
Chapter 6
Quantifying Synergistic Mutual Information

Virgil Griffith∗ and Christof Koch

6.1 Introduction

Synergy is a fundamental concept in complex systems that has received much atten-
tion in computational biology (Narayanan et al. 2005; Balduzzi and Tononi 2008).
Several papers (Schneidman et al. 2003a; Bell 2003; Nirenberg et al. 2001; Williams
and Beer 2010) have proposed measures for quantifying synergy, but there remains
no consensus which measure is most valid.

The concept of synergy spans many fields and theoretically could be applied to
any non-subadditive function. But within the confines of Shannon information the-
ory, synergy—or more formally, synergistic information—is a property of a set of
n random variables X = {X1,X2, . . . ,Xn} cooperating to predict (reduce the uncer-
tainty of) a single target random variable Y .

One clear application of synergistic information is in computational genetics.
It is well understood that most phenotypic traits are influenced not only by single
genes but by interactions among genes—for example, human eye-color is coop-
eratively specified by more than a dozen genes(White and Rabago-Smith 2011).
The magnitude of this “cooperative specification” is the synergistic information
between the set of genes X and a phenotypic trait Y . Another application is neuronal
firings where potentially thousands of presynaptic neurons influence the firing rate
of a single post-synaptic (target) neuron. Yet another application is discovering the
“informationally synergistic modules” within a complex system.
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The prior literature(Schneidman et al. 2003b; Anastassiou 2007) has termed sev-
eral distinct concepts as “synergy”. This paper defines synergy as how much the
whole is greater than (the union of) its atomic elements.1

The prior works on Partial Information Decomposition (Williams and Beer 2010;
Harder et al. 2013; Bertschinger et al. 2012; Lizier et al. 2013) start with properties
that a measure of redundant information, I∩ satisfies and builds a measure of synergy
from I∩. Although this paper deals directly with measures of synergy on “easy”
examples, we are immensely sympathetic to this approach. Our proposed measure
of synergy does give rise to an I∩ measure.

The properties our I∪ satisfies are discussed in Appendix C.
For pedagogical purposes all examples are determinstic, however, these methods

equally apply to non-deterministic systems.

6.1.1 Notation

We use the following notation throughout. Let

n: The number of predictors X1,X2, . . . ,Xn. n ≥ 2.
X1...n: The joint random variable (coalition) of all n predictors X1X2 . . .Xn.
Xi: The i’th predictor random variable (r.v.). 1 ≤ i ≤ n.
X: The set of all n predictors {X1,X2, . . . ,Xn}.
Y : The target r.v. to be predicted.
y: A particular state of the target r.v. Y .

All random variables are discrete, all logarithms are log2, and all calculations are
in bits. Entropy and mutual information are as defined by Cover and Thomas (1991),
H(X) ≡ ∑x∈X Pr(x) log 1

Pr(x) , as well as I(X :Y ) ≡ ∑x,y Pr(x,y) log Pr(x,y)
Pr(x)Pr(y) .

6.1.2 Understanding PI-Diagrams

Partial information diagrams (PI-diagrams), introduced by Williams and Beer
(2010), extend Venn diagrams to properly represent synergy. Their framework has
been invaluable to the evolution of our thinking on synergy.

A PI-diagram is composed of nonnegative partial information regions (PI-
regions). Unlike the standard Venn entropy diagram in which the sum of all regions
is the joint entropy H(X1...n,Y ), in PI-diagrams the sum of all regions (i.e. the space
of the PI-diagram) is the mutual information I(X1...n :Y ). PI-diagrams are immensely
helpful in understanding how the mutual information I(X1...n :Y ) is distributed across
the coalitions and singletons of X.2

1 The techniques here are unrelated to the information geometry prospective provided by
(Amari 1999). The well-known “total correlation” measure(Han 1978), does not satisfy
the desired properties for a measure of synergy.

2 Formally, how the mutual information is distributed across the set of all nonempty an-
tichains on the powerset of X(Weisstein 2011; Comtet 1998).
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Fig. 6.1 PI-diagrams for two and three predictors. Each PI-region represents nonnegative
information about Y . A PI-region’s color represents whether its information is redundant
(yellow), unique (magenta), or synergistic (cyan). To preserve symmetry, the PI-region
“{12,13,23}” is displayed as three separate regions each marked with a “*”. All three *-
regions should be treated as through they are a single region.

How to Read PI-Diagrams. Each PI-region is uniquely identified by its “set nota-
tion” where each element is denoted solely by the predictors’ indices. For example,
in the PI-diagram for n = 2 (Fig. 6.1a): {1} is the information about Y only X1 car-
ries (likewise {2} is the information only X2 carries); {1,2} is the information about
Y that X1 as well as X2 carries, while {12} is the information about Y that is speci-
fied only by the coalition (joint random variable) X1X2. For getting used to this way
of thinking, common informational quantities are represented by colored regions in
Fig. 6.2.

The general structure of a PI-diagram becomes clearer after examining the PI-
diagram for n = 3 (Fig. 6.1b). All PI-regions from n = 2 are again present. Each
predictor (X1,X2,X3) can carry unique information (regions labeled {1}, {2}, {3}),
carry information redundantly with another predictor ({1,2}, {1,3}, {2,3}), or spec-
ify information through a coalition with another predictor ({12}, {13}, {23}). New
in n= 3 is information carried by all three predictors ({1,2,3}) as well as information
specified through a three-way coalition ({123}). Intriguingly, for three predictors,
information can be provided by a coalition as well as a singleton ({1,23}, {2,13},
{3,12}) or specified by multiple coalitions ({12,13}, {12,23}, {13,23}, {12,13,23}).
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Fig. 6.2 PI-diagrams for n = 2 representing standard informational quantities

6.2 Information Can Be Redundant, Unique, or Synergistic

Each PI-region represents an irreducible nonnegative slice of the mutual information
I(X1...n :Y ) that is either:

1. Redundant. Information carried by a singleton predictor as well as available
somewhere else. For n= 2: {1,2}. For n= 3: {1,2}, {1,3}, {2,3}, {1,2,3}, {1,23},
{2,13}, {3,12}.

2. Unique. Information carried by exactly one singleton predictor and is available
no where else. For n = 2: {1}, {2}. For n = 3: {1}, {2}, {3}.

3. Synergistic. Any and all information in I(X1...n :Y ) that is not carried by a single-
ton predictor. n= 2: {12}. For n= 3: {12}, {13}, {23}, {123}, {12,13}, {12,23},
{13,23}, {12,13,23}.

Although a single PI-region is either redundant, unique, or synergistic, a single
state of the target can have any combination of positive PI-regions, i.e. a single
state of the target can convey redundant, unique, and synergistic information. This
surprising fact is demonstrated in Fig. 6.9.

6.2.1 Example Rdn: Redundant Information

If X1 and X2 carry some identical3 information (reduce the same uncertainty) about
Y , then we say the set X = {X1,X2} has some redundant information about Y .
Fig. 6.3 illustrates a simple case of redundant information. Y has two equiprobable
states: r and R (r/R for “redundant bit”). Examining X1 or X2 identically specifies
one bit of Y , thus we say set X = {X1,X2} has one bit of redundant information
about Y .

3 X1 and X2 providing identical information about Y is different from providing the same
magnitude of information about Y , i.e. I(X1 :Y ) = I(X2 :Y ). Example UNQ (Fig. 6.4) is an
example where I(X1 :Y ) = I(X2 :Y ) = 1 bit yet X1 and X2 specify “different bits” of Y .
Providing the same magnitude of information about Y is neither necessary or sufficient for
providing some identical information about Y .
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6.2.2 Example Unq: Unique Information

Predictor Xi carries unique information about Y if and only if Xi specifies informa-
tion about Y that is not specified by anything else (a singleton or coalition of the
other n− 1 predictors). Fig. 6.4 illustrates a simple case of unique information. Y
has four equiprobable states: ab, aB, Ab, and AB. X1 uniquely specifies bit a/A,
and X2 uniquely specifies bit b/B. If we had instead labeled the Y -states: 0, 1, 2,
and 3, X1 and X2 would still have strictly unique information about Y . The state
of X1 would specify between {0,1} and {2,3}, and the state of X2 would specify
between {0,2} and {1,3}—together fully specifying the state of Y . Accepting the
property (Id) from (Harder et al. 2013) is sufficient but not necessary for the desired
decomposition of example UNQ.

6.2.3 Example Xor: Synergistic Information

A set of predictors X = {X1, . . . ,Xn} has synergistic information about Y if and
only if the whole (X1...n) specifies information about Y that is not specified by any
singleton predictor. The canonical example of synergistic information is the XOR-
gate (Fig. 6.5). In this example, the whole X1X2 fully specifies Y ,

X1 X2 Y
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R R R 1/2

(a) Pr(x1,x2,y)

Y

X1

X2

(b) circuit diagram
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Fig. 6.3 Example RDN. Fig. 6.3a shows the joint distribution of r.v.’s X1, X2, and Y , the joint
probability Pr(x1,x2,y) is along the right-hand side of (a), revealing that all three terms are
fully correlated. Fig. 6.3b represents the joint distribution as an electrical circuit. Fig. 6.3c
is the PI-diagram indicating that set {X1,X2} has 1 bit of redundant information about Y .
I(X1X2 :Y ) = I(X1 :Y ) = I(X2 :Y ) = H(Y ) = 1 bit.
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Fig. 6.4 Example UNQ. X1 and X2 each uniquely specify a single bit of Y .
I(X1X2 :Y ) = H(Y ) = 2 bits. The joint probability Pr(x1,x2,y) is along the right-hand
side of (a).
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I(X1X2 :Y ) = H(Y ) = 1 bit, (6.1)

but the singletons X1 and X2 specify nothing about Y ,

I(X1 :Y ) = I(X2 :Y ) = 0 bits. (6.2)

With both X1 and X2 themselves having zero information about Y , we know that
there can not be any redundant or unique information about Y—that the three PI-
regions {1} = {2} = {1,2} = 0 bits. As the information between X1X2 and Y
must come from somewhere, by elimination we conclude that X1 and X2 synergisti-
cally specify Y .

X1 X2 Y
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0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

(a) Pr(x1,x2,y)

Y

X1

X2
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(b) circuit diagram
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(c) PI-diagram

Fig. 6.5 Example XOR. X1 and X2 synergistically specify Y . I(X1X2 :Y ) = H(Y ) = 1 bit.
The joint probability Pr(x1,x2,y) is along the right-hand side of (a).

6.3 Two Examples Elucidating Properties of Synergy

To help the reader develop intuition for a proper measure of synergy we illustrate
two desired properties of synergistic information with pedagogical examples derived
from XOR. Readers solely interested in the contrast with prior measures can skip to
Section 6.4.

6.3.1 Duplicating a Predictor Does Not Change Synergistic
Information

Example XORDUPLICATE (Fig. 6.6) adds a third predictor, X3, a copy of predictor
X1, to XOR. Whereas in XOR the target Y is specified only by coalition X1X2, dupli-
cating predictor X1 as X3 makes the target equally specifiable by coalition X3X2.

Although now two different coalitions identically specify Y , mutual information
is invariant to duplicates, e.g. I(X1X2X3 :Y ) = I(X1X2 :Y ) bit. Likewise for synergis-
tic information to be likewise bounded between zero and the total mutual informa-
tion I(X1...n :Y ), synergistic information must similarly be invariant to duplicates,
e.g. the synergistic information between set {X1,X2} and Y must be the same as the
synergistic information between {X1,X2,X3} and Y . This makes sense because if
synergistic information is defined as the information in the whole beyond its parts,
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duplicating a part does not increase the net information provided by the parts. Alto-
gether, we assert that duplicating a predictor does not change the synergistic infor-
mation. Without the property that duplicating a predictor does not change synergistic
information, the synergistic mutual information will not be bounded between 0 and
I(X1...n :Y ). Synergistic information being invariant to duplicated predictors follows
from the equality condition of the monotonicity property (M) from Bertschinger
et al. (2012).4
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(c) PI-diagram

Fig. 6.6 Example XORDUPLICATE shows that duplicating predictor X1 as X3 turns the
single-coalition synergy {12} into the multi-coalition synergy {12,23}. After duplicating X1,
the coalition X3X2 as well as coalition X1X2 specifies Y . Synergistic information is unchanged
from XOR, I(X3X2 :Y ) = I(X1X2 :Y ) = H(Y ) = 1 bit.

4 For a proof see Appendix E.
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6.3.2 Adding a New Predictor Can Decrease Synergy

Example XORLOSES (Fig. 6.7) adds a third predictor, X3, to XOR and concretizes
the distinction between synergy and “redundant synergy”. In XORLOSES the target
Y has one bit of uncertainty and just as in example XOR the coalition X1X2 fully
specifies the target, I(X1X2 :Y ) = H(Y ) = 1 bit. However, XORLOSES has zero intu-
itive synergy because the newly added singleton predictor, X3, fully specifies Y by it-
self. This makes the synergy between X1 and X2 completely redundant—everything
the coalition X1X2 specifies is now already specified by the singleton X3.
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(c) PI-diagram

Fig. 6.7 Example XORLOSES. Target Y is fully specified by the coalition X1X2 as well as
by the singleton X3. I(X1X2 :Y ) = I(X3 :Y ) = H(Y ) = 1 bit. Therefore the information
synergistically specified by coalition X1X2 is a redundant synergy.
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6.4 Prior Measures of Synergy

6.4.1 Imax synergy: Smax (X : Y )

Imax synergy, denoted Smax, derives from (Williams and Beer 2010). Smax defines
synergy as the whole beyond the state-dependent maximum of its parts,

Smax (X : Y ) ≡ I(X1...n :Y )− Imax ({X1, . . . ,Xn} : Y ) (6.3)

= I(X1...n :Y )− ∑
y∈Y

Pr(Y = y)max
i

I(Xi :Y = y) , (6.4)

where I(Xi :Y = y) is (DeWeese and Meister 1999)’s “specific-surprise”,

I(Xi :Y = y) ≡ DKL[Pr(Xi|y)‖Pr(Xi)] (6.5)

= ∑
xi∈Xi

Pr(xi|y) log
Pr(xi,y)

Pr(xi)Pr(y)
. (6.6)

There are two major advantages of Smax synergy. First, Smax obeys the bounds of
0 ≤ Smax(X1...n : Y )≤ I(X1...n :Y ). Second, Smax is invariant to duplicate predictors.
Despite these desired properties, Smax sometimes miscategorizes merely unique in-
formation as synergistic. This can be seen in example UNQ (Fig. 6.4). In example
UNQ the wires in Fig. 6.4b don’t even touch, yet Smax asserts there is one bit of
synergy and one bit of redundancy—this is palpably strange.

A more abstract way to understand why Smax overestimates synergy is to imag-
ine a hypothetical example where there are exactly two bits of unique informa-
tion for every state y ∈ Y and no synergy or redundancy. Smax would be the whole
(both unique bits) minus the maximum over both predictors—which would be the
max [1,1] = 1 bit. The Smax synergy would then be 2− 1 = 1 bit of synergy—even
though by definition there was no synergy, but merely two bits of unique informa-
tion.

Altogether, we conclude that Smax overestimates the intuitive synergy by miscate-
gorizing merely unique information as synergistic whenever two or more predictors
have unique information about the target.

6.4.2 WholeMinusSum Synergy: WMS(X : Y )

The earliest known sightings of bivarate WholeMinusSum synergy (WMS) is
(Gawne and Richmond 1993; Gat and Tishby 1999) with the general case in Chechik
et al. (2002). WholeMinusSum synergy is a signed measure where a positive value
signifies synergy and a negative value signifies redundancy. WholeMinusSum syn-
ergy is defined by eq. (6.7) and interestingly reduces to eq. (6.9)—the difference of
two total correlations.5

5 TC(X1; · · · ;Xn) =−H(X1...n)+∑n
i=1 H(Xi) per Han (1978).
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WMS (X : Y ) ≡ I(X1...n :Y )−
n

∑
i=1

I(Xi :Y ) (6.7)

=
n

∑
i=1

H(Xi|Y )−H(X1...n|Y )−
[

n

∑
i=1

H(Xi)−H(X1...n)

]
(6.8)

= TC(X1; · · · ;Xn|Y )−TC(X1; · · · ;Xn) (6.9)

Representing eq. (6.7) for n = 2 as a PI-diagram (Fig. 6.8a) reveals that WMS
is the synergy between X1 and X2 minus their redundancy. Thus, when there is an
equal magnitude of synergy and redundancy between X1 and X2 (as in RDNXOR,
Fig. 6.9), WholeMinusSum synergy is zero—leading one to erroneously conclude
there is no synergy or redundancy present.6

The PI-diagram for n = 3 (Fig. 6.8b) reaveals that WholeMinusSum double-
subtracts PI-regions {1,2}, {1,3}, {2,3} and triple-subtracts PI-region {1,2,3}, re-
vealing that for n> 2 WMS (X : Y ) becomes synergy minus the redundancy counted
multiple times.

A concrete example demonstrating WholeMinusSum’s “synergy minus redun-
dancy” behavior is RDNXOR (Fig. 6.9) which overlays examples RDN and XOR to
form a single system. The target Y has two bits of uncertainty, i.e. H(Y ) = 2. Like
RDN, either X1 or X2 identically specifies the letter of Y (r/R), making one bit of
redundant information. Like XOR, only the coalition X1X2 specifies the digit of Y
(0/1), making one bit of synergistic information. Together this makes one bit of
redundancy and one bit of synergy.

Note that in RDNXOR every state y ∈ Y conveys one bit of redundant informa-
tion and one bit of synergistic information, e.g. for the state y = r0 the letter “r”
is specified redundantly and the digit “0” is specified synergistically. Example RD-
NUNQXOR (Appendix A) extends RDNXOR to demonstrate redundant, unique, and
synergistic information for every state y ∈ Y .

In summary, WholeMinusSum underestimates synergy for all n with the poten-
tial gap increasing with n. Equivalently, we say that WholeMinusSum synergy is a
lowerbound on the intuitive synergy with the bound becoming looser with n.

6.4.3 Correlational Importance: Δ I(X;Y )

Correlational importance, denoted Δ I, comes from Panzeri et al. (1999); Nirenberg
et al. (2001); Nirenberg and Latham (2003); Pola et al. (2003); Latham and Niren-
berg (2005). Correlational importance quantifies the “informational importance of
conditional dependence” or the “information lost when ignoring conditional depen-
dence” among the predictors decoding target Y . As conditional dependence is nec-
essary for synergy, Δ I seems related to our intuitive conception of synergy. Δ I is
defined as,

6 This is deeper than Schneidman et al. (2003a)’s point that a mish-mash of synergy and
redundancy across different states of y ∈ Y can average to zero. Fig. 6.9 evaluates to zero
for every state y ∈Y .
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Fig. 6.8 PI-diagrams illustrating WholeMinusSum synergy for n = 2 (left) and n = 3 (right).
For this diagram the colors denote the added and subtracted PI-regions. WMS(X : Y ) is the
green PI-region(s), minus the orange PI-region(s), minus two times any red PI-region.
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Fig. 6.9 Example RDNXOR has one bit of redundancy and one bit of synergy. Yet for this
example, WMS(X : Y ) = 0 bits.
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Δ I(X;Y ) ≡ DKL[Pr(Y |X1...n)‖Prind (Y |X)] (6.10)

= ∑
y,x∈Y,X

Pr(y,x1...n) log
Pr(y|x1...n)

Prind(y|x)
, (6.11)

where Prind (y|x)≡ Pr(y)∏n
i=1 Pr(xi |y)

∑y′ Pr(y′)∏n
i=1 Pr(xi|y′) . After some algebra7 eq. (6.11) becomes,

Δ I(X;Y ) = TC(X1; · · · ;Xn|Y )−DKL

[
Pr(X1...n)

∥∥∥∥∥∑
y

Pr(y)
n

∏
i=1

Pr(Xi|y)
]
. (6.12)

Δ I is conceptually innovative and moreover agrees with our intuition for all of
our examples thus far. Yet further examples reveal that Δ I measures something ever-
so-subtly different from intuitive synergistic information.

The first example is (Schneidman et al. 2003a)’s Figure 4 where Δ I exceeds the
mutual information I(X1...n :Y ) with Δ I(X;Y ) = 0.0145 and I(X1...n :Y ) = 0.0140.
This fact alone prevents interpreting Δ I as a loss of mutual information from
I(X1...n :Y ).8

Could Δ I upperbound synergy instead? We turn to example AND (Fig. 6.10)
with n = 2 independent binary predictors and target Y is the AND of X1 and
X2. Although AND’s PI-region exact decomposition remains uncertain, we can
still bound the synergy. For example AND, the WMS({X1,X2} : Y ) ≈ 0.189 and
Smax ({X1,X2} : Y ) = 0.5 bits. So we know the synergy must be between (0.189,0.5]
bits. Despite this, Δ I(X;Y ) = 0.104 bits, thus Δ I does not upperbound synergy.

Finally, in the face of duplicate predictors Δ I often decreases. From example
AND to ANDDUPLICATE (Appendix A, Fig. 6.13) Δ I drops 63% to 0.038 bits.

Taking all three examples together, we conclude Δ I measures something funda-
mentally different from synergistic information.

6.5 Synergistic Mutual Information

We are all familiar with the English expression describing synergy as when the
whole exceeds the “sum of its parts”. Although this informal adage captures the
intuition underlying synergy, the formalization of this adage, WholeMinusSum syn-
ergy, “double-counts” whenever there is duplication (redundancy) among the parts.
A mathematically correct adage should change “sum” to “union”—meaning syn-
ergy occurs when the whole exceeds the union of its parts. The sum adds duplicate
information multiple times, whereas the union adds duplicate information only once.
The union of parts never exceeds the sum.

7 See Appendix F for the steps between eqs. (6.11) and (6.12).
8 Although Δ I can not be a loss of mutual information, it could still be a loss of some

alternative information such as Wyner’s common information (Lei et al. 2010).
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X1 X2 Y

0 0 0 1/4
0 1 0 1/4
1 0 0 1/4
1 1 1 1/4

(a) Pr(x1,x2,y)

c

b

a

b

(b) PI-diagram

0.189 ≤ c ≤ 0.5

0 ≤ b ≤ 0.311

0 ≤ a ≤ 0.311

Y
X1

X2

AND

(c) circuit diagram

Fig. 6.10 Example AND. The exact PI-decomposition of an AND-gate remains uncertain.
But we can bound a, b, and c using WMS and Smax. In section 6.5 these bounds will be
tightened. Most intriguingly, we’ll show that a > 0 despite I(X1 :X2) = 0.

The guiding intuition of “whole minus union” leads us to a novel measure de-
noted SVK({X1, . . . ,Xn} :Y ), or SVK(X :Y ), as the mutual information in the whole
beyond the union of elements {X1, . . . ,Xn}.

Unfortunately, there’s no established measure of “union-information” in contem-
porary information theory. We introduce a novel technique, inspired by Maurer and
Wolf (1999), for defining the union information among n predictors. We numerically
compute the union information by noisifying the joint distribution Pr(X1...n,Y ) such
that only the correlations with singleton predictors are preserved. This is achieved
like so,

IVK({X1, . . . ,Xn} : Y )≡ min
Pr∗(X1, . . . ,Xn,Y )

I∗(X1...n : Y ) (6.13)

subject to: Pr∗(Xi,Y ) = Pr(Xi,Y ) ∀i,

where I∗(X1...n : Y )≡ DKL[Pr∗(X1...n,Y )‖Pr∗(X1...n)Pr∗(Y )].
Without any constraint on the distribution Pr∗(X1, . . . ,Xn,Y ), the minimum of

eq. (6.13) is trivially found to be zero bits because simply setting Pr∗(X1...n) to a
constant makes I∗(X1...n : Y ) = 0 bits. Therefore we must put some constraint on
Pr∗(X1, . . . ,Xn,Y ). As all bits a singleton Xi knows about Y are determined by the
joint distribution Pr(Xi,Y ), we simply prevent the minimization from altering these
distributions, and presto we arrive at the constraint Pr∗(Xi,Y ) = Pr(Xi,Y ) ∀i.9

9 We could have instead chosen the looser constraint I∗(Xi : Y ) = I(Xi :Y ) ∀i, but
Pr∗(Xi,Y ) = Pr(Xi,Y ) ∀i ensures we preserve the “same bits”, not just the same magnitude
of bits.
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Finally, we prove that a minimum of eq. (6.13) always exists because setting
Pr∗(x1, . . . ,xn,y) = Pr(y)∏n

i=1 Pr(xi|y) always satisfies the constraints.
Unfortunately, we currently have no analytic way to calculate eq. (6.13), however,

we do have an analytic upperbound on it. Applying this to AND’s PI-decomposition
allows us to tighten the bounds in Fig. 6.10 to those in Fig. 6.11.

X1 X2 Y

0 0 0 1/3
0 1 0 1/6
1 0 0 1/6
1 1 0 1/12

1 1 1 1/4

(a) Pr∗(x1,x2,y)

c

b

a

b

(b) PI-diagram

0.270 ≤ c ≤ 0.500

0 ≤ b ≤ 0.230

0.082 ≤ a ≤ 0.311

Fig. 6.11 Revisiting example AND. Using the analytic upperbound on IVK in Appendix D,
we arrive at the Pr∗ distribution in (a). Using this distribution, we tighten the bounds on a,
b, and c. Intriguingly, we see that despite I(X1 :X2) = 0, that a > 0. Note: Previous versions
(preprints) of this paper erroneously asserted independent predictors could not convey redun-
dant information, i.e. that I(X1 :X2) = 0 entailed I∩({X1,X2} :Y ) = 0.

Our union-information measure IVK satisfies several desired properties given in
(Bertschinger et al. 2012; Harder et al. 2013). Specifically, IVK satisfies: (GP), (M),
(SR), (S0), (TM), (Id1), and (LP0). For details see Section 6.6 and Appendix C.

Once the union information is computed, the SVK synergy is simply,

SVK({X1, . . . ,Xn} :Y )≡ I(X1...n :Y )− IVK({X1, . . . ,Xn} : Y ) . (6.14)

SVK synergy quantifies the total “informational work” strictly the coalitions
within X1...n perform in reducing the uncertainty of Y . Pleasingly, SVK is bounded10

by the WholeMinusSum synergy (which underestimates the intuitive synergy) and
Smax (which overestimates intuitive synergy),

max [0,WMS(X : Y )]≤ SVK(X :Y )≤ Smax (X : Y )≤ I(X1...n :Y ) . (6.15)

6.6 Properties of IVK

Our measure of the union information IVK satisfies a number of properties from the
prior literature (for proofs, see Appendix C):

(GP) Global Positivity. IVK(X :Y )≥ 0
(SR) Self-Redundancy. The redundant information a single predictor X1 has about

the target Y is equal to the Shannon mutual information between the predic-
tor and the target, i.e. IVK(X1 :Y ) = I(X1 :Y ).

10 Proven in Appendix E.3.
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(S0) Weak Symmetry. IVK(X1, . . . ,Xn :Y ) is invariant under reordering X1, . . . ,Xn.
(M) Monotonicity. IVK(X1, . . . ,Xn :Y ) ≤ IVK(X1, . . . ,Xn,W :Y ) with equality if W

is a “subset” (or equivalent to) an Xi ∈ {X1, . . . ,Xn}. W is a subset of a ran-
dom variable Xi if and only if there exists a function f such that W = f (Xi).

(TM) Target Monotonicity. For all random variables Y and Z, IVK(X :Y ) ≤
IVK(X :Y Z).

(LP0) Weak Local Positivity. For n = 2 predictors, the derived “partial informa-
tions” (Williams and Beer 2010) are nonnegative. This is equivalent to,

max [I(X1 :Y ) , I(X2 :Y )]≤ IVK(X1,X2 :Y )≤ I(X1X2 :Y ) .

(Id1) Strong Identity. IVK(X1 . . . ,Xn :X1...n) = H(X1...n).

6.7 Applying the Measures to Our Examples

Table 6.1 summarizes the results of all four measures applied to our examples.
RDN (Fig. 6.3). There is exactly one bit of redundant information and all mea-

sures reach their intended answer. For the axiomatically minded, the equality con-
dition of (M) is sufficient for the desired answer.

UNQ (Fig. 6.4). Smax’s miscategorization of unique information as synergistic re-
veals itself. Intuitively, there are two bits of unique information and no synergy.
However, Smax reports one bit of synergistic information. For the axiomatically
minded, property (Id) is sufficient (but not nessecary) for the desired answer.

XOR (Fig. 6.5). There is exactly one bit of synergistic information. All measures
reach the desired answer of 1 bit.

XORDUPLICATE (Fig. 6.6). Target Y is specified by the coalition X1X2 as well as
by the coalition X3X2, thus I(X1X2 :Y ) = I(X3X2 :Y ) = H(Y ) = 1 bit. All measures
reach the expected answer of 1 bit.

XORLOSES (Fig. 6.7). Target Y is specified by the coalition X1X2 as well as by
the singleton X3, thus I(X1X2 :Y ) = I(X3 :Y ) = H(Y ) = 1 bit. Together this means
there is one bit of redundancy between the coalition X1X2 and the singleton X3 as
illustrated by the +1 in PI-region {3,12}. All measures account for this redundancy
and reach the desired answer of 0 bits.

RDNXOR (Fig. 6.9). This example has one bit of synergy as well as one bit
of redundancy. In accordance with Fig. 6.8a, WholeMinusSum measures synergy
minus redundancy to calculate 1−1 = 0 bits. On the other hand, Smax, Δ I, and SVK

are not mislead by the co-existance of synergy and redundancy and correctly report
1 bit of synergistic information.

AND (Fig. 6.10). This example is a simple case where correlational impor-
tance, Δ I(X;Y ), disagrees with the intuitive value for synergy. The WholeMinus-
Sum synergy—an unambiguous lowerbound on the intuitive synergy—is 0.189 bits,
yet Δ I(X;Y ) = 0.104 bits. We can’t perfectly determine SVK, but we can lower-
bound SVK using our analytic bound, as well as upperbound it using Smax. This
gives 0.270 ≤ SVK ≤ 1/2.
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Table 6.1 Synergy measures for our examples. Answers conflicting with intuitive synergistic
information are in red. The SVK value for AND and ANDDUPLICATE is not conclusively
known, but can be bounded.

Example Smax WMS Δ I SVK

RDN 0 –1 0 0
UNQ 1 0 0 0
XOR 1 1 1 1

XORDUPLICATE 1 1 1 1
XORLOSES 0 0 0 0

RDNXOR 1 0 1 1
AND 1/2 0.189 0.104 [0.270,1/2]

RDNUNQXOR 2 0 1 1
ANDDUPLICATE 1/2 –0.123 0.038 [0.270,1/2]
XORMULTICOAL 1 1 1 1

The three supplementary examples in Appendix A: RDNUNQXOR, ANDDUPLI-
CATE, and XORMULTICOAL aren’t essential for understanding this paper and are
for the intellectual pleasure of advanced readers.

Table 6.1 shows that no prior measure of synergy consistently matches intuition
even for n = 2. To summarize,

1. Imax synergy, Smax, overestimates the intuitive synergy when two or more predic-
tors convey unique information about the target (e.g. UNQ).

2. WholeMinusSum synergy, WMS, inadvertently double-subtracts redundancies
and thus underestimates the intuitive synergy (e.g. RDNXOR). Duplicating pre-
dictors often decreases WholeMinusSum synergy (e.g. ANDDUPLICATE).

3. Correlational importance, Δ I, is not bounded by the Shannon mutual informa-
tion, underestimates the known lowerbound on synergy (e.g. AND), and duplicat-
ing predictors often decreases correlational importance (e.g. ANDDUPLICATE).
Altogether, Δ I does not quantify the intuitive synergistic information (nor was it
intended to).

6.8 Conclusion

Fundamentally, we assert that synergy quantifies how much the whole exceeds the
union of its parts. Considering synergy as the whole minus the sum of its parts in-
advertently “double-subtracts” redundancies, thus underestimating synergy. Within
information theory, PI-diagrams, a generalization of Venn diagrams, are immensely
helpful in improving one’s intuition for synergy.
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We demonstrated with RDNXOR and RDNUNQXOR that a single state can
simultaneously carry redundant, unique, and synergistic information. This fact is
under-appreciated, and prior work often implicitly assumed these three types of in-
formation could not coexist in a single state.

We introduced a novel measure of synergy, SVK, (eq. (6.14)). Unfortunately our
expression is not easily computable, and until we have an explicit analytic solution
to the minimization in IVK the best one can do is numerical optimization using our
analytic upperbound (Appendix D) as a starting point.

Along with our examples, we consider our introduction of a candidate for the
union information, IVK (eq. (6.13)) and its upperbound our primary contributions to
the literature.

Finally, by means of our analytic upperbound on IVK we’ve shown that, at least
for our measure, independent predictors can convey redundant information about a
target, e.g. Fig. 6.11.

Acknowledgements. We thank Suzannah Fraker, Tracey Ho, Artemy Kolchinsky, Chris
Adami, Giulio Tononi, Jim Beck, Nihat Ay, and Paul Williams for extensive discussions. This
research was funded by the Paul G. Allen Family Foundation and a DOE CSGF fellowship
to VG.

Appendix

A Three Extra Examples

For the reader’s intellectual pleasure, we include three more sophisticated examples:
RDNUNQXOR, ANDDUPLICATE, and XORMULTICOAL.

Example AndDuplicate

ANDDUPLICATE adds a duplicate predictor to example AND to show how Δ I re-
sponds to a duplicate predictor in a less pristine example than XOR. Unlike XOR,
in example AND there’s also unique and redundant information. Will this cause the
loss of synergy in the spirit of XORLOSES? Taking each one at a time:

• Predictor X2 is unaltered from example AND. Thus X2’s unique information stays
the same. AND’s {2}→ ANDDUPLICATE’s {2}.

• Predictor X3 is identical to X1. Thus all of X1’s unique information in AND

becomes redundant information between predictors X1 and X3. AND’s {1} →
ANDDUPLICATE’s {1,3}.

• In AND there is synergy between X1 and X2, and this synergy is still present in
ANDDUPLICATE. Just as in XORDUPLICATE, the only difference is that now an
identical synergy also exists between X3 and X2. Thus AND’s {12}→ ANDDU-
PLICATE’s {12,23}.
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X1 X2 Y

ra0 rb0 rab0 1/32

ra0 rb1 rab1 1/32

ra1 rb0 rab1 1/32

ra1 rb1 rab0 1/32
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ra1 rB0 raB1 1/32

ra1 rB1 raB0 1/32

rA0 rb0 rAb0 1/32

rA0 rb1 rAb1 1/32

rA1 rb0 rAb1 1/32

rA1 rb1 rAb0 1/32

rA0 rB0 rAB0 1/32

rA0 rB1 rAB1 1/32

rA1 rB0 rAB1 1/32

rA1 rB1 rAB0 1/32
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Ra0 Rb0 Rab0 1/32

Ra0 Rb1 Rab1 1/32

Ra1 Rb0 Rab1 1/32

Ra1 Rb1 Rab0 1/32
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Ra1 RB1 RaB0 1/32
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RA0 Rb1 RAb1 1/32
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RA1 Rb1 RAb0 1/32

RA0 RB0 RAB0 1/32

RA0 RB1 RAB1 1/32

RA1 RB0 RAB1 1/32

RA1 RB1 RAB0 1/32

Fig. 6.11 (a) Pr(x1,x2,y)

X2

XOR
Y

X1

}
a/A

b/B

r/R

circuit diagram

+1

+1

+1

+1

{12}

{1} {2}
{1,2}

(c) PI-diagram

Fig. 6.12 Example RDNUNQXOR weaves examples RDN, UNQ, and XOR into one.
I(X1X2 :Y ) = H(Y ) = 4 bits. This example is pleasing because it puts exactly one bit
in each PI-region.

• Predictor X3 is identical to X1. Therefore any information in AND that is specified
by both X1 and X2 is now specified by X1, X2, and X3. Thus AND’s {1,2} →
ANDDUPLICATE’S {1,2,3}.
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X1 X2 X3 Y

0 0 0 0 1/4
0 1 0 0 1/4
1 0 1 0 1/4
1 1 1 1 1/4

(a) Pr(x1,x2,x3,y)

Y
X1

X2

AND

X3
(b) circuit diagram

c

b

b{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}
{1,2,3}

{12,13}
{12,23}

{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

*
*

c

a
b b

{12}

{1} {2}

{1,2}

a

AND

ANDDUPLICATE

(c) PI-diagram

Fig. 6.13 Example ANDDUPLICATE. The total mutual information is the same as in AND,
I(X1X2 :Y ) = I(X1X2X3 :Y ) = 0.811 bits. Every PI-region in example AND maps to a PI-
region in ANDDUPLICATE. The intuitive synergistic information is unchanged from AND.
However, correlational importance, Δ I, arrives at 0.104 bits of synergy for AND, and 0.038
bits for ANDDUPLICATE. Δ I is not invariant to duplicate predictors.
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X1 X2 X3 Y

ab ac bc 0 1/8
AB Ac Bc 0 1/8
Ab AC bC 0 1/8
aB aC BC 0 1/8

Ab Ac bc 1 1/8
aB ac Bc 1 1/8
ab aC bC 1 1/8
AB AC BC 1 1/8

(a) Pr(x1,x2,x3,y)

X2
PARITY Y

X1

X3

a/A
b/B

c/C

(b) circuit diagram

+1

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

**

(c) PI-diagram

Fig. 6.14 Example XORMULTICOAL demonstrates how the same information can be spec-
ified by multiple coalitions. In XORMULTICOAL the target Y has one bit of uncertainty,
H(Y ) = 1 bit, and Y is the parity of three incoming wires. Just as the output of XOR is spec-
ified only after knowing the state of both inputs, the output of XORMULTICOAL is specified
only after knowing the state of all three wires. Each predictor is distinct and has access to
two of the three incoming wires. For example, predictor X1 has access to the a/A and b/B
wires, X2 has access to the a/A and c/C wires, and X3 has access to the b/B and c/C wires.
Although no single predictor specifies Y , any coalition of two predictors has access to all
three wires and fully specifies Y , I(X1X2 :Y ) = I(X1X3 :Y ) = I(X2X3 :Y ) = H(Y ) = 1
bit. In the PI-diagram this puts one bit in PI-region {12,13,23} and zero everywhere else. All
measures reach the expected answer of 1 bit of synergy.
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B Connecting Back to I∩

Our candidate measure of the union information, IVK, gives rise to a measure of the
intersection information denoted Idual

VK . This is done by,

Idual
VK (X :Y ) = ∑

S⊆X
(−1)|S|+1 IVK(S :Y ) . (6.16)

C Desired Properties of I∪

What previously proposed properties does Idual
VK satisfy? We originally worked on

proofs for which properties Idual
VK satisfies, but for n > 2 we were blocked by not

having an analytic solution to IVK. So we instead translated the I∩ properties into the
analogous I∪ properties. Although one can’t prove the I∩ version from the analogous
I∪ property, it is a start.

In addition to the properties in Section 6.6, we have the properties,

(S1) Strong Symmetry. I∪({X1, . . . ,Xn} :Y ) is invariant under reordering
X1, . . . ,Xn,Y .

(TC) Target Chainrule. I∪(X : Y Z) = I∪(X : Y )+ I∪(X : Z|Y ).
(UB) Upperbound. From applying inclusion/exclusion rule to

I∩({QX1, . . . ,QXn} :Y ) ≥ I(Q :Y ), we have the following upperbound on
the union information,

I∪({X1, . . . ,Xn} :Y )≤ (1− n) I(X1 ∧·· ·∧Xn :Y )+
n

∑
i=1

I(Xi :Y ) .

(LP1) Strong Local Positivity. For all n, the derived “partial informations”
(Williams and Beer 2010) are nonnegative.

We’ve proven that IVK does not satisfy (S1). And thus far we’ve been unable to
determine whether IVK satisfies (TC) and (LP1).

Proof of (GP)

Proven by the nonnegativity of mutual information.

Proof of (SR)

IVK(X1 :Y ) ≡ min
p∗(x1,y)

p∗(x1,y)=p(x1,y)

I∗(X1 :Y )

= I(X1 :Y ) .
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Proof of (S0)

There’s only one instance of the terms in X in the definition of IVK, which is,

IVK(X :Y )≡ min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1 · · ·Xn :Y ) .

The term I∗(X1 · · ·Xn :Y ) is invariant to the ordering of X1 · · ·Xn. This is
due to Pr∗(x1, . . . ,xn) = Pr∗(xn, . . . ,x1). Thus IVK is invariant to the ordering of
{X1, . . . ,Xn}.

Proof of (M)

We prove the inequality condition of (M), that IVK(X1, . . . ,Xn :Y ) ≤
IVK(X1, . . . ,Xn,W :Y ).

IVK(X1, . . . ,Xn :Y ) ≡ min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n :Y )

= min
p∗(x1,...,xn,w,y)

p∗(xi,y)=p(xi,y) ∀i
p∗(w,y)=p(w,y)

I∗(X1...n :Y )

≤ min
p∗(x1,...,xn,w,y)

p∗(xi,y)=p(xi,y) ∀i
p∗(w,y)=p(w,y)

I∗(X1...n :Y )+ I∗(W :Y |X1...n)

= min
p∗(x1,...,xn,w,y)

p∗(xi,y)=p(xi,y) ∀i
p∗(w,y)=p(w,y)

I∗(X1...nW :Y )

= IVK({X1, . . . ,Xn,W} :Y ) .

We prove the equality condition of (M), that,

IVK({X1, . . . ,Xn,W} : Y ) = IVK({X1, . . . ,Xn} : Y )

where ∃i s.t. W = f (Xi), for some function f .

Without loss of generality we reorder the predictors so that the Xi above is the
last predictor, Xn.

Proof

IVK({X1, . . . ,Xn,W} : Y ) = min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i
p∗(W,Y )=p∗(W,Y )

I∗(X1...n−1XnW : Y )

= min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i
p∗(W,Y )=p∗(W,Y )

I∗(X1...n−1Xn : Y ) .
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Then, because the constraint p∗(Xn,Y ) = p(Xn,Y ) wholly encapsulates the con-
straint p∗(W,Y ) = p(W,Y ), we can remove the constraint p∗(W,Y ) = p(W,Y ). This
yields,

IVK({X1, . . . ,Xn,W} : Y ) = min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n−1Xn : Y )

= min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n : Y )

= IVK({X1, . . . ,Xn} : Y ) .

Proof of (TM)

For notational brevity, we define the following terms,

α ≡ min
p∗(x1,...,xn,y)

p∗(xi,y)=p(xi,y) ∀i

I∗(X1...n :Y )

β ≡ min
p∗(x1,...,xn,yz)

p∗(xi,yz)=p(xi,yz) ∀i

I∗(X1...n :Y Z)

γ ≡ min
p∗(x1,...,xn,y,z)

p∗(xi,y,z)=p(xi,y,z) ∀i

I∗(X1...n :Y )

δ ≡ min
p∗(x1,...,xn,yz)

p∗(xi,yz)=p(xi,yz) ∀i

I∗(X1...n :Z|Y ) .

The proof of (TM) is complete by showing α ≤ β . First because no term in
γ depends on Z, we can drop γ’s constraints on Z leaving α = γ . Then, by the
nonnegativity of mutual information, we know α,β ,γ,δ ≥ 0. So thus far we have
α ≤ γ +δ . Next we can prove γ +δ ≤ β because the sum of two minimums, γ +δ ,
is less than the same minimum over the sum, β .

Taken together,
α ≤ γ + δ ≤ β ,

and the proof is complete.

Proof of (LP0)

IVK(X :Y )≤ I(X1...n :Y ) .

This is proven by the condition that Pr(X1, . . . ,Xn,Y ) satisfies the constraints on
the minimizing distribution in IVK. Thus I∗(X1...n :Y )≤ I(X1...n :Y ).
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Disproof of (S1)

We show that, IVK({X ,Y} :Z) �= IVK({X ,Z} :Y ) by setting X =Y where H(X) > 0,
and Z is a constant, IVK({X ,Y} :Z) = 0 yet IVK({X ,Z} :Y ) = H(X).

Proof of (Id1)

IVK(X : X1...n) ≡ min
p∗(X1,...,Xn,X1...n)

p∗(Xi,X1...n)=p(Xi,X1...n) ∀i

I∗ (X1...n : X1...n) (6.17)

= min
p∗(X1,...,Xn,X1...n)

p∗(Xi,X1...n)=p(Xi,X1...n) ∀i

H*(X1...n) , (6.18)

Then because p∗(X1...n) = p(X1...n),

IVK(X : X1...n) = H(X1...n) . (6.19)

D Analytic Upperbound on IVK(X : Y )

Our analytic upperbound on IVK starts with the n joint distributions we wish to pre-
serve: Pr(X1,Y ) , . . . ,Pr(Xn,Y ). From one these joint distributions, e.g. Pr(X1,Y ), we
compute the marginal probability distribution Pr(Y ) by summing over the index of
x1 ∈ X1,

Pr(Y ) =

{
∑

x1∈X1

Pr(x1,y) : ∀y ∈ Y

}
. (6.20)

Then, for every state y ∈ Y we compute n conditional distributions
Pr(X1|y) , . . . ,Pr(Xn|y) via,

Pr(Xi|Y = y) =

{
Pr(xi,y)

Pr(y)
: ∀xi ∈ Xi

}
. (6.21)

With the marginal distribution Pr(Y ) and the |Y | · n conditonal distributions, we
construct a novel, artificial joint distribution Pr∗(X1, . . . ,Xn,Y ) defined by,

Pr∗(x1, . . . ,xn,y)≡ Pr(y)∏n
i=1 Pr(xi|y) . (6.22)

This novel, artificial joint distribution Pr∗(X1, . . . ,Xn,Y ) satisfies the constraints
Pr∗(Xi,Y ) = Pr(Xi,Y ) ∀i. This is proven by,
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Pr∗(xi,y) = ∑
x1∈X1

· · · ∑
xn∈Xn︸ ︷︷ ︸

All except xi ∈ Xi

Pr∗(x1, . . . ,xn,y) (6.23)

= ∑
x1∈X1

· · · ∑
xn∈Xn︸ ︷︷ ︸

All except xi ∈ Xi

Pr(y)
n

∏
j=1

Pr(xi|y) (6.24)

= ∑
x1∈X1

· · · ∑
xn∈Xn︸ ︷︷ ︸

All except xi ∈ Xi

Pr(xi,y)
n

∏
j=1
j �=i

Pr(x j|y) (6.25)

= Pr(xi,y) ∑
x1∈X1

· · · ∑
xn∈Xn︸ ︷︷ ︸

All except xi ∈ Xi

n

∏
j=1
j �=i

Pr(x j|y)

︸ ︷︷ ︸
sums to 1

(6.26)

= Pr(xi,y) . (6.27)

Y

X1 X2 Xn

Fig. 6.15 The Directed Acyclic Graph generating the joint distribution Pr∗(x1, . . . ,xn,y). This
is a graphical representation of eq. (6.22).

The upperbound on IVK is then the mutual information using this artificial Pr∗

distribution,

I∗(X1 . . .Xn : Y ) = ∑
x1∈X1

· · · ∑
xn∈Xn

∑
y∈Y

Pr∗(x1, . . . ,xn,y) log Pr∗(x1, . . . ,xn,y)
Pr∗(x1, . . . ,xn)Pr∗(y)

,

(6.28)
where the terms Pr∗(x1, . . . ,xn) and Pr∗(y) are defined by summing over the relevant
indices of joint distribution Pr∗(X1, . . . ,Xn,Y ),

Pr∗(x1, . . . ,xn) = ∑
y′∈Y

Pr∗(x1, . . . ,xn,y′) (6.29)

= ∑
y′∈Y

Pr
(
y′
) n

∏
i=1

Pr
(
xi|y′

)
; (6.30)
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Pr∗(y) = ∑
x1∈X1

· · · ∑
xn∈Xn

Pr∗(x1, . . . ,xn,y) (6.31)

= ∑
x1∈X1

· · · ∑
xn∈Xn

Pr(y)
n

∏
i=1

Pr(xi|y) (6.32)

= Pr(y) ∑
x1∈X1

· · · ∑
xn∈Xn

n

∏
i=1

Pr(xi|y)
︸ ︷︷ ︸

sums to 1

(6.33)

= Pr(y) . (6.34)

Putting everything together, our analytic upperbound on IVK is,

IVK({X1, . . . ,Xn} : Y ) ≤ I∗(X1...n : Y ) (6.35)

= ∑
x1

· · ·∑
xn

∑
y

Pr∗(x1, . . . ,xn,y) log
Pr∗(x1, . . . ,xn,y)

Pr∗(x1, . . . ,xn)Pr∗(y) (6.36)

= ∑
x1

· · ·∑
xn

∑
y

Pr∗(x1, . . . ,xn,y) log Pr(y)∏n
i=1 Pr(xi|y)

Pr∗(x1, . . . ,xn)Pr(y)
(6.37)

= ∑
x1

· · ·∑
xn

∑
y

Pr∗(x1, . . . ,xn,y) log ∏n
i=1 Pr(xi|y)

Pr∗(x1, . . . ,xn)
(6.38)

= ∑
y

Pr(y)∑
x1

· · ·∑
xn

n

∏
i=1

Pr(xi|y) log
∏n

i=1 Pr(xi|y)
∑y′∈Y Pr(y′)∏n

i=1 Pr(xi|y′)
.

E Essential Proofs

These proofs underpin essential claims about our introduced measure, synergistic
mutual information.

E.1 State-Dependent IVK and SVK

For a single state y ∈Y , the IVK and SVK are defined as,

IVK(X : Y = y) ≡ min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗ (X1...n : Y = y) (6.39)

= min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

DKL[Pr∗(X1...n|y)‖Pr∗(X1...n)]

SVK(X :Y = y) = I(X1...n :Y = y)− IVK(X : Y = y) (6.40)

= DKL[Pr(X1...n|y)‖Pr(X1...n)]− IVK(X : Y = y) .

Naturally, EY IVK(X :y) = IVK(X :Y ) and EYSVK(X :y) = SVK(X :Y ).
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E.2 Proof Duplicate Predictors Don’t Increase Synergy

We show that synergy being invariant to duplicate predictors follows from the equal-
ity condition of (M) of the intersection (as well as union) information.

We show that,
SVK(X :Y ) = SVK

(
X′ :Y

)
,

where X′ ≡ {X1, . . . ,Xn,X1}. We show that SVK(X :Y )−SVK(X′ :Y ) = 0.

0 = SVK(X :Y )−SVK

(
X′ :Y

)
(6.41)

= I(X1...n :Y )− IVK(X :Y )− I(X1...nX1 :Y )+ IVK

(
X′ :Y

)
(6.42)

= IVK

(
X′ :Y

)
− IVK(X :Y ) (6.43)

= ∑
T⊆X′

(−1)|T|+1 Idual
VK (T :Y )− ∑

S⊆X
(−1)|S|+1 Idual

VK (S :Y ) . (6.44)

The terms that S enumerates over is a subset of the terms that T enumerates.
Therefore the ∑S⊆X completely cancels, leaving,

0 = ∑
T⊆X

(−1)|T| Idual
VK

(
{X1,T1, . . . ,T|T|} :Y

)
. (6.45)

If Idual
VK obeys (M), then each term of eq. (6.45) s.t. X1 �∈ T cancels with the same

term but with X1 ∈ T. This makes eq. (6.45) sum to zero, and completes the proof.

E.3 Proof of Bounds of SVK(X :Y )

We show that,
WMS (X : Y )≤ SVK (X : Y )≤ Smax (X : Y ) . (6.46)

Proof that SVK(X :Y )≤ Smax (X : Y )

We invoke the standard definitions of SVK and Smax,

SVK(X :Y ) ≡ I(X1...n :Y )− IVK(X : Y )

Smax(X : Y ) ≡ I(X1...n :Y )− Imax(X : Y ) ,

where IVK and Imax are defined as,

IVK(X : Y ) = EY IVK(X : Y = y)

= EY min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n : Y = y) (6.47)

Imax (X : Y ) ≡ EY max
i

I(Xi :Y = y) . (6.48)

Now we prove SVK(X :Y ) ≤ Smax(X : Y ) by showing that
IVK(X : Y ) ≥ Imax(X : Y ).
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Proof

EY IVK(X : Y = y) ≥ EY Imax (X : Y = y) (6.49)

EY [IVK(X : Y = y)− Imax (X : Y = y)] ≥ 0 . (6.50)

Now expanding IVK(X : Y = y) and Imax(X : Y = y),

EY

⎡
⎢⎣
⎛
⎜⎝ min

p∗(X1,...,Xn,Y )
p∗(Xi,Y )=p(Xi,Y) ∀i

I∗(X1...n : Y = y)

⎞
⎟⎠−max

i
I(Xi :Y = y)

⎤
⎥⎦≥ 0 . (6.51)

We define the index m ∈ {1, . . . ,n} such that m = argmaxi I(Xi :Y = y). The
predictor with the most information about state Y = y is thus Xm. This yields,

EY

⎡
⎢⎣
⎛
⎜⎝ min

p∗(X1,...,Xn,Y )
p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n : Y = y)

⎞
⎟⎠− I(Xm :Y = y)

⎤
⎥⎦≥ 0 . (6.52)

The constraint p∗(Xi,Y ) = p(Xi,Y ) entails that I(Xm :Y = y) = I∗(Xm : Y = y).
Therefore we can pull I(Xm :Y = y) inside the minimization as a constant,

EY

⎡
⎢⎣ min

p∗(X1,...,Xn,Y )
p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n :Y = y)− I∗(Xm : Y = y)

⎤
⎥⎦≥ 0 . (6.53)

As Xm is a subset of predictors X1...n, we can subtract it yielding,

EY

⎡
⎢⎣ min

p∗(X1,...,Xn,Y )
p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗
(
X1...n\m : Y = y

∣∣Xm
)
⎤
⎥⎦≥ 0 . (6.54)

The state-dependent conditional mutual information I∗
(
X1...n\m : Y = y

∣∣Xm
)

is a
Kullback-Liebler divergence. As such it is nonnegative. Likewise the minimum of a
nonnegative quantity is also nonnegative.

EY

⎡
⎢⎢⎢⎢⎢⎢⎣

min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗
(
X1...n\m : Y = y

∣∣Xm
)

︸ ︷︷ ︸
≥0

⎤
⎥⎥⎥⎥⎥⎥⎦
≥ 0 . (6.55)

Finally, the expected value of a list of nonnegative quantities is nonnegative. And
the proof that SVK(X :Y )≤ Smax(X : Y ) is complete.
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Proof that WMS(X : Y )≤ SVK(X :Y )

We invoke the standard definitions of WMS and SVK,

WMS(X : Y ) ≡ I(X1...n :Y )−
n

∑
i=1

I(Xi :Y ) (6.56)

SVK(X :Y ) ≡ I(X1...n :Y )− IVK(X1...n : Y ) (6.57)

= I(X1...n :Y )− min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n : Y ) . (6.58)

We prove the conjecture WMS(X : Y )≤ SVK(X :Y ) by showing,

min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n : Y )≤
n

∑
i=1

I(Xi :Y ) . (6.59)

Given:
min

p∗(X1,...,Xn,Y )
p∗(X1,Y )=p(X1,Y )

...
p∗(Xn,Y )=p(Xn,Y )

I∗(X1...n : Y ) , (6.60)

the individual constraint p∗(X1,Y ) = p(X1,Y ) can add at most I(X1 :Y ) bits to
I∗ (X1...n : Y ). Therefore we can upperbound eq. (6.60) by dropping the constraint
p∗(X1,Y ) = p(X1,Y ) and adding I(X1 :Y ). This yields,

IVK(X :Y )≤ min
p∗(X1,...,Xn,Y )

p∗(X2,Y )=p(X2,Y )
...

p∗(Xn,Y )=p(Xn,Y )

I∗(X1...n : Y )+ I(X1 :Y ) . (6.61)

Likewise, the righthand-side of eq. (6.61) can be upperbounded by dropping the
constraint p∗(X2,Y ) = p(X2,Y ) and adding I(X2 :Y ). This yields,

min
p∗(X2,...,Xn,Y )

p∗(X2,Y )=p(X2,Y )
...

p∗(Xn,Y )=p(Xn,Y )

I∗(X1...n : Y )≤ min
p∗(X3,...,Xn,Y )

p∗(X3,Y )=p(X3,Y )
...

p∗(Xn,Y )=p(Xn,Y )

I∗(X1...n : Y )+ I(X1 :Y )+ I(X2 :Y ) .

(6.62)
Repeating this process n times yields,

IVK(X : Y ) ≤ min
p∗(X1,...,Xn,Y )

I∗(X1...n : Y )+
n

∑
i=1

I(Xi :Y ) (6.63)

=
n

∑
i=1

I(Xi :Y ) . (6.64)
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F Algebraic Simplification of Δ I

Prior literature (Nirenberg et al. 2001; Nirenberg and Latham 2003; Pola et al. 2003;
Latham and Nirenberg 2005) defines Δ I(X;Y ) as,

Δ I(X;Y ) ≡ DKL[Pr(Y |X1...n)‖Prind (Y |X)] (6.65)

= ∑
x,y∈X,Y

Pr(x,y) log
Pr(y|x)

Prind(y|x)
. (6.66)

Where,

Prind(Y = y|X = x) ≡ Pr(y)Prind(X = x|Y = y)
Prind(X = x)

(6.67)

=
Pr(y)∏n

i=1 Pr(xi|y)
Prind(x)

(6.68)

Prind(X = x) ≡ ∑
y∈Y

Pr(Y = y)
n

∏
i=1

Pr(xi|y) (6.69)

The definition of Δ I, eq. (6.65), reduces to,

Δ I(X;Y ) = ∑
x,y∈X,Y

Pr(x,y) log
Pr(y|x)

Prind(y|x)
(6.70)

= ∑
x,y∈X,Y

Pr(x,y) log
Pr(y|x)Prind(x)

Pr(y)∏n
i=1 Pr(xi|y)

(6.71)

= ∑
x,y∈X,Y

Pr(x,y) log
Pr(x|y)

∏n
i=1 Pr(xi|y)

Prind(x)
Pr(x)

(6.72)

= ∑
x,y∈X,Y

Pr(x,y) log
Pr(x|y)

∏n
i=1 Pr(xi|y)

+ ∑
x,y∈X,Y

Pr(x,y) log
Prind(x)
Pr(x)

= ∑
x,y∈X,Y

Pr(x,y) log
Pr(x|y)

∏n
i=1 Pr(xi|y)

− ∑
x∈X

Pr(x) log
Pr(x)

Prind(x)
(6.73)

= DKL

[
Pr(X1...n|Y )

∥∥∥∥∥
n

∏
i=1

Pr(Xi|Y )
]
−DKL[Pr(X1...n)‖Prind(X)]

= TC(X1; · · · ;Xn|Y )−DKL[Pr(X1...n)‖Prind(X)] . (6.74)

where TC(X1; · · · ;Xn|Y ) is the conditional total correlation among the predictors
given Y .
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