. 9

subcell accuracy of lane parameters, wide lane markings are identified by two
lines (left and right borders).1

Lane detection results of the standard HT are also shown in Fig. 10. Some
lane borders are missing and there are some spurious lane borders detected. If
parameters of a lane border are not matching the used space quantizations then
SHT detection results are inaccurate in this case.

5 Conclusions

Peak localization is an important component for any Hough transform procedure.
By analysing the butterfly distribution of a peak in Hough space, a statistical
mean and variance-based method is proposed to compute accurately the peak
parameters. Peak spreading and coordinate origin selection are also considered.

Detection accuracy of the proposed method is compared with that of a stan-
dard HT peak detection procedure and an ideal least-squares fitting method.
Results show that by fitting and interpolation based on statistical mean and
variance, the proposed peak localization method is accurate and robust to pa-
rameter quantization and image noise.

1 An actually operative solution for lane detection could have this as a sub-procedure,
combined with temporal reasoning between frames and adaptive curved-line detec-
tion at places where straight segments depart from the lane marking in the image.
However, we do not aim at presenting a complete lane detection algorithm in this
paper; this application is only chosen for illustration of the proposed peak detection
technique. For a current review on lane detection methods, see [21].
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