
Chapter 3
Methods of Improving the Dependability
of Self-optimizing Systems

Abstract. Various methods have been developed in the Collaborative Research
Center 614 which can be used to improve the dependability of self-optimizing
systems. These methods are presented in this chapter. They are sorted into two
categories with regard to the development process of self-optimizing systems. On
one hand, there are methods which can be applied during the Conceptual Design
Phase. On the other hand, there are methods that are applicable during Design and
Development.

There are domain-spanning methods as well as methods that have been specifi-
cally developed for particular domains, e.g., software engineering or control
engineering. The methods address different attributes of dependability, such as reli-
ability, availability or safety.

Each section is prefaced with a short overview of the classification of the de-
scribed method regarding the corresponding domain(s), as well as its dependability
attributes, to provide the reader with a brief outline of the methods’ areas of applica-
tion. Information about independently applicable methods or existing relationships
and interactions with other methods or third-party literature is also provided.

The development process for self-optimizing mechatronic systems which was intro-
duced in Chap. 2 consists of two main phases: Conceptual Design and Design and
Development. The main result of the Conceptual Design is the Principle Solution,
which includes all information required for the concrete development during the
second phase.

3.1 Conceptual Design Phase

Even as early as during the specification of the Principle Solution, the dependability
of self-optimizing mechatronic systems can be evaluated and improved by employ-
ing appropriate methods. The result is an improved Principle Solution, as such meth-
ods take the whole system into account before splitting it up into domain-specific
tasks for the following development phase.
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3.1.1 Early Probabilistic Reliability Analysis of an Advanced
Mechatronic System Based on Its Principle Solution

Rafal Dorociak and Juergen Gausemeier

The Early Probabilistic Reliability Analysis of an Advanced Mechatronic System
based on its Principle Solution is a method of improving the attributes reliability,
safety and availability in the early development phase of Conceptual Design. The
method can be used to ensure the dependability of the Principle Solution. Thus, it is
necessary to use the specification technique CONSENS for the domain-spanning de-
scription of the system. Furthermore, the method for the early probabilistic analysis
of the reliability of a self-optimizing mechatronic system uses two complementary
reliability assurance methods, FMEA and FTA, in interplay. The method can be seen
as a further development of FMEA and FTA to use both methods in the early phase
of the development and in combination.

In the following, we will introduce the method for the early probabilistic analysis
of the reliability of a self-optimizing mechatronic system based on its Principle
Solution. This method allows for first statements regarding to the reliability of the
system in the early engineering phase of Conceptual Design. In particular, the weak
points of the system with respect to reliability are found. For those weak points,
measures to detect and counter them are derived and implemented directly in the
Principle Solution of the system. Altogether, the system under consideration is made
more reliable at an early development stage.

3.1.1.1 Prerequisites and Input

The main input of our method is the domain-spanning specification of the Princi-
ple Solution. This Principle Solution is determined by means of the specification
technique CONSENS for the domain-spanning [54] (cf. Sect. 2.1). As explained in
Sect. 2.1, the description of the Principle Solution is divided into 8 partial models:
Environment, Application Scenarios, Requirements, Functions, Active Structure,
Shape, Behavior and System of Objectives. The focus of our method lies on the
analysis of the partial models Environment, Application Scenarios, Requirements,
Functions, Active Structure and Behavior.

3.1.1.2 Description

Following the recommendation of the CENELEC EN 50129 standard [45], the
method for the early probabilistic analysis of the reliability of a self-optimizing
mechatronic system uses two complementary reliability assurance methods FMEA
(Failure Mode and Effects Analysis) [21,73] and Fault Tree Analysis (FTA) [21,74]
in cooperation with each other. Some concepts known from the FHA (Functional
Hazard Analysis) [150] method have been adapted as well, in particular, the use of
a failure taxonomy for the identification of possible failures. By using these com-
plementary methods, the completeness of the list of possible failure modes, failure



3 Methods of Improving the Dependability of Self-optimizing Systems 39

causes and failure effects, as well as of the specification of failure propagation, is
increased; both failure specifications are held mutually consistent.

Figure 3.1 shows the procedure model of our method iterations are not shown.

Phase 1 – specification of the Principle Solution:
The starting point of this phase are moderated workshops, where the experts from
the involved disciplines work together in order to specify the system using the
specification technique CONSENS, as well as to analyze and improve it with
regard to reliability. In particular, the partial models Functions, Active Structure,
and Behavior are described.

Phase 2 – early FMEA based on the Principle Solution:
The system structure and the corresponding functions are automatically derived
from the description of the partial models Functions, Active Structures, and
Behavior; they are recorded in the FMEA table. Failure modes, failure causes
and failure effects are then identified. Checklists and failure taxonomies (e.g.
as shown in Fig. 3.2) assist the failure identification process [47], [147]. In
addition, combinations are identified of failure models which can conceivably

Principle Solution

FMEA table

Specification of the
failure propagation

Improved failure 
specifi cation

Improved Principle
Solution

Phases/Milestones Tasks/Methods Results

Specification of the 
Principle Solution

 ● Specify and analyze the Active 
Structure

 ● Identify the functions of the system 
elements

 ● Identify failure modes, failure causes 
and failure effects; use of failure 
classifi cations

 ● Identify relevant failure combina-
tions

 ● Specify the failure propagation 
within the Principle Solution

 ● Compare failure specifications  
from FMEA and FTA

 ● Update and extend the FMEA table 
and the failure propagation specifi -
cation accordingly

 ● Conduct further analyses; e.g. 
minimal cut sets

 ● Derive counter-measures; optimize 
the specifi cation of the Principle 
Solution

2

Early FMEA based on the 
Principle Solution

Early FTA based on the 
principle solution

Comparison of both
 failure specifi cations

Refinement of the
principle solution

1

3

4

5

Fig. 3.1 The procedure model of the method for the early probabilistic analysis of the relia-
bility of a self-optimizing mechatronic system
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Provision Timing Value

Omission Commission Early Late Subtle 
incorrect

Coarse 
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Failure classification (according to Fenelon et al.)

Fig. 3.2 Failure classification (according to Fenelon et al.) [47]

occur together and have a negative impact on the system (pairs of failures,
triplets of failures, etc.). Failure modes and relevant failure mode combinations
are recorded in the FMEA table. For each failure mode (and failure mode combi-
nation), the possible failure causes and failure effects are analyzed. Again, check
lists can be used to accomplish this step, as they describe system elements known
to be possible sources of problems with regard to reliability [43]. A number of
failure effects can be found by analyzing the Principle Solution of the system;
this, especially regarding the partial models Active Structure and Behavior. A risk
assessment of the failure modes, failure causes and failure effects then take place
using the risk priority number (cf. the norm IEC 60812 [73]). Finally, counter
and detection measures are defined in addition as the corresponding responsibili-
ties. This occurs analogously to the classical FMEA. The FMEA table is updated
accordingly.

Phase 3 – early FTA based on the Principle Solution:
Here, the specification of the failure propagation within the Principle Solution is
performed. The process is very similar to traditional FTA. For each system ele-
ment, its internal failures as well as incoming and outgoing failures are specified
and related to each other.
Figure 3.3 shows an example of the specification of the failure propagation within
a prototypical system element SE. The output O1 exhibits an undesired system
behavior if the internal failure "failure1" occurs if one of the two inputs (I1, I2) is
faulty. Based on such a description of the failure propagation, a fault tree can be
generated (semi)-automatically (Fig. 3.3).

Phase 4 – improvement of the completeness of the failure specification:
The FMEA table and the specification of failure propagation both contain infor-
mation about causal relationships between failures. Following the recommenda-
tion of the CENELEC EN 50129 [45], we use both methods in combination, to
ensure a higher completeness of the failure specification. This can be achieved
by comparing the information content of the FMEA and of the failure propaga-
tion specification: e.g. failures and causal relationships between failures can po-
tentially be found in the failure propagation specification, which were not been
found during the FMEA and are thus not documented in the FMEA table; the
FMEA table is in that case updated accordingly. This also applies in the other
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Fig. 3.3 Specification of the
failure propagation and the
corresponding fault tree

SE.failure1

SE.O1.not(ok)

SE.I1.not(ok) SE.I2.not(ok)

OR

System element SE
not(ok)

not(ok)

I1

I2 O1

failure1

OR not(ok)
ok

ok

ok

Boolean
gate

System
element

Failure

Port failure
states

CanImply 
relationship

Legend

comparison direction: For example, if a causal relationship between two failures
(e.g. between a failure mode and a failure effect) has been recorded in the FMEA
table, there should be a corresponding causal relationship given in the failure
propagation specification. If this is not the case, the causal relationship is incor-
porated into the failure propagation specification. During the process, additional
failures can be found as well, which have not been specified at that point. The
completeness of the identified failure modes, failure effects and failure causes,
as well as of the failure propagation specification, is improved. Examples are
provided at the end of this section, when our applied example is explained.

Phase 5 – Improving the Principle Solution:
Both failure specifications are analyzed. For instance, the classical analyses
known from the FTA field, such as minimal cut sets, are used [21]. In particular,
the importance analysis is performed. For this purpose, the Bayesian network-
driven approach is used [38]; it enables the computation of the Fussell-Vesely
importance measure. In such a manner, the most critical system elements are
identified. Counter and detection measures are defined based on the analysis
results. If possible, they are incorporated directly into the Principle Solution
(e.g. redundancy, condition monitoring [90], etc.). Otherwise, they are recorded
for further discipline-specific Design and Development (e.g. test and simulation
measures, etc.).

3.1.1.3 Results

The result of this method is a revised Principle Solution of the system which is im-
proved with regard to reliability. As a consequence, the system under consideration
is made more reliable at an early development stage and a great number of time-
intensive and costly iteration loops during the further development phases can be
avoided. The failure specifications and analyses results from the Conceptual Design
are used in the further development phase of domain-specific Design and Develop-
ment. During this phase, with the increasing concretization of the system, reliability
analyses such as FTA and FMEA are performed again.
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3.1.1.4 Application Example

The complete RailCab system has been specified using the specification technique
CONSENS. In the following, some of the results for the active suspension module
of the RailCab are shown. Each active suspension module consists of three servo
cylinders, which dampen vibrations and tilt the vehicle body in curves. Each servo
cylinder consists of a hydraulic cylinder, a 4/4-way valve, a servo cylinder regula-
tion and a hydraulic valve regulation [126]. The method for the early probabilistic
analysis of the reliability of a self-optimizing mechatronic system has been applied
to the active suspension module. As a first step, the Principle Solution of the active
suspension module was modeled using the specification technique CONSENS. Fig-
ure 3.4 shows an excerpt of the partial model Active Structure of the servo cylinder
that is used in the active suspension module.

Based on the specification of the Principle Solution, an early FMEA is performed.
An excerpt of the resulting FMEA table for the servo cylinder is shown in Fig. 3.5.

Using the failure taxonomy by [47], the failure mode hydraulic valve regulation
provides no switch position for the 4/4-way valve can be found. This failure mode
occurs, for instance, if the energy supply of the system element hydraulic valve
regulation is interrupted. According to the FMEA, the risk priority number for this
case is 252. In order to eliminate or at least mitigate the failure mode, the energy
supply of the hydraulic valve regulation should be monitored. One possible solution
is the incorporation of an additional monitoring system element into the Principle
Solution. In this case, additional measures, such as a redundant energy supply, have
to be implemented.

Using the method for the early FTA, the specification of the Principle Solution
is supplemented by the specification of failure propagation (Fig. 3.6). For each

Servo cylinder

hy

Hydraulic valve 
regulation

Servo cylinder 
regulation

X*valve (set value of the hydraulic
valve position)

4/4-way valve Hydraulic 
cylinder

Xvalve 
(current position of
hydraulic valve)

Yvalve (switch                                
position valve)                               

Information flowSystem element Energy flow Material flowMeasurement 
information flow

Hydraulic connection 1

Hydraulic connection 2

X*cylinder (set value for
cylinder position)

Xcylinder
(current position of
the cylinder position)

Legend

Fig. 3.4 Active Structure of the active suspension module (excerpt)
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Fig. 3.5 FMEA table of the servo cylinder (excerpt)
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Fig. 3.6 Specification of the failure propagation of the servo cylinder (excerpt)
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Fig. 3.7 Interrelation between the FMEA table and the specification of the failure
propagation
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system element, the relationship between incoming, local and outgoing failures
is described. Figure 3.7 depicts the interrelation between both failure representa-
tions. The failure cause servo cylinder regulation does not provide desired position
of valve switch from the FMEA table (Fig. 3.7, (1)) corresponds to the port state
not(ok) of the input HV1 of the system element hydraulic valve regulation. The
failure causes hydraulic valve regulation is broken (2) and energy supply of the hy-
draulic valve regulation is interrupted (3) correspond to the internal failures F1 and
F2 of the hydraulic valve regulation. The aforementioned failure causes (2) and (3)
may lead to the failure hydraulic valve regulation provides no switch position for
the 4/4-way valve (4); This failure is recorded in the FMEA table, as well as in the
specification of the failure propagation (port state not(ok) of the output HV2 of the
hydraulic valve regulation).

According to the FMEA table, there is a causal failure relationship between the
failure hydraulic valve regulation provides no switch position for the 4/4-way valve
(4) and the failure effect valve no longer changes the pressure on the output (5).
Although both failures were specified in the failure propagation model (input WV1
of the 4/4-way valve as well as inputs HZ1 and HZ2 of the hydraulic cylinder, re-
spectively), the causal relationship between them had not been modeled; in a conse-
quence, a more thorough analysis of this causal relationship was performed. In the
course of the analysis, the respective failure propagation path was modeled, as well
as an additional failure F6 (valve position can no longer be changed mechanically;
the valve slider stays in its current position) (Fig. 3.8).
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Boolean operator
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Fig. 3.8 The extended failure propagation specification of the servo cylinder
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Fig. 3.9 Excerpt from the
translation dictionary [38]
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The specification of the failure propagation is translated into a Bayesian network.
The translation algorithm proceeds as follows: for each system element, its internal
failures and port states of its inputs and outputs are translated into nodes of the
Bayesian network. The relationships between them are represented as edges in the
Bayesian network. The Conditional Probability Table (CPT) of the Bayesian net-
work is then populated: for each value of variables associated with a node or a node
state, its conditional probabilities are described with respect to each combination of
values associated with variables of the parent nodes in the network. To support the
translation, a dictionary of translation rules has been developed [38].

Figure 3.9 shows the translation rule for the AND gate with two internal fail-
ures A and B and the outgoing failure "O1.not(ok)". The corresponding probability
table of the AND gate is also shown. The failures are translated into nodes of the
Bayesian network. The edges of the Bayesian network correspond to the "canImply"
relationships modeled in the specification of the system element SE: nodes A and
B representing the internal failures are parents of the outgoing failure "O1.not(ok)".
An excerpt of the CPT for node "O1.not(ok)" is shown. It corresponds to the respec-
tive probability table of the AND gate. The translation rules for other Boolean gates
are analogue. For other examples of translation rules and a more detailed description
of the respective translation algorithm, please refer to [38].

The result is a comprehensive Bayesian network which describes the part of the
system that is relevant for the examination of the chosen top event. Based on the
Bayesian network representation, some further analyses are performed [89]. In par-
ticular, the Fussell-Vesely importance measure is computed, i.e. it is determined
with what probability a particular system element (failure cause) had led to a par-
ticular failure (the so-called posterior probability). The top event that we examine
is valve no longer changes the pressure on the output (corresponds to the port state
WV2.not(ok)). Let us consider the state of the failure specification before the addi-
tional failure F6 and the corresponding propagation path were incorporated into the



3 Methods of Improving the Dependability of Self-optimizing Systems 47

Table 3.1 Failures, the failure rates and the Fussell-Vesely importance measure (before and
after the failure specification had been extended) (Top-Event is WV2.not(ok))

Failure Failure rate (per hour)
Fussel-Vesely
importance (before)

Fussel-Vesely
importance (after)

F1 5.11 × 10−7 0.2897 0.2416
F2 4.02 × 10−7 0.2279 0.1901
F3 3.28 × 10−7 0.1859 0.1551
F4 5.23 × 10−7 0.2965 0.2473
F6 3.51 × 10−7 N/A 0.1660

specification. The failure rates of the failures are shown in Tab. 3.1. We will further
assume that the output WV2 of system element hydraulic valve regulation is in state
not(ok), as this is our top event. According to the specification of the failure propa-
gation (Fig. 3.6) failures F1, F2, F3 and F4 all contribute to this. Table 3.1 reports
Fussell-Vesely importance measures for each failure, i.e. the posterior probability of
the contributing failures given the occurrence of the aforementioned failure. Failures
F1 and F4 are especially important, with importance greater than 28 %.

Now let us consider the extended specification of the failure propagation (includ-
ing failure F6). The failure rate of failure F6 and the respective importance measures
are shown in Tab. 3.1. The failures F1, F2, and F4 are of highest importance with
importance with an approximately 25 %.

By using our method, the completeness of the failure specification has been im-
proved. In particular, failures and failure relationships were identified that could eas-
ily have been omitted otherwise. In particular, the failure F6 has been identified, the
importance of which is quite high (approximately 17 %). Based on the failure spec-
ification, further analyses are conducted. Counter and detection measures are then
derived and, if possible, implemented directly in the Principle Solution. Altogether,
the system under consideration is made more reliable at an early development stage.

3.1.2 Early Design of the Multi-Level Dependability Concept

Rafal Dorociak, Jürgen Gausemeier, Tobias Meyer, Walter Sextro,
and Christoph Sondermann-Woelke

The Multi-Level Dependability Concept (M-LD Concept) is an approach for im-
proving the dependability, specifically the attributes reliability, safety and availabil-
ity, of a self-optimizing system by using self-optimization. It is advantageous to
develop the M-LD Concept within a single task once the Principle Solution has
been fully specified and before the domain-specific phase begins.

To this end, this method has been developed, which allows a structured setup
of the M-LD Concept based on the Principle Solution. It is a modification and an
expansion of the procedure described in ISO 17359 [1,140]. Since it is a multidisci-
plinary approach, information from several partial models (Active Structure, System
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of Objectives, Behavior, Functions, Environment and Application Scenarios) is re-
quired to best use the full potential of a self-optimizing system.

3.1.2.1 Prerequisites and Input

Since changes in late development phases usually come at great expense, it is advan-
tageous to develop and insert the M-LD Concept into as early a development phase
as possible. To do so, information from the Principle Solution is required; therefore,
the system needs to be completely specified by a Principle Solution according to D.
M.f.I.T.S, [55], Sect. 4.1.

Additionally, the system’s information processing must be set up as an Operator
Controller Module (see also Sect. 1.1.1) in order to be able to carry out the inter-
actions between M-LD Concept and the system itself. The OCM already contains
a preliminary Configuration Control, which can be improved using this method. In
order to adapt the system behavior, multiobjective optimization must be feasible and
it must be possible to implement additional objective functions, as will be discussed
in Sect. 3.2.1.

To obtain information about the system itself, an FMEA (see also [73]) is re-
quired, which can be conducted according to the method Early Probabilistic Anal-
ysis of an Advanced Mechatronic Systems based on its Principle Solution, see
Sect. 3.1.1. Since this method requires the Principle Solution as well, it does not
pose further challenges.

3.1.2.2 Description

The basic approach is outlined in Figure 3.10. As shown, there are five phases with
corresponding milestones which will be explained in detail. Phases and steps are not
to be seen as a sequence; the procedure is characterized by a number of iterations,
which are not depicted.

Step 1: System Analysis

The system analysis is conducted in three steps: analysis of the current system de-
sign, determination of the relevant system’s objectives, and identification of possi-
bilities of adapting the system behavior during operation. The required pieces of
information and the relations between them have already been in the Principle Solu-
tion, so it is natural to use the partial models Active Structure, System of Objectives
and Behavior for this analysis.

For the first step of the system analysis, the partial model Active Structure is
used. It describes the system elements chosen to fulfill the required functions of the
system. To obtain an overview of the system’s capability to monitor its momentary
state, a list of all sensors and the corresponding measurement points is generated by
the program Mechatronic Modeller, which is used to model the Principle Solution.

In the second step of the system analysis, the objectives that are relevant with
regard to the dependability of the system are identified. The objectives regarding
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Fig. 3.10 Procedure for the design of the Multi-Level Dependability Concept; information
contained in the partial models of the Principle Solution serves as input, as depicted by the
partial models in the left column

dependability, e.g. “Maximize reliability”, “Minimize down-time”, “Minimize
wear”, which are influenced later on by the M-LD Concept, are extracted from the
partial model System of Objectives. In most cases, these objectives are not as ob-
vious as stated above; thus, the relevance of each objective concerning reliability
needs to be evaluated. Afterwards, the previous list of sensors is examined in light
of the dependability-oriented objectives to determine which sensors are to be used
to determine the current system state and how they should be classified in the M-LD
Concept.

The third step is to identify possibilities of influencing the system behavior. The
relevant partial model group Behavior illustrates the different system states and re-
configuration options. These states and reconfiguration options will be part of the
Configuration Control, which is designed to switch to the desired control strategy.
The behavior specifications that support dependability-oriented actions will be used
during Step 5.
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Step 2: Dependability Analysis

The second step – the dependability analysis – is primarily conducted on the par-
tial models Functions and Active Structure. Usually, the established reliability en-
gineering method of Failure Mode and Effects Analysis (FMEA) is used. In order
to conduct the FMEA, the system elements of the Active Structure are exported to
a FMEA tool [39]. This procedure is supported by the program Mechatronic Mod-
eller, as it is capable of exporting the Active Structure model. Based on this data, the
failure modes and counter-measures are determined together among the engineers
developing the system. Not only effects inherent in the system, but also effects from
the surrounding environment could be a reason for failures. The partial models Ap-
plication Scenarios and Environment are used for the process of identifying these
influences.

For the design of the M-LD Concept, several results from the FMEA are impor-
tant. Firstly, the failure modes point out which system elements are subject to wear
and fatigue failures. These system elements are primary candidates for condition
monitoring in combination with an estimation of the remaining life time. The risk
priority number obtained from the FMEA is crucial for the decision of which system
elements to monitor. If a critical system element’s failure mode is not related to an
objective of the system, an additional corresponding objective must be added to the
System of Objectives. Furthermore, counter-measures also indicate which system
elements are of special interest due to the fact that a failure would lead to low avail-
ability or even severe damage. The counter-measure list also shows failures which
lead to a state in which operation of the system is still safe, thus forming the fail-
safe state, which has to be defined for any self-optimizing system. Finally, failures
of those system elements which have a negative influence on the dependability-
oriented objectives are identified. For these, safeguarding against failures, e.g. re-
dundancy, might be required [75]. If safeguards are used, the Principle Solution has
to be updated accordingly.

Step 3: Select Measurement Method

In the system and dependability analysis, sensors for monitoring the dependability-
related objectives as well as critical system elements are identified. Based on this
information, the dependability-oriented objectives are related to quantifiable general
measures, such as the remaining useful life (RUL) or the current failure probability
of the system. These general quantities simplify the comparison between different
system elements and subordinated system elements. The estimation of the RUL can
be based on model-based approaches in which the actual load of the system elements
is compared to the maximally tolerable load. In combination with damage accumu-
lation hypotheses, e.g. Palmgren-Miner [103], the RUL can then be estimated. If
desired, the failure probability of the system elements is also calculated using the
corresponding distribution functions.
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Step 4: Design of the Multi-Level Dependability Concept

The M-LD Concept is intended to influence system behavior; for this, an evaluation
of the current system state and feedback to the system is needed. The system behav-
ior can be influenced in two ways: by adapting the prioritization of the objectives of
the system and/or by switching between different control strategies.

To determine whether the objectives need to be adapted, thresholds between four
levels, based on the RUL or other general criteria, as selected in Step 3, need to
be defined. For this, the safety requirements of the module have to be taken into
account. As will be explained in Sect. 3.2.1, the dependability-oriented objectives,
which support different attributes of the dependability such as reliability, availabil-
ity, and safety (cf. [11]), are adapted if the second level is reached. Should the third
level be reached, the objectives for safety must have absolute priority. In both cases,
the system is influenced later on by an increase in priority of the dependability-
related objective, which leads to more dependable operation. In order to increase
the priority, a suitable fixed value for the priority or a strategy to increase it has
to be implemented in the Cognitive Operator. Both evaluation of the sensor signals
and feedback to the optimization process are integrated into the partial model group
Behavior.

If a failure requires a switching action, this is set into motion by the Configuration
Control; how exactly to implement this is explained in Step 5. The fourth level
corresponds to the fail-safe state determined in the dependability analysis. If it is
reached, emergency routines are engaged.

Step 5: Design or Expand Configuration Control

Certain failures (identified by the FMEA) could lead to a switch in control strategy,
e.g. if a required sensor fails and redundancy controls require the system to switch
to another sensor signal. This reconfiguration is conducted by the Configuration
Control, which is embedded into the Reflective Operator. For the reconfiguration,
different control strategies are designed. If switching actions are necessary, they
have to be included in the Configuration Control. Since switching actions have to
be initiated quickly, the required failure detection methods are implemented in the
Configuration Control as well. The preliminary Configuration Control included in
the partial model group Behavior is expanded to include dependability aspects.

3.1.2.3 Results

The M-LD Concept is fully specified and its components are embedded into the cor-
responding partial models of the Principle Solution. These components are both new
system elements, i.e. hardware, as well as additional components in the information
processing, which are mainly embedded into the Reflective Operator in the Operator
Controller Module. The determination of the current system state, its classification
according to the four levels and the initiation of the corresponding counter-measures
are included in the partial model group Behavior. The Configuration Control is
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expanded or initially designed using this method and new dependability-related ob-
jectives are included in the multiobjective optimization.

3.1.2.4 Application Example

As a demonstrator for this method, the Active Guidance Module (see also Sect. 1.3)
has been selected. It is a key element of a RailCab and, as such, needs to function de-
pendably. To ensure this, the M-LD Concept has been implemented. The execution
of the five main steps to design the M-LD Concept, as described in Sect. 3.1.2.2, is
explained in the following.

Step 1: System Analysis

To analyze the current situation, the Active Guidance Module is equipped with sev-
eral sensors. One incremental sensor at each wheel determines the longitudinal po-
sition of the RailCab. Since a drift of the incremental sensor’s signal is unavoidable,
the longitudinal position is regularly corrected by a proximity switch which passes
over a reference plate. Furthermore, eddy-current sensors on each side of each wheel
are used to measure the current lateral position as the deviation from the center line
within the track, as well as the current clearance which could be used for optimiza-
tion of the trajectory within the track limits. Two acceleration sensors and a yaw
rate sensor are integrated into the construction in order to obtain further informa-
tion about the RailCab movements. A displacement sensor is integrated into the
hydraulic steering actuator.

The Active Guidance Module uses multiobjective optimization for the steering
control strategy. The qualitative representation of the optimization objectives are
given in the partial model System of Objectives; an extract is depicted in Fig. 3.11.
The main goal is to steer within the track clearance while neither having flange
contacts nor wasting energy on unnecessary steering actuator movements. At the
same time, lateral acceleration has to be kept low to ensure passenger comfort and
to be sure a certain safety margin is upheld [56].

The main dependability issue is the minimization of flange contacts in order to
increase the reliability and thus the availability of the RailCab. Another objective
is to minimize the wear of the hydraulic actuator. This is similar to the objectives
“Maximize comfort” and “Minimize energy consumption”, since all three lead to
minimal actuator movements. For this reason, no additional objective is required.

The configuration control in the Active Guidance Module used for this example
comprises several control strategies. The most advanced strategy uses the optimiza-
tion described above and both a feedforward controller as well as a feedback con-
troller. If no optimization is available, the trajectory generated for the feedforward
controller is oriented towards the center line between the rails. If the eddy-current
sensors fail, and with these the determination of the lateral position, the feedforward
control can still be used to keep the vehicle on the center of the track. If all systems
fail, the steering will become stuck, which leads to rapid wear on the flanges. In this
case, the mechanical guidance wheels are activated and the vehicle is slowed.
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Fig. 3.11 System of Objec-
tives of the Active Guidance
Module (excerpt)
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Step 2: Dependability Analysis

For the active guidance module, the system elements to be monitored are the wheels,
since the rolling contact leads to wear. Besides the continuous wear due to the un-
avoidable motion between wheel and rail, flange contacts increase wear consider-
ably. This is represented in the objective “Minimize probability of flange contacts”.
These contacts cannot be avoided completely, since steering along energy-efficient
trajectories requires reducing the safety margin as much as possible, making flange
contacts highly probable if unexpected disturbances are encountered.

By taking the Application Scenarios into account, it becomes obvious that severe
accidents could occur while going over passive switches. Therefore, two different
counter-measures are integrated into the partial model Behavior. The first counter-
measure is the fail-safe state. In this state, the steering axle is fixed, if possible in
center position; the velocity of the RailCab is reduced; and mechanical guidance
wheels for going over passive switches are engaged. The second counter-measure is
to safeguard the eddy-current sensors.

Step 3: Select Measurement Method

To determine the wear of the wheels, flange contacts are registered by the eddy-
current sensors and the distance travelled is monitored via the incremental sensors.
The maximum running length of the flanges in contact is compared to this value to
obtain the RUL. The wear of the actuator is assumed to be proportional to its total
distance travelled, which is calculated using the displacement sensor integrated into
the actuator.
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Step 4: Design of the Multi-Level Dependability Concept

In the first level of the multi-level dependability concept, the self-optimization pro-
cess is able to choose from all objectives without any constraints. The second level
is reached if the monitored parameter, in this case the rate of reduction of the RUL
of the wheel due to wear, rises above a certain threshold which has been previously
defined by an expert. If one of the eddy-current sensors fails, redundancy is lost,
and this failure is also classified as level 2 since an error has occurred. However,
self-optimization can be used to ensure dependable operation. In order to increase
the reliability, the objective “Minimize probability of flange contacts” receives a
higher priority. The third level is reached when the loss about the lateral position is
detected. It is now of paramount importance to minimize the probability of flange
contacts, which leads to a feedforward trajectory following the center line of the
track. The fail-safe state “axle fixed and mechanical guidance activated” is activated
if the loss of the longitudinal position data is ascertained. Purely closed loop control
is not possible, since passive switches would then lead to a derailment.

The partial model group Behavior is extended to include the evaluation of the
sensor signals, as described in Sect. 3.1.2.4, in addition to all required switching
actions or adaptations of the objectives.

Step 5: Design or Expand Configuration Control

For the Active Guidance Module, switching is required if one of the redundant eddy-
current sensors fails. If this is the case, the failed sensor’s signal has to be neglected,
requiring a switch to a different sensor evaluation algorithm and possibly to another
control strategy. Both the detection of the failure as well as the switching process
are embedded within the Configuration Control.

The final Configuration Control is based on a preliminary Configuration Con-
trol, which is already in place for general steering purposes. The additional actions
expand the partial model group Behavior.

When all required components have been included in the Principle Solution, the
design of the Multi-Level Dependability Concept is concluded.

3.2 Design and Development

In the phase Design and Development, particular emphasis is laid on software. Self-
optimizing mechatronic systems contain discrete software as well as continuous
software. Continuous software is used in control engineering, discrete software in
software engineering. We use a component-based approach to develop the systems;
the component structure is derived from the Active Structure of the Principle Solu-
tion and provides the basis for the methods presented below.
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3.2.1 Increasing the Dependability of Self-optimizing Systems
during Operation Using the Multi-Level Dependability
Concept

Jan Henning Keßler, Tobias Meyer, Walter Sextro, Christoph Sondermann-Woelke,
and Ansgar Trächtler

Self-optimizing systems offer the possibility of enhancing system dependability by
adapting the system behavior to the current level of deterioration. An adaptation of
the system behavior can be used to reduce the loads on individual system compo-
nents, e.g. actuators, in order to make them less prone to failure. As this can be car-
ried out during operation, a significant increase in reliability and usable lifetime or a
limitation of the risk during operation can be achieved, thus improving the attributes
reliability and availability or safety. However, implementing the necessary behav-
ioral adaptation is challenging. The concept introduced in the previous section, the
M-LD Concept, can be used to overcome these challenges and adjust system behav-
ior during operation by applying self-optimization specific counter-measures, such
as an adaptation of the objectives of the system, which are included in the partial
model System of Objectives, and system reconfiguration.

3.2.1.1 Prerequisites and Input

The M-LD Concept has been developed to influence the behavior of a self-optimiz-
ing system during operation. To this end, it uses self-optimization as a tool to adapt
objectives and to initiate switching actions, e.g. to switch between different con-
troller configurations. The M-LD Concept is designed for the Operator Controller
Module information processing architecture, see also Sect. 1.1.1, and has to be em-
bedded into the Reflective Operator. As part of the Reflective Operator, the M-LD
Concept can influence Self-Optimization on the Cognitive Operator level and also
initiate switching actions by interacting directly with the Configuration Control.

For the framework of the M-LD Concept, model-based self-optimization is used.
It is based on multiobjective optimization for calculating optimal system config-
urations, which consist of certain parameters that set the working point (see also
Sect. 3.2.11). In order to use multiobjective optimization, a model of the dynamical
behavior of the system is required, which can be gleaned from the partial models
Environment, Application Scenarios and Active Structure. To adapt the system be-
havior, debendability-related objective functions, which are included in the partial
model System of Objectives, need to be incoporated into the multiobjective opti-
mization. These have to be defined so that their prioritization results in more de-
pendable system behavior.

3.2.1.2 Description

The M-LD Concept can be developed and included in a self-optimizing system
to increase the dependability of the system. It contains four hierarchically ordered
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levels for the characterization of the deterioration of the system (see Fig. 3.12) and
is part of the Reflective Operator.

For each level, certain counter-measures affecting the system behavior have to be
defined. To adapt the system’s behavior using self-optimization, the priority rank-
ings of the system’s objectives are modified. The objectives in turn influence the
behavior and thus the dependability of the system. The levels of the dependability
concept and the resulting change of the system behavior are as follows:

Level I:
The system operates dependably. Dependability is one objective among others;
no counter-measures are required.

Level II:
A minor error has occurred. Self-optimization is used to ensure dependable op-
eration. The priority of the dependability objective affected by the error is in-
creased, altering the system behavior. If the priority of a dependability-related
objective is increased, the system behavior becomes more dependable, but at the
same time other objectives must be subordinated.

Level III:
A severe error has occurred, but the system can still be controlled. First emer-
gency mechanisms are triggered to achieve a safer state. Of all the objectives,
those objectives that lead to safe behavior become the primary objectives in or-
der to avoid the failure of the whole system and the consequences involved. If
there are separate objectives, the other attributes of dependability (e.g. reliabil-
ity, availability) may occur as secondary objectives after those that are important
to ensure safe operation. It is also possible for the concept to execute switching
actions, e.g. to deactive failed system components.

Level IV:
Control over the system is lost. Emergency routines are executed to reach a pre-
defined fail-safe state.

Fig. 3.12 The four levels
of the Multi-Level Depend-
ability Concept
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As a component of the Reflective Operator, the concept is both able to get sen-
sor information from the Controller layer of the Operator Controller Module and
to communicate directly with the Cognitive Operator to influence the optimization
process of the system. Situated in the Reflective Operator, the concept is also able
to initiate switching operations between different control strategies via the Config-
uration Control.

3.2.1.3 Results

The M-LD Concept is set up to increase the dependability of a self-optimizing sys-
tem during operation. Additional components, which allow a classification of the
current system deterioration into four levels, are added to the Reflective Operator.
According to these levels, counter-measures are initiated. These are either an adap-
tation of the system behavior via self-optimization, i.e. an adaptation of the priorities
of the objectives to suit the current situation, or switching to a different controller
strategy.

3.2.1.4 Application Example

To show the interaction of the M-LD Concept with the other components of the sys-
tem, the Active Suspension Module (see also Sect. 1.3) is used as an example. The
purpose of this module is to generate additional damping forces between the chas-
sis and the body to actively control body motion. It consists of several major parts:
A body framework, which represents the vehicle’s body mass, and two actuator
modules, each with one glass-fiber-reinforced plastic-spring (GRP-spring) mounted
symmetrically beneath. The GRP-springs are connected via sophisticated nonlinear
guiding kinematics to the coach body and, at the lower end, rest on the excitation
unit representing the vehicle’s axle, where three hydraulic cylinders actively dis-
place each spring base. With its six actuators and three degrees of freedom in verti-
cal, horizontal and rotational direction, the actuated system is over-determined. The
actuator redundancy is an important feature in increasing the system’s dependabil-
ity. However, due to the nonlinear kinematics, control reconfiguration is required in
case of faults.

The main failure mode is a fault in one or more of the six hydraulic actuator mod-
ules, which each consist of one servo valve and the corresponding linear actuator,
that inhibits oil flow in the affected system. As a result, the corresponding actuator
becomes stuck. To be able to continue controlling the body motions in case of such
a fault, redundancy had to be implemented.

The four levels of the M-LD Concept are described in detail as part of the design
process. Level I, being the nominal case, does not require any further action. Level
II is reached when the estimated remaining useful life of the actuators falls below
a pre-defined threshold. To be able to use self-optimization to increase the depend-
ability, an objective corresponding to the actuators’ state of deterioration needs to
be defined. If the remaining useful life of one of the actuators becomes critically
low, Level III is reached. To avoid the system becoming uncontrollable, the critical
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actuator is deliberately deactivated at this stage, whereby its function is compen-
sated by the remaining actuators. However, the potential of the parallel redundancy
given by the six actuators cannot be used with a conventional controller design, since
a conventional controller would not be able to handle the change in system behavior
and would thus become unstable. In order to maintain desired system behavior in
case of actuator failures, control reconfiguration is used. Level IV corresponds to
the fail-safe-state and is reached if more actuators fail than can be compensated for.
In this case, the active suspension system is shut down and, to prevent dangerously
high excitations, the vehicle’s drive system is restricted to a low speed.

During normal usage, i.e. if the current system state is classified as Lvel I of the
M-LD Concept, the active suspension system pursues two main objectives: on one
hand, the energy consumption of the Active Suspension should be minimized, and
on the other hand, passenger comfort should be maximized. This is achieved by
minimizing the discomfort, which corresponds to vertical and lateral accelerations
of the body [71]. These two objectives conflict, as a reduction in body accelerations
results in a higher energy consumption. The corresponding objective functions are:
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Equation 3.1 describes the average hydraulic power of the six actuators Phyd, j;
Eqn. 3.2 describes the comfort with reference to the weighted body accelerations
ai. The accelerations are weighted according to [148] to represent the subjective
perception of a passenger.

If individual actuators show signs of wear that cannot be tolerated at the current
operating time, Level II is reached and the self-optimization procedure chooses a
new Pareto optimal point, which focuses on a higher dependability, as explained in
Sect. 3.2.11. This requires a third objective taking dependability into account, called
"minimize undependability". For the given system, this objective needs to relate the
current controller configuration to the resulting deterioration of the hydraulic valve,
taking the characteristics of hydraulic valve deterioration into account. In order to
reduce the rate at which the actuators deteriorate, this objective is prioritized over
the others. However, if the rate cannot be reduced sufficiently using the results of
the multiobjective optimization, the least reliable hydraulic cylinders have to be shut
off. This leads to a change of the structure and the dynamic behavior of the system
and usually to an unstable behavior of the closed-loop system if using the standard
control structure. Control reconfiguration is used to keep the system operational by
taking advantage of the redundancy and using the remaining five cylinders.

In order to adapt the system behavior, the objective "minimize undependability"
has to be defined and integrated into the optimization problem. It has to take the
mean amount of motion of all actuators into consideration as well as considering
the possibility of an uneven load on the actuators which could lead to premature
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failure of individual actuators. A prioritization of the objective corresponding to
this function has to lead to less motion of the actuators, which increases their de-
pendability. Unfortunately, at the same time other system objectives are decreased,
such as high passenger comfort or low energy consumption. During operation, the
three objectives can be influenced by a variation of the controller parameters. The
optimization parameters are the three Sky-Hook controller parameters in vertical,
horizontal and rotational direction.

The main cause of hydraulic actuator failures is due to wear [127]. When in
motion, the oil flow passes through the valve, leading to residue build up [112].
Since the system behavior is highly dynamic during normal operation, the valves are
also subject to thermal strain due to dissipated electrical energy. This heating effect
in turn influences the residue buildup and increases the probability of failures due
to varnish. In order to increase the dependability of the valves, both the dissipated
energy as well as the valve motion have to be minimized. However, if the valve were
to be simply shut down and left at rest, the possibility of the valve becoming stuck
permanently would rise unacceptably [111].

All these effects of hydraulic valve deterioration correspond to either the oil flow,
which depends on the position of the spool, or the electric energy dissipated in
the coil of the valve, which corresponds to the position and velocity of the spool.
The position of the spool corresponds to the potential energy EP, j (t) stored in the
valve spool return spring (stiffness cv) while the spool velocity corresponds to the
kinetic energy EK, j (t) stored in the spool (moving mass mv). To include all effects
of hydraulic valve deterioration, the kinetic and potential energy of the jth valve are
weighted separately using a weighting function Wj (EP, j,EK, j):

Wj (EP, j,EK, j) = a(d +EP, j)− b+
1

c(e+EK, j) (d+EP, j)
.

The function has been parameterized to give the desired properties (a = 10/9,
b= 19/81, c= 2916000/361, d = 1/180, e= 1/100). If the valve is open (EP, j �= 0),
thus leading to oil flow and actuator motion, the value of the weighting function
rises almost linearly with the potential Energy EP, j. If the valve is at rest (EP, j = 0,
EK, j = 0), a finite result Wj = 2 is obtained, thus penalizing very low valve motions.

The potential and the kinetic energy are given by:

EP, j (t) =
1
2
· cv · x j (t)

2 ,

EK, j (t) =
1
2
·mv · v j (t)

2 .

To obtain the spool’s position x j (t) and velocity v j (t), an observer is used for the
valve.

The signal is then averaged for one full simulation run ending at time T :

Wa, j =
1
T
·
∫ T

0
Wj (EP, j (τ) ,EK, j (τ))dτ.
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Fig. 3.13 Objectives in the
nominal case (light gray)
and objectives of the recon-
figured system (black). The
three objectives depicted
here are: f1,E : required
power; f2,com f : passenger
discomfort; f3,dep,nom/rec:
undependability in the nom-
inal and in the reconfigured
case.
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The final dependability value for the nominal case is calculated assuming that the
actuator’s signals are normally distributed and by calculating mean μ and standard
deviation σ :

f3,dep,nom = μ
(

pμ · [Wavg,1, . . . ,Wavg,6
])

+σ
(

pσ · [Wavg,1, . . . ,Wavg,6
])

The weighting factors pμ and pσ have been parameterized empirically [101].
When the system is classified as Level II, the results of the optimization with

the additional objective "minimize undependability" are used to influence the sys-
tem behavior. The objectives are depicted in Fig. 3.13 (light gray). The shape of
the Pareto optimal points is restricted almost entirely to a one-dimensional line.
An optimal parameter set of the Sky-Hook controllers pertains to each point. The
original behavior regarding the two objectives "minimize energy" and "minimize
discomfort" is maintained as expected. The objective "minimize undependability"
is plotted on the Z-axis. Note that f3,dep depends on the system state, giving rise
to two individual functions: f3,dep,nom for the nominal case with six actuators and
f3,dep,rec for the reconfigured case with less than six actuators. It is obvious that the
two objective functions "minimize energy" and "minimize undependability" are in
the same direction over a wide range. The more energy consumed by displacing the
hydraulic cylinders, the less dependable the system is. At the other end of the curve,
the opposite effect occurs. With less cylinder motion, the probability rises that the
valve will become stuck. To obtain dependability-optimal operation, which corre-
sponds to f3 "minimize undependability" being minimal, it is necessary to use small
actuator motions with low dynamics without bringing the actuators to a stop.

In the case of falling below a certain threshold of remaining useful life, the system
deterioration state is classified as Level III. As a result, the vulnerable actuator is
shut down and the control of the remaining actuators has to be reconfigured to take
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the altered system structure into account. Depending on the position of the actuators,
up to three actuators can be shut down.

Many approaches have been developed for the reconfiguration of an entire control
system. In our work, a method based on the system description with a linear state
space equation is applied to reconfigure the system [22] . This linear control recon-
figuration method was originally developed for systems subject to actuator failures;
nevertheless, it can be used for an intended actuator shutdown as well. A reconfigu-
ration block is integrated between the altered system and the nominal controller. It
modifies the control inputs of the remaining actuators and thus compensates for the
effects of the deactivated actuator on the dynamical behavior. The main advantage
of this method is the retention of the nominal controller in the closed-loop system.
In this example, the five remaining cylinders have to perform the task of the nominal
six cylinders.

At Level III of the M-LD Concept, it is still possible to apply the aforementioned
multiobjective optimization even though the system structure has been reconfigured.
If, for example, only one cylinder is switched off intentionally, the three objectives
and the optimization parameters still remain, except that the vulnerable cylinder is
not taken into account while calculating the energy- and dependability-objective
functions. To achieve this, the objective "minimize undependability" is altered
accordingly.

The result of the multiobjective optimization of the reconfigured system with an
intended actuator shutdown is shown in Fig. 3.13 (black). The shape of the set of
the Pareto optimal points is still mostly the same as in the fully operational case.
However, for a given level of undependability, the reconfigured system achieves the
same level of comfort for each Pareto optimal point, with less energy consumption
than the non-reconfigured system.

The adaption in Level II is carried out by modifying the priority level of the
individual objectives using the set of objective functions f1, f2 and f3,nom. Since
certain damping parameters are tied to each Pareto optimal combination of the
three objectives’ priorities, the system behavior is adapted by setting the parame-
ters accordingly. An increased priority for the objective "minimize undependability"
leads to beneficial system behavior. However, one of the other objectives will be
affected negatively, leading to either increased body motions or increased energy
consumption.

For Level III, an intended actuator shutdown is initiated. Upon initiation, the re-
configuration block is activated in the model of the dynamical behavior and, in addi-
tion, the objective functions used for the multiobjective optimization are changed as
well. During operation, a different set of results from prior optimization calculations
is selected in order to adapt the system behavior.

3.2.1.5 Further Reading

The application example is explained in more detail in [101]. Another example of
an application of this method is shown in [82].
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Several additional methods have been developed to support the development pro-
cess. The M-LD Concept can be implemented using information that is available
during early development phases; this method is explained in detail in Sect. 3.1.2.
To determine suitable counter-measures, a close interaction with multiobjective op-
timization (see Sect. 3.2.11) is required.

3.2.2 Iterative Learning of Stochastic Disturbance Profiles

Martin Krüger and Ansgar Trächtler

This section deals with learning excitation data from a specific class from distur-
bances. The quality of information about the momentary situation is particularly
important in determining the success of any self-optimization strategy. Model-based
methods for estimation of system states and physical parameters have been de-
veloped and implemented and have proven to be effective for the application of
classical control techniques, e.g. [93]. A self-optimizing system, however, requires
additional information about its environment, e.g. about future excitations and dis-
turbances. With this information, it is possible to develop a system that is able to
react intelligently and results can be achieved that surpass those of classical control
strategies.

In recent research the combination of model-based disturbance observers and
iterative learning methods has proven to be effective. In [146], the RailCab, an au-
tonomously driven railway vehicle [126], serves as an application example: the rail-
track deflections in lateral and vertical directions were learned and later used for
disturbance compensation and self-optimization tasks.

In this section, we transfer this approach to the task of learning road distur-
bance profiles. In contrast to rail-track deflections the excitations and disturbances
of roads do not occur deterministically when driving over the same road section
several times, due to possible changes of the lateral position of the vehicle. Hence, a
purely model-based approach is no longer beneficial. Instead, we use a combination
of a behavior-based model of the road excitations and a model-based disturbance
observer. These road excitations are modeled as nodes in a Bayesian network and a
method is implemented to learn both parameters and parts of the network structure.
The main idea is to use stochastic dependencies between different excitations (see
Fig. 3.14). Disturbance profiles can help to increase the safety of self-optimizing
systems, as they can be used for planning tasks or specific controller adaptation.

The iterative learning approach is based on the Principle Solution. Several as-
pects of the domain-spanning description are used: the partial models “Application
Scenarios” and “Environment” yield general information about disturbances and in
which situations they occur, while the partial models “Active Structure” as well as
“Environment” show how disturbances influence the system and which sensors are
available for the disturbance observer.
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Fig. 3.14 Three Distur-
bances S1, S2 and S3 on
a sample road and corre-
sponding Bayesian network
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3.2.2.1 Prerequisites and Input

The presented approach is applicable to the disturbance estimation of road vehicles.
It can also be generalised to other systems with stochastically dependent occurences
of disturbances; however, we will only focus on road profiles at this stage.

In order to learn road profiles, several prerequisites have to be fulfilled in addition
to the above-mentioned partial models of the Principle Solution. Firstly, data about
road excitations are necessary. Mostly, the excitation cannot be measured directly,
as sensors cannot be put between the wheel and the road surface. Therefore, we
have developed a model-based disturbance observer to detect disturbances. A model
of the vehicle as well as a disturbance model, are needed to design the observer.
Additionally, sufficient empirical data, such as vertical accelerations of the body
and wheel have to be available. By means of the disturbance observer, a current
road profile of a particular road section can be computed based on the measured
values. This constitutes the input for the learning method. We also assume that the
current longitudinal position of the vehicle on the road is known.

3.2.2.2 Description

The developed learning method consists of three sequential steps (Fig. 3.15). To
start, the disturbances due to road unevenness have to be detected and identified
on the basis of different passages. Each disturbance is then set up as a node of
the Bayesian network. Additionally the parameters, i. e. the conditional probability
distributions for every single node, have to be acquired from the data. After compi-
lation, the Bayesian network can be used to predict disturbances during following
driving sequences over the same road section. A description of these three steps is
presented in the following section.

Construction of Bayesian network

Specifying
structure

Learning
parameters

Evaluation
of 

network

Identification 
of

disturbances

Fig. 3.15 Structure of the learning process
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Identification of Disturbances

A disturbance is caused by unevenness in the road surface. These “defects” can be
described by a discrete surface profile, which assigns a height (the position in ver-
tical direction) to each two-dimensional point on the road. Disturbances are abrupt
changes in this height, for example those caused by potholes.

Data on the disturbances on the road are acquired by means of a vertical velocity
profile. In our case, it is easier to detect the velocity than the position, as an absolute
road profile is hard to determine by means of acceleration-based sensor concepts.
The derivative of the position yields peaks that can be used for a precise detection
of relevant disturbances.

Due to inaccuracies in the measurements (e.g. sensor noise), both the position
and the strength of the disturbance are slightly different for every measurement;
hence, different clustering methods are used for the identification of disturbances.
Clustering has to be employed because the total number of disturbances can only be
detected using the data from different driving sequences. Using clustering the data
can be suitably merged because it describes the combination of similar objects in
groups.

The actual position of the disturbances is determined by a hierarchical clustering
of the positions detected on different passages [4]. In this context, “hierarchical"
means that several levels of clusters are created in consecutive steps. On every hier-
archical level, the elements of the previous level with the shortest distance between
them are merged into new clusters, thus yielding a binary tree structure with the sin-
gle elements as leaves. This hierarchical clustering produces very good results for
our application, as shown in Sect. 3.2.2.4.

In the second step, the strength of each disturbance is determined by cluster-
ing with Gaussian mixture distributions [4]. This method has been applied because,
presumably, the strength of the disturbance (vertical direction) during different pas-
sages is distributed normally due to measurement errors or irregular obstacles. In
our approach, the density estimation of each expected disturbance is reduced to
the determination of the expected value and the standard deviation of the Gaussian
distribution. With the help of the Expectation-Maximization algorithm [4] a mixed
distribution can be found which best fits the distribution of the disturbances, i. e. it
describes the data with a high degree of probability.

With the results of the cluster analysis, which we carried out using the methods
described, the expected disturbances and thus the nodes of the Bayesian network
can be determined, i. e. each cluster results in one node as a detected disturbance.

Construction of Bayesian Network

As a result of the clustering, the nodes of the Bayesian network are identified. In
order to determine the structure of the Bayesian network, we define the following
rules:

• The nodes have to follow each other in chronological order; otherwise a causal
relation makes no sense.
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• Two disturbances located next to each other in lateral direction cannot be crossed
one after another. Therefore, no edge is allowed between such nodes.

• A stochastic dependence of nodes that lie far apart from one another is improb-
able, so there should be no edge between nodes with a distance between them
exceeding a pre-determined value.

These rules yield the complete structure of the Bayesian network.
The parameters are determined by means of the Maximum-Likelihood algorithm

on the basis of measured data. So the construction of the Bayesian network is
completed.

Evaluation of the Network

After construction, the Bayesian network can be used for predicting disturbances
during later driving sequences. On one hand, we can determine the a priori probabil-
ity, i. e. the unconditional probability, of the occurrence of every disturbance. On the
other hand, we can obtain more detailed information from an input of information,
so-called evidence, into the network. By evaluating random variables (evidence),
i. e. the information of wether single disturbances were driven over or not, we can
evaluate the conditional probability distributions by drawing conclusions within the
network, so-called inference. These calculated probabilities, along with the saved
data in the nodes, allow a prediction of the position and strength of the following
disturbances.

3.2.2.3 Results

The result of the described iterative learning method is a Bayesian network that
represents road disturbances for a particular road segment. The nodes provide infor-
mation about position and strength of the disturbances in a compact format. But the
main benefit is given by evaluation of the probabilities inside the Bayesian network.
The unconditional probailities can be used to classify roads in general. In addition,
upcoming disturbances can be predicted by means of the conditional probabilities.

3.2.2.4 Application Example

The iterative learning process has been tested and validated using a simplified model
of the X-by-wire test vehicle “Chameleon" , introduced in Sect. 1.3.3. We have here
only considered the vertical dynamics. As usual, we use a quarter vehicle model be-
cause it provides the essential aspects for a first verification of the iterative learning
approach. This leads to the model topology presented in Fig. 3.16.

In contrast to common quarter-vehicle models, we have more than just two de-
grees of freedom, zB and zW , for the body mass and the wheel mass respectively.
Because the driving motor with its non-negligible mass is used as a mass absorber,
it must be accounted for in the model by an additional degree of freedom zD. The
elasticity between the driving motor and the wheel is modeled by a simple gen-
eralized Maxwell element representing the real elastomer mounting. The vertical
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Fig. 3.16 Corner module of the test vehicle (left) and physical surrogate model of vertical
dynamics (right)

dynamics can be controlled by forces between the body and the wheel, which are
applied by the motor of the active suspension.

Building the simulation model now comprises two steps. Firstly, we need an ap-
propriate model of the dynamics to simulate the effects of road disturbances. Addi-
tionally, we have to design a disturbance observer to compute the input data for the
iterative learning process.

The dynamics of the system shown in Fig. 3.16 can be represented by a linear
system with seven states, i.e. x ∈ R

7, one control input u and one disturbance in-
put z. The model has two outputs y ∈ R

2 which are composed of both the wheel
and the body acceleration and conform to the real sensor concept. With matrices of
appropriate size we get the linear state-space representation

ẋ = Ax+Bu+Ez,

y =Cx+Du+Fz.
(3.3)

The observer model will not represent the real behavior exactly. To consider this
effect in our simulations, we use parameters for generating the vehicle model that
vary slightly from the parameters used in the model of the disturbance observer.

We use a simple first order transfer function GM to model the dynamics of the
acceleration sensors combined with an additional Gaussian noise signal. The con-
troller has been designed as an optimal Linear-Quadratic (LQ) controller [106].

The resulting simulation model with all relevant components has the structure
shown in Fig. 3.17. It can be seen that the disturbance observer has to fulfill two
tasks. On one hand, it has to estimate the state variables for use by the controller,
and on the other hand, it has to detect the disturbance ẑ and estimate the derivative
ẑ′ for the learning process.
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Fig. 3.17 Structure of the
simulation model Acceleration
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An estimation of the disturbances can be obtained by adding a disturbance model
to the standard state observer. This disturbance model is the linear model

ẋS = ASxS,[
ẑ ẑ′

]T
=
[
CS CZ

]T
xS

(3.4)

with two outputs ẑ and ẑ′. ẑ is needed by the observer itself to consider the influence
of the disturbance on the vehicle dynamics. ẑ′ can be used directly by the learning
process. The dynamics of the disturbances are characterized by additional states
xS and a disturbance dynamic matrix AS. For our example, we have chosen a two-
dimensional disturbance model and have assumed that the second derivative of the
disturbance is constant, which leads to a singular matrix AS.

The complete observer is implemented as a continuous-time Kalman filter [106].
It combines the quarter vehicle-model (Eqn. 3.3) and the disturbance dynamics in
one dynamical system

[
˙̂x

ẋS

]
=

[
A ECS

0 AS

][
x̂
xS

]
+

[
B
0

]
u+LS (yM − ŷ) ,

[
ŷ
ẑ′

]
=

[
C FCS

0 CZ

][
x̂
xS

]
+

[
D
0

]
u.

(3.5)

The observer matrix LS ∈ R
9×2 defines the dynamics of the observer. It is com-

puted using the standard techniques for designing Kalman filters, i.e. by defining
two covariance matrices describing the noise of the system and computing the op-
timal matrix LS. In our example, the covariance matrices are chosen so as to yield
best results for the estimation of ẑ′. In specific terms, this means that the variances
corresponding to xS are higher than those corresponding to the remaining ones.

For testing purposes, excitation data for the quarter-vehicle model were generated
in three steps:

• A simple road model was built, representing the road surface by a plane divided
into discrete sections. Road disturbances, such as potholes, were defined by as-
signing a height value to each section. For the tests presented below, a number of
simple disturbances have been used to generate excitation data.

• In the next step, 20 straight trajectories along the road were created randomly.
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Fig. 3.18 Road with distur-
bances and three trajectories
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• The height profile of the road along the trajectories defines the excitation given
as input for the vehicle model.

With these steps, road profiles of 20 trajectories have been generated. Their data
were used as excitations for the quarter-vehicle model, simulating 20 driving se-
quences along the road. During each iteration, the excitation was estimated by the
disturbance observer. The occurring disturbances were learned by providing the
learning algorithm with data from the observed excitation and with the longitudi-
nal position of the vehicle.

To verify the results, we used the constructed Bayesian network to predict distur-
bances during three other simulated passages on random trajectories. During those
passages, probabilities of the occurrence of learned disturbances were calculated
and constantly updated. These probabilities were calculated using the Bayesian net-
work and were based on evidence given by disturbances already struck or passed
during the current driving sequence.

Figures 3.18 and 3.19 illustrate the results of the test runs. Figure 3.18 shows
the road model with the disturbances that were learned. The three lines represent
the trajectories used for the prediction test. The driving direction of the modeled
quarter-vehicle is from left to right.

The excitations (ẑ′) observed by the model are shown in Fig. 3.19 in relation to the
longitudinal position x. The disturbances are visible as peaks. The circles, squares
and crosses mark the position and intensity of learned disturbances. The numbers in-
dicate the calculated probability of hitting the corresponding disturbance, obtained
by inference in the Bayesian network. The plotted values are calculated online dur-
ing the driving sequence considering all evidence obtained up to that point. The
crosses mark the position of learned disturbances which are assumed to be hit ac-
cording to their probability. The circles show disturbances with low probabilities,
which are considered as not being hit during that particular iteration.

It can be seen in the figures that most predictions based on the calculated prob-
abilities are correct, which means that the disturbances are considered correctly as
either being missed (circles) or being hit (crosses). As it turns out, of 25 disturbances
hit during the three runs shown in Fig. 3.19, 21 have been predicted correctly, which
is more than 80 %. Furthermore, the forecasts for all disturbances that were not hit
were accurate. Altogether, the occurrence or non-occurrence of about 90 % of the
learned disturbances could be predicted correctly.
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Fig. 3.19 Derivative of excitations (trajectories of Fig. 3.18) and results of prediction. (Cir-
cles: correct prediction of non-occurence, Cross: correct prediction of occurence, Squares:
false prediction (false-negative))

Summing up the results, we can state that the probabilistic iterative learning
method based on Bayesian networks can be successfully used to learn and predict
randomly occurring, stochastically dependent excitations in the context of road ve-
hicles. The learned data could conceivably be used in different ways. In the context
of self-optimizing systems, applications such as classification of road segments or
planning tasks become possible. The method can also be beneficial for the system
safety, as it offers additional information about the environment; e. g. dependability-
oriented configurations could be used by the system for road segments with espe-
cially uneven surfaces.

3.2.2.5 Further Reading

A more detailed describtion of the method can be found in [19].

3.2.3 Mutation Testing of Electronic Component Design

Wolfgang Müller and Tao Xie

The complexity of self-optimizing systems requires systematic and thorough verifi-
cation of their designs, in order to guarantee adaptive yet desired runtime behavior.
In this section, we focus on the design verification of electronic components, such
as an embedded microprocessor, and propose an adaptive verification method that
is directed by coverage metrics.

Together with other electronic peripherals, microprocessors comprise the central
platform hosting hardware dependent software and application software, which is
the seat of system intelligence. The design of these components must be verified as
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comprehensively as possible, as their later integration into a complex system makes
in-system verification difficult and their functional correctness should be ensured
beforehand. We assume that simulation remains the primary platform for functional
verification and prototyping of electronic designs, though other alternatives do exist,
such as the model-checking used in Section 3.2.7.

In this context, we can find coverage metrics at the heart of verification thorough-
ness. With coverage, we systematically and quantitatively measure the progress of
a simulation-based verification process. Various code coverage and toggle cover-
age are the primary metrics. Recent research extends to more complex functional
coverage [50] and assertion-based coverage.

Mutation testing, also called mutation analysis, is a unique coverage metric that
assesses the quality of test data in a more stringent manner. It was originally in-
troduced and studied as a theory for software testing [36]. Later, mutation testing
was increasingly considered for hardware design verification [136] and an industrial
EDA (Electronic Design Automation) tool for Hardware Description Languages
(HDLs) mutation testing became available [67].

We have chosen mutation analysis as the advanced, representable coverage metric
most suitable for our purposes. In the following section, we will first introduce the
basic principle of mutation analysis and then present a mutation analysis feedback-
directed adaptive testbench for functional verification of electronic component de-
signs. The method has been evaluated using a typical embedded microprocessor
design.

3.2.3.1 Prerequisites and Input

Mutation testing is a fault-based simulation metric. It highlights an intrinsic require-
ment for simulation test data that they should be capable of stimulating potential
design errors and propagating the erroneous behavior to checking points. Mutation
testing measures and enhances the simulation process as shown by Fig. 3.20.

A so-called mutation is a single fault injection into the code of a copy of the
Design Under Verification (DUV), such as this HDL statement modification:

a <= b and c;
mutation−−−−−→ a <= b or c;

The fault-injected copy is called a mutant of the design. For each test case, the
mutant is simulated after the simulation of the original design and the results of
both simulations are compared. If any difference appears at the output during the
simulation, this test is said to be able to "kill" the mutant. Each type of fault injection
is called a mutation operator and dozens of such operators can be defined based on
the applied design language. By deploying these pre-defined mutation operators at
different locations of a design, we can obtain a huge database of mutants. Then
the number of killed mutants determines a mutation coverage metric, which can be
used to measure the overall quality and thoroughness of the testbench and the entire
simulation process.

We consider random simulation a long-recognized useful lightweight method of
carrying out mutation testing. However, the lightweight nature of random simulation
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Fig. 3.20 Mutation testing for the functional verification of electronic component designs

is in contrast with the inherent computation expensiveness of mutation testing. In
essence, each time a random test is generated, it should be simulated against not
only the original Design Under Verification, but also against all the mutants that
have been created as the cover points, of which there is a massive amount. Since
the test is randomly selected and relatively undirected, this amplifies the mutation
testing problem.

3.2.3.2 Description

Therefore, we propose a mutation testing feedback-directed adaptive random simu-
lation method. Our proposal improves the efficiency of the mutation testing cover-
age and solves the inherent conflict between random test generation and mutation
analysis. We propose the use of a constrained Markov chain to enable effective
adjustment to the probability model of random simulation. An efficiency-improving
heuristic makes this adjustment by utilizing two-phase mutation testing results. Such
a testbench is shown in Fig. 3.21. The idea is to integrate an in-loop heuristic process
that dynamically adapts the test probability model to a more efficient distribution
for mutation coverage. On-line results from each mutation-testing run are analyzed
to derive the adjustment. Our evaluations demonstrate that the heuristic reaches a
higher mutation coverage in less simulation time.

As a prerequisite for the dynamic adjustment, a probability model of test se-
quences is required that provides the possibility of parameter steering. Considering
that an electronic component design has a precisely defined instruction interface,
such as the ISA (Instruction Set Architecture) of a microprocessor, or the communi-
cation protocol of a bus controller, test inputs in a random test generator are modeled
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Fig. 3.21 A mutation testing directed adaptive simulation framework for the functional veri-
fication of electronic component designs

in two layers as shown in Fig. 3.21. In a first step, a Markov chain is used to repre-
sent sequences of tests. Each node models one type of test instruction. The selection
probability on edges enables us to establish the correlation between mutation anal-
ysis efficiency and a short pattern of test sequences. Second, weighted constraints
are defined on the fields of an instruction. This provides the possibility of steering
test patterns towards more effective areas, such as corner cases.

Each time a test is generated, we record the pair of Markov edge and constraint
selected for the generation. The basic idea is to estimate the efficiency of each test
on mutation analysis and use the estimation to adjust the probability of the cor-
responding Markov edge and constraint. This efficiency estimation should follow
the unique simulation process of mutation analysis. As the right half of Fig. 3.21
shows, we first introduce an extra weak mutation analysis [72] phase. It uses one
simulation cycle to identify the locally activated mutants. Only those are fed into a
traditional, strong mutation analysis phase and are fully simulated, so that we can
see whether they are killed using the criterion that a different value appears at de-
sign output ports. Consider that ϕ is the test probability distribution from a Markov
chain/constraint model, which further implies PMi_activated and PMi_kill for each mu-
tant Mi as its probabilities of being activated and killed using the current test model.
On a set of NMutant design mutants, this leads to an expected simulation effort for
the mutation analysis flow in Fig. 3.21, represented as

max
1≤i≤Nmutant

(1/PMi_kill)+ ∑
1≤i≤Nmutant

(PMi_activate/PMi_kill)
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Based on this expected simulation effort, we use the number of mutants acti-
vated by the test Nactivated and the number of mutants killed Nkilled to estimate the
efficiency of this test as

Efficiency =
Nkilled

Nactivated

A low ratio means that too many mutants are merely activated and that a large
number of simulations are wasted in the second phase without killing the mutants.
We also record this efficiency value for the last 10 tests generated and use the aver-
age Efficiencyaverage_last_ten to derive a relative value that lies between 0 and 1

Efficiencyrel =
Efficiency

Efficiencyaverage_last_ten +Efficiency

According to this, at the early stage of a random simulation, test patterns with
high mutation kill/activation rates are encouraged. However, we observed in our
experiment that in the last stage, it may well happen that no single mutant is killed in
ten consecutive iterations. In such a case, the heuristic approach changes to another
mode that encourages more activation of mutants, by first calculating efficiency as
an adjustment value and then increasing the probability/weight of the corresponding
Markov chain edge/constraint with the following value:

Efficiencyrel =
Nactivated

Nactivated_average_last_ten +Nactivated

It is safe to assume that there will always be some mutants activated.
Initially, all Markov chain edges have the same probability of being selected and

instruction constraints have the same weight. At the end of each iteration for test
generation, the probability of the edge used as well as the weight of the constraint
used is adjusted by

{
PEdge_new = min{PEdgeold ∗ (1+Efficiencyrel),PMAX}

PConstr_new = min{WConstrold ∗ (1+Efficiencyrel),WMAX}
PMAX and WMAX are efforts to prevent the starvation of other edges/constraints

by setting an upper bound of probability on one edge/constraint. In a real-world
application that follows, these two numbers were set to 0.9 for a model of 58 Markov
edges, for instance.

For each Edgei that branches out from the same instruction node and each Constri

on this node, we adjust their probability/weight proportionally to their old values

⎧⎪⎪⎨
⎪⎪⎩

PEdgei_new = (1−PEdge_new)∗ PEdgei_old

1−PEdgei_old

PConstri_new = (1−PConstr_new)∗ PConstri_old

1−PConstri_old
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As a heuristic approach, the formulation of the adjustment is motivated by two
points.

First, the ultimate problem of test generation in mutation analysis is to kill a de-
sign mutant, the mutant simulation is required to first reach the mutation statement,
then activate this mutant by executing the mutated statement in such a manner that
a local deviation is created, and propagate this deviation to any output of the design.

Second, there are two hypotheses that we consider reasonable for correlat-
ing mutation analysis feedback to the test generation problem: activation-kill and
similar-test.

The activation-kill hypothesis states that if a test activates a large number of
mutants in a simulation, it also leads to a simulation that kills many mutants in the
end. In other words, the mutant-activation efficiency of a test is coupled with its
final mutant-killing efficiency. This is actually straightforward based on the problem
of mutation analysis test generation – activation is a necessity condition for killing
mutants, preceding propagation.

The similar-test hypothesis states that if a test activates a lot of mutants, the pair
of Markov chain edge/constraint that was used for generating this test will further
generate tests that activate similarly many mutants. In short, a pair of Markov chain
edge/constraint represents a type of test. We expect that tests generated from the
same type have similar mutant-activation efficiency.

This can be taken as an explanation for why the heuristic adaptation approach is
described as it is in this section.

3.2.3.3 Results

The result of our adaptive verification method, when applied to an electronic com-
ponent design, is a random simulation testbench that is able to achieve a higher
mutation coverage with less simulation effort.

3.2.3.4 Application Example

We have created an experimental version of the mutation analysis directed sim-
ulation method and applied it to the functional verification of the MB-LITE mi-
croprocessor design [85]. This soft microprocessor core realizes MicroBlaze ISA
in VHDL and is a widely used architecture in embedded systems. It is able to exe-
cute binary code compiled with the standard MicroBlaze compiler mb-gcc (included
in the XILINX FPGA tool). Mutation testing was implemented by Certitude(TM),
an industrial EDA tool, which selectively generated 732 mutants for the MB-LITE
design.

The MicroBlaze instructions [153] were modeled by 58 Markov-chain nodes.
Similar instructions are not considered distinctly, such as add, addc, addk and ad-
dkc. Further, 17 constraints were defined to partition instruction areas. We used the
SystemC Verification Library for implementing the Markov chain and the associated
instruction constraints, as it provides a convenient framework for probability mod-
eling and constraint solving. SystemC and VHDL co-simulation is also supported
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by the ModelSim simulator. All the edges and constraints have an equal probability
of being selected at the beginning.

We compared the following test generation processes: i) the random test gener-
ation under the constrained Markov-chain probability model and dynamically di-
rected by the in-loop heuristics, ii) the same random test generation, but without
the in-loop adjustment, and iii) two software programs: a basic “hello world” and
a Dhrystone benchmark. These programs can be seen as competitive comparisons,
since they are generated by the compiler’s extensive knowledge of the instruction
set.

Figure 3.22 shows their efficiency in terms of mutation analysis coverage, i.e.
number of killed mutants versus test instructions used. The simulations lasted for
several hours on a computer with a 2.4 Ghz processor. The data are drawn only to
the points after which there was no further change in coverage.

The mutation analysis feedback-directed random simulation reached a status of
killing 691 mutants within about 8.3 hours, compared to the non-adaptive variant
that killed 625 mutants in 11 hours. The coverage is 94.4% versus 85.4%. The im-
provement in performance came firstly from the ability of the heuristics to steer the
test generation towards more effective patterns in the early phase. Secondly, this
efficiency is also amplified continuously in mutation analysis, as the early killing
of mutants eliminated the cost of their simulation afterwards. Further, the heuristics
encouraged more activation in the late phase, which showed the effect of trying-
and-killing more mutants.

Both random simulations outperformed the other two software binaries. The ba-
sic “hello world” was able to kill 507 mutants and the Dhrystone able to kill 565
mutants. At the initial stage, they displayed an identical coverage curve. In the mid-
dle period, both had a long sequence of wasted cycles without contributing any
coverage improvement. This is inferior to the continuous increase of killed mutants
in random simulations.

Fig. 3.22 Efficiency im-
provement with adaptive
random simulation, by
comparing four simula-
tion processes with regard to
mutation testing
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In the end, we came to the conclusion that the proposed adaptive random simu-
lation method is able to substantially improve the testbench efficiency of targeting
mutation testing and functions admirably as an advanced quality metric for the func-
tional simulation of electronic component design in our self-optimizing systems.

3.2.4 Optimal Control with Uncertainty

Sina Ober-Blöbaum and Albert Seifried

The goal in classical optimal control theory is to determine control strategies that,
if applied to the system, fulfill some predefined task optimally with respect to some
given quantity. However, for many applications, specific system parameters such as
e.g. friction coefficients or geometry parameters are unknown or cannot be measured
exactly. Due to this uncertainty, the correct execution of the desired task can no
longer be guaranteed by the control system. In this section, strategies for the optimal
control of technical systems with uncertainties are presented under the aspect of the
attributes safety and reliability by introducing a performance measure.

While in the deterministic setting, we characterize the maximal performance of
the control system in fulfilling a predefined task exactly (e.g. a robot arm has to
grab some tool in a specific position); in the presence of uncertainty we introduce a
performance measure whose mean has to be minimized in order to guarantee max-
imal performance by the control system and thus lead to reliable system behavior.
Regarding this notion of system performance as an additional objective leads to a
multiobjective optimal control problem. Based on numerical solution methods for
optimal control [107] and multiobjective optimization problems [34,135], a numer-
ical method is presented in this section to approximate the so-called Pareto optimal
solutions of this multiobjective optimal control problem. The approach is verified
by means of a robot arm maneuver for which the arm lengths are assumed to be
uncertain.

For the application of the presented method, input from different partial models
of the Principle Solution (cf. Sect. 2.1) is required. Concerning the control engineer-
ing methods, all information about the models of the dynamics have to be provided
in order to formulate the control problem. The partial models “Application Scenar-
ios” and “System of Objectives” provide all the necessary information for the task to
be fulfilled by the control system, as well as the information with respect to which
criterion this task has to be optimized. Furthermore, the partial models “Require-
ments” and “Environment” provide important information about uncertain model
parameters and their ranges for the optimal control problem.

Let us consider a technical system with uncertainty given by the differential
equation

ẋ(t) = f(x(t),u(t),ξ ) (3.6)

with Lipschitz continuous f, the state function x : I → R
n, the control function

u : I → R
m, I = [t0, t f ], and random variables ξ ∈ R

s with known distributions as-
sociated with the uncertainty of system parameters. It is assumed that x(t) can be
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expressed as a function of ξ , i.e. x(t,ξ ).4 Let J(x,u) =
∫

I C(x(t),u(t))dt be a cost
functional which measures a quantity of interest with the continuously differentiable
cost function C. Then the expected value of J is given by

Ĵ(u) =
∫

J(x,u)ρ(ξ )dξ , (3.7)

where ρ(ξ ) is the probability density function (pdf) of ξ . A general optimal con-
trol problem is to find a control u∗ that minimizes (3.7), subject to the differential
equation (3.6). Common solution methods for solving these single optimal control
problems are e.g. sample average approximation methods [25, 79], for which the
expected value function is approximated by some sample average function based on
Monte Carlo simulations. The resulting sample average optimization problem can
be solved by standard optimization techniques (see e.g. [98]).

Typically, the intent is to design an optimal control such that the fulfillment of a
task is guaranteed by the system (expressed by the terminal constraint r(x(t f )) = 0).
In this case, we say that system performance is maximal. Note that in the presence
of uncertainty, the value of the terminal constraint r(x(t f ,ξ )) will be different for
different values of the random variables ξ . Thus, the execution of the task can no
longer be guaranteed by the control system. Instead, the goal is to design a control
that, on one hand, is still optimal with respect to the prescribed objective functional
and, on the other hand, optimizes the system performance, i.e. the system should
fulfill the desired task as well as possible. To this end, we define a single perfor-
mance measure Y (x,ξ ) ≥ 0 that depends on the random variables and which is, in
the deterministic case, zero for maximal performance, i.e. Y = 0 if r(x(t f )) = 0.
As measure of performance, we choose Y = ‖r(x(t f ))‖2

2. In the presence of uncer-
tainty, the performance of the system is defined as optimal if the expected value of
the performance measure Y is minimized, i.e. we want to minimize

Ĵ2 =
∫

Y (x,ξ )ρ(ξ )dξ . (3.8)

For the chosen measure of performance this means that maximal system perfor-
mance corresponds to minimal mean violation of the terminal constraint.5 This is
in contrast to other approaches in robust optimal control, where, for example, the
probability of a state constraint violation is required to be less than some small,
but given probability, which is then included as an inequality constraint or as new
single objective function in the optimal control problem (see e.g. [94]). Instead,
Equation (3.8) is treated as an additional objective functional in the optimal control
problem. By minimizing (3.7) and (3.8) subject to the differential equation (3.6),
we are faced with a multiobjective optimal control problem, i.e. the optimization
of not only one but several objectives at the same time is required. If the different

4 In the following, we will simply write x(t) but assume that x is also a function of ξ .
5 Note that the expected value is only one choice among many robustness measures and

could be easily replaced.
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objectives are conflicting, no unique optimum can be determined. Rather, we at-
tempt to determine a set of compromise solutions: the Pareto optimal solutions [49].

3.2.4.1 Prerequisites and Input

Without loss of generality, a multiobjective optimization problem can be viewed as
a minimization problem; however, in contrast to a (single) objective problem, the
objective function is vector-valued (cf. Chapter 1.1.2.1).

Problem 3.1. A multiobjective optimization problem is given by

min
y∈S

{F(y)}, S := {y ∈R
n |g(y) = 0, a(y)≤ 0}, (3.9)

with objective functions F : Rn → R
k,k > 1 and constraint functions g : Rn → R

m

and a : Rn → R
q.

For the computation of the set of Pareto optimal solutions (cf. Chapter 1.1.2.1)
of Problem 3.1, there exists an extremely broad variety of different methods. The
methods are classified as global or local methods, whereby the global methods it-
erate step-for-step a complete set of parameters to obtain an approximation of the
Pareto set. Contrary to global methods, local methods use local information from
single Pareto points to compute proximate solutions. Well-known global methods
are evolutionary algorithms (e.g. [32]) or subdivision methods (e.g. [34]). Typical
local methods are the weighted sum method (e.g. [32, 102]), continuation methods
(e.g. [70, 131]) or reference point methods (e.g. [33, 102]). The latter methods are
appropriate for approximating the Pareto set, especially for a high dimension n. The
basic idea is to generate unreachable targets (or reference points) T ∈ R

k in the
image space of F, where each of these targets is used for the following distance
minimization:6

min
y∈S

‖F(y)−T‖, S := {y ∈R
n |g(y) = 0, a(y)≤ 0}. (3.10)

Standard minimization algorithms like SQP [60], which is implemented in the NAG
library7 (Numerical Algorithms Group), or Ipopt8 can be applied to solve these
single-objective minimization problems. This yields a set P of minima which ap-
proximates the whole Pareto set if it is convex, and a continuous connected part of
it in the nonconvex case.

To be more precise, for the given multiobjective optimization problem 3.1, a norm
‖ ·‖, and an optimal point y0 ∈P the reference point optimization algorithm works
as follows:

P := {y0}
FP := {F(y0)}

6 For the numerical computations, we minimize the squared distance to ensure
differentiability.

7 http://www.nag.co.uk
8 https://projects.coin-or.org/Ipopt
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for i = 0, . . . ,M do
for j = 1, . . . ,k do

Choose Ti
j ∈R

k near F(yi) but outside of F(S)
Solve y∗j := argminy∈S ‖F(y)−Ti

j‖
if ‖F(y∗j)−Ti

j‖> 0 then
y|P|+1 := y∗j
P := P∪{y|P|+1}
FP := FP∪{F(y|P|+1)}

end if
end for

end for
Here, M ∈N is a predefined maximum number of steps, P is the resulting set that ap-
proximates P (at least in parts) and FP is the corresponding front. The if -condition
ensures that the chosen targets are not reachable, at least for the chosen local min-
imizer. For target generation, we have chosen a strategy designed to approximate
the Pareto front for a bi-criteria optimization problem with evenly spread points
very quickly. Details can be found in [133]. Different possibilities relating to the
generation of good targets are proposed in e.g. [33].

3.2.4.2 Description

A general formulation of a multiobjective optimal control problem with uncertainty
is stated as follows.

Problem 3.2. Find a control u∗ that solves

min
u

Ĵ(u) = min
u

∫
J(x,u)ρ(ξ )dξ (3.11)

subject to
ẋ(t) = f(x(t),u(t),ξ ), (3.12)

with vector-valued objective functionals Ĵ = (Ĵ1, . . . , Ĵk) and J = (J1, . . . ,Jk) such
that Ĵi(u) =

∫
Ji(x,u)ρ(ξ )dξ . Each Ji(x,u) may consist of a Lagrange and a Mayer

term of the form Ji(x,u) =
∫

I Ci(x(t),u(t))dt +ψ i(x(t f )), i = 1, . . . ,k, with C =
(C1, . . . ,Ck) and ψ = (ψ1, . . . ,ψk) being vector-valued, continuously differentiable
functions.

The numerical solution to Problem 3.2 involves three key tasks: (i) the numerical
solution of the state equation (3.6), (ii) a simulation strategy to evaluate the objective
functional Ĵ, and (iii) an optimization algorithm to approximate the Pareto set.

For the first task, a numerical integrator based on a prescribed time grid Δ t =
{t0, . . . , tN = t f } is used. Let ud = {uk}N

k=0 be a discretization of the time-dependent
function u(t), where uk is an approximation of u(tk). For a fixed control sequence
ud and fixed parameter ξ a variational integrator is applied to compute an approxi-
mation xd = {xk}N

k=0 of the curve x(t).9 Variational integrators [97] are particularly

9 Note that each xk, k = 0, . . . ,N, is a function of ξ .
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efficient for Hamiltonian and Lagrangian systems, since they preserve structural
properties such as symmetries in the discrete approximation.

For the second task, in general two approximations have to be performed in order
to evaluate an objective functional of the form (3.11). In the following, we use the
same approximation rules for each objective functional Ĵi, i = 1, . . . ,k but omit the
index i and the Mayer term for simplicity in this section. Based on the discrete time
grid {tk}N

k=0, first the objective functional J is approximated by

Jd(xd(ξ ),ud) =
N−1

∑
k=0

Cd(xk,xk+1,uk)≈
∫

I
C(x(t,ξ ),u(t))dt (3.13)

where Cd(xk,xk+1,uk) is an approximation of
∫ tk+1

tk C(x(t,ξ ),u(t))dt for a fixed
parameter ξ = (ξ1, . . . ,ξs) ∈ R

s using numerical quadrature rules (see e.g. [107]).
Thus,

∫
Jd(xd(ξ ),ud)ρ(ξ )dξ is already an approximation of Ĵ based on the discrete

time grid {tk}N
k=0.

For the approximation of the remaining integral, we use a straightforward ap-
proximation technique based on a simple sampling of the uncertain parameters. We
assume a bounded support of the pdf which is effective by cutting the pdf at ap-
propriate boundaries. For our numerical examples, such a support is chosen to be
five times the standard deviation, since it is unlikely that the parameters are outside
this region. Note that also, in most practical applications, the region of uncertainty
is bounded (system parameters can only change within a prescribed region). Thus,
we introduce lower and upper bounds ξ l

i and ξ u
i on the random variables, such that

ξi ∈ [ξ l
i ,ξ u

i ] for i = 1, . . . ,s. We discretize ξ with Mi + 1 discretization points for
each component ξi, i=1,. . . ,s. Thus, we define equidistant discrete grids {ξiki}Mi

ki=0

with ξi0 = ξ l
i , ξiki = ξi0+Δξiki and ξiMi = ξi0+MiΔξi = ξ u

i with grid sizes Δξi ∈R,
i = 1, . . . ,s.10 We define a discretized probability density function ρd as

ρd(ξ ) =
ρ((ξ1k1 , · · · ,ξsks))

Δξ1 · · ·Δξs ∑M1
l1=1 · · ·∑Ms

ls=1 ρ((ξ1l1 , · · · ,ξsls))
(3.14)

for ξiki−1 < ξi ≤ ξiki for i = 1, . . . ,s,

ki = 1, . . . ,Mi, i = 1, . . . ,s and ρd(ξ ) = 0 if ξi �∈ [ξ l
i ,ξ u

i ] for at least one i. Note that
this choice of ρd guarantees that

∫
ρd(ξ )dξ = 1. Finally, Ĵ(u) is approximated by

Ĵd(ud) = Δξ1 · · ·Δξs

M1

∑
l1=1

· · ·
Ms

∑
ls=1

Jd(xd(ξ1l1 , · · · ,ξsls),ud)ρd((ξ1l1 , · · · ,ξsls))

=
∑M1

l1=1 · · ·∑Ms
ls=1 Jd(xd(ξ1l1 , · · · ,ξsls),ud)ρ((ξ1l1 , · · · ,ξsls))

∑M1
l1=1 · · ·∑Ms

ls=1 ρ((ξ1l1 , · · · ,ξsls))
. (3.15)

10 In the following, the first index of ξ refers to the vector component, while the second index
represents the grid point.
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Note that the probability P of ξ being in [ξ1k1−1,ξ1k1 ]× ·· · × [ξsks−1,ξsks ] can be
approximated by

Pk1···ks =
∫ ξ1k1

ξ1k1−1

· · ·
∫ ξsks

ξsks−1

ρd(ξ )dξ =
ρ((ξ1k1 , · · · ,ξsks))

∑M1
l1=1 · · ·∑Ms

ls=1 ρ((ξ1l1 , · · · ,ξsls))
. (3.16)

The multiobjective optimal control problem is thus transformed into a multiob-
jective optimization problem with objective function Ĵd = (Ĵd,1, . . . , Ĵd,k) and opti-
mization parameters y = ud = {u0, . . . ,uN}. The discretization of the time interval
determines the problem dimension and is typically high in order to comply with the
desired accuracy requirements. Thus, for the computation of Pareto optimal con-
trol sequences ud = {u0, . . . ,uN} and for the approximation of the Pareto set (the
third task), the reference point optimization method is applied. The discretization of
the uncertain parameter space significantly influences the duration of the objective
function evaluation. Note that for each evaluation of Ĵd(ud), (M1 + 1) · · ·(Ms + 1)
simulations of the differential equation (3.12) are required.

3.2.4.3 Results

As a result, a set of Pareto optimal control sequences ud is obtained. By apply-
ing these control sequences to the technical system described by the differential
equation (3.6), the system behaves Pareto optimally with respect to the prescribed
quantity of interest (e.g. control effort) and performance in the presence of uncertain
parameters.

3.2.4.4 Application Example

In this section, a robot arm modeled as a two-link mechanism (see Fig. 3.23) is
considered for which the lengths L1 and L2 of the two links are assumed to be
unknown or not measurable exactly. The mechanism consists of two coupled pla-
nar rigid bodies, where θi, i = 1,2, denote the orientation of the ith link measured
counterclockwise from the positive horizontal axis. The system is controlled via
two control torques denoted with u(t) = (τ1(t),τ2(t)), acting in both joints of the
two time-dependent links (see [107] for a detailed model description). The goal is
to determine a control sequence u(t) which steers the robot arm tip (modeled as
the end point of the two-link mechanism) from a prescribed initial state x0 to a

Fig. 3.23 Model of the
two-link manipulator with
uncertain link lengths
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prescribed final state xref = (0,1.5,0,0) at time t f = 1.0, where x consists of the
arm tip’s position q = (L1 cosθ1 +L2 cosθ2,L1 sinθ1 +L2 sinθ2)

T and its velocity
v = (−L1θ̇1 sin θ1 −L2θ̇2 sinθ2,L1θ̇1 cosθ1 +L2θ̇2 cosθ2)

T . This maneuver should
be performed in such a way that, on one hand, the required control effort is mini-
mized, and on the other hand, the deviation from the prescribed goal state xref is as
small as possible in the presence of uncertain length parameters ξ = (L1,L2).11

In the first step, the deterministic optimal control problem is solved, for which
the lengths are fixed as some reference value ξ = ξ̂ = (L̂1, L̂2). The endpoint
condition x(t f )− xref = 0 is incorporated as a terminal constraint in the optimal
control problem, such that only one objective functional, the control effort given
as J1(u) =

∫ t f
t0

1
2‖u(t)‖2

2 dt, is considered. To determine the optimal control se-

quence u∗
d(ξ̂ ), the numerical method DMOC (Discrete Mechanics and Optimal

Control) [107] is utilized, which is based on the discretization of the underlying
optimal control problem. For the discretization, a discrete time grid with N+1 = 20
discretization points is chosen.

In a second step, the control problem is reconsidered including uncertainty. The
unknown lenghts L1 and L2 are assumed to be independent and normally distributed
around the reference value L̂i = 1.0, i = 1,2, with a standard deviation of 0.001.
For the numerical treatment, the space of uncertain parameters [0.995,1.005]×
[0.995,1.005] is discretized by two equidistant grids {ξi0,ξi1, . . . ,ξiMi}, Mi = 33,
i = 1,2, and we approximate the pdf with the discretized probability density func-
tion ρd(ξ ) (3.14). In Fig. 3.24 (left), the probability P of ξ being in [ξ1k−1,ξ1k]×
[ξ2l−1,ξ2l ] is depicted as given by Pkl in (3.16).
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Fig. 3.24 Left: discretization of uncertain parameter space and approximated probability;
Right: final positions q(t f ,ξ ) for different values of lengths parameters ξ and optimal control

sequence u∗
d(ξ̂ )

11 Note that the robot arm tip’s state is dependent on the uncertain lengths ξ .
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(a) Approximation of Pareto front with five
chosen points.

(b) Final configurations for Pareto point 1.
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Fig. 3.25 Behavior of final points in configuration space for five chosen points of the approx-
imated Pareto front
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First, we investigate the influence of uncertainty on the system performance if the
optimal control u∗

d(ξ̂ ), which was computed for the deterministic case, is applied to
the system. We integrate the differential equation (3.6) with fixed optimal control
sequence ud = u∗

d(ξ̂ ) and different grid values ξi j = (ξ1i,ξ2 j), i, j = 0, . . . ,M. In
Fig. 3.24 (right), it can be seen that the different final configurations q(t f ,ξi j) of the
arm tip strongly deviate from the reference value for the final position qref =(0,1.5).
A similar behavior can be observed for the final velocities. The colors indicate the
probability values as given in Fig. 3.24 (left). Thus, the performance of the system is
relatively poor in the presence of uncertain lengths and new control sequences have
to be determined to improve the system performance.

To reduce the deviation from the reference goal state, the mean of the perfor-
mance measure (3.8) is treated as additional objective function, and the reference
point optimization method is employed to determine Pareto optimal control se-
quences (minimal control effort and minimal mean deviation from the reference
point). For the minimization of (3.10), a SQP method implemented in NAG is used.

Figure 3.25 (a) shows the approximation of the Pareto front. It can be observed
that for increasing control effort, the mean of the deviation from the final goal state
(marked as a cross) decreases. In Fig. 3.25 (b)–(f), the final configurations for un-
certain lengths are illustrated for five selected Pareto points. Along the Pareto front,
the area of reached final points contracts and thus system performance increases as
desired.12 A similar behavior can be observed for the final velocities.

3.2.4.5 Further Reading

For a more detailed description of numerical methods, the problem formulation and
an overview of related literature, we refer to [107, 108, 135].

3.2.5 Behavior Planning

Philip Hartmann

In order to increase the dependability of self-optimizing mechatronic systems, cog-
nitive planning components with enhanced information processing are also inte-
grated into the system. These components allow mechatronic systems to plan their
behavior in order to fulfill individual tasks independently and proactively. A single
task represents a sequence of actions executed by the mechatronic system within
a limited time frame in order to reach a given goal state. Along with bare fulfill-
ment of that task, i.e. finding an arbitrary sequence of actions to reach the desired
goal-state, planning tries to minimize or maximize objectives, such as minimizing
energy consumption. For this reason, actions are only selected if their expected
results fit the desired objectives. With respect to dependability, it is possible to
create alternative plans for critical situations before they arise, i.e. for particular

12 For the illustration of the distributions in Fig. 3.24 (right) and Fig. 3.25 (b)-(f), only the
final points with probability P ≥ 10−6 are depicted.
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environmental or low energy situations. However, this may decrease the Availabil-
ity of the mechatronic system and the Reliability of subsequent task fulfillment.
Furthermore, behavior planning considers the continuous and nondeterministic en-
vironment of the system (cf. [80]).

3.2.5.1 Prerequisites and Input

When modeling a planning domain for behavior planning of intelligent mechatronic
systems (cf. [80–82]), the main challenge is to map the partial function solutions
onto actions within the framework of PDDL (Planning Domain Definition Lan-
guage, cf. [53]). Depending on the amount of detail desired when modeling these
functions, this approach results in a higher or lower abstraction of actions. In case
the of behavior planning, the executed partial function solutions are called opera-
tion modes. Thus, a planning problem for mechatronic systems can be formulated
as follows (adapted from [81]):

• OM is a finite set of available operation modes,
• S is a finite set of possible system states, and
• s ∈ S is a state vector with s(i) ∈ R for the i-th component.

Furthermore, for each operation mode om ∈ OM:

• precom := {(xlower < s(i)< xupper)|xlower,xupper ∈R} is the set of preconditions
which must be true for the execution of operation mode om and

• postom is a set of conditional numerical functions describing the change of in-
fluenced state variables. A condition is a logical expression (conjunctions and
disjuctions) of comparison operations; if a condition is true, the result of the cor-
responding numerical function is assigned to state variable in the next state s′ of
the plan ( [81]).

3.2.5.2 Description

A specific planning problem is the finding of a sequence of operation modes which
describes a transition from an initial system state si ∈ S to a predetermined goal state
sg ∈ S. Thus, a single task of a mechatronic system is given as a 2-tuple O = (si,sg).
A solution to the planning problem can be determined by applying a state space
search algorithm (cf. [57]), for example. The optimal solution (e.g. minimum of en-
ergy consumption) can be found by computing the specific solutions with respect
to the given System of Objectives. For this purpose, Ω is a set of objectives and
f : S×Ω → [0,1] is a function that indicates how well the execution of an oper-
ation mode in a given state satisfies the objective. Using the weighted sum of the
objectives, the optimal sequence of operation modes can be determined (cf. [81]).

During runtime in a non-deterministic environment with continuous processes,
behavior planning has to include methods for handling resulting problems. For ex-
ample, Klöpper [80] uses a modeling approach to integrate continuous processes
based on optimal control and continuous multiobjective optimization (also cf. [56]),
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as well as estimation obtained by fuzzy approximation. To manage planning un-
der uncertain conditions, different techniques can be combined in a hybrid planning
architecture (cf. [81]).

Figure 3.26 shows the hybrid planning architecture with the corresponding
components for planning, execution and monitoring of plans. The total planning
is divided into three separate sections: offline, just-in-case and online planning. The
offline planning represents a planning process where, initially, a deterministic and
optimal plan in view of the objectives is fully created before execution. The resulting
plan is used in the just-in-case planning to do a probabilistic analysis for plan de-
viations. The present and deterministic plan is examined for estimated variances in
order to proactively generate conditional branches, with alternative plans for critical
system conditions. A threshold specifies the maximum probability of state devia-
tions which would results in a generation of conditional branches (See [82], cf. in
particular also [82] and [80].)

For this purpose, an additional stochastic planning model is formulated based on
the deterministic planning model. This consists of stochastic states sp with |sp|= |s|,
where range(sp(i)) → P(R) is the values range and distribution(sp(i)) the proba-
bility distribution of the state variable sp(i) and a stochastic variant of the operation
modes. Let inom

s ⊆ preom be a subset of input variables and outom
s ⊆ postom a subset

of output variables. For each output variable o∈ outom
s , a Bayesian network (cf. [17])

bnom
o is created to formulate the stochastic relation (cf. [80, 81]; for a concrete ex-

ample of creating a stochastic model cf. [82]). As a result, it is now possible to use
the just-in-case-planning to generate alternative plans for situations that could occur
with high probability during operation.

The online planning (cf. Fig. 3.26) serves as a fallback mechanism; it selects the
optimal operation mode for the next execution step. Thus, operation in previously
unplanned situations is guaranteed. A simulation of the continuous system behavior
will check whether the current action of the active plan is executable under the given
environmental conditions. If this is not possible, online planning is necessary, e.g.
for a situation with extreme environmental influences such as heavy rain. While

Fig. 3.26 Hybrid planning
architecture (source: [81])
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completing the execution of previously planned operation modes, a comparison of
planned and actually reached system states is carried out.

A process for plan updating will check whether a pre-determined plan is avail-
able or whether a plan modification by the online planning is necessary. This will
guarantee the immediate availability of the next operation mode (cf. Fig. 3.26).

The just-in-case and online planning are implemented as anytime algorithms (for
the usage of anytime algorithms in intelligent systems cf. [155]). The planning pro-
cess can be interrupted at any time to obtain a result, but with increasing time for
calculations it provides a higher quality of result, as it is possible to generate more
branches and to reach a higher depth of planning.

3.2.5.3 Results

The dependability our type of system can be influenced by various factors. A major
factor is the availability of energy, as this is crucial for the operationf of the sys-
tem. To ensure the dependability of the mechatronic system, it is essential to use
the energy storage in a valid range and in particular to observe the state of charge
continuously. Energy management can use behavior planning to proactively sched-
ule future energy demands according to the fulfillment of the current task, which
increase the dependability of the mechatronic system (cf. [82]).

Table 3.2 Values for f1 (weighted average body acceleration in m/s2) and f2 (energy con-
sumption in ws) of operation modes derived from the multiobjective optimization of the active
suspension module. (source: [81])

OM Objective Track type
function I II III IV V VI VII VIII IX X

a f1 0.117 0.233 0.350 0.466 0.583 0.699 0.816 0.932 1.049 1.166
f2 196 393 589 786 982 1179 1375 1572 1768 1965

b f1 0.152 0.304 0.457 0.609 0.761 0.913 1.066 1.218 1.370 1.522
f2 165 329 494 659 823 988 1153 1317 1482 1647

c f1 0.192 0.385 0.577 0.770 0.962 1.155 1.347 1.540 1.732 1.925
f2 142 283 425 567 709 850 992 1134 1275 1417

d f1 0.224 0.449 0.673 0.897 1.122 1.346 1.570 1.794 2.019 2.243
f2 122 245 367 489 612 734 856 979 1101 1224

e f1 0.262 0.523 0.785 1.047 1.308 1.570 1.832 2.093 2.355 2.617
f2 104 208 313 417 521 625 730 834 938 1042

f f1 0.298 0.595 0.893 1.191 1.488 1.786 2.084 2.381 2.679 2.977
f2 87 173 260 346 433 520 606 693 779 866

g f1 0.331 0.662 0.994 1.325 1.656 1.987 2.318 2.649 2.981 3.312
f2 69 138 206 275 344 413 482 550 619 688

h f1 0.375 0.749 1.124 1.499 1.873 2.248 2.623 2.997 3.372 3.747
f2 50 99 149 199 248 298 348 398 447 497

i f1 0.435 0.870 1.305 1.739 2.174 2.609 3.044 3.479 3.914 4.349
f2 27 55 82 110 137 164 192 219 247 274
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Fig. 3.27 Percentage of failed execution depending on threshold probability and number
of available alternative plans: (a) Return to standard plan (±0%); (b) No return to stan-
dard plan (±0%); (c) Return to standard plan (±15%); (d) Return to standard plan (+15%)
(source: [81])

3.2.5.4 Application Example

Table 3.2 shows the values for operation modes derived from the multiobjective
optimization from the active suspension module of the RailCab system.

The experiments described here were intended to allow an evaluation of three
hypotheses (cf. [81]). One of these hypotheses in connection with the dependability
was that a lower threshold probability and a higher number of alternative plans in-
creases the reliability of the just-in-case planning ( [82]). The simulated experiments
included four scenarios (source [81]):

1. (±0%): The energy consumptions drawn from track networks were not changed
during simulation.

2. (±15%): The energy consumptions drawn from track networks were either de-
creased or increased by a random value up to 15%.

3. (+15%): The energy consumptions drawn from track networks were always
decreased by a random value up to 15%.

4. (−15%): The energy consumptions drawn from track networks were always
increased by a random value up to 15%.
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The Results are shown in Fig. 3.27 (for a detailed description of the simulation
parameters and the executed scenarious cf. [81]) When regarding the percentage of
failed plan execution during the simulation runs for different scenarios, adjusting the
two parameters threshold value and number of alternative plans reduces the number
of failed plans significantly.

3.2.5.5 Further Reading

A detailed explanation of behavior planning for mechatronic systems can be found
in [81, 82]. In particular, [82] gives a deeper understanding of the probabilistic plan
structure used in the analysis of the just-in-case planning. The basic methods were
originally published in the dissertation [80], which may also be a good starting point
for further reading.

3.2.6 Computation of Robust Pareto Points

Michael Dellnitz, Robert Timmermann, and Katrin Witting

During the development of self-optimizing systems, the technical system under con-
sideration usually has to be optimized with respect to several different objectives.
Typically, these objectives are in conflict with each other, such as safety and en-
ergy efficiency, for instance. In mathematical terms, the problems to be solved in
this case are multiobjective optimization problems. Here, the attributes of depend-
ability, in particular safety and reliability, can be considered as objective functions.
The solution to multiobjective optimization problems is given by the set of opti-
mal compromises, the previously introduced Pareto set. The elements of this set
define the respective status of the system and are called Pareto points. A multiobjec-
tive optimization method is often applied in combination with control engineering
methods. It requires the same information about the models of the dynamics from
the appropriate partial models of the Principle Solution (cf. Sect. 2.1). Of particu-
lar importance is the partial model “System of Objectives”. It contains information
about the relevant objectives which have to be considered to solve the multiobjective
optimization problem.

Both during the system’s design phase and during operation, it is an important
concern to choose a Pareto point which is appropriate for the current system envi-
ronment. For instance, the objective “safety” should receive a higher priority when
a moving vehicle is operating in a rainy or windy environment. Thus, the partial
model “Environment” provides important information on environmental parame-
ters and their ranges which has to be considered in the multiobjective optimization
methods. In general, the choice of Pareto points must be adapted to the variation of
external parameters.

In this section, parametric multiobjective optimization problems are considered
in which an external parameter influences the system’s behavior; this parameter
may vary during runtime. We introduce here two methods which allow the compu-
tation of so-called robust Pareto points. These points are characterized by minimal
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variation with respect to changes of external parameters. The first method is based
on the calculus of variations; the goal of this method is to identify a Pareto point
which changes very little when the external parameter is varied over an entire inter-
val. The second method is based on numerical path-following techniques. Here, a
local strategy is used in order to update the status of the system in response to the
variation of an external parameter.

3.2.6.1 Prerequisites and Input

Multiobjective Optimization

Consider an unconstrained multiobjective optimization problem (cf. also Sect.
3.2.4.1) which additionally depends on an external parameter λ ∈R. This parameter
is not intended for optimization, but it nonetheless influences the system objectives.
This unconstrained parametric multiobjective optimization problem can be formu-
lated as

min
y
{F(y,λ ) : y ∈ R

n,λ ∈ [λstart ,λend ]}

where F is defined as the vector of objective functions f1, . . . , fk,k > 1,

F : Rn ×R→R
k,F(y,λ ) = ( f1(y,λ ), . . . , fk(y,λ ))T .

A point y∗ ∈ R
n is called Pareto optimal for a given parameter λ , if there exists no

y ∈ R
n with

F(y,λ )≤p F(y∗,λ ) and f j(y,λ )< f j(y∗,λ ) for at least one j ∈ {1, . . . ,k}.

The set of all Pareto points is the Pareto set. A necessary condition for Pareto
optimality is given by the (in this case parameter-dependent) Kuhn-Tucker equa-
tions (cf. [87]): for each Pareto optimal point y ∈ R

n there exists a vector α(λ ) =
(α1(λ ), . . . ,αk(λ ))T ∈R

k with αi(λ )> 0 such that

HKT (y(λ ),α(λ ),λ ) =
(

∑k
i=1 αi(λ )∇y fi(y(λ ),λ )

∑k
i=1 αi(λ )− 1

)
= 0 . (3.17)

The set of all y for which there exists a weight vector α , such that (y,α ,λ ) is a so-
lution of (3.17), is called the set of substationary points Sλ . In numerical computa-
tions, it is often easier to work with αi = t2

i and solve H(y, t,λ ), but both approaches
compute the same set Sλ and thus ti and αi will be used synonymously throughout
this section.

3.2.6.2 Description

In this section, the two methods (relying on variational calculus or numerical path-
following techniques) used here for the computation of robust Pareto points are
introduced in more detail.
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Variational Approach

Our goal is to determine a curve γ(λ ) = (y(λ ), t(λ ))T of minimal length from an
arbitrary starting point on the set of substationary points Sλstart to an arbitrary end
point on Sλend

that lies within the λ -dependent set of substationary points. Using
calculus of variations, this problem can be formulated as follows:

min
γ

∫ λend

λstart

‖y′(λ )‖2 dλ s.t. HKT (y(λ ), t(λ ),λ ) = 0 . (3.18)

This functional calculates the length of the curve y(λ ), which is guaranteed to lie
on the set of substationary points.

A necessary condition for the optimality of (3.18) is given by the Euler-Lagrange
equations (cf. [58]). In [151,152] a discrete formulation of the Euler-Lagrange equa-
tions is described which goes back to [97]. This leads to a system of nonlinear equa-
tions that characterize candidates for robust Pareto points:

HKT (y j, t j,λ j) = 0 ∀ j = 0, . . . ,N

μT
j

∂
∂ t j

HKT (y j, t j,λ j) = 0 ∀ j = 0, . . . ,N

y j+1 − 2y j + y j−1

h2 μT
j

∂
∂ t j

HKT (y j, t j,λ j) = 0 ∀ j = 1, . . . ,N − 1 (3.19)

y1 − y0

h2 − 1
2

μT
0

∂
∂ t0

HKT (y0, t0,λstart) = 0

−yN − yN−1

h2 − 1
2

μT
N

∂
∂ tN

HKT (yN , tN ,λend) = 0

where N + 1 is the number of discretization points on the curves y(λ ), t(λ ) and
μ(λ ). μ is the Lagrangian multiplier. This system of equations (3.19) can be solved
using numerical techniques in order to compute robust Pareto points. An applica-
tion of this method for the RailCab’s active suspension system can be found in
Sect. 3.2.6.4.

Numerical Path-Following Approach

Given an initial Pareto set, we investigate if there exist points y ∈ R
n that are sub-

stationary points for all λ ∈ [λstart ,λend ]; if this is not the case we investigate which
points y ∈R

n do not vary significantly during variation of λ . Analogously, it can be
examined which points vary as little as possible in the respective image space.

Numerical path-following techniques are used to track a Pareto point during vari-
ation of the parameter λ . A predictor-corrector method was adapted to follow a
Pareto point on the set of substationary points S (cf. [3] or [37] for an introduction
to numerical path-following and the predictor-corrector method).

For this task, we are searching for the set of zeros c(s) of a continuous func-
tion H : Rn ×R→ R

n. The aim of the predictor-corrector method is to calculate a
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sequence of points (pi,λi), such that H(pi,λi) = 0 for all i = 1,2, . . . . The numer-
ical procedure consists of two steps, which are executed alternatingly: during the
predictor step, a new point in the vicinity of the zero set is calculated; starting at this
point, a new point on the zero set is calculated in the following corrector step.

Using necessary and sufficient conditions formulated by Luenberger in [96] and
introducing Lagrangian multipliers μ , one can construct a path-following routine to
compute paths containing substationary points for varying values of λ . These paths
are computed in such a way that the distance from the previously computed point
to the next point, which has to lie on the set of substationary points for the new
λ -value, is minimal.

At first, a Pareto set for λ = λstart is computed (e.g. using the software GAIO,
cf. [34]); for which t can be computed using the Kuhn-Tucker equations. We initially
set u = (y, t,λ ,μ) = (ystart , tstart ,λstart ,0).

Predictor Step

In this step λ is increased while y, t, and μ are left unchanged

uPred = u+

⎛
⎜⎜⎝

0
0
h
0

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

y
t
λ̃
μ

⎞
⎟⎟⎠

where h is an adequately controlled stepsize.

Corrector Step

During the corrector step, λ̃ is fixed and y, t, and μ are adjusted until the point with
minimal distance from the preceding set Sλ̃ is determined. The minimal distance
computation can be formulated as a zero finding problem:

HCorr(y, t,μ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑k
i=1 t2

i ∇y fi(y, λ̃ )
∑k

i=1 t2
i − 1(

d(y;yold ,λold , λ̃ )
0

)
− μ1∇(y,t)H

1
KT (y, t, λ̃ )...

...− μn∇(y,t)H
n
KT (y, t, λ̃ )− μn+1

⎛
⎜⎜⎜⎝

0
2t1
...

2tk

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

with HKT = (H1
KT , . . . ,H

n
KT )

T . The function d(·;yold ,λold , λ̃ ) : Rn → R
n is a deci-

sion function, which is defined as

(a) x �→ d(x;yold ,λold , λ̃ ) = 2(x− yold) or

(b) x �→ d(x;yold ,λold, λ̃ ) = 2
(

∑k
i=1

(
fi(x, λ̃ )− fi(y0,λold)

)
∇x fi(x, λ̃ )

)
.
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The choice of version (a) or (b) depends on the space within which we are seeking
paths of minimal length: if we consider paths of minimal length in pre-image space,
version (a) is used, and if paths of minimal length in image space are considered,
version (b) is used.

The predictor and the corrector step are repeated alternatingly until λ = λend , and
thus a path from Sλstart to Sλend

, has been found.

3.2.6.3 Results

Both methods, the variational approach as well as the path-following method, have
been applied very successfully to realistic technical examples. The path-following
approach has been used to compute robust Pareto points for the design of inte-
grated circuits (ICs, cf. [23,151]). In this context, the decision maker is interested in
parameters for the IC design, which result in similar behavior of the IC across a wide
range of external parameters (e.g. temperature or supply voltage); the concept of ro-
bust Pareto points can help identify these parameters. This approach has also been
used to compute robust Pareto points for the RailCab’s active suspension module
in [145]. Another example of a technical application in which we use the variational
approach to compute robust Pareto points is discussed in the following section.

3.2.6.4 Application Example

In [86], the variational method is used to compute robust Pareto points for the Rail-
Cab’s active suspension module (ASM, cf. Sect. 1.3.1.3). An external parameter λ
is used to model the varying crosswind conditions which affect the ASM. In this
example, a simple sky-hook controller is used to control the system. The system
depends on three parameters p = {p1, p2, p3}, which represent the damping of each
degree of freedom of the coach body by the active suspension system. Furthermore,
the two objectives comfort ( f1) and energy consumption ( f2) for the multiobjective
optimization are defined as

f1,2 : R3 → R, p �→ f1,2(p) =
∫ T

0
y(t)T Q1,2 y(t)dt ,

with positive definite matrices Q1,2. These objectives depend on the response y(t) of
the linear model of the ASM, which itself depends on the parameters p. The model
is simulated with a fixed excitation u(t) for a constant time T . Additionally, the
crosswind is modeled as a further disturbance z(t). An example crosswind profile is
shown in Fig. 3.28.

We chose N = 10 discretization points from the mean crosswind λ between 0 m/s
and 16.3 m/s. Based on this choice, the values of λ j are given by λ j = 0+ j ·0.163,
j = 0, . . . ,N. In this case, the system of equations (3.19) consists of 99 equa-
tions with 99 unknowns. Solutions were computed numerically using the MATLAB
solver fsolve and are plotted as black points in Fig. 3.29.

The robust Pareto point at (0,0,0) can be easily explained, as one would expect
the energy-optimal solution at this point, regardless of the crosswind. The second
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Fig. 3.28 One example:
crosswind velocity profile
acting as an external dis-
turbance on the RailCab’s
active suspension module
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robust Pareto point is nontrivial, though, and was not expected prior to the calcula-
tions. Thus, this provides some additional information about the active suspension
system which might be used for the self-optimization process in future. The avail-
ability of robust Pareto points introduces a classification of optimal system config-
urations that can be used during system operation, for example when dependability
is one of the design objectives.

3.2.6.5 Further Reading

A more detailed explanation of the variational approach can be found in [152],
the path-following method has been published in [35], and the dissertation [151]
gives a comprehensive overview of all topics covered in this section. The exam-
ples of the application of the numerical path-following method have been published

Fig. 3.29 Pareto sets for
three specific crosswind
values and robust Pareto
points
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in [23] (ICs) and [145] (RailCab) and the RailCab example of the variational method
in [86].

3.2.7 Behavior-Based Adaptation of Differing Model Parameters

Bernd Kleinjohann, Lisa Kleinjohann, and Christoph Rasche

As discussed in previous chapters, continuous monitoring and behavior-based adap-
tation of self-optimizing mechatronic systems can considerably increase their de-
pendability. Typically, such complex systems plan their actions as described in
Sect. 3.2.5, for example. During the execution of a previously computed plan, the
environment in which a mechatronic system is active may change in such a way that
unsafe system states occur. Hence, in order to achieve dependability, environmen-
tal changes affecting a self-optimizing mechatronic system have to be taken into
account to prevent system failures.

The method presented in this section has been designed to work with mechatronic
systems that compute plans in order to move from one position to another. These
plans consist of, for example, a set of Pareto points provided by multiobjective op-
timization [34, 135], as described in Sect. 3.2.6 and D.M.f.I.T.S, [55], Sect. 1.2.3.
Similar to planning and multiobjective optimization the behavior-based adaptation
of self-optimizing mechatronic systems is implemented in the Cognitive Operator
of the OCM (cf. Sect. 1.1.1).

To ensure that a mechatronic system is able to move from an initial position
to a destination, several conditions have to be considered. The passengers, for in-
stance, most likely desire a certain level of comfort during operation, while only
limited energy resources are available, and the destination has to be reached at some
given time. These conditions then conflict with each other. To find optimal solu-
tions, Pareto fronts can be calculated a priori, using a model of the system. Based
on single points of the Pareto fronts, a plan can then be computed which ensures
that all conditions are fulfilled as far as possible for the overall plan. Such a plan
consists of several Pareto points, one for each part of the route. It is computed by a
planner such as the one presented in D.M.f.I.T.S, [55], Sect. 5.3.8. Each Pareto point
leads to specific parameter settings and influences how well the conditions, whether
of primary importance, such as energy consumption, or of secondary importance,
such as level of comfort, are fulfilled.

Computing Pareto fronts is of high computational complexity; therefore, the
computation of the single Pareto fronts, used to determine specific settings for each
track section, is performed prior to the first movement and stored in a database.
This decreases the computational effort needed to compute a plan. The fronts in the
database may be updated due to changing conditions.

As mentioned, the resulting plan is based on precalculated Pareto fronts. Hence,
only the preliminary parameters of the mechatronic system model used to calcu-
late the Pareto fronts could be taken into account while computing a workable plan.
Therefore, deviations between the model or its parameters and the real system can-
not be ruled out. One example is drag, which can lead to an increase or decrease
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Fig. 3.30 The line shows
a model Pareto front; the
left point is the Pareto point
selected by the planner. The
right point is the determined
working point, based on the
current measurements.
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in energy consumption of the real system compared to the energy consumption ex-
pected from the model values. To prevent the higher consumption from causing the
mechatronic system to run out of energy before reaching its destination, a change in
the plan has to be performed at runtime, thus possibly preventing a severe failure in
system availability.

Figure 3.30 shows an example of such a case. The line denotes the Pareto front
given by the model values and the point on the front denotes the Pareto point se-
lected by the planner. Each Pareto point has a comfort value, given by the objective
function f 1, and an energy consumption value, given by f 2. The momentary com-
fort and the energy consumption measured, result in the working point, i. e. the
right point outlined by a circle. While there is only a small change in the energy
consumption, the difference between the measured comfort value and the comfort
value given by the Pareto front differ significantly. Such differences can invalidate
the entire plan and a recalculation, based on the newly determined working point,
has to be conducted.

To be able to detect such deviations and to change the plan, several values, such
as energy consumption and passenger comfort, have to be measured continuously
during operation. Based on the measured values, the current working point has to
be calculated. If this working point differs too much from the model Pareto point
which was selected by the planner, replanning is necessary to still be able to fulfill
all conditions.

It is not possible to simply compute new Pareto fronts, which would lead to the
measured working point. Each Pareto front is based on several parameters and if
the model Pareto front does not fit the measurements, at least one of the parameters
must have changed to an unknown value. This means that an approximation of the
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model Pareto front using parameter fitting to shift it closer to the measurements has
to be conducted as described in the following sections.

3.2.7.1 Prerequisites and Input

The method Behavior-Based Adaptation of Differing Model Parameters needs sev-
eral inputs. A plan and the corresponding Pareto points for the complete route are
needed. Additionally, the multiobjective functions and the parameter values, used to
compute the Pareto fronts a priori, are needed, as well as the previously calculated
Pareto fronts, in order to compute an initial plan. Computing Pareto fronts is per-
formed by the program GAIO [34, 135]. It is also necessary to obtain measurement
data which can be used to determine the current working point, in order to be able
to compare the model Pareto point with the working point to find out whether or
how far they differ from each other. In order to obtain the necessary data, the partial
models Environment, Function, Behavior, Active Structure and System of Objectives
from the domain-spanning Conceptual Design Phase (cf. Sect. 2.1) are needed.

3.2.7.2 Description

As mentioned before, the approach described here approximates Pareto fronts, based
on selected Pareto points and moving towards a measured working point. This pa-
rameter adaptation of a Pareto front must only be carried out if, e. g., environmental
changes influence the self-optimizing system to the point that the initial plan be-
comes invalid. It is possible that an initially computed plan remains feasible during
the entire journey of the mechatronic system to its destination. Adapting the pa-
rameters is costly, and therefore only beneficial if the initially computed plan is
not feasible any longer. This section describes the approach using simple example
objective functions for the computation of Pareto fronts.

In order to keep the description simple, we are assuming two-dimensional Pareto
fronts with one dimension describing the energy consumption and the other dimen-
sion describing the comfort. We assume that a model Pareto point, selected by the
planner, and a working point computed using measured values are given. Such a
working point can easily be computed if it is possible to measure the current energy
consumption and the current comfort.

If these two points are unequal, the model parameters used to compute the model
Pareto point deviate from the actual parameters during operation. This can be for
several reasons, e. g., due to strong headwind, movement in a convoy or changes
of the route. Therefore, the parameters of the multiobjective functions must be
re-determined. We distinguish two different cases that allow us to approximate the
new Pareto fronts by parameter-fitting.

It is necessary to know both the current model Pareto point being used by the
planner and the measured working point. Based on these two points, a part of the
model Pareto front close to the selected model Pareto point is selected and recalcu-
lated in such a way that it it is shifted towards the working point.
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Two approaches are presented here. The first one directly computes new param-
eter values leading to a Pareto front close to the measured working point. This ap-
proach is efficient, but not universally applicable. The second approach uses Taylor
series to approximate the Pareto front stepwise and shift it towards the working
point.

Parameter Value Determination

If it is possible to determine the changed parameter values, a direct computation is
possible. Assume the example objective functions

Fmodel =

(
f1(ax2 + bx+ 1)
f2(cx2 + dx+ 4)

)
(3.20)

were used to calculate model data for a Pareto front. Let a,b,c and d be the param-
eters of the objective functions. The selected Pareto point Fmodel from the Pareto
front, computed using a given model, is selected to be (4,1). We assume now that
the working point Fmeasured = (5,2) has been determined using measured values
from sensors. The variable x is always set to the constant value x0 and only the vari-
ables a,b,c and d can increase or decrease by the values Δa,Δb,Δc and Δd. For
this example, we set x0 = 1. The two functions for the model parameter (p) and the
measured parameter p= p+Δ p are shown in Equation 3.21 and Equation 3.22. The
points used for the description are example points and can take any possible values.

Fmodel(x0, p) = ( f1(x0, p1), f2(x0, p2))
T = (4,1) (3.21)

Fmeasured(x0, p) = ( f1(x0, p1), f2(x0, p2))
T = (5,2) (3.22)

To obtain the difference between the Pareto point selected by the planner and the
working point calculated using the measured values, the functions can be subtracted
from each other. This subtraction leads to the following equations:

f1(x0, p1)− f1(x0, p1) = 5− 4

f2(x0, p2)− f2(x0, p2) = 2− 1

Inserting the values from the model and the measured values leads to

x2
0(1+Δa)+ x0(2+Δb)+ 1− (x2

0+ 2x0 + 1) = 1

x2
0(1+Δc)+ x0(−2+Δd)+ 4− (x2

0− 2x0 + 4) = 1.

This result shows the difference between the two points in the given dimensions.
Simplifying the equations leads to the following notation with the distance between
the two points being (1,1).

x2
0Δa+ x0Δb = 1

x2
0Δc+ x0Δd = 1.
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Solving the equations for Δa and Δc gives the notation shown below.

Δa =
1− x0 ·Δb

x2
0

Δc =
1− x0 ·Δd

x2
0

These equations are independent, making it impossible to solve them using Gaussian
elimination in order to compute the value changes Δa and Δc. Thus, it is necessary
to set Δb and Δd to fixed values in order to be able to solve the equations for Δa
and Δc.

As mentioned before, this example describes a case for which it is possible to
determine the parameters that have changed. It is assumed that the values a and c
have changed. Additionally, it is assumed that Δb = Δd = 0 for the computation of
the model Pareto front. This leads to:

Δa =
1

x2
0

Δc =
1

x2
0

.

As shown before, x0 is 1, which leads to Δa = 1 and Δc = 1.
It is now possible to compute a new Pareto front using the calculated values

for a and c. This Pareto front includes the computed working point, based on the
measured values. Based on this new parameter, the Pareto fronts for the upcoming
track sections can be calculated and, based on these Pareto fronts, a new plan can be
computed.

One disadvantage of this approach is that it must be possible to determine which
parameter has changed in the objective functions. If this is impossible, multiple so-
lutions exist. Depending on the assumed values for Δb and Δd, the resulting values
for Δa and Δc can be computed. If the assumption is wrong or if the measured
working point is far from optimal, the newly computed Pareto front will not be
close enough to the measured point to achieve dependability. If the objective func-
tions are infinitely differentiable, another approach can be used to approximate the
Pareto front, computed using preliminary parameters close to the measured working
point.

Taylor Series Approximation

In a case where it is impossible to determine the changed parameters of the objective
functions, an approximation using a Taylor Series expansion can be performed to
successively approximate a Pareto front given by model parameters close to a Pareto
front obtained using measured values [95].

Assume the differentiable functions, shown in Equation 3.23, which were used
to compute a model Pareto front:
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Fmodel =

(
f1(cos(a · x)+ b)
f2(sin(c · x)+ d)

)
(3.23)

Furthermore, assume that the planner has selected a Pareto point at position (2,3)
and the measured data revealed a working point at position (6,7). The value of x is
always constant. In this example, x0 = 1 is set to a constant value and only the values
of the parameters a, b, c, and d are variable. The equations can now be written as
follows:

Fmodel(x0, p) = ( f1(x0, p1), f2(x0, p2))
T = (2,3)

Fmeasured(x0, p+Δ p) = ( f1(x0, p1 +Δ p1), f2(x0, p2 +Δ p2))
T = (6,7).

First, the difference between the two points has to be calculated.

f1(x0, p1)− f1(x0, p1) = 6− 2

f2(x0, p2)− f2(x0, p2) = 7− 3

Let x0 be the Pareto point and let xm be the working point. To move a Pareto point
closer to a working point, each dimension is considered individually. First, a Taylor
series for each parameter (p1, p2) of the multiobjective function is computed, using
the partial derivatives as follows:

Ti(x) = f (x0)+
∂ f (x0)

∂ xi
1! (x− x0)+

∂ 2 f (x0)
∂ xi
2! (x− x0)

2

+
∂ 3 f (x0)

∂ xi
3! (x− x0)

3 + · · ·

Additionally, the differences between the Pareto point and the working point for
each parameter Δ pi = ‖x0 − xm‖i are computed. These differences are used to com-
pute new parameter values pin , as shown in the following equation:

pin = pi +
Δ pi

Ti(xm)
: Δ pi = {Δ p1,Δ p2}

The Pareto front is then newly computed, based on this new parameters and
the procedure is started over again until no further reduction of the differences is
achieved. The resulting Pareto front is close to the working point and based on the
new environmental parameters. The planner then uses Pareto fronts, based on the
newly determined parameters to conduct a replanning, leading to a new and feasible
path.

3.2.7.3 Results

As result, a new Pareto front can be computed during runtime, using adapted model
parameters. This Pareto front is based on the model parameters which were succes-
sively adapted to approximate the model Pareto point towards a measured Pareto
point by using the objective functions. Based on the new values obtained for the
objective functions, Pareto points for the upcoming track sections can be computed.
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These Pareto points can be used to create a new plan using the planner; this new plan
will then include current real-world measurements, which leads to an optimized plan
for the upcoming track sections and avoids, e. g., an energy consumption that is con-
tinuously too high for reaching the goal position. The approach is costly and should
therefore only be employed if the existing plan becomes invalid.

3.2.7.4 Application Example

The approach has been implemented and several tests have been performed. A
screenshot of the implemented program is shown in Fig. 3.31. It allows the behavior-
based adaptation of differing model parameters for various multiobjective functions.
The measured working points as well as the model Pareto fronts can be selected as
required. The program has also been used to test the combination of the Behavior-
Based Adaptation of Differing Model Parameters and a planning approach, which
is not considererd in this section.

The approach can be applied to single systems (cf. Sect. 1.3.1), as well as to com-
binations of multiple mechatronic systems for which the resulting settings are based
on Pareto points. In general, the approach leads to benefits in all self-optimizing
systems that are based on Pareto fronts, if an adaptation of these fronts is necessary,
e. g., if the system can be influenced by unpredictable events.

Fig. 3.31 Recalculated Pareto front based on measurement point: the left Pareto front was
given by model parameters and the right Pareto front was approximated using the change
in the corresponding parameter and the Taylor series expansion. The debug view shows the
single parameter settings for the value a to determine the new Pareto front. A measured value
as well as the Pareto point selected by a planner can be entered on the right side of the
program, for which the Pareto front is then approximated.
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Fig. 3.31 shows an example of a recalculated Pareto front based on the Taylor se-
ries approach introduced above. The function f1= cos(a ·x)+b represents the energy
consumption, while the function f2 = sin(c ·x)+d represents passenger comfort. On
the left side of Fig. 3.31, the axis f1 depicts the current energy consumption and the
axis f2 the current passenger comfort. The planner always receives several Pareto
points – in the presented example 11 different Pareto points – from which it has to
select one for each track segment. In the depicted example scenario, the planner has
selected the Pareto point at position (0.2, 0.04) from the model Pareto front for the
current track section (circled point on the left) in order to achieve the required comfort
without consuming too much energy. The measured data reveals a current working
point at position (0.25, 0.04), visualized by the circled point on the right.

Based on the model Pareto front, a Taylor series expansion is used for stepwise
approximation of the given Pareto front close to the working point, obtained from
measured values. An approximation is performed in order to be able to compute
new Pareto sets online, as the computation of a Pareto front is of high computa-
tional complexity. The passenger comfort is still close to the model Pareto point,
which means that there must be some model deviation, leading to a higher energy
consumption without, however, influencing passenger comfort. To compute the
model Pareto front, the values a = 0.5 and b = 1 were used to calculate the power
consumption. One of these variables must differ from the model values, for exam-
ple because of headwind. As can be see in the debug part of Fig. 3.31, the value
a has changed, which moves the complete Pareto front. The single values used in
each step are also shown in the debug view. To determine which values have to be
changed, the distance from the measured point to the model point is considered.

In the case presented, the result leads to a value a ≈ 0.48. Using this value, a new
Pareto front can be approximated which takes changed values, e. g., higher energy
consumption, into account. Based on these new values, the planner is able to re-plan
in order to compute a new consistent plan to the destination.

3.2.8 Analysis of Self-healing Operations

Claudia Priesterjahn

The software in dependable systems must satisfy both safety and liveness properties.
To achieve this, we have utilized a model-based approach for software development
as presented in D.M.f.I.T.S, [55], Chap. 5: a model of the software is constructed, the
model is verified with respect to safety and liveness properties, and program code is
generated that maintains the verified properties.

However, random errors may still occur due to the wear of hardware components,
such as sensors, which may affect the software and lead to hazards. Hazards are
considered situations that “together with other conditions [...] will lead inevitably to
an accident” [92]. For example, a speed sensor of the RailCab may fail and lead to
the hazard wrong distance, which may result in a collision.

Hazards cannot be avoided completely. However, for a dependable system, the
developer must guarantee that hazards will only occur with a certain probability. If
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the occurrence probability of a hazard is too high, the system must be redesigned so
that the hazard occurrence probability becomes acceptable [92].

Self-healing (see Sect. 1.1) as a special case of self-optimization may be used to
reduce the occurrence probabilities of hazards in mechatronic systems. We propose
to use the reconfiguration of the system architecture as a way to stop the propaga-
tion of detected failures before a hazard occurs. This is, for example, achieved by
disconnecting failed system components and shifting to intact components.

For the specification of failure propagation, we follow the terminology of Laprie
et al. [11]. Failures are externally visible deviations from the component’s desired
behavior. They are associated with ports where the component instances interact
with their environment. Errors are the manifestation of a fault in the state of a com-
ponent, whereas a fault is the cause of an error. Errors are restricted to the internals
of hardware nodes.

The errors in hardware components may be detected at runtime using, for ex-
ample, model-based fault diagnosis [137]. But the error is not observed directly.
Rather, the detection will observe a failure at the port of the hardware component or
at the port of another component. The errors causing the failure and an appropriate
self-healing operation are stored in a fault dictionary [113]. This fault dictionary
associates failures in the system with sets of errors causing these failures. The fault
dictionary is expanded to include self-healing operations, such that the fault detec-
tion not only identifies the causes of a failure, but also triggers a reaction in form of
a self-healing operation.

Figure 3.32 shows the architecture of a simplified subsystem of a RailCab that
controls the speed of a RailCab in a convoy (see Sect. 1.3.1). The component
sc:SpeedCtrl represents the speed controller which is responsible for setting the
electric current belonging to the linear drive of the rear RailCab in order to have
the vehicle drive at a specific speed. The speed controller computes the electric cur-
rent using the distance between the two RailCabs. This distance is provided by the
component ds:DSelect which selects the measured distance from two types of sen-
sors, depending on the quality of their data: a distance sensor dr:DSensor and a
distance computed by dg:DistGPS. dg:DistGPS computes the distance between the
two RailCabs from the position data provided by its gps sensor gps:GPS regarding
the rear RailCab and the front RailCab. The position data of the adjacent RailCab is
provided via wireless network by the components wlan:WLAN and ref:RefData.

An error in the distance sensor dr:DSensor will eventually lead to a failure in the
speed controller sc:SpeedCtrl. In Fig. 3.32, this error is illustrated by a black circle.

Fig. 3.32 Architecture of
the speed control subsystem

gps : GPS o

dr : DSensor

o

dg : DistGPS

ds : DSelect sc : SpeedCtrl

ref : RefDatawlan : WLAN o

e
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The propagation of the error and the resulting failures is depicted by a gray arrow.
The failure of the speed controller causes the hazard wrong speed. This means the
RailCab will drive at wrong speed, which may result in a collision with another
RailCab in the convoy.

Based on the computed hazard occurrence probabilities and the system architec-
ture, the developer constructs a self-healing operation for the hazard wrong speed.
The self-healing operation is shown in Fig. 3.33; it is triggered when the error
{edr} in the distance sensor is detected. The connectors between ds:DSelect and
dg:DistGPS, and ds:DSelect and sc:SpeedCtrl are removed and, instead, a connec-
tor between dg:DistGPS and sc:SpeedCtrl is created, thereby disconnecting the dis-
tance sensor from the subsystem. Distances are then only measured by GPS-based
position data.

In order to judge whether such a self-healing operation successfully reduces the
occurrence probability of the hazard, we must take into account that the execution
of operations as well as the propagation of failures in a real system take a certain
amount of time. As a consequence, an analysis of self-healing operations must take
the propagation times of failures, the duration of the self-healing operation, and the
change that results from the self-healing operation into account. However, current
approaches that analyze hazard occurrence probabilities in reconfigurable systems
do not consider these properties [59, 64].

Our solution is an analysis of self-healing operations [122,123] that considers in
particular the timing characteristics of failure propagation and the effect of a self-
healing operation on the propagation of failures.

The self-healing operations are analyzed when the discrete behavior and the re-
configurations have been specified and verified. The models Environment and Ap-
plication Scenarios of the Principle Solution (cf. D.M.f.I.T.S, [55], Chap. 3) are used
to identify hazards. The component structure and behavior models of the MECHA-
TRONICUML (see D.M.f.I.T.S, [55], Chap. 5) are used to derive failure propagation
models. These models are used to compute hazard occurrence probabilities and to
decide which hazard occurrence probabilities need to be reduced via self-healing op-
erations. Then, the self-healing operations are specified and analyzed as described
in this section.

Fig. 3.33 Timed component
story diagram for healing the
system of a faulty distance
sensor <<create>>

<<destroy>>
: DSensor o

: DistGPS

: DSelect

: SpeedCtrl

o

<<destroy>>

[90,115]

disconnectDistSensor()
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3.2.8.1 Prerequisites and Input

Our analysis of self-healing operations requires information about architecture and
behavior of the system, as well as information about the hazards which may occur
in the said system.

The architecture and behavior are specified by MECHATRONICUML models
(see D.M.f.I.T.S, [55], Chap. 5), which have to be constructed manually by the de-
veloper. This set of MECHATRONICUML models consists of a deployment diagram
specifying the system architecture, the real-time statecharts from the component
instances of the deployment diagram specifying the system behavior, and timed
component story diagrams (TCSD) specifying the self-healing operations. Addition-
ally, real-time statecharts must be defined for the hardware nodes in the deployment
diagram.

The information about the hazard includes a threshold of a hazard occurrence
probability for each hazard that may occur. These thresholds are needed to judge
whether the self-healing operations reduce hazard occurrence probabilities such that
they become acceptable. Further, our analysis requires a set of minimal cut sets
(MCS) [92]; these MCSs specify all combinations of errors that could cause the
hazard. In order to analyze the reduction of the occurrence probability of a hazard,
we need to analyze the self-healing operation for each MCS.

3.2.8.2 Description

Figure 3.34 shows an overview of our analysis of self-healing operations. The re-
quired input models were mentioned in Sect 3.2.8.1.

Before our analysis can be applied, the input models need to be created. Our anal-
ysis uses timed failure propagation graphs (TFPG); which are failure propagation
models with timing annotations. They are generated from the real-time statecharts
of the system components.

After creation of the models, a hazard analysis is carried out to compute the
occurrence probabilities and MCSs of the system’s hazards. Based on the occurrence
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Fig. 3.34 Overview of the analysis of self-healing operations



106 C. Priesterjahn

probabilities, the developer decides which hazards need to be countered by self-
healing. For each of these hazards, the developer constructs self-healing operations.
This is the only manual step.

Then, each self-healing operation is analyzed. The result is a verdict about the
success of the analyzed self-healing operation; it is considered successful if the
occurrence probability of the hazard is below the threshold defined in the safety
requirements.

Timed Failure Propagation Graphs

Tracing a failure in a system is based on failure propagation models. For analyzing
failure propagation times, failure propagation models must include the additional
notion of time. Only then it is possible to check whether a self-healing operation has
been executed quickly enough. Consequently, our analysis of self-healing operations
uses timed failure propagation models called Timed Failure Propagation Graphs
(TFPG). TFPGs, like common failure propagation models [149], define a cause-
and-effect relation between failures. In particular, TFPGs include propagation time
intervals that specify minimum and maximum propagation times between failures.

The benefit of TFPGs is their minimal level of information needed for the analysis
of failure propagation times. This analysis actually requires taking the reachable
behavior of the whole system into account, which comprises the complete data and
control flow of the system. However, for analyzing the propagation times of failures,
we only need to take the relations between failures at the ports of components into
account. We therefore analyze the reachable behavior of each component type (see
D.M.f.I.T.S, [55], Chap. 5) only once to identify these relations and store them in a
TFPG. During our analysis of self-healing operations, we abstract from the system
behavior using TFPGs.

Failures are classified using a failure classification like the one by Fenelon et
al. [47]. We distinguish the failure classes value, service, early timing, and late
timing. A value failure specifies a deviation from a correct value, e.g., an erroneous
parameter of a message. A service failure specifies that no value is present at all,
e.g., a component crashed and is not providing any output values. A timing failure
specifies that a message has been delivered outside a defined time interval, i.e., too
early or too late.

Figure 3.35 shows the TFPG of the deployment diagram from Fig. 3.32. In
TFPGs, failures are represented by rectangles labeled with the according failure.
Operators are represented by circles labeled with the according logical operator.
Edges are labeled with propagation time intervals that specify the minimum and
maximum propagation time that a failure needs to propagate from the edge’s source
to the edge’s target.

The TFPG of the component instance ds:DSelect from Fig. 3.35 relates the out-
going failure f o

ds3 to the incoming failures f i
ds1 and f i

ds2. The operator OR specifies
that f o

ds3 occurs if either of the incoming failures occurs. The failures of the TFPG
of ds:DSelect are connected to failures of connected component instances according
to the connectors of the deployment. For example, the outgoing value failure f o

ds3 of
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ds:DSelect is connected to the incoming failure f i
sc1 of the speed controller, because

ds:DSelect and sc:SpeedCtrl are connected. The edge is labeled with the propaga-
tion time interval [5,6] of the connector. This edge specifies that the propagation of
a failure from ds:DSelect to the distance controller takes between 5 and 6 time units.

The propagation time interval at the edge from f i
ds2 to the OR-node (see Fig. 3.35)

specifies that a failure needs at minimum 24 and at maximum 28 time units to prop-
agate from the port of the component instance ds:DSelect to the OR-node. The edge
originating from the OR-node has a propagation time interval of [0,0]. This means
that between the OR-node and the outgoing port, failures propagate in zero time.
These time intervals are introduced by automatic generation. Thus, a failure needs
between 24 and 28 time units to propagate from the incoming ports of ds:DSelect
to the outgoing port.

The edges connecting the errors in the hardware components and their outgoing
failures have relatively high propagation times compared to real-life sensors. This is
because we have adjusted these times to reflect the fact that sensor failures may not
have an immediate negative impact on the system. If, for example, a sensor delivers
a single peak value, this peak value may be corrected by smoothing the signal using
a low-pass filter. It is only when the deviation from the correct signal occurs in a
number of subsequent signals that this is interpreted as possibly having an adverse
effect on the system. This fact needs to be taken into account during the analysis
of the self-healing operations because there is more time for the system to react by
self-healing if a controller tolerates a certain amount of deviating values. We call
this time tolerance time.

Fig. 3.35 Timed failure propagation graph of the deployment diagram from Fig. 3.32
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In order to take this fact into account in our analysis of self-healing operations,
we include the tolerance time in the TFPG. The tolerance time is computed from
the product of the data rates of sensors and the number of repeated deviations the
controller is able to tolerate. The tolerance time is added to the propagation times
that errors need to propagate to cause a failure at the ports of the sensors.

In order to analyze how far failures propagate within a given time span, we need
to define a semantics for TFPGs. Therefore, we map TFPGs onto Time Petri Nets
(TPN) [129]. TPNs are marked petri nets [129] with a time extension. Each transi-
tion in the TPN has an interval that specifies its earliest and latest firing time. The
propagation of failures over time is then analyzed by the reachability analysis of
TPNs espoused by Cassez et al. [26].

Generation of Timed Failure Propagation Graphs

The goal of our TFPG generation is to compute relations and propagation times
between incoming and outgoing failures of a particular component type. Figure 3.36
shows an overview of our TFPG generation as published in [119]. The input is the
real-time statechart that specifies the behavior of the component type.

In order to construct the TFPGs, we first identify which incoming failures cause
which outgoing failures for each component type. Each time such a relation is iden-
tified, the propagation times between the related failures are computed and the
relation is stored in a TFPG. This is repeated until all combinations of incoming
failures have been evaluated.

We must distinguish between the identification of relationships between outgoing
and incoming timing and service failures on one hand, and outgoing and incoming
value failures on the other hand. Service and timing failures change the control flow
such that either no message is sent, or a message is sent too early/too late. Causes
for these deviations may be that either transitions which should have been fired
could not be activated or that other transitions with other time constraints have fired.
Relations between incoming and outgoing timing and service failures are therefore
identified by deviations in the control flow.

Real-time
statechart

Identify relations between
incoming and outgoing failures

Service and timing failures

Value failures
e

f
TFPGs

Compute
propagation

times

Fig. 3.36 TFPG generation for a component type
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To provoke these deviations, the control flow is modified by injecting failures
into the real-time statechart. Failures enter a component via faulty messages; thus,
to inject a timing failure, a message is sent earlier or later than specified by the
real-time statechart. For a service failure, a message expected by the real-time state-
chart is not sent at all. These modified messages may change the control flow of the
real-time statechart, allowing outgoing timing and service failures to be identified
by deviations between the original and the modified control flow.

Value failures cannot be detected by deviations in the control flow, because even
though the same transition is fired, the values of variables may differ. Consequently,
we need to identify relations between incoming and outgoing value failures from
the data flow.

Identifying relations between incoming and outgoing value failures is based on
the slicing of extended finite state machines shown by Androutsopoulos et al. [8]. It
is the only approach for slicing nonterminating automata, which makes it the only
approach suitable for embedded real-time systems.

To apply this slicing, we map real-time statecharts onto extended finite state ma-
chines. The resulting slice is an extended finite state machine that contains only the
parts of the real-time statechart which affect a specific variable. To identify which
incoming value failures cause outgoing value failures, we compute the slice of each
variable v sent by the real-time statechart as a message parameter. The remaining
variable assignments are those which influence v or are influenced by v.

Analysis of Self-healing Operations

Our analysis of self-healing operations as published in [122, 123] checks for each
MCS of the hazard, whether the MCSs can still cause the said hazard after the self-
healing operation has been completed. MCSs that still cause the hazard after self-
healing are called critical MCSs. If the number of MCSs of the hazard is reduced, the
number of events that cause the hazard will be reduced as well. As a consequence,
the occurrence probability of the hazard is decreased.

The TFPGs which provide the input for our analysis of self-healing operations
have been generated from the real-time statecharts of system components, as ex-
plained above. The TFPGs are used to compute the MCSs and the hazard occurrence
probabilities by the component-based hazard analysis of Giese et al. [59]. Therefore
during this analysis, the timing annotations of the TFPGs are ignored.

Based on the computed hazard occurrence probabilities and the system architec-
ture, the developer constructs a self-healing operation for the hazard. Based on the
real-time statecharts, our analysis computes the critical time. The critical time is the
maximum amount of time between the detection of the error or failure and the last
point in time when the self-healing operation can successfully be executed. This is
the time span during which a failure will propagate through the system before the
self-healing operation has been completed, and may vary within a certain interval
due to system-specific properties. We take the maximum value of this interval in
order to analyze the worst case: the failures propagate as far as possible.
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Next, our analysis computes how far the errors of the MCS have propagated
through the system during the critical time. The result are the errors and failures
which are reachable before the execution of the self-healing operation.

Then, the self-healing operation is applied. It changes the structure of the de-
ployment and thereby the structure of the TFPG. This may cut off propagation paths
along which failures propagate to the hazard, or may remove errors and failures
from the system. The result of this step are the errors and failures that remain in the
system after the application of the self-healing operation.

In the next step, the criticality of the MCS is evaluated based on the errors and
failures which remain in the system meaning that the analysis checks whether the
errors and failures which remain in the system after the application of the self-
healing operation still lead to the hazard. If this is the case, the MCS is critical.

After the criticality of all MCSs has been analyzed, the occurrence probabil-
ity of the hazard is computed based on the critical MCSs. Finally, our analysis
checks whether this computed occurrence probability is acceptable. If it is accept-
able, the self-healing operation has been successful in reducing the hazard. Other-
wise, the self-healing operation has failed and the developer has to either modify the
self-healing operation or utilize another technique to reduce the hazard occurrence
probability.

3.2.8.3 Results

The analysis of self-healing operations is used to implement a system such that all
hazard occurrence probabilities are acceptable. This analysis is used in two ways: It
enables the developer to either guarantee that the self-healing operations will reduce
the occurrence probabilities to an acceptable level or the analysis shows that the
resulting hazard occurrence probabilities are not acceptable. In the latter case, the
developer will change the system and analyze it again. This change may affect all
preceding steps of the development process which have already been carried out
before.

3.2.8.4 Application Example

In our example, the result of the component-based hazard analysis are the mini-
mal cut sets {ewlan}, {egps}, and {edr}, because any of the errors in the hardware
components of the speed control subsystem may cause the hazard. The occurrence
probability of each of the errors is 0.001 leading to the occurrence probability of the
hazard of 0.003.

Based on the computed hazard occurrence probabilities and the system architec-
ture, the developer constructs a self-healing operation for the hazard wrong speed.
The self-healing operation is shown in Fig. 3.33.

Next, our analysis computes how far the errors of the MCS have propagated
through the system during the critical time. In our example, we compute a critical
time of [120,140]. This means the amount of time between the detection of {edr}
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and the completion of the self-healing operation lies between 120 and 140 time
units.

Then, the self-healing operation is applied. Figure 3.37 shows the TFPG of the
speed control subsystem after the application of the self-healing operation. The fail-
ures, which are reachable within the critical time, are highlighted in gray.

The self-healing operation of our example in Fig. 3.33 removes the connectors
between dg:DistGPS and ds:DSelect and between ds:DSelect and sc:SpeedCtrl. It
further creates a connector between dg:DistGPS and sc:SpeedCtrl. By deleting the
connectors, the corresponding edges in the TFPG are deleted, as well. Consequently,
the edges between f o

dg3 and f i
ds2 and between f o

ds3 and f i
sc1 are removed.

In our example, none of the errors and failures which remain in the system after
the application of the self-healing operation can propagate to the speed controller.
The MCS {edr} is consequently not critical.

The critical MCSs after the self-healing operation are {ewlan} and {egps}. These
errors may still cause the hazard.

The reduced occurrence probability of the hazard is p(egps)∨ p(edr) = 1− ((1−
p(egps))(1− p(edr))) = 1− ((1−0.0001)(1−0.0001))= 0.0002. Thus, the occur-
rence probability of the hazard has been reduced below the maximum acceptable
occurrence probability of 0.001.

Fig. 3.37 TFPG after the reachability analysis and the application of self-healing operation
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3.2.8.5 Further Reading

Consistency

The architecture of the system is provided by the Conceptual Design Phase (see
Sect. 3.1) in order to guarantee a consistent transition into Design and Development.
For our analysis of self-healing operations, these architecture models are refined and
expanded to include real-time statecharts and reconfiguration behavior. The system
model is changed if the occurrence probability of the hazard is still too high after
self-healing. These changes are fed back into the models of the Conceptual Design
Phase. This scenario was carried out in the student project "SafeBots II" [9].

Hazard Analysis for the Entire Mechatronic System

For mechatronic systems, uniting four disciplines in one system requires the devel-
opment and analysis of the system as a whole. The key difference between this pro-
cess and pure software architecture is that (hardware) connectors that are connected
to hardware components transport information but also physical items, i.e., material
and energy. The partial model Active Structure (see D.M.f.I.T.S, [55], Chap. 4) spec-
ifies the architecture of the entire mechatronic system, including both hardware and
software. Hardware connectors are only represented as simple connections, even
though they may correspond to additional system components. In [121], we present
a component-based hazard analysis that considers the whole mechatronic system,
including hardware connectors, and that introduces reusable patterns for the failure
behavior of hardware connectors which can be generated automatically. In this way,
the component-based hazard analysis of Giese et al. [59] can be applied to the entire
mechatronic system.

Runtime Hazard Analysis

In self-optimizing systems, it is possible that certain system architectures may occur
only at runtime and cannot be foreseen at design time. Consequently, in the domain
of self-optimizing systems, not all system architectures can be analyzed at design
time. In order to still be able to guarantee certain hazard probabilities for the system,
hazard analysis needs to be performed at runtime.

When, for example, RailCabs become ready for the market, they will be produced
by more than one source. In such a case, it is possible that two vehicles must interact
which have been produced by different manufacturers. Of course, it would be useful
for both vehicles to form a convoy to save energy. However, the developer needs to
analyze whether the communication between the two RailCabs does not violate the
safety requirements of either RailCab. This analysis may not have been possible at
design time, because the developer of one RailCab may not have known the system
models of the other RailCab. Such a scenario is one reason to compute the hazard
probabilities of a system at runtime, in order to guarantee safety requirements for
component architectures unknown at design time, as presented in [120, 124].
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3.2.9 Safe Planning

Steffen Ziegert

The goal of this method is to provide the self-optimizing mechatronic system with a
means of making decisions autonomously about the application of reconfigurations
which affect the system’s architecture. This is an important ability of the system
in connection with the dependability attribute “availability”. By considering safety
requirements when making its decisions, this method also meets requirements of
the dependability attribute “safety”. The method is applied in the software engineer-
ing domain and assumes a prior verification of the system’s communication behav-
ior and reconfiguration operations with the method presented in D.M.f.I.T.S, [55],
Sect. 5.2.3.2.

Adapting to a new situation calls for a number of runtime reconfigurations that
may include changes to the system’s architecture, such as the creation and deletion
of component instances or communication links between them. For each configu-
ration of the system, there may be a large set of applicable runtime reconfigura-
tions. Selecting which runtime reconfigurations to apply can be a complex task.
Self-optimizing systems often have superordinated goals that are supposed to be
reached during operation, such as optimizing the energy consumption or achieving
user-specified objectives. These goals have to be taken into account when selecting
which runtime reconfigurations to apply. However, selecting runtime reconfigura-
tions that are likely to help in achieving the goal is no trivial task. Since the selec-
tion of runtime reconfigurations is intended to be autonomous (human intervention
would not meet the response-time requirements of self-optimizing mechatronic sys-
tems), it has to be planned by a software system.

To prevent unsafe configurations, e.g. an unsafe distance between two RailCabs,
from occurring in a plan, the planning system should further take safety require-
ments into account. The safety requirements restrict the set of valid configurations,
i.e. they specify which configurations are not allowed to occur in a resulting plan.
In contrast to the design-time verification, where the absence of unsafe states is cat-
egorically guaranteed, this technique allows unsafe states to exist in the reachability
graph, but plans the reconfigurations in such a way that no unsafe state is actually
reached.

3.2.9.1 Prerequisites and Input

For this method to be applicable, a set of possible runtime reconfigurations has to
be specified beforehand. This in turn necessitates both the specification of the sys-
tem’s structure as a MECHATRONICUML component model (cf. D.M.f.I.T.S, [55],
Sect. 5.2) and the mutual comparison of this component model with the models
used by other methods, encompassing the agreement on a common model for the
rail system. This specification is based on the partial models “Active Structure” for
the system’s structure and “Behavior – Activities” for the runtime reconfigurations
of the system.
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To meet the safety requirements, a set of forbidden patterns, i.e. the specification
of subconfigurations that are not allowed to appear in a safe plan, is required. Fur-
thermore, this method requires either a set of initial configurations given as MECHA-
TRONICUML component instance configurations when used for simulation or the
capability of perceiving the current configuration of the system when used online.

3.2.9.2 Description

Depending on the application domain, it can be very complicated to guarantee the
absense of all forbidden patterns by means of design-time verification (cf. D.M.f.I.
T.S, [55], Sect. 5.2.3.2). The exclusion of a forbidden pattern via design-time veri-
fication imposes restrictions on the state space of the system, as it is not allowed to
contain states matching the forbidden pattern. This, in turn, transfers these restric-
tions to the design of the application domain’s reconfigurations. If these restrictions
prove too cumbersome, we can instead allow the forbidden patterns to appear in the
state space in principle, but plan such that they do not appear on the path to the target
configuration. Of course, when applying the method Safe Planning, we do not need
to take forbidden patterns into account whose absense has already been verified by
the design-time verification.

Problem

Our approach uses graph transformation systems as the underlying formalism. A
graph transformation system consists of a graph representing the initial configura-
tion of the system, plus a set of graph transformation rules (GT rules). These rules
schematically define how the graph can be transformed into new configurations by
means of two graphs, called left-hand side (LHS) and right-hand side (RHS), and
a morphism between them. The morphism identifies the objects and links that are
preserved when the GT rule is applied. Other elements specified in the LHS and
RHS are deleted and created, respectively, when the GT rule is applied. Syntacti-
cally, such a rule can be represented by a story pattern that integrates the LHS and
RHS into one graph by using stereotypes [51].

To apply a GT rule to a host graph, a match from its LHS to the host graph first has
to be found. This match defines the subgraph of the host graph being manipulated
by the rule application. Note that by finding multiple matches in the host graph, one
GT rule can spawn multiple graph transformations. In other terms, the GT rule can
be seen as a parameterized action and the graph transformation can be seen as a
grounded action in which the elements of the LHS have been substituted with the
elements from the host graph.

The transition system of the graph transformation system can be constructed by
successively applying the graph transformations to the initial configuration and its
successor configurations. The planning task is to find a path in this transition system
ending in a target configuration. A safe planning task is principally the same, but
includes the requirement that no potentially unsafe configuration is reached.
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We can now give a general definition of the safe planning problem and relate it
to our modeling approach:

Definition 3.1. A safe planning problem is a tuple P = (I,A,G,F) where

• I is the initial configuration,
• A is a set of (parameterized) actions,
• G is a goal specification that defines whether a configuration is a target configu-

ration, and
• F is a safety specification that defines whether a configuration meets the safety

requirements and is allowed in a safe plan.

In our case, the initial configuration corresponds to a UML object diagram that
has been derived from a MECHATRONICUML component instance configuration.
Each parameterized action is given as a story pattern. For a given configuration, the
set of successor configurations can be computed by matching the story patterns’
LHS’s to the host graph and applying the graph transformations that are defined in
doing so.

The goal specification is a function that maps from the set of states to booleans.
Within the context of this method, the goal specification is given as a graph pattern,
i.e. a story pattern without a RHS. Each host graph that the pattern matches onto is
a target configuration.

The safety specification is also a function that maps from the set of states to
booleans. It is given as a set of graph patterns, called forbidden patterns. If any
one of the forbidden patterns matches the host graph, the host graph is a forbidden
configuration that does not meet the safety requirements. In contrast to the goal
specification, the safety specification does not map to true, but rather to false when
any pattern matches.

Solution

Different algorithms and techniques exist to solve these planning tasks. One of the
approaches is to translate the planning problem into an input for available off-the-
shelf planning system. These traditional planning systems, however, work on mod-
els which are different from graph transformation systems. They are used for models
with first-order literals that are usually compiled into a propositional representation
by grounding predicates and actions. While a translation is technically possible,
there are some restrictions because typical planning languages, such as the Plan-
ning Domain Definition Language (PDDL), which is the current de facto standard
in academia, have a different expressive power than graph transformation systems.
Today’s proposed translation schemes [100, 144] do not support arbitrary negative
application conditions and cannot work with an unlimited number of objects. For
instance, a planning model designer would have to specify the maximum number
of objects beforehand. Howver, this number is not necessarily finite. By planning
directly within the transition system defined by the graph transformation system,
we avoid these problems.
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For planning with graph transformations, we have developed two approaches that
complement each other. The first approach diverts a model checker from its intended
use of searching for a counterexample of a given property [132]. It plans by refor-
mulating the planning problem into a model-checking problem and then asking a
model checker to verify the property that no plan exists. If the property is false, i.e.
a plan exists, the model checker delivers a plan as counter example of the prop-
erty. While this approach is very generic and fully automatic, it is not competitive
in terms of speed and quality compared to other planning techniques because the
state space search of a model checker is generally not optimized for planning, i.e.
for finding a plan quickly or for finding a short plan.

Our second approach is based on heuristic search. We use search algorithms like
A* or Best First (cf. [134]) with a domain-specific heuristic to search through the
state space. The advantage of this approach is at the same time its disadvantage:
on the plus side, this planning technique uses guided search, which is in general
faster than the model-checking-based approach; however, the disadvantage is that
a heuristic suitable for the given application domain first has to be developed. A
solution to this problem is to learn heuristic functions automatically [44]. A learning
algorithm derives a regression function that predicts the costs of solving the problem
from a given state. To derive the regression function, the learning algorithm needs
a pre-defined declaration of state features and a training set with problem instances.
While this solution is an improvement over developing heuristic functions manually,
it still requires the developer to declare a set of state features that is suitable for the
given application domain. To overcome this issue, we are currently investigating the
use of domain-independent heuristics for planning with graph transformations.

Both approaches support forbidden patterns and thus are capable of solving
the safe planning problem. In the model-checking-based approach, the problem is
solved by including the safety requirements into the property to be verified. Now
the property states that no safe plan exists, i.e. there is no path to a goal state free
of intermediate (on-the-way) states containing forbidden patterns. Thus, the model
checker must also consider whether any state on the path to the goal state contains
a forbidden pattern. In the heuristic search-based approach, checking for forbidden
patterns is simply integrated into the search algorithm.

Translations into dedicated planning languages do not support forbidden patterns
at the moment. Although planning languages which support constraints exist, trans-
lation schemes do not yet support the translation of forbidden patterns into such
constraints. Proposed translation schemes [100, 144] only support the translation of
GT rules into the action representations known from PDDL. As remarked above,
their capability to support negative application conditions is also limited.

Which one of the two approaches to planning with graph transformations is
preferable, depends on the application domain. If the application domain allows
for a straightforward design of a suitable heuristic using human intuition, or
provides a meaningful set of state features to derive a heuristic function using
machine learning techniques, then the heuristic search is to be preferred. If, how-
ever, the domain does not provide a meaningful set of state features, meaning that
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heuristic knowledge is not easy to obtain, then the model-checking-based planner
might be the better choice.

3.2.9.3 Results

The result of the integration of this technique into the Operator Controller Module
(cf. Sect. 1.1.1) is its ability to autonomously plan which runtime reconfigurations
to execute for a given state of the system. The planning process itself is performed
by the Cognitive Operator of the OCM. The outcome of this process is a plan, i.e. a
sequence of graph transformations, to reach a target configuration. These resulting
runtime reconfigurations are executed by the Reflective Operator of the OCM.

Since the planning process considers safety requirements in the form of forbidden
patterns, the Reflective Operator is guaranteed not to execute any runtime reconfig-
urations leading to a dangerous situation.

3.2.9.4 Application Example

A real-time coordination pattern represents a communication protocol between sub-
systems that is specified by real-time statecharts (cf. D.M.f.I.T.S, [55], Sect. 5.2.1).
We use the activation and deactivation of real-time coordination patterns in the Rail-
Cab system (cf. Sect. 1.3.1) as an Application Scenario. In this scenario, the railway
network consists of a set of tracks that are connected via successor links. Each track
is further monitored by one or more base stations. A RailCab has to register itself
at such a base station in order to continuously provide information about its exact
position and enable itself to request information about the properties of the track
segment (cf. D.M.f.I.T.S, [55], Sect. 2.1.6).

An initial configuration is given in Fig. 3.38. It shows two RailCabs on a track
that belongs to the station Paderborn and a railway network that connects this station
to the stations Berlin and Leipzig.

The story patterns specify the runtime reconfigurations that allow the transforma-
tion of this configuration into the target configuration. One of these story patterns,
the story pattern cPublication, is shown in Fig. 3.39.

It specifies the creation of a real-time coordination pattern between a RailCab
and a base station under the condition that the RailCab is occupying a track segment
monitored by the base station. For unregistering a RailCab there is a similar story
pattern called dPublication. In addition to the story patterns for registering and un-
registering a RailCab at a base station, there are story patterns for moving a RailCab,
initiating the formation of dissolving of a convoy of RailCabs, joining and leaving
a convoy, and moving a convoy.

One of the safety requirements for this application scenario states that a Rail-
Cab may not operate in a convoy if it holds dangerous cargo. This requirement is
formalized by the forbidden pattern dangerInConvoy which is shown in Fig. 3.40.
Other requirements state that there may be no collision or a distance small enough
to be unsafe between two RailCabs, and that a RailCab may not be registered at an
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Fig. 3.38 An initial configuration given as a UML object diagram derived from a MECHA-
TRONICUML component instance configuration

incorrect base station, i.e. a base station that does not monitor the track segment the
RailCab is occupying.

Given a goal specification, e.g. a graph pattern which states that the RailCab
r1 is occupying a track segment connected to Berlin and r2 is occupying a track
segment connected to Leipzig, this model can be fed into one of the planning systems
introduced above. The planning system then directly plans in the transition system
corresponding to the given model. Therefore, no translation to a dedicated planning
language and thus no restriction on the expressive power of graph transformation
systems is necessary. Unsafe configurations are recognized by the planning system
and not allowed in a valid plan. The resulting plan specifies a sequence of runtime
reconfigurations that safely turn the system from its initial configuration into a target
configuration.

Fig. 3.39 A story pattern
specifying the instantiation
of a real-time coordination
pattern for the communica-
tion between a RailCab and
a base station
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Fig. 3.40 A forbidden pat-
tern that prohibits a Rail-
Cab’s inclusion in a convoy
if it holds dangerous cargo
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3.2.10 Verification for Interacting Mechatronic Systems with
Motion Profiles

Kathrin Flaßkamp, Christian Heinzemann, Martin Krüger, Sina Ober-Blöbaum,
Wilhelm Schäfer, Dominik Steenken, Ansgar Trächtler, and Heike Wehrheim

The method is intended to verify the correctness of the behavior of interacting
self-optimizing mechatronic systems in specific Application Scenarios. Verification
methods play a crucial role in ensuring dependability, most importantly the attribute
“safety”, in a technical system. In this section, we present an offline verification
method which is applied during the development phase of the system. It requires
input from several partial models of the Principle Solution (cf. Sect. 2.1), as the
dynamical (time-discrete and time-continuous) behavior can be derived from the
partial models “Behavior” and “Active Structure”, in some cases in combination
with the “Environment” model. Certain details of our verification method have to
be adapted to the specific scenario chosen from the list of relevant scenarios stored
in the partial model “Application Scenarios”; for example, we will use a specific
convoy braking scenario in the following. Motion profiles which abstract the con-
tinuous time behavior can be computed via multiobjective optimization to take into
account objectives from the partial model “System of Objectives”.

A central aspect of mechatronic systems is their hybrid nature, i.e. they have
continuous (formalized, e.g., by differential equations), as well as discrete (formal-
ized, e.g., by timed automata) behavior. Most state-of-the-art modeling approaches
which deal with such hybrid systems use formalisms such as hybrid automata [69].
In doing so, they move into areas of complexity that make verification impossible
or at least unfeasible, except for tiny “toy” examples [5]. In contrast, our approach
relies on so-called motion profiles that fulfill a given set of properties. A motion pro-
file is essentially a curve or set of curves that shows the development over time of
physical parameters describing the motion of the vehicle. These motion profiles can
be generated with simulation and optimization methods which use models of the
system’s dynamics. The distribution of these motion profiles can be modeled with
(timed) discrete formalisms that can be verified with much less effort. Correctness
is implied if the distribution satisfies certain constraints, based on the properties of
the profiles.

The verification of a behavior specification based on motion profiles seems es-
pecially suitable for interacting mechatronic systems. Classically, the dynamics of
each individual system is controlled by a feedback / feedforward control strat-
egy based on a model of the time-continuous dynamics. In addition to this, the
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interaction of the systems is specified by a communication protocol in terms of
discrete automata that have to be checked for correctness using formal verification
techniques. For illustration, we will continuously refer to the example of a convoy
of RailCabs (cf. Sect. 1.3.1) throughout this section.

The method described in this section provides the user with tools and proces-
ses that allow the correct implementation of motion profile creation, distribution
and usage. There are two substantially different ways to approach profile creation
and distribution: online generation and offline generation. While we will mainly fo-
cus on offline generation in this text, we will also give a short overview of online
generation.

In offline generation, each RailCab is equipped at the time of design with a set of
motion profiles for every maneuver it will need to perform in the future. Based on
analytical functions comparing two motion profiles, a communication protocol dis-
tributes the available motion profiles and determines which of these motion profiles
is active for any given maneuver at runtime. Both the analytical functions and the
communication protocol can be verified at design time. The following subsections
will go into some detail of offline profile generation, the analytical functions, the
communication protocol and its verification.

In contrast, for online generation, the RailCab is only equipped with some basic
physical information about itself at design time. At runtime, motion profiles are
generated on the fly when the situation is about to change, for instance when the
RailCab is about to enter a convoy. From environmental data and the physical data
about the RailCab, new instances of prepared constraints are derived for motion
profiles for each maneuver that will be affected, and profiles are constructed that fit
these constraints. Once all profiles are complete, the RailCab can proceed; it will
either enter the convoy, or will be forced to abort if one of the computations fails to
come up with a valid profile in time.

3.2.10.1 Application Example

The example we will use to illustrate this method is convoy maintenance; the partic-
ular situation under consideration is that a RailCab wants to join an existing convoy
(see Fig. 3.41). In such a situation, multiple motion profiles have to be chosen and
exchanged; for the sake of simplicity, however, we will focus on only one of them:
controlled braking. This motion profile is responsible for the controlled stop at a
train station or switch. In convoy mode, it is of great importance that the braking
profiles present in the convoy are compatible with each other; if one of the RailCabs
were to decelerate faster than the RailCab following it, they would collide.

Thus, for a candidate position in the convoy, the joining RailCab must choose a
profile that is compatible (as described in Profile Compatibility, Sect. 3.2.10.3) with
the profile of the RailCab preceding it and the profile of the RailCab following it.
From our point of view, this means that the RailCab must choose a profile for which
the analytical function mentioned above indicates that it is compatible with the two
motion profiles concerned. If there is no such profile for any position in the convoy,
then the RailCab cannot safely enter the convoy and must abort the process.
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Fig. 3.41 The convoy merging scenario

In all, three components influence the correctness of the process that assigns mo-
tion profiles: the selection of profiles with which a RailCab should be equipped,
the analytical function used for comparing profiles and the communication protocol
used for distributing profiles in a convoy.

The crucial steps of the method involving offline profile generation are the fol-
lowing:

1. generation of profiles,
2. design of the communication protocol for distributing the profiles,
3. verification of the communication protocol,
4. modeling of the compatibility function,
5. checking the profile compatibility, and
6. distribution of profiles.

Steps 1-4 are performed at design time, while Steps 5 and 6 are performed at
runtime. We will touch on each of these subjects in turn in the following sections.

3.2.10.2 Prerequisites and Input

For offline profile generation, the following pieces of information are required at
design time:

• The full range of the physical parameters of the RailCab relevant to its dynamics,
such as mass, external dimensions, motor strength, etc., together with a model
that describes its continuous time dynamics

• A description of every behavior (maneuver) the RailCab may engage in during
runtime, such as entering convoys, leaving convoys, allowing others to enter,
stopping at train stations, etc.
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• A mathematical formulation of the set of objectives related to these different
behaviors, such as, for example, minimizing energy consumption, minimizing
travel time or maximizing passenger comfort

3.2.10.3 Description

Profile Generation

To begin with, a set of profiles has to be generated for each RailCab. This can be
done using model-based optimization techniques, such as optimal control, for the
computation of optimal braking maneuvers. This process is dependent on a number
of different parameters that can be categorized as

constant parameters:
These parameters do not vary during operation of the RailCab. An example of
such a parameter is the physical shape of the RailCab.

discrete parameters:
These parameters span a finite set of values – each combination of such param-
eters necessitates at least one motion profile per maneuver. One such instance of
discrete partameters could be a predefined (small) number of different cruising
speeds of convoys.

continuous physical parameters:
These parameters change from one operation to the next and span a subset of the
real numbers, an example of this type being the RailCab’s mass. They have to be
discretized into regions.

objectives’ priority parameters:
These continuous parameters weight the objectives and may vary during opera-
tion of a self-optimizing system. For a finite set of motion profiles, only a small
number of representatives of Pareto optimal regions are chosen.

infinite control parameters (trajectories):
For specified maneuvers, time-dependent control trajectories are required that,
for instance, guarantee braking that fulfills prescribed conditions (e.g. braking
time and distance). These curves have to be approximated by a finite number of
continuous parameters in order to apply numerical optimization methods.

The (continuous time) dynamical behavior of mechatronic systems is typically
modeled by ordinary differential equations of the form ẋ(t) = f(x(t),u(t)). Here,
x(t) denotes the physical state of the system and u(t) the time-dependent control
inputs, such as the braking forces. The function f is comprised of the physical prin-
ciples drawn on in the technical system’s model. These physical laws in turn depend
on different kinds of parameters (constant, discrete or continuous). We assume that
the continuous parameters can be quantized into regions for profile generation. In
a real application, due to model discrepancies, optimal profiles would be combined
with an underlying time-continuous controller. Thus, moderate additional deviations
resulting from the quantization could be compensated for by this controller.

For convoy braking strategies, the vehicle mass can be examined to illustrate an
example of a continuous parameter. In passenger as well as in freight RailCabs,
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mass can vary widely and does so in a continuous fashion. Each RailCab possesses
an underlying lateral controller, which is crucial for traveling in convoys. Among
others, this requires a large safety margin between the RailCabs. The controller
ensures that the system maintains the optimal feedforward trajectory as long as the
current RailCab mass deviates only slightly from the parameter value assumed in
the model. An additional, smaller, safety margin in the compatibility function takes
into account unavoidable deviations.

The feedforward optimal trajectories are solutions to optimal control problems.
Such an optimal control problem is formally stated as

min
u(t),T

J(u(t),T ) =
∫ T

0
C(u(t))dt (3.24)

with respect to

ẋ(t) = f(x(t),u(t)), x(0) = x0, x(T ) = xT and 0 ≥ g(x(t),u(t))∀ t ∈ [0,T ]. (3.25)

J(u(t),T ) is the objective that has to be minimized and depends both on the control
trajectory and on the final time of the control maneuver. The equations of motion,
i.e. the ordinary differential equations, appear as constraints on the optimization
problem. Boundary constraints are given by initial and final states x0 and xT , for
instance the convoy speed at the beginning of the braking maneuver and the prede-
fined braking distance at its conclusion. Additional constraints, e.g. bounds on the
braking forces, can be modeled in the function g.

Self-optimizing systems possess several optimization objectives that may be-
come relevant during operation. This leads to multiobjective optimization problems
(cf. D.M.f.I.T.S, [55], Sect. 1.2.3) which result in Pareto sets of optimal compromises
between the concurring objectives. Therefore, our method includes the computation
of a knowledge base of several Pareto optimal solutions corresponding to varying
prioritizations of the objectives. We consider the objectives “optimize passenger
comfort” (by minimizing acceleration) and “minimize braking time”.

In real applications, optimal control problems have to be solved numerically. One
class of numerical methods is based on direct discretization of the optimal control
problem, by which, the original problem is transformed into a nonlinear restricted
optimization problem that can be addressed by state-of-the-art software. Discretiz-
ing the optimal control problem means approximating the control trajectory with a
relatively small number of continuous parameters. By using numerical integration
schemes for the model simulations, the system’s states can be discretized as well.

For the example application, optimal control trajectories for different RailCabs
are computed. All of them are restricted by maximum control forces (40kN for a
passenger RailCab and 80kN for a freight RailCab), a convoy speed of 30m/s and
a desired braking distance of 350m. In Fig. 3.42, examples of braking trajectories
for a freight RailCab are shown. Each control trajectory is defined by five points
(equidistant in time) that are turned into a continuous signal via linear interpola-
tion. This defines the input given to the system’s dynamical model, by which the
corresponding optimal state trajectories are generated.
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Fig. 3.42 Optimal control trajectories depending on an objective’s priority ranking (top) and
the resulting position trajectories (bottom)

Profile Compatibility

When a RailCab is traveling alone, i.e. not in a convoy, it can freely choose among
the available motion profiles for each maneuver. This is because any condition that
could invalidate a motion profile in such a situation would have been noted at de-
sign time and thus would have been removed (or rather, not been constructed in
the first place by the optimal control algorithm). Therefore, the only safety-relevant
restrictions that apply to the choice of a motion profile at runtime derive from the
interaction of motion profiles from different RailCabs.

The most obvious example of such a situation is convoy travel. Each RailCab
must choose motion profiles that fulfill certain compatibility criteria with respect
to the motion profiles of RailCabs it will directly interact with, i.e. the RailCabs
preceding and following in the convoy. One of the central ideas of this method
is to encapsulate these compatibility criteria in simple algorithms (the analytical
functions) to compare two motion profiles to each other.

These analytical functions have to return a boolean value, i.e. two profiles are
either compatible or they are not. Furthermore, they have to be transitive, meaning
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that, if profile f is deemed compatible with profile g, and g is deemed compatible
with profile h, then f must also be compatible with h. The analytical functions do
not, however, have to be symmetric. Thus, even if f is compatible with g, g does
not necessarily have to be compatible with f . This enables us to take the ordering
of RailCabs on the tracks into account.

For each maneuver (e.g. controlled braking) and each situation (e.g. convoy
travel), such an algorithm must be created. For controlled braking of a RailCab in
a convoy, the required algorithm is fairly simple: assuming the minimum distance
required for convoy travel, and taking into account the dimensions of each RailCab,
do the adjacent RailCabs get closer to each other than a given minimum distance?
This algorithm can easily be implemented by slightly modifying each motion profile
to compensate for distance and form, subtracting the results and seeing if they ever
drop below the safety margin. If so, the motion profiles are deemed incompatible; if
not, they are compatible. This process is shown in Fig. 3.43.

Consider again our example of controlled braking maneuvers. It should be clear
that if the motion profile of the RailCab joining the convoy is compatible with the
motion profiles of both the preceding and following RailCabs, then adding the Rail-
Cab at that position will not make the controlled braking maneuver unsafe.

Thus, the question of whether the convoy will be able to safely execute maneu-
vers after the additional RailCab is added at the specified position is reduced to the
question of whether the motion profiles are distributed in such a way that consecu-
tive profiles for the same maneuver are always compatible.

Profile Distribution

In this method, correct distribution of motion profiles is ensured by communication
protocols modeling message exchange between RailCabs. These communication
protocols are executed before a RailCab enters a new situation, such as a convoy.
First, the RailCab wishing to enter a convoy sends the set of its profiles to the convoy
coordinator. Secondly, the convoy coordinator searches for a position where the
RailCab may enter the convoy and which profiles it needs to use when doing so.
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Fig. 3.43 Comparing two motion profiles with regard to minimum distance
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We specify the communication protocol using real-time coordination protocols
of MECHATRONICUML ( D.M.f.I.T.S, [55], Sect. 5.2, [42]). Real-time coordination
protocols use a state-based behavior specification technique called real-time state-
charts to define this message exchange. Real-time statecharts are a combination of
UML state machines [110] and timed automata [6] that enables the verification of
real-time coordination protocols for safety and liveness properties.

In our example scenario, we have modeled the message exchange between a sin-
gle RailCab attempting to join a convoy and a convoy of up to five other RailCabs.
The modeling guidelines of MECHATRONICUML impose the restriction that the
convoy coordinator is connected to all convoy members, but the convoy members
are not connected to each other. This restriction enforces a kind of star topology
(see Fig. 3.44). Fig. 3.45 shows the real-time statechart of the convoy coordinator.
At runtime, the convoy coordinator has one thread executing the behavior defined
by the real-time statechart adaptation. The convoy coordinator has one additional
thread for each convoy member; this thread executes the behavior defined by the
real-time statechart sub-role.

The manner in which the protocol implemented by these real-time statecharts
works is loosely explained in the following. RailCab (A) wants to join a convoy led
by RailCab B; it contacts B and proposes a merging maneuver using the message
requestConvoyEntry. B either rejects the proposal outright (this may happen due to
economic or safety reasons) by sending declineConvoyEntry or otherwise requests
the set of all profiles that A possesses for all relevant maneuvers (using among others
the messages startProfileTransmission and profile). A sends this information. Then,
B invokes the operation calculateProfiles (circled in Fig. 3.45), which iterates all
possible entrance positions for A. For each position, B goes through all maneuvers
and checks whether A possesses a profile for every maneuver that is compatible with
the profiles of the adjacent RailCabs for the corresponding maneuvers using the an-
alytical functions. If possible entrance positions exist, B will use a heuristic to select
one of them. The selected position is stored in the variable newRailCabPosition
while the selected profiles are written to the variable currentProfiles. B sends the
position and the selected profiles to A using the message enterConvoyAt; A can then

Convoy coordinator

Convoy member 1

Convoy member 2

Convoy member 3

Fig. 3.44 The communication structure in the Convoy Merging example
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ProfileTransmission_coordinator
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sendNewProfile[Role], finished[Role];

clock: c;
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var: int n, bool memberPossible, int requestedPosition, int newRailCabPosition,

Profile newProfile, Profile currentProfiles[], Profile[][] allProfiles;
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Fig. 3.45 Real-time statechart of the convoy coordinator

initiate the merging maneuver. If no locations have been deemed safe, A’s proposal
is rejected and the process ends.

The operation calculateProfiles of the real-time coordination protocol calls the
implementation of the analytical functions as an external method. The verification of
the real-time coordination protocol thus guarantees the following: If the analytical
functions are correctly implemented, i.e. they return true if and only if the given
profile combination is safe from a mathematical perspective, then the distribution of
motion profiles across a convoy performed by this real-time coordination protocol
guarantees safe operation of the convoy as a whole.

The MECHATRONICUML model of the communication protocol can be used as
an input for formal verification using, for example, the design-time verification in-
troduced in D.M.f.I.T.S, [55], Sect. 5.2.2, or the timed model checker UPPAAL [16].
We have verified the model for a convoy of 5 RailCabs; we have also successfully
formalized and verified the following properties given in natural language using
UPPAAL.
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• The real-time coordination protocol is free of deadlocks.
• If a RailCab sends requestConvoyEntry to the coordinator, it receives a startCon-

voy message or a declineConvoyEntry message eventually.
• If a sub-role statechart is in state convoy, then the corresponding convoy member

is also in state convoy.

The restriction to a convoy of 5 RailCabs is a result of limitations in the model
checker UPPAAL. It is not imposed by the method itself.

3.2.10.4 Results

The first result of this method is a set of motion profiles for every maneuver in
the input; another result is the implementation of a set of analytical functions for
comparing said profiles. Finally, the method results in a model of a real-time co-
ordination protocol designed to distribute the profiles across a convoy according to
compatibility constraints.

3.2.10.5 Further Reading

The application of the verification method with motion profiles is described in [52].
An introduction to multiobjective optimization and optimal control is given in D.
M.f.I.T.S, [55], Sect. 5.3, including a number of example applications. An introduc-
tion to MECHATRONICUML is given in D.M.f.I.T.S, [55], Sect. 5.2; the complete
specification of the MECHATRONICUML method is available in [15].

3.2.11 Dependability-Oriented Multiobjective Optimization

Peter Reinold, Walter Sextro, Christoph Sondermann-Woelke, and Ansgar Traechtler

The goal of this method is to evaluate the dependability of a self-optimizing system
by considering one or several dependability-oriented objectives in a multiobjective
optimization process. The Multi-Level Dependability Concept (M-LD Concept) de-
scribed in Sect. 3.1.2 is used to define the necessary weighting of dependability-
oriented objectives. With this concept, it is possible to weight or prioritize objectives
related to the dependability attributes reliability, availability and safety, depending
on the momentary situation.

This section describes a method of strengthening the Design and Development of
the M-LD Concept; the method described analyzes the effect(s) that dependability-
oriented objectives, derived from multiobjective optimization, can have on the
dependability of the system. The results of the analysis are used to refine the in-
tegration of the aforementioned objectives into the M-LD Concept.

Additionally, the effects of possible failures of sensors and actuators are consid-
ered. In particular, failures of actuators can be integrated in the optimization process
as constraints; however, this aspect is only relevant for redundantly actuated systems
which can compensate for such failures.
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3.2.11.1 Prerequisites and Input

This method is based on the method Early Design of the Multi-Level Dependability
Concept (Sect. 3.1.2), which identifies dependability-oriented objectives based on
the partial model System of Objectives that should be considered within the M-LD
Concept. To take full advantage of this method, a redundantly actuated system
and/or a system with sensor redundancies is needed. These necessary redundancies
are often already installed in safety-critical systems to compensate for the failures
of individual components. Further information about the sensors and actuators used
can be found in the partial model Active Structure. Information concerning the event
and the type of a failure is additionally required. The method Early Probabilistic Re-
liability Analysis of an Advanced Mechatronic Systems based on its Principle Solu-
tion (Sect. 3.1.1) assists in determining possible failures. It is assumed that actuator
or sensor failures can, in fact, be detected and that if one such failure occurs, the
particular actuator or sensor in question nonetheless has a defined behavior, i.e. it
is not performing an unknown movement. A suitable model including information
about the system and the reliability of the different components themselves (espe-
cially the probability of failure for each relevant component) is also needed. This
model can be derived from the partial models Environment, Application Scenarios,
Active Structure and Shape.

3.2.11.2 Description

The method consists of two principle areas, as described in the following. The first
deals with multiobjective optimization and focuses on dependability-oriented ob-
jectives and the integration of actuator failures as additional constraints within this
optimization. The second consists of a reliability assessment of redundant system
structures and uses the M-LD Concept to assess different system states.

For the first part, the dependability-oriented objectives are identified in the par-
tial model System of Objectives and are included in the model of the system dy-
namics. In addition, possible actuator failures are integrated as constraints in the
multiobjective optimization. The modeling of a failing actuator is reflected in the
optimization, for example by constraining the force of this actuator to zero for that
case. The Pareto sets are calculated using model-based multiobjective optimization
(cf. Sect. 1.1.2.1). Using the optimization results, the possibilities of altering the
system behavior in order to improve dependability are analyzed.

The reliability assessment in the second part of this method focuses on the re-
dundant structures in the system, beginning with a qualitative analysis in which the
different combinations of operable and inoperable components are identified. These
combinations are evaluated and afterwards classified according to the M-LD Con-
cept. In Level I of the M-LD Concept, the system is functioning as desired and is
failure-free. The weighting of the objectives can be chosen without special consid-
eration of the dependability. At Level II, one or more redundant components are
already non-functional. Thus, the weighting of dependability-oriented objectives is
increased. In Level III, the situation becomes more critical; safety becomes the most
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important aspect and the functionality of the system may be reduced to avoid ad-
ditional failures and dangerous situations. Level IV is defined by the fact that the
system is in danger of becoming uncontrollable should an additional failure oc-
cur. To avoid this situation, the system is forced into a fail-safe-state upon reaching
Level IV.

Two types of failures can be differentiated: On one hand, there are failures for
which the rate of failure increases over time. These failures are primarily caused by
wear and tear; prognostic models are used to predict the remaining useful life of
the component. On the other hand, there are failures with a constant failure proba-
bility, such as cable breaks, etc. These failures are more or less unpredictable, but
often require a rapid reaction, e.g. adaption of the system. Both types of failure are
considered in a statistical evaluation to calculate the failure probability of the entire
system. This reliability assessment aids in classifying the momentary configuration
as one of the four levels of the M-LD Concept. This classification influences the
selection of priority levels for system objectives within the self-optimization pro-
cess. It is implemented during design, but is also used during operation to assess the
situation. In such conditions, the assessment considers existing failures to compute
the current failure probability.

3.2.11.3 Results

The results can be summarized by two important considerations. For one, combina-
tions of failures are assessed by reliability methods and afterwards classified by the
M-LD Concept. These results are used during operation to evaluate the current sys-
tem status. In addition to this, a system of several objectives is also analyzed and the
influence of each dependability-oriented objective is simulated. As part of the multi-
objective optimization process, actuator failures in particular are taken into account
by including them as constraints in the optimization. Thus, a detailed analysis of the
behavior of the system in case of sensor or actuator failures can be provided. This
method enables the system to react to failures of redundant components adequately
and thus, by implementing counter-measures, to improve its dependability.

3.2.11.4 Application Example

The method explained above has been used to increase the dependability of the test
vehicle “Chameleon” (cf. Sect. 1.3). Only the test vehicle’s horizontal dynamics
are considered. Due to its special actuator concept, the “Chameleon” can deceler-
ate in several ways, by turning the wheels inwards, by using the driving motors as
generators, or by some combination of the two. With these possibilities it is up to
the information processing unit to decide which possibility is optimal for the current
situation while also considering possible actuator failures and wear. In this applica-
tion, the effect different prioritizations of the objectives have on the reliability of the
system is of particular interest. Another focus here is on the use of existing redun-
dancies at runtime. Depending on the curent situation, suitable objective functions
(e.g. reducing tire wear) and the appropriate weighting of objectives is selected.
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This guarantees that the necessary forces can be optimally distributed among the
four wheels even in changing driving situations.

Any desired maneuver is described by the yaw rate, the velocity and the slip
angle. By using the inverse dynamics, it is possible to compute the necessary longi-
tudinal and lateral force as well as the desired yaw moment to effect the maneuver.
Based on the model, there are eight tire forces (longitudinal and lateral force of each
tire) to produce the desired forces in the center of gravity. Hence, there are redun-
dant possibilities of completing the driving task, i.e. there are degrees of freedom
for the allocation of the tire forces. Within the technical restrictions, it is possible to
use these degrees of freedom to optimally produce the desired movement. Despite
this freedom, the system is subject here to the constraint that the execution of the
desired movement must be guaranteed. Optimization objectives are the minimiza-
tion of the tire wear, the energy consumption and the most effective utilization of
the limited transmittable forces due to friction. In the following, a braking maneuver
while traveling straight forward is analyzed. As described above, there are several
possibilities for braking the vehicle. For decelerating while moving forward, there
are no conflicts between the optimization objectives: for all of the above-mentioned
objectives, it is optimal to brake by using the driving motors as generators. However,
in order to achieve stronger deceleration, it is necessary to turn the wheels inwards
in addition to reversing the motors..

The vehicle has four steering motors and four driving motors. Each of them can
be functional or non-functional, giving a total of 2(4+4) = 256 different actuator
configurations. The failure probability of the whole system is computed using a
Bayesian network. Similar to a fault tree, the top event "system failure" is com-
posed of logical connections between the components. The failure probability of
each component is calculated for the current point in time and the system probabil-
ity is calculated by the predefined logical connections; in addition, combinations of
actuator failures are assessed. Based on the reliability assessment of the system, the
multi-dependability concept is used to assess the system status in case of actuator
failures. As a basis for this, the reliability assessment conducted across the Bayesian
networks is used in the operating phase as well to assess the system status. Through
the dependability-oriented optimization, actuator failures can be counterbalanced.
The M-LD Concept is used to derive suitable measures based on the assessment of
the current system status. In Level I, all actuators are functional and, in most cases,
the focus is not on the dependability-oriented objectives. In Level II, one or more
actuators has failed. The objectives of minimizing the actuator loads are taken into
account in addition to the normal objectives. If there are only two possibilities re-
maining for decelerating the vehicle, Level III is reached and additional measures,
such as protecting the critical actuators by reducing the speed of the vehicle, are
considered. Level IV is reached if only one possibility of decelerating the vehicle is
still functional. In this case, the vehicle is forced to a fail-safe-state, meaning it will
be brought to a stop.

The vehicle is intended to perform a desired maneuver in an optimal way; during
operation, the control strategy can increase safety by using the redundancy provided
by the vehicle: actuator failures can be included as additional constraints. This idea
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can be illustrated by an example: the driving motor of the front wheel on the left-
hand side may be out of action. The constraint connected to this failure is that the
driving force of the left front wheel is zero. By accepting this as a constraint, the
optimization result will guarantee the desired movement of the vehicle. Fig. 3.46
presents the simulation results for braking in this situation. The applied braking
force for the vehicle should be 200N. The vehicle is traveling in straight line while
braking, so the values for lateral movement as well as the yaw rate are zero. If all
actuators would be functional, the total braking force of 200N could be allocated
to the wheels equally, i.e. each wheel would provide a braking force of 50N. The
figure presents two possible options for a braking maneuver in the case of the sup-
posed failure. For each wheel and each option, the braking force produced by the
driving motor Fdm and those produced by the steering motors Fsm are given. In the
first option, braking is achieved by the driving motors alone. To compensate for
the actuator failure of the left front wheel, the left rear wheel has to brake with the
doubled amount of longitudinal force than in the case of a fully functional vehicle,
which in this case is 100N. The right front and rear wheel brake with 50N each to
achieve the desired braking force of 200N. The second option uses the symmetric
inward turn of all four wheels. This option could make sense if further constraints
are imposed on the driving motors. The force produced by the driving motors is sig-
nificantly reduced compared to the first option. Online, the M-LD Concept chooses
the suitable option.
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Fig. 3.46 Compensation for the failure of the left front wheel driving motor
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3.2.11.5 Further Reading

The method and this example application are also described in [141]. A possible ma-
neuver accounting for the breakdown of a steering motor and the suitable optimiza-
tion is explained in [128]. The focus on dependability-oriented system objectives
is also described for different applications. In [101] the objectives and behavior in
the case of actuator failures for an active suspension module are analyzed (see also
Sect. 3.2.1); sensor failures are discussed in [140].

3.2.12 Self-healing in Operating Systems

Katharina Stahl

In the context of self-optimizing systems, the operating system has to cope with
complex and changing behavior of dynamically reconfiguring hardware and soft-
ware. As part of its functionality, it has to ensure the reliability of the entire system.

Methods such as Hazard Analysis (described in Sect. 3.2.8) and Online Model-
Checking (described in Sect. 3.2.14) aim to verify and control the correct execu-
tion of the software system. However, these methods basically rely on specification
knowledge or an system model generated offline. The system state analysis is com-
puted based on an exhaustive system model, and is therefore resource-intensive. For
this reason, it can only be executed offline or outside of the system while the system
continues to operate.

Furthermore, the behavior of systems that operate in a self-organizing manner
in uncertain environments can lead to unforeseen and unpredictable system states.
Autonomous reconfigurations of the system may produce system states that lead to
unstable or malicious system behavior. Self-organization opens up some degree of
freedom for system behavior, so that system designers and development tools are
not able to determine all potential system states in the specification model. This
leaves a gap in terms of dependability at runtime.

To ensure dependability of the entire system, the operating system requires mech-
anisms to cope with dynamic behavior and to monitor system behavior at runtime in
order to identify potentially malicious system states caused by autonomous recon-
figuration, and potentially being unidentified by any specification or model. With
our self-healing framework, the operating system is able to profile system behav-
ior. It builds up a knowledge base of normal system behavior at runtime without
predefined system model. This knowledge base is incorporated directly into the op-
erating system, and thus is continuously updated. The framework provides a mech-
anism for detecting deviations from normal system behavior. In this context, the
self-reconfiguration abilities of the applications and the hardware constitute an addi-
tional challenge, as in a self-reconfigurable system it is hard to distinguish between
intended and malicious deviations from normal system behavior. Further proper-
ties and information about the system state are considered for the evaluation of
the anomalous system behavior in order to identify if it could potentially degrade
the system’s dependability. The main objective of the framework is therefore to
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maintain, or at least re-establish the system’s overall performance and service deliv-
ery by reconfiguring the operating system.

3.2.12.1 Prerequisites and Input

ORCOS (Organic ReConfigurable Operating System [48]) is a highly customizable
and (re-)configurable real-time operating system (OS) for embedded systems. We
use this platform to implement self-healing properties in the operating system.

Customizability of the Operating System

The operating system ORCOS is composed of kernel modules that can be config-
ured individually at compile time. For example, the scheduling strategy, the mem-
ory management method, or even hardware-dependent functions can all be set up
according to system requirements by an XML-based configuration language SCL
(Skeleton Customization Language, see [48]). Dependencies between particular ker-
nel modules can be specified to ensure correct functionality and dependability of the
customized operating system. In resource-restricted environments such as mecha-
tronic systems, efficiency is an important factor. Configurability ensures that only
the necessary code will be compiled into the executable and loaded onto the device.

3.2.12.2 Description

The basis for integrating such a self-healing framework into the operating system
(OS) is an adequate OS architecture that encompasses both the ability to monitor
and analyze system behavior, and the ability to reconfigure the system in order to
react to a malicious system state. This section first describes the architecture of the
real-time operating system and then the according components that constitute the
self-healing framework.

The main challenge of this approach is the problem of anomaly detection. Within
this context, we define what actually determines system behavior and which inter-
nal and external factors have an impact on and can cause changes in the system’s
behavior. Then, we present our approach for online anomaly detection within the
self-reconfiguring system, which relies on the Danger theory [99] of Artificial Im-
mune Systems (AIS) [27,31]. The applied algorithm and further adjustments on the
OS architecture that are necessary to implement the AIS algorithm are presented in
the later part of this section.

Operating System Architecture

To integrate self-healing capabilities into the operating system ORCOS, we have
adjusted the OS architecture following the example of the Observer-Controller Ar-
chitecture first instantiated by the Organic Computing Initiative [130].

We have expanded the ORCOS architecture to include an observer component
that is responsible for monitoring the system and for collecting and providing
knowledge about the system behavior.
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Fig. 3.47 Architecture of a self-healing operating system

Although the Observer implements two functions that are strongly coupled (col-
lecting data and analazing), they exhibit self-contained tasks which can be executed
in a timely decoupled manner. Therefore, the Observer is subdivided into the two
separate entities: a Monitor and an Analyzer. The Monitor collects behavioral data
and aggregates the data for the Analyzer. Then, the Analyzer evaluates the data and
passes its evaluation results to the Controller. Based on the results of the analy-
sis, the Controller is responsible for planning and executing decisions for system
reconfiguration.

The resulting architecture of the operating system ORCOS is shown in Fig. 3.47.
In this operating system design, the self-healing framework is strongly isolated from
the remaining functional OS kernel components. This isolation ensures that the
functional OS kernel components are not integrated into the self-healing process,
so that for the functional OS kernel components the execution of the self-healing
framework can take place in an imperceptive manner. Furthermore, the self-healing
framework must not degrade the execution of the real-time applications in terms of
reaching their deadlines so that it can only be implemented having soft real-time
requirements or at lowest system priority.

Reconfiguration

In the context of dependability and self-healing, reconfiguration is used to re-
establish an acceptable system state where, for instance, components exhibiting
faulty behavior can be replaced by other components. Hence, reconfiguration es-
sentially requires the existence of alternatives for the Controller.
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The basis for reconfiguration in ORCOS is provided by the Profile Framework.
Originally, this framework was developed in the context of the Flexible Resource
Manager (FRM) [109] to self-optimize resource consumption in resource-restricted
real-time systems (for further description see D.M.f.I.T.S, [55], Sect. 5.5.2). How-
ever, the principle of the Profile Framework offers potential for other purposes: the
Profile Framework enables alternative implementations of an application task. Each
alternative implementation is represented by a defined profile for that task. Im-
plementations may vary, as originally intended in the FRM, by different resource
requirements.

At each point in time only one profile of a task is active (see Fig. 3.48). A config-
uration c of the system is defined as Configuration c = (p1, p2, . . . , pn), with n being
the number of running tasks τ , p1 ∈ P1, p2 ∈ P2, . . . , pn ∈ Pn and Pi being the profile
set of task τi. Each task must define at least one profile to be executed.

For the purpose of our self-healing framework, we can extend this definition:
profiles are not only restricted to tasks, but are also defined for OS components.

The former definition of profiles is extended so that profiles may now differ in
their demand for resources. in the choice of which resources are applied (e.g. a
specific communication resource), in the implemented algorithm (e.g. in terms of
accuracy of the algorithm or strategy), in execution times, in deadlines etc.

During runtime, the Controller may switch between the profiles of a task or a
OS component in order to reconfigure the system according to some system restric-
tions. A reconfiguration is required when the analyzing algorithm detects anomalous
system behavior, which, for example, could be caused by a defective hardware re-
source and could lead to malicious behavior. In such a case, the Controller must
deactivate all profiles that use that resource and, consequently, it must activate an-
other profile for each affected task or OS Component. To maintain flexibility of the
operating system at runtime, an extension of the operating system kernel allows ex-
ecutable OS modules to be uploaded online and thereby to add new profiles for this
component. Kernel components (e.g. the memory manager) can be exchanged based
on changing requirements of the self-optimizing system.
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System Behavior

The state of an operating system consists of a range of system status information,
such as the CPU usage, resource and memory consumption, values of kernel pa-
rameters, etc. These system state parameters are discrete values for a specific time
stamp. However, behavior is usually understood as a course of actions and derived
from an observable course of changes within discrete system states.

The operating system is a service platform for applications that are running on
the system. Hence, the characteristics of these applications have a major impact on
the operating system state parameters. Due to security aspects, ORCOS provides
system calls as the only interface for the applications to the operating system so
that the system state and the derived system behavior are strongly dependent on the
applications’ system calls.

Based on this, we define that the operating system behavior is determined by
(sequences of) system call invocations executed by the applications tasks with the
associated information (arguments, return values, return addresses etc.) .

External Impact on System Behavior

Autonomous reconfiguration of the operating system is not the only challenge when
considering the entire system. Self-optimization is present in all system layers.
Therefore, our operating system must additionally deal with self-reconfiguring hard-
ware and self-reconfiguring software. A reconfiguration, either in the underlying
hardware or in the overlying software layer, will obviously cause deviations in the
normal system behavior. Even if the particular reconfiguration was not induced by
the operating system itself, it was intended by system-internal source, meaning that
the behavioral changes must be accepted as non-malicious. Therefore, interfaces
must exist that allow other system layers (such as the hardware or software) to in-
form the OS whenever a reconfiguration has been initiated by a source outside its
own control (by e.g. interrupts or signals).

Inspiring Paradigm

The self-healing mechanism depends heavily on the efficiency of the algorithm used
for runtime analysis and behavior evaluation. As we have to deal with dynamically
changing system behavior in a resource-restricted environment, a suitable approach
must possess certain qualities, such as:

• disposability,
• autonomy,
• dynamical adaptivity,
• abililty to cope with new system states,
• learning mechanism for remembering correct and malicious states, and
• simple algorithms with a low resource consumption.

Considering the context of self-healing systems, Artificial Immune Systems (AIS)
[27, 31] are a good source of inspiration for problem solving.
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Self-healing Framework

The workflow of the self-healing framework in the operating system is defined by:

Monitor:

Step 1:
Data collection of system state and behavior data, composed of :
• data about OS parameters: CPU utilization, resource usage, etc.
• data about tasks being executed: system calls, system call arguments, return

addresses and other related information
Step 2:

Data interpretation and generation of a system behavior representation

Analyzer:

Step 3:
Identification of system behavior; detection of deviations/anomalies by pat-
tern matching

Controller:

Step 4:
Analysis of results from behavior identification and evaluation of effect on the
overall system

Step 5:
Reaction to system behavior, in particular to behavioral anomalies: reconfig-
uration of the system

Danger Theory from Artificial Immune Systems [2, 99] offers appropriate fea-
tures to serve as an inspiration for implementing the self-healing framework in
our dynamically reconfigurable system. Dendritic Cells build up the core of this
population-based approach. In immunology, a Dendritic Cell (DC) initially serves
as an Antigen Presenting Cell (APC), which means that this cell signals the presence
of substances that indicate an anomaly and stimulates an immune response.

During its lifetime, a DC can obtain three different states: immature, mature and
semi-mature. The initial state of the DC is immature. Residing in this state for a
particular period of time, the DC will observe and examine the structures for which
it is specified. Then, the DC migrates either into the semi-mature or into the mature
state. This migration is illustrated in Fig. 3.49. The decision for state migration
depends on two factors: first, its own evaluation of the observation, and second,
input signals from the surrounding system.

According to Danger Theory, the following input signals are defined:

Safe signal:
indicates that no threat has been identified in the system

PAMP (pathogen-associated molecular pattern) signal:
indicator that a known threat has been localized
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The DC’S state transitions are probabilistic decisions that depend heavily on sev-
eral thresholds. To decide on a state transition, the DC sends out an output signal
reflecting its local evaluation and adjusts the system input signals.

We are deploying Dendritic Cells for self-healing in the operating system with
the objective of evaluating the behavior of the system entity that the DC is assigned
to monitor. In this context, we have defined the system behavior using OS state in-
formation and system call invocation by tasks. Hence, we use a DC for profiling
the behavior of a task or a specific OS kernel property. Referring to the self-healing
workflow described above, the set of DCs takes over the responsibility of the Mon-
itor in a distributed manner.

Local evaluations by DCs are collected by the shared DCA Monitor. Addition-
ally, the DCA Monitor supplies the DCs with values of input signals from a central
location and stores the knowledge base containing the normal behavior profiles, as
well as already-detected dangerous system states (PAMP); the latter are recorded in
order to enhance immediate detection of known dangers. The resulting architecture
for the self-healing framework in the operating system is illustrated in Fig. 3.50.

Each DC starts its local evaluation in the immature state. In this state, the DC
samples selected system behavior data for the behavior analysis and evaluation. The
process of data sampling of a DC is limited by a predefined data amount or by
a timing condition. Parameters are monitored and collected in order to establish
system behavior data based on the requirements of the analyzing algorithms. The
data set is configurable at runtime according to the analyzing method. As any OS
component of ORCOS is configurable and exchangeable at runtime, the analyzing
algorithm can also be exchanged according to the given restrictions (e.g. available
free resources for execution).

After data collection, the behavioral data has to be analyzed. Therefore, each DC
provides a normal behavior profile for the component (e.g. task) it is monitoring.
The objective of the data processing is to identify deviations in the real behavior
from the normal behavior profile. The DC executes a (simple) pattern-matching
mechanism in order to pre-evaluate the real local behavior monitored. Based on its
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local knowledge, a DC classifies the behavior; if the real behavior complies with the
normal behavior profile, the actual behavior is classified as safe. In that case, the
DC switches to the semi-mature state and amplifies the value of the safe signal.

If the local behavior is outside the range of the normal behavior profile, in the
first instance the system behavior is classified as suspicious. From here, the DC can
either migrate into the semi-mature or the mature state. The migration of the DC
requires further evaluation that is related to the system context as represented by the
system’s input signals.

If the local behavior corresponds to a system behavior that has been already iden-
tified as malicious or dangerous, then the DC migrates to the mature state and out-
puts a PAMP signal. If the current local behavior exceeds the range of the normal
behavior profile and is combined with the presence of the danger signal, the DC
tends to migrate to the mature state and consequently increases the value of the dan-
ger signal. If, on the other hand, the actual current behavior is outside the range
of the normal behavior profile with no danger signal, but rather within a dominant
presence of the safe signal, then the behavior tends to be tolerated. Consequently,
the DC migrates to the semi-mature state.

In order to inform the OS about a reconfiguration at the software application or
the hardware layer, the system provides the inflammation signal as a general alarm
signal. The occurrence of the inflammation signal instructs the DCs to build up new
system behavior knowledge which is based on the behavior produced by the new
system configuration.

In the context of AIS, the Controller is an immune T-cell that is responsible for
the immune response and, thus a reaction to the present system behavior. It re-
ceives the collected information from the DCA Monitor and decides - based on
thresholds and predefined conditions - whether the observed behavior may lead to a
system failure. As already described, it can then initiate a system reconfiguration, if
necessary.
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3.2.12.3 Results

The self-healing framework offers the operating system the ability to monitor and
analyze system behavior. Its main potential is for evaluating unspecified and un-
known system states for which there is no previously specified behavioral model. In
correlation with environmental input signals, the framework ensures that behavior
evaluation results are not determined based only on local information. Thus, this
AIS-inspired approach substantially enhances the system’s dependability using a
runtime method with low computation efforts.

3.2.13 Self-healing via Dynamic Reconfiguration

Sebastian Korf and Mario Porrmann

The goal of this method is to increase the reliability of a self-optimizing system
by taking advantage of the reconfigurability of the underlying hardware. Recon-
figurable devices such as FPGAs are increasingly being used in several areas of
application. With the advent of the new generation of SRAM-based partially recon-
figurable FPGAs, the implementation of System on Programmable Chips (SoPCs)
has become a feasible alternative to traditional options [83]. Nowadays, it is possi-
ble to implement a comprehensive system which embeds hardwired microproces-
sors, custom computational units, and general-purpose cores on a single chip. This
technology is able to cope with today’s requirements for a short time-to-market and
high resource efficiency.

Since nanoelectronics with feature sizes of 45 nm and below has become reality
for reconfigurable devices, designers have to consider the fact that faults – static
and dynamic – will increasingly affect their products. Hence, yield and reliability
are becoming key aspects in SoPC design [24]. These architectures are receiving
increasing interest from various application domains. Even safety-critical missions,
driven by avionics and space applications, are especially attracted to using SoPCs
due to low non-recurring engineering costs, reconfigurability and the large number
of logic resources available. One of the most significant problems in choosing to
use SoPCs in safety-critical applications are the effects induced by different types
of radiations such as alpha particles, atmospheric neutrons and heavy ions [118].
These particles may induce non-destructive loss of information within an integrated
circuit, provoking Single Event Upsets (SEUs) [138].

Partial dynamic reconfiguration, i.e., changing parts of a reconfigurable fabric
at runtime while leaving other regions untouched, can be used to further increase
resource efficiency and flexibility of SoPCs [116]. Additionally, dynamic recon-
figuration can be used to correct a corrupted configuration of a device, caused,
for example, by an SEU, at runtime. Together with continuous monitoring of the
configuration memory, this enables self-healing capabilities for the implemented
information processing system. Furthermore, partial reconfiguration can be used
to implement adaptive redundancy schemes. Based on sophisticated error moni-
toring and on user-defined security levels for each implemented hardware module,
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redundancy can be adapted at runtime. Critical modules can, for instance, be im-
plemented with triple modular redundancy (TMR) [142]. Depending on changing
environmental conditions and on the application requirements, the level of redun-
dancy can be dynamically adapted for each module.

3.2.13.1 Prerequisites and Input

For the effective implementation of dynamically reconfigurable systems, we pro-
posed a layer-based approach in D.M.f.I.T.S, [55], Sect. 5.4.3.1. This model sys-
tematically abstracts from the underlying reconfigurable hardware to the application
level by means of six specified layers and well-defined interfaces between these lay-
ers. The main objective of this model is to reduce the error-proneness of the system
design while increasing the reusability of existing system components.

Typically, a partially reconfigurable system is partitioned into a Static Region
and a Partially Reconfigurable Region, abbreviated as PR Region (Fig. 3.51). The
configuration of the Static Region is not changed at runtime; all static components
of the system are located in the Static Region (e.g., the reconfiguration manager or
the memory controller). The PR Region is used for runtime reconfiguration, and all
dynamic system components are located in a PR Region; a partially reconfigurable
system can be composed of one or several separate PR Regions.

In addition to the partitioning of the FPGA, the concept of partial reconfiguration
requires a suitable communication infrastructure for connecting the PR modules
and the Static Region. The communication infrastructure should not introduce any
further heterogeneity in the system; this is so that the flexibility of placement is
maintained by preserving the number of feasible positions of the PR modules. Ho-
mogeneity implies that the individually reconfigurable resources are connected via
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and dynamic system
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the same routing infrastructure. Thus, modules cannot only be placed at one dedi-
cated position, but at any position with sufficient free contiguous resources [66].

In addition to utilizing the reconfigurable resources, applications can also be
mapped onto the embedded processor of the SoPC. The hierarchical communication
infrastructure ensures that all system components can access the internal memory,
which stores all relevant data for applications, IO, and PR module configuration.

3.2.13.2 Description

In our approach, dynamic reconfiguration is provided by a combination of dy-
namically reconfigurable hardware and a reconfigurable real-time operating system
(RTOS), running on the embedded processor of the SoPC. While the proposed hard-
ware platform offers the fundamental mechanisms that are required both to execute
arbitrary software and to adapt the system to new requirements (e.g., by dynamic
reconfiguration), the RTOS provides an interface between the hardware and the
software application and decides whether a task will be executed in software, in
hardware, or in a combination of both. Thus, depending on the actual environmental
conditions, the high flexibility of the approach can be used to optimize the SoPC for
energy efficiency or resource utilization.

Furthermore, the high flexibility of the approach can be utilized to increase the
dependability of the system. This can be done on three different levels: system level,
module level, or gate level. The selection and combination of appropriate methods
depends on the desired level of reliability and the expected failure rate.

System Level:

A basic requirement for PR module placement is the availability of sufficient con-
tiguous resources in the PR Region of the FPGA. In case of a detected failure of a
complete FPGA, PR modules located on this FPGA can be migrated to other FP-
GAs. If the amount of available resources is not sufficient, modules that have low
priority can be replaced by simpler modules with lower resource requirements, or
can even be removed from the system entirely. The goal of this approach is to pro-
vide sufficient resources for high-priority modules so that a basic functionality of
the system can be guaranteed. Additionally, spare FPGA devices can be integrated
into the system to further increase reliability.

SEUs are especially critical for reconfigurable devices, since they can affect the
configuration memory and therefore change the behavior of the system. A frequently
occurring reconfiguration (blind scrubbing) can increase the reliability, as newly
configured SRAM cells are correctly set and potential bit-flips are removed. In
addition to blind scrubbing, a continuous readback of the configuration bitstream
combined with an online integrity check can be implemented (readback scrubbing).
While blind scrubbing does not provide any information about detected faults, read-
back scrubbing enables continuous monitoring of the failure conditions.
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Module Level:

Dynamic reconfiguration enables the implementation of different, adaptive levels of
redundancy and reliability on the level of PR modules. Components in which faults
are unacceptable could be implemented using very safe but space-consuming tech-
niques such as TMR. In less critical PR modules, faults may be acceptable, as long
as they can be detected and corrected within a given time frame. Furthermore, scrub-
bing, as described above, can be performed on module level. Critical PR modules
can be checked or reconfigured more often than less critical PR modules.

Gate Level:

Also permanent faults can be detected and located using the methods described
above. Once a permanent fault has been located, it can be considered as non-usable
during module placement. Therefore, the complete device does not have to be turned
off, but rather, only a single module is deactivated. This module can even be used
for future PR modules, if the defect is taken into account (i.e., masked out) during
PR module implementations.

3.2.13.3 Results

Partial dynamic reconfiguration can be used to increase the flexibility and resource
efficiency of microelectronic systems. The proposed strategies for scrubbing, mod-
ule relocation, and adaptive redundancy enhance the reliability of the whole system
at much lower cost than traditional approaches, such as triple modular redundancy
of the complete system architecture.

3.2.13.4 Application Example

Methods of increasing the reliability of microelectronic systems will be of increas-
ing importance when utilizing nanoscale semiconductor technologies in the future.
However, even today, special system architectures are necessary if high dependabil-
ity is a major concern (as in automotive and aerospace applications) or when target-
ing operation in harsh environments. Information processing in space combines the
aforementioned requirements and has therefore been chosen as an example of using
dynamic hardware reconfiguration for self-healing.

Performance requirements for onboard processing of satellite instrument data
are steadily increasing. A prime issue is that high volume data, produced by the
next generation of earth observation instruments, cannot be transmitted to earth ef-
ficiently, since science data downlinks only offer limited capacity. Therefore, novel
approaches to onboard processing are required. Utilizing reconfigurable hardware
promises a significant improvement in the performance of onboard payload data pro-
cessing. For this purpose, a system architecture has been developed that integrates
avionic interfaces (e.g., SpaceWire and WizardLink) in combination with reconfig-
urable hardware for use by satellite payload systems [65]. SRAM-based FPGAs are
used as the core components of this architecture and dynamic reconfiguration is
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utilized to exchange hardware modules for data processing at runtime in order to
enable new or updated functionalities, for one. Secondly, dynamic reconfiguration
is used to increase reliability by mitigating the above-mentioned radiation effects. In
this context, dynamic reconfiguration can be subdivided into scheduled and event-
driven reconfiguration, as in D.M.f.I.T.S, [55], Sect. 5.4.5.2. Scheduled reconfigu-
ration can be used to implement resource-sharing on hardware level by utilizing
time-division multiplexing across the available FPGA area. Furthermore, scheduled
reconfiguration can be used to minimize radiation effects by employing continuous
scrubbing, in which a continuous readback of the configuration data is combined
with an online check of the integrity of the data as it is obtained. While scrubbing
is performed periodically with a period (scrubbing rate) in the range of seconds or
milliseconds, scheduled reconfiguration can also be used to execute maintenance
functions which are executed in longer time intervals. In our implementation, the
scrubbing rate is limited solely by the clock frequency of the FPGA’s configura-
tion interface. The Xilinx Virtex-4 FPGAs used in the proposed satellite payload
processing system offer a maximum configuration rate of 400 MB/s, resulting in
a maximum scrubbing frequency of 100 Hz when scrubbing the complete FPGA.
Higher frequencies are possible if only certain sections of the FPGA are scrubbed.
The priority of each scrubbing task is a direct result of the defined reconfiguration
schedule.

In event-driven reconfiguration, the loading and unloading of hardware modules
is triggered by events. This could mean mission events, where, for instance, a sensor
has detected an object of interest which requires further investigation using new
hardware modules. It could, however, also be failure events, in which parts of the
system fail to operate correctly; in this case, reconfiguration is used for self-healing
by restoring the hardware configuration in an error-free area of the device.

Faults should not only be detected (and corrected), but should also be monitored
at runtime; therefore, all monitored data are analyzed and the results are used as
additional control inputs for the system. Using self-optimization, the system can
be reconfigured to a very safe mode (i.e., high redundancy but low performance)
if the error rate increases, while it can operate with higher performance and less
redundancy if low error rates are detected.

The proposed scheme of adaptive redundancy can also be implemented on a
more fine-grained level. Dynamic reconfiguration, as described above, will enable
the implementation of different levels of redundancy and reliability for the par-
tially reconfigurable hardware modules. As mentioned above, modules representing
components where faults are unacceptable are implemented using very safe but
space-consuming techniques such as TMR. Additionally, since TMR is a modular
approach, it can be efficiently combined with our approach for dynamic reconfigu-
ration. In this case, redundancy is adapted at run-time by inserting additional mod-
ule instances, as well as the required majority-voting system. Other PR modules
may implement components where faults are acceptable; however, these faults have
to be detected immediately (e.g., communication using automatic repeat request).
Moreover, PR modules may exist where faults are both acceptable, and can be
detected or corrected later.
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Fig. 3.52 Overview of a scalable system architecture for a payload processing system and
the realization on the RAPTOR prototyping system

For validation of the proposed concepts, a hardware implementation of a self-
optimizing satellite payload processing system with self-healing capabilities has
been created based on the RAPTOR [117] prototyping system, as depicted in
Fig. 3.52. The architecture can be easily scaled by the integration of additional Pro-
cessing Modules integrating dynamically reconfigurable resources (Xilinx Virtex-4
FX100 FPGA) and by additional Communication Modules providing the required
avionic and source data interfaces. The System Controller, a SpaceWire-RTC which
consists of a LEON2-FT CPU, two SpaceWire interfaces and additional source data
interfaces, controls the communication between the modules.
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3.2.14 Online Model Checking

Franz-Josef Rammig and Yuhong Zhao

As we have already seen several times in preceding chapters, self-optimizing sys-
tems are capable of adjusting their behavior at runtime in response to changes in
application objectives and the environment. Ensuring the dependability of such
dynamic systems has given rise to new demands on verification techniques. The
dynamic nature of these systems makes it difficult for traditional model checking
techniques [30] to investigate the state space of the system model offline with rea-
sonable time and space consumption. To overcome this problem, many efficient
techniques have been presented in the literature so far: partial order reduction [91],
compositional reasoning [18], abstraction technique [29] and bounded model check-
ing [20], to name just a few. These improvements enable model checking to verify
more complex systems, unfortunately, however, at the cost of making the model
checking process more complicated. Self-optimizing systems further exacerbate the
state-space explosion problem. Using the above-mentioned verification techniques
to check self-optimizing systems offline still leaves much to be desired.

Traditional testing [104] provides a partial proof of correctness at the level of
system implementation. For untested inputs, undiscovered errors in deep corners
might show up during system execution.

Runtime Verification [10, 14, 28, 40, 41, 68, 143] also works on a system imple-
mentation level. It attempts to check the correctness of the sequence of states moni-
tored or derived from the current execution trace. Runtime verification can proceed
further only after a new state has been observed. Therefore, it is difficult to detect
errors before they have already occurred.

Online Model Checking [154] works on the system implementation level as well,
but it checks the correctness of the corresponding system model. Errors at the model
level might indicate potential errors at the implementation level. Simply speaking,
online model checking is a lightweight verification technique to ensure at runtime
the correctness of the current execution trace of the system application under test by
means of checking a partial state space of the system model covering the execution
trace. For this purpose, we need to monitor the system execution trace from time
to time; in doing so, we can avoid the state-space explosion problem. The observed
(current) states are used to locate the partial state space to be explored. Online model
checking aims to “look” into the near future in the state space of the system model,
in order to see whether potential errors are lurking there or not. As a side effect, the
conformance of the implementation to the corresponding model can also be checked
during the process. The counterexample provided by online model checking is a
clue to help locate the error(s), which might be in a deep corner and thus hard to
reproduce.

Notice that we do not directly check the actual execution trace itself; thus, the
progress of our online model checking is not tightly bound to that of the system
execution. This means that, if we can make online model checking sufficiently effi-
cient, it is possible to predict potential errors before they have actually occurred. The



148 F.-J. Rammig and Y. Zhao

efficiency of online model checking depends primarily on the search algorithm and
the underlying hardware architecture, as well as on the complexity of the checking
problem. In the following, we present our efficient online model checking mecha-
nism and its implementation as a system service of a Real-time Operating System.

3.2.14.1 Prerequisites and Input

Our online model checking mechanism is integrated into a Real-time Operating Sys-
tem called ORCOS (Organic ReConfigurable Operating System [48]) as a system
service. The system application (source code) under test and its formal model, as
well as the property to be checked, are known in advance to ORCOS. The formal
model is derived from the system specification or extracted from the system im-
plementation. The property is given in form of an invariant or of a general Linear
Temporal Logic (LTL) formula.

3.2.14.2 Description

Online model checking attempts to check (at the model level) whether the current
execution trace (at the implementation level) could run into a predefined unsafe
region (error states) or not.

Basic Idea

Without loss of generality, suppose that the current state si of the system application
under test can be monitored in some way from time to time and that the unsafe
region is derived offline from the property to be checked. Fig. 3.53 illustrates the
basic idea of our online model checking mechanism.

For each checking cycle, whenever a new current state si is monitored during
system execution, we can use the corresponding abstract state ŝi = α(si), where
the function α(·) maps a concrete state si to an abstract state ŝi, to reduce the state
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space to be explored by online model checking. It is therefore is sufficient to ex-
plore a partial state space starting from the corresponding abstract state ŝi. It is
worth mentioning that, if no abstract state is consistent with α(si), it means that the
implementation of the system application does not conform to its model. This con-
sistency checking is a byproduct of online model checking. Because of the limited
checking time allocated to online model checking, for each checking cycle, only a
finite number of transition steps, say the next k steps, starting from the observed
state will be explored. Therefore, online model checking is, in essence, Bounded
Model Checking (BMC) [20] applied at runtime.

An SAT solver can be used as a verification engine for online model checking.
In case of a relatively small k, [20] concludes that “SAT based BMC is typically
faster in finding bugs compared to BDDs”. Unfortunately, [20] also concludes that
“The deeper the bug is, the less advantage BMC has.” However, by doing BMC at
runtime, it is quite possible to find deep corner bugs (if any) in the state space of a
large complex system. If no error is detected, then the execution trace is safe for at
least the next k steps. Once an error has been detected, online model checking will
inform the underlying operating system in time. It is then up to the operating system
to decide how to deal with the particular case.

Communication Mechanism

In order to obtain current state information, we can have our online model check-
ing communicate with the system application through a ring buffer, as shown in
Fig. 3.54. A special monitor, which can observe the current state while the system
application is running, puts the states into the buffer from time to time, while the
online model checking periodically tries to take a state from the buffer. This state is
used to decide a partial state space of the system model to be explored by the online
model checking. If the buffer is full, the oldest state is overwritten by the latest one.
It is easy to see that the progress of the online model checking is not strongly bound
to the system execution due to its working at the model level. Online model check-
ing does not check the actual execution trace itself; it merely uses the monitored
states to reduce the state space to be explored. This is different from state-of-the-art
runtime verification, which checks the observed execution trace itself.

Accelerating Online Model Checking

In practice, online model checking could run ahead of or fall behind the execution of
the system application. In the former case, it is possible for online model checking
to predict the potential errors before they’ve actually occurred. Therefore, it would
be advantageous to speed up online model checking [125], so that we have a bet-
ter chance to fulfilling this goal. One possibility would bet to speed up the search
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algorithm by using an efficient SAT solver optimized and customized for online
model checking. The second possibility is to reduce the workload of online model
checking by introducing offline backward exploration, as shown in Fig. 3.55.

For this purpose, we need to derive (initial) unsafe condition from the LTL for-
mula to be checked. In case of a safety property, it is trivially a reachability problem,
i.e., the error path is finite; the unsafe condition can be obtained easily by means of a
negation operation. However, in case of a liveness property, the error path is infinite.
For finite state systems, this means, the error path must end at some accepting state
that satisfies the fairness condition and that has some loop back to it in the mean-
time. Online checking of a loop condition will substantially increase the workload
of online model checking. Fortunately, we can always obtain the fairness condition
in advance from the Büchi automaton derived from the liveness property. There-
fore, we can calculate offline a set of states that satisfy the fairness condition and
that have some loop back to them. This set of states can be seen as the (initial) error
states.

Now we can extend the (initial) unsafe region F0 to become F ′ =F0∨F1∨·· ·∨Fn

by offline backward exploration up to n time steps, as shown in Fig. 3.55. As a result,
online model checking is reduced to online reachability checking [125], a simple
form of Bounded Model Checking.

Many existing efficient solutions to traditional model checking can be directly
applied to offline backward exploration. Given enough time and memory, it is pos-
sible to explore backwards much deeper in the state space of the system model to
be checked. Doing so will thus substantially reduce the workload of online forward
exploration.

3.2.14.3 Results

The existence of a Real-time Operating System (RTOS) implies that any effect of
a closed-loop control system, be it sending a control value to or receiving an input
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value from the controlled object or be it any kind of communication with another
application task, happens under the control (and this includes notion) of the RTOS.
All such actions of an application can happen only by means of system calls. A
failure can be malign according to Kopetz [84] only when passed to the outside via
a system call, while all other failures are benign.

That is, the implementation of any such application has to contain a sequence
of system calls. Whenever a system call is invoked, we can monitor the state
information of the implementation. Therefore the sequence of system calls of an ap-
plication is the appropriate level of granularity, at which we can monitor state infor-
mation used by online model checking. Such system calls happen anyhow during the
system execution. Online verification can thus be integrated as part of the system call
handler of an RTOS, thereby causing no additional context switch overhead and with
the necessary information already available without crossing address space borders.
We assume that there exist two versions of a system call handler, one with integrated
online model checking and one without. When entering a critical application or crit-
ical part of an application, then it just means to switch to the proper mode of system
calls. In this sense online model checking becomes an RTOS service, as shown in
Fig. 3.56.

3.2.14.4 Application Example

Nowadays industries rely increasingly on (embedded) software for their product
safety. For instance, the vehicles’ electronics systems are usually controlled by soft-
ware with millions of lines. Online model checking mechanism can increase the
dependability of the safety-critical systems to some degree. If an error is detected in
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time, the underlying operating system then has time to react to the error. At the very
least, the counterexample provided by online model checking can help the user to
figure out the location of and reason for the subtle error, which is usually difficult to
reproduce in a laboratory environment for the large complex software systems.

On the other hand, our online model checking mechanism can also be used to
increase the safety of the hybrid systems as shown in Fig. 3.57, where the symbol

⊗
represents the unsafe region of the continuous state space associated with the given
control mode. Starting from the unsafe region, we can calculate offline a backward
reachable set up to n time steps. At runtime, the system states are sampled from time
to time. Then, we can check online, as shown in Fig. 3.58, whether the trajectory
from each observed state could reach the extended unsafe region in the near future
or not.

3.2.15 Virtualization

Stefan Groesbrink

Self-optimizing mechatronic systems are in many cases characterized by higher de-
mands on processing power and memory compared to traditional control systems.
Due to space constraints, merely increasing the number of processing units and the
resulting extension of the cable infrastructure is often not feasible. Virtualization can
reconcile these opposing requirements and increase the processing power without
increasing the space. It achieves this by providing multiple execution environments,
which enable the consolidation of multiple systems onto a single hardware plat-
form (system virtualization). Instead of adding control units, more powerful control
units increase the system’s processing power. Virtualization’s architectural abstrac-
tion supports the migration from single-core to multi-core platforms and helps to
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utilize this multi-core hardware efficiently. Multi-core platforms enable higher pro-
cessing performance at lower electrical power per frequency, resulting in less heat
dissipation.

Mechatronic systems are typically safety-critical. Therefore, it is of paramount
importance that the integrated subsystems do not interfere with each other. Virtual-
ization’s integration of multiple systems does not lead to a loss of isolation; both
spatial and temporal separation can be maintained (brick wall partitioning). By
consequence, independently developed software components, such as third party
components, trusted legacy software, and newly developed application-specific soft-
ware, can be combined to achieve the required functionality. The reusability of soft-
ware is increased without endangering reliability and safety.

In addition to fostering safety-related characteristics, the application of virtu-
alization can actively improve two major attributes of dependability, namely reli-
ability and availability. The virtual machine concept, with its encapsulation of a
subsystem’s state, supports migration; by enabling the migration of virtual ma-
chines, a system can respond to unforeseen failures at runtime. In case of a partially
failed processor unit, partial memory failures, or a breakdown of acceleration co-
processors, the operation of the subsystem can be continued on another processor,
as long as it is still possible to save and transfer the virtual machine’s state. One par-
ticular benefit is self-diagnosing hardware that signals upcoming hardware failures
on the basis of built-in self-tests.

Virtualization is an architectural measure to improve safety, reliability and avail-
ability. In addition to this, by applying the methods Analysis of Self-Healing Op-
erations (Sect. 3.2.8) and Online Model Checking Mechanism (Sect. 3.2.14) , the
system behavior can be monitored at runtime in order to identify malicious system
states.

3.2.15.1 Prerequisites and Input

The application of system virtualization requires a software layer that virtualizes
the hardware resources in order to provide multiple execution environments; this
system software component is called a hypervisor or virtual machine monitor. The
hypervisor has to be configured for each specific application according to the char-
acteristics of the subsystems consisting of operating system and applications, which
are to be consolidated. For paravirtualization (modification of the operating system
to be aware of the fact that it is executed on top of a hypervisor) neither technical nor
legal issues should preclude the modification of the operating system source code.

3.2.15.2 Description

System virtualization describes the methodology of dividing the resources of a
complete computer system into multiple execution environments (platform repli-
cation) [139]. The underlying physical hardware can be shared among multiple
operating system instances, even among different operating systems, in order to
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provide each software component with a suitable system-software interface (see
Fig. 3.59).

The hypervisor (also known as virtual machine monitor) implements the virtual-
ization layer. It creates and manages virtual machines, also referred to as partitions,
which are isolated conceptual duplicates of the real machine [115]. Guest systems
are executed within these virtual machines. The real machine is the hardware envi-
ronment, including processor, memory, and I/O resources, with the instruction set
architecture as the interface for the system software. A virtual machine does not
have to be characterized by exactly the same hardware environment as the real ma-
chine. For example, the instruction set architectures might not be identical, in which
case the hypervisor maps the instruction set of the virtual machine onto the instruc-
tion set of the physical machine. Some physical resources, such as memory, can be
partitioned so that each virtual machine uses a certain fraction. This is not possible
for other resources, for example the processor in a uniprocessor system, in which
case time-sharing has to be applied [139].

The hypervisor retains control of the real hardware resources, without excep-
tion. If a resource is made available to multiple virtual machines, the illusion for
the operating systems of having exclusive access to this resource is maintained by
the hypervisor. When an operating system performs a privileged instruction, i.e. an
instruction that directly accesses the machine state, the hypervisor intercepts the
operation. If an operating system tries, for example, to set a control flag of the mi-
croprocessor, this cannot be allowed, since the modification would influence the
behavior of the other operating systems and destroy their illusion. Therefore, the
hypervisor intercepts this privileged instruction, stores the current value of the flag
and sets the control flag, but resets it before it performs a virtual machine switch.

Hypervisors are classified by their capability to host unmodified operating sys-
tems. In terms of full virtualization, unmodified operating systems can be executed
within a virtual machine. In contrast, paravirtualization requires a porting to the hy-
pervisor’s paravirtualization application programming interface [13]. The operating
system is aware of being executed within a virtual machine and can use hypercalls
to request hypervisor services. Paravirtualization can often be exploited to increase
the performance [78]; however, the major drawback is the need to perform modi-
fications of critical kernel parts of an operating system. If legal or technical issues
preclude this, for example in case of a commercial operating system, it is not possi-
ble to host it.

The application of system virtualization to embedded real-time systems requires
guaranteeing spatial and temporal separation of the hosted guest systems. Spa-
tial separation refers to protecting the integrity of the memory spaces of both the
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hypervisor and the guests. Any possibility of a harmful activity going beyond the
boundaries of a virtual machine has to be precluded. Spatial separation can be
ensured by hardware components such as memory management units or memory
protection units, which are available for many embedded processors. Temporal
separation is fulfilled, if all guest systems are executed in compliance with their
timing requirements, meaning that a predictable, deterministic behavior of every
single real-time guest must be guaranteed. System virtualization implies scheduling
decisions on two levels (hierarchical scheduling): the hypervisor schedules the vir-
tual machines and the hosted operating systems schedule their tasks with their own
schedulers. The hypervisor has the responsibility of scheduling the virtual machines
in a manner that assigns the subsystems early enough and gives them enough time
to complete their computations on schedule.

3.2.15.3 Results

Proteus [12, 61] is a real-time hypervisor for multi-core PowerPC platforms. The
software design (depicted in Fig. 3.60) is based on the Multiple Independent Lev-
els of Security (MILS) approach for highly robust systems [7]. According to this
design concept, a system is divided into multiple isolated components, consisting
of program code, data, and system resources, with no way for information to flow
except through the defined paths. Only the minimal set of components runs in super-
visor mode (privileged mode): interrupt and hypercall handlers, the virtual machine
scheduler, and the inter-partition communication manager (IPCM), which is respon-
sible for communication between virtual machines. All other components, such as
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I/O device drivers, are placed inside a separate partition (Untrusted VMP Modules)
and executed in problem mode (user mode). The interrupt handling is the central
component of the Proteus architecture. Any occurring interrupt is delegated to the
hypervisor, which saves the context of the running virtual machine and forwards the
interrupt request to either the responsible component or back to the guest operating
system.

Proteus is a symmetrical hypervisor with no distinction between cores; all cores
execute guest systems. When required, for example in case of a guest’s call for a
hypervisor service, the hypervisor takes control and its own code is executed on that
core. Different guests on different cores can perform this context switch, from guest
to hypervisor, simultaneously.

As a bare-metal hypervisor, Proteus runs directly on top of the hardware, without
an underlying host operating system [139]. Controlling the hardware directly facil-
itates a more efficient virtualization solution. Resource management and especially
scheduling is not at the mercy of a host operating system; the amount of code exe-
cuted in privileged mode is smaller; and no operating system is incorporated in the
trusted computing base, which increases the overall security and the certifiability of
functional safety.

Proteus features both paravirtualization and full virtualization. Paravirtualiza-
tion can be exploited to increase the efficiency, but is characterized by a limited
applicability. The support of non-modifiable guests requires full virtualization. In
addition, tasks without underlying operating system can be executed on top of the
hypervisor. The concurrent hosting of any combination of paravirtualized guests,
fully virtualized guests, and guest tasks without an operating system is possible
unrestrictedly.

The paravirtualization interface is characterized by two main functionalities.
In addition to providing a handler routine for each privileged instruction which
emulates the instruction, the paravirtualization interface offers additional services.
Paravirtualized operating systems can communicate with other guests through hy-
percalls, call I/O functionality, pass scheduling information to the hypervisor, or
yield the CPU.

As mentioned above, Proteus guarantees spatial and temporal separation of the
guest systems. To achieve spatial separation, each virtual machine operates in its
own address space, which is statically mapped onto a region of the shared mem-
ory. This mapping is protected by the memory management unit of the underlying
hardware platform (e.g. PowerPC 405). If systems are consolidated that have to
communicate with each other, it is mandatory to ensure that this communication is
still possible. The only path of data flow between virtual machines is communica-
tion via the hypervisor’s inter-partition communication manager. If the hypervisor
authorizes the communication, it creates a shared memory tunnel and controls the
correct use.

Ensuring temporal separation requires multiple methods. As a precondition, the
worst-case execution times of all hypervisor routines were determined by path
analysis of the executable files. The knowledge of these bounded execution times
make it possible to determine the worst-case execution time of a program executed
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on top of Proteus. Each virtual machine can be executed on any core; if this is
undesired, a virtual machine can be assigned to one specific core or a subset of
cores; for example, a core exclusively to a safety-critical guest. If multiple virtual
machines are assigned to one core, they share it in a time-division multiplexing
manner. The virtual machine scheduling is implemented based on fixed time slices.
The guests’ task sets have to be analyzed and execution time slots within a repetitive
major cycle are assigned to the virtual machines, based on the required utilization
and execution frequency. A real-time response time conserving calculation of the
time slots was developed [76].

Access to shared resources, such as peripheral devices, has to be synchronized.
One common solution is the use of semaphores assigned exclusively to one core
at any time. The PowerPC 405 does not feature any hardware support for mutual
exclusion in a multi-core architecture, which is why Proteus uses a software im-
plementation that does not explicitly rely on hardware support: Leslie Lamport’s
Bakery Algorithm [88]. It was selected since it does not require atomic operations,
such as compare-and-swap or test-and-set; it also satisfies FIFO fairness and ex-
cludes starvation. The software synchronization mechanism extends the applicabil-
ity of the hypervisor to shared memory multiprocessor platforms. The processors
work on their own random access memory, but are connected by a bus hierarchy
and can use shared memory. In such a multiprocessor system, virtual machines can
be relocated through migration from one processor to another one. We developed an-
alytical means to evaluate whether a migration of a virtual machine with real-time
constraints can be performed without risking a deadline miss [63].

By the application of processor emulation, Proteus supports even heterogeneous
multiprocessor platforms, which are characterized by processors with differing in-
struction set architectures. Heterogeneous platforms provide suitable processors for
different applications, such as general processing, network control, or signal pro-
cessing. The combination of emulation and heterogeneous platforms enables the
consolidation of legacy systems that were developed for different architectures. Em-
ulation enables the execution of program binaries that were initially compiled for a
different architecture; it translates between instruction set architectures and there-
fore makes cross-platform software portability possible. With the use of emulation
techniques, Proteus supports the migration of virtual machines even from one pro-
cessor to one processor with a different instruction set architecture at runtime [62].
We developed an emulation approach that maintains real-time capability [77]; it
minimizes the worst-case execution time overhead and combines interpretation
and binary translation for an optimal trade-off between required memory and
performance.

In a pre-processing step, critical basic blocks are identified; these blocks are char-
acterized by a high performance ratio between the emulated execution on the host
as compared to native execution. These blocks are translated once and the result
is stored, meaning that the size of the available memory limits this optimization.
Interpretation is used for non-selected blocks.

Proteus offers static configurability. Depending on the requirements of the ac-
tual system, the system designer can configure the hypervisor by modifying a
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configuration file. According to these specifications, the preprocessor manipulates
the implementation files and removes unneeded code. The system designer can de-
cide to enable TLB virtualization, device driver support, inter-partition communica-
tion and multiple performance-enhancement features.

3.2.15.4 Application Example

The basic idea of system virtualization is to create an integrated system that com-
bines the functionality of multiple systems in order to attain a complex behavior.
This modular synthesis has the potential to reduce development time by increasingly
reusing trusted systems. The consolidation on a single hardware platform can often
provide more efficient implementations as concerns regarding power consumption,
hardware footprint and system costs. Multiple operating systems can be hosted to
provide all applications with a suitable interface. Industrial automation systems, for
example, often require both a deterministic real-time operating system for the con-
trol of actuators and a feature-rich general-purpose operating system for the human-
machine interface and connection to the corporate IT. Of paramount importance
from a dependability point of view, system virtualization maintains the isolation
between the integrated systems. Spatial separation precludes any possibility of a
harmful activity going beyond the boundaries of a virtual machine and temporal
separation precludes a guest not being able to meet its timing requirements due to
interference from another guest.

3.3 Methodology for the Selection of Dependability Methods
for the Development of Self-optimizing Systems

Rafal Dorociak, Jürgen Gausemeier, and Peter Iwanek

The development of dependable self-optimizing systems is a difficult task that en-
gineers have to face, involving many complex aspects such as non-deterministic
behavior and cross-domain fault propagation. There is also an immense number of
engineering methods which can be used to improve the dependability of such self-
optimizing systems. Many of these specifically intend to improve the dependability
of self-optimizing systems have already been discussed in this chapter, such as It-
erative Learning Stochastic Disturbance Profiles in Sect. 3.2.2, or Online Model
Checking in Sect. 3.2.14. Beyond the scope of this book, there are also many more
methods which can be used during the development phase of technical systems,
such as the FTA, FMEA etc. (some of the existing databases provide information
on more than 700 such methods [105]). Which of them are suitable for a particular
system depends on the underlying development task and the Principle Solution of
the system. The developer faces the challenge of how to choose suitable engineering
methods from the vast number of available methods and how to embed them into the
product development process. Nowadays, as a rule, the search for and selection of a
method have to be done manually, which is tedious and often error-prone. Therefore,
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there is an evident need for a methodology which can aid developers in choosing and
applying appropriate dependability engineering methods. Such a methodology has
been developed within the Collaborative Research Center (CRC) 614 and is pre-
sented in the following. This methodology includes a method database, a guide to
selection and planning the use of dependability engineering methods throughout the
entire product development process, and a software tool. It enables the developer to
choose and plan the use of suitable dependability engineering methods for the par-
ticular development task. The developer receives suggestions on which methods can
be used, how they depend on each other, and how these methods can be combined,
as well as what their optimal chronological order is. The end result of this process is
a proposed workflow of process steps and methods. In the following, the constituent
parts of the methodology are explained in more detail.

The method database contains the description of dependability engineering meth-
ods, which have been manually entered into the database. They are characterized
by their inputs (e.g. specification of the Principle Solution) and outputs (e.g. de-
scription of the failure propagation) as well as by a number of criteria, such as the
dependability attributs (e.g. safety), the domain (e.g. control engineering), the de-
velopment phase (e.g. Conceptual Design), the industrial sector (e.g. automotive),
relevant standards (e.g. CENELEC 50128 [46]), etc. Links to the development pro-
cess and external documentation are also included. In addition, useful documents
(e.g. templates, usage in former projects) and the relationships between methods
are described as well. The following relationships between methods are those most
frequently used in the methodology:

• "is a prerequisite for",
• "requires",
• "is the further development/continuation of",
• "has been further developed to" and
• "can be complemented by".

As a example: the Early Probabilistic Reliability Analysis of an Advanced
Mechatronic System based on its Principle Solution (Sect. 3.1.1) "is a further de-
velopment/continuation of" the classic FTA and FMEA. To use the Early Proba-
bilistic Reliability Analysis, the specification of the system should be carried out
using the specification technique CONSENS meaning that the specification tech-
nique CONSENS "is a prerequisite for" the Early Probabilistic Reliability Analysis.
From another perspective, the Early Probabilistic Reliability Analysis "requires"
the usage of the specification technique CONSENS. By showing these relationships
between methods, the links between methods as well as their interactions can be
clearly represented, providing an easily intelligible overview of how the methods
are connected to one another.

Additionally, the methods can be classified with regard to their self-optimizing
relevance as dependability engineering methods which are either specific to or
which are not specific to self-optimizing systems:
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Methods which are not specific to self-optimizing systems:
A number of classical dependability engineering methods can be used to im-
prove the dependability of a self-optimizing system. Examples are FMEA, FTA,
FHA, etc. They are usually performed on detailed system designs, and thus rela-
tively late in the product development process. Some methods have been adapted
for use in the Conceptual Design, such as the early FMEA method [38]. These
classical methods allow initial statements with respect to the dependability of
the system to be made. Based on those statements, potential weaknesses can be
found in the Principle Solutions and counter-measures derived; one example of a
possible counter-measure is the use of redundancy for a particular dependability-
critical system element.

Methods which are specific to self-optimizing systems:
In addition, some dependability engineering methods have been developed within
the CRC 614 which are specifically designed for use with self-optimizing sys-
tems (see also previous sections). They are usually used during operation i.e. the
self-optimizing system is able to compensate for failures during operation and to
alter its behavior to reach a dependable state. One example is the Multi-Level de-
pendability concept (see Sect. 3.2.1), which integrates advanced condition mon-
itoring [90, 140] into a self-optimizing system. Another example is a method
for the Conceptual Design of the System of Objectives for a self-optimizing
system [114].

The above-mentioned classification systems have been incorporated into our
methodology for aiding developers during the improvement of the dependability
of self-optimizing systems.

A software tool has also been developed for use in this methodology. It supports
the insertion of new and the modification of existing method descriptions and offers
a search function to make it easier for the user to find suitable methods. It allows
users to search for dependability engineering methods with regard to their charac-
terization criteria (see Chap. 4 for a more detailed example).

The guide for planning methods proposes in which sequence the selected depend-
ability engineering methods should be used. Methods will be selected by the user
based on the list of methods returned by the software tool. This recommendation
is based on two pieces of information, both of which are stored in the database:
The first piece of information is the description of the input and output relationships
between the methods, and the development tasks and their sequences, which are
defined for each of the methods. These sequences are also saved in the database’s
method description; if the user selects one of the displayed methods, the correspond-
ing sequence will be presented.

In the following, a brief description of how the methodology can be used is
provided: First, a search for specific dependability engineering methods is per-
formed using the method database (Step 1 in Fig. 3.61). The result is a list of all
recommended methods which match the search criteria. As stated before, these
search criteria (corresponding domain, relevant dependability attributes, respective
development phase, relevant standards, etc.) are provided by the safety engineer
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Fig. 3.61 Selection and planning of dependability engineering methods with regard to the
underlying development task
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and correspond to the development task at hand. The user selects the appropriate de-
pendability engineering methods manually from the list (Step 2). From the method
database, the user navigates to the corresponding process steps in the process model
(Step 3). The software tool supports the planning and the application of the chosen
methods based on the underlying process model descriptions. The result is a work-
flow diagram (Step 4) which suggests the sequence of process steps and methods
to be used. The planning is performed with regard to the underlying development
task; for example, for a safety engineer, a sequence of methods is proposed which
complies with a given safety standard. The usage of the methodology and the cor-
rosponding methods will be discussed further in Chap. 4.

By using the presented methodology, the developer can decide both more easily
and more quickly which of the vast number of available dependability engineering
methods is best suited to the development task at hand. In addition, this methodology
can assist him or her in planning the application of the selected methods during the
development process. It also encourages the documentation of best practice, i.e.
exemplary combinations of methods used in projects which can be repeated later.
New projects can later be structured upon those best practices.

The concrete use of this methodology is shown in Chap. 4.
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