
Chapter 13
Guiding Designs of Self-Organizing Swarms:
Interactive and Automated Approaches

Hiroki Sayama

13.1 Introduction

Engineering design has traditionally been a top-down process in which a designer
shapes, arranges and combines various components in a specific, precise, hierarchi-
cal manner, to create an artifact that will behave deterministically in an intended
way (Minai et al. 2006; Pahl et al. 2007). However, this process does not apply to
complex systems that show self-organization, adaptation and emergence. Complex
systems consist of a massive amount of simpler components that are coupled locally
and loosely, whose behaviors at macroscopic scales emerge partially stochastically
in a bottom-up way. Such emergent properties of complex systems are often very
robust and dynamically adaptive to the surrounding environment, indicating that
complex systems bear great potential for engineering applications (Ottino 2004).

In an attempt to design engineered complex systems, one of the most challeng-
ing problems has been how to bridge the gap between macro and micro scales.
Some mathematical techniques make it possible to analytically show such macro-
micro relationships in complex systems (e.g., those developed in statistical mechan-
ics and condensed matter physics (Bar-Yam 2003; Boccara 2010)). However, those
techniques are only applicable to “simple” complex systems, in which: system com-
ponents are reasonably uniform and homogeneous, their interactions can be approx-
imated without losing important dynamical properties, and/or the resulting emergent
patterns are relatively regular so that they can be characterized by a small number
of macroscopic order parameters (Bar-Yam 2003; Doursat et al. 2012). Unfortu-
nately, such cases are exceptions in a vast, diverse, and rather messy compendium of
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Fig. 13.1 Relationships of macroscopic and microscopic properties in complex systems and
how complex systems engineering has been handling the gap between them

complex systems dynamics (Camazine 2003; Sole and Goodwin 2008). To date, the
only generalizable methodology available for predicting macroscopic properties of
a complex system from microscopic rules governing its fundamental components is
to conduct experiments—either computational or physical—to let the system show
its emergent properties by itself (Fig. 13.1, top).

More importantly, the other way of connecting the two scales—embedding
macroscopic requirements the designer wants into microscopic rules that will col-
lectively achieve those requirements—is by far more difficult. This is because the
mapping between micro and macro scales is highly nonlinear, and also the space of
possible microscopic rules is huge and thus hard to explore. So far, the only gen-
eralizable methodology available for macro-to-micro embedding in this context is
to acquire microscopic rules by evolutionary means (Bentley 1999) (Fig. 13.1, bot-
tom). Instead of trying to derive local rules analytically from global requirements,
evolutionary methods let better rules spontaneously arise and adapt to meet the re-
quirements, even though they do not produce any understanding of the macro-micro
relationships. The effectiveness of such “blind” evolutionary search (Dawkins 1996)
for complex systems design is empirically supported by the fact that it has been the
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primary mechanism that has produced astonishingly complex, sophisticated, highly
emergent machinery in the history of real biological systems.

The combination of these two methodologies—experiment and evolution—that
connect macro and micro scales in two opposite directions (the whole cycle in
Fig. 13.1) is now a widely adopted approach for guiding systematic design of self-
organizing complex systems (Minai et al. 2006; Anderson 2006). Typical design
steps are to (a) create local rules randomly or using some heuristics, (b) conduct
experiments using those local rules, (c) observe what kind of macroscopic patterns
emerge out of them, (d) select and modify successful rules according to the observa-
tions, and (e) repeat these steps iteratively to achieve evolutionary improvement of
the microscopic rules until the whole system meets the macroscopic requirements.

Such experiment-and-evolution-based design of complex systems is not free from
limitations, however. In typical evolutionary design methods, the designer needs to
explicitly define a performance metric, or “fitness”, of design candidates, i.e., how
good a particular design is. Such performance metrics are usually based on relatively
simple observables easily extractable from experimental results (e.g., the distance
a robot traveled, etc.). However, simple quantitative performance metrics may not
be suitable or useful in evolutionary design of more complex structures or behav-
iors, such as those seen in real-world biological systems, where the key properties
a system should acquire could be very diverse and complex, more qualitative than
quantitative, and/or even unknown to the designer herself beforehand.

In this chapter, we present our efforts to address this problem, by (1) utilizing and
enhancing interactive evolutionary design methods and (2) realizing spontaneous
evolution of self-organizing swarms within an artificial ecosystem.

13.2 Model: Swarm Chemistry

We use Swarm Chemistry (Sayama 2007, 2009) as an example of self-organizing
complex systems with which we demonstrate our design approaches. Swarm Chem-
istry is an artificial chemistry (Dittrich et al. 2001) model for designing spatio-
temporal patterns of kinetically interacting heterogeneous particle swarms using
evolutionary methods. A swarm population in Swarm Chemistry consists of a num-
ber of simple particles that are assumed to be able to move to any direction at any
time in a two- or three-dimensional continuous space, perceive positions and veloc-
ities of other particles within its local perception range, and change its velocity in
discrete time steps according to the following kinetic rules (adopted and modified
from the rules in Reynolds’ Boids (Reynolds 1987); see Fig. 13.2):

• If there are no other particles within its local perception range, steer randomly
(Straying).

• Otherwise:

– Steer to move toward the average position of nearby particles (Cohesion,
Fig. 13.2(a)).
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Fig. 13.2 Kinetic interactions between particles. Top: Particle i senses only positions and
velocities of nearby particles within distance Ri. Bottom: (a) Cohesion. Particle i accelerates
toward the center of mass of nearby particles. (b) Alignment. Particle i steers to align its
orientation to the average orientation of nearby particles. (c) Separation. Particle i receives
repulsion forces from each of the nearby particles whose strength is inversely related to dis-
tance.

– Steer toward the average velocity of nearby particles (Alignment,
Fig. 13.2(b)).

– Steer to avoid collision with nearby particles (Separation, Fig. 13.2(c)).
– Steer randomly with a given probability (Randomness).

• Approximate its speed to its own normal speed (Self-propulsion).

These rules are implemented in a simulation algorithm that uses kinetic parameters
listed and explained in Table 13.1 (see (Sayama 2009, 2010) for details of the al-
gorithm). The kinetic interactions in our model uses only one omni-directional per-
ception range (Ri), which is much simpler than other typical swarm models that use
multiple and/or directional perception ranges (Reynolds 1987; Couzin et al. 2002;
Kunz and Hemelrijk 2003; Hemelrijk and Kunz 2005; Cheng et al. 2005; Newman
and Sayama 2008). Moreover, the information being shared by nearby particles is
nothing more than kinetic one (i.e., relative position and velocity), which is exter-
nally observable and therefore can be shared without any specialized communica-
tion channels1. These features make this system uniquely simple compared to other
self-organizing swarm models.

1 An exception is local information transmission during particle recruitment processes,
which will be discussed later.
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Table 13.1 Kinetic parameters involved in the simulation of particle behavior. Unique values
are assigned to these parameters for each particle i as its own kinetic properties.

Name Min Max Meaning Unit
Ri 0 300 Radius of local perception range pixel
V i

n 0 20 Normal speed pixel step−1

V i
m 0 40 Maximum speed pixel step−1

ci
1 0 1 Strength of cohesive force step−2

ci
2 0 1 Strength of aligning force step−1

ci
3 0 100 Strength of separating force pixel2 step−2

ci
4 0 0.5 Probability of random steering —

ci
5 0 1 Tendency of self-propulsion —

97 * (226.76, 3.11, 9.61, 0.15, 0.88, 43.35, 0.44, 1.0)
38 * (57.47, 9.99, 35.18, 0.15, 0.37, 30.96, 0.05, 0.31)
56 * (15.25, 13.58, 3.82, 0.3, 0.8, 39.51, 0.43, 0.65)
31 * (113.21, 18.25, 38.21, 0.62, 0.46, 15.78, 0.49, 0.61)

Fig. 13.3 Example of a recipe, formatted as a list of kinetic parameter sets of different types
within a swarm. Each row represents one type, which has a number of particles of that type at
the beginning, followed by its parameter settings in the format of (Ri,V i

n,V
i
m,c

i
1,c

i
2,c

i
3,c

i
4,c

i
5).

Each particle is assigned with its own kinetic parameter settings that specify pre-
ferred speed, local perception range, and strength of each kinetic rule. Particles that
share the same set of kinetic parameter settings are considered of the same type.
Particles do not have a capability to distinguish one type from another; all particles
look exactly the same to themselves.

For a given swarm, specifications for its macroscopic properties are indirectly and
implicitly woven into a list of different kinetic parameter settings for each swarm
component, called a recipe (Fig. 13.3) (Sayama 2009). It is quite difficult to manu-
ally design a specific recipe that produces a desired structure and/or behavior using
conventional top-down design methods, because the self-organization of a swarm
is driven by complex interactions among a number of kinetic parameters that are
intertwined with each other in highly non-trivial, implicit ways.

In the following sections, we address this difficult design problem using evolu-
tionary methods. Unlike in other typical evolutionary search or optimization tasks,
however, in our swarm design problem, there is no explicit function or algorithm
readily available for assessing the quality (or fitness) of each individual design. To
meet with this unique challenge, we used two complementary approaches: The inter-
active approach, where human users are actively involved in the evolutionary design
process, and the automated approach, where spontaneous evolutionary dynamics of
artificial ecosystems are utilized as the engine to produce creative self-organizing
patterns.
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“swinger” “rotary” “walker-follower”

Fig. 13.4 Examples of swarms designed using IEC methods. Their recipes are
available on the Swarm Chemistry website (http://bingweb.binghamton
.edu/˜sayama/SwarmChemistry/).

13.3 Interactive Approach

The first approach is based on interactive evolutionary computation (IEC) (Banzhaf
2000; Takagi 2001), a derivative class of evolutionary computation which incorpo-
rates interaction with human users. Most IEC applications fall into a category known
as “narrowly defined IEC” (NIEC) (Takagi 2001), which simply outsources the task
of fitness evaluation to human users. For example, a user may be presented with
a visual representation of the current generation of solutions and then prompted to
provide fitness information about some or all of the solutions. The computer in turn
uses this fitness information to produce the next generation of solutions through the
application of a predefined sequence evolutionary operators.

Our initial work, Swarm Chemistry 1.1 (Sayama 2007, 2009), also used a varia-
tion of NIEC, called Simulated Breeding (Unemi 2003). This NIEC-based applica-
tion used discrete, non-overlapping generation changes. The user selects one or two
favorable swarms out of a fixed number of swarms displayed, and the next gener-
ation is generated out of them, discarding all other unused swarms. Selecting one
swarm creates the next generation using perturbation and mutation. Selecting two
swarms creates the next generation by mixing them together (similar to crossover,
but this mixing is not genetic but physical). Figure 13.4 shows some examples of
self-organizing swarms designed using Swarm Chemistry 1.1.

As a design tool, NIEC has some disadvantages. One set of disadvantage stems
from the confinement of the user to the role of selection operator (Fig. 13.5, left).
Creative users who are accustomed to a more highly involved design process may
find the experience to be tedious, artificial, and frustrating. Earlier literature sug-
gests that it is important to instill in the user a strong sense of control over the
entire evolutionary process (Bentley and O’Reilly 2001) and that the users should
be the initiators of actions rather than simply responding to prompts from the system
(Shneiderman et al. 2009).

These lines of research suggest that enhancing the level of interaction and control
of IEC may help the user better guide the design process of self-organizing swarms.
Therefore, we developed the concept of hyper-interactive evolutionary computa-
tion (HIEC) (Bush and Sayama 2011), a novel form of IEC in which a human
user actively chooses when and how to apply each of the available evolutionary

http://bingweb.binghamton.edu/~{}sayama/SwarmChemistry/
http://bingweb.binghamton.edu/~{}sayama/SwarmChemistry/
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Fig. 13.5 Comparison of control flows between two interactive evolutionary computation
(IEC) frameworks (redrawn based on figures in (Bush and Sayama 2011)). Left: Narrowly
defined IEC (NIEC). Right: Hyper-interactive IEC (HIEC).

operators, playing the central role in the control flow of evolutionary search pro-
cesses (Fig. 13.5, right). In HIEC, the user directs the overall search process and
initiates actions by choosing when and how each evolutionary operator is applied.
The user may add a new solution to the population through the crossover, mutate,
duplicate, or random operators. The user can also remove solutions with the delete
operator. This naturally results in dynamic variability of population size and contin-
uous generation change (like steady-state strategies for genetic algorithms).

We developed Swarm Chemistry 1.2 (Sayama et al. 2009; Bush and Sayama
2011), a redesigned HIEC-based application for designing swarms. This version
uses continuous generation changes, i.e., each evolutionary operator is applied only
to part of the population of swarms on a screen without causing discrete generation
changes. A mutated copy of an existing swarm can be generated by either selecting
the “Mutate” option or double-clicking on a particular swarm. Mixing two existing
swarms can be done by single-clicking on two swarms, one after the other. The
“Replicate” option creates an exact copy of the selected swarm next to it. One can
also remove a swarm from the population by selecting the “Kill” option or simply
closing the frame. More details of HIEC and Swarm Chemistry 1.2 can be found
elsewhere (Sayama et al. 2009; Bush and Sayama 2011).

We conducted the following two human-subject experiments to see if HIEC
would produce a more controllable and positive user experience, and thereby better
swarm design outcomes, than those with NIEC.
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Fig. 13.6 Comparison of rating distribution between the NIEC and HIEC applications across
seven factors. Mean ratings are shown by diamonds, with error bars around them showing
standard deviations. Significant differences are indicated with an asterisk and corresponding
t-test p-values.

13.3.1 User Experience

In the first experiment, individual subjects used the NIEC and HIEC applications
mentioned above to evolve aesthetically pleasing self-organizing swarms. We quan-
tified user experience outcomes using questionnaire, in order to quantify potential
differences in user experience between the two applications.

Twenty-one subjects were recruited from students and faculty/staff members at
Binghamton University. Each subject was recruited and participated individually.
The subject was told to spend five minutes using each of two applications to design
an “interesting and lifelike” swarm. Each of these two applications ran on their
own dedicated computer station. After completing two sessions, each of which used
either NIEC or HIEC application, the subject filled out a survey, rating each of
the two platforms on the following factors: easiness of operation, controllability,
intuitiveness, fun factor, fatigue level, final design quality, and overall satisfaction.
Each factor was rated on a 5-point scale.

The results are shown in Fig. 13.6. Of the 7 factors measured, 3 showed statis-
tically significant difference between two platforms: controllability, fun factor, and
overall satisfaction. The higher controllability ratings for HIEC suggest that our
original intention to re-design an IEC framework to grant greater control to the user
was successful. Our results also suggest that this increased control may be asso-
ciated with a more positive user experience, as is indicated by the higher overall
satisfaction and fun ratings for HIEC. In the meantime, there was no significant dif-
ference detected in terms of perceived final design quality. This issue is investigated
in more detail in the following second experiment.
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13.3.2 Design Quality

The goal of the second experiment was to quantify the difference between HIEC
and NIEC in terms of final design quality. In addition, the effects of mixing and mu-
tation operators on the final design quality were also studied. The key feature of this
experiment was that design quality was rated not individually by the subjects who
designed them, but by an entire group of individual subjects. The increased amount
of rating information yielded by this procedure allowed us to more effectively de-
tect differences in quality between designs created using NIEC and designs created
using HIEC.

Twenty-one students were recruited for this experiment. Those subjects did not
have any overlap with the subjects of experiment 1. The subjects were randomly
divided into groups of three and instructed to work together as a team to design an
“interesting” swarm design in ten minutes using either the NIEC or HIEC applica-
tion, the latter of which was further conditioned to have the mixing operator, the
mutation operator, or both, or none. The sessions were repeated so that five to seven
swarm designs were created under each condition. Once the sessions were over, all
the designs created by the subjects were displayed on a large screen in the experi-
ment room, and each subject was told to evaluate how “cool” each design was on
a 0-to-10 numerical scale. Details of the experimental procedure and data analysis
can be found elsewhere (Sayama et al. 2009; Bush and Sayama 2011).

The result is shown in Fig. 13.7. There was a difference in the average rating
scores between designs created using NIEC and HIEC (conditions 0 and 4), and the
rating scores were higher when more evolutionary operators were made available.
Several final designs produced through the experiment are shown in Fig. 13.8 (three
with the highest scores and three with the lowest scores), which indicate that highly
evaluated swarms tended to maintain coherent, clear structures and motions without
dispersal, while those that received lower ratings tended to disperse so that their
behaviors are not appealing to students.

To detect statistical differences between experimental conditions, a one-way
ANOVA was conducted. The result of the ANOVA is summarized in Table 13.2.
Statistically significant variation was found between the conditions (p < 0.005).
Tukey’s and Bonferroni’s post-hoc tests detected a significant difference between
conditions 0 (NIEC) and 4 (HIEC), which supports our hypothesis that the HIEC
is more effective at producing final designs of higher quality than NIEC. The post-
hoc tests also detected a significant difference between conditions 1 (HIEC without
mixing or mutation operators) and 4 (HIEC). These results indicate that the more
active role a designer plays in the interactive design process, and the more diverse
evolutionary operators she has at her disposal, the more effectively she can guide
the evolutionary design of self-organizing swarms.
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Fig. 13.7 Comparison of normalized rating score distributions between swarms produced
using NIEC and HIEC. Average rating scores are shown by diamonds, with error bars around
them showing standard deviations.
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Fig. 13.8 Samples of the final swarm designs created by subjects. (a) Best three that received
the highest rating scores. (b) Worst three that received the lowest rating scores.

Table 13.2 Results of one-way ANOVA on the rating scores for five conditions obtained
in experiment 2 (from (Bush and Sayama 2011)). Significant difference is shown with an
asterisk.

Source of variation Degrees of freedom Sum of squares Mean square F F-test p-value
Between groups 4 14.799 3.700 4.11 0.003*
Within groups 583 525.201 0.901
Total 587 540
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13.4 Automated Approach

The second approach we took was motivated by the following question: Do we
really need human users in order to guide designs of self-organizing swarms? This
question might sound almost paradoxical, because designing an artifact implies the
existence of a designer by definition. However, this argument is quite similar to the
“watchmaker” argument claimed by the English theologist William Paley (as well as
by many other leading scientists in the past) (Dawkins 1996). Now that we know that
the blind evolutionary process did “design” quite complex, intricate structures and
functions of biological systems, it is reasonable to assume that it should be possible
to create automatic processes that can spontaneously produce various creative self-
organizing swarms without any human intervention.

In order to make the swarms capable of spontaneous evolution within a simulated
world, we implemented several major modifications to Swarm Chemistry (Sayama
2010, 2011; Sayama and Wong 2011), as follows:

1. There are now two categories of particles, active (moving and interacting kineti-
cally) and passive (remaining still and inactive). An active particle holds a recipe
of the swarm (a list of kinetic parameter sets) (Fig. 13.9(a)).

2. A recipe is transmitted from an active particle to a passive particle when they
collide, making the latter active (Fig. 13.9(b)).

3. The activated particle differentiates randomly into one of the multiple types spec-
ified in the recipe, with probabilities proportional to their ratio in it (Fig. 13.9(c)).

4. Active particles randomly and independently re-differentiate with small probabil-
ity, r, at every time step (r = 0.005 for all simulations presented in this chapter).

5. A recipe is transmitted even between two active particles of different types when
they collide. The direction of recipe transmission is determined by a competition
function that picks one of the two colliding particles as a source (and the other as
a target) of transmission based on their properties (Fig. 13.9(d)).

6. The recipe can mutate when transmitted, as well as spontaneously at every time
step, with small probabilities, pt and ps, respectively (Fig. 13.9(e)). In a single
recipe mutation event, several mutation operators are applied, including dupli-
cation of a kinetic parameter set (5% per set), deletion of a kinetic parameter
set (5% per set), addition of a random kinetic parameter set (10% per event; in-
creased to 50% per event in later experiments), and a point mutation of kinetic
parameter values (10% per parameter).

These extensions made the model capable of showing morphogenesis and self-
repair (Sayama 2010) and autonomous ecological/evolutionary behaviors of self-
organized “super-organisms” made of a number of swarming particles (Sayama
2011; Sayama and Wong 2011). We note here that there was a technical problem in
the original implementation of collision detection in an earlier version of evolution-
ary Swarm Chemistry (Sayama 2011), which was fixed in the later implementation
(Sayama and Wong 2011).

In addition, in order to make evolution occur, we needed to confine the parti-
cles in a finite environment in which different recipes compete against each other.
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13 * (105.4, 3.55, 5.24, 0.34, 0.18, 23.53, 0.39, 0.24)
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competition 
function winner:

Fig. 13.9 How particle interactions work in the revised Swarm Chemistry (from (Sayama
2010b)). (a) There are two categories of particles, active (blue) and passive (gray). An active
particle holds a recipe of the swarm in it (shown in the call-out). Each row in the recipe repre-
sents one kinetic parameter set. The underline shows which kinetic parameter set the particle
is currently using (i.e., which kinetic type it is differentiated into). (b) A recipe is transmitted
from an active particle to a passive particle when they collide, making the latter active. (c) The
activated particle differentiates randomly into a type specified by one of the kinetic parameter
sets in the recipe given to it. (d) A recipe is transmitted between active particles of different
types when they collide. The direction of recipe transmission is determined by a competition
function that picks one of the two colliding particles as a source (and the other as a target)
of transmission based on their properties. (e) The recipe can mutate when transmitted with
small probability.

We thus conducted all the simulations with 10,000 particles contained in a finite,
5,000× 5,000 square space (in arbitrary units; for reference, the maximal percep-
tion radius of a particle was 300). A “pseudo”-periodic boundary condition was
applied to the boundaries of the space. Namely, particles that cross a boundary reap-
pear from the other side of the space just like in conventional periodic boundary con-
ditions, but they do not interact across boundaries with other particles sitting near
the other side of the space. In other words, the periodic boundary condition applies
only to particle positions, but not to their interaction forces. This specific choice of
boundary treatment was initially made because of its simplicity of implementation,
but it proved to be a useful boundary condition that introduces a moderate amount of
perturbations to swarms while maintaining their structural coherence and confining
them in a finite area.

In the simulations, two different initial conditions were used: a random initial
condition made of 9,900 inactive particles and 100 active particles with randomly
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generated one-type recipes distributed over the space, and a designed initial condi-
tion consisted of 9,999 inactive particles distributed over the space, with just one
active particle that holds a pre-designed recipe positioned in the center of the space.
Specifically, recipes of “swinger”, “rotary” and “walker-follower” (shown in Fig.
13.4) patterns were used.

13.4.1 Exploring Experimental Conditions

Using the evolutionary Swarm Chemistry model described above, we studied what
kind of experimental conditions (competition functions and mutation rates) would
be most successful in creating self-organizing complex patterns (Sayama 2011).

The first experiment was to observe the basic evolutionary dynamics of the model
under low mutation rates (pt = 10−3, ps = 10−5). Random and designed (“swinger”)
initial conditions were used. The following four basic competition functions were
implemented and tested:

• faster: The faster particle wins.
• slower: The slower particle wins.
• behind: The particle that hit the other one from behind wins. Specifically, if a

particle exists within a 90-degree angle opposite to the other particle’s velocity,
the former particle is considered a winner.

• majority: The particle surrounded by more of the same type wins. The local
neighborhood radius used to count the number of particles of the same type was
30. The absolute counts were used for comparison.

Results are shown in Fig. 13.10. The results with the “behind” competition func-
tion were very similar to those with the “faster” competition function, and therefore
omitted from the figure. In general, growth and replication of macroscopic structures
were observed at early stages of the simulations. The growth was accomplished by
recruitment of inactive particles through collisions. Once a cluster of active parti-
cles outgrew maximal size beyond which they could not maintain a single coherent
structure (typically determined by their perception range), the cluster spontaneously
split into multiple smaller clusters, naturally resulting in the replication of those
structures. These growth and replication dynamics were particularly visible in sim-
ulations with designed initial conditions. Once formed, the macroscopic structures
began to show ecological interactions by themselves, such as chasing, predation and
competition over finite resources (i.e., particles), and eventually the whole system
tended to settle down in a static or dynamic state where only a small number of
species were dominant. There were some evolutionary adaptations also observed
(e.g., in faster & designed (“swinger”); second row in Fig. 13.10) even with the low
mutation rates used.

It was also observed that the choice of competition functions had significant im-
pacts on the system’s evolutionary dynamics. Both the “faster” and “behind” com-
petition functions always resulted in an evolutionary convergence to a homogeneous
cloud of fast-moving, nearly independent particles. In contrast, the “slower” compe-
tition function tended to show very slow evolution, often leading to the emergence
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slower, designed
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majority, random
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Fig. 13.10 Evolutionary processes observed in the evolutionary Swarm Chemistry model.
Each image shows a snapshot of the space in a simulation, where dots with different colors
represent particles of different types. Labels on the left indicates the competition function and
the initial condition used in each case. Snapshots were taken at logarithmic time intervals.

of crystallized patterns. The “majority” competition function turned out to be most
successful in creating and maintaining dynamic behaviors of macroscopic coherent
structures over a long period of time, yet it was quite limited regarding the capability
of producing evolutionary innovations. This was because any potentially innovative
mutation appearing in a single particle would be lost in the presence of local major-
ity already established around it.

Based on the results of the previous experiment, the following five more competi-
tion functions were implemented and tested. The last three functions that took recipe
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length into account were implemented in the hope that they might promote evolution
of increasingly more complex recipes and therefore more complex patterns:

• majority (probabilistic): The particle surrounded by more of the same type wins.
This is essentially the same function as the original “majority”, except that the
winner is determined probabilistically using the particle counts as relative prob-
abilities of winning.

• majority (relative): The particle that perceives the higher density of the same type
within its own perception range wins. The density was calculated by dividing the
number of particles of the same type by the total number of particles of any
kind, both counted within the perception range. The range may be different and
asymmetric between the two colliding particles.

• recipe length: The particle with a recipe that has more kinetic parameter sets
wins.

• recipe length then majority: The particle with a recipe that has more kinetic pa-
rameter sets wins. If the recipe length is equal between the two colliding particles,
the winner is selected based on the “majority” competition function.

• recipe length × majority: A numerical score is calculated for each particle by
multiplying its recipe length by the number of particles of the same type within
its local neighborhood (radius = 30). Then the particle with a greater score wins.

Results are summarized in Fig. 13.11. As clearly seen in the figure, the majority-
based rules are generally good at maintaining macroscopic coherent structures, re-
gardless of minor variations in their implementations. This indicates that interaction
between particles, or “cooperation” among particles of the same type to support one
another, is the key to creating and maintaining macroscopic structures. Experimen-
tal observation of a number of simulation runs gave an impression that the “majority
(relative)” competition function would be the best in this regard, therefore this func-
tion was used in all of the following experiments.

In the meantime, the “recipe length” and “recipe length then majority” competi-
tion functions did not show any evolution toward more complex forms, despite the
fact that they would strongly promote evolution of longer recipes. What was oc-
curring in these conditions was an evolutionary accumulation of “garbage” kinetic
parameter sets in a recipe, which did not show any interesting macroscopic struc-
ture. This is qualitatively similar to the well-known observation made in Tierra (Ray
1992).

The results described above suggested the potential of evolutionary Swarm
Chemistry for producing more creative, continuous evolutionary processes, but none
of the competition functions showed notable long-term evolutionary changes yet.
We therefore increased the mutation rates to a 100 times greater level than those
in the experiments above, and also introduced a few different types of exogenous
perturbations to create a dynamically changing environment (for more details, see
(Sayama 2011)). This was informed by our earlier work on evolutionary cellular au-
tomata (Salzberg et al. 2004; Salzberg and Sayama 2004), which demonstrated that
such dynamic environments may make evolutionary dynamics of a system more
variation-driven and thus promote long-term evolutionary changes.
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Initial condition: random Initial condition: designed (“swinger”)

faster slower behind faster slower behind

majority majority majority majority majority majority

(probabilistic) (relative) (probabilistic) (relative)

recipe length recipe length recipe length recipe length recipe length recipe length

then majority × majority then majority × majority

Fig. 13.11 Comparison between several different competition functions. The nine cases on
the left hand side started with random initial conditions, while the other nine on the right hand
side started with designed initial conditions with the “swinger” recipe. Snapshots were taken
at time = 22,000 for all cases.

With these additional changes, some simulation runs finally demonstrated con-
tinuous changes of dominant macroscopic structures over a long period of time (Fig.
13.12). A fundamental difference between this and earlier experiments was that the
perturbation introduced to the environment would often break the “status quo” es-
tablished in the swarm population, making room for further evolutionary innova-
tions to take place. A number of unexpected, creative swarm designs spontaneously
emerged out of these simulation runs, fulfilling our intension to create automated
evolutionary design processes. Videos of sample simulation runs can be found on
our YouTube channel (http://youtube.com/ComplexSystem).

13.4.2 Quantifying Observed Evolutionary Dynamics

The experimental results described above were quite promising, but they were eval-
uated only by visual inspection with no objective measurements involved. To ad-
dress the lack of quantitative measurements, we developed and tested two simple
measurements to quantify the degrees of evolutionary exploration and macroscopic
structuredness of swarm populations (Sayama and Wong 2011), assuming that the
evolutionary process of swarms would look interesting and creative to human eyes
if it displayed patterns that are clearly visible and continuously changing. These

http://youtube.com/ComplexSystem


13 Guiding Designs of Self-Organizing Swarms 381

Fig. 13.12 An example of long-term evolutionary behavior seen under dynamic environmen-
tal conditions with high mutation rates. Snapshots were taken at constant time intervals (2,500
steps) to show continuous evolutionary changes.

Table 13.3 Four conditions used for the final experiment to quantify evolutionary dynamics

Name Mutation rate Environmental Collision detection
perturbation algorithm

original-low low off original
original-high high on original
revised-low low off revised
revised-high high on revised

measurements were developed so that they can be easily calculated a posteriori from
a sequence of snapshots (bitmap images) taken in past simulation runs, without re-
quiring genotypic or genealogical information that was typically assumed available
in other proposed metrics (Bedau and Packard 1992; Bedau and Brown 1999; Ne-
haniv 2000).

Evolutionary exploration was quantified by counting the number of new RGB
colors that appeared in a bitmap image of the simulation snapshot at a specific time
point for the first time during each simulation run (Fig. 13.13, right). Since different
particle types are visualized with different colors in Swarm Chemistry, this mea-
surement roughly represents how many new particle types emerged during the last
time segment. Macroscopic structuredness was quantified by measuring a Kullback-
Leibler divergence (Kullback and Leibler 1951) of a pairwise particle distance
distribution from that of a theoretical case where particles are randomly and ho-
mogeneously spread over the entire space (Fig. 13.13, left). Specifically, each snap-
shot bitmap image was first analyzed and converted into a list of coordinates (each
representing the position of a particle, or a colored pixel), then a pair of coordinates
were randomly sampled from the list 100,000 times to generate an approximate pair-
wise particle distance distribution in the bitmap image. The Kullback-Leibler diver-
gence of the approximate distance distribution from the homogeneous case is larger
when the swarm is distributed in a less homogeneous manner, forming macroscopic
structures.
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Fig. 13.14 Temporal changes of the evolutionary exploration measurement (i.e., number of
new colors per 500 time steps) for four different experimental conditions, calculated from
snapshots of simulation runs taken at 500 time step intervals (from (Sayama and Wong
2011)). Each curve shows the average result over 12 simulation runs (3 independent runs × 4
different initial conditions given in (Sayama 2011)). Sharp spikes seen in “high” conditions
were due to dynamic exogenous perturbations.

We applied these measurements to simulation runs obtained under each of the
four conditions shown in Table 13.3. Results are summarized in Figs. 13.14 and
13.15. Figure 13.14 clearly shows the high evolutionary exploration occurring un-
der the conditions with high mutation rates and environmental perturbations. In the
meantime, Figure 13.15 shows that the “original-high” condition had a tendency to
destroy macroscopic structures by allowing swarms to evolve toward simpler, homo-
geneous forms. Such degradation of structuredness over time was, as mentioned ear-
lier, due to a technical problem in the previous implementation of collision detection
(Sayama 2011; Sayama and Wong 2011) that mistakenly depended on perception
ranges of particles. The “revised” conditions used a fixed collision detection algo-
rithm. This modification was found to have an effect to maintain macroscopic struc-
tures for a prolonged period of time (Fig. 13.15). Combining these results together
(Fig. 13.16), we were able to detect automatically that the “revised-high” condi-
tion was most successful in producing interesting designs, maintaining macroscopic
structures without losing evolutionary exploration. This conclusion also matched
subjective observations made by human users.
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Fig. 13.15 Temporal changes of the macroscopic structuredness measurement (i.e.,
Kullback-Leibler divergence of the pairwise particle distance distribution from that of a
purely random case) for four different experimental conditions, calculated from snapshots
of simulation runs taken at 500 time step intervals (from (Sayama and Wong 2011)). Each
curve shows the average result over 12 simulation runs (3 independent runs with 4 different
initial conditions). The “original-high” condition loses macroscopic structures while other
conditions successfully maintain them.

Fig. 13.16 Evolutionary exploration and macroscopic structuredness averaged over t =
10,000−30,000 for each independent simulation run (from (Sayama and Wong 2011), with
slight modifications). Each marker represents a data point taken from a single simulation run.
It is clearly observed that the “revised-high” condition (shaded in light blue) most success-
fully achieved high evolutionary exploration without losing macroscopic structuredness.
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13.5 Conclusions

In this chapter, we have reviewed our recent work on two complementary ap-
proaches for guiding designs of self-organizing heterogeneous swarms. The com-
mon design challenge addressed in both approaches was the lack of explicit criteria
for what constitutes a “good” design to produce. In the first approach, this challenge
was solved by having a human user as an active initiator of evolutionary design pro-
cesses. In the second approach, the criteria were replaced by low-level competition
functions (similar to laws of physics) that drive spontaneous evolution of swarms in
a virtual ecosystem.

The core message arising from both approaches is the unique power of evolution-
ary processes for designing self-organizing complex systems. It is uniquely pow-
erful because evolution does not require any macroscopic plan, strategy or global
direction for the design to proceed. As long as the designer—this could be either an
intelligent entity or a simple unintelligent machinery—can make local decisions at
microscopic levels, the process drives itself to various novel designs through unpre-
scribed evolutionary pathways. Designs made through such open-ended evolution-
ary processes may have a potential to be more creative and innovative than those
produced through optimization for explicit selection criteria.

We conclude this chapter with a famous quote by Richard Feynman. At the time
of his death, Feynman wrote on a blackboard, “What I cannot create, I do not un-
derstand.” This is a concise yet profound sentence that beautifully summarizes the
role and importance of constructive understanding (i.e., model building) in scien-
tific endeavors, which hits home particularly well for complex systems researchers.
But research on evolutionary design of complex systems, including ours discussed
here, has illustrated that the logical converse of the above quote is not necessar-
ily true. That is, evolutionary approaches make this also possible—“What I do not
understand, I can still create.”
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