
Chapter 8
Robot Learning by Guided Self-Organization

Georg Martius, Ralf Der, and J. Michael Herrmann

8.1 Introduction

Self-organizing processes are not only crucial for the development of living beings,
but can also spur new developments in robotics, e. g. to increase fault tolerance
and enhance flexibility, provided that the prescribed goals can be realized at the
same time. This combination of an externally specified objective and autonomous
exploratory behavior is very interesting for practical applications of robot learning.
In this chapter, we will present several forms of guided self-organization in robots
based on homeokinesis.

Self-organization in the sense used in natural sciences means the spontaneous
creation of patterns in space and/or time in systems consisting of many individ-
ual components. This involves the emergence, meaning the spontaneous creation,
of structures or functions that are not directly explainable from the interactions be-
tween the constituents of the system. Examples are for instance spontaneous magne-
tization, convection patterns and reaction diffusion systems leading to the wonderful
coloring of shells or animal coats. For robotic applications it is important to trans-
late self-organization effects to a single robots considered as complex physical sys-
tems consisting of many constituents that are constraining each other in an intensive
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manner. This is what homeokinesis (Der 2001; Der and Liebscher 2002; Der and
Martius 2012) or information theoretic approaches (Martius et al. 2013; Klyubin
et al. 2005) to behavioral self-organization are after.

Homeokinesis or homeokinetic learning is based on a dynamical systems
formulation of sensorimotor loops and introduces an objective function, called the
time-loop-error. Intuitively it maximizes the sensitivity to sensor inputs while main-
taining predictability with respect to an internal adaptive forward model. In practice
homeokinetic control enables a robot to self-organize its behavior in a playful in-
teraction with its environment and explores the suitable movement patterns for its
particular embodiment. A short introduction to homeokinesis will be given in the
following section. Then, we will face the question how goals can be introduced
into a self-organizing system. Instead of imposing a goal we will aim at guiding
the agents towards the desired behavior using as much of the intrinsic behavior as
possible.

For the combination of self-organizing and external drives we coined (Martius
et al. 2007) the term guided self-organization (GSO), which was before only rarely
used e. g. in nano technology (Choi et al. 2005) or swarm robotics (Rodriguez 2007)
and gained now a much larger scientific interest (Prokopenko 2009). Goal-oriented
methods optimize for a specific task and require a prestructuring of the control prob-
lem in high-dimensional systems. Self-organization, on the other side, can generate
coherent behavior and structure in the behavior space. Furthermore self-organiz-
ing systems show a great flexibility and high tolerance against failures and degrade
gracefully rather than catastrophically (Prokopenko 2008, 2009). The perspective of
GSO is to obtain a system which unites benefits of both. In the main sections of this
chapter we discuss several approaches for guided self-organization with homeo-
kinesis (GSOH). These methods span the range from incorporation of supervised
learning signals to reward based methods and to teaching of structural relations.

8.2 Homeokinesis

Homeokinesis (Der 2001; Der and Liebscher 2002; Der and Martius 2012) is about
establishing/stabilizing an internally defined dynamic regime of the sensorimotor
dynamics and is thus conceptually similar to homeostasis (Cannon 1939; Wikipedia
2013), where a system has a internal set of states that are stabilized against external
perturbation. So homeostasis is about keeping things fixed whereas homeokinesis
is about keeping things moving. In effect homeokinesis produces a variety of be-
haviors in dependence on the interaction between control, internal dynamics and
environment. Homeokinetic control arises from optimizing the sensorimotor coor-
dination of an embodied agent to stay in a certain dynamical regime of sensitive but
well controlled behavior. For that the movements are compared to the predictions
by an internal adaptive model, and it works best with a controller and a model of
similar complexity. The robot is thus controlled by a quasi-linear controller that re-
ceives sensor values and determines the motor values. If the coefficients of the con-
troller are fixed then we have a purely reactive setup which can produce a particular
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reactive behavior. If, however, the parameters change the robot can produce a variety
of behaviors. If done appropriately, e. g. as proposed below, a sequence of behaviors
is obtained that are all locally smooth and simple but globally rather complex. The
approach consists of adapting the parameters to maximize prediction quality and
simultaneously to maximize sensitivity to changes in the sensor values.

Formally, we denote the vector of sensor values at time t by xt ∈ R
n. The vector

of motor values yt ∈ R
m is generated by a controller function

yt = K (xt ,C,h) = g(Cxt + h) , (8.1)

where g(·) is a componentwise sigmoidal function, e.g. a hyperbolic tangent. The
matrix C contains the modifiable parameters of the controller and h is a vector of
bias values. The predictive internal model M uses sensor values and motor values to
predict the sensory inputs one time step ahead.

xt+1 = M(xt ,yt ;A,S,b)+ ξt+1 , (8.2)

M(xt ,yt ;A,S,b) = Ayt + Sxt + b , (8.3)

where ξ is the deviation of the actually observed sensor values from their predic-
tions. The matrices A and S are adapted such as to represent the effect of the actions
and the previous sensory values, respectively, onto the new sensor values. The vec-
tor b, similar to h above, serves as an offset. Inserting Eq. (8.1) into Eq. (8.2) yields

xt+1 = M(xt ,K(xt ,C,h);A,S,b)+ ξt+1 = ψ(xt)+ ξt+1 , (8.4)

which is a stochastic dynamical system describing the temporal evolution of the
sensor values. Considering that all the information the robot obtains arrives through
its sensors, the dynamics (8.4) describes the behavior of the robot completely. Note,
however, in this interpretation, Eq. (8.4) assumes a Markov property with respect to
a fixed time step which may not be realizable in real robots in general.

While the controller determines the behavior of the robot and changes its state
in the environment, the internal predictive model learns any new arriving sensory
inputs by an online adaptation of the parameters A, S, and b via gradient descent. As
a consequence, the prediction error ‖ξ‖2 (8.4) tends to decrease.

If the parameters C and h of the controller are also adapted by the minimization of
the prediction error then the robot dynamics is subject to stabilization. The resulting
behavior reflects the complexity of the environment to some extent, but is typically
relatively simple or may simply approach a resting state.

Activity in the sensorimotor loop can by achieved by the homeokinetic paradigm,
namely by considering instead the reconstruction which is given by

vt = xt −ψ−1 (xt+1) (8.5)

between the previous sensory inputs xt and their reconstructed values obtained by
ψ−1 (xt+1), where it is assumed that ψ is invertible. It can be interpreted as the
amount by which the sensor values would have had to be changed in order to
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Fig. 8.1 The homeokinetic controller connected to a wheeled robot in a sensorimotor
loop. The robot is equipped with wheel counters and a camera. The controller is represented
by the function K and the predictor M, both together form the map ψ (Eq. (8.4)). The TLE is
obtained by propagating ξt+1 through the inverse of ψ .

preempt any prediction error. The objective function minimizing the reconstruc-
tion error vt is called time-loop error (TLE) and it can be approximated using the
linearization vt = L−1ξt+1:

ETLE = ‖vt‖2 = ξ�
t+1

(
LtL

�
t

)−1
ξt+1 , (8.6)

where (Lt)i j =
∂ψ(xt )i
∂ (xt ) j

is the Jacobian matrix of ψ at time t. The entire framework

is sketched in Fig. 8.1. Note that minimizing this error quantity increases the small
eigenvalues of L, i. e. it tends to destabilize the system which is, however, con-
fined by the nonlinearity g(·) (8.1). This eliminates the trivial fixed points (in sensor
space) and enables spontaneous symmetry breaking.

The parameters of the controller (C,h) are adapted by a gradient descent on the
TLE (8.6). This gives rise to the parameter dynamics

ΔC =−εc
∂

∂C
E = εcμv�− ε ′yx� , (8.7)

Δh =−εc
∂

∂h
E =−ε ′y , (8.8)

where εc is a global learning rate and ε ′ is channel-dependent learning rate given by

ε ′i = 2εcμiζi, where μ = G′A� (L�)−1
v, and ζ =Cv and G′ is the diagonal matrix

defined as G′
i j = δi jg′i (Cx+ h). The derivation of the learning rules can be found in

Der and Martius (2012). In our parameterization the Jacobian matrix is given as

L = AG′C+ S. (8.9)

We will generally assume that there are more sensors than motors, which, for
S = 0, implies that the Jacobian matrix L cannot be inverted such that a pseudo-
inverse is being used instead in the above formulas. The parameters A, S and b (8.3)
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are adapted online in order to minimize the prediction error ‖ξ‖2 (8.4). However,
the minimization is ambiguous with respect to A and S because y is a function of x,
see (8.1). In order to capture as much as possible of the relationship by the matrix A
we introduce a bias by using partly the TLE for learning of the model:

ΔA = εAξt+1
(
yt +ρAG′Cv

)�
, (8.10)

ΔS = εSξt+1x�t , Δb = εbξt+1 , (8.11)

where the parameter ρA = 0.1 controls the bias. The learning rates εS and εb are
chosen to be smaller than εA, but the exact parameter values are not critical; for
ρA = 0 the original delta-rule is restored.

The learning rates are chosen to result in a fast dynamics for the weights. As-
suming sensory noise, the TLE is never zero nor has a vanishing gradient such that
the rule (8.7) produces an itinerant trajectory in the parameter space, i. e. the robot
traverses a sequence of behaviors that are determined by the interaction with the
environment. An intuitive idea of the resulting dynamics can be obtained for a robot
with just two wheels each equipped with a proprioceptive velocity sensor (see for
instance Fig. 8.16(a)). Initially the robot rests, but after a short while it starts to
drive autonomously forward and backward or to turn. If the robot arrives at an ob-
stacle, the wheels stop, thus causing a large error because of which the learning
dynamics will quickly stop the motors and eventually drive in the free direction.
Also high-dimensional systems such as snake- or chain-like robots, quadrupeds,
hexapods and wheeled robots can be successfully controlled with the learning dy-
namics of Eqs. (8.7) to (8.11) (Der and Martius 2012).

8.2.1 Example of Emergent Behavior

To get a more clear idea of what homeokinetic control is about we will present two
examples here: the spherical robot and the Cricket robot. The design of the spherical
robot is inspired by the artist Julius Popp (2004). It has a ball shaped body and is
equipped with three internal masses whose positions are controlled by motors, see
Fig. 8.2(a). The motor values define the target positions of the masses along the axes
which are realized by simulated servo motors. Collisions of these masses especially
at the intersection point are ignored in the simulation.

If we put the spherical robot on level ground and connect the homeokinetic con-
troller initially only small fluctuations due to the sensor noise occur. The learning
dynamics increases the feedback strength steadily so that the controller is getting
more and more sensitive to the sensor values. Once the critical level is exceeded
fluctuations get amplified so that the symmetry of the system is spontaneously
broken and the body starts to roll into a decided direction. This is the first moment
when the sensor values show a defined response to the actions. The most simple of
the natural modes of the robot is realized by rotating around one of the internal axes
with the mass on that axis being used for steering and the other ones for shifting the
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Fig. 8.2 The spherical robot exploring its behavioral capabilities. (a) Sensor setup and
sketch of four typical behaviors (A-D), namely the rolling mode around the three internal axis
(A-C) and around another axis (D). (b) Amplitudes of the motor value oscillations (y1...3)
and the time-loop error E (scaled for visibility) averaged over 10 and 30 sec, respectively.
Corresponding behaviors are indicated with letters A-D.

center of gravity. The experiments demonstrate, Fig. 8.2, that the controller picks
up such a rolling mode and amplifies it very quickly. The explorative nature of the
control algorithm is illustrated in the fact that different rolling modes emerge.

8.2.2 Behavior and Critical Dynamics in High-Dimensional
Cricket Robot

In simplified systems the self-organization of the movement parameters of the robots
can be studied analytically (Der and Martius 2012), which provides an intuition
about the noise amplification and the emergence of behavior in such systems. It is
beyond the scope of the present text to represent these results here. Instead we take
a phenomenological look at a more realistic system, namely a cricket robot Fig. 8.3.

As before the robot would not move after initialization until the self-amplification
of the sensor noise will eventually lead to an initial movement. Because all legs are
connected to the trunk their movements are physically coupled, which is automat-
ically extracted by the learning algorithm. The robot starts to sway and becomes
more and more active until it starts to lift the feet from the ground. A range of
jumping and wobbling motions is emerging that are coming and going.

Theoretically homeokinetic learning should bring the sensorimotor loop into a
critical state also termed the edge of chaos. In this state small perturbation in the
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Fig. 8.3 Cricket robot with realistic leg sizes, ranges and mass distribution, cf. (Cruse
et al. 2006). The robot has twelve active degrees of freedom (DoF) and 14 passive DoF (lower
legs and antennae). (a) Schematic diagram of the robot and actuated joints. (b) Screen shot
from the computer simulations using LPZROBOTS (Martius et al. 2012).

sensor values are neither damped nor amplified. An indication for this state can be
obtained from the largest eigenvalue of the mapping from current sensor values to
future sensor values, which should be 1. That this is indeed the case for the cricket
robot shows Fig. 8.4, where the linearization of the map was used. In linear systems,
eigenvalues of unity represent an on-going movement, however, the nonlinearity of
the controller or of certain interactions with the environment, such as collisions be-
tween feet and ground, require a more powerful controller which leads to larger
eigenvalues as shown in the figure. So homeokinetic learning works also in dynam-
ically complex systems and leads to an exploration of the behavioral capabilities of
the system under control.

8.3 Guided Self-Organization

The homeokinetic learning rule causes a robot to move actively and to react sensi-
tively to its environment. The resulting behaviors are, however, waxing and waning
and their time span and transitions are hard to predict. There are only a number
of exceptional cases where a robot could directly make use of the above learning
scheme. Assume for instance that the robot has a number of options or schemes to
follow in specific situations, but when none of these are applicable then a generic
search behavior is certainly helpful. Moreover, if the robot has received a prescribed
plan it can still explore similar behaviors which may be more smooth or better with
respect to an external reward.

In many robotic applications, however, a defined and goal-oriented behavior is
desired. With traditional learning methods these may be hard to obtain, especially if
the control space is high-dimensional. A promising route, reflecting some properties
of biological learning, is to allow the robot to explore its basic behaviors in a playful
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Fig. 8.4 Analysis of the Cricket robot (s. Fig. 8.3). In order to demonstrate the criticality in
a complex robot we considered the main eigenvalue of the sensorimotor loop. In accordance
with the analytical results for the one-dimensional case (Der and Martius 2012), we observe
here eigenvalues with a mean values of approximately 1.2. The y-axes in the plots show
the projection of the state of the robot onto the corresponding eigenvector which shows a
symmetric distribution. Data was obtained in a single run for each of the plots with a different
level of noise in each case. During the run the dominant eigenvector frequently changed its
orientation. It is interesting that maximal flexibility is reached at an intermediate noise level
as indicated by the heat map. White areas represent a high density of points; in low-density
areas individual points are drawn in black.

and self-organized phase and internalize some of the intrinsic properties of the sen-
sorimotor loops. Why should it be more effective? Self-organizing systems tend to
scale well to higher dimensions and may exploit the constraints and properties of the
embodiment. Also, self-organizing systems show a great flexibility and tolerance
against failures and degrade gracefully rather than catastrophically (Prokopenko
2008, 2009). After this or even already during this self-exploratory phase, the
robot receives information about the task it is expected to execute. This informa-
tion can be imposed on the robot in an imperative way, but this is possible only if
the exploratory properties cease to have an effect on the robot. Taking it further,
we need a continuous balance between external and intrinsic learning: The robot
continues to behave exploratory, but will preferentially choose those behavioral
patterns that comply best with the external information. This is what guided self-
organization (GSO) for robot control is about, which we introduced (Martius et al.
2007) for the combination of a desired goal with self-organizing behavior. The term
has been used before in contexts such as nanotechnology (Choi et al. 2005), city
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development (Butera 1998) or swarm robotics (Rodriguez 2007) representing es-
sentially the same idea: exploiting the intrinsic complex dynamics to achieve a goal
without much engineering effort or strong interference with the intrinsic dynamics
of the system. An illustrative example from nature is again the shell patterns (and
animal coat pigmentation). The self-organizing reaction-diffusion systems creating
the patterns are guided by comparably simple chemical gradients leading to a spe-
cific (species typical) formation. It would have been much more difficult (in terms
of e. g. coding length) for evolution to come up with a precise description of pattern
in the genome. More importantly this GSO system act as a pattern factory. A new
pattern only needs different gradient. However, to engineer a new desired pattern
may be difficult, which is part of the challenge of guided self-organization.

By the way, the same general idea also underlies chaos control (Ott et al. 1990)
and, more recently, self-motivated learning. GSO is different from active learning,
reinforcement learning (Sutton and Barto 1998) and evolutionary learning (Nolfi
and Floreano 2001) at least because the exploration is self-organized rather than
following a defined scheme or being exhaustive.

To get an intuitive idea how guidance could look like we consider again the emer-
gence of self-organized behavior. In terms of the theory of dynamical systems, the
homeokinetically controlled behavior can be considered to consist of series of sym-
metry breaking events. E. g. a simple robot that is not moving initially, starts to
choose to move either forward or backward. If the robot’s hardware does not indi-
cate a preference for either direction, the robot chooses a random orientation caused
by a possibly tiny fluctuation at the critical moment when the breaking of the sym-
metry happened. Obviously, the same effect can be achieved if the robot is biased
(namely, to move forwards rather than backwards) either by a hardware asymmetry
or by any external information. It can be further expected that the external input that
the robot receives does not need to be strong. In all cases the robot will continue to
self-organize its behavior, but with the difference that the specific decision which
was previously due to a noise effect, is now due to an external guidance.

More formally, we will distinguish a number of possibilities for guidance in de-
pendence on the type of information the robot receives. The first one allows for
the incorporation of supervised learning signals, e. g. specific nominal motor com-
mands. To make this possible we study the integration of problem-specific error
functions into the homeokinetic learning dynamics in the next section. Using a dis-
tal learning (Jordan and Rumelhart 1992) setup we also study the use of teaching
signals in terms of sensor values and give an example of guidance by visual target
stimuli. Interestingly we find a remarkable robustness to sensorimotor disruptions.
The second mechanism is discussed in Sect. 8.6 and uses online reward signals to
shape the emerging behaviors. The third mechanism for guiding the self-organiza-
tion can be used to formulate relationships between motors, see Sect. 8.7. This will
be proven to be an effective and simple way to introduce constraints into the system
and facilitate the unsupervised development of specific behaviors.
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8.4 Guidance by Mild Supervision

8.4.1 Integration of Problem-Specific Error Functions

The combination of self-organizing processes and additional constraints is not triv-
ial and essentially an instance of the well-known dilemma that arises when both
exploration and exploitation is desired at the same time. A problem-specific error
function expressed the goal, i.e. a specification what is to be exploited in a given
context, while the behavioral self-organization provides an efficient means for ex-
ploration. Whether or not the exploration indeed serves the goal in the long run, is a
question of the balance between the two which we are going to discuss in this sec-
tion. A particular goal can be specified in terms of a problem-specific error function
(PSEF) that is minimal if the goal is met.

A suggestive way of combining the TLE and a PSEF could be a weighted sum
of the two error functions. Performing gradient descent on this sum minimizes then
this combination such that we could expect learning to both improve the active en-
gagement with the environment as well as top approach the goal. It is, however,
likely that either one of the learning tasks may improve on the cost of the other one.

The optimal balance between the exploration and exploitation depends not only
on the specific problem but also on the course of learning and the current state of
the system. The reason is that the size of the TLE varies often over several orders
of magnitude, whereas the goal-specific terms will usually stay in a smaller range
or will not covary with the TLE. Therefore, a fixed weighting in the combined error
function cannot be expected to exist in non-trivial problems.

In order to achieve a goal-orienting effect without destroying the self-organiza-
tion process, we have proposed to scale the gradient on the PSEF in order to be
compatible with the TLE (Martius and Herrmann 2010, 2012). This approach was
motivated by the natural gradient method (Amari 1998). This method is based on
the fact that for an arbitrary Riemann metric of the parameter space the steepest di-
rection is given by the transformed gradient, which is obtained by multiplying with
the inverse of the metric. We use a metric which is defined by the matrix JJ�, where
J is the Jacobi matrix of the sensorimotor loop, similar to Eq. (8.9) but now in motor
space. We can think of this procedure as map of the error into the action space of
the robot.

The PSEF is denoted by EG and it must be non-trivially dependent on the con-
troller parameters such that the gradient can be effective. So the main formula for
guided self-organization with homeokinesis is the new update rule for the controller
matrix C as

1
εc

ΔC =−(1− γ)
∂ETLE

∂C
− γQ

∂EG

∂C
, (8.12)

where ∂ETLE

∂C is the homeokinetic learning rule (8.7), 1 ≤ γ ≤ 0 is the guidance
factor defining the weighting between goal following and self-organization, and
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Q =
(
JJ�

)−1
defines the metric. The latter can also be expressed as Q =

A� (LL�)−1
A, see Martius (2013). For γ = 0 there is no guidance and we obtain

the unmodified dynamics, and for γ = 1 there is no homeokinetic adaptation but
only guidance.

The entire update size is still controlled by the learning rate εc. For the update of
the parameter h we apply an analogous procedure.

Below we will look at a few concrete examples of problem-specific error func-
tions (PSEFs) that implement the guidance by teaching signals. In this way a super-
vised learning procedure is introduced which, however does not imprint its effect on
the system but rather have the system explore the learning objective implied by the
PSEF.

8.4.2 Direct Motor Teaching

In order use motor-teaching signals we define a PSEF, which penalizes the mismatch

ηt = yG
t − yt (8.13)

between motor teaching values yG
t and actual motor values yt (output by the homeo-

kinetic controller). Similarly to the prediction error for the forward model we find

EG = ηt
�ηt . (8.14)

Using the gradient descent we get the additional update for the controller matrix C
as

∂EG

∂C
=−G′ηt x

�
t , (8.15)

where G′ is the diagonal matrix given by G′
i j = δi jg′i(Cx+ h). Similarly, for h we

obtain ∂EG

∂h = −G′ηt . These additional terms are integrated into the final learning
rule using Eq. (8.12). The guidance factor γ regulates the strength of the additional
drive and has to be determined empirically. A small value of γ leads to a small
influence of the teaching signal and results in a behavior that is mostly dominated
by the original homeokinetic controller. For large values of γ the teaching signals
are followed narrowly and few exploratory actions are performed, however, with the
increasing danger to break down the self-organization.

8.4.2.1 Experiment

Using a two-wheeled robot, see Fig. 8.16(a), we will show that teaching signals can
be used to specify a certain behavior and that the influence of the teaching can be
conveniently adjusted using γ . For that let us consider two different motor teaching
signals, which are subsequently applied. First the nominal motor values are given
by a sine wave and then by a rectangular function with the same value for both
motors, i. e.
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Fig. 8.5 Two-wheeled robot controlled with homeokinetic controller and direct motor
teaching signals. (a) The teaching signals yG (identical in both components) are followed
partially by the motor values y1,2 after teaching was switched on with γ = 0.01 at 60 sec.
(b) Time evolution of the controller parameters affecting the first motor is shown to illustrate
that only little changes are necessary, however, the adaptations do not vanish. (c) Average
value of the PSEF EG (for 5 experiments à 5 min) in dependence of γ (note the logarithmic
scale). The noise level (dotted gray line) is reached at γ = 1. Parameters: εc = εA = 0.1,
γ = 0.01 (a,b).

(yG
t )i =

{
0.85 · sin(ωt) t < 75

0.65 · sgn(sin(ωt)) otherwise ,
(8.16)

with i = 1,2 and ω = 2π/50. For the choice of the teaching signal we have to
consider that the nominal motor values should not be too large because otherwise
the controller is driven into the saturation region of the motor neurons. The fixed
point of the sensor dynamics in the simplified world condition is at y ≈ ±0.65.
This is a good mean teaching signal size, which was also used in Eq. (8.16). As a
rule of thumb we recommend confining the motor teaching values to the interval
[−0.85,0.85].

In Fig. 8.5 the produced motor values and the parameter dynamics are displayed
for different values of the guidance factor γ . For a low value of γ the desired behavior
is only followed by trend, whereas for higher values, e. g. γ = 0.01, the robot mostly
follows the given teaching value with occasional exploratory interruptions. These in-
terruptions cause the robot, for example, to move in curved fashion instead of strictly
driving in a straight line as the teaching signals dictate. The exploration around the
teaching signals might be useful to find modes which are better predictable or more
active. The long performance of a single low-dimensional behavior can lead to the
inaccuracy of the adaptive forward model. Thus, the explorative actions can supply
the forward model with necessary sensation-actions pairs for complete learning.

The experiment demonstrated that motor teaching signals can be used to achieve
a specific behavior. This result is not very surprising, because the system is very
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simple and the target behavior did not conflict with the homeokinetic principle (sen-
sitive and predictable). However, it served as a proof of principle and showed that
the balance between target behavior and remaining self-organized behavior can be
adjusted using a single parameter.

8.4.3 Direct Sensor Teaching and Distal Learning

In this section we transfer the direct teaching paradigm from motor teaching signals
(Sect. 8.4.2) to sensor teaching signals. This is a useful way of teaching because
desired sensor values can be more easily obtained than motor values, for instance
by moving the robot, or parts of the robot by hand. This kind of teaching is also
commonly used when humans learn a new skill, e. g. think of a tennis trainer that
teaches a new stroke by moving the arm and the racket of the learner and is a sub-
set of imitation learning (Schaal et al. 2004). Thus, a series of nominal sensations
can be acquired that can serve as teaching signals. Setups where the desired outputs
are provided in a different domain than the actual controller outputs are called dis-
tal learning (Jordan and Rumelhart 1992; Stitt and Zheng 1994; Dongyong et al.
2000). Usually a forward model is learned that maps actions to sensations (or more
generally to the space of the desired output signals). Then the mismatch between a
desired and occurred sensation can be transformed to the required changes of action
by inverting the forward model.

The distal learning error is the mismatch between desired sensations xG
t and ac-

tual sensations xt

ξ G
t = xt − xG

t . (8.17)

The mismatch ηt in motor space can be obtained via the forward model M (8.3) in
linear order

ηt = A+ξ G
t , (8.18)

where A = ∂M(x,y)
∂y and the A+ denotes the pseudoinverse of A. Now the update

formulas (8.15) for C and h from the direct motor teaching setup can be used based
on the teaching error EG = ‖ηt‖2.

8.4.3.1 Experiment

For the two-wheeled robot (Fig. 8.16(a)) the forward model is simply a multiple of
the unit matrix. The spherical robot (Fig. 8.6(a)), however, has a non-trivial relation
between sensor and motor values and is thus better suited for an illustrative experi-
ment to show that a simple teaching signal in terms of sensor values can be effective
in guiding the behavior.

A desired behavior for the spherical robot could be to rotate around the one of its
internal axes. For the particular sensor setup we need to assure the the corresponding
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Fig. 8.6 The spherical robot in a homeokinetic plus distal learning setup. (a) Illustration
of the robot with its sensor values. (b) Behavior with the distal learning signal, Eq. (8.19).
The plot shows the percentage of rotation time around each of the internal axes and the
number of times the behavior was changed for different values of the guidance factor γ (no
teaching for γ =0). The rotation around the red (first) axis is clearly preferred for non-zero
γ . The mean and standard deviation are plotted for 20 runs each 60 min long, excluding the
first 10 min (initial transient, no guidance). For too large values of the guidance factor the
self-organization process is too much disturbed such that the robot gets trapped in a random
behavior (dash-dotted line). Parameters: εc = εA = 0.1.

sensor returns consistently a low absolute value. This can be directly specified in the
distal learning scheme, here for the first axis:

xG
t =

⎛
⎝ 0
(xt)2

(xt)3

⎞
⎠ . (8.19)

Now only the first component of the sensor value produces an error signal. The
resulting behavior is characterized in Fig. 8.6.

The distal learning scheme requires a well trained forward model. Therefore pure
self-organization was used during the first 10 min of the experiment (γ = 0). As a
descriptive measure of the behavior, we used the index of the internal axis around
which the highest rotational velocity was measured at each moment of time. Fig-
ure 8.6(b) displays for different values of the guidance factor and for each of the
axes the percentage of time it was the major axis of rotation. Without teaching there
is no preferred axis of rotation. With distal learning the robot shows a significant
preference (up to 75%) for a rotation around the first axis. For overly strong teach-
ing, a large variance in the performance occurs. This is caused by a destructive
influence of the teaching signal on the homeokinetic learning dynamics. Remember
that the rolling modes can emerge due to the fine regulation of the sensorimotor loop
to the working regime of the homeokinetic controller, which cannot be maintained
for large values of γ .

The robot will not stay in the rotational mode about one axis. While the robot is
in this rotational mode the teaching signal is negligible. However, the sensitization
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property of homeokinetic learning increases the impact of the first sensor, such that
the mode becomes eventually unstable again. Again this may be considered as an
advantage since the temporary breaking out avoids a too narrow specialization of
the internal model. Note, moreover, that the learning success in the current setting
of controller and forward model could not be achieved by the distal learning alone,
at least not with a constant learning signal.

To recapitulate, the direct teaching mechanism allows us to specify motor pat-
terns that are more or less closely followed, depending on the strength of integrating
the additional drives into the learning dynamics. In this section we considered sensor
teaching signals that were transformed into motor teaching signals using the internal
forward model. We have shown that the spherical robot with the homeokinetic con-
troller can be guided to locomote mostly around one particular axis, by specifying a
constant sensor teaching signal at one of the sensors Martius and Herrmann (2010).

8.5 Self-Organized Interaction with the Environment

Let us know consider a more involved application with direct sensor teaching using
a camera sensor.

8.5.1 Integration of Vision into the Sensorimotor Loop

Vision adds a new level of complexity to any robotic system. In particular in most of
the applications of the homeokinetic principle, mostly proprioceptive sensors have
been used, which helps to generate a sensible control of the body, but may not be
sufficient to produce a tight interaction with complex environments. In the following
we will discuss the integration of visual information into the framework of self-
organizing control, see also Martius (2013).

Fig. 8.7 Camera setup, image processing and sensor values

In the following we will describe experiments with a four-wheeled robot
(Fig. 8.1). The robot is operated such that the two motors on one side of the robot
receive the same target velocity. The two velocity sensors (xl and xr) return the av-
erage of the actual wheel velocities on one side.

A simplification can be reached by restricting the interacting of the robot to with
objects of a certain color, yellow in our case. We start by calculating the center of
mass (xh,xv) over all pixels of this color based on the assumption that only one
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yellow object is visible. If this not the case the approach of the robot will help with
the disambiguation. Next, we approximate the size (xs) of the object by the sum of
all yellow pixels (normalized to [0,

√
2]). This is prone to light and shadow effects

and is again a crude approach but it will turn out to be sufficient for our purposes.
In addition we also use the time derivatives of the quantities such that the vector of
sensor values reads

x = (xl ,xr,xh, ẋh,xv, ẋv,xs, ẋs)
�. (8.20)

We are often adding a small amount of sensory noise to the simulated sensors which
is not only more realistic, but also has the side effect that the TLE does not become
zero. The vision sensors are, if any objects are visible at all, rather inaccurate and
noisy, e.g. due to illumination, such that additional noise is not required here. There-
fore, only the wheel velocities sensors xl and xr are subject to Gaussian noise with
a small standard deviation.

Exteroceptive sensors in general and our vision sensors in particular may not
be active for substantial periods during operation. For instance the position sensor
(xh,xv) is essentially undefined if no object is in sight. Since the predictive model is
to correlate actions with perceptions, the absence of any object nullifies the corre-
lations such that a prediction becomes impossible. A simple solution is to prevent
learning of the predictive model on invalid sensor values. We implement this by as-
suming an undefined sensor value to be zero and set the prediction error (ξi)t to zero
as well, if (xi)t = 0 or (xi)t−1 = 0 while it remains unchanged otherwise.

8.5.2 Guiding towards an Object

We will now define a guidance mechanism that drives the robot towards a visible
object. In order to fixate the object in the center of the field of vision, the position
sensors (xh,xv) should approach zero unless a specific target position (ph, pv) is
given. If the robot should push objects, e. g. a ball, then the value of the size sensor
(xs) should be large. Alternatively if the robot should keep a certain distance, for
instance when interacting with other robots, then a smaller value is required. We
denote the desired size by s.

The linear predictive model can represent the relation between actions and po-
sition/size only in certain situations. In particular we deal here with stationary and
moving objects that cause a different sensory response. A new mechanism could
make use of the desired value for the derivatives, too. Fortunately, we can use pro-
portional set-point control formula with damping: ẋ =−α(x− xdesired)−β ẋ, where
α is a rate and β is the damping constant. This differential equation has a fixed point
at x = xdesired.

The sensor teaching vector xG is thus given in components as

xG
l = xl , xG

r = xr, (8.21)

xG
h = ph, ẋG

h =−α(xh − ph)−β ẋh, (8.22)
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xG
v = pv, ẋG

v =−α(xv − pv)−β ẋv, (8.23)

xG
s = s, ẋG

s =−α (xs − s)−β ẋs , (8.24)

where β = 0.1 and α = 1 here. Note, the wheel velocity sensors xl and xr produce
no teaching signal. For the following experiments we use for the center position
ph = pv = 0 and set the maximal size to s =

√
2.

8.5.3 Emergent Behaviors

The first experiment should test whether the guidance mechanism is able to influ-
ence the self-organized behavior to find and push balls. This involves the establish-
ment of the required sensorimotor mappings from scratch in a changing environment
(balls can move). All the experiments are performed in virtual reality in our robot
simulator (Martius et al. 2012). The formal definition of the goal is specified by the
target sensor state xG Eqs. (8.21–8.24). We place the robot together with five balls
into a circular corridor, as displayed in Fig. 8.8(a), such that the robot can possibly
push a ball for a long distance without getting stopped by corners. Those parame-
ters of the model (A) connecting to the vision sensors are initialized with zero, such
that the guidance has no effect independently of the guidance factor. Recall that the
forward model transforms the teaching signal to nominal changes in motor values
Eq. (8.18), which will be zero if the model did not learn anything. Once the robot
learns to move, the model starts to correlate actions with the visual sensors. In this
way the guidance starts to actually influence the behavior, such that the robot sees
a ball more often and the model can improve further. Eventually the robot starts to
steer at a ball and pushes it along the arena. Note that the robot has a round front
shape such that the ball easily drifts away to either side while pushed. From time
to time the robot still performs exploratory actions such that the ball gets lost and a
ball needs to be found again. A part of a trajectory of the guided robot is shown in
Fig. 8.8(b).

Note that there can be more than one ball in the field of view at the same time.
However, the sensors cannot distinguish different objects, since the visual sensor
(xh,xv) provides a position between the objects and the size (xs) sensor returns a
sum of the sizes. Nevertheless, the robot copes with this situation without problems.
The robot steers at a group of balls and decides rather spontaneously which one
it will touch. The final choice depends on how well the different balls are visible,
when they leave the field of view, and other perturbations.

In order to analyze quantitatively the behavior of the robot, we consider the av-
erage distance to the closest ball and the cumulative time a ball was in the sight of
the robot. This gives a good measure on whether the guidance was followed and the
robot is indeed approaching the balls. If the robot is also pushing the balls along the
arena, then the traveling distance of the balls raises, which we display together with
the other quantities in Fig. 8.9(a). Indeed, for intermediate values of the guidance
factor the time a ball was in sight increases from 100 sec to 600 sec. The same holds
for the average distance of the robot to the closest ball which decreases from 5 to a



240 G. Martius, R. Der, and J. Michael Herrmann

(a)

�10 �5 0 5 10

�10

�5

0

5

10

(b) γ = 0.1

Fig. 8.8 Ball playing scenario. The robot is placed in a circular corridor. (a) Screen shot
from the simulation. The right inlet shows the camera image and the left displays the color
filtered image; (b) Part of a sample trajectory of the robot (minutes 5–10) for γ = 0.1 colored
in red (solid) if the robot is close (within two body length) to the ball and it was in sight, and
in blue (dashed) otherwise. The yellow disks show the initial positions of the balls.

value of 2. The size of the robot is 1 and the ball has radius of 0.3, resulting in a min-
imum of 0.8. Why does not the average distance go much below 2? Firstly, the plots
include the entire simulation time including the phase where the robot has to acquire
basic knowledge about its body. Secondly, it can take a long time and driving dis-
tance to find a ball again when it is lost, for instance through an exploratory action.
Due to the inner circular walls of the arena the balls are not visible everywhere and
finally the distribution of distances is skewed, see below.

The traveling distance of the balls raises from nearly zero to more than 7500
units, which corresponds to about 100 rounds in the arena (in 30 min).

In Fig. 8.9(b) we show that the aspects of the behavior that are not particularly
subject to the guidance, namely the covered area of the arena by the robot and its
average velocity are not negatively effected by the guidance, at least for moderate
guidance strengths. The area coverage and the velocity go up when the task is per-
formed, because the robot drives much more straight and forward than without the
guidance.

When the guidance is too strong self-organized adaptation and external pressures
become out of balance and the performance drops. Especially visible is this effect
at γ = 1 where no homeokinetic learning takes place (Eq. (8.12)) and the robot fails
to move in a coordinated fashion, see Fig. 8.9(b).

Taking a closer look at the distance to the closest ball, we find that the mean is
not such an appropriate measure in the guided situation since the distribution of dis-
tances is not Gaussian but rather skewed as shown in Fig. 8.10. Without guidance the
distribution of distances is almost flat, whereas for weak and intermediate guidance
strengths the distribution is skewed with a strong preference for short distances. For
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Fig. 8.9 Behavioral quantification of the ball playing scenario. Both panels show the
mean and standard deviation of 10 simulations each 30 min long, in dependence of the
guidance factor γ . (a) Traveling distance of the balls sball (scaled), cumulative time a ball
was in sight tsight (in sec), and average distance to the closest ball 〈d〉 (right axis, min-
imum 0.8). (b) Average absolute velocity of the robot (left axis) and area coverage (box
counting method), given in percent of the case without guidance (γ =0) (right axis).

0 5 10 15
d

200
400
600
800

(a) γ = 0

0 5 10 15
d

200
400
600
800

(b) γ = 0.02

0 5 10 15
d

200
400
600
800

(c) γ = 0.1

0 5 10 15
d

200
400
600
800

(d) γ = 1.0

Fig. 8.10 Distribution of distance to the ball in the ball playing scenario. All panels show
the histogram (in sec) of the distance d averaged over all simulations for one particular value
of the guidance factor γ . (a) No guidance; (b) weak guidance; (c) intermediate guidance;
(d) overly strong guidance (no self-organization).

overly strong guidance (γ = 1) the robot gets predominantly stuck at the walls be-
cause the sensorimotor coordination is pushed away from its sensitive regime, such
that the histogram is rather arbitrary.

8.5.4 Robustness against Structural Changes

In fact we performed quite radical changes to the camera setup, namely to rotate and
flip the camera abruptly, see Fig. 8.11. These changes have severe consequences for
the sensorimotor dynamics, because some sensor values swap signs or change from
being useless to becoming important and vice versa.

We use the same circular arena as in the previous section. In our simulated ex-
periments the camera setup is initially normal and is changed every 10 minutes to
the setups shown in Fig. 8.11. Only the backwards view is kept for 20 min. Finally
the normal setup is used again, such that an experiment lasted 70 min in total. We
conducted 10 experiments with γ = 0.1 and present the evolution of the relevant
model and controller parameters in Fig. 8.12.
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(a) Tilt 45◦ (b) Tilt −90◦ (c) Backward
view

(d) Upside
down

Fig. 8.11 Radical changes to the visual perception. In addition to the normal setup of
the camera (Fig. 8.8) it is rotated by 45◦ (a), −90◦ (b), and 180◦ (d) along the optical axis,
and lifted and rotated by 180◦ (c) along the vertical axis yielding a backward view. Note the
different perspective and the appearance of the robot’s body in the camera view in (c).
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Fig. 8.12 Fast relearning: evolution of parameters for a changing camera. The camera
is changed every 10 min, illustrated by the vertical lines. Its orientation on the body is shown
by the icons. All values are mean values for 10 independent runs. Shown are elements of
the model matrix (A) and controller matrix (C). The indexes refer to the sensor and motor
value vectors, see Eq. (8.20). (a) Model parameters connecting left and right motor command
with visual motion input (ẋh,ẋv). (b) Controller parameters connecting visual position (xh,xv)
with left and right motor neuron. (c) Controller parameters connecting visual motion (ẋh,ẋv)
with left and right motor neuron. (d) Controller and Model parameters connecting visual
size (xs,ẋs) and left wheel. The model parameters adapt very quickly to the new camera
configurations. The controller utilizes both the position and the motion of the ball, however
its adaptation is much slower compared to the model. Parameters: γ = 0.1.



8 Robot Learning by Guided Self-Organization 243

Especially the model parameters relating motor values with the motion sensors,
Fig. 8.12(a), evidently show that the correct correspondence is learned within a few
minutes after each switching event. This, however, is only possible if the behavior
of the robot is such that a ball remains frequently in the field of vision, which is
very hard, if e.g., the positional sensation just swapped sign. In this situation the
major strength of the homeokinetic controller shows its fruits, namely its continu-
ous and embodiment related explorative and drive. The controller parameters show
that the incorporation of the vision sensors is changed drastically for the different
situations, but also that both motion and position information is used. The positional
information is required to steer towards the ball and the motion sensor is used avoid
overshooting. The parameters C change slower than the model parameters. Note that
the behavior is also influenced by the parameters h (not shown). These change more
rapidly and help to realize the teaching signals on a shorter timescale until the C
matrix captures the correspondence with the sensor values.
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Fig. 8.13 Performance recovery for a changing camera configuration. Depicted is the
summed average velocity of all balls within intervals of 5 min corresponding to the simula-
tions in Fig. 8.12. For comparison the case without guidance (γ = 0) is displayed. The base
line (green, dotted) represents the average ball movement of a blind robot.

How is the performance in the task after the structural changes? To answer this
question we present in Fig. 8.13 the average ball velocities within 5 minute intervals
summed over all balls. Note, that since the balls are subject to rolling friction a con-
stant pushing is required. For comparison the values without guidance and without
vision (chance level as a baseline) are displayed. The performance within the first 5
minutes is already far above the baseline and it is doubled from the first to the second
5 minute interval. After each structural disruption the performance drops a bit and is
recovered in the second 5 min interval for each setting. Only the setting with camera
pointing backward yields worse performance, which is due to the partial obstruc-
tion of the visual field by the body. Then the most drastic disruption occurs when
the view is switched from backward to forward, but upside down. Here all visual
sensor modalities change sign. Nevertheless the performance raises in the second 5
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min interval to the performance of before. We can conclude that the performance is
rapidly recovered even after severe changes in the sensor modalities.

At the beginning of an experiment the robot learns the behavior from scratch.
When the camera is first turned by 45◦ comparably small adaptations occur, see
interval 10-20 min in Fig. 8.12. For instance the sensors for vertical position and
motion get slowly integrated, but the remaining structure stays the same and in fact
the performance drops only slightly (Fig. 8.13). When the camera is turned to −90◦

a drastic change occurs. The meaning of the size sensor does not change, but the
position and motion sensors require a completely different coupling, which is slowly
established (interval 20-30 min). This may be called learning from scratch, but in
fact it is worse, it is learning from a wrong configuration. When the switch occurs
the controller acts to avoid the ball. To manage this challenge an exploration is
required that focuses on the wrong aspects of the model, which is what happens
in our approach, where the adaptation speed is actually increased if the prediction
errors raise (see Eq. (8.6)). Since the controller does not explicitly know when a
structural change occurs it is always adapting in a continuous manner. However,
there is no long-term memory such that the controller cannot remember previously
experienced configurations.

To summarize, the entire sensorimotor coordination to fulfill the task was learned
by the robot within a few minutes. This involves the basic coordination to drive the
robot and the integration of the vision sensors such that the balls are approached and
balanced while pushed. The task to push the balls is not very complicated and can
be achieved with a simple hand-crafted controller. However, to learn it from scratch
in a short amount of time is hard. On top of that the orientation of the camera was
abruptly changed such that a completely different sensorimotor coordination be-
comes necessary. We found that guided self-organizing with homeokinesis can cope
with a wide range of configuration changes, even those where a complete change in
the visual sensation occurs. To our knowledge there is no other system that offers
this kind of robustness and the rapid on-line learning.

8.6 Reward-Driven Self-Organization

8.6.1 Reinforcement Learning and Guided Self-Organization

In many applications an explicit objective function is not available, instead a qual-
itative signal is given that can be interpreted as reward of punishment of a recent
state or action of the robot. Reinforcement learning studies the generation of poli-
cies under such conditions typically relying on an exploration mechanism that dis-
covers better solutions from present ones. While it is possible to apply a learning
rule similar to homeokinesis to shape exploration in reinforcement learning (Smith
and Herrmann 2012), we will consider here the usage of the reward signal for the
guidance of the homeokinetic exploration.

For example the behavior of the simple robot with one-degree of freedom shows a
systematic sweeping through the accessible frequencies of the sensor state reflected
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by rolling modes with different velocities (Der and Martius 2012). In the case of the
spherical robot with its three dimensional motor and sensor space we also observed
a sweeping through a large set of possible behaviors. In a setup where the robot can
move freely, it will exhibit different slow and fast rolling modes around different
axes.

Before introducing the new mechanisms, let us recall that well predictable behav-
iors persist longer than others. Due to this effect the well predictable behaviors are
also quickly found because badly predictable ones are left quickly. Translating this
into the case of reward and punishment, we want that rewarded behaviors persist
longer than punishment ones and that predictable ones are found quickly. Thus we
have to modulate the learning speed according to the online reinforcement signal in
a way that in rewarded situations the adaptation speed is reduced and in punished
ones the speed in increased. At first glance it seems to be counterintuitive that we
have to reduce learning speed in order to keep a behavior, but the self-organized
search should be slowed down to find even better behaviors locally. Moreover, the
controller is already able to produce the behavior at the time it is exhibited by the
robot.

The real-valued reward signal r(t) for each time t is supposed to act as a reward
for positive values and as a punishment for negative values. It is incorporated into
the error function in the following way

E r = (1− tanh(r(t)))E , (8.25)

where E is the usual TLE (8.6) and r(t) is expected to assume values mainly in
the interval between −1 and +1. Larger amplitudes are squashed by the hyperbolic
tangent such that differences tend to be ignored for high positive or negative rewards.
The effect of the factor (1− tanh(r(t))) is is the same as a rescaling of the learning
rate which is increased for negative and decreased for positive rewards. Therefore,
we can expect that rewarded behaviors persist longer and punished behaviors are left
quicker. We will demonstrate the effect of the reward-based weighting in shaping the
behaviors of the spherical robot (see Fig. 8.5a).

8.6.2 Modulation of Behavior in a Spherical Robot

8.6.2.1 Reinforcing Speed

In the following experiment we will use the spherical robot, see Fig. 8.6(a). One of
the simplest possible desired behaviors of this robot is fast unidirectional rotation.
A reward function for this goal can be constructed from the angular velocity of the
robot. For small velocities the reward should be negative, thus causing a stronger
change of behavior, whereas larger velocities should result in a positive reward. To
achieve that, the reinforcement signal can be expressed as

r(t) =
1
3
‖vt‖− 1 , (8.26)
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Fig. 8.14 Performance of the spherical robot rewarded for speed. (a) Mean and standard
deviation of the velocity of the spherical robot for 20 runs each 60 min long with (red) and
without (blue) speed reinforcement, sorted by velocity. The label ‘all’ denotes the mean and
std. deviation over the means of all runs, which is significantly (p < 0.001) higher for the
reinforced runs. (b) Time course of the robot’s velocity for run number 10 and 14, where
blue/dotted shows the normal case and red/solid line shows the reinforced case.

where vt is the velocity vector of the robot, see Fig. 8.6(a). In order to compare
the results with the unguided case the reward is shifted, such that it is zero for the
average velocity of normal runs. The scaling is done to keep the reward within the
effective range.

We conducted 20 trials with the spherical robot with reinforcement and 20 trials
without reinforcement, all with random initial conditions, each for 60 min in simu-
lated real time on a flat surface without obstacles. The robot also experiences rolling
friction, so that fast rolling really requires continuous motor activity. In Fig. 8.14 the
mean velocity (measured at the center of the robot) for each simulation is plotted
and the velocity trace of the robot for two reinforced and two normal runs are dis-
played as well. The simulations are sorted by performance and plotted pairwise for
comparison. As desired, the mean velocities of the reinforced runs are larger than
the ones of the normal runs. This is especially evident in the overall mean (mean
of means marked by ‘all’ in Fig. 8.14(a)), which is significantly different. The null
hypothesis that the set of means of the reinforced runs and of the normal runs have
an indistinguishable mean was rejected with p < 0.001 using the t-test. However,
since straight and also fast rolling modes are easily predictable and active they are
also exhibited without reinforcement for a long time. It is important to note that
the fast rolling modes are also found again, after the robot was moving slower, see
Fig. 8.14(b).

The guidance of the homeokinetic controller using a reward for fast motion has
shown to increase the average speed of the robot significantly. Although there are
also trials where no increased speed was found.
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8.6.2.2 Reinforcing Spin

In a different setup we want the robot to follow curves and spin at the spot. We use
the angular velocity ωz around the z-axis of the world coordinates system, which is
perpendicular to the ground plane, as depicted in Fig. 8.6(a). The reward function is
now given by

r(t) =
1
3
‖ωz‖− 1 . (8.27)

Again the reward is scaled and shifted to be zero for normal runs and to be in an
appropriate interval. Positive reward can be obtained by rolling in a curved fashion
or by entering a pirouette mode. The latter can be compared to a pirouette done by
figure-skaters—with some initial rotation the masses are moved towards the center,
so that the robot spins fast in place. The robot also experiences rolling friction, so
that fast pirouettes are not persistent.

Again, we conducted 20 trials with reinforcement and 20 trials without reinforce-
ment, each for 60 min simulated real time on a flat surface without obstacles. In
Fig. 8.15(a) the mean angular velocity ωz for each simulation is plotted, again sorted
by performance. The time evolution of the angular velocity for two reinforced and
two normal runs are displayed in Fig. 8.15(b). In this scenario the differences be-
tween the normal runs and the reinforced runs are remarkable. Nearly all reinforced
runs show a large mean angular velocity. The reason for this drastic difference is
that these spinning modes are less predictable and therefore quickly abandoned in
the non-reinforced setup. The traces show that the robot in a normal setup rarely
performs spinning motion, whereas the reinforced robot performs, after some time
of exploration, very fast spinning motions, which are persistent for several minutes.
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Fig. 8.15 Performance of the spherical robot rewarded for spin. (a) Mean and std. devi-
ation of the angular velocity ωz of the spherical robot for 20 runs each 60 min long with (red)
and without (blue) spin reinforcement, sorted by angular velocity. The label ‘all’ denotes the
mean and std. deviation over the means of all runs. (b) Time course of the velocity for run
number 12 and 20, where blue/dotted shows the normal case and red/solid line shows the
reinforced case.
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In this setup it can also be seen that the rewarded behaviors are found again after
they were lost, see Fig. 8.15(b).

The mechanism to modulate the learning speed by a reward signal showed
a strong effect on the behavior of the spherical robot. When controlled by the
homeokinetic controller without guidance the robot rarely exhibits narrow curves or
spinning behavior. In contrast the guided controller engaged the system into curved
motion most of the time. One might wonder how it is possible that this technique
is able to reach a behavior that is normally not exhibited. The reason is that when
the robot is starting to follow a curve, then the learning rate of the controller goes
down, although the forward model is still learning normally. In the unguided case
the prediction error rises (because it is a new behavior) and thus the controller will
quickly leave this behavior. This actually happens before a fast spinning is reached.
In the rewarded case the forward model is able to capture the behavior before it is
left (because of the slower drift), which in turn enables the control system to enter
modes of more narrow curves.

8.7 Channeling Self-Organization

Periodic behaviors, such as observable in locomotion, are characterized by a par-
ticular spatio-temporal structure which can be described in terms of phase relations
between the joints. Vice versa, by imposing certain phase relations a bias towards
a specific behavior can be conveniently introduced into the dynamical system. For
this purpose we will use again soft constraints that break symmetries in a particular
way, reduce the effective dimension of the sensorimotor dynamics, and guide thus
the self-organizational process towards a subspace of the original control problem.
In biological systems similar constraints are known to be effective on a low level of
neuronal circuitry, e. g. linking pairs of antagonistic muscles such that the activity of
one muscle inhibits activity of the other via inter-neurons in the spinal cord (Pearson
and Gordon 2000).

We will apply here an analogous regulation method which refers to motor values
of one effector as teaching signals for another one, and will call this scheme cross-
motor teaching. It will be used to prescribe which motor neuron receives a teaching
signal from which other neuron. Note that despite the use of ‘teaching signals’ the
algorithm is completely unsupervised, because the signals are generated internally.
The self-organization progress preserves a high amount of symmetries of the phys-
ical system. As an example, consider a two-wheeled robot that drives forward and
backward and rotates clockwise and counterclockwise equally often. The physical
system (morphology of the body and interaction) is essentially symmetric with re-
spect to forward-backward, left-right (lateral), and also straight-rotational behavior.
To the contrary, if the robot lacks forward-backward symmetry and, more impor-
tantly, also straight-rotational symmetry because of friction and inertia. This is also
reflected in behavior in that the robot is more driving straight than rotating.
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8.7.1 From Spontaneous to Guided Symmetry Breaking

To achieve symmetry breaking in a predefined way, we will first consider pairwise
relations as constraints for the broken-symmetric state. Later we will generalize this
by using permutation relations. Let us, e.g. influence the controller to prefer a pair-
wise in-phase or antiphase relations in the motor patterns (Martius and Herrmann
2010). For a particular pair of motors (r,s), we place a bidirectional cross-motor
connection from r to s, which means that the motor s receives its teaching signal
from motor r and vice versa. In this way both motors are guided towards an in-
phase activity. The (internal) teaching signal is

(
yG

t

)
r = (yt)s and

(
yG

t

)
s = (yt)r , (8.28)

which is used then in Eqs. (8.12–8.15).
Likewise, an antiphase teaching relation can be expressed by

(
yG

t

)
r =−(yt)s and

vice versa. In this simple setup the cross-motor connections have either a positive
or negative sign. For those motors i that are not part of a connected pair we need to
set

(
yG

t

)
i = (yt)i, in order to suppress the error signal, see Sect. 8.4.2.

8.7.1.1 Experiment

To illustrate the concept we will consider the above-mentioned two-wheeled robot,
cf. Fig. 8.16c. The robot has two motors actuated according to y1 and y2 and is
subject to the goal of straight driving. This can be obtained by an in-phase relation
between both motors following Eq. (8.28), i. e.

(
yG

t

)
1 = (yt)2 and

(
yG

t

)
2 = (yt)1 . (8.29)

For experimental evaluation we placed the robot in an environment cluttered with
obstacles.

We performed, for different values of the factor γ , five runs of 20 min length. In
order to quantify the influence of the cross-motor teaching we recorded the trajec-
tory, the linear velocity, and the angular velocity of the robot. We expect an increase
in linear velocity because the robot is to move straight instead of turning. For the
same reason the angular velocity should go down. In Fig. 8.16 a sample trajectory
and the behavioral quantifications are plotted. Additionally, we plot the relative area
coverage which is calculated from the trajectory using a box-counting method. It re-
flects how much area of the environment was covered by the robot with cross-motor
teaching compared to the original homeokinetic controller. As expected, the robot
shows a distinct decrease in mean turning velocity and a higher area coverage with
increasing values of the guidance factor. Note that the robot is still performing turns
and drives both backwards and forwards and does not get stuck at the walls, as seen
in the trajectory in Fig. 8.16(c). The properties of the homeokinetic controller, such
as sensitivity and exploration, remain.

We have seen that a pairwise cross-motor teaching can be used to guide the self-
organizing control to drive mostly straight in the two-wheeled robot. The strength
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(a) (b)

γ = 0 γ = 0.001 γ = 0.01 γ = 0.1

(c)

Fig. 8.16 Behavior of a two-wheeled robot (a) guided to move preferably straight.
(b) Mean and standard deviation (of 5 runs each 20 min) of the area coverage, the average
velocity 〈|v|〉, and the average turning velocity 〈|ωz|〉 for different values of the guidance fac-
tor γ . Area coverage (box counting method) is given relative to the the case without influence
(γ =0: 100%) (right axis). The robot drives straighter and covers more area for increasing γ ,
until at large γ the teaching strictly dominates the behavior of the robot. (c) Example trajec-
tories for different guidance factors. Parameters: εc = εA = 0.01.

of this preference can be adjusted by the guidance factor. The algorithm is self-
supervised and the only specific information that is given is the pair of motors to be
synchronized.

8.7.2 Multiple Motor Relations

Now we want to consider a more general cross-motor connection setup where each
motor has one incoming and one outgoing connection, such that there is still only
one teaching signal per motor neuron (Martius and Herrmann 2011). The cross-
motor connections can be described by a permutation πm of the m motor neurons
assigning each motor neuron a source of teaching input. The teaching signal is then
given by (dropping the time index)

yG
i = yπm(i) for i = 1, . . . ,m. (8.30)

Additionally a sign function could be used defines whether the motors are supposed
to be in-phase or antiphase, but we do not need it in the following. The pairwise
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(a) (b)

Fig. 8.17 The armband robot. (a) Screen shots of the simulation. The transparent sphere
in the center marks the center of mass of the robot. (b) Track-robot armband with cross-
motor connections. The arrows indicate unidirectional cross-motor connections, where the
head points to the receiving unit. All links are equal, but for visibility reasons only four links
are drawn boldly. For this connection setup the robot preferably moves leftwards.

setup (Eq. (8.28)) is of course a special case of this notation. Note, that with a cyclic
schema of connections also a group of motors can be synchronized.

8.7.3 Guiding to Directed Locomotion

In order to study a robot with a scalable complexity, we will consider the armband
robot—a bracelet- or track-like structure. We will see that we can explicitly guide
the robot to a directed and fast locomotion by organizing the initially decentralized
control into a cooperative mode which can be considered as the emergence of a
single controller for the entire robot.

This robot consists of a sequence of m flat segments placed in a ring-like con-
figuration, where subsequent segments are connected by the m hinge joints. The
resulting body has the appearance of a bracelet or chain, see Fig. 8.17(a). Each joint
is driven by a servo motor and has a joint-angle sensor. The center positions of the
joints are such that the robot is in a perfectly circular configuration (deviating by an
angle of 2π/m from a straight positioning). The motor values and sensor values are
represented as well as joint angle deviations, see Fig. 8.17(b). The joints are highly
coupled through the ring configuration. Therefore, an independent movement of a
single joint is not possible. Instead it has to be accompanied by a movement of the
neighboring joints and of distant joints.

Since the robot is symmetric there is by construction no preferred direction
of motion, meaning that the robot controlled by the homeokinetic controller will
equally probable move forward or backward. The robot cannot turn or move side-
ways, but it can produce a variety of postures and locomotion patterns.

With the method of cross-motor teaching we can help to break different symme-
tries, such that the robot is more likely to perform a directed motion. One possibility
is to connect motors on opposite sides of the robot with a bias in clockwise or coun-
terclockwise direction. For that we define the permutation (used in Eq. (8.30)) as
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πm(i) = (i+ k+ �m/2�) mod m , (8.31)

where k ∈ {−1,0,1} and �·� denotes the truncation rounding (floor). We will only
use positive connections, such that the sign function is not required. Thus, the teach-
ing signals are (omitting the time index)

yG
i = y(i+k+�m/2�) mod m for i = 1, . . . ,m . (8.32)

The choice of k depends on the desired direction of motion and on whether the
number of joints m is even or odd. If m is even then k = −1 and k = 1 are used for
both directions (forward or backward) and k = 0 represents a symmetric connection
setup. In the latter case the robot will not prefer a direction of motion and the be-
havior is similar to the one without guidance. For an odd value of m, which is also
used here, k = 0 and k = 1 need to be used for backward and forward motion.

In the following experiments the robot has m= 13 motors. The motor connections
for k = 1 are illustrated in Fig. 8.17. Each motor connection is displayed by an arrow
pointing to the receiving motor. Note that the connections are directed and a motor
neuron is not teaching the motor neuron from which it is receiving teaching signals.
For k = 0 all arrows are inverted, meaning that for each connection the sending and
receiving motor neurons swap roles.

To evaluate the performance we conducted, for different values of the guidance
factor γ , 5 trials each 30 min long. In a first setting the cross-motor connections were
fixed (k = 1) for the entire duration of the experiment. Without guidance the robot
moves equally to both directions but with comparably low velocity. This can be
seen at the mean of the absolute velocity in Fig. 8.18(a). If the value of the guidance
factor is chosen conveniently, we observed the formation of a locomotion behavior
after a very short time and the robot moves in one direction with varying speed see
Fig. 8.18(b) for three velocity traces. Note that this behavior requires all joints of
the robot to be highly coordinated. We also observe a peak of high velocity after
the first few minutes, which is followed by a dip before a more steady regime is
attained. During this time the controller is going from a subcritical regime (at t = 0)
to a slightly supercritical regime.

The locomotory behavior can also be seen in Fig. 8.19 for a low value of guid-
ance factor (γs = 0.001) and in Fig. 8.20 for a medium value of guidance factor
(γ = 0.003). The average velocity of the robot increased distinctively with rising
guidance factors, see Fig. 8.18(a). However, for excessively large values of the
guidance factor the velocity goes down again. This occurs for two reasons: First,
the cross-motor teaching has a too strong influence on the working regime of the
homeokinetic controller and second the actual motor pattern of the locomotion be-
havior does not perfectly obey the relations between the motor values as specified
by Eq. (8.32). In order to satisfy the constraints imposed by Eq. (8.32) all motor
values need to be equal, which is of course not the case in the locomotion behavior.

In a second setup we changed the cross-motor connections every 5 min, i. e. k was
changed from 0 to 1 and back. A value of k = 0 should lead to a negative velocity
and a value of k = 1 to a positive velocity.
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Fig. 8.18 Performance of the armband robot with constant cross-motor teaching.
(a) Mean and standard deviation of the average velocity 〈v〉 and the average absolute velocity
〈|v|〉 of 5 runs for different value of the guidance factor γ . (b) Velocity of the robot v (averaged
over 1 minute sliding window) for 3 runs at γ = 0.003. Parameters: k = 1, εc = εA = 0.1.

Fig. 8.19 The armband robot learns to locomote by weak guidance. Behavior of the robot
with cross-motor teaching and weak guidance (γ = 0.001). A slow locomotive behavior with
different velocities is exhibited. Explorative actions cause the posture of the robot to vary in
the course of time.

Fig. 8.20 The armband robot quickly learns to locomote. Behavior of the robot with
cross-motor teaching and medium guidance (γ = 0.003). Comparable fast locomotive behav-
ior emerges quickly and is persistent. Nevertheless the velocity varies. Only small exploratory
actions are takes, such that the posture is mainly constant.

To study the dependence on the guidance factor and to measure the performance
we use the average absolute velocity 〈|v|〉 and the correlation of the velocity with
the configuration of the coupling ρ(v,k), see Fig. 8.21(a). Without guidance (γ = 0)
there is, as expected, no correlation with the supposed direction of locomotion. For
a range of values of the guidance factor we find a high total locomotion speed with
a strong correlation to the supposed direction of motion. Note that the size of the
correlation depends on the length of the intervals of one connection setting. For
long intervals the correlation will approach one. In Fig. 8.21(b) the velocity of the
robot is plotted for different runs with the same value of the guidance factor that was
used in the previous experiment (γ = 0.003). We observe that the robot changes the
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Fig. 8.21 Performance of the armband robot for variable cross-motor teaching.
(a) Mean and standard deviation of the average absolute velocity 〈|v|〉 and the correlation
ρ(v,k) of the velocity with the configuration of the coupling for 5 runs with different values
of the guidance factor γ . (b) Velocity (averages over 10 sec sliding windows) of the robot
for 3 runs at γ = 0.003 and the target direction of motion D = 2k− 1 for better visibility.
Parameters: εc = εA = 0.1.

direction of motion shortly after the configuration of the coupling was changed, see
Fig. 8.21

8.7.4 Scaling Properties

The locomotion of the robot is essentially influenced by the number of cross-motor
connections. To study this we use again the fixed connectivity. In a series of simu-
lations a number 0 ≤ l ≤ m of equally spaced cross-motor connections (Fig. 8.17)
are used. With increasing l the robot starts to locomote earlier. Full performance is
reached already if 8 out of the 13 connections are used, see Fig. 8.22(a).

In order to study the scaling properties of the learning algorithm we varied the
number of segments m of the robot and thus the dimensionality of the control prob-
lem. The results are astonishing, see Fig. 8.22(b): The behavior is learned with the
same speed also for large number (40) of segments. There is no scaling problem here
for the following reason. In the closed loop with an approximate feedback strength
(self-regulated by the homeokinetic controller) the robot needs only very little influ-
ence to roll. The length of the robot can even help because other behavioral modes
(e. g. wobbling) are damped increasingly due to gravitational forces. For the same
reason, small robots are slower than medium ones. Large robots are again slower
because the available forces at the joints become too weak.

The experiment illustrates that specific behaviors can be achieved in a high-di-
mensional robot by using cross-motor teaching. Cross-motor connections can break
the symmetry between the two directions of motion such that a locomotion behavior
is produced quickly. When the connections are switched during runtime, the behav-
ior of the robot changes reliably.

The mechanism proposed here can also be transferred to sensor space using the
direct sensor teaching (Sect. 8.4.3) instead of the motor teaching. One obtains a
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Fig. 8.22 Scaling of learning time and performance for different robot complexity. The
plots show mean and standard deviation of the distance traveled by the robot (‘dist’ in units
of 1 segment size) and of the time-to-start (‘tts’ in seconds) of 20 runs à 10 min (γ = 0.003).
(a) Performance as a function of the number of cross-motor connections l (equally spaced
around a robot with m = 13 joints). (b) Performance for different numbers of segments m
(DoF) with full cross-motor connectivity (l = m).

cross-sensor teaching analogously to the definitions given above. This can become
useful, for example if a certain behavior is demonstrated by a human operator by
activity moving the robot. In the case of the armband robot, one can imagine push-
ing the robot along the ground forcing it into a locomotion pattern. Based on the
observed sensor readings, the correlations between the sensor channels may be de-
termined and used as a basis for the construction of a specific cross-sensor teaching
setup. This highly interesting idea was, however, not yet implemented and remains
for future work.

Starting from the guidance by teaching we introduced the concept of cross-motor
teaching allowing for the specification of abstract relations between motor chan-
nels. There are no external teaching signals required, because the motor values are
used mutually as teaching signals. The only specific information put into the system
is the cross-motor relation. First we studied simple pairwise relations and shaped
the behavior of the two-wheeled robot to drive mostly straight through the coupling
between both motors. The couplings introduce soft constraints that guide the self-or-
ganization process to a subspace of the entire sensorimotor space and therewith the
effective dimension of the search space for behaviors is reduced. This was demon-
strated using the high-dimensional armband robot. With a simple cross-motor teach-
ing the robot developed within a short time fast locomotion behaviors from scratch.
The direction of motion was altered by a change in the connection setup. Remark-
able is also the scaling property with respect to the dimensionality of the control
problem.

8.7.5 Coordination of Finger Movements for Grasping

An interesting application of the above method is in neuroprosthetics, where often
little information is available in complex control problems. We will consider the
control of a prosthetic hand in a simulation. The simulated hand has six controllable
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(a) (b)

Fig. 8.23 Guided self-organization with homeokinesis in a simulated hand prosthesis.
(a) The prostheses has six controllable degrees of freedom. A teaching term based on the
similarity of the finger angles keeps the fingers in near synchrony while they are moving
independently when controlled by the basic homeokinetic rule. (b) For a guidance factor
γ ≈ 0.03 correlations between fingers are reached that are similar to observations in healthy
humans (Santello and Soechting 2000). The red line shows the mean value over 10 trial and
black lines the respective standard deviation.

DoF, two for the thumb and one for the other fingers, i.e. the fingers have a fixed
coupling between their three degrees of mobility, see Fig 8.23(a). All fingers are
equipped with position sensors of the joints and proximity sensors in the tip. If
the fingers are controlled by the homeokinetic controller they develop independent
movements because no physical coupling is present in this robotic model. Since
in a natural environment the fingers interact mostly because of the manipulation
of objects and because of physiological constraints, we can also try learning such
correlations by a guidance principle. In this way we will arrive at a measure of
the required interaction which then can be compared with observations in healthy
humans.

In order to enforce movement synergies between the fingers, we implemented
finger correlation by cross motor teaching between all fingers. Here we have multi-
ple teaching signals for each motor neuron, where simply the arithmetic average is
used.

The mean correlation of the homeokinetic controller without guidance (γ = 0) is
0, which means here the fingers move independently. At high values of γ the cor-
relation approaches unity, which indicates that the fingers have lost independence
which however would be needed in grasping applications. Considering the corre-
lation value of 0.582 given for human fingers (Santello and Soechting 2000), the
optimal value of γ would be around 0.03, see Fig. 8.23(b). Again a very weak guid-
ance is sufficient to influence the behavior in the desired direction.
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8.8 Discussion

In this chapter we have presented several mechanisms for guided self-organization
of robot behavior based on homeokinetic control (GSOH). Homeokinesis bootstraps
the exploration process of embodied systems and leads to self-organization of be-
havior. Various patterns of behavior emerge depending on the robotic hardware and
its environment. With a general framework of problem specific error functions we
set the foundation for guidance by teaching signals and guidance by cross-motor
teaching. The balance between self-organized behavior and target behavior can be
adjusted with a single parameter.

Interestingly, teaching signals can as well be provided in terms of desired sensor
values. In this setting, for instance a spherical robot was taught to rotate around one
particular axis solely by requesting a zero value of the sensor value corresponding
to that axis. In a more elaborate example we show how the task of finding balls and
pushing them around in an environment can be achieved by simply providing a de-
sired visual sensor state. The entire sensorimotor coordination to fulfill this goal was
learned by the robot within a few minutes. This involves the basic coordination to
drive the robot and to integrate the vision sensors such that the balls are approached
and balanced while pushed. To probe the robustness of the approach the orientation
of the camera was abruptly changed such that a completely different sensorimotor
coordination becomes necessary. We found that GSOH can cope with a wide range
of configuration changes, even those where a complete change in the visual sensa-
tion occurs (signs of all visual sensors swapped).

The teaching mechanisms form the basis for a higher level guiding mechanism,
namely cross-motor teaching. It allows to specify relations between motor chan-
nels to be in-phase or antiphase activity. This induces soft constraints and therewith
reduces the effective dimensionality of the system. This was especially illustrative
with the high-dimensional armband robot. A cross-motor teaching with only one
connection per joint leads to a fast and coordinated locomotion behavior. Similar
to the robustness in the vision experiments, we observe here a rapid and reliable
change in the direction of locomotion by an altered connection setup. A particularly
promising result is that the performance and speed of learning is almost independent
of the dimensionality of the system, at least in the here considered cases of up to
40 DoF. The discrete cross-motor connections offers a good way for higher level
control structures to direct the behavior of the robot.

We also presented a simple method to guide the self-organizing behavior using
online reward signals, originally published in (Martius et al. 2007). In essence the
original time-loop error is multiplied by a strength factor, obtained from the reward
signal. The approach was applied to the spherical robot with two goals, fast mo-
tion and curved rolling, which was successfully achieved. Notably, the exploratory
character of the paradigm still remains intact.

To compare the different methods of GSOH we can ask for the amount and
type of information that is required about the behavior and the robotic system. For
the direct teaching methods a rather detailed insight into the sensorimotor patterns
of the desired behavior is required. In sensor space this is typically easier than in
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motor space as demonstrated by the examples. For the cross-motor teaching a more
high-level knowledge is sufficient, for instance about the symmetries of the body
and of the desired motion. In both cases the designer needs to expect a specific be-
havior, e. g. a locomotion behavior with a certain gait. In the reward based method,
on the other hand, the realization is not specified, e. g. the gait would be found
autonomously. To be successful, however, the exploration needs to be structured
enough to produce short segments of locomotion behavior to be picked and ampli-
fied. Here the newest methods for behavioral self-organization using information-
theoretic quantities show promising results (Martius et al. 2013; Der and Martius
2013).

Let us briefly compare GSOH with other approaches to learning of autonomous
robot behavior, namely evolutionary algorithms (EA) (Nolfi and Floreano 2001) and
reinforcement learning (RL) (Sutton and Barto 1998). EA and RL can optimize the
parameters of the controller (e. g. a neural network) and can in principle achieve the
behaviors demonstrated here. There are many impressive results where systems of
similar dynamical complexity have been successfully controlled, see for example
(EA) Chemova and Veloso (2004); Bongard et al. (2006); Mazzapioda and Nolfi
(2006); de Margerie et al. (2007); Ijspeert et al. (1999) and (RL) Peters and Schaal
(2008). In high-dimensional systems, however, identical subcomponents are typi-
cally used or the problem is appropriately prestructured by hand. Additionally, long
learning times are required (many generations with many individuals or repetitions)
which is often prohibitively long for physical robots. Here we see the main strength
of our system: The desired behaviors are found very fast even in high-dimensional
and dynamically complex systems—we have very fast online-learning. Another dif-
ference is that the finally evolved or learned controllers are typically static, such
that it only works in the conditions it was evolved/trained in. In contrast we demon-
strated the robustness of GSOH to extreme sensor disruption, which is successful
due to a continuous self-modeling and exploration.

Of course there is also a downside, namely that the here proposed approaches are
rather limited in which behaviors can be achieved and how for instance the reward
can be given. Also in GSOH the desired behaviors are only partially followed and
no optimality guarantees can be given which is in contrast to RL that was proven to
converge to the optimal solution under certain conditions (Sutton and Barto 1998).
However, for practical applications these proves are of questionable value because
a prohibitive amount of time is required.

To conclude, the GSOH methods offer a fast development of goal-oriented behav-
iors in high-dimensional continuous-domain robotic systems from scratch, which
cannot be achieved with other learning control systems so far. However, the im-
plementation of goals is comparably limited. The reward-based guidance allows
any reward signals, but no time delays are tolerated and it is not guaranteed that
the reward is maximized. The cross-motor teaching method is suitable to select a
subset of behaviors, but cannot be generalized to all behaviors. A combination of
both methods is also conceivable, namely using cross-motor teaching to be very ef-
fective in high-dimensional systems and additionally using rewards to give a more
fine grain control over the behavior. Another line of future research would be the
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proposed cross-sensor teaching that would allow for the specification of behaviors
on the level of sensor relations. We also expect that superior results can be ob-
tained when the here proposed methods are combined with the new algorithms for
behavioral self-organization (Der and Martius 2013) as they produce more structure
in the emerging behaviors.
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