
Chapter 9
On the Causal Structure of the Sensorimotor
Loop

Nihat Ay and Keyan Zahedi

9.1 Introduction

In recent years, the application of information theory to the field of embodied intelli-
gence has turned out to be extremely fruitful. Here, several measures of information
flow through the sensorimotor loop of an agent are of particular interest. There are
mainly two ways to apply information theory to the sensorimotor setting.

First, information-theoretic measures can be used within various analysis meth-
ods. Sensorimotor interactions of an embodied agent lead to the emergence of
redundancy and structure of the agent’s intrinsic processes. Understanding the
generation of structure in the sensorimotor process and its exploitation is important
within the field of embodied intelligence (Pfeifer and Bongard 2006). The quan-
tification and analysis of information flows through an agent’s sensorimotor loop
from the perspective of an external observer, that is from the perspective of a scien-
tist, proves to be effective in this regard (Lungarella and Sporns 2005, 2006). Here,
transfer entropy (Schreiber 2000) has been used in order to quantify the flows of
information between various processes of the sensorimotor loop, such as the sensor
process on the actuator process. Furthermore, excess entropy, also known as pre-
dictive information (Bialek et al. 2001), has been used to analyse the interplay be-
tween information-theoretic measures and behavioral patterns of embodied agents
(Der et al. 2008).

Second, information-theoretic measures can be used as objective functions for
self-organized learning. This is based on the hypothesis that learning in natural in-
telligent systems is partly governed by an information-theoretic optimisation princi-
ple. Corresponding studies aim at the implementation of related principles, so-called
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Infomax principles, in artificial systems. Emergent structures at various levels are
then analysed in view of corresponding biological structures. In the sensorimotor
setting, predictive information maximization has been used as a driving force for
self-organised learning (Ay et al. 2008; Zahedi et al. 2010; Ay et al. 2012; Martius
et al. 2013). As a result, the emergence of coordinated behavior with distributed
control has been shown. The excess entropy has also been applied to similar sys-
tems within an evolutionary optimisation context (Prokopenko et al. 2006). Other
measures of interest are the notion of relevant information (Polani et al. 2006) and
empowerment (Klyubin et al. 2005). In the latter case, the maximization of empow-
erment determines the behavior of the agent and is not the basis of learning.

Most of the information-theoretic quantities mentioned above have the mutual
information of two variables as an important building block. In information the-
ory, this fundamental quantity is used as a measure of the transmission rate of
a sender-receiver channel. Therefore, the objective functions for learning that are
based on mutual information are usually associated with some kind of informa-
tion flow. There is one problem with this interpretation, which is not visible in the
simple sender-receiver context. Information flows are causal in nature, and related
measures should be consistent with this fact. However, the causal aspects are usu-
ally not explicitly addressed. In order to do so, it has been proposed to combine
information theory with the theory of causal networks (Ay and Polani 2008), based
on the causal structure of the sensorimotor loop (Klyubin et al. 2004). This com-
bination allows us to understand how stochastic dependence, and, in particular, the
statistical structure of the sensorimotor process, is built up by causal relationships.
Various (associational) information flow measures can be formulated in causal terms
and lead, in general, to a modification of these measures. Thereby, the repertoire of
information-theoretic quantities that can be used within the above-mentioned lines
of research is extended. However, currently it is not clear to what extent realistic
objective functions for self-organised learning should be causal in nature.

In Section 9.2 we sketch the theory of causal networks and its application to the
sensorimotor loop setting. Section 9.3 introduces the notion of a causal effect and
the identifiability problem of causal effects. In particular, the identifiability of causal
effects from the intrinsic perspective of an agent is discussed. In Section 9.4 basic
information-theoretic quantities are introduced. Within the context of temporal pro-
cesses, such as the sensorimotor process, transfer entropy and predictive information
are highlighted as important quantities. The maximization of predictive information
is studied in an experimental setup in the final Section 9.5.

9.2 Causal Networks

9.2.1 The Definition of Causal Networks

The formal tool that we use for modelling causality is given in terms of Bayesian
networks (Pearl 2000). They have two components, a structural and a functional
one. The structural component is given in terms of a network. The network consists
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Fig. 9.1 Left: A network without a directed cycle, referred to as directed acyclic network
(DAG). Right: A network with a directed cycle.
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Fig. 9.2 Causal network

of vertices, or nodes, and directed edges. We denote the vertex set by V and the
edge set by E which is formally a set of pairs (v,w) ∈ V ×V . Here, the pair (v,w)
denotes the edge from v to w. The causal interpretation is that v is a direct cause of
w and w is a direct effect v. The direct causes of a node v are referred to as parents
of v and denoted by pa(v). Extending this direct cause-effect relation, we say that a
node v is a cause of a node w, and that w is an effect of v, if there is a directed path
from v to w, denoted by v � w (here, we exclude paths of length 0). According to
this causal interpretation of the network we have to postulate that an effect cannot
precede its cause. Stated differently, if v is a cause of w then w cannot be a cause
of v. This is equivalent to the property that the network does not have any directed
cycles as shown in Figure 9.1. A directed network with this property is called a
directed acyclic graph (DAG).

Given a node v with state set Xv, the mechanism of v is formalized in terms of a
stochastic map κ(x;x′), x∈Xpa(v), x′ ∈Xv, that is ∑x′ κ(x;x′) = 1 for all x. We refer
to these maps also as (Markov) kernels. Before we provide a general definition of a
Bayesian network, we illustrate its basic concepts in terms of an instructive example.
To this end, we consider the DAG with the nodes U,A,B, and C that is shown in
Figure 9.2. In addition to the graph, the mechanisms ϕ , α , β , and γ are given. They
describe how the nodes function and are formalized in terms of stochastic maps. For
example, γ(u,b;c) stands for the probability that node C is in state c given that it
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has received b and u. Based on these mechanisms, the probability of observing the
states u,a,b, and c in the unperturbed system can be computed as the product

p(u,a,b,c) = ϕ(u) ·α(u;a) ·β (a;b) · γ(u,b;c) . (9.1)

This equation connects the phenomenological level (left-hand side of equation (9.1))
and the mechanistic level (the individual terms on the right-hand side of equation
(9.1)).

Now we come to the general setting of a Bayesian network. Bayesian networks
are based on DAGs but have a further structure as model of the involved mecha-
nisms. As in the previous example of Figure 9.2, in a Bayesian network to each
node v a mechanism κv is assigned. For simplicity of the arguments and derivations,
we assume that the nodes v have finitely many states Xv. Each node gets inputs
xpa(v) from the parents pa(v) = {u ∈V : (u,v) ∈ E} and generates a stochastic out-
put according to the distribution κv(xpa(v); ·). All the mechanisms together generate
a distribution of global states. In order to describe this distribution, we choose a
numbering of the nodes, that is v1,v2, . . . ,vn, which is compatibe with the causal
order given by the graph. More precisely, we assume the following: if there is a di-
rected path from vi to v j then i is smaller than j. We use this numbering in order to
generate the states of the individual nodes.

p(xv1 ,xv2 , . . . ,xvn) = κv1(xv1) ·κv2(xpa(v2);xv2) · · ·κvn(xpa(vn);xvn).

This is clearly independent of the particular choice of such an admissible number-
ing. Therefore, we can write

p(xv : v ∈V ) = ∏
v∈V

κv(xpa(v);xv). (9.2)

On the left-hand side of this equation we have the probability of observing a partic-
ular global configuration xv, v ∈V . On the right-hand side we have the mechanisms.
The equation postulates the transition from the mechanistic level to the phenomeno-
logical level. Given a joint distribution describing the phenomenological level, there
is always a Bayesian network that generates that distribution. In order to see this,
choose an arbitrary ordering v1,v2, . . . ,vn of the nodes. The following equality holds
in any case (whenever the conditional probabilities on the right-hand side are de-
fined):

p(xv1 ,xv2 , . . . ,xvn) =
n

∏
i=1

p(xvi

∣∣xv1 , . . . ,xvi−1). (9.3)

Consider now the graph in which a pair (vi,v j) is an edge if and only if i is
smaller than j. With respect to this graph, the parent set of a node vi is given by
v1,v2, . . . ,vi−1. Defining stochastic maps κvi with

κvi(xpa(vi);xvi) := p(xvi

∣∣xv1 , . . . ,xvi−1),
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whenever p(xv1 , . . . ,xvi−1) > 0, the equation (9.3) reduces to (9.2). Note that there
are many possible mechanistic explanations of a given joint distribution. Having a
particular one only means that one possible explanation is given, which does not
necessarily represent the actual mechanisms that underly the joint distribution.

Definition 1 (Causal Markov Property). Given a DAG G = (V,E), we say that
a probability measure p on ×v∈VXv satisfies the causal Markov property, if, with
respect to p, each variable is stochastically independent of its non-effects (V minus
set of effects), conditional on its direct causes.

This property is also referred to as local Markov property. The conditional indepen-
dence statements of the local Markov property imply also other conditional indepen-
dence statements that can be deduced from the graph. In order to be more precise,
we have to introduce the notion of d-separation.

Definition 2. Let G = (V,E) be a DAG, and let S be a (possibly empty) subset of V .
We say that a path (v1, . . . ,vk) is blocked by S if there is a node vi on the path such
that

• either vi ∈ S, and edges of the path do not meet head-to-head at vi, or
• vi and all its descendants are not in S, and edges of the path meet head-to-head at

vi.

Two non-empty and disjoint sets A,B ⊆ V \ S are d-separated by S if all paths be-
tween A and B are blocked by S.

The notion of d-separation is completely structural. The local Markov property
provides a way of coupling the structure with the joint probability distribution p.
This condition implies a seemingly stronger Markov property: we say that p satisfies
the global Markov property, if

A and B are d-separated by S =⇒ A and B are stochastically independent given S.

The following theorem is central in graphical models theory (Lauritzen 1996).

Theorem 1. Let G = (V,E) be a DAG. For a probability measure p on ×v∈VXv, the
following conditions are equivalent:

1. p admits a factorization according to G (a factorization like in formula (9.2)).
2. p obeys the global Markov property, relative to G.
3. p obeys the causal Markov property, relative to G.

A simple application of this theorem to the causal graph of Figure 9.2 yields the
following conditional independence statements:
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U and B are stochastically independent given A. (9.4)

A and C are stochastically independent given U and B. (9.5)

These and similar conditional independence statements will be used in the context
of the sensorimotor loop.

9.2.2 The Causal Structure of the Sensorimotor Loop

The following figure (Figure 9.3) illustrates the components of a sensorimotor loop
with their respective interactions. In order to apply the theory of causal networks
to the sensorimotor loop, we have to consider a causal network that captures the
main aspects of this structure. Figure 9.4 shows the general causal network of a
sensorimotor loop, where Wt ,St ,Ct ,At denote the state of the world, the sensor, the
controller, and the actuator at some time point t, respectively (Klyubin et al. 2004;
Ay and Polani 2008). We denote the corresponding state spaces by W ,S ,C , and
A . The stochastic maps α , β , ϕ , and π describe the mechanisms that are involved
in the sensorimotor dynamics:

Fig. 9.3 Sensorimotor loop

Ct

AtSt−1

Wt

At−1 St

Wt−1

Ct−1

α
β

α
β

π π
ϕϕ

Fig. 9.4 Sensorimotor loop
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α : W ×A → P(W ),

β : W → P(S ),

ϕ : C ×S → P(C ),

π : C → P(A ).

Here, P(X ) denotes the set of probability measures on X . The kernels α and
β encode the constraints of the sensorimotor loop due to the agent’s morphology
and the properties of its environment. The mechanisms α and β are extrinsic and
encode the agent’s embodiment which sets constraints for the agent’s behavior and
learning. The kernels ϕ , π are intrinsic with respect to the agent and are assumed to
be modifiable through a learning process (for details, see (Zahedi et al. 2010)).

The process (Wt ,St ,Ct ,At), t = 0,1,2, . . . , is generated by Markov transition ker-
nels. Given the above kernels as models of the mechanisms that constitute the sen-
sorimotor loop, and given an initial distribution μ , we obtain the joint distribution

p(w0,s0,c0,a0, . . . ,wn,sn,cn,an)

= μ(w0, s0, c0, a0) ·
n

∏
t=1

α(wt−1,at−1;wt)β (wt ;st)ϕ(ct−1,st ;ct)π(mt ;at).

As examples, we now consider sensorimotor loops where particular arrows are re-
moved.

Example 1. 1. Passive observer. If the agent does not act on the world at all or,
stated differently, if it only observes its environment then there is no edge from
At to Wt and the kernel α does not involve the actuator state. More precisely,

α(w,a;w′) = α(w;w′) for all w, a, and w′.

Obviously, in this situation we can remove the edges from A to W and from C to
A, which leads to the diagram shown in Figure 9.5.

St−1 St

Ct−1

Fig. 9.5 Sensorimotor loop of a passive observer

2. Open loop controller. The situation in which the agent does not sense anything
in the world is referred to as open loop control. Here, the kernel ϕ does not use
the sensor state s, that is
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ϕ(c,s;c′) = ϕ(c;c′) for all c, s, and c′.

Here, the edges from S to C and from W to S can be removed, and we obtain the
diagram shown in Figure 9.6.

At−1

Ct−1

Fig. 9.6 Sensorimotor loop of an open loop controller

3. Memoryless or reactive controller. In this example, we assume that there is no
edge from the controller state at time t − 1 to the controller state at time t (see
Figure 9.7 (A)). This means

ϕ(c,s;c′) = ϕ(s;c′) for all c, s, and c′.

If we combine the kernels ϕ and π to one kernel, which we again denote by π ,
then we have a representation of a memoryless controller that is often referred to
as reactive controller (see Figure 9.7 (B)).

St−1 At−1 St

Ct−1

St−1 At−1 St

(A) (B)

Fig. 9.7 Sensorimotor loop of a memoryless or reactive controller

9.3 Causal Effects

9.3.1 The Definition of Causal Effects

In order to study causal effects, one has to apply an interventional operation, which
we also call clamping. Clamping the state of a node means a change of the mech-
anism of that node, and it is formalized by the so-called do-operation. In order to
explain the main idea behind the do-operation, we first consider our example of Fig-
ure 9.2. In this example we compute the causal effect of A on C. If we clamp â, or,
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in Pearl’s terminology (Pearl 2000), do â, we would have to replace equation (9.1)
by

pâ(u,a,b,c) = ϕ(u) · α̂(a) ·β (a;b) · γ(u,b;c) , (9.6)

where α̂(a) = 1, if a = â, and α̂(a) = 0, if a �= â. In particular, after clamping node
A the new mechanism α̂ is not sensitive to u anymore. In terms of the do-formalism,
the post-interventional probability measure pâ(u,a,b,c) is written as pâ(u,a,b,c) =
p(u,a,b,c |do(â)). Summation over u,a,b yields the probability of observing c after
having clamped â:

p(c |do(â)) = ∑
u,b

ϕ(u) ·β (â;b) · γ(u,b;c) . (9.7)

We refer to this post-intervational probability measure as causal effect of A on C
(see Figure 9.8).

α β γ

ϕ

A B C

U

Fig. 9.8 Intervention

Now, we extend this idea of intervention to the general setting of Bayesian
networks. Knowing the mechanisms, it is possible to model the consequences of
intervention. Consider the equation (9.2), a subset A of V , and assume that the con-
figuration of A is externally set to xA. What does this mean? It means that the mech-
anisms of the nodes v in A are replaced by the mechanisms

δxv(x
′
v) =

{
1, if x′v = xv

0, otherwise
.

This leads to the truncated product

p(xV\A |do(xA)) = ∏
v∈V\A

κv(xpa(v);xv) . (9.8)

Although it is not essential for what follows, we present the formula for the usual
way of conditioning:
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p(xV\A | xA) =
p(xV\A, xA)

p(xA)

=
∏v∈V κv(xpa(v);xv)

∑x′V : x′V\A=xV\A
∏v∈V κv(x′pa(v);x′v)

. (9.9)

This shows that the interventional conditioning, given by equation (9.8), is much
easier to compute than the standard conditioning of equation (9.9).

In the above derivations we considered a set A where the intervention takes
place and observed the complement V \A of A, which corresponds to the causal
effect p(xV\A |do(xA)) (see Figure 9.9 (A)). In more general situations, the post-
interventional distribution is observed in a subset B of V \A. In order to define this,
we simply have to marginalize out the unobserved nodes:

p(xB |do(xA)) = ∑
xV\(A∪B)

p(xB, xV\(A∪B) |do(xA)). (9.10)

Comparing this interventional conditioning with classical conditioning, we observe
one important difference. The latter is only possible when the event that is condi-
tioned on has positive probability. It describes the probability of observing an event
F if an event E has already been observed. However, if the probability for E van-
ishes then, already at an intuitive level, it is not clear with which probability the
occurrence of F should be expected. Formally, if p(xA) = 0 then the expression
(9.9) is not well defined. The interventional conditioning is different. Already at an

A

V \A

A

V \A

B

(A) (B)

Fig. 9.9 (A) intervention in A and observation in the complement V \A of A in V , (B) inter-
vention in A and observation in B
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intuitive level it is clear that any intervention will lead to some reaction of the sys-
tem. Formally, we see this in equation (9.8). The product on the right-hand side of
this equation is always well defined.

Although interventional conditioning differs from observational conditioning, in
some cases both operations coincide. In order to be more precise, we note that any
observed association of two variables A and B in a Bayesian network has basically
three sources: A is a cause of B, B is a cause of A, or there is a common cause of
A and B. This is known as the common cause principle (Reichenbach 1956). If we
assume that B is not a cause of A and there is no common cause of A and B then
there is no explanation for the association of A and B other than A being a cause
of B. In that case, all stochastic dependence between A and B is due to the causal
effect of A on B. For such a situation we say that the pair (A,B) is a causal pair.
One can show that for causal pairs interventional and observational conditioning are
equivalent.

Proposition 1. If (A,B) is a causal pair with respect to a DAG G, then for any
Bayesian network with graph G, we have p(xB |do(xA)) = p(xB |xA).

This proposition shows that in some cases the post-interventional distribution, that is
p(xB |do(xA)), can be obtained by observation only. More precisely, if observations
of all joint events (xA,xB) allow us to estimate their probabilities p(xA,xB), then one
can compute the causal effect as

p(xB |do(xA)) =
p(xA,xB)

∑x′B
p(xA,x′B)

, (9.11)

whenever p(xA) = ∑x′B
p(xA,x′B)> 0. If a causal effect can be computed in this way,

that is without intervention, we say that it is identifiable. In the next section, this
subject is discussed to the extent to which it is used in the context of the sensori-
motor loop. We will argue that causal effects that are relevant to an agent should be
identifiable with respect to the intrinsic variables of that agent.

9.3.2 Identification of Causal Effects

The equation (9.8) provides a formal definition of a causal effect. Such a causal
effect can be determined in various ways depending on the available experimental
operations. If we can experimentally intervene into the system, then the mechanisms
will generate the post-interventional probability measure which can be observed. In
many cases, however, experimental intervention is not possible. Then one has to ask
the following question: Is it possible to conclude the consequences of intervention
solely on the basis of observation, that is without actual intervention? At first sight,
the answer seems to be clearly No! In some sense, this is already the whole answer
to this question. On the other hand, Proposition 1 proves that in the case of a causal
pair, it is indeed possible to compute the causal effect, left-hand side of (9.11), with-
out intervention, from the right-hand side of (9.11). This demonstrates that, in order
to identify a causal effect observationally, we require some structural information.
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Without any structural information, it is not possible at all to identify causal effects.
However, this does not mean that we need to know the complete structure, that is
the DAG, in order to identify a causal effect. Partial structural knowledge can be
sufficient for the identification of a causal effect, as we will see.

In what follows we further illustrate the problem of causal effect identification
using our standard example. We want to compute the causal effect of A on C. Obvi-
ously, U is a common cause of A and C, and therefore the pair (A,C) is not a causal
pair, which implies p(c |do(a)) �= p(c |a) in general. The following formula shows
a different way of obtaining p(c |do(a)) by assuming that we can observe A, B,
and C:

p(c |do(a)) = ∑
b

p(b |a)∑
a′

p(a′) · p(c |a′,b). (9.12)

This equality is quite surprising and not obvious at all. Here is the proof:

p(c |do(a)) = ∑
u,b

ϕ(u) ·β (a;b) · γ(u,b;c) (formula (9.7))

= ∑
u,b

p(u) · p(b |a) · p(c |u,b)

= ∑
u,b

(
∑
a′

p(a′) · p(u |a′)
)

p(b |a) · p(c |u,b)

= ∑
b

p(b |a)∑
a′

p(a′)∑
u

p(u |a′) · p(c |u,b)

= ∑
b

p(b |a)∑
a′

p(a′)∑
u

p(u |a′,b) · p(c |u,b,a′)

(conditional inedependence statements (9.4) and (9.5))

= ∑
b

p(b |a)∑
a′

p(a′) · p(c |a′,b)

The structure of this example will be revisited in the context of the sensorimotor
loop.

9.3.3 Causal Effects in the Sensorimotor Loop

In this section we study the problem of the identification of causal effects in the
sensorimotor loop. In this context, there are various causal effects of interest, for
instance the effect of actions on sensor inputs. We are mainly interested in causal
effects that involve intrinsic variables of the agent, that is the variables St , Ct , and
At , t = 0,1,2, . . . . Other causal effects can not be evaluated by the agent, because
extrinsic variables are by definition not directly available to the agent. In the propo-
sition below, we list three causal effects in the sensorimotor loop that are identifiable
by the agent without actual intervention and purely based on in situ observations of
the agent. In order to be more precise, we have a closer look at the causal diagram
of the transition from time t − 1 to t. Here, as shown in Figure 9.10, we consider
the future sensor value of only one time step and summarize the past process by one
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St−1

Wt

At−1 St

Wt−1

Ct−1

α
β

α
β

StSS −1

WtWW −1

Ht−1

Fig. 9.10 Reduction procedure of the causal diagram

α
β

C

S

W

AH

Fig. 9.11 Reduced causal diagram for one time step

variable Ht−1. We focus on the resulting causal diagram of Figure 9.11. The joint
distribution in the reduced diagram is given as

p(h,c,a,w,s) = p(h)ϕ(h;c)π(c;a)α(h,a;w)β (w;s). (9.13)

We can now consider, for instance, the causal effect of A on S. In general, we do
not have p(s |do(a)) = p(s |a), which follows from the fact that H is a common
cause of A and S. Nevertheless, it turns out that this causal effect, among others, is
identifiable with respect to the intrinsic variables of the agent.

Proposition 2. Let the joint distribution (9.13) be strictly positive. Then the follow-
ing equations hold:

(1) p(s |do(a),c) :=
p(s,c |do(a))
p(c |do(a))

= p(s |c,a)
(2) p(s |do(a)) = ∑

c
p(s |c,a) p(c)

(3) p(s |do(c)) = ∑
a

p(a |c)∑
c′

p(s |c′,a) p(c′).

The proof of Proposition 2 is given in the appendix. In all three causal effects of
this proposition, the conditional distribution p(s |c,a) turns out to be essential as
building block for the identification of the causal effects. It describes the expectation
of the agent to observe s, given that it is in state c and performs an action a. We refer
to this conditional probability distribution as world model of the agent. Note that
in the strictly positive case, according to Proposition 2 (1), the world model is not
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dependent on the agent’s policy. These results indicate that the world model plays
an important role in evaluating causal effects in the sensorimotor loop. Furthermore,
it is an essential object within the empowerment approach to behavior (Klyubin
et al. 2005). We will see that the world model also plays a fundamental role within
learning processes.

9.4 Information Flows

9.4.1 Information-Theoretic Preliminaries

In this section, we introduce a few fundamental quantities known from information
theory. First, we consider Shannon information. Assume that p(x) describes the ex-
pectation that the outcome of a random experiment is going to be x. The information
that we receive by knowing the outcome x is equal to the surprise about that out-
come, which is quantified by − ln p(x). Events x that we expect to occur with very
low probability will highly surprise us when they do occur. This is expressed by
a large value of − ln p(x) for a low probability p(x). The expectation value of this
function is known as Shannon entropy or Shannon information:

Hp(X) := − ∑
x∈X

p(x) ln p(x) .

The Shannon entropy quantifies the uncertainty about the outcome of the random
variable X . Note that for p(x) = 0, the term p(x) ln p(x) is not directly defined.
However, the function t ln t can be continuously extended in t = 0 with value equal
to 0, which justifies the convention 0 ln0 = 0. If we know the outcome of a random
experiment beforehand, that is if our expectation p is concentrated around one value
x0, then the Shannon entropy is small. On the other hand, if the distribution is equally
spread over all events, then the uncertainty about the outcome of X is maximal. With
the uniform distribution u and the cardinality n of X , we have

Hu(X) = − ∑
x∈X

1
n

ln
1
n

= − ln
1
n

= lnn .

Now we consider two variables X and Y . With the expectation p(x,y) we associate
the measure Hp(X ,Y ) of uncertainty. Now assume that we have observed the vari-
able X and have a remaining uncertainty about Y given X . This is given as

H(Y |X) = − ∑
x∈X

p(x) ∑
y∈Y

p(y|x) ln p(y|x) .

Observation of X reduces the uncertainty about the outcome of Y and we define the
reduction of uncertainty by

I(X ;Y ) := H(Y )−H(Y |X) .
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This quantity is symmetric and has various other representations:

I(X ;Y ) = H(Y )−H(Y |X)

= ∑
x∈X

p(x) ∑
y∈Y

p(y|x) ln p(y|x)− ∑
y∈Y

p(y) ln p(y)

= I(Y ;X) .

This quantity is referred to as mutual information and quantifies the stochastic de-
pendence of variables X and Y . We have I(X ;Y ) = 0 if and only if X and Y are
stochastically independent, that is p(x,y) = p(x) p(y). Introducing a further variable
Z, we can consider the conditional mutual information

I(Z;Y |X) = H(Z|X)−H(Z|X ,Y) .

This vanishes if and only if Z and Y are conditionally independent given X .
The mutual information of two variables X and Y can be extended to more

than two variables. Given variables Xv, v ∈ V := {1,2, . . . ,N}, we define the multi-
information as

I(X1;X2; . . . ;XN) :=
N

∑
v=1

H(Xv)−H(X1, . . . ,XN).

This definition is clearly independent of the order of the Xv.
Information-theoretic quantities can be used to characterize conditional indepen-

dence. They can also be used to quantify the deviation from (conditional) inde-
pendence as a measure for (conditional) stochastic dependence. Combined with the
notion of intervention, this also leads to measures of causal information flows (Ay
and Polani 2008).

9.4.2 Transfer Entropy and Causality

In this section, we draw a close connection between the multi-information and
another information-theoretic quantity which addresses causal aspects of interact-
ing processes. This quantity has been studied as transfer entropy by Schreiber
(Schreiber 2000) and a slightly different version of it has been called directed in-
formation by Massey (Massey 1990). Recently, a thermodynamic interpretation of
transfer entropy has been provided (Prokopenko et al. 2013). Using a somewhat
implicit terminology, we argue that a more careful consideration of causality is nec-
essary for understanding the sources of stochastic dependence.

In order to simplify the arguments we first consider only a pair Xt ,Yt , t = 1,2, . . . ,
of stochastic processes which we also denote by X and Y . The extension to more
than two processes will be straight-forward. Furthermore, we use the notation
Xt for the random vector (X1, . . . ,Xt) and similarly xt for the particular outcome
(x1, . . . ,xt).
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Given a time n, consider the following quantity, which we refer to as mutual
information rate:

I(Xn;Y n) :=
1
n

I(Xn;Y n) (9.14)

=
1
n

(
H(Xn)+H(Y n)−H(Xn,Y n)

)
(9.15)

=
1
n

n

∑
t=1

{
H(Xt |Xt−1)+H(Yt |Y t−1)−H(Xt ,Yt |Xt−1,Y t−1)

}
(9.16)

=
1
n

n

∑
t=1

⎧⎪⎨
⎪⎩I(Xt ;Yt |Xt−1,Y t−1)︸ ︷︷ ︸

I

+T (Y t−1 → Xt)︸ ︷︷ ︸
II

+T (Xt−1 →Yt)︸ ︷︷ ︸
III

⎫⎪⎬
⎪⎭ (9.17)

with the transfer entropy terms (Schreiber 2000)

T (Yt−1 → Xt) := I(Xt ;Yt−1 |Xt−1)

T (Xt−1 → Yt) := I(Yt ;Xt−1 |Yt−1).

Furthermore, using standard arguments we easily see that in the case of stationary
processes the following limit exists:

I(X ;Y ) := lim
n→∞

I(Xn;Y n).

Note that in the case of independent and identically distributed variables (Xt ,Yt),
t = 1,2, . . . , the transfer entropy terms II and III in (9.17) vanish and the only contri-
butions to I(Xn;Y n) then are the mutual informations I(Xt ;Yt). In the case of station-
ary processes these mutual informations coincide and we have I(X ;Y ) = I(X1;Y1).
In this sense the quantity I extends the mutual information of two variables to a
corresponding measure for two processes.

In general, the first term I of (9.17) quantifies the stochastic dependence of Xt

and Yt after “screening off" the causes of Xt and Yt that are intrinsic to the system,
namely Xt−1 and Yt−1. Assuming the principle of common cause (Reichenbach
1956), which postulates that all stochastic dependences are based on causal interac-
tions, we can infer common causes of Xt and Yt that act from outside on the system,
if the first term I is positive. If, on the other hand, the system is closed in the sense
that

p(xt ,yt |xt−1,yt−1) = p(xt |xt−1,yt−1) p(xt |xt−1,yt−1), t = 1,2, . . . ,

then the first term in (9.17) vanishes and the transfer entropies II and III are the
only contributions to I(Xn;Y n). They refer to causal interactions within the system.
As example we consider the term II:

T (Yt−1 → Xt) = H(Xt |Xt−1)−H(Xt |Xt−1,Yt−1).
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It quantifies the reduction of uncertainty about the outcome xt if, in addition to
the knowledge about the previous outcomes x1, . . . ,xt−1 of X , also the previous out-
comes y1, . . . ,yt−1 of Y are known. Therefore, the transfer entropy T (Yt−1 →Xt) has
been used as a measure for the causal effect of Yt−1 on Xt (Schreiber 2000), (Kaiser
and Schreiber 2002), which is closely related to the concept of Granger causal-
ity. On the other hand, a direct interpretation of transfer entropy as a measure for
causal effects has some shortcomings which are already mentioned in (Kaiser and
Schreiber 2002) and further addressed in (Ay and Polani 2008) within the context of
Pearl’s (Pearl 2000) causality theory. Below, we will illustrate these shortcomings
demonstrating the need for an alternative formalization of causality.

The definitions of the multi-information rate and the transfer entropy naturally
generalize to more than two processes.

Definition 3. Let Xv be stochastic processes with state space Xv, v ∈ V . We define
the transfer entropy and the multi-information rate in the following way:

T (XV\v
t−1 → Xv,t) := I(Xv,t ;XV\v

t−1 |Xv
t−1)

I(Xv
n : v ∈V ) :=

1
n

(
∑
v∈V

H(Xv
n)−H(XV

n)

)

=
1
n

n

∑
t=1

{
I(Xv,t : v ∈V |XV

t−1)+ ∑
v∈V

T (XV\v
t−1 → Xv,t)

}

and, if stationarity is assumed,

I(Xv : v ∈V ) := lim
n→∞

I(Xv
n : v ∈V ).

In order to illustrate the problem of interpreting transfer entropy in a causal way,
consider a finite node set V and a set E ⊆ V ×V of directed edges. This is a way
of encoding the structure of the nodes’ causal interactions. The mechanisms are
described in terms of Markov transition kernels

κv : Xpa(v)×Xv → [0,1], (xpa(v),x
′
v) �→ κv(xpa(v);x′v).

They define a “global kernel" as follows:

κ : XV ×XV → [0,1], (x,x′) �→ ∏
v∈V

κv(xpa(v);x′v).

With a stationary distribution p1 of κ , that is ∑x1
p1(x1)κ(x1;x2) = p1(x2), we con-

sider the process XV,t = (Xv,t )v∈V , t = 1,2, . . . , that satisfies

P{X1 = x1, . . . ,Xn = xn} = p1(x1)κ(x1;x2) · · ·κ(xn−1;xn).
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In these definitions, the corresponding multi-information rate simplifies to

I(Xv
n : v ∈V ) =

1
n

n

∑
t=1

∑
v∈V

T (XV\v
t−1 → Xv,t).

If we assume that the individual kernels κv are deterministic then the global kernel
κ is also deterministic. This implies that for all nodes v there is a time s such that all
transfer entropies T (XV\v

t−1 → Xv,t), t ≥ s, vanish, and thus the multi-information
rate converges to zero. This appears counterintuitive because even if we have strong
causal interactions within a deterministic system, the dynamics creates redundancy
that allows all nodes v to predict their own next states xv,t from their previous states
xv,1, . . . ,xv,t−1 without the need of additional information from the other nodes V \
v. This intrinsic prediction is not required to be mechanistically implemented and
therefore screens off the actual mechanisms that might involve causal effects from
the complement of v. We illustrate this effect by a more specific example.

We consider again two processes X and Y and assume, as illustrated in the fol-
lowing diagram, that the next state of X as well as the next state of Y only depend
on the current state of Y .

Y1 ��

���
��

��
��

� Y2 ��

���
��

��
��

��
. . . ��

���
��

��
��

�� Yt−2 ��

���
��

��
��

� Yt−1 ��

���
��

��
��

� Yt

X1 X2 . . . Xt−2 Xt−1 Xt

In what follows we define a one-dimensional family of transition kernels. To this
end, we first consider two extreme situations. In the first situation, we assume that
there is no memory:

κX(xt−1,yt−1;xt) = κY (xt−1,yt−1;yt) =
1
2
. (9.18)

Obviously, in this situation there is no temporal information flow at all. The other
extreme situation is given in the following way: In order to compute the next state,
both nodes copy the current state of node Y and invert it.

(x,y)→ (−y,−y), x,y ∈ {±1}. (9.19)

In this case, the current state of Y completely determines the next state of X . There-
fore, intuitively, one would expect a maximal amount of information flow from Y
to X . We now interpolate these two extreme situations of minimal and maximal in-
formation flow in order to get a one-parameter family of transition kernels. More
precisely, we define

κY (xt−1,yt−1;yt) :=
1

1+ e2β ytyt−1
, κX(xt−1,yt−1;xt) :=

1

1+ e2β xtyt−1
.
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Here, β plays the role of an inverse temperature. In the high-temperature limit (β →
0) we recover the completely random transition (9.18), and in the low-temperature
limit (β → ∞) we recover the maximum information transition (9.19). In order to
compute the stationary distribution, we consider the stochastic matrix describing the
global dynamics (the rows denote (xt−1,yt−1), the columns (xt ,yt) and the entries
the transition probabilities from a state at time t − 1 to time t):

(−1,−1) (+1,−1) (−1,+1) (+1,+1)

(−1,−1) a2 ab ab b2

(+1,−1) a2 ab ab b2

(−1,+1) b2 ab ab a2

(+1,+1) b2 ab ab a2

where

a :=
1

1+ e2β , b :=
1

1+ e−2β .

The stationary distribution is given by

p(+1,+1) = p(−1,−1) =
1
2
− ab, p(−1,+1) = p(+1,−1) = ab.

Obviously, for β = 0 we have uniform distribution p(x,y) = 1
4 , which implies that

there is no correlation between the two nodes. As β increases, we get more and
more redundancy, and in the limit β → ∞ we get totally correlated nodes with dis-
tribution 1

2

(
δ(−1,−1) + δ(+1,+1)

)
. This redundancy increase allows for compensating

information about yt−1 by xt−1 and computing xk on the basis of this information.
More precisely, the two distributions p(xt |xt−1,yt−1) and p(xt |xt) come closer to
each other. Therefore, the conditional mutual information I(Xt ;Yt−1 |Xt−1), which is
an upper bound of the transfer entropy T (Yt−1 → Xt), converges to zero. This fact
shows that although there is no arrow from Xt−1 to Xt , the conditional distribution
p(xt |xt−1) is effectively dependent on xt−1, which appears causally inconsistent. In
order to derive a corresponding causal variant, we consider the conditional mutual
information:

I(Xt ;Yt−1 |Xt−1)

= ∑
xt−1

p(xt−1) ∑
yt−1

p(yt−1 |xt−1)∑
xt

p(xt |xt−1,yt−1) ln
p(xt |xt−1,yt−1)

∑y′t−1
p(y′t−1 |xt−1) p(xt |xt−1,y′t−1)

= ∑
xt−1

p(xt−1) ∑
yt−1

p(yt−1 |xt−1)∑
xt

p(xt |yt−1) ln
p(xt |yt−1)

∑y′t−1
p(y′t−1 |xt−1) p(xt |y′t−1)

(9.20)

With an abuse of terminology we refer to this conditional mutual information
also as transfer entropy, which is plotted in Figure 9.12. Replacing all conditional
probabilities in (9.20) by corresponding interventional ones leads to I(Xt ;Yt−1) as a
causal variant of the above measure I(Xt ;Yt−1 |Xt−1), which we refer to as informa-
tion flow. More precisely, we have
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∑
xt−1

p(xt−1) ∑
yt−1

p(yt−1 |do(xt−1))∑
xt

p(xt |do(yt−1))×

ln
p(xt |do(yt−1))

∑y′t−1
p(y′t−1 |do(xxt−1))p(xt |do(yt−1))

= ∑
xt−1

p(xt−1) ∑
yt−1

p(yt−1)∑
xt

p(xt |yt−1) ln
p(xt |yt−1)

∑y′t−1
p(y′t−1) p(xt |y′t−1)

= ∑
yt−1

p(yt−1)∑
xt

p(xt |yt−1) ln
p(xt |yt−1)

∑y′t−1
p(y′t−1) p(xt |y′t−1)

= I(Xt ;Yt−1)

Comparing these two quantities, we have

I(Xt ;Yt−1)− I(Xt;Yt−1 |Xt−1) = I(Xt ;Xt−1) ≥ 0.

Intuitively speaking, in this example, the transfer entropy captures only one part of
the causal information flow.

The following diagram shows the shape of the conditional mutual information
and the information flow as function of β . As we see, the information flow is con-
sistent with the intuition that moving from β = 0 to β = ∞ corresponds to an inter-
polation between a transition with vanishing information flow and a transition with
maximal information flow. Near β = 0 the transfer entropy increases as β becomes
larger and is close to the information flow. But for larger β ’s it starts decreasing and
converges to zero for β → ∞. The reason for that is simply that the transition for
large β generates more redundancy between the two processes X and Y . Therefore,
as β grows, an increasing amount of information about Yt−1 can be computed from
information about Xt−1, which lets the transfer entropy decrease towards zero.

1 2 3 4

0.2

0.4

0.6

0.8

1.0

Β

Information Flow Transfer Entropy

Fig. 9.12 Transfer entropy and information flow
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9.4.3 Information Flows in the Sensorimotor Loop

In this section, we apply the notion of transfer entropy to the context of the sensori-
motor loop. Sporns and Lungarella used the transfer entropy in order to describe in-
formation flows through the sensorimotor loop (Lungarella and Sporns 2006). Here,
we approach this subject from a theoretical perspective and point out that one has
to be very careful with the interpretation of transfer entropy as a causal measure.
Our considerations will be based on the causal diagram shown in Figure 9.13. Here,
we have four processes Wt , St , Ct , At , t ≥ 1, and the initial node H which stands for
“history.”

α
β

α
β

ππ
ϕϕ

Ct

AtSt−1

Wt

At−1 St

Wt−1

Ct−1

α
β

α
β

π π
ϕϕ

W1

S1

C1

A1

W2

S2

C2

A2H

Fig. 9.13 Causal diagram of the sensorimotor loop

Let us study the two simple cases of a passive observer and an open loop con-
troller (see Figures 9.5 and 9.6). In these cases, some of the arrows are missing, and
therefore we know from the definition of the respective causal structure that partic-
ular causal effects are not present. We can then evaluate the corresponding transfer
entropy and thereby test its consistency with the given causal structure. We start
with the passive observer, shown in Figure 9.5. Here, the actuator with its arrows is
removed, which means that the agent is not able to act on the world. Therefore, we
expect T (Ct−1 →Wt) = 0 and T (St−1 →Wt) = 0. This is confirmed by the fact that
Ct−1 and Wt are d-separated by Wt−1 (see Figure 9.14). Similarly, St−1 and Wt are
d-separated by Wt−1.

Now let us consider the open loop controller. Here, the sensor with its arrows is
removed, and we expect no causal effect of W on C and also no causal effect of A
on C. Therefore, consistency of the transfer entropy with the causal structure would
require T (Wt−1 →Ct) = 0 and T (At−1 →Ct) = 0. This is confirmed in terms of the
same d-separation arguments as in the above case of a passive observer (see Figure
9.15).

Summarising the above considerations, we have the following proposition.

Proposition 3. For the passive observer one has T (Ct−1 →Wt) = 0 and T (St−1 →
Wt) = 0 for all t ≥ 1. In the context of open loop control we have T (Wt−1 →Ct ) = 0
and T (At−1 →Ct) = 0 for all t ≥ 1.

Proposition 3 confirms our expectation that a passive observer has no causal ef-
fect on the world, and that within open loop control there is no causal effect of the
world on the agent (note that, with “agent” we mean the internal process C of the
agent). However, one has to be careful with this measure. For example, in the sit-
uation of a passive observer, there is no directed path from C to S. Therefore, one
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S2

C2

H

(B)

Fig. 9.14 Sensorimotor loop of a passive observer. The diagram (A) shows that T (Ct−1 →
Wt ) = 0, and diagram (B) shows T (St−1 →Wt ) = 0.
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(B)

Fig. 9.15 Sensorimotor loop of an open loop controller. The diagram (A) shows that
T (W t−1 →Ct) = 0, and diagram (B) shows T (At−1 →Ct) = 0.

would not only expect the absence of causal effects of the agent on the world but also
the absence of causal effects on the sensor process, which is obtained from the world
process. In other words, it is natural to have not only T (Ct−1 → Wt) = 0, which is
confirmed in Proposition 3, but also T (Ct−1 → St) = 0. From the causal structure
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Ct
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Wt

St

Wt−1

Ct−1
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S2
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Fig. 9.16 (A) Sensorimotor loop of a passive observer. Although Ct−1 is not a cause of St ,
that is Ct−1 �� St , it is indeed possible that T (Ct−1 → St)> 0. This is seen by the fact that the
sets Ct−1 and St are not d-separated by St−1 (see unblocked path). (B) Sensorimotor loop of
an open loop controller. Although Wt−1 is not a cause of At , that is W t−1 �� At , it is indeed
possible that T (Wt−1 → At) > 0. This is seen by the fact that the sets W t−1 and At are not
d-separated by At−1 (see unblocked path).

shown in Figure 9.16 (A) this is not confirmed in terms of the d-separation criterion.
More precisely, St and Ct−1 are not d-separated by St−1, and T (Ct−1 → St) > 0 is
indeed possible, which appears counterintuitive. We have the same problem with
open loop control (see Figure 9.16 (B)). In this case, one would expect that there
is no causal effect of the world on the agent’s actions, that is T (Wt−1 → At) = 0.
However, At and Wt−1 are not d-separated by At−1, and, again, T (Wt−1 → At) > 0
is possible although Wt−1 is not a cause of At .

A further method to study information flows, which has been proposed in (Ay
and Polani 2008), is based on the interventional calculus of conditioning as already
applied at the end of Section 9.4.2. Here, we briefly outline how this method can be
applied within the context of the sensorimotor loop. In order to do so, we consider
the causal effects listed in Proposition 2. The information flow from C to S, for
instance, can be quantified by

IF(C → S) := ∑
c

p(c)∑
s

p(s |do(c)) ln
p(s |do(c))

∑c′ p(c′) p(s |do(c′))
(9.21)

which is a causal variant of the mutual information

I(C;S) = ∑
c

p(c)∑
s

p(s |c) ln
p(s |c)

∑c′ p(c′) p(s |c′) .
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This expression (9.21) requires an intervention in C, which will, in general, disturb
the system. Therefore, it is not clear to what extent this quantity refers to the in situ
situation of a system while functioning. It is possible that information flow patterns
change as consequence of intervention. One attempt to resolve this problem is given
by the method of virtual intervention. Here, one predicts the consequences of in-
terventions based on observations only, without actually applying an interventional
operation. The system remains unperturbed, and one can still evaluate the expression
(9.21). To be more precise, we use Proposition 2 and replace in (9.21) all distribu-
tions p(s |do(c)) by ∑a p(a |c)∑c′ p(s |c′,a) p(c′). This leads to an expression of
the information flow IF(C → S) that does not involve any experimental intervention
but only observation. In addition, all involved variables are accessible to the agent,
which enables the agent to evaluate the information flow while being embedded in
the sensorimotor loop. Currently, it remains unclear whether this method of virtual
intervention resolves the above-mentioned problem.

9.5 Predictive Information and Its Maximization – An
Experimental Case Study

In the previous Sections 9.4.2 and 9.4.3 we focussed on information flows between
various interacting processes, such as the control process C on the sensor process
S in the sensorimotor loop. In this section, we now concentrate on temporal flows
within one single process. To this end, consider first a stochastic process Xt , t ∈ Z.
Furthermore, given three time points t− < t < t+, we consider the mutual informa-
tion

I(Xt− , . . . ,Xt ;Xt+1, . . . ,Xt+) = H(Xt+1, . . . ,Xt+)−H(Xt+1, . . . ,Xt+ |Xt− , . . . ,Xt).

If we assume that the variables Xt− , . . . ,Xt represent the past (and present) of ob-
served variables and Xt+1, . . . ,Xt+ the future or unobserved variables with respect
to t, then this mutual information quantifies the reduction of uncertainty about the
future given the past. In other words, it quantifies the amount of information in the
future that can be predicted in terms of past observations. Therefore, the correspond-
ing limit for t− ↑ ∞ and t+ ↑ ∞, which always exists but can be infinite, is referred to
as predictive information (PI) (Bialek et al. 2001). It is also known as excess entropy
(Crutchfield and Young 1989) and effective measure complexity (Grassberger 1986).
Note that the predictive information is independent of t if the process is stationary.

In the context of the sensorimotor loop, the predictive information and related
quantities serve as objective functions for self-organized learning. Of particular
interest is the predictive information of the sensor process S = (St)t∈Z, which
quantifies the amount of information in the agent’s future sensor process that can be
predicted by the agent based on the observation of its past (and present) sensor pro-
cess. For simplicity, we also consider the lower bound I(St ;St+1) of the predictive
information and, with abuse of terminology, we refer to this simplified quantity also
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as predictive information (PI). Clearly, the predictive information is, on one hand,
dependent on the policy and, on the other hand, also dependent on the embodiment
of the agent. Policies with high predictive information correspond to niches of pre-
dictability within the sensorimotor loop and allow the agent to exploit these niches
for task oriented behavior. Learning processes that maximize several variants of
predictive information have been proposed and studied in view of their behavioral
implications (Ay et al. 2008; Zahedi et al. 2010; Ay et al. 2012; Martius et al. 2013).

Here, we focus on the experimental case study of our previous work (Zahedi
et al. 2010). In our experiments, embodied agents maximize the predictive infor-
mation calculated on their sensor data by modulation of their policies. Different
controller types are evaluated and the results are coordinated behaviors of passively
coupled, individually controlled robots. From these results, three conclusions will
be drawn and discussed. First, the different controller structures lead to a conclusion
about optimal design, second, PI maximization leads to the formation of behavioral
modes, and third, PI maximization leads to morphological computation (Pfeifer and
Bongard 2006).

For the implementation of the learning rule in an embodied system, we chose a
discrete-valued representation of the probability distributions for the following rea-
son. At this initial step of evaluating the PI as a self-organised learning principle, we
wanted to use as few assumptions as possible about the underlying model. Imple-
menting the learning rule in the continuous domain generally requires more assump-
tions and restrictions, as the following example demonstrates. An implementation
of the policy as a (recurrent) neural network binds the space of possible functions
to the structure of the neural network (Pasemann 2002). Changing the weights and
biases of the network only permits variation among the functions defined by the
structure (and neural models). To avoid such a pruning in the space of policies, we
chose stochastic matrices. To reduce the complexity, we first concentrated on reac-
tive control (see Figure 9.7). Given a world model γ and a policy π , an estimate of
the PI can be calculated with intrinsically available information by the following set
of equations

I(γ)(St ;St+1) = ∑
st ,st+1∈S

p(st ,st+1) ln
p(st ,st+1)

p(st) p(st+1)
(9.22)

p(st ,st+1) = ∑
at∈A

p(st ,at ,st+1) = ∑
at∈A

p(st)π(st ;at)γ(st ,at ;st+1) (9.23)

p(st) = ∑
st+1∈S

p(st ,st+1), p(st+1) = ∑
st∈S

p(st ,st+1) (9.24)

which can be used to calculate a natural gradient iteration (Amari 1998) of the PI
with respect to the policy π(st ;at) in the following way (Zahedi et al. 2010)
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π (0)(s;a) :=
1

|S | n ∈ N\{0}

π (n)(s;a) = π (n−1)(s;a)+
1

n+ 1
π (n)(s;a)

(
F(s)−∑

a
π (n−1)(s;a)F(s)

)
(9.25)

F(s) := p(n)(s)∑
s′

γ(n)(s,a;s′) log2
∑a π (n−1)(s;a)γ(n)(s,a;s′)

∑s′′ p(n)(s′′)∑a π (n−1)(s′′;a)γ(n)(s′′,a;s′)

The sensor distribution p(st) and the intrinsic world model γ(st ,at ;st+1) are sampled
according to

p(0)(s) :=
1

|S |

p(n)(s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
n+ 1

p(n−1)(s)+
1

n+ 1
if Sn+1 = s

n
n+ 1

p(n−1)(s) if Sn+1 �= s

(9.26)

γ(0)(s,a;s′) :=
1

|S |

γ(n
s
a)(s,a;s′) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ns
a

ns
a + 1

γ(n
s
a−1)(s,a;s′)+

1
ns

a + 1
if Sns

a+1 = s′, Sn = s, Ans
a+1 = a

ns
a

ns
a + 1

γ(n
s
a−1)(s,a;s′) if Sns

a+1 �= s′, Sn = s, Ans
a+1 = a

γ(ns
a−1)(s,a;s′) if Sns

a �= s or Ans,a+1 �= a

(9.27)

This concludes the brief presentation of the learning rule. See (Zahedi et al. 2010)
for a detailed description. The next paragraphs describe the experiments and discuss
the results.

All experiments were conducted purely in simulation for the sake of simplicity,
speed and analysis. Current simulators, such as YARS (Zahedi et al. 2008), which
was chosen for the experiments presented below, are shown to be sufficiently re-
alistic to simulate the relevant physical properties of mobile robots, and designed
such that experimental runs can be automated, run at faster than real-time speed,
and require minimum effort to set-up.

The experiments are conducted with differential wheeled robots (see Figure
9.17A). The only sensors of each robot are the current wheel velocities St and the
only actions are the motor commands for the next wheel velocities At . Each robot is
either controlled by a single controller (see Figure 9.17C) or by two controllers (see
Figure 9.17D). We refer to the single controller setting as combined control and to
the two controller setting as split control.
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Fig. 9.17 Experimental set-up. A) Single circular differential wheeled robot. The image
shows the two driving wheels and the possible movements that they allow for. B) This image
shows the passive coupling between the robots. C) This image is a schema of the combined
control, where one controller reads the information of both wheels and controls the velocity
of both wheels. D) In the split controller configuration, each wheel has a controller that is
independent of the other. Hence, each controller only reads the information of one wheel and
controls the velocity of only one wheel.

Three and five robots are passively connected to a chain of robots (see Figure
9.17B), which results in the following four experiments:

1. three robots with combined control,
2. three robots with split control,
3. five robots with combined control, and
4. five robots with split control.

We will refer to these settings by the number of robots and the controller type. This
means that 3C, 3S, 5C, and 5S refer to three robots with combined control, three
robots with split control, etc.

The results of the experiments (see Figure 9.18) show that all systems maximize
the PI and that they all perform some sort of exploration behavior. As the maximiza-
tion of the PI does not specify a behavior of a system that can be evaluated directly,
we need to define a measure based on our observations. In a chain of individually
controlled robots, the travelled distance over time is a good indication for the quality
of the coordination, as only well coordinated robots will be able to travel far. This
is why we chose a sliding window coverage entropy (see Figure 9.18 and (Zahedi
et al. 2010) for details) to measure the exploration behavior. It must be noted, that
we are not interested in the exploration itself, but rather in the quantifiable, qual-
itative change of the observable behavior of the systems which result from the PI
maximization. In this context, two counter-intuitive results are shown in Figure 9.18.
First, the robot chains with five robots outperform the robot chains with three robots
(compare 5C with 3C and 5S with 3S in Figure 9.18), and second, the split control
systems outperform the corresponding combined control systems (compare 5S with
5C and 3S with 3C in Figure 9.18), in both, maximizing the PI and maximizing the
coordination of the robots in a chain.

The first result is counter-intuitive, because longer chains means that more robots,
and hence, more controllers have to coordinate based on the local information
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Fig. 9.18 PI maximization results. The graph on the left-hand shows four plots with one sub-
plot each. The trajectory plots show the initial ten minutes (purple) and the final ten minutes
(green) of the behavior (after 106 policy updates, which is approximately 27 hours). The
sub-plots show the progress of the PI averaged over 100 runs for the same amount of time,
normalised to the unit interval. The plot on the right-hand side shows how the exploration
quality of the controllers progresses over time. For this purpose, the entropy H(Xt ,Yt) over
the spatial coordinates Xt , Yt is calculated for a sliding window (see (Zahedi et al. 2010) for
a discussion). Both plots show, indirectly measured by the sliding window coverage entropy,
that the chains with five robots show a higher coordination compared to those with three
robots, and that split control results in a higher coordination compared to combined control.

available through the wheel velocity sensors only. The second result is counter-
intuitive, because the combined controller should, if anything, have additional prop-
erties compared to the split control as it combines the sensor information of both
wheels. The next paragraph will analyse the behavior of one representative policy
of the 5S setting and thereby explain all the results.

The behavior of all robots can be categorised into three modes. The first mode is
called forward movement and it is characterised by (mainly) positive wheel veloc-
ities. The second mode is called backward movement and it is analogously charac-
terised by (mainly) negative wheel velocities. The third is a transition between the
two previous modes in which there is no clear direction of the robot chain.

To understand how the modes occur, we recorded the data stream of the sensors
and actions (s(t) and a(t)) of one representative controller of the 5S setting. Ac-
cording to the update rules used for the world model (see Eq. 9.27) we sampled
the following four conditional probabilities p(At ≥ 0|St ≥ 0), p(At < 0|St ≥ 0),
p(At < 0|St < 0), and p(At ≥ 0|St < 0), where the first two and the latter two sum
up to one (see Figure 9.19). The two conditional probabilities p(At ≥ 0|St ≥ 0)
and p(At < 0|St < 0) refer to maintaining the current direction of travel, whereas,
p(At < 0|St ≥ 0) and p(At ≥ 0|St < 0) refer to a switching of the current direction
of travel. At the beginning of the learning process, all conditional probabilities are
by definition equal (see Eq. 9.25). After a while, it is seen that the system is more
likely to maintain its current movement compared to switching as the sign of the
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Fig. 9.19 Formation of modes. This graph shows the four conditional probabilities p(At ≥
0|St ≥ 0), p(At < 0|St ≥ 0), p(At < 0|St < 0), and p(At ≥ 0|St < 0) plotted above each
other over time and summed accordingly. The plot reveals that the policies are learned such
that they maintain their current mode (forward or backward) with a high probability and that
switching between the two modes occurs with the same probability. This fulfils the require-
ments of diversity and compliance posed by the PI.

action a(t) is more likely chosen to be equal to the sign of the sensed wheel velocity
s(t) (see Figure 9.19). At the end of the learning process (106 iterations), the condi-
tional probabilities are approximately p(At ≥ 0|St ≥ 0)≈ p(At < 0|St < 0)≈ 0.85
and p(At < 0|St ≥ 0) ≈ p(At ≥ 0|St < 0) ≈ 0.15. From these estimations, we can
now reconstruct how the modes occur. If a robot chain is currently in the forward
mode (St ≥ 0 for all wheels), it requires more than half the controllers to decide on
switching the mode for the robot chain to change its direction of movement. For the
chain with three robots, it requires at least four controllers, and for the chain with
five robots, six controllers to decide to switch directions. Hence, the probability of
switching, denoted by ps, is ps ≤ 0.154 for the three robot chain and ps ≤ 0.156

for the five robot configuration, where the probability refers to the controller update
frequency (10Hz). For the two chains of robots, this means that the overall proba-
bility of maintaining the current behavioral mode in every time step is larger than
1− 0.154 = 99.949% for 3S and larger than 1− 0.156 = 99.999% for 5S. This ex-
plains why longer chains outperform shorter chains in terms of exploration as they
are more likely to maintain their current direction of movement. The modes of the
5S are more distinctive compare to the 3S due to the larger number of robots in the
chain. This can also be considered as a form of morphological computation (Pfeifer
and Bongard 2006), which we will address later in this chapter again. The next ques-
tion to answer is why the modes are beneficial in term of maximizing the PI. From
the discussion above it follows that H(St+1|St) is minimized because knowledge of
the current wheel velocity reduces the uncertainty of the next wheel velocity signif-
icantly due to the formation of the modes. As the switching probabilities are almost
equal, all sensor states are equally often perceived, which maximizes the entropy
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H(St+1). This means the system shows a compliant variance in its behavior as it is
demanded by the PI.

The second counter-intuitive result was that split controllers outperform com-
bined controllers in exploration and PI maximization (see Figure 9.18). This is
counter-intuitive because the combined controller has additional features (compare
Figure 9.17C with Figure 9.17D)) compared to two split controllers. If the split con-
trollers are likely to find the good or optimal solutions, then the combined controllers
should be able to

1. find the same good or optimal solutions,
2. find other good or optimal solutions, and
3. find even better solutions.

The question is, why is this not the case? The space of possible policies spanned by
the two split controllers is a subspace of possible controllers spanned by one com-
bined controller. It happens to be that this subset of the split controllers encloses
only a few maximizers and that a sufficiently large number of them is optimal with
respect to the maximization of the PI. This is more obvious if only one robot is al-
lowed to learn with two split and one combined controller. This is not shown here
but discussed in detail in (Zahedi et al. 2010). Due to the low number of param-
eters defining the subspace of the split controllers, the optimisers are found faster
and more reliably. In the superset of the combined controller, we find many sub-
optimal solutions which are more likely to be found compared to the optimisers.
This means, by splitting the controllers we have made a large subspace of the com-
bined controller space inaccessible to learning. The resulting subspace still had all
the maximizers of the PI which is why the split controller outperforms the combined
controller. Concluding, if one finds a natural way to restrict the policy space (pos-
sibly according to the morphology), such that it captures all maximizers of a given
function, then this would be called an optimal control as the policy is optimally pa-
rameterised for learning and control. Finding such a natural method is an ongoing
topic in this field of research.

As stated earlier, we want to discuss the results also from the perspective of
morphological computation (Pfeifer and Bongard 2006). We already saw that the
number of robots in the chain directly influences the exploration behavior. That the
maximization of the PI leads to morphological computation is more obvious, if we
take the 5S system, and remove the passive joints between the robots (see Figure
9.20). Both plots in the figure show the trajectories of all 10 wheels of the five
robots, where the wheels of each robot share one color. The left-hand side shows
the exploration behavior that we have already seen (compare with Figure 9.18). The
right-hand side of the figure shows that the uncoupled robots loose a lot of their
original behavior. They rotate more often on the spot and the trajectories are not as
long and smooth as in the coupled system.

As the controllers are identical in both settings, this means that there is a contri-
bution of the world (morphology and environment) to the behavior which cannot
be assigned to the controller as they are identical in both systems. This contri-
bution is called morphological computation (Pfeifer and Bongard 2006). Various
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Fig. 9.20 Morphological computation. The two plots show the trajectories of all wheels of
all five robots of the split control setting for ten seconds. The wheels of one robot share the
same color in the plots. The plot on the left-hand side shows the trajectories of the original,
passively coupled robots. The plot on the right-hand side shows the same five robots with
the same ten controllers but with the passive connections removed. The comparison of the
plots shows that the behavior changes significantly, which leads to two conclusions. First, PI
maximization adapts to the world, and second, PI maximization leads to morphological com-
putation, as the behavior is also significantly determined by the morphology of the system.

quantifications of morphological computation are derived and evaluated in ex-
periments in (Zahedi and Ay 2013). They are based on causal and associative
information-theoretic measures.

Appendix

Proof of Proposition 2:
(1)

p(h,c,w,s |do(a)) = p(h)ϕ(h;c)α(h,a;w)β (w;s).

This implies

p(s,c |do(a)) = ∑
h,w

p(h)ϕ(h;c)α(h,a;w)β (w;s)

p(c |do(a)) = ∑
s

∑
h,w

p(h)ϕ(h;c)α(h,a;w)β (w;s)

= p(c)
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p(s |do(a),c) =
p(s,c |do(a))
p(c |do(a))

= ∑
h,w

p(h)
p(c) ϕ(h;c)α(h,a;w)β (w;s)

= ∑
h,w

p(h |c) p(w |h,a) p(s |w)

= ∑
h,w

p(h |c,a) p(w |h,a,c) p(s |w,h,a,c)

(conditional independence, see diagram in Figure 9.11)

= p(s |a,c).

The second and third equations of the proposition follow from the general theory
(see (Pearl 2000), Theorem 3.2.2 (Adjustment for Direct Causes), and Theorem
3.3.4 (Front-Door Adjustment)). For completeness, we prove them directly.

(2)

p(s |do(a)) = ∑
h,c,w

p(h,c,w,s |do(a))

= ∑
h,c,w

p(h)ϕ(h;c)π(c;a)α(h,a;w)β (w;s)
1

p(a|c)

= ∑
h,c,w

p(h,c,a,w,s)
p(c,a)

p(c)

= ∑
c

p(s|c,a) p(c).

(3) p(s |do(c)) = ∑
h,a,w

p(h,a,w,s |do(c))

= ∑
a

π(c;a)∑
h,w

p(h)α(h,a;w)β (w;s)

= ∑
a

p(a|c)∑
h,w

(
∑
c′

p(c′) p(h|c′)
)

p(w|h,a) p(s|w)

= ∑
a

p(a|c)∑
c′

p(c′) ∑
h,w

p(h|c′) p(w|h,a) p(s|w)

= ∑
a

p(a|c)∑
c′

p(c′) ∑
h,w

p(h|c′,a) p(w|h,a,c′) p(s|w)

= ∑
a

p(a|c)∑
c′

p(c′) p(s|c′,a). �
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