
Chapter 11
Guided Self-Organization of Input-Driven
Recurrent Neural Networks∗

Oliver Obst and Joschka Boedecker

11.1 Introduction

To understand the world around us, our brains solve a variety of tasks. One of the
crucial functions of a brain is to make predictions of what will happen next, or in
the near future. This ability helps us to anticipate upcoming events and plan our
reactions to them in advance. To make these predictions, past information needs
to be stored, transformed or used otherwise. How exactly the brain achieves this
information processing is far from clear and under heavy investigation. To guide
this extraordinary research effort, neuroscientists increasingly look for theoretical
frameworks that could help explain the data recorded from the brain, and to make
the enormous task more manageable. This is evident, for instance, through the fund-
ing of the billion-dollar "Human Brain Project", of the European Union, amongst
others. Mathematical techniques from graph and information theory, control the-
ory, dynamical and complex systems (Sporns 2011), statistical mechanics (Rolls
and Deco 2010), as well as machine learning and computer vision (Seung 2012;
Hawkins and Blakeslee 2004), have provided new insights into brain structure and
possible function, and continue to generate new hypotheses for future research.

A marked feature of brain networks is the massive amount of recurrent connec-
tions between cortical areas, especially on a local scale (Douglas et al. 2004). Since
information in these recurrent connections, or loops, can circulate between many
neurons in a given circuit, they are ideally suited to provide a time-context for com-
putations leading to predictions about future events. One particular mathematical
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model that is used to investigate the consequences of loops for computation and
optimization in neuronal circuits are recurrent neural networks (RNNs).

In RNNs, many detailed properties of real neurons are abstracted for the sake of
tractability, but important general concepts are kept. Elements of these networks are
simple nodes that combine inputs from other nodes in the network, usually in a non-
linear fashion, to form their outputs. They are connected in a directed graph, which
may contain cycles. In input-driven RNNs, a constant stream of input data drives
the dynamics of the network. Dedicated output units can then use this dynamics to
compute desired functions, for instance for prediction or classification tasks. Since
they can make use of the temporal context provided by the recurrent connections,
RNNs are very well suited for time-series processing, and are in principle able to
approximate any dynamical system (Maass et al. 2007).

While the recurrent connections of RNNs enable them to deal with time-
dependencies in the input data, they also complicate training procedures compared
to algorithms for networks without loops (e.g., Backpropagation (Rumelhart et al.
1986) or R-Prop (Riedmiller and Braun 1993)). Notably, training RNNs with tradi-
tional training methods suffer from problems like slow convergence and vanishing
gradients. This slow convergence is due to the computational complexity of the al-
gorithms training all of the connections in a network (such as BPTT (Werbos 1990)
or RTRL (Williams and Zipser 1989)), as well as to bifurcations of network dynam-
ics during training, which can render gradient information unusable (Doya 1992).
Also, derivatives of loss functions need to be propagated over many time steps,
which leads to a vanishing error signal (Bengio et al. 1994; Hochreiter 1998).

The realization of these fundamental issues led to alternative ways of using and
training RNNs, some of which can be summarized in the field of Reservoir Com-
puting methods (see, e.g., a recent overview by Lukovsevivcius and Jaeger 2009),
specialized architectures like the Long Short Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber 1997) or training by evolutionary algorithms as
in the Evolino approach (Schmidhuber et al. 2007). The Reservoir Computing field
has been an active part of RNN research over the last decade, while there was less
activity in gradient-descent-like methods which appear to generate renewed interest
only recently (Bengio et al. 2012), partially due to the development of more efficient
training techniques as in (Martens and Sutskever 2011).

Reservoir methods implement a fixed high-dimensional reservoir of neurons, us-
ing random connection weights between the hidden units, chosen small enough to
guarantee dynamic stability. Input weights into this reservoir are also selected ran-
domly, and reservoir learning procedures train only the output weights of the net-
work to generate target outputs. A particular appeal of reservoir methods is their
simplicity, and that the computation required for training is relatively low.

Taking the echo state network approach as a specific example of a typical reser-
voir network (see Fig. 11.1), it will consist of the following components: A random
input-matrix Win combines input values u linearly and sends them to the units in the
high-dimensional hidden layer, referred to as the reservoir. The units in the reser-
voir also have recurrent connections amongst each other, collected in the matrix
Wres. These loops implement a fading memory, so information can remain in the
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Fig. 11.1 The architecture of a typical Echo State Network (ESN), which belongs to the class
of reservoir computing networks. In ESNs, the input and recurrent hidden layer (reservoir)
connections are fixed randomly, and only output weights are trained. The reservoir projects
the input stream nonlinearly into a high-dimensional representation, which can then be used
by a linear readout layer. An important precondition for the approach to work is that the
reservoir implements a fading memory, i.e. that reservoir states do not amplify, but fade out
over time if no input is presented to the network.

system for some time. In this context, the metaphor of a reservoir is often used since
the hidden layer can be seen as a water reservoir that gets disturbed by a drop, but
slowly returns to its initial state after the ripples from the input have decayed. This
reservoir state x is mapped at time step t +1 by an activation function f () such as a
hyperbolic tangent, in the following way:

xt+1 = f (Wres ∗ xt +Win ∗ut+1) (11.1)

The input and hidden layer connections, Win and Wres, are not trained in reservoir
computing approaches. It is also possible to introduce feedback connections from
outputs back into the reservoir (Lukovsevivcius and Jaeger 2009). To approximate a
specific target function, only the output weights wout are trained with a simple lin-
ear regression. This drastically simplifies the training procedure compared to previ-
ous approaches, while leading to excellent performance on time-series processing
tasks (Jaeger and Haas 2004). It also avoids the problems of vanishing gradient in-
formation and disruptive bifurcations in the dynamics since no error gradients have
to be propagated into the fixed, random parts of the network.

This approach works very well in practice. However, results will depend on the
particular random set of weights that is drawn. In fact, there is considerable vari-
ability in performance between runs of networks with equal parameter settings, but
different reservoir weights drawn each time (Ozturk et al. 2007). Striking a balance
between the two extremes of fully trained RNNs and reservoir methods, it is in-
teresting to retain some of the simplicity and efficiency of reservoir methods, but
at the same time avoid some of the variability that comes with randomly created
reservoirs. Self-organized methods are of interest here, because the initial random
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configuration of the reservoir is in general already useful to perform the task. Each
unit or connection then could, by way of local updates, contribute to an improved
version of the reservoir, dependent on the data that each unit or weight processes
over time. Advantages of self-organized methods are their potential for scalability,
since they usually rely mainly on locally available information, making them good
candidates for distributed processing.

Driving self-organization into a desired direction requires an understanding what
properties a good RNN or reservoir network has. The mathematical tools to un-
derstand computation in these networks (which are instances of the larger class
of input-driven dynamical systems) are still under active development (Manjunath
et al. 2012). However, different perspectives, e.g., from functional analysis, dynam-
ical systems, information theory, or statistical learning theory already offer insights
towards this goal. They can provide answers to questions such as: how well can a
given RNN approximate a given class of functions? How does it implement a cer-
tain function within the collective of its distributed nodes? How much memory does
an RNN provide about past inputs and where is this information stored? How does
information flow through the system at different time points in time and space? How
well can it separate different inputs into different network states, and how well will
it generalize on data that has not been seen during training? All of these aspects
contribute to the successful performance of a network on a given task (or class of
tasks). Understanding how to improve them will provide possible target signals to
enrich and guide the self-organized optimization process of an RNN.

In this chapter, we review attempts that have been made towards under-
standing the computational properties and mechanisms of input-driven dynamical
systems like RNNs, and reservoir computing networks in particular. We provide
details on methods that have been developed to give quantitative answers to the
questions above. Following this, we show how self-organization may be used to im-
prove reservoirs for better performance, in some cases guided by the measures pre-
sented before. We also present a possible way to quantify task performance using
an information-theoretic approach, and finally discuss promising future directions
aimed at a better understanding of how these systems perform their computations
and how to best guide self-organized processes for their optimization.

11.2 Assessing the Computational Power and Mechanisms of
Information Processing of Reservoirs

In many cases, artificial neural networks are created with a specific goal in mind,
for example to approximate a particular function or system. Training success and
computational capability of the network with respect to this task are usually assessed
on data that have not been used for training. Similarly to the training data, these are
expected to match properties of the (yet unknown) application data well enough.
A loss functional like the mean square error (MSE) or the cross-entropy is used to
assess the quality of the trained system. For specific applications of the network,
this is a standard approach that usually delivers meaningful results. When a neural
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network is trained for a single purpose, it is not necessary to determine its general
computational power, and the loss on the validation data or during its application
may be the only relevant property.

The loss on a specific class of problems does not express the general computa-
tional power of the network, though. This property becomes more interesting when a
part of the system is used for more than one task: relevant cases would be dynamical
reservoirs that are used for multiple applications, networks that are trained “online”
when the task changes, or to set up or to compare generic microcircuits. One of our
motivations to evaluate mechanisms of information processing is to compare self-
organized approaches within reservoirs. Ideally, self-organization leads to measur-
able effects in the reservoir which positively affect the performance of the system.
In this section, we present a number of measures for different qualities of dynamical
systems that are useful in this evaluation. These measures can be roughly divided
into approaches that are based on or related to information theory, approaches that
relate to learning theory, and dynamical systems theory.

11.2.1 Information-Theory Related Measures

Information theory and (Shannon) entropy have been used in a number of ways in
neural network and complex systems research. One particular heuristic to measure
(and eventually improve) RNN is to estimate and influence the entropy distribution
of firing rates of a neuron. In individual biological neurons, for example, an approx-
imate exponential distribution of the firing rate has been observed in visual cortical
neurons (Baddeley et al. 1997). Under the constraint of a fixed energy budget, i.e., a
fixed mean firing rate, an exponential distribution maximizes the potentially avail-
able information: it is the maximum entropy distribution for positive random values
with a given mean. Triesch (2005) uses this idea to adapt the intrinsic excitability of
a neuron with an online adaption. In this approach, the Kullback-Leibler divergence
is used to measure the difference between the sample distribution of an individ-
ual neuron’s output, and the exponential distribution. Target distributions different
from the exponential distribution are plausible dependent on specific circumstances.
For example, in reservoir networks with real-valued units, normal distributions have
been used (Schrauwen et al. 2008) to reflect the use of both negative and posi-
tive values. In both cases, the mechanism attempts to maximize the information per
available energy unit locally at each neuron. Since energy constraints in reservoirs
of artificial neural networks are typically not an issue, the maximum entropy dis-
tribution for these would in fact be the uniform. Without an energy constraint, the
approach resembles the Infomax principle (Linsker 1987), where the average mutual
information between input and output is maximized. As Bell and Sejnowski point
out in their approach to maximize the mutual information for non-linear units (Bell
and Sejnowski 1995), for invertible continuous deterministic mappings this mutual
information is maximized by maximizing the output entropy alone. Due to the lim-
ited degrees of freedom of the approach, the desired target distribution cannot be
approximated for every kind of input (Boedecker et al. 2009). Intrinsic plasticity
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as well as its particular limitation can be related to Ashby’s law of requisite va-
riety (Ashby 1956) in that by increasing variety available in the reservoir a larger
variety of outputs can be successfully approximated on one hand. On the other hand,
the lack of variety in the mechanism adapting the individual neurons is also respon-
sible for the difficulty in increasing the entropy for a variety of inputs.

The field of information dynamics (Lizier et al. 2007, 2012) provides
information-theoretic measures that explicitly deal with processes or time-series.
Information storage, as one of the tools, quantifies how much of the stored informa-
tion is actually in use at the next time step when the next process value is computed.
A(X) is expressed as the mutual information between the semi-infinite past of the
process X and its next state X ′, with X (k) denoting the last k states of that process:

A(X) = lim
k→∞

A(k)(X) (11.2)

A(X ,k) = I(X (k);X ′) (11.3)

Information transfer, expressed as transfer entropy (Schreiber 2000), quantifies
the influence of another process on the next state (for a formal definition, see
Sect. 11.3.3 below). Boedecker et al. (2011) use these measures, to gain a better
understanding of computational mechanisms inside the reservoir, and how they in-
crease task performance for certain tasks at the phase transition between ordered and
unstable dynamics. For a rote-memory task, a sharp peak can be observed in both
information storage and information transfer near this phase transition, and suggests
that a maximized capacity for information storage and information transfer corre-
lates well with task performance in this dynamics regime, and this particular task.
Prokopenko et al. (2011) suggest the Fisher information matrix as a way to detect
phase transitions, but this has, to our knowledge, not been applied to RNN yet.

Fisher information also plays a role in quantifying the memory stored in a dy-
namical reservoir: Information about the recent input in reservoir networks is stored
in the transient dynamics, rather than in attractor states. To quantify this information
storage, Ganguli et al. (2008) use Fisher information as basis for a measure of mem-
ory traces in networks. The measure is applicable for systems with linear activations
f(x) = x, subject to Gaussian noise z, and input v(t):

x(t) = f(Winv(t)+Wx(t − 1)+ z(t)). (11.4)

The Fisher Memory Matrix (FMM) between the present state of the system x and
the past signal is defined as

Jk,l(v) =
〈
− δ 2

δvkδsl

logP(x(t)|v)
〉

P(x(t)|v)
. (11.5)

Diagonal elements J(k) ≡ Jk,k are the Fisher information that the system keeps in
x(t) about a pulse at k steps back in the past, i.e., the decay of the memory trace
of a past input. J(k) is called the Fisher memory curve (FMC). Tino and Rodan
(2013) investigate the relation between J(k) and the short term memory capacity
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MC (Jaeger 2001) (details on MC in the following subsection), and show that the
two are closely related in linear systems. For these, J(k) is independent of the actual
input used. In the general, nonlinear case that is interesting for us, however, the
FMC depends on the input signal, as the memory capacity MC does, and is hard to
analyze.

A measure for Active Information Storage in input-driven systems has been pro-
posed to quantify storage capabilities of a nonlinear system independent of particu-
lar inputs (Obst et al. 2013). The measure is an Active Information Storage (Lizier
et al. 2012) where the current input un+1 is conditioned out:

AU
X (k) =

〈
aU

X (n+ 1,k)
〉

n , with (11.6)

aU
X (n+ 1,k) = log

p(x(k)n ,xn+1|un+1)

p(x(k)n ) p(xn+1|un+1)
(11.7)

= log
p(xn+1|x(k)n ,un+1)

p(xn+1|un+1)
. (11.8)

The idea for this measure is to remove influences of structure in input data, and
to only characterize the system itself, rather than a combination of system and input
data. In theory, this influence would be removed by having the history sizes in com-
puting the information storage converge to infinity. Large history sizes, however,
require large amounts of data to estimate the involved joint probabilities, and this
data, and the time required for the estimation is often not available. Active infor-
mation Storage for input-driven systems assesses one aspect of the computational
capabilities of a dynamical system, others, like the information transfer, would need
to be defined for input-driven systems in a similar way.

11.2.2 Measures Related to Learning Theory

Legenstein and Maass (2007) propose two measures to quantify the computational
capabilities of reservoirs in the context of liquid state machines, one of the two
main flavors of reservoir computing networks: the linear separation property and
the generalization capability. The linear separation property quantifies the ability
of a computational system to map different input streams to significantly different
internal states. This is useful because only then will the system be able to (linearly)
map internal states to different outputs. The measure is based on the rank of an
n×m matrix M whose columns are state vectors xui(t0) of circuit C after having
been driven by input stream ui up to a fixed time t0. These state vectors are collected
for m different input streams, i.e., u1, . . . ,um. If the rank of M is m, then C, together
with a linear readout, is able to implement any assignment of output units yi ∈ R at
time t0 for inputs ui.

For the generalization ability, they propose to approximate the VC-dimension
of class HC of the reservoir, which includes all maps from a set Suniv of inputs
u into {0,1} which can be implemented by a reservoir C. They present a theorem



326 O. Obst and J. Boedecker

(and corresponding proof sketch) stating that under the assumption that Suniv is finite
and contains s inputs, the rank r of a n×s matrix whose columns are the state vectors
xu(t0) for all inputs u in Suniv approximates the VC-dimension(HC), specifically
r ≤ VC-dimension(HC)≤ r+ 1.

According to (Legenstein and Maass 2007), a simple difference of both (normal-
ized) measures leads to good predictions about which reservoirs perform well on a
range of tasks.

The loss or the success on a set of test functions is another possibility to charac-
terize the systems from a learning point of view. One such measure is the short term
memory capacity MC (Jaeger 2001) that we briefly mentioned above. To compute
the MC, a network is trained to generate delayed versions v(t − k) of a single chan-
nel input v(k). The measure then is the sum of the precisions for all possible delays,
expressed as a correlation coefficient:

MC =
∞

∑
k=1

MCk (11.9)

MCk = max
wout

k

cov2(v(t − k),yk(t))
σ2(v(t))σ2(yk(t))

, with (11.10)

yk(t) = wout
k

(
v(t)
x(t)

)
, and x(t) = f(Winv(t)+Wx(t − 1)).

The symbols cov and σ2 denote covariance and variance, respectively. Each co-
efficient takes values between 0 and 1, and expresses how much of the variance in
one signal is explainable by the other. As shown in (Jaeger 2001), for i.i.d. input and
linear output units, the MC of N-unit RNN is bounded by N. The measure is related
to the Fisher memory matrix approach above.

Another approach in this area is the information processing capacity of a dynam-
ical system (Dambre et al. 2012). It is a measure based on the mean square error
MSE in reconstructing a set of functions z(t). The idea is to distinguish from ap-
proaches that view dynamical systems merely providing some form of memory for
a – possibly nonlinear – readout. In (Dambre et al. 2012), systems are regarded as
both providing memory and performing nonlinear computation. The readouts then
only combine states of the system linearly, attempting to minimize the MSE for a
function z(t), so that all essential aspects of computation have to be covered by the
dynamical system. The capacity of the system for approximating the desired output
is computed using the (normalized) MSE of the optimal linear readout,

CT [X ,z] = 1− minW MSET [ẑ]
〈z2〉T

(11.11)

This computed capacity is dependent on the input. In order to avoid an influence
of structure in the input on the results, i.i.d. input is required for the purpose of mea-
suring the capacity. To measure information processing capacity, several functions z
have to be evaluated. The idea is that if z and z′ are orthogonal,CT [X ,z] and CT [X ,z′]
measure independent properties of the system. The total capacity, on the other hand,
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is limited by the number of variables xi, so that a finite number of output functions is
sufficient. A possible choice of output functions are Legrende polynomials, which
are orthogonal over (−1,1).

The proposed approach has been used to compare different implementations of
dynamical systems, like reaction-diffusion systems and reservoirs. An interesting
idea that is also mentioned in (Dambre et al. 2012) would be to extend the approach
so that the underlying system adapts to provide specific mappings. One possibility
might be to adjust the number of internal units in an online-learning setting, e.g.,
when the task changes. The requirement for i.i.d. input is a limitation of the current
approach, though it appears that even in the non-i.i.d. input case useful information
about the system can be gathered. It might also be interesting to compare how the
approach relates to the information-dynamics framework (Lizier et al. 2007, 2012)
to quantify computation in non-linear systems.

11.2.3 Measures Related to Dynamical Systems Theory

To gain understanding of the internal operations that enable high-dimensional RNNs
solving a given task, a recent effort by Sussillo and Barak (2013) draws on tools
from dynamical systems theory. Using numerical optimization techniques, the au-
thors identify fixed points and points of only gradual change (also called slow points)
in the dynamics of the networks. Linearization around these points then reveals com-
putational mechanisms like fixed points that implement memories, saddle points
(fixed points with one unstable dimension) that enable switching between memory
states, and approximate plane attractors that organize the storage of two consecutive
input values to be memorized. For the tasks that were looked at in this work, the
computational mechanisms could be inferred from the linearized dynamics around
the set of fixed and slow points, and task performance of the trained networks was
well explained.

In (Williams and Beer 2010), the authors argue for a complementary role
of dynamical analysis, which involves, e.g., looking at attractors and switching
between attractor states, and also an information-theoretic analysis when trying to
understand computation in dynamical systems (including input-driven ones – even
though the input might simply be considered as part of the environment and is as-
sumed to be distributed uniformly). They evolve agents that are controlled by small
continuous-time recurrent neural networks (CTRNNs) and evaluate their behavior
in a relational categorization task. This involves keeping a memory about different
objects the agent can sense, and reacting with avoid or catch behaviors based on
the relation of both objects. Dynamical analysis shows that the state of a specific
neuron in the CTRNN is correlated with the size of the first object, and switching on
or off a different neuron determines whether the agent catches or avoids the second
object. Both features are found to be connected through a saddle-node bifurcation
in the CTRNN dynamics whose timing and location depends on properties of
the second object. The desire to understand the flow of information through the
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brain-body-environment system between these events leads the authors to
information-theoretic measures unrolled over time (similar to the motivation and
approach in (Lizier et al. 2007)). By considering the temporal evolution of measures
like conditional mutual information, they are able to measure information gain or
information loss of a state variable at specific time points. Similarly, they can quan-
tify the specific information that a state variable carries about a particular stimulus
at each time step. The behavior of the agent can then be explained by a sudden gain
and then loss of information about object sizes in the first neuron, and then a rapid
gain of information about relative size of the objects. In summary, the authors state
that the two different ways to look at the computational mechanisms of the RNN
differ, but provide coherent and even complementary information on how the agent
solves the task that would be difficult to get with either approach alone.

Another approach from dynamical systems theory to understand and predict
computational capabilities in RNNs builds on the concept of Lyapunov exponents.
Although these concepts are only defined for autonomous dynamical systems, an
analogous idea is to introduce a small perturbation into the state of one of two iden-
tical networks but not the other, and observe the time evolution of the state differ-
ence while the networks are driven with identical input. In case the perturbation
fades out, the network is assumed to be in the stable phase of the dynamics. If it
amplifies, the network is in the unstable, and possibly, the chaotic dynamics regime.
If it approximately persists, the network is arguably at the phase-transition between
stable and unstable regimes. Example applications of this approach can be found
in (Bertschinger and Natschläger 2004; Boedecker et al. 2011). In (Bertschinger
and Natschläger 2004), it was observed that the performance of binary threshold
unit RNNs is maximized at this phase-transition for a task that requires memory
and nonlinear processing to be solved successfully. This result was later replicated
for analogue Echo State Networks in (Boedecker et al. 2011) for a rote-memory
task; however, it was also found that some tasks do not benefit from reservoirs at the
phase-transition, as observed before in the complex systems literature (e.g., Mitchell
et al. 1993).

11.3 Improving Reservoir Information Processing Capabilities
through Self-Organized Adaptation

A pragmatic way to evaluate the quality of a reservoir is to train the output, and
evaluate it on a training or validation set (Lukovsevivcius 2012a). In most circum-
stances, training is fast so that a number of hyper-parameter settings can be tested.
Lukovsevivcius (2012a) proposes a number of invaluable recipes to reservoir pro-
duction. The recipes are very helpful for creating a good enough reservoir before
output weights are trained. They show up promising directions for exploration, but
are intended to be used as a guide rather than hard and fast rules, as some of them
are mutually exclusive. The approaches selected for this section are intended to im-
prove the reservoir itself in a self-organized way after it was created or selected.
Possibly, this might happen simultaneously in combination with online learning of
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output weights, or, alternatively, as a self-organized pre-training approach followed
by the standard offline output weight training.

11.3.1 SORN: Self-Organized Optimization Based on 3 Local
Plasticity Mechanisms

One approach that has demonstrated how self-organization can be leveraged to op-
timize a reservoir network can be found in (Lazar et al. 2009). SORN is a self-
organizing recurrent network architecture using discrete-time binary units. The three
plasticity mechanisms are: a variant of spike-time dependent plasticity (STDP), ad-
justing certain weights in the reservoir, a synaptic normalization rule (SN) responsi-
ble to keep the sum of afferent weights of a neuron constant, and intrinsic plasticity
(IP) learning to adapt the unit firing threshold. The network state evolves using the
following update functions:

Ri(t + 1) =
NE

∑
j=1

W EE
i j (t)x j(t)−

NI

∑
k=1

W EI
ik yk(t)−T E

i (t) (11.12)

xi(t + 1) =Θ(Ri(t + 1)+ vU
i (t)) (11.13)

yi(t + 1) =Θ(
NE

∑
j=1

W IE
i j (t)x j(t)−TI

j ) (11.14)

T E and T I are threshold values, drawn randomly from positive intervals for ex-
citatory units and inhibitory units, respectively. Θ is the Heaviside step function,
and vU

i (t) the network input drive. Matrices W IE and W EI are fully connected, and
represent connections between inhibitory and excitatory units, and vice versa. W EE

holds connections between excitatory units. These are random, sparse, and with-
out self-recurrence. Inhibitory units are not directly connected to each other. All
weights are drawn from the interval [0,1], and the three matrices W IE , W EI , and
W EE are normalized, i.e., ∑ j Wi j = 1. The network state at time t is given by the two

binary vectors x(t) ∈ {0,1}NE
, and y(t) ∈ {0,1}NI

, representing activity of the NE

excitatory and the NI inhibitory units, respectively.
STDP and synaptic scaling update connections of excitatory units of the reser-

voir, while IP changes their thresholds. Inhibitory neurons and their connections
remain unchanged. In the SORN the STDP for some small learning constant ηstd p

is formalized as:

ΔW EE
i j (t) = ηstd p(xi(t)x j(t − 1)− xi(t − 1)x j(t)). (11.15)

Synaptic scaling normalizes the values to sum up to one:

ΔW EE
i j (t) =W EE

i j (t)/∑
j

W EE
i j (t). (11.16)
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Fig. 11.2 (left) Normalized performance versus task difficulty as indicated by n, the number
of repeated characters of a word which the network should predict. Different network sizes
were tested. The numbers on top indicate the maximum possible performance – which is
limited by the inherent randomness of the first character of a word within the sequence.
Standard deviation among trials is indicated by the error bars. (right) Highest value of n for
which a network achieved more than 95% of maximum performance as function of network
size. The plastic SORN networks are able to deal with significantly harder tasks than the
static reservoirs at this performance level. Graphs reproduced from (Lazar et al. 2009).

IP learning is responsible for spreading activations more evenly, using a learning
rate ηip, and a target firing rate of HIP:

T E
i (t + 1) = T E

i (t)+ηip(xi(t)−HIP (11.17)

Lazar et al. (2009) show that the SORN outperforms static reservoir networks us-
ing a letter prediction task. The network has to predict the next letter in a sequence of
two different artificial words of length n+2. These words are made up of three dif-
ferent characters, with the second character repeated n times. The first character of a
word is random and the network cannot do better than randomly guessing which one
will come up. If the reservoir is able to efficiently separate the repeated character in
the middle part of the word, though, the network can learn to count these characters
and predict the rest of the sequence correctly. Figure 11.2 compares the normalized
performance of SORNs and static reservoir networks of different sizes on instances
of the task with increasing n (increased difficulty). SORNs are able to outperform
static reservoirs clearly on this task. A PCA analysis in (Lazar et al. 2009) reveals
that the SORN indeed shows a much better separation property and maps repeated
inputs to distinct network states, while the states of static reservoirs are much more
clustered together and thus harder to distinguish by the linear readout.

The combination of the three mechanisms appears to be a key to successful self-
organization in an RNN. Figure 11.3 illustrates that the dynamics of SORN reser-
voir become sub-optimal if only two of the three plasticity mechanisms are active.
Without synaptic normalization, the network units become highly synchronized.
This severely restricts the representational power of the reservoirs. If IP learning
is switched off, the activity of neurons in the network becomes unbalanced. Some
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Fig. 11.3 Activity snapshots for 50 randomly selected reservoir neurons. (left) A reservoir
without synaptic scaling develops highly synchronized, seizure-like firing patterns. (right)
Without the IP mechanism, neuron activity is unevenly distributed with some neurons firing
almost constantly while others are nearly silent. Graphs reproduced from (Lazar et al. 2009).

neurons fall nearly silent while others are active almost all the time. This is in con-
trast to the case with IP where activity is more evenly distributed, enabling a richer
representation of information in the reservoir.

Though some of the self-organizing mechanisms like STDP are biologically plau-
sible, there are not too many examples of successful applications for training RNNs,
or, as Lazar et al. (2009) states, “Understanding and controlling the ensuing self-
organization of network structure and dynamics as a function of the network’s in-
puts is a formidable challenge”. For time-series prediction and system identification
tasks, an extension of the approach to analog units would be required. Also, an in-
vestigation of the information dynamics during and after adaptation may provide
insights, for example into the relation between reservoir configuration and informa-
tion transfer.

11.3.2 Hierarchical Self-Organizing Reservoirs

A different approach based on self-organized optimization of reservoirs is presented
in (Lukovsevivcius 2012b). The author compares classical ESNs and recurrent RBF-
unit based reservoir networks (called Self-Organizing Reservoirs, SORs) which re-
semble Recurrent Self-Organizing Maps (RSOMs) (Voegtlin 2002). The input and
reservoir weights of the SOR are adapted by learning rules traditionally used for
Self-Organizing Maps (SOMs) (Kohonen 2001) and NeuralGas networks (Martinetz
and Schulten 1991).

The update equations for the SOR are:

x̃i(n) = exp(−α‖vin
i −u(n)‖2 −β‖vi− x(n− 1)‖2), i = 1, . . . ,Nx, (11.18)

x(n) = (1− γ)x(n− 1)+ γ x̃(n). (11.19)

Here, the internal reservoir neuron states at time n are collected in vector x ∈
R

Nx and their update in vector x̃ ∈ R
Nx . The factor γ ∈ (0,1] is the leak-rate. The

vector u ∈ R
Nu contains the input-signal, while matrices Vin and V are the input

and recurrent weight matrix, respectively, whose ith column vectors are denoted by
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vin
i ∈R

Nx and vi ∈R
Nx . Parameters α and β scale the input and recurrent distances,

and ‖ · ‖ denotes the Euclidean norm.
The unsupervised training of the SOR updates the input and recurrent weights as:

vall
i (n+ 1) = vall

i (n)+η(n)h(i,n)([u(n);x(n)]− vall
i (n)), (11.20)

where vall
i (n) ≡ [vin;v] and η(n) is a time-dependent learning rate. The learning-

gradient distribution function h is defined either as:

h(i,n) = exp(−dh(i,bmu(n))2/bh(n)
2), (11.21)

where dh(i, j) is the distance between reservoir units i and j on a specific topol-
ogy, bmu(n) = argmaxi(xi(n)) is a function returning the index of a best matching
unit (BMU), and bh(n) is the time-dependent of the learning gradient distribution.
With this definition of h, the learning proceeds according to the SOM algorithm. To
implement NeuralGas-like learning, it suffices to change this definition to:

hng(i,n) = exp(−dng(i,n)/bh(n)), (11.22)

where dng(i,n) denotes the index of node i in the descending ordering of activ-
ities xi(n) (see (Lukovsevivcius 2012b) for additional details). Both algorithms
were found to be similarly effective to improve the pattern separation capability
of reservoirs compared to standard ESNs when tested on detection of certain signal
components on a synthetic temporal pattern benchmark, and on classification of
handwritten digits from a stream of these characters. Further improvements are re-
ported if these SORs are stacked on top of each other in a hierarchy, trained in a
layer-by-layer fashion. However, results only improve if enough time is given for
the self-organization process to find suitable representations. If layers are stacked
with very little training time for each of them, performance actually worsens.

11.3.3 Guided Self-Organization of Reservoir Information
Transfer

In (Obst et al. 2010), the information transfer between input data and desired out-
puts is used to guide the adaptation of the self-recurrence in the hidden layer of a
reservoir computing network. The idea behind this step is to change the memory
within the system with respect to the inherent memory in input and output data (see
Section 11.4 below for a a discussion which develops these ideas further).

The network dynamics is updated as:

x(k+ 1) = diag(a)Wy(k)+ (I− diag(a))y(k)+winu(k) (11.23)

y(k+ 1) = f(x(k+ 1)), (11.24)

where xi, i = 1, . . . ,N are the unit activations, W is the N ×N reservoir weight ma-
trix, win the input weight vector, a = [a1, . . . ,aN ]

T a vector of local decay factors,
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I is the identity matrix, and k denotes the discrete time step. As a nonlinearity,
f (x) = tanh(x) is used. The ai represent the coupling of a unit’s previous state with
the current state, and are computed as:

ai =
2

1+mi
,

where mi represents the memory length of unit i (mi ∈ {1,2,3, . . .}), initialized to
mi = 1. Increasing individual mi through adaptation increases the influence of a
unit’s past states on its current state. The information transfer is quantified as a
conditional mutual information or transfer entropy (Schreiber 2000):

TX→Y = lim
k,l→∞

T (k,l)
X→Y ,with (11.25)

T (k,l)
X→Y = I(X (l);Y ′|Y (k)). (11.26)

Parameters k and l are history sizes, which lead to finite-sized approximations of the
transfer entropy for finite values.

In a first step, the required history size l is determined which maximizes the
information transfer Tu→v from input u to output v. This value will increase for
successively larger history sizes, but the increases are likely to level off for large
values of l. Therefore, l is determined as the smallest value which is still able to
increase Tu→v by more than a threshold ε:

Tu→v(1, l̂+ 1)≤ Tu→v(1, l̂)+ ε and (11.27)

Tu→v(1, l)> Tu→v(1, l − 1)+ ε for all l < l̂. (11.28)

In a second step, the local couplings of the reservoir units are adapted so that the
transfer entropy from the input of each unit to its respective output is optimized for
the particular input history length l̂, as determined in step one. Over each epoch θ
of length �, we compute the transfer entropy from activations x(�)i to output y(�)i for
each unit i:

teθ
i = T

x(�)i →y(�)i
(1, l̂).

If the information transfer during the current epoch θ exceeds the information trans-
fer during the past epoch by a threshold (i.e., teθ

i > teθ−1
i + ε), the local memory

length mi is increased by one. In case teθ
i < teθ−1

i − ε , the local memory length is
decreased by one, down to a minimum of 1. The decay factors ai are fixed once they
stabilize, which ends the pre-training phase.

In (Obst et al. 2010), the method is tested on a one-step ahead prediction of unidi-
rectionally coupled maps and of the Mackey-Glass time series benchmark. Showing
results for the former task as an example, Figure 11.4 (left) displays the mean square
errors of the prediction over the test data for different coupling strengths e and fixed
order parameter ω for both echo state learning with and without adaptation of in-
formation transfer in the reservoir (averages over 50 trials). For each individual trial
the same reservoir and time series have been used once with and without adaptation.
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Fig. 11.4 (left) Mean squared errors of the prediction over the test data for different coupling
strengths and fixed ω = 0. (right) Mean squared error for different ω using a fixed coupling
of e = 0.75.

The prediction using the reservoir adaptation is better over almost the entire range
of e, with the improvement becoming more significant as the influence of the input
time series becomes larger. Figure 11.4 (right) is a plot of the mean square error for
different ω using a fixed coupling e. In all but one cases the reservoir adaptation
improves results.

11.4 Quantifying Task Complexity

Most currently existing measures capture some of the generic computational proper-
ties of recurrent neural networks (as an important class of input-driven system), such
as memory capacity or entropy at the neuron-level, but do not take task complexity
into account. Optimization of the network properties based on these generic mea-
sures therefore will only do a “blind” adjustment of parameters while no optimality
guarantee for the task at hand can be given. More positively put, the philosophy be-
hind these measures is that a maximization of some of them leads to reservoirs that
are capable to solve a variety of tasks. The self-organizing mechanisms in Sect. 11.3
are one way to achieve this maximization. In situations where no teaching signal is
given, e.g., in clustering tasks, one can do no better than that; however, if the de-
sired output signal is available, it can be used to quantify the task complexity as a
relationship between inherent difficulty of predicting the output based on its own
history, and to what extent the input data can contribute to improve these predic-
tions. This would inform us how achievable a task is, and may also be used to trade
off complexity of the system against the expected quality of the solution.

It is possible to use some of the tools that we introduced above, and take an
information-theoretic approach to tackle this problem. Essentially we are interested
in quantifying how difficult it is for a system to produce its next output. The systems
we are interested in take a time series X as an input, and have the goal to generate
output Y , another time series. To produce the next state yt+1, both the output’s past
(y1...yt ) as well as the input up to the current step (y1, ...,yt+1) can be considered.

The Active Information Storage AY (Lizier et al. 2012) can be used to capture the
influence of previous outputs in producing the next output: how much information
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is contained in the past of Y that can be used to compute its next state? This is
expressed as the average mutual information between past Y (k) of the output and the
next state Y ′:

AY = lim
k→∞

AY (k),with (11.29)

AY (k) = I(Y (k);Y ′). (11.30)

We use AY (k) to represent finite-k estimates. Now, AY and AY (k) allow for two kind
of measurements: (a) higher values for AY indicate better predictability of Y from its
own past, i.e., AY is one component of the overall task difficulty. (b) With increasing
values of ki = 1,2, ...,n, estimates AY (ki) indicate the amount of memory that is
in use. As the information that can be used to predict the next state increases with
larger values of ki, AY (ki) will monotonically increase with ki, and asymptotically
converge to some maximum. Finding k∗ so that AY (k∗)≥ AY (k)+ε , for some small
ε > 0 and k →∞, thus gives us a useful quantity for the amount of memory required,
and at the same time AY (k∗) ≈ AY quantifies the difficulty in predicting Y ′ from its
own past.

The other component that plays a role in the task is the input X . Its contribution to
producing the next output Y ′ of the system, too, can be quantified, using the transfer
entropy introduced above. The transfer entropy indicates how much information the
input X contributes to the next state Y ′, given that the past of Y is known. Increasing
the input history size l increases the information available in computing Y ′, for fixed
output history size k∗. Large TX→Y suggest that the input X helps in computing the
next output, i.e., the task for the system is less difficult than for smaller transfer

entropies. Finding an input history size l∗ so that T (k∗,l∗)
X→Y ≈ liml→∞ T (k∗,l)

X→Y gives us
another useful quantity for the amount of memory required.

Unfortunately, using these quantities to compare tasks or to design systems is
not entirely straightforward, for a number of reasons. For continuous-valued time
series X and Y , estimating mutual informations is cumbersome, and requires larger
amounts of data in particular for larger history sizes l and k. To compare task dif-
ficulties, it would also be helpful to normalize both quantities, e.g., for the Active
Information Storage by the joint entropy H(Y ;Y ′), to values between 0 and 1. The
true output history Y may also be simply not available to the system, dependent on
how it operates. For example, in batch mode, the only information that is available
is the input X and the estimated output Ŷ . The true history of Y is usually only ac-
cessible if the system operates online. Finally, the two components AY and TX→Y

cannot be simply added to specify the overall task difficulty since input and output
may redundantly share some information.

We will reserve a detailed investigation of applying both measures to a later pub-
lication. As a concept to explain contributions of input and output history, they can
be an indicator for how complex the information processing system needs to be. It
will also be interesting to see how other measures relate to them, and to show which
aspect of the computation they measure. As an example, the memory capacity MC,
as a sum of correlation coefficients can be seen as a linear measure of the potential
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information transfer between input X and the desired output Y . Mutual information
expresses a nonlinear relationship between two variables, and so does the transfer
entropy, a conditional mutual information between X and Y . In contrast to MC, the
TX→Y measures actual information transfer between input and desired output, i.e.,
TX→Y is a purely a property of the task. MC is a property of the RNN, but as it is
using task specific input, it combines the properties of the RNN with properties of
the input. The two quantities could be used to adjust the architecture of a neural
network for better performance on a specific task.

As another example, measuring the individual distributions of unit activations
in the reservoir and their divergence from a maximum entropy distribution capture
properties of the input combined with properties of the network. On the other hand,
Active Information Storage for input-driven systems, applied to reservoirs or indi-
vidual reservoir units, expresses the amount of information in the system that is in
use to predict the next state, and is meant to measure capabilities of the system only.

Related work on complexity measures includes Grassberger’s forecast complex-
ity (Grassberger 1986, 2012), which considers the difficulty of making an optimal
prediction of a sequence created by a stochastic process. A sequence can be com-
pressed up to its entropy rate, and the forecast complexity is the computational
complexity of the algorithm responsible for the decompression. The probability of
the next symbol is needed for this decompression. Related ideas can be found in
Minimum Description Length (MDL) approaches (Rissanen 1978) and Kolmogorov
complexity (Kolmogorov 1965) as measures for complex objects. Also introduced
by Grassberger (1986, 2012) is the Effective Measure Complexity (EMC), the rel-
ative memory required to calculate the probability distribution of the next symbol
of a sequence. The EMC is a lower bound on the forecast complexity. Both forecast
complexity and EMC look at sequences, e.g., the output of an autonomous system
without regard to its input, whereas we are interested in systems that produce an
output based on some input. More complexity measures can be found in a special
issue on “Measures of Complexity from Theory to Applications”, with (Crutchfield
and Machta 2011) as an introductory article.

11.5 Conclusion

We presented methods to assess different computational properties of input-driven
RNNs, and reservoir computing networks in particular, in the first part of the pa-
per. These methods were drawn from information-theory, statistical learning theory,
and dynamical systems theory, and provided different perspectives on important
aspects of information processing in these systems. They help to quantify proper-
ties like the memory capacity a certain network provides, the flow of information
through the system and its modification over time, the ability to separate similar in-
puts and generalize to new, unseen data, and others. In addition to their usefulness
in their own right when trying to understand how RNNs implement the functions
they are trained for, they also have the potential to be used as target signals to guide
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self-organized optimization procedures aimed at improving the quality of reservoirs
for a specific task over random initialization.

In the second part of the paper, we presented some recent efforts at implement-
ing self-organized optimization for reservoir computing networks. One approach
combined different plasticity mechanisms to improve coding quality and separa-
tion ability of the network, while a different approach was using methods similar to
recursive self-organizing maps with SOM and NeuralGas-like learning rules. The
final approach we presented proceeds in two phases: determining a learning goal in
terms of information transfer between input and desired output, and using this quan-
tity to guide local adjustments to the self-recurrence of each reservoir unit. All of
these methods showed the potential of self-organized methods to improve network
performance over standard, random reservoirs while avoiding problems associated
with back propagation of error-gradients throughout the whole networks.

As a next step towards methods that are able to automatically generate or opti-
mize recurrent neural networks for a specific task (or class of tasks), it seems worth-
while to combine measures for network properties and task complexity, and devise
algorithms that adjust the former based on the latter. The approach taken in (Dambre
et al. 2012) of using orthogonal functions to measure information processing capac-
ity could be extended to construct suitable dynamical systems for a task when the
requirements for a specific task can be measured in a similar way.

A comparison of how the measures of the information dynamics frame-
work (Lizier et al. 2007, 2012), the information processing capacity for dynamical
systems (Dambre et al. 2012), measures of criticality (Bertschinger and Natschläger
2004; Prokopenko et al. 2011) or of memory capacity (Jaeger 2001; Ganguli et al.
2008) relate to each other should reveal some interesting insights (see, e.g., Tino and
Rodan 2013), since they all cover some aspects of dynamical systems. Establishing
the relation between the information dynamics framework, with recent extension for
input-driven systems, and information processing capacity, for example, could help
to overcome requirements for i.i.d. input in the latter, to better understand dynamical
systems with arbitrary input.
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