
Chapter 3
Generating Functionals for Guided
Self-Organization

Claudius Gros

3.1 Controlling Complex Systems

One may take it as a running joke, that complex systems are complex since they are
complex. It is however important to realize, this being said, that complex systems
come in a large varieties, and in many complexity classes, ranging from relatively
simple to extraordinary complex. One may distinguish in this context between clas-
sical and modern complex system theory. In the classical approach one would typi-
cally study a standardized model, like the Lorentz model or the logistic map, being
described usually by maximally a handful of variables and parameters (Gros 2008).
Many real-world systems are however characterized by a very large number of vari-
ables and control parameters, especially when it comes to biological and cognitive
systems. It has been noted, in this context, that scientific progress may generically
be dealing with complexity barriers of various severities, in far reaching areas like
medicine and meteorology (Gros 2012b), when researching real-world natural or
biological complex systems.

Generically, a complex system may be described by a set of first-order differential
equations (or maps), like

ẋi = fi(x1,x2, . . . |γ1,γ2, . . . ) , (3.1)

where the {xi} are the primary dynamical variables and the {γ j} the set of con-
trol parameters. Modern complex system theory has often to deal with the situation
where the phase space of dynamical variables and parameters are both high dimen-
sional. Everything in the macroscopic world, f.i. the brain, can be described by an
appropriate set of equations of motion, like (3.1), and we are hence confronted with
two types of control problems:
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– How do we derive governing equations of type (3.1)?
– Given a set of equations of motion, like (3.1), how do we investigate its proper-
ties and understand the resulting behavior as a function of the control parameters?

At its core, we are interested here in how to generically control, in general terms,
a complex and self-organizing system. A range of complementary approaches are
commonly used in order to alleviate the control problem, we discuss here some of
the most prominent (non mutually exclusive) approaches.

• Delegation to Evolution
One is often interested, especially in biology and in the neurosciences, in bio-
logically realistic models and simulations (Markram 2006). In this case both the
functional form and the parametric dependences are taken from experiment. One
may then expect, thanks to Darwinian selection, that the such constructed dy-
namical equation should exhibit meaningful behavior, replicating observations.

• Exploring Phase Space
A complete understanding would correspond, within dynamical system theory, to
a full control of both the qualitative behavior of the flow in phase space and of its
dependency on the control parameters. Achieving this kind of complete control
is clearly very desirable, but often extremely hard to achieve when dealing with
large numbers of dynamical variables and control parameters, the typical situa-
tion in modern complex system theory. The exploration of phase space, typically
through a combination of analytical and numerical investigations, is in any case
an indispensable tool, even when only a small fraction of the overall phase space
volume can be probed.

• Classical Control Theory
Classical control theory deals with the objective to control a real-world system,
like a rocket, such that a desired behavior is optimally achieved, in the wake of
noise both in the sensor readings and in the action effectiveness (Leigh 2004).
Classical control theory is of widespread use in engineering and for robot control
(De Wit et al. 1996). Our present discussion deals however with the general con-
trol of working regimens of a self-organizing complex system; if we knew what
the system is supposed to do, we would be done.

• Diffusive Control
Neuromodulators (Marder 2012), like dopamine, serotonin, choline, nore-
pinephrine, neuropeptides and neurohormons, act in the brain as messengers of
a diffusive control system (Gros 2010, 2012a), controlling intrinsic and synaptic
properties like neural gain and threshold, or synaptic plasticity. Diffusive control
is needed to stabilize a desired working regime, a process also denoted as met-
alearning (Doya 2002), and to switch between different working regimes in order
to achieve behavioral flexibility (Arnsten et al. 2012). Diffusive control is a very
general strategy for controlling a complex system.

• Generating Functionals
This is the subject we will develop here. One can achieve an improved under-
standing when considering classes of dynamical systems derived from superor-
dinated functionals. In this case the equations of motion are not given a priori, but
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derived from a generating principle. Here we will detail out how this approach
leads to an alleviation of the control problem.

One needs to recall, coming back to the introductory statement, that there is no one-
size-fits-all method for controlling complex systems (Frei and Serugendo 2011), as
there are many kinds and varieties of complex systems. Here we will consider pri-
marily systems made up of a potentially large number of similar functional units,
as typical for neural networks. A related aspect of the generic control problem dis-
cussed above regards, in this context, the stability of a default working regime with
regard to external influences and statistical fluctuations (Clarke 2007). This is par-
ticularly important in functional complex systems, such as an ecosystem (Holling
1973; May 2001), or cognitive architectures, the subject of our interest here.

3.2 Guiding Self-Organization

There is no strict scientific definition of what self-organization means or implies. It
is however generally accepted to consider processes as self-organizing when a rich
and structured dynamics results from a set of relatively simple evolution rules. The
term self-organization is of widespread use (Haken 2006), ranging from classical
non-equilibrium physical (Nicolis 1989) and biological (Camazine 2003) systems
to the assembly of complex macromolecules (Lehn 2002); it is quite generally ac-
cepted that the foundations of life are based on self-organizing principles (Kauffman
1993). The brain in particular, possibly the most complex object presently known
to humanity, is expected to result from a plethora of intertwined self-organizing
processes (Kelso 1995), ranging from self-organized cognitive functions (Kohonen
1988) to self-organized critical states (Bak 1999; Chialvo 2010).

Self-organization is, per se, content free, having no semantic relevancy. The stars
in a rotating galaxy, to give an example, may spontaneously organize into a set of
distinct density waves, known as the arms of a spiral galaxy. Even though pretty to
the eye, the spiral arms of the Milky Way do not serve any purpose; self-organization
is in this case just a byproduct of Newton’s law. The situation is however generically
distinct for biological settings, or for man-made systems, where functionality is the
key objective.

The design of functionality is of course a standard objective for the vast major-
ity of man-made systems, and contrasts with the absence of functionality of natural
phenomena. Here we are interested in self-organizing processes which are neither
fully designed nor without any objective. There is a middleway, which has been
denoted “targeted self-organization” (Gros 2008) or, alternatively, “guided self-
organization” (Prokopenko 2009; Martius and Herrmann 2010).

designed −→ guided −→ natural

For a designed system the functionality is specified in detail in order to achieve
optimal performance for a given task. The target for a self-organizing process is
however presumed to be a generic principle, often based on information theoretical
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considerations, with the actual functionality arising indirectly through self-
organizing processes. Targeted and guided self-organization are essentially iden-
tical terms, with guided self-organization having a somewhat broader breath. One
could guide, for example, a dynamical system by restricting its flow to a certain re-
gion in phase space, allowing for an otherwise unrestricted development within this
bounded area of phase space. Here we will neglect the differences in connotation
between targeted and guided self-organization and use both terms interchangeably.

Let us come back at this point to the general formulation of a complex dynamical
system through a set of parameterized first-order differential equations, as given by
(3.1). The distinction between a parameter γ j and a primary dynamical variable xk(t)
is a question of time scales.

ẋk : fast
γ̇k : slow

}
time evolution

The flow (x1(t),x2(t), . . . ) of the primary dynamics is taking place in the slowly
changing environment of parameter space, defining the adiabatic background. The
slow adaption of parameters is what controls in the end the working regime of a dy-
namical system, and is also denoted sometimes as metalearning (Vilalta and Drissi
2002). Not all parameters can be involved in metalearning, a small but finite set of
core parameters {γ ′j} ∈ {γk} must be constant and immutable,

γ̇ ′j = 0 .

This set of core parameters is what defines in the end the system. One has achieved
a dimensional reduction of the control problem if the number |{γ ′j}| of core param-
eters is small. This is the aim of guided self-organization, that a concise set of core
parameters controls the development and the dynamical properties of a system, with
quantitative tuning of the values of the control parameters inducing modifications
of the system’s characteristics, both on a quantitative and a qualitative level.

3.3 Generating Functionals

There are two principle venues on how to express guiding principles for dynamical
systems, implicitly or explicitly. In analogy, one can implement conservation laws
in physics by writing down directly appropriate equations of motion, demonstrating
that, e.g., energy is conserved. In this case energy conservation is implicitly present
in the formulation of the dynamical system. Alternatively one may consider directly
a time independent Lagrange function, a condition which explicitly guarantees en-
ergy conservation for the respective Lagrange equations of motion. Here we will
concentrate on the second approach, the explicit derivation of equations of motion
for targeted self-organization through appropriate generating functionals.

The term generating functional has a wide range of connotations in the sciences.
The action functional in classical mechanics and quantum field theory is a promi-
nent example from physics, the generating functional ∑k pkxk for a distribution
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function pk (with pk ≥ 0 and ∑k pk = 1) another from information theory. In the neu-
rosciences it is custom to speak of objective functions (Intrator and Cooper 1992;
Goodhill and Sejnowski 1997) instead of generating functionals.

As a first example we consider a simple energy functional

E({xk}) =
Γ
2 ∑

k

x2
k − 1

2 ∑
kl

y(xk)wkly(xl), (3.2)

which is suitable for a network of neurons with membrane potential xk and firing
rate y(xk). Here y(x) is the sigmoidal transfer function

y(x) =
1

1+ ea(b−x)
, (3.3)

parameterized by the gain a and the threshold b. The wi j in (3.2) will turn into the
synaptic weights, as we will show lateron, and Γ into a relaxation rate. Concerning
the terminology, one could consider E({xk}) also to be an energy function (instead
of a functional), being a function of the individual xk. Here we use the term energy
functional, for the functional dependence on the vector x=(x1,x2, . . . ) of membrane
potentials.

For our second example we consider a general functional based on the principle
of polyhomeostasis (Marković and Gros 2010). One speaks of a homeostatic feed-
back loop when a target value for a single scalar quantity is to be achieved. Life per
se is based on homeostasis, the concentrations of a plethora of biological relevant
substances, minerals and hormones need to be regulated, together with a vast num-
ber of physical properties, like the body temperature or the heart beating frequency.
Polyhomeostasis is, in contrast, typically necessary for time allocation problems.

The problem of allocating time for various tasks constitutes the foundation of
behavior. Every living being needs to decide how much time to spend, relatively, on
vitally important behaviors, like foraging, resting, exploring or socializing. Maxi-
mizing only a single of the possible behavioral patterns would be counterproductive,
only a suitable mix of behaviors, as an average over time, is optimal. Mathemati-
cally this goal is equivalent to optimizing a distribution function, hence the term
polyhomeostasis, in contrast to the case of homeostasis, corresponding to the opti-
mization of a single scalar quantity.

All a neuron can do, at any given moment, is to fire or not to fire, a typical time
allocation problem. The generic functional

F [p] =
∫

p(y) f (p(y)))dy (3.4)

of the firing rate distribution

p(y) =
1
T

∫ T

0
δ (y− y(t − τ))dτ (3.5)
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is an example of the polyhomeostatic principle. Minimizing F[p] corresponds to
optimizing a given function f (p) of the neural activity distribution p(y). The result-
ing adaption rates will then influence the timeline y(t) of the neural activity. This
is an example of guided self-organization, since the target functional is expressed
in terms of general statistical properties of the dynamical flow, independently of an
eventual semantic content. The explicit form and derivation of the adaption rates
will be discussed further below, both for the polyhomeostatic functional (3.4) and
for the energy functional (3.2).

3.4 Equations of Motion

There are several venues for deriving equations of motions from a given target func-
tional. One uses variational calculus, within classical mechanics, when deriving the
Lagrange equations of motion. In classical mechanics the target functional, the ac-
tion, needs to be stationary with respect to an arbitrary variation of the trajectory.
Here we will consider instead generic objective functions which are to be mini-
mized.

Minimizing an objective function is a very generic task for which a wide range
of methods and algorithms have been developed (Papadimitriou and Steiglitz 1998;
Goldberg 1989; Kennedy and Eberhart 1995). Here we are however interested in
a different aspect. Our aim is not to actually find the global minimum of a given
objective function, or any stationary point, which is not of interest per se. Objective
functions serve as a guiding principle and equations of motion induced by minimiz-
ing a given objective function will tend to minimize it. Other driving influence will
however in general compete with this goal and it is this very competition which may
result in complex and novel dynamical states.

For an objective function which is an explicit function of the dynamical vari-
able, like the energy functional (3.2), the equations of motion just correspond to the
downhill flow within the energy landscape,

ẋ j = − 1
Te

∂
∂x j

E({xk}) , (3.6)

where the timescale Te of the flow in normally set to unity, Te = 1. In our case we
obtain

ẋk = −Γ xk + akyk(1− yk)∑
j

wk jy j , (3.7)

where we have used (3.3) and

y′(x) =
∂y
∂x

= ay(1− y) . (3.8)

The dynamical system (3.7) just corresponds to a network of leaky integrators (Hop-
field 1982, 1984), with the xk and yk corresponding to the membrane potential and
the mean neural firing rate respectively. The neurons are coupled through the weight
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matrix wk j , the synaptic weights. The term akyk(1− yk) in front of the inter-neural
coupling is present only when deriving (3.7) from the energy functional (Linker-
hand and Gros 2012a), and not when formulating equivalent neural updating rules
directly from neurobiological considerations (Olshausen et al. 1993).

The polyhomeostatic functional (3.4) is used to derive adaption rules for the in-
trinsic parameters ai and bi of the transfer function (3.3). The lack of an explicit
dependence on either ai or bi rules out adaption rules like ȧi ∝ −∂F[p]/∂ai, which
would be the equivalent to (3.6). It is however possible to derive implicit adap-
tion rules, for which the minimization of the objective functions F [p] is performed
stochastically in the sense that the time-averaged firing rate p(y) is sampled along
the flow during the time evolution. For this purpose we change variables and rewrite
the generating functional

F [p] =
∫

p(x) f
(

p(y)/y′)
)
dx, p(y)dy = p(x)dx (3.9)

as an expectation value over the distribution p(x) of the membrane potential x, the
input. The transfer function (3.3) maps the input of a neuron to its output and adap-
tion rules for the intrinsic parameters should hence not depend explicitly on the
actual distribution p(x) of the input, they should be universal in the sense that the
intrinsic adaption rules should abstract from the actual semantic content of the in-
formation being processed. Noting that p(x) does not depend explicitly on the gain
a and the threshold b, we have

∂
∂θ

F[p] =
∫

dx p(x)
∂

∂θ
f
(

p(y)/y′)
)
, θ = a,b . (3.10)

For the overall global minimum of F [p] the weighting with respect to the input
distribution p(x) would be needed to be taken into account. As we are however
interested only in adaption rules abstracting from the actual form of the input dis-
tribution, and noting that p(x)≥ 0 is positive definite, we demand that the adaption
process should lead to a uniform minimization of the kernel of (3.10),

θ̇ = −εθ
∂

∂θ
f
(

p(y)/y′)
)
, θ = a,b , (3.11)

where εθ are the respective adaption rates. The adaption process should generally
be slow, as typical for metalearning, and the adaption rates εa and εb small. In this
case the updating rule (3.11) will statistically sample the input distribution p(x), as
an average over time, and become equivalent with (3.10).

The adaption rates (3.11) are generic and need to be concretized for a specific
polyhomeostatic function f (p). A straightforward target functional for the problem
of allocating time is to consider a target distribution function q(y) for the neural
firing rate. In this case the functional

F[p] =
∫

p(y) f (p(y))dy, f (p) = ln(p/q) (3.12)
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Fig. 3.1 The results of the intrinsic adaption rules (3.14) and (3.15) for the time averaged
firing rate distribution (boxes, see Eq. (3.5)) of a single neuron driven by a white-noise input
and for several information maximizing target distributions (points, see Eq. (3.13))

corresponds to the Kullback-Leibler divergence (Gros 2008), which is a positive def-
inite measure for the similarity of two distribution functions p and q. The Kullback-
Leibler divergence is minimal whenever p(y) and q(y) are as similar as possible,
within the configuration of all dynamically realizable firing rate distributions p(y).

The target firing rate distribution q(y) could be any positive and normalized distri-
bution function. Here we demand that q(y) should maximize Shannon’s information
entropy −q ln(q), which can be achieved using variational calculus:

0 = −δ
∫

q
[
ln(q)−λ1y−λ2y2]dy, q(y) ∝ eλ1y+λ2y2

. (3.13)

Here λ1/λ2 are suitable Lagrange parameters enforcing a given mean/variance. The
flat distribution λ1 = λ2 = 0 maximizes information entropy in the absence of any
constraint. Using (3.11) and y′ = ay(1−y), see Eq. (3.8), we obtain then the adaption
rules (Triesch 2005, 2007; Marković and Gros 2010; Linkerhand and Gros 2012b)

ȧ = εa

(
1
a
+(x− b)Δθ̃

)
(3.14)

ḃ = εb (−a)Δθ̃ , Δθ̃ = (1− 2y) + y(1− y) [λ1 + 2λ2y] . (3.15)

In Fig. 3.1 we present the results for a single polyhomeostatically adapting neuron,
driven by white noise, for various target distributions q(y). Note that there are only
two intrinsic parameters, the threshold b and the gain a, to be optimized and that the
transfer function (3.3) can hence not change, during the adaption process, its func-
tional form arbitrarily. The firing rate distribution p(y) approximates, considering
this limitation, the target distribution q(y) remarkably well, an exemplification of
the principle of targeted self-organization.

3.5 Adaptive Phase Space

It is illuminating to investigate somewhat in detail the behavior of the adaption pro-
cess in the phase space (a,b) of the intrinsic adaption parameters, and to study
individual trajectories (a(t),b(t)). In Fig. 3.2 we present a selection of trajectories



3 Generating Functionals for Guided Self-Organization 61

a(t)

b
(t
)

Fig. 3.2 Sample trajectories (a(t),b(t)) resulting from the intrinsic adaption rules (3.14) and
(3.15), color coded for various parameters λ1 and λ2 of the target distributions q(t), compare
Eq. (3.13). All trajectories start at (a(0),b(0)) = (1,0) and then settle into distinct regions of
phase space, where they perform a confined stochastic walk, due to the white-noise input.

for distinct realizations of the target distribution q(y), as given by Eq. (3.13). The
neuron is driven by a white noise input, the starting gain and threshold are a = 1
and b = 0, for all trajectories. After a relatively fast initial transient the intrinsic pa-
rameters settle to distinct respective regions in the phase space, where they perform
a stochastic motion, reflecting the white-noise character of the driving input. Three
of the resulting firing rate distributions p(y) are shown in Fig. 3.1.

The target distribution q(y), see Eq. (3.13), can be selected to be bimodal, which
is generally the case for inverse Gaussians having λ1 < 0 and λ2 > 0. In Fig. 3.3
we present the adaptive walk through phase space (a(t),b(t)) for a bimodal target
distribution having λ1 =−20 and λ2 = 18.5 and for various adaption rates εa = εb.
When the adaption process is very slow, viz for small εa and εb the system average
over extended periods of the stochastic input and the dynamics becomes smooth
(Linkerhand and Gros 2012b), fluctuating with a reduced amplitude around a certain
target region in phase space, just as illustrated in Fig. 3.2.

For a bimodal target distribution q(y) there may however be two local minima in
adaptive space, since the transfer function (3.3) is always monotonic. For any given
pair of intrinsic parameters the system can hence approximate well only one of the
two peaks of a bimodal transfer function. For small adaption it remains trapped in
one of the local minima, but larger adaption rates εa and εb will lead to an enhanced
sensibility with respect to the stochastic driving, inducing stochastic tipping transi-
tions between the two local minima. This is a striking realization of the principle of
guided self-organization.
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Fig. 3.3 Sample trajectories (a(t),b(t)) resulting from the intrinsic adaption rules (3.14) and
(3.15), color coded for various adaption parameters εa = εb, as given in the legend. The
single neuron is driven by white noise and the target distribution, see Eq. (3.13) is bimodal,
parameterized by λ1 = −20 and λ2 = 18.5. For moderate large adaption rates the system is
able to make stochastically driven tipping transitions between two local minima (Linkerhand
and Gros 2012b).

3.6 Self-Organized Dynamical States

As a second example for the functioning of polyhomeostatic optimization we con-
sider a network of N randomly interconnected neurons,

xk = ∑
j �=k

wk j y j

which corresponds to (3.7) in the anti-adiabatic limit Γ → ∞ (and without the factor
y(1− y)). For the synaptic weights we select

wi j =

{
+1/

√
K with probability ρexc

−1/
√

K with probability 1−ρexc
, (3.16)

where K is the in-degree. The system is balanced for ρexc = 1/2. As a second control
parameter, besides the fraction ρexc of excitatory links, we consider the average
target activity μ ,

μ =

∫
yq(y)dy,

∫
q(y)dy = 1 , (3.17)

which is taken to be uniform, viz identical for all sites.
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Fig. 3.4 For a network of N = 1000 adapting neurons, according to Eqs. (3.14) and (3.15),
the activity of a randomly selected neuron and the average neural activity (green line). The
network is balanced, with as many excitatory and inhibitory links, randomly selected accord-
ing to Eq. (3.16). Shown are results for various target mean activities μ , see Eq. (3.17). The
right-hand axis is not a scale, the numbers are the values of the network-averaged Kullback-
Leibler divergence 〈Dλ 〉, as defined by Eq. (3.12). One observes that the mean target activity
μ entering the polyhomeostatic generating functional acts as a parameter controlling the re-
sulting self-organized dynamical state (Marković and Gros 2012).

In Fig. 3.4 we present the results for a balanced network with N = 1000 adapting
neurons, and an in-degree of K = 100. Shown are both the activity of a single, ran-
domly selected site and the average activity, averaged over all sites. We notice that
the network enters distinct dynamical states, as a function of the mean target activ-
ity μ (Marković and Gros 2010, 2012). For intermediate target activity levels the
dynamics is chaotic, for smaller mean activities μ a regime with intermittent bursts
is observed. One has hence the possibility to tune the self-organized dynamical state
through the target set by the polyhomeostatic generating functional, an example of
targeted self-organization. Interestingly the overall value of the network-averaged
Kullback-Leibler divergence is minimal in the chaotic state.

In Fig. 3.5 we present the results for the same network of N = 1000 sites as in
Fig. 3.4, but this time the network is not balanced, ρexc > 1/2. The mean target
firing-rate activity is kept constant at μ = 0.3. For larger values of ρexc the network
synchronizes, not surprisingly, as a result of the predominance of positive feedback
loops. For values of ρexc close to the balanced state, the system is chaotic, with
a large variability around a partly synchronized state in between. One can regard
ρexc as a controlling parameter of the energy functional (3.2), which hence allows
to guide the self-organization of the resulting dynamical state. The value of the
Kullback-Leibler divergence is, again, lowest in the chaotic state, which explores
phase space best.
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Fig. 3.5 For networks containing N = 1000 adapting neurons with an in-degree K = 100 and
a target mean activity μ = 0.3, see Eq. (3.17), the activity of a randomly selected neuron and
the average neural activity (green line). The networks are not balanced, having a slight excess
ρexc of randomly selected excitatory links see Eq. (3.16). Also given (on the right) are the
respective values of the network-averaged Kullback-Leibler divergence 〈Dλ 〉, as defined by
Eq. (3.12). The network shows a transition between chaos and synchronization, as a function
of ρexc (Marković and Gros 2012).

3.7 Discussion

A self-organizing process may be guided by presenting to the system one or more
targets. If these targets are very concrete they may destroy the self-organizing char-
acter of the process, resulting in a driving force. One possibility to achieve a gentle
way of controlling a self-organizing process is to formulate the targets in terms
of statistical properties of the desired dynamical state, with a basic example being
the time-average distribution function of activities. Optimizing the distribution of
activities is an example of a time-allocation problem, which is intrinsically of poly-
homeostatic nature.

A given set of goals may be achieved be a range of different tools, for example
using evolutionary algorithms. In this treatise we have discussed the perspective,
together with concrete examples, of explicitly deriving equations of motions from
generating functionals incorporating polyhomeostatic and other targets. We believe
that this approach offers several advantages. Having explicit time evolution equation
at hand is, in our view, mandatory for time-efficient simulations and applications.
Generating functionals can furthermore be seen as a route for solving the control
problem, as they offer a substantial dimensional reduction in the number of free
parameters. This is a particularily attractive feature, in view of the raising apprecia-
tion that the neuromodulator control system in the brain tunes the relative stability
of a wide range of possible dynamical operative states of the affected downstream
circuits.

From an alternative perspective one may view generating functionals also as a
middleway between the study of simplified model systems and biological realistic
simulations.
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simple
model systems

−→ generating
functionals

−→ detailed / realistic
simulations

Model systems may constitute important reference models, for understanding and
developing key concepts and methods. Detailed simulations are, at the other ex-
treme, often indispensable for obtaining a realistic comparison with experimental
data, having however the drawback that an in-depth understanding is in general
not achievable. We propose generating functionals as a venue for building increas-
ingly complex dynamical systems and cognitive architectures, a venue which allows
for the control of the operating modi of the system by tuning a limited number of
high-level control parameters incorporating the targets of the respective generating
functionals.
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