Chapter 2
Development of Self-optimizing Systems

Abstract. In the development of self-optimizing systems, developers have to face
different challenges, such as the multidisciplinarity of mechatronics, cross-linking
between the subsystems, the lack of current knowledge in the fields of advanced
mathematics and artificial intelligence, and increased dependability requirements.
To support the developer in this challenging task adequately, the Collaborative Re-
search Center 614 has developed a design methodology consisting of a reference
process, methods and tools. The reference process is divided into two phases: the
"Domain-Spanning Conceptual Design" and the "Domain-Specific Design and De-
velopment". In the first phase, the domain-spanning model-based aproach CON-
SENS (CONCceptual design Specification technique for the ENgineering of complex
Systems) is used to create a common understanding basis between the different
domains involved. Based on the Principle Solution developed in this phase, the
"Domain-Specific Design and Development" is planned and implemented. To en-
sure the development of dependable self-optimizing systems, domain-spanning and
domain-specific dependability engineering methods can be used. The developer en-
counters a significant number of these methods, that have to be integrated into the
process to obtain an individualized development process for the specific develop-
ment task.

Jiirgen Gausemeier and Mareen Valholz

The Collaborative Research Center 614 has developed a design methodology that
expands existing ones for mechatronic systems such as the VDI guideline 2206 [12],
the approach by Isermann (2008) [8] or Ehrlenspiel (2007) [4], the iPeM-Modell [1]
or the V-Model by Bender (2005) [2] and supports developers by providing domain-
spanning and self-optimization-specific methods and tools [9]. The methodology
consists of a reference process, methods and tools for the development of self-
optimizing systems, and is presented in detail in the book "Design Methodology
for Intelligent Technical Systems" D.M.f.1.T.S, [7], Chap. 3.

During the development of self-optimizing systems, different domains, such as
mechanical, electrical/electronic, software and control engineering and experts from

J. Gausemeier et al. (eds.), Dependability of Self-optimizing Mechatronic Systems, 25
Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-53742-4 2, (©) Springer-Verlag Berlin Heidelberg 2014

26 J. Gausemeier and M. VaBholz

advanced mathematics and artificial intelligence, are involved. Therefore, a domain-
spanning development process is needed which supports common understanding of
the product development activities and their cross-domain relationship for all par-
ticipating developers. The development of self-optimizing systems (cf. Fig. 2.1) is
basically structured into two main phases: the "Domain-spanning Conceptual De-
sign" and the "Domain-specific Design and Development". The result of the first
phase is the specification of a Principle Solution for the system to be developed. It
describes the basic structure and operational mode of the system, as well as its de-
sired behavior, computer-internally as partial models. In particular, the specification
of the Principle Solution contains the description of the System of Objectives (cf.
Sect. 2.1). Based on the Principle Solution, a first analysis of the dependability can
be carried out.

This specification of the Principle Solution constitutes the basis for the Domain-
specific Design and Development (cf. Sect. 2.2). During this phase, the domains in-
volved work in parallel and use their domain-specific methods, models and tools.
The partial solutions developed by the domains involved are continuously inte-
grated into the overall solution with model transformation and synchronization tech-
niques [11]. During the Domain-specific Design and Development, the ability of the
system to adapt its behavior during operation is implemented in the domains. For
example, multiobjective optimization is used in the domain control engineering to
enable the system to adapt its behavior by changing the control parameter during
operation.

These steps particularly require the involvement of experts of advanced mathe-
matics and artificial intelligence. The optimization is specific to self-optimizing sys-
tems, as the main focus is on the implementation of the self-optimization process.
In addition, system tests are performed; both virtual and real prototypes are used for

Design and Development

System Integration

Subsystem 1
Subsystem Integration
—\ Mechanical Engineering
Control Engineering / 4?
9 / Software Engineering /)
Electrical Engineering

Principle Production
Solution Subsystem n Documents

Subsystem Integration
¢ Mechanical Engineering

¢ Control Engineering
Software Engineering /
Electrical Engineering

Fig. 2.1 Macro cycle for the development of self-optimizing systems

2 Development of Self-optimizing Systems 27

this purpose. The result of the Design and Development phase is engineering data
such as manufacturing drawings and part lists.

The reference process for the development of self-optimizing systems is recom-
mendatory and gives an overview of the tasks that have to be performed during
the development. It is based on our experiences from the development of the Rail-
Cab and its function modules. It serves as basis for the application to a specific
development task and company in form of an implementation model. This model
provides a detailed process sequence according to the project, the system type and
the environment of the development project. It consists of process steps from the
reference process and builds the starting point for the project management. For ex-
ample the implementation model for the RailCab consists of about 850 steps and
900 development objects. During the development project execution, deviations
and changes from the planned development process can occur, for example due
to changing development objectives such as time and costs. To support the man-
agement during the project execution to react to these changes we adopted the self-
optimization approach to the management of the development process (cf. D.M.f.I.
TS, [7], Sect. 3.5). In the following sections the reference process is described in
more detail.

2.1 Domain-Spanning Conceptual Design

The aim of the "Domain-spanning Conceptual Design" is to create a common un-
derstanding of the system between the domains involved. The main result of this
phase is the Principle Solution, which is described by the specification technique
CONSENS.

There are eight separate but highly interrelated aspects that need to be covered by
the Principle Solution. Computer-internally, these aspects are represented as partial
models. The eight aspects and their respective partial models are shown in Fig. 2.2
(cf. [6]). While each partial model represents only one individual aspect of the sys-
tem, together they form a coherent model of the complete system [6]. The partial
models are:

Environment:
This model describes the environment of the system to be developed and the
system’s embedment into the environment. Relevant spheres of influence and
influences will be identified and interactions between them will be examined [6].

Application Scenarios:
These scenarios concretize the behavior of the system in a particular state and
situation. Application Scenarios characterize a problem which needs to be solved
in certain cases and also briefly outline the possible solution [6].

Requirements:
This partial model presents an organized collection of requirements that need to
be fulfilled during product development. Every requirement is described textually
and, if possible, concretized by attributes and their characteristics [6].

28 J. Gausemeier and M. VaBholz

Environment Application Scenarios Requirements

Moo o 2 | Geometry
v vl 2.1 | Length - 6600 mm <
- 22 | Widlh b, 2420 mm >
=~ &) 23 | Feighth,_ 2885mm
M 24 | Distance h,_: >400 mm <

section x section y

Functions
Adjust air
gap
Determine
control input
Optimize Determine
control input influences

Behavior . Shape Active Structure

- v, Serial
interface

A

[Extornal System of Objectives.
[Shutte (excerpt)

Targets of -’
27] the cluster max £,
internal System of Objecth m
(Shuttle. (e ccerpt)

reuabnwy max VRN

System of coherent
partial models

Wofklng
point
ocmml

Drive Drive
module, module,

Fig. 2.2 Partial models of the domain-spanning description of the Principle Solution of a
self-optimizing system [6]

Functions:

A function is the general and required relationship between input and output pa-
rameters with the aim to fulfill a task. Functions are implemented using solution

patterns and their concretizations. Functions should be specified in a hierarchical
manner [6].

Active Structure:

This partial model describes the system elements (e.g. drive and brake modules,
energy management) and their attributes, as well as their relations (energy, ma-

terial or information flow). Incoming parameters are also described (e.g. com-
fort) [6].

Shape:
The Shape is usually created by a 3D CAD-System and gives a first impression
of the physical appearance of the system [6].

Behavior:
The partial model Behavior is subdivided into the aspects Behavior — State and
Behavior — Activities. The aspect Behavior—State defines the states of the system
and the state transitions. The state transitions describe the reactive behavior of
the system towards incoming events, which can also be system activities. The

2 Development of Self-optimizing Systems 29

aspect Behavior — Activities describes the logical sequence of activities which are
carried out by the different system elements. Activities describe how functions
are executed within different system states [6].
System of Objectives:

This partial model includes external, inherent and internal objectives, as well as
the connections between them. Internal objectives are achieved by the system
itself during operation mode and as a consequence represent the system’s inten-
tionality [6] (see also Sect. 1.1).

In particular, the partial model System of Objectives is of high importance for
self-optimizing systems: it describes the objectives of the system during operations,
their hierarchical relationship, and potential conflicts between objectives [10]. The
specification of the Principle Sution provides a holistic domain-spanning descrip-
tion of the self-optimizing system and forms the basis for the communication and
cooperation between the developers from the domains involved. As such, it enables
them to avoid design mistakes and corresponding iteration loops in later develop-
ment phases, which would otherwise occur due to differences in understanding of
the system [3].

To develop the Principle Solution the reference process for the Domain-spanning
Conceptual Design consists of four main phases: "Planning and Clarifying the
Task", "Conceptual Design on the System Level", "Conceptual Design on the Sub-
system Level" and "Concept Integration" (cf. Fig. 2.3).

In "Planning and Clarifying the Task", the design task of the system and the
requirements are identified and evaluated. The results are the List of Requirements,
the Environment model, the recommended product structure type and the design
rules for this, as well as the Application Scenarios.

Based on previously determined requirements the system must fulfill, the main
functions of the system are identified and set into a function hierarchy in the "Con-
ceptual Design on the System Level". Each function has to be fulfilled to satisfy the
requirements; therefore solution patterns are sought which can execute the desired
functions. Within a morphologic box, the solution patterns are combined to obtain
consistent solution variants. These are evaluated and the best one is chosen and in-
tegrated into the Principle Solution on the system level. The resulting solution does

Domain-spanning Conceptual Design Decomposition
Subsystem n

Subsystem 2
Subsystem 1
Planning and Conceptual Design onceptual Design ol Concept
Clarifying the Task on the System Level ‘the Subsystem Level - Integration
List of Requirements, Principle Solution Principle Solution Complete
Application Scenarios on System Level on Subsystem Level Principle

Solution

Fig. 2.3 The four main phases of the Domain-spanning Conceptual Design

30 J. Gausemeier and M. VaBholz

not have to be self-optimizing at this stage. The consistent grouping of solution pat-
terns allow the modeling of the Active Structure, an initial construction shape and
the System Behavior.

At this point the potential for the use of self-optimization can be identified, based
on contradictions within the System of Objectives. These can be solved either by
compromise or by self-optimization. In the latter case, the System of Objectives is
developed, and the List of Requirements and the function hierarchy are extended. In
preparing the self-optimization concept, the self-optimization processes will even-
tually be defined, whether there is the necessary absence of conflicts of the self-
optimization process will be analyze, and the boundary conditions within which
self-optimization has to be working in, will be defined as well. For the newly inte-
grated cognitive functions, solution patterns for self-optimization are identified and
integrated into the partial models of the Principle Solution. The Principle Solution
on the system level is the result of this phase.

To describe the system in detail, it is modularized and a Principle Solution for
each single subsystem is developed in the "Conceptual Design on the Subsystem
Level". This procedure corresponds to the Conceptual Design on the system level,
starting out with planning and clarification of the task. This phase results in the Prin-
ciple Solutions on the subsystem level. This process can be conducted recursively,
because the subsystem itself can be a system with subsystems, and so forth.

The Principle Solutions of the subsystems are integrated into one Principle So-
Iution during the phase "Concept Integration" to represent the whole system. After-
wards the thus-specified system is analyzed regarding its dynamical behavior and
dependability. In this analysis phase, contradictions between the Principle Solu-
tion on the subsystem level are identified. Again, it must be determined whether
these contradictions can be solved by self-optimization. At the end of this step, a
technical-economical evaluation of the solution is made. The result of this phase
is the Principle Solution of the whole system, which serves as a starting point for
the subsequent Domain-specific Design and Development. This is carried out si-
multaneously in the specific domains (mechanical engineering, electrical/electronic
engineering, control engineering and software engineering) [5].

In this early development phase, the consistency of the system is ensured by this
domain-spanning approach. Development failures and therefore time-consuming
and costly iteration loops can be avoided. To eliminate failures in this early stage,
the dependability of the system is analyzed at the end of the concept integration.
A number of methods can be used here to analyze the Principle Solution, such as
the early Failure Mode Effect Analysis (FMEA) in combination with the Fault Tree
Analysis (FTA) (cf. Sect. 3.1.1). To ensure the dependability of the self-optimization
itself, the Multi-Level Dependability Concept can be applied (cf. Sect. 3.1.2). Dur-
ing the Design and Development, the Multi-Level Dependability Concept is real-
ized in the domains where the failure has been identified (cf. Sect. 3.2.1). As long
as failures or failure modes cannot be eliminated, the Principle Solution is tweaked
and readjusted. The resulting Principle Solution forms the basis for the following
Domain-specific Design and Development.

2 Development of Self-optimizing Systems 31

2.2 Domain-Specific Design and Development

As mentioned above, the Principle Solution is the starting point for the Domain-
specific Design and Development. The Principle Solution contains the information
that forms the basis for domain-specific development tasks. The transition of the
Principle Solution to the domains involved is described briefly in D.M.fI.T.S, [7],
Sect. 5.1. In classical mechatronic development processes, the four domains me-
chanical, control, software, and electrical/electronic engineering are involved. For
self-optimizing systems the optimization during operation needs to be additionally
taken into account in the domains. The domains involved use their specific methods,
tools and modeling languages to concretize the system. This phase is characterized
by a high coordination effort; to ensure the consistency of the system, the results
of the domains are continuously integrated. For this purpose, model transformation
and synchronization techniques are used. The integrated system is tested as a virtual
prototype to identify faults. This allows a short response time concerning design
failures and therefore reduces time and cost-intensive iterations.

The reference process for the Design and Development of self-optimizing sys-
tems shows the ideal approach in which the particularities that need to be considered
for the development of a self-optimizing system are pointed out. It is based on the
development of the RailCab and its function modules. To reduce development time
and therefore costs, the domains work in parallel where possible. Within the pro-
cess, important synchronization points are depicted, where the domains exchange
their results and get informations needed for further development. Even though the
process gives the impression of being overly stringent, iterations can emerge in par-
ticular at these synchronization points, although they are possible at every stage of
the process. The application of the presented approach for the Design and Develop-
ment of a specific development task and company must be developed individually.

The approach presented here is recursive and conducted on different hierarchy
levels of the system. The system itself consists of subsystems, whereby the subsys-
tems are also systems themselves that consist of subsystems, and so forth. Fig. 2.4
presents a schematic representation of the process for one subsystem. (A detailed
description is given in D.M.fI.T.S, [7], Sect. 3.3.) It is intended to supplement the
existing Design and Development process of the domains involved. In the following,
we will give an overview of the tasks belonging to the various domains.

J. Gausemeier and M. VaBholz

32

:AM = Y:L Py
2auIbug o11309|3/|eo14309|3

BuuoauIBu3 2U1o3(3/ eI

Buusauibug aiemyos

Bupsoulbuz siemyos

w:._wmc_m:m_ |on3uon

Buuoeuibus fonu00

Buudauibug |eslueyospy

BuoauBu3 jeoiueyoon

Fig. 2.4 Schematic representation of the Domain-specific Design and Development

2 Development of Self-optimizing Systems 33

Mechanical engineering:
The domain mechanical engineering has as its goal the Design and Development
of the system shape of the self-optimizing system. Its starting point are the par-
tial models Requirements, Active Structure and Shape of the Principle Solution.
Based on these partial models, solution elements are selected and a first Shape
model is built. This model serves as input for the domains control and electrical
engineering, as well as for (sub)system integration. Using the Shape model, the
domain control engineering is able to finalize the control strategy and the do-
main electrical engineering can develop a first model of the power electronics.
Furthermore, a first virtual prototype can be modeled in the (sub)system inte-
gration. The result is a dynamic model that enables a simulation of the dynamic
behavior. Based on these results, the Shape model can be further developed using
a 3D-CAD software tool. The results of the work in this domain are the mechan-
ical structure and derived manufacturing documents.

Control engineering:
The aim of control engineering is the design of the controller to guarantee the
desired dynamical behavior of the self-optimizing system. Based on the Shape
model from mechanical and electrical engineering, the control strategy can be
finalized. The given dynamic model is the input for the optimization; resulting
optimization strategies are integrated into the control strategy and the closed-loop
system is analyzed. The analysis results are then passed along to the (sub)system
integration and can be tested in the virtual prototype as hardware-in-the-loop-
tests. Based on these tests, necessary parameters can be identified, control pa-
rameters adjusted, and the closed-loop can be analyzed again. These adjustments
need to be done again after testing the real prototype; only then can the control
strategy be finalized and implemented into the real system.

Software engineering:
The system software and discrete software are developed in the domain software
engineering. The system software provides services for the discrete software;
its development process is structured into three main phases. First, the required
methods need to be identified and designed. Second, the developed methods need
to be implemented; third they need to be evaluated.

In the first phase, the components of the system that will contain system soft-
ware are selected. This information is derived from the Requirements of the
Principle Solution. For each of these components, appropriate models or algo-
rithms need to be determined if not already available. For example, self-healing
may be implemented to improve the dependability of the system software (cf.
Sect. 3.2.12). In the case of a high demand for processing power and memory,
virtualization can reconcile the opposing requirements (cf. Sect. 3.2.15). Follow-
ing this in the second phase, the new components need to be integrated into the
system software and, if applicable, the system software is extended. If this exten-
sion is not possible, an iteration is necessary and the new approach needs to be
adjusted or further models with their respective algorithms need to be developed.
In the third phase, the system software components are assigned, including the

34 J. Gausemeier and M. VaBholz

specification of evaluation functions. The three phases are run through until all
requirements are met.

During the Conceptual Design of the discrete software, a component structure
is derived from the Requirements. The component structure of the discrete soft-
ware is modeled by the Active Structure, while the communication between the
components is modeled by Modal Sequence Diagrams.

During Design and Development, we use MechatronicUML (cf. D.M.fI.T.
S, [7], Chap. 5) to design the discrete software. In MechatronicUML, the compo-
nent structure of the Active Structure is further refined and coordination patterns
(cf. D.MfITS, [7], Chap. 5) are derived from the Modal Sequence Diagrams;
these coordination patterns specify communication protocols. Next, the discrete
internal component behavior and the reconfiguration behavior are specified. We
use model checking to guarantee that this behavior satisfies the requirements
(cf. D.MfIT.S, [7], Chap. 5); model checking also supports checking the inte-
gration of control engineering (cf. Sect. 3.2.10). The deployment of the software
is based on the description of the hardware that is provided by electronic engi-
neering. A hazard analysis is also performed at this stage to guarantee that the
occurance of severe hazards remains below a specific probability limit. Hazards
whose occurrence probabilities are higher may be reduced by self-healing op-
erations, which are specified by means of reconfigurations. Then, it is analyzed
whether the self-healing operations are able to achieve the intended probability
reduction (cf. Sect. 3.2.8). Afterwards, the reconfiguration behavior is verified.
The system computes reconfiguration plans at runtime that avoid unsafe configu-
rations (cf. Sect. 3.2.9); this planning process is simulated at design time to vali-
date its reliability. In addition, we apply online model checking (cf. Sect. 3.2.14).
If all the requirements are fulfilled, the controller and the discrete behavior are
simulated using the virtual prototype in the (sub)system integration (cf. D.M.f.1.
T.S, [7], Chap. 5). If the simulation displays correct functionality, the hardware-
specific code is generated and deployed on the hardware.

Electrical/electronic engineering:
Self-optimizing systems demand high flexibility in order to be able to adapt their
behavior during operation. Dynamically reconfigurable hardware can ensure this
flexibility. Furthermore, such systems demand high power transmission. There-
fore, in the domain electrical/electronic engineering, both microelectronic de-
vices for information processing and power electronics need to be developed. In-
put for the development of the microelectronics is given by the Requirements of
the Principle Solution. After analyzing these requirements, a set of appropriate
information processing hardware components is collected. In case the require-
ments cannot be fulfilled by existing hardware, additional hardware, for exam-
ple embedded processor architecture or FPGA (Field Programmable Gate Array)
technology is chosen. At this point the developer needs to decide whether the
hardware to be developed consists only of static components, or of both static and
dynamic ones. In the first case, the standard design flow from the Y-diagram for
electronic engineering is used, whereas if dynamic reconfiguration of the hard-
ware is considered necessary, the procedure needs to be extended with respect

2 Development of Self-optimizing Systems 35

to the characteristics of these architectures. The concrete process is part of the
design environment INDRA (Integrated Design Flow for Reconfigurable Archi-
tectures, cf. D.M.f.I.T.S, [7], Chap. 5. First, the dynamic reconfigurable hardware
is modeled; while doing this, the requirements that are derived from system soft-
ware are taken into account. The model is simulated and verified and afterwards
synthesized until all of the components have been integrated. Finally, the sys-
tem software can be ported to the new architecture. To increase the dependability
of the system, self-healing via dynamic reconfiguration can be implemented (cf.
Sect. 3.2.13). For the development of the power electronics, the partial model
Requirements and Active Structure serve as input. Based on these, the type of
electrical drive is selected and its capacity is analyzed. In the next step, the appro-
priate engine is chosen. This information is passed on to mechanical engineering
and is integrated into the system model, after which the thermal resilience of the
engine is tested and the data sheet of the electrical engine is derived. Afterwards,
the power electronics can be defined. The results of these tasks are integrated into
the overall system.
(Sub)System Integration:

To ensure the consistency of the domain-specific models, the results of the do-
mains are integrated continuously into an interdisciplinary system model that
is based on the Principle Solution; additionally the functionality of the system
model is secured by a virtual prototype. To do so, a self-optimizing test bench
and the environment are modeled. The basis for the virtual prototype are given by
the Requirements of the Principle Solution. The virtual prototype is first modeled
based on the basic Shape model developed by the domain mechanical engineer-
ing. This prototype is improved and expanded continuously over the course of
development process by integrating the results from other domains. To make the
simulation of the virtual prototype possible, the interactions and interfaces of the
model need to be identified. For the system test, the test cases and a metric are
first defined. Based on these cases, the virtual prototype is tested (cf. Sect. 3.2.3).
The quality of the test results can be evaluated using the pre-defined metric. If the
quality of the tests is not sufficient new tests are defined, performed and evaluated
until the quality is sufficient. Then the test results are returned to the domains.
When all subsystems are fully implemented into the virtual prototype and the test
results are failure-free, the real prototype can be built and evaluated.

Within the development process, the dependability of the self-optimizing sys-
tem needs to be continuously ensured. This can be done with dependability-specific
methods such as those presented in Chap. 3. The Methodology for the Selection of
Dependability Methods for the Development of Self-Optimizing Systems presented
in Sect. 3.3 supports the developer in choosing the appropriate dependability method
and in integrating it into the development process.

36

References

References

10.

11.

12.

Albers, A.: Five Hypotheses about Engineering Processes and their Consequences. In:
Proceedings of the 8th International Symposium on Tools and Methods of Competitive,
Ancona, IT (2010)

Bender, K.: Embedded Systems — Qualitdtsorientierte Entwicklung. Springer, Berlin
(2005), doi:10.1007/b138984

Dorociak, R., Gaukstern, T., Gausemeier, J., Iwanek, P., Vaholz, M.: A Methodology for
the Improvement of Dependability of Self-Optimizing Systems. Production Engineering
— Research and Development 7(1), 53-67 (2013), doi:10.1007/s11740-012-0425-3
Ehrlenspiel, K.: Integrierte Produktentwicklung, 3rd edn. Carl Hanser Verlag, Munich
(2007)

Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification Technique for the Descrip-
tion of Self-Optimizing Mechatronic Systems. Research in Engineering Design 20(4),
201-223 (2009), doi:10.1007/s00163-008-0058-x

Gausemeier, J., Rammig, F.J., Schifer, W. (eds.): Selbstoptimierende Systeme des
Maschinenbaus. In: HNI-Verlagsschriftenreihe, vol. 234. Heinz Nixdorf Institute, Uni-
versity of Paderborn, Paderborn (2009)

Gausemeier, J., Rammig, F.J., Schifer, W. (eds.): Design Methodology for Intelligent
Technical Systems. Lecture Notes in Mechanical Engineering. Springer, Heidelberg
(2014), doi:10.1007/978-3-642-45435-6_2

Isermann, R.: Mechatronische Systeme — Grundlagen. Springer, Berlin (2008),
doi:10.1007/978-3-540-32512-3

Kahl, S., Gausemeier, J., Dumitrescu, R.: Interactive Visualization of Development Pro-
cesses. In: Proceedings of the 1st International Conference on Modelling and Manage-
ment of Engineering Processes (2010)

Pook, S., Gausemeier, J., Dorociak, R.: Securing the Reliability of Tomorrow’s Systems
with Self-Optimization. In: Proceedings of the Reliability and Maintainability Sympo-
sium, Reno, NV, US (2012)

Rieke, J., Dorociak, R., Sudmann, O., Gausemeier, J., Schifer, W.: Management of
Cross-Domain Model Consistency for Behavioral Models of Mechatronic Systems. In:
Proceedings of the 12th International Design Conference, Dubrovnik (2012)

Verein Deutscher Ingenieure (VDI): VDI 2206 — Entwicklungsmethodik fiir mechatron-
ische Systeme. Technical Guideline (2004)

	Development of Self-optimizing Systems
	2.1
Domain-Spanning Conceptual Design
	2.2
Domain-Specific Design and Development

