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Preface

Studying how order is created out of interactions, despite a relentless flow of increas-
ing entropy, is one of the most rewarding scientific experiences, whether one studies
the convection pattern formation of Bénard cells, collective behaviour of a school of
fish reacting to a predator, or a modular robot adapting its locomotion to a new ter-
rain. Furthermore, finding ways to guide the processes that seemingly spontaneously
self-organise, towards desirable outcomes is among the most complex engineering
tasks. And identifying fundamental principles for guided self-organisation would
probably make a profound theoretical and practical contribution with far-reaching
implications for both science and engineering.

Guided Self-Organisation (GSO) is a fundamentally multi-disciplinary area,
drawing on methods from computational, physical and biological domains, most
notably from information theory, theory of computation, dynamical systems, ma-
chine learning, evolutionary biology, artificial life, statistical mechanics and ther-
modynamics, and graph theory. The chapters presented in this book are produced
and reviewed by experts in these fields who have been contributing to GSO over
the last few years, shaping its rich research agenda. The cross-disciplinary nature
of GSO is described in the introductory chapter written by several pioneers of this
field.

The attempts to formalise foundations of GSO highlighted essential dependen-
cies between self-organising behaviour and system-environment interactions, such
as sensorimotor loops, brain-body-environment dynamics, information cascades,
etc. These interactions are likely to indicate some deep links between distributed
computation and thermodynamics: e.g., external entropy production (exported to the
exterior of an open system) is known to match an increase of predictability about
the system, captured by a directional information transfer and contributing to lo-
cal computation. This relationship points out that an increase in (self-)organisation
or emergence of a new functionality within the system cannot occur without some
entropy dissipated away, concurring with Schrödinger concept of negentropy. Cru-
cially, these complementary dynamics are not only tightly coupled, but also provide
a thermodynamic insight about how to guide a self-organising process. In other
words, providing and controlling channels for the system’s entropy flux with its
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surroundings is perhaps the most generic method for guiding an increase of organi-
sation within the system. This, of course, may be realised in a multiplicity of forms,
by specifying universal utility functions that shape a diffusive control strategy or an
entropic search in an evolutionary landscape, setting task-dependent constraints that
bind a “dissipative” exploration during adaptive learning, or limiting computation
to suitable pathways toward specifically balanced regimes.

Sharing important perspectives with other vigorously developed areas presented
some challenges for creating and maintaining a unique GSO image. An intrigue
created out of this tension continues to strongly drive the research. The number
of compelling questions that are only beginning to find their resolutions is still vast,
and their diversity, to some extent reflected in this book, is staggering. Is a bacterium
more autopoietic than a virus? Does (Shannon) information operate as a “currency
of life”? Is there anything remaining “in between” the system and the union of
its parts? Can spontaneous symmetry breaking lead to an adaptive behaviour? Is
life more stable in two dimensions than in one? How to quantify morphological
computation? How does a swarm use its collective memory? Are there evolutionary
pressures towards neural network efficiency and small-world structures? Can we
still create what we do not understand? . . .

Let us conclude with several historical remarks. As a field of study, GSO emerged
in a somewhat spontaneous fashion, following up on some earlier ideas such as
“design for emergence” and “emergent functionality”, advocated by Luc Steels in
late 1980s. Nevertheless, in a truly “self-referential” way, this development was
guided over the last decade by a number of pioneers who recognised importance
of this research direction and started to coordinate their activities from within sev-
eral research labs worldwide: Ralf Der and Nihat Ay from Max Planck Institute for
Mathematics in the Sciences (Leipzig, Germany), Daniel Polani from University
of Hertfordshire (UK), Larry Yaeger from Indiana University (USA) and Mikhail
Prokopenko from CSIRO (Sydney, Australia). This coordination resulted in a series
of International Workshops on GSO hosted by Sydney (2008 and 2012), Leipzig
(2009), Bloomington (2010), and Hatfield (2011).

While a clearer picture of GSO was emerging, the effort was joined by a younger
generation of scientists who have not only contributed to this pursuit but shaped its
directions to a large extent — Joseph T. Lizier, Georg Martius, Christoph Salge, Vir-
gil Griffith, among many others. Without a doubt, their work provides the strongest
hope that GSO will develop into a well-recognised scientific field retaining both the
vigour and inspiration of its inception years.

September, 2013, on the sidelines of GSO-2013 (Barcelona) Mikhail Prokopenko



Contents

Part I: Introduction

1 On the Cross-Disciplinary Nature of Guided Self-Organisation . . . . . 3
Mikhail Prokopenko, Daniel Polani, Nihat Ay
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Foundational Frameworks of GSO . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Coordinated Behaviour and Learning within an Embodied

Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Swarms and Networks of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Part II: Foundational Frameworks

2 Information Measures of Complexity, Emergence,
Self-organization, Homeostasis, and Autopoiesis . . . . . . . . . . . . . . . . . . 19
Nelson Fernández, Carlos Maldonado, Carlos Gershenson
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Self-organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Homeostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.5 Autopoiesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.6 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.7 Random Boolean Networks . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.8 Limnology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



X Contents

2.3.2 Self-organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 Homeostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.5 Autopoiesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.6 Multi-scale Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Random Boolean Networks . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 An Ecological System: An Arctic Lake . . . . . . . . . . . . . . 35

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.2 Complexity As Balance or Entropy? . . . . . . . . . . . . . . . . . 43
2.5.3 Fisher Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.4 Tsallis Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.5 Guided Self-Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.6 Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.7 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.8 Autopoiesis and Requisite Variety . . . . . . . . . . . . . . . . . . . 47

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Generating Functionals for Guided Self-Organization . . . . . . . . . . . . . 53
Claudius Gros
3.1 Controlling Complex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Guiding Self-Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Generating Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Adaptive Phase Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Self-Organized Dynamical States . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Empowerment — An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Christoph Salge, Cornelius Glackin, Daniel Polani
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Intrinsic Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Empowerment Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Behavioural Empowerment Hypothesis . . . . . . . . . . . . . . 72
4.3.2 Evolutionary Empowerment Hypothesis . . . . . . . . . . . . . 74
4.3.3 AI Empowerment Hypothesis . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.1 The Causal Interpretation of Empowerment . . . . . . . . . . . 76
4.4.2 Empowerment in the Perception Action Loop . . . . . . . . . 77
4.4.3 n-Step Empowerment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.4 Context-Dependent Empowerment . . . . . . . . . . . . . . . . . . 79



Contents XI

4.4.5 Open vs. Closed-Loop Empowerment . . . . . . . . . . . . . . . 81
4.4.6 Discrete Deterministic Empowerment . . . . . . . . . . . . . . . 81
4.4.7 Non-deterministic Empowerment Calculation . . . . . . . . . 82

4.5 Discrete Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.1 Maze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.2 Average Distance vs. Empowerment . . . . . . . . . . . . . . . . . 83
4.5.3 Sensor and Actuator Selection . . . . . . . . . . . . . . . . . . . . . . 85
4.5.4 Horizon Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.5 Impoverished Empowerment . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.6 Sensor and Actuator Evolution . . . . . . . . . . . . . . . . . . . . . 89
4.5.7 Multi-agent Empowerment . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Continuous Empowerment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6.1 Continuous Information Theory . . . . . . . . . . . . . . . . . . . . 93
4.6.2 Infinite Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6.3 Continuous Empowerment Approximation . . . . . . . . . . . 95
4.6.4 Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.6.5 Evaluation of Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6.6 Jung’s Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . 96
4.6.7 Evaluation of Monte Carlo Integration . . . . . . . . . . . . . . . 98
4.6.8 Quasi-Linear Gaussian Approximation . . . . . . . . . . . . . . . 98
4.6.9 MIMO Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6.10 Coloured Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6.11 Evaluation of QLG Empowerment . . . . . . . . . . . . . . . . . . 102

4.7 Continuous Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7.1 Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.7.2 Action Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.7.3 Resulting Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7.4 Power Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7.5 Model Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 A Framework for the Local Information Dynamics of Distributed
Computation in Complex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Joseph T. Lizier, Mikhail Prokopenko, Albert Y. Zomaya
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Information-Theoretic Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 Fundamental Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2.2 Measures for Time-Series Processes . . . . . . . . . . . . . . . . . 118
5.2.3 Local Information-Theoretic Measures . . . . . . . . . . . . . . . 120

5.3 Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.1 Introduction to Cellular Automata . . . . . . . . . . . . . . . . . . . 121
5.3.2 Computation in Cellular Automata . . . . . . . . . . . . . . . . . . 122
5.3.3 Examples of Distributed Computation in CAs . . . . . . . . . 124



XII Contents

5.4 Information Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.1 Excess Entropy As Total Information Storage . . . . . . . . . 126
5.4.2 Local Excess Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4.3 Active Information Storage . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4.4 Local Information Storage Results . . . . . . . . . . . . . . . . . . 130

5.5 Information Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5.1 Local Transfer Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5.2 Total Information, Entropy Rate and Collective

Information Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.5.3 Local Information Transfer Results . . . . . . . . . . . . . . . . . . 142

5.6 Information Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.6.1 Local Separable Information . . . . . . . . . . . . . . . . . . . . . . . 145
5.6.2 Local Separable Information Results . . . . . . . . . . . . . . . . 147
5.6.3 Outlook for Information Modification . . . . . . . . . . . . . . . 148

5.7 Importance of Coherent Computation . . . . . . . . . . . . . . . . . . . . . . . 149
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 Quantifying Synergistic Mutual Information . . . . . . . . . . . . . . . . . . . . . 159
Virgil Griffith, Christof Koch
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.1.2 Understanding PI-Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2 Information Can Be Redundant, Unique, or Synergistic . . . . . . . . 162
6.2.1 Example Rdn: Redundant Information . . . . . . . . . . . . . . . 162
6.2.2 Example Unq: Unique Information . . . . . . . . . . . . . . . . . . 163
6.2.3 Example Xor: Synergistic Information . . . . . . . . . . . . . . . 163

6.3 Two Examples Elucidating Properties of Synergy . . . . . . . . . . . . . 164
6.3.1 Duplicating a Predictor Does Not Change Synergistic

Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.2 Adding a New Predictor Can Decrease Synergy . . . . . . . 166

6.4 Prior Measures of Synergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4.1 Imax synergy: Smax (X : Y ) . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4.2 WholeMinusSum Synergy: WMS(X : Y ) . . . . . . . . . . . . . 167
6.4.3 Correlational Importance: Δ I(X;Y ) . . . . . . . . . . . . . . . . . 168

6.5 Synergistic Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.6 Properties of IVK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.7 Applying the Measures to Our Examples . . . . . . . . . . . . . . . . . . . . . 173
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
A Three Extra Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B Connecting Back to I∩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
C Desired Properties of I∪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
D Analytic Upperbound on IVK(X : Y ) . . . . . . . . . . . . . . . . . . . . . . . . 182
E Essential Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



Contents XIII

E.1 State-Dependent IVK and SVK . . . . . . . . . . . . . . . . . . . . . . . 184
E.2 Proof Duplicate Predictors Don’t Increase Synergy . . . . 185
E.3 Proof of Bounds of SVK(X :Y ) . . . . . . . . . . . . . . . . . . . . . . 185

F Algebraic Simplification of Δ I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Part III: Coordinated Behaviour and Learning within an Embodied Agent

7 On the Role of Embodiment for Self-Organizing Robots:
Behavior As Broken Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Ralf Der
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.2 Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.2.1 Braitenbergs Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.2.2 Autistic Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.2.3 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.3 The Braitenberg Man—Fundamental Modes . . . . . . . . . . . . . . . . . . 197
7.3.1 The HUMANOID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.3.2 A Fundamental Mode of the HUMANOID . . . . . . . . . . . . 198

7.4 Unsupervised Learning for Self-Organization . . . . . . . . . . . . . . . . . 200
7.4.1 Learning Rules for Self-model and Control . . . . . . . . . . . 200
7.4.2 Anti-Hebbian and Differential Hebbian Learning:

A Productive Competition . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.4.3 Relation to Infomax Principles . . . . . . . . . . . . . . . . . . . . . 202

7.5 Homeokinesis: Body Inspired Behavior . . . . . . . . . . . . . . . . . . . . . . 203
7.5.1 Principles of Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.6 Vehicles: Behavior As Broken Symmetry . . . . . . . . . . . . . . . . . . . . 205
7.6.1 Least Biased Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.6.2 Symmetry Breaking—A Rule of Thumb . . . . . . . . . . . . . 206
7.6.3 The Autistic Vehicle: Fundamental Modes . . . . . . . . . . . . 206
7.6.4 Synergy of Learning and Physical State Dynamics . . . . . 208
7.6.5 The Pattern Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
7.6.6 Patterns As Expressions of Embodiment . . . . . . . . . . . . . 210
7.6.7 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.7 The Looping HUMANOID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.7.1 High Symmetry Motion Patterns . . . . . . . . . . . . . . . . . . . . 212
7.7.2 Exterioception May Guide Self-Organization . . . . . . . . . 213
7.7.3 Starting in a Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.8 The HEXAPOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.8.1 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.8.2 Perspectives for Guidance and Reinforcement

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219



XIV Contents

8 Robot Learning by Guided Self-Organization . . . . . . . . . . . . . . . . . . . . 223
Georg Martius, Ralf Der, J. Michael Herrmann
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
8.2 Homeokinesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.2.1 Example of Emergent Behavior . . . . . . . . . . . . . . . . . . . . . 227
8.2.2 Behavior and Critical Dynamics in High-

Dimensional Cricket Robot . . . . . . . . . . . . . . . . . . . . . . . . 228
8.3 Guided Self-Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.4 Guidance by Mild Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.4.1 Integration of Problem-Specific Error Functions . . . . . . . 232
8.4.2 Direct Motor Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.4.3 Direct Sensor Teaching and Distal Learning . . . . . . . . . . 235

8.5 Self-Organized Interaction with the Environment . . . . . . . . . . . . . . 237
8.5.1 Integration of Vision into the Sensorimotor Loop . . . . . . 237
8.5.2 Guiding towards an Object . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.5.3 Emergent Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.5.4 Robustness against Structural Changes . . . . . . . . . . . . . . . 241

8.6 Reward-Driven Self-Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
8.6.1 Reinforcement Learning and Guided

Self-Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
8.6.2 Modulation of Behavior in a Spherical Robot . . . . . . . . . 245

8.7 Channeling Self-Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
8.7.1 From Spontaneous to Guided Symmetry Breaking . . . . . 249
8.7.2 Multiple Motor Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 250
8.7.3 Guiding to Directed Locomotion . . . . . . . . . . . . . . . . . . . . 251
8.7.4 Scaling Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.7.5 Coordination of Finger Movements for Grasping . . . . . . 255

8.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

9 On the Causal Structure of the Sensorimotor Loop . . . . . . . . . . . . . . . 261
Nihat Ay, Keyan Zahedi
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
9.2 Causal Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

9.2.1 The Definition of Causal Networks . . . . . . . . . . . . . . . . . . 262
9.2.2 The Causal Structure of the Sensorimotor Loop . . . . . . . 266

9.3 Causal Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
9.3.1 The Definition of Causal Effects . . . . . . . . . . . . . . . . . . . . 268
9.3.2 Identification of Causal Effects . . . . . . . . . . . . . . . . . . . . . 271
9.3.3 Causal Effects in the Sensorimotor Loop . . . . . . . . . . . . . 272

9.4 Information Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
9.4.1 Information-Theoretic Preliminaries . . . . . . . . . . . . . . . . . 274



Contents XV

9.4.2 Transfer Entropy and Causality . . . . . . . . . . . . . . . . . . . . . 275
9.4.3 Information Flows in the Sensorimotor Loop . . . . . . . . . 281

9.5 Predictive Information and Its Maximization – An
Experimental Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

10 Action Switching in Brain-Body-Environment Systems . . . . . . . . . . . . 295
Eran Agmon
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
10.2 Ashby’s Self-Organization in Brain-Body-Environment

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
10.3 Beer’s Adaptive Behavior Program . . . . . . . . . . . . . . . . . . . . . . . . . . 301

10.3.1 CTRNNs and Genetic Algorithms . . . . . . . . . . . . . . . . . . . 302
10.3.2 Dynamical Systems Theory . . . . . . . . . . . . . . . . . . . . . . . . 304
10.3.3 A Simple Chemotaxis Agent . . . . . . . . . . . . . . . . . . . . . . . 305

10.4 Action Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
10.4.1 Evolving an Action Switcher . . . . . . . . . . . . . . . . . . . . . . . 308
10.4.2 The Agent’s Behavior and Dynamics . . . . . . . . . . . . . . . . 309
10.4.3 Discussion of Action Switching . . . . . . . . . . . . . . . . . . . . 314

10.5 The Prospect of Brain-Body-Environment Systems . . . . . . . . . . . . 315
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

11 Guided Self-Organization of Input-Driven Recurrent Neural
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Oliver Obst, Joschka Boedecker
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
11.2 Assessing the Computational Power and Mechanisms of

Information Processing of Reservoirs . . . . . . . . . . . . . . . . . . . . . . . . 322
11.2.1 Information-Theory Related Measures . . . . . . . . . . . . . . . 323
11.2.2 Measures Related to Learning Theory . . . . . . . . . . . . . . . 325
11.2.3 Measures Related to Dynamical Systems Theory . . . . . . 327

11.3 Improving Reservoir Information Processing Capabilities
through Self-Organized Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 328
11.3.1 SORN: Self-Organized Optimization Based on 3

Local Plasticity Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 329
11.3.2 Hierarchical Self-Organizing Reservoirs . . . . . . . . . . . . . 331
11.3.3 Guided Self-Organization of Reservoir Information

Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
11.4 Quantifying Task Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337



XVI Contents

Part IV: Swarms and Networks of Agents

12 Measuring Information Dynamics in Swarms . . . . . . . . . . . . . . . . . . . . 343
Jennifer M. Miller, X. Rosalind Wang, Joseph T. Lizier,
Mikhail Prokopenko, Louis F. Rossi
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

12.1.1 Background on Information Cascades . . . . . . . . . . . . . . . 344
12.1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 345

12.2 Three Zones Model for Swarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
12.3 Information Dynamics in Swarms . . . . . . . . . . . . . . . . . . . . . . . . . . 347
12.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

12.4.1 Variable-Speed Swarm Model . . . . . . . . . . . . . . . . . . . . . . 349
12.4.2 Constant-Speed Swarm Model . . . . . . . . . . . . . . . . . . . . . . 355

12.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

13 Guiding Designs of Self-Organizing Swarms: Interactive and
Automated Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Hiroki Sayama
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
13.2 Model: Swarm Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
13.3 Interactive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

13.3.1 User Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
13.3.2 Design Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

13.4 Automated Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
13.4.1 Exploring Experimental Conditions . . . . . . . . . . . . . . . . . 377
13.4.2 Quantifying Observed Evolutionary Dynamics . . . . . . . . 380

13.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

14 Mutual Information As a Task-Independent Utility Function for
Evolutionary Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Valerio Sperati, Vito Trianni, Stefano Nolfi
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
14.2 Short Introduction to Information Theory . . . . . . . . . . . . . . . . . . . . 390
14.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
14.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

14.4.1 The Robot and the Neural Controller . . . . . . . . . . . . . . . . 395
14.4.2 The Evolutionary Process . . . . . . . . . . . . . . . . . . . . . . . . . . 398
14.4.3 The Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

14.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
14.5.1 Experiment El . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
14.5.2 Experiment Ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

14.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411



Contents XVII

15 Evolution of Complexity and Neural Topologies . . . . . . . . . . . . . . . . . . 415
Larry S. Yaeger
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
15.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
15.3 Simulation Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
15.4 Natural Selection vs. Random Drift . . . . . . . . . . . . . . . . . . . . . . . . . 420
15.5 Data Generation and Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
15.6 Complexity As a Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . 427
15.7 Evolutionary Trends of Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 428
15.8 Evolutionary Trends of Network Topology . . . . . . . . . . . . . . . . . . . 433

15.8.1 Clustering Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
15.8.2 Characteristic Path Length . . . . . . . . . . . . . . . . . . . . . . . . . 435
15.8.3 Global Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
15.8.4 Small-World Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

15.9 Relating Neural Complexity to Network Topology . . . . . . . . . . . . . 439
15.9.1 Clustering Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
15.9.2 Characteristic Path Length . . . . . . . . . . . . . . . . . . . . . . . . . 440
15.9.3 Global Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
15.9.4 Small-World Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

15.10 Broader Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
15.11 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

16 Clustering and Modularity in Self-Organized Networks . . . . . . . . . . . 455
Somwrita Sarkar, Peter A. Robinson
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
16.2 Modularity of Self-Organized Systems . . . . . . . . . . . . . . . . . . . . . . 456
16.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
16.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

16.4.1 Spectra and Graph Structure . . . . . . . . . . . . . . . . . . . . . . . 458
16.4.2 Spectral Clustering and Partitioning Approaches . . . . . . 459
16.4.3 Spectral Fingerprints of Modularity and Hierarchical

Modularity: Adjacency Matrix . . . . . . . . . . . . . . . . . . . . . . 462
16.5 Detecting the Modular Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
16.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469



List of Contributors

Eran Agmon
Indiana University, 107 S. Indiana Avenue
Bloomington, Indiana 47405-7000, United States
e-mail: agmon.eran@gmail.com

Nihat Ay
Max Planck Institute for Mathematics in the Sciences, Inselstraße 22,
D-04103, Leipzig, Germany
e-mail: nay@mis.mpg.de
& Santa Fe Institute, 1399 Hyde Park Road, Santa Fe,
New Mexico 87501, United States

Joschka Boedecker
Machine Learning Lab, University of Freiburg, Freiburg, Germany
e-mail: jboedeck@informatik.uni-freiburg.de

Ralf Der
Max Planck Institute for Mathematics in the Sciences, Inselstraße 22,
D-04103, Leipzig, Germany
e-mail: ralfder@mis.mpg.de

Nelson Fernández
Laboratorio de Hidroinformática, Facultad de Ciencias Básicas
Univesidad de Pamplona, Colombia
e-mail: nelferpa@gmail.com
& Centro de Micro-electrónica y Sistemas Distribuidos
Universidad de los Andes, Mérida, Venezuela



XX List of Contributors

Carlos Gershenson
Departamento de Ciencias de la Computación, Instituto de Investigaciones en
Matemáticas Aplicadas y en Sistemas & Centro de Ciencias de la Complejidad
Universidad Nacional Autónoma de México
e-mail: cgg@unam.mx

Cornelius Glackin
Adaptive Systems Research Group, School of Computer Science
University of Hertfordshire Hatfield, United Kingdom
e-mail: c.glackin2@herts.ac.uk

Virgil Griffith
Computation and Neural Systems, California Institute of Technology, Pasadena,
California 91125, United States
e-mail: virgil@caltech.edu

Claudius Gros
Institute for Theoretical Physics, Goethe University Frankfurt, Germany
e-mail: gros@itp.uni-frankfurt.de

J. Michael Herrmann
Bernstein Center for Computational Neuroscience, Am Faßberg 17, 37077,
Göttingen, Germany & Institute for Perception, Action and Behaviour, School
of Informatics, University of Edinburgh 10 Crichton St, Edinburgh, EH8 9AB
Scotland, United Kingdom
e-mail: michael.herrmann@ed.ac.uk

Christof Koch
Computation and Neural Systems, California Institute of
Technology, Pasadena, California 91125, United States
e-mail: koch@klab.caltech.edu
& Allen Institute for Brain Science Seattle,
WA 98103 United States

Joseph T. Lizier
CSIRO Computational Informatics, PO Box 76, Epping, NSW 1710, Australia
& School of Information Technologies, The University of Sydney
NSW 2006, Australia
& Max Planck Institute for Mathematics in the Sciences, Inselstraße 22,
D-04103, Leipzig, Germany

Carlos Maldonado
Facultad de Ciencias & Departamento de Ciencias de la Computación, Instituto de
Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional
Autónoma de México
e-mail: cdmc89@gmail.com



List of Contributors XXI

Georg Martius
Max Planck Institute for Mathematics in the Sciences, Inselstraße 22,
D-04103, Leipzig, Germany
e-mail: martius@mis.mpg.de

Jennifer M. Miller
Department of Mathematics, Trinity College, Hartford,
Connecticut 06106, United States
e-mail: jennifer.miller@trincoll.edu

Stefano Nolfi
Laboratory of Autonomous Robotics and Artificial Life, Institute of Cognitive
Sciences and Technologies, CNR via S. Martino della Battaglia,
44 - 00185 Rome, Italy
e-mail: stefano.nolfi@istc.cnr.it

Oliver Obst
CSIRO Computational Informatics
PO Box 76, Epping, NSW 1710, Australia
e-mail: oliver.obst@csiro.au

Daniel Polani
Adaptive Systems Research Group, School of Computer Science
University of Hertfordshire, Hatfield, United Kingdom
e-mail: daniel.polani@gmail.com

Mikhail Prokopenko
CSIRO Computational Informatics
PO Box 76, Epping, NSW 1710, Australia
e-mail: mikhail.prokopenko@csiro.au
& School of Physics The University of Sydney NSW 2006, Australia
& Department of Computing Macquarie University
NSW 2109, Australia

Peter A. Robinson
Complex Systems Group, School of Physics
University of Sydney NSW 2006, Australia
e-mail: robinson@physics.usyd.edu.au
& Brain Dynamics Center, Sydney Medical School
University of Sydney, Westmead NSW 2145, Australia

Louis F. Rossi
Department of Mathematical Sciences, University of Delaware, 501 Ewing Hall,
Newark, Delaware 19716, United States
e-mail: rossi@math.udel.edu



XXII List of Contributors

Christoph Salge
Adaptive Systems Research Group, School of Computer Science, University of
Hertfordshire, Hatfield, United Kingdom
e-mail: christophsalge@gmail.com

Somwrita Sarkar
Design Lab, Faculty of Architecture, Design, and Planning & Complex Systems
Group, School of Physics, University of Sydney NSW 2006, Australia
e-mail: sarkar@physics.usyd.edu.au

Hiroki Sayama
Collective Dynamics of Complex Systems Research Group, Binghamton University,
State University of New York Binghamton, New York 13902-6000, United States
e-mail: sayama@binghamton.edu

Valerio Sperati
Laboratory of Autonomous Robotics and Artificial Life, Institute of Cognitive
Sciences and Technologies, CNR, via S. Martino della Battaglia,
44 - 00185 Rome, Italy
e-mail: valerio.sperati@istc.cnr.it

Vito Trianni
Laboratory of Autonomous Robotics and Artificial Life, Institute of Cognitive
Sciences and Technologies, CNR, via S. Martino della Battaglia,
44 - 00185 Rome, Italy
e-mail: vito.trianni@istc.cnr.it

X. Rosalind Wang
CSIRO Computational Informatics
PO Box 76, Epping, NSW 1710, Australia
e-mail: rosalind.wang@csiro.au

Larry S. Yaeger
School of Informatics & Computing, Indiana University,
919 E. 10th St., Bloomington, Indiana 47408, United States
e-mail: larry.yaeger@gmail.com
& Google Inc. 1600 Amphitheatre Parkway,
Mountain View, CA 94043, United States

Keyan Zahedi
Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103,
Leipzig, Germany
e-mail: zahedi@mis.mpg.de

Albert Y. Zomaya
School of Information Technologies, The University of Sydney, NSW 2006,
Australia
e-mail: albert.zomaya@sydney.edu.au



Part I
Introduction



Chapter 1
On the Cross-Disciplinary Nature of Guided
Self-Organisation

Mikhail Prokopenko, Daniel Polani, and Nihat Ay

1.1 Introduction

Self-organisation is pervasive: neuronal ensembles self-organise into complex
spatio-temporal spike patterns which facilitate synaptic plasticity and long-term
consolidation of information; large-scale natural or social systems, as diverse as for-
est fires, landslides, or epidemics, produce spontaneous scale-invariant behaviour;
robotic modules self-organise into coordinated motion patterns; individuals within
a swarm achieve collective coherence out of isolated actions; and so on. Self-
organisation is also valuable: the resultant increase in an internal organisation brings
benefits to the (collective) organism, be it a learning brain, a co-evolving ecosystem,
an adapting modular robot, or a re-configuring swarm. These benefits are typically
realised in increased resilience to external disturbances, adaptivity to novel tasks,
and scalability with respect to new challenges. However, self-organisation is difficult
to engineer on demand: the intricate fabric of interactions within a self-organising
system cannot follow a simple-minded blueprint and resists crude interventions.
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Thus, the goal of Guided Self-Organisation (GSO) is to leverage the strengths
of self-organisation while still being able to indirectly affect the outcome of the
self-organising process. GSO typically has the following features: (i) an increase
in organisation (structure and/or functionality) over some time; (ii) the local inter-
actions are not explicitly guided by any external agent; (iii) task-independent ob-
jectives, shaped up by universal or intrinsic selection pressures, are combined with
task-dependent constraints and costs.

This set of features is sufficiently general: it allows to include multiple drivers
to guide a self-organising system/process, by treating these drivers as additional ob-
jective functions and/or constraints imposed on the system under consideration (Ay
et al. 2011). These features also do not presume any specific modelling methodol-
ogy. Nevertheless, several frameworks and concepts developed in this field over the
last decade have been particularly useful, employing methods from

• information theory, e.g. (Polani et al. 2007; Polani 2009; Prokopenko et al. 2009;
Martius et al. 2013),

• theory of computation, e.g. (Lizier et al. 2008b; Crutchfield 2009; Egri-Nagy and
Nehaniv 2011; Dini et al. 2013),

• dynamical systems, e.g. (Gros 2008; Williams and Beer 2010; Der and Martius
2012; Beer 2013, 2014),

• statistical mechanics and thermodynamics, e.g. (Friston 2009; Prokopenko et al.
2011, 2013; Still et al. 2012; Wissner-Gross and Freer 2013), and

• graph theory, e.g. (Rubinov and Sporns 2010; Gershenson 2012; Piraveenan et al.
2009, 2012; Yaeger 2013).

The successes in applying these theories to GSO can be explained by their generic
models that are able to express the most essential properties of the system in point,
at multiple scales (local and global), and varying in both space and time. Crucially,
these methods enable comparative analyses across domains, often allowing to trans-
fer successful techniques across disciplines, without a major conceptual redesign.

1.2 Background

Many GSO approaches use the characterisation of a system-environment loop (e.g.,
sensorimotor or perception-action loop) in information-theoretic terms. These foun-
dations can be derived from fundamental limits on information processing involv-
ing a task (Touchette and Lloyd 2000). This can also be put into perspective of
exploratory (Still 2009) and task-relevant information processing costs (Tishby and
Polani 2011). Interestingly, the formal expression arising from this is virtually iden-
tical to the free energy used in regular thermodynamics. For example, a free energy
principle has been used to produce intrinsically self-motivated agent behaviours, by
combining a variational Bayes formalism together with the hypothesis that evolved
cognitive entities carry out a near-optimal Bayes inference (Friston 2009). Thus,
the connections between information-theoretic and thermodynamic (or statistical-
mechanical) models go beyond a simple convenience, but rather reflect on rich com-
mon dynamics underlying guided self-organisation in open systems.
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The idea that living beings are information-processing systems and that the opti-
misation of these processes might provide an evolutionary advantage was formalised
via excess entropy or predictive information (Bialek et al. 2001), a measure for a
system’s complexity that quantifies the total information of past experience that can
be used for predicting future events. This approach provides both principled criteria
for optimal agent learning as well as drivers generating structured behaviours re-
sembling those of volitional decisions of organisms, without externally given tasks
(Prokopenko et al. 2006b,a; Ay et al. 2008; Zahedi et al. 2010; Ay et al. 2012). In par-
ticular, an intrinsic selection pressure, captured via the generalised excess entropy,
produced coordinated locomotion of a modular robot (Prokopenko et al. 2006a),
while several explicit learning rules were derived in a task-free way by a gradient
ascent on the predictive information (Zahedi et al. 2010; Ay et al. 2012). These learn-
ing rules were shown to have a Hebbian-like structure drawing additional parallels
to biological systems.

Some of these results are related to Infomax principle: an optimisation princi-
ple for information processing systems, such as neural networks, which suggests
to maximise (by choice or by learning) the average Shannon mutual information
between inputs and outputs of the system (Linsker 1988). The optimisation is typ-
ically carried out subject to constraints and/or noise processes. For example, max-
imisation of the entropy of a neuron’s output while the average output firing-rate
is fixed results in intrinsic plasticity (Triesch 2005), producing complex dynamical
phenomena such as neuronal self-regulation, etc. (Bell and Sejnowski 1995; Butko
and Triesch 2005; Lazar et al. 2006; Lungarella and Sporns 2006).

It is well-recognised now that sensorimotor interaction and body morphology can
induce statistical regularities and information structure both in sensory inputs and
within the neural control architecture (Lungarella and Sporns 2006). The hypothe-
sis that such statistical regularities result from the combined action of sensory and
motor systems, given some body morphology, has been proposed and experimen-
tally verified by Lungarella and Sporns, who critically pointed out that embodied
systems actively seek information (stimuli) while engaging in behavior (Lungarella
and Sporns 2006). In addition, this study has identified important patterns of in-
formation flow between sensors, neural units, and effectors, quantifying these with
mutual information and transfer entropy where the latter measure quantifies the sta-
tistical coherence between systems evolving in time (Schreiber 2000).

One of the most representative examples motivated by InfoMax principle is the
concept of empowerment. Empowerment was first introduced in (Klyubin et al.
2005a) and studied over the subsequent years: it measures the maximum quan-
tity of Shannon information that an agent could potentially inject into the envi-
ronment and recover via its sensors: it is the channel capacity of the exterior part
of an agent’s action-perception loop. In its simplest form, this turns out to be the
maximum entropy that an agent has the potential to controllably produce in its envi-
ronment. It also allows more sophisticated considerations which separate agent- and
environment-generated noise, as well as account for the ability of the agent itself to
profit from the entropy it had generated itself.
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Entropy maximization-like approaches using empowerment were applied in a
variety of scenarios, e.g., discovery of desirable “degrees of object manipulation”
(Klyubin et al. 2005a); sensor evolution (Klyubin et al. 2005b); coordination of
collective systems (Capdepuy et al. 2007); non-trivial “survival”-type control tasks,
such as pole-balancing, acrobot and others, carried out without scenario-specific
goals (Jung et al. 2011; Salge et al. 2012).

Recently, Wissner-Gross and Freer (2013) proposed a similar method to derive
an entropic forcing mechanism as a precursor to a potential cognitive driver, aiming
to demonstrate interesting and potentially biologically relevant behaviours. Differ-
ent from the models discussed earlier, the entities governed by Wissner-Gross and
Freer’s dynamics are also essentially driven by direct external statistical physical
principles and do not consider an explicit perception-action loop with dedicated
sensors and actuators. Furthermore, the authors’ arguments in favour of the mecha-
nism point to generic cosmological speculations and, more importantly, to a fragile
link via the Maximum Entropy Production Principle (MEPP). In the physical mo-
tivation, one is, however, currently still confronted with a conceptual gap: essen-
tial arguments in favour of the MEPP (Dewar 2003, 2005) have been found faulty
(Grinstein and Linsker 2007). Thus, despite its attractiveness and repeated attempts
in using MEPP to motivate the emergence of universal mechanisms generating self-
organising processes, such as Wissner-Gross and Freer’s entropic forcing, it must
be considered an unresolved question whether such a derivation can be achieved
without further assumptions.

In general, however, the rigorous links between adaptive behaviour, critical dy-
namics, and statistical patterns of information processing can and should be inter-
preted thermodynamically (Crooks 2007; Prokopenko et al. 2011). For example, a
thermodynamic interpretation of transfer entropy shows that this quantity is pro-
portional to the external entropy production by the system, attributed to a source
of irreversibility (Prokopenko et al. 2013). Interestingly, transfer entropy was also
shown to capture one of the three elements of distributed computation: communica-
tion (Lizier et al. 2008b), connecting GSO to another generic theory — the theory
of computation (Langton 1990; Lizier et al. 2010, 2012c, 2013).

1.3 Structure

This book aims to present the state-of-the-art in the GSO field, by describing
most of its subjects in sufficient detail and highlighting several fundamental inter-
connections.

Some of the chapters in this book follow presentations at The GSO-2012 Work-
shop, the fifth in the series, held in Sydney, 26-28 September 2012, which brought
together invited experts and researchers in self-organising systems, with particu-
lar emphasis on foundations of GSO and the information dynamics of adaptive
systems. Selected papers of previous Workshops were published in the special or
topical issues on Guided Self-Organisation by the Human Frontier Science Pro-
gram Journal (GSO-2008) (Prokopenko 2009), Theory in Biosciences (GSO-2009)
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(Ay et al. 2011), Advances in Complex Systems (GSO-2010 and GSO-2011) (Polani
et al. 2013). Following these workshops and the series of journal issues, it has be-
come apparent that this is the right time to have a book that includes chapters not
only focussing on particular topics presented at the most recent workshop, but also
covering development of the topic over the last few years since the beginning of the
workshop series.

The book captures the most representative approaches, includes in-depth reviews
and descriptions of future research in the most important GSO areas. In short, it
offers a comprehensive contemporary GSO perspective, aiming to become a mini-
encyclopaedia for the early years of this emerging field. Hence, the title’s emphasis:
“Guided Self-Organization: Inception”.

The book is structured around three main sections:

• foundational frameworks (including abstract models and theory of GSO);
• coordinated behaviour and learning within an embodied agent;
• swarms and networks of agents.

1.4 Foundational Frameworks of GSO

As mentioned in Section 1.1, several specific frameworks have been influential in
this emerging field, using developing information-theoretic, computation-theoretic
and dynamical systems methods and models. The chapters combined in this section
describe some of these foundational methodologies. It is worth to point out that the
deep theoretical links uncovered in these studies show a promise for the entire field,
indicating a tangible possibility for a unifying basis: a theory of GSO.

The Chapter of Fernández et al. studies measures of emergence, self-
organisation, complexity, homeostasis, and autopoiesis, using information theory.
Many concepts used in the scientific study of complex systems have become so
widespread that their misuse and misinterpretation have led to ambiguity and con-
fusion. And so the purpose of this chapter is to clarify the meaning of these con-
cepts with the aid of the proposed formal measures, derived from several proposed
axioms. In a simplified version, (information) emergence is defined as the informa-
tion a system or process produces. Defined in such a way, emergence becomes the
opposite of self-organisation, while complexity represents their balance. Homeo-
stasis can be seen as a measure of the stability of the system. Autopoiesis can be
measured as the ratio between the complexity of a system and the complexity of its
environment. The proposed measures can be applied at different scales, with multi-
scale profiles, and the chapter illustrates the measures with simulations of random
Boolean networks and an Arctic lake ecosystem.

The Chapter of Gros considers a generic question of how to control a complex
and self-organising system, achieving stability of a default working regime with re-
spect to possible external influences and statistical fluctuations. The author points
out that one way to guide a dynamical system is to restrict its flow to a certain re-
gion in phase space, allowing for an otherwise unrestricted development within this
bounded area of phase space. Thus, one possibility to control a GSO process is to
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formulate the targets in terms of statistical properties of the desired dynamical state.
The chapter also offers some specific examples, by explicitly deriving equations
of motions from generating functionals that incorporate polyhomeostatic and other
targets. The approach of generating functionals is proposed as a general method for
building increasingly complex dynamical systems and cognitive architectures.

The Chapter of Salge et al. offers a detailed review and discussion of the now
increasingly maturing empowerment formalism. As mentioned in Section 1.2, em-
powerment is aimed at capturing intrinsic motivations which can be used to generate
self-organizing behaviours in agents. The chapter presents different scenarios that
highlight the universality of empowerment-driven algorithms, as well as posing sev-
eral open questions: how to integrate explicit non-default goals into empowerment,
how to manage its computational feasibility, and how to search for optimal solutions
that lie behind the (local) empowerment’s horizon.

Lizier et al. point out that the nature of distributed computation has often been de-
scribed in terms of the component operations of universal computation: information
storage, transfer and modification. They review the first complete framework that
quantifies each of these individual information dynamics on a local scale within a
system, and describe the manner in which they interact to create non-trivial compu-
tation where “the whole is greater than the sum of the parts”. They further apply the
framework to cellular automata (CA), a simple yet powerful model of distributed
computation. In this application, the framework is demonstrated to be the first to
provide quantitative evidence for several important conjectures about distributed
computation in CA: that blinkers embody information storage, particles are infor-
mation transfer agents, and particle collisions are information modification events.
The framework is also used to investigate and contrast the computations conducted
by several well-known CA, highlighting the importance of information coherence in
complex computation. Their results provide important quantitative insights into the
fundamental nature of distributed computation and the dynamics of complex sys-
tems, as well as impetus for the framework to be applied to the analysis and design
of other systems.

Griffith and Koch further develop the notion of information modification — a
crucial element of non-trivial distributed computation — by quantifying synergis-
tic mutual information. Their chapter reviews several existing information-theoretic
measures of synergy developed over the last two decades, and introduces a novel
synergy measure. The proposed measure is defined as the difference between the
whole and the union of its parts. The new and existing measures are compared with
respect to a set of representative examples (a suite of binary circuits), demonstrating
a superior performance of the new measure. The chapter also elucidates the reasons
behind the success, pointing out that an existing alternative underestimates synergy
by double-subtracting redundancies. In addition, an upper bound for the introduced
synergy measure is analytically derived, addressing questions on the measure’s com-
putability. Similarly to Chapter by Fernández et al., this chapter presents the new
synergy measure within an axiomatic framework.

The importance of an axiomatic argument is beginning to be recognised in this
field, and we believe that novel measures and approaches are much more convincing
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when they are shown to satisfy a set of axioms, rather than simply capture some intu-
ition. Axiomatic approaches have demonstrated enormous power in other branches
of science by rendering intuitions precise. It therefore would be desirable to obtain a
more robust understanding of the underlying concepts for the quickly growing field
of GSO by identifying axiomatic principles that they should respect, and comparing
the axioms rather than individual examples.

1.5 Coordinated Behaviour and Learning within an Embodied
Agent

The investigations that take the agent-centric perspective on GSO have almost
always considered various perception-action or sensorimotor loops, coupling the
agent with its environment. While most of the methods presented in this section can
potentially be transferable to other contexts, the focus on embodiment and cognitive
agent’s behaviour is clear. Moreover, the depth and breadth of the results presented
in this section point to maturity of GSO research in this particular area.

The Chapter by Der is centred on two cornerstones of modern robotics and mod-
els of human and animal intelligence: embodiment and self-organisation. It intro-
duces a new, strictly local, unsupervised learning rule for a neurally controlled robot
that drives the system into self-organization, achieving global, whole-body motion
patterns. Interestingly, the proposed rule balances a differential Hebbian and an anti-
Hebbian learning mechanism: while the former drives the system to activity, the lat-
ter acts as a confinement, keeping the system under control. In addition, the chapter
introduces the concept of fundamental modes of a closely coupled system under par-
simonious control, highlighting the crucial role of spontaneous symmetry breaking.
Specifically, it demonstrates that the unsupervised learning rule induces a variety of
behaviors, interpreting the resultant spatio-temporal patterns as broken symmetries.

The following chapter by Martius et al. continues the theme of this section, fo-
cussing on the question of how a robot can be equipped with an internal drive for
innovation that may serve as a path for an open ended, self-determined development.
Building on earlier work in homeokinetic learning, it presents several mechanisms
for guided self-organisation of robot behavior. While homeokinesis bootstraps the
exploration process of embodied systems, leading to self-organization of various
behavioural patterns, the proposed guiding mechanism by cross-motor “teaching”
signals produces a goal-oriented behavior. Importantly, the balance between self-
organisation and guidance forces can be adjusted with a single parameter. The find-
ings are exemplified by a number of case studies, and complemented by a compara-
tive analysis of contemporary approaches to learning of autonomous robot behavior.

Ay and Zahedi review basic concepts of Pearl’s causality theory. Within this
theory, the notion of experimental intervention is essential and provides a formal
basis for the definition and the study of causal effects that can be identified from
an agent-centric perspective. The identification of casual effects based on observa-
tional data represents a particularly important problem within this study. While it is
well-known that, given appropriate structural information, a causal effect can be



10 M. Prokopenko, D. Polani, and N. Ay

identified based on solely observational data, the study demonstrates this in the
context of the agent’s sensorimotor loop, considering various kinds of information
flows. Crucially, it points out that if structural information is not available, it is still
possible to infer important properties of the underlying causal structure. The chapter
also discusses transfer entropy and predictive information relating these measures
to coordinated behaviour and morphological computation. The framework devel-
oped in this chapter may also provide a perspective on results presented in other
chapters. This perspective is centered on the notion of world model which plays
an important role in evaluating causal effects in the sensorimotor loop, being also
an essential object within both the empowerment approach to behavior, as argued in
Chapter by Salge et al., and the learning processes presented in Chapters by Der and
Martius et al.

The Chapter by Agmon argues that living systems need to be considered as or-
ganisms embedded within a complex environment presenting numerous diverse ob-
stacles. In order to navigate such an environment, organisms must exhibit diverse,
complex and adaptive behaviours. Specifically, they must use flexible behavioral
strategies that rapidly integrate and coordinate multiple possible actions. The pro-
posed approach models behaviour from a dynamical systems perspective, enabling
a study of dynamical strategies required for efficient transitions between such coor-
dinated actions. Having developed an understanding of this dynamical coordination
via appropriate simulations, the chapter proceeds to identifications of some key ac-
tion variables and general patterns, proposing a framework for modelling action
switching in terms of dynamical systems.

Obst and Boedecker utilise the framework of information dynamics, that was
presented in detail in Chapter by Lizier et al., in evaluating different computa-
tional properties of input-driven recurrent neural networks (RNNs), and reservoir
computing networks in particular. In addition, some of the methods are drawn
from statistical learning theory and dynamical systems theory, sharing the motiva-
tion expressed in the previous chapter (by Agmon), and highlighting once more
that dynamic aspects of information processing in self-organising systems can
be studied from different complementary perspectives. Interestingly, the identified
information-processing elements are argued to be potentially useful as target sig-
nals to guide self-organised optimisation procedures — and this aspect resonates
strongly with the motivation outlined in chapters by Martius et al., as well as the
Chapter by Der. For example, a learning goal can be specified in terms of informa-
tion transfer between input and desired output, guiding local adjustments to self-
recurrence of each reservoir unit.

1.6 Swarms and Networks of Agents

Swarm and network dynamics provide one of the most striking visual examples of
self-organisation. Importantly, these self-organising dynamics bring about evident
collective benefits. And so our story would be incomplete without the cases cen-
tred on collective dynamics. It is also no longer surprising that these studies are
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carried out within well-motivated frameworks built around theories that we have
encountered already.

Miller et al. utilise a novel information-theoretic characterisation of dynamics
within swarms, in the context of GSO, through explicitly measuring the extent of
collective communications and tracing collective memory. The details of the re-
quired information-theoretic treatment were presented in The Chapter by Lizier et
al. This study follows the argument that collective communication and memory are
two necessary elements of distributed computation, and study these elements in two
different models (one being more constrained/guided than the other). The approach
deals with both global and local information dynamics ultimately discovering
diverse ways in which an individual’s location within the group is related to its
information processing role. The comparative analysis shows that there are signifi-
cant differences between the information dynamics that emerge from the two mod-
els: the constrained system is observed to have lower peaks of collective memory
and communications, resulting in less-formed and delayed information cascades. In
other words, it is harder for a constrained system to self-organise into a coherent,
swarming state.

The next chapter by Sayama continues the topic of particle swarm self-
organisation, extending the scope to heterogeneous swarms which are particularly
rich in their dynamics rendering their design difficult in a traditional top-down man-
ner. This problem is addressed by two complementary approaches: employing and
enhancing the methods of interactive evolutionary design, and spontaneously evolv-
ing self-organising swarms within an artificial ecosystem. One of the key messages
of this thought-provoking chapter is that designs obtained through open-ended evo-
lutionary processes “may have a potential to be more creative and innovative than
those produced through optimization for explicit selection criteria”.

Sperati et al. investigate the use of information-theoretic concepts as task-
independent utility functions (e.g., fitness functions or reward/error measures) in
evolving and/or adapting behaviour of mobile robots. This chapter utilises the
information-theoretic utility functions to drive the evolution of coordinated be-
haviours in groups of homogeneous robots. The argument is that maximising mutual
information results in evolved controllers that produce structured coordinated be-
haviours. Importantly, the proposed methodology is verified in the swarm robotics
context, which is particularly challenging because of the multi-scale relationships
within the self-organising system: (a) between control rules of a single robot and its
individual behaviour, and (b) between interacting individuals and the global pattern
self-organising at the swarm level.

The Chapter by Yaeger studies and experiments with mechanisms that give rise
to complexity, using the Polyworld simulation environment, an evolutionary model
of a computational ecosystem, populated by haploid agents with a suite of prim-
itive, neurally controlled behaviors. The experiments incorporate an information-
theoretic measure of neural complexity to guide agent evolution and behavior, by
using complexity as a fitness function. The results demonstrate a correlation be-
tween behavioral adaptation and the employed measures of neural complexity and
graph topology. The study suggests that it is reasonable to expect that the presented
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simulation results on open-ended evolution and dynamical complexity may apply to
biological systems.

As an example of a scenario which is relevant to real-world decentralised ap-
plications, Sarkar and Robinson study large scale evolving peer-to-peer networks,
tracing their modularity properties over time by spectral methods. Once some op-
timisation or evolutionary rules are specified at the design stage, the resultant evo-
lution of the system can be charted using the spectra. Importantly, if modularity or
hierarchical organisation appears, the spectra can classify the rules that lead to the
self-organisation of modularity.

1.7 Conclusion

The last decade witnessed the emergence of several generic frameworks and prin-
ciples unifying the research in Guided Self-Organisation: (a) Various information-
processing limits and costs need to be accounted by both universal objectives and
task-relevant constraints. (b) Different elements of distributed computation, cap-
tured information-theoretically as distinct axes of complexity, may be used to filter
(and evolve for) coherent spatio-temporal computing structures. (c) Restricting the
system’s dynamics to a certain region in phase space may guide the self-organisation
by specifying the targets via statistical properties of the desired dynamical state or
critical regime. (d) Identifying and tracing graph-theoretical properties of networks
under consideration may classify and predict their evolution and growth.

Equipped with these guidelines, designers may consider diverse representative
application scenarios. For instance, taking the agent-centric perspective on GSO al-
lows one to relate embodiment and self-organisation, deriving learning rules and
guiding signals that produce coordinated behaviour. This behaviour can often be re-
lated to fundamental concepts developed across several disciplines, e.g., morpholog-
ical computation, symmetry breaking, reservoir computing, information cascades,
interactive evolution, etc. It is evident that most of the studies benefit from being
formulated in terms of universal principles, such as the maximisation of predictive
information, transfer entropy, neural complexity, empowerment, open-ended evo-
lution, or driving towards some spatio-temporal structure within the system’s dy-
namical state-space. This is not surprising, as these connections are based on strong
theoretical foundations. For example, symmetry breaking is a known phenomenon
occurring at phase transitions and thus, guiding the self-organising system towards a
critical regime is likely produce rich behaviours. Similarly, a self-organising swarm
is expected to pass through phases of high collective coherence, and so consider-
ing it as a system collectively “computing” its next states allows to explicitly trace
information cascades and collective memory.

While most of the highlighted approaches and unifying principles are being re-
fined, their contributions to numerous applications and case studies indicate some
maturity of the field. And so we believe that the field of GSO that is going to fol-
low these inception years will grow on strong foundations, continuing its cross-
disciplinary development and making significant impact on both the theory and
practice of self-organising systems.
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Chapter 2
Information Measures of Complexity,
Emergence, Self-organization, Homeostasis,
and Autopoiesis

Nelson Fernández, Carlos Maldonado, and Carlos Gershenson

2.1 Introduction

In recent decades, the scientific study of complex systems (Bar-Yam 1997; Mitchell
2009) has demanded a paradigm shift in our worldviews (Gershenson et al. 2007;
Heylighen et al. 2007). Traditionally, science has been reductionistic. Still, complex-
ity occurs when components are difficult to separate, due to relevant interactions.
These interactions are relevant because they generate novel information which deter-
mines the future of systems. This fact has several implications (Gershenson 2013).
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A key implication: reductionism—the most popular approach in science—is not ap-
propriate for studying complex systems, as it attempts to simplify and separate in
order to predict. Novel information generated by interactions limits prediction, as
it is not included in initial or boundary conditions. It implies computational irre-
ducibility (Wolfram 2002), i.e. one has to reach a certain state before knowing it
will be reached. In other words, a priori assumptions are of limited use, since the
precise future of complex systems is known only a posteriori. This does not imply
that the future is random, it just implies that the degree to which the future can be
predicted is inherently limited.

It can be said that this novel information is emergent, since it is not in the com-
ponents, but produced by their interactions. Interactions can also be used by compo-
nents to self-organize, i.e. produce a global pattern from local dynamics. Interactions
are also key for feedback control loops, which help systems regulate their internal
states, an essential aspect of living systems.

We can see that reductionism is limited for describing such concepts as com-
plexity, emergence, self-organization, and life. In the wake of the fall of reduction-
ism as a dominant worldview (Morin 2007), a plethora of definitions, notions, and
measures of these concepts has been proposed. Still, their diversity seems to have
created more confusion than knowledge. In this chapter, we revise a proposal to
ground measures of these concepts in information theory. This approach has several
advantages:

• Measures are precise and formal.
• Measures are simple enough to be used and understood by people without a

strong mathematical background.
• Measures can help clarify the meaning of the concepts they describe.
• Measures can be applied to any phenomenon, as anything can be described in

terms of information (Gershenson 2012b).

This chapter is organized as follows: In the next section, background concepts are
presented, covering briefly complexity, emergence, self-organization, homeostasis,
autopoiesis, information theory, random Boolean networks, and limnology. Section
2.3 presents axioms and derives measures for emergence, self-organization, com-
plexity, homeostasis and autopoiesis. To illustrate the measures, these are applied
to two case studies in Section 2.4: random Boolean networks and an Arctic lake
ecosystem. Discussion and conclusions close the chapter.

2.2 Background

2.2.1 Complexity

There are dozens of notions and measures of complexity, proposed in different areas
with different purposes (Edmonds 1999; Lloyd 2001). Etymologically, complexity
comes from the Latin plexus, which means interwoven. Thus, something complex
is difficult to separate. This means that its components are interdependent, i.e. their
future is partly determined by their interactions (Gershenson 2013). Thus, studying
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the components in isolation—as reductionistic approaches attempt—is not sufficient
to describe the dynamics of complex systems.

Nevertheless, it would be useful to have global measures of complexity, just as
temperature characterizes the properties of kinetic energy of molecules or photons.
Each component can have a different kinetic energy, but the statistical average is rep-
resented in the temperature. For complex systems, particular interactions between
components can be different, but we can say that complexity measures should rep-
resent the type of interactions between components, just as Lyapunov exponents
characterize different dynamical regimes.

A useful measure of complexity should enable us to answer questions such as:
Is a desert more or less complex than a tundra? What is the complexity of differ-
ent influenza outbreaks? Which organisms are more complex: predators or preys;
parasites or hosts; individual or social? What is the complexity of different music
genres? What is the required complexity of a company to face the complexity of a
market1?

Moreover, with the recent scandalous increase of data availability in most do-
mains, we urgently need measures to make sense of it.

2.2.2 Emergence

Emergence has probably been one of the most misused concepts in recent decades.
The reasons for this misuse are varied and include: polysemy (multiple meanings),
buzzwording, confusion, hand waving, Platonism, and even mysticism. Still, the
concept of emergence can be clearly defined and understood (Anderson 1972). The
properties of a system are emergent if they are not present in their components. In
other words, global properties which are produced by local interactions are emer-
gent. For example, the temperature of a gas can be said to be emergent (Shalizi
2001), since the molecules do not possess such a property: it is a property of the
collective. In a broad an informal way, emergence can be seen as differences in
phenomena as they are observed at different scales (Prokopenko et al. 2009).

Some might perceive difficulties in describing phenomena at different
scales (Gershenson 2013), but this is a consequence of attempting to find a sin-
gle “true" description of phenomena. Phenomena do not depend on the descriptions
we have of them, and we can have several different descriptions of the same phe-
nomenon. It is more informative to handle several descriptions at once, and actually
it is necessary when studying emergence and complex systems.

2.2.3 Self-organization

Self-organization has been used to describe swarms, flocks, traffic, and many other
systems where the local interactions lead to a global pattern or behavior (Camazine
et al. 2003; Gershenson 2007). Intuitively, self-organization implies that a system

1 This question is related to the law of requisite variety (Ashby 1956).
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increases its own organization. This leads to the problems of defining organization,
system, and self. Moreover, as Ashby showed (1947b), almost any dynamical sys-
tem can be seen as self-organizing: if it has an attractor, and we decide to call that
attractor “organized", then the system dynamics will tend to it, thus increasing by
itself its own organization. If we can describe almost any system as self-organizing,
the question is not whether a system is self-organizing or not, but rather, when is it
useful to describe a system as self-organizing (Gershenson and Heylighen 2003)?

In any case, it is convenient to have a measure of self-organization which can cap-
ture the nature of local dynamics at a global scale. This is especially relevant for the
nascent field of guided self-organization (GSO) (Prokopenko 2009; Ay et al. 2012;
Polani et al. 2013). GSO can be described as the steering of the self-organizing
dynamics of a system towards a desired configuration (Gershenson 2012a). This
desired configuration will not always be the natural attractor of a controlled sys-
tem. The mechanisms for guiding the dynamics and the design of such mechanisms
will benefit from measures characterizing the dynamics of systems in a precise and
concise way.

2.2.4 Homeostasis

Originally, the concept of homeostasis was developed to describe internal and
physiological regulation of bodily functions, such as temperature or glucose levels.
Probably the first person to recognize the internal maintenance of a near-constant en-
vironment as a condition for life was Bernard (1859). Subsequently, Canon (1932)
coined the term homeostasis from the Greek hómoios (similar) and stasis (standing
still). Cannon defined homeostasis as the ability of an organism to maintain steady
states of operation during internal and external changes. Homeostasis does not im-
ply an immobile or a stagnant state. Although some conditions may vary, the main
properties of an organism are maintained.

Later, the British cybernetician William R. Ashby proposed, in an alternative
form, that homeostasis implicates an adaptive reaction to maintain “essential vari-
ables" within a range (Ashby 1947a, 1960). In order to explain the generation of
behavior and learning in machines and living systems, Ashby also contributed by
linking the concepts of ultrastability and homeostatic adaptation (Di Paolo 2000).
Ultrastability refers to the normal operation of the system within a “viability zone"
to deal with environmental changes. This viability zone is defined by the lower and
upper bounds of the essential variables. If the value of variables crosses the limits
of its viability zone, the system has a chance of finding new parameters that make
the challenged variables return to their viability zone.

A dynamical system has a high homeostatic capacity if it is able to maintain
its dynamics close to a certain state or states (attractors). As explained above, when
perturbations or environmental changes occur, the system adapts to face the changes
within the viability zone, that is, without the system “breaking" (Ashby 1947a).
Homeostasis can be seen as a dynamic process of self-regulation and adaptation by
which systems adapt their behavior over time (Williams 2006). The homeostasis
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concept can be applied to different fields beyond life sciences and is also closely
related to self-organization and to robustness (Wagner 2005; Jen 2005).

2.2.5 Autopoiesis

Autopoiesis comes from the Greek auto (self) and poiesis (creation, production) and
was proposed as a concept to define the living. According to Maturana (2011), the
notion of autopoiesis was created to connote and describe the molecular processes
taking place in the realization of living beings as autonomous entities. However,
this meaning of the word autopoiesis, which was used to describe closed networks
of molecular production, was chosen only until 1970 (Maturana and Varela 1980).
This notion arises from a series of questions, related to the internal dynamics of
living systems, which Maturana began considering in the 1960s, such as: “What
should be the constitution of a system so that I see a living system as a result of
its operation?", “What kind of systems or entities are living systems?", and another
question that a student asked Maturana: “What happened three billion eight hundred
million years ago so that you can now say that living systems began then?"

In the context of autopoiesis, living beings occur as discrete autonomous dynamic
molecular autopoietic entities. These entities are in a continuous realization of their
self-production. Thus, autopoiesis describes the internal dynamics of a living sys-
tem in the molecular domain. Maturana notices that living beings are dynamical
systems in continuous change. Interactions between elements of an autopoietic sys-
tem regulate the production and regeneration of the system’s components, having
the potential to develop, preserve, and produce their own organization (Varela et al.
1974).

For example, a bacterium may produce another bacterium by cellular division,
while a virus requires a host cell to produce another virus. The production of the
new bacterium is made by the interactions between the elements of another bac-
terium. The production of a new virus depends on interactions between elements of
an external system. Thus, it can be said that a bacterium is more autopoietic than
a virus. In this sense, autopoiesis is much related to autonomy (Ruiz-Mirazo and
Moreno 2004). Autonomy is always limited in open systems, as their states depend
on environmental interactions. However, differences in autonomy can be clearly
identified, just like in the previous example.

The concept of autopoiesis has been extended to other areas beyond biol-
ogy (Luisi 2003; Seidl 2004; Froese and Stewart 2010), although no formal measure
had been proposed so far.

2.2.6 Information Theory

Information has had a most interesting history (Gleick 2011). Information theory
was created by Claude Shannon in 1948 in the context of telecommunications.
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He analyzed whether it was possible to reconstruct data transmitted across a noisy
channel. In his model, information is represented as a string X = x0x1... where
each xi is a symbol from a finite set of symbols A called the alphabet. Moreover,
each symbol in the alphabet has a given probability P(x) of occurring in the string.
Common symbols will have a high P(x) while infrequent symbols will have a low
P(x).

Shannon was interested in a function to measure how much information a process
“produces". Quoting Shannon (1948)2:

Suppose we have a set of possible events whose probabilities of occurrence are
p1, p2, ..., pn. These probabilities are known but that is all we know about the event
that might occur. Can we find a measure of how much “choice” is involved in the se-
lection of the event or how uncertain we are of the outcome? If there is such a measure,
say (p1, p2, ..., pn) it is reasonable to require of it the following properties:

1. I should be continuous in each pi.

2. If all the pi are equal, pi = 1/n, then I should be a monotonic increasing function
of n. With equally n likely events there is more choice, or uncertainty, when there
are more possible events.

3. If a choice be broken down into two successive choices, the original I should be the
weighted sum of the individual values of I.

With these few axioms, Shannon demonstrates that the only function I satisfying the
three above is of the form:

I =−K
n

∑
i=i

pi log pi, (2.1)

where K is a positive constant.
For example, if we have a string ‘0001000100010001...’, we can estimate P(0) =

0.75 and P(1) = 0.25, then I = −(0.75 · log0.75+ 0.25 · log0.25). If we use K = 1
and a base 2 logarithm, then I ≈ 0.811.

Shannon used H to describe information (we are using I) because he was thinking
in the Boltzmann’s H theorem3 when he developed the theory. Therefore, he called
equation 2.1 the entropy of the set of probabilities p1, p2, ..., pn. In modern words, I
is a function of a random variable X .

The unit of information is the bit (binary digit). One bit represents the information
gained when a binary random variable becomes known. However, since equation 2.1
is a sum of probabilities, Shannon’s information is a unitless measure.

More details about information theory in general can be found in Ash (1990),
while a primer on information theory related to complexity, self-organization, and
emergence is found in Prokopenko et al. (2009).

2 We replaced Shannon’s H for I.
3 The Boltzmann H theorem is given in the thermodynamic context. It states that the entropy

of an ideal gas increases in an irreversible process. This might be also the reason why he
required the second property.
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2.2.7 Random Boolean Networks

Random Boolean networks (RBNs) are abstract computational models, originally
proposed to study genetic regulatory networks (Kauffman 1969, 1993). However,
being general models, their study and use has expanded beyond biology (Aldana-
González et al. 2003; Gershenson 2004, 2012a).

A RBN is formed by N nodes linked by K connections4. Each node has a Boolean
state, i.e. zero or one. The future state of each node is determined by the current
states of the nodes that link to it and a lookup table which specifies how the update
will take place. The connectivity (which nodes affect which) and the lookup tables
(how nodes affect their states) are usually generated randomly for a network, but
remain fixed during its dynamics.

RBNs have been found to have three different dynamical regimes, which have
been studied extensively (Gershenson 2004):

Ordered. Most nodes are static, RBNs are robust to perturbations.
Chaotic. Most nodes are changing, RBNs are fragile to perturbations.
Critical. Some nodes are changing, RBNs have adaptive potential.

Different parameters and properties determine the regime, which can be used to
guide a particular RBN towards a desired regime (Gershenson 2012a).

It can be said that the critical regime balances the robustness of the ordered phase
and the changeability of the chaotic phase. It has been argued that computation and
life require this balance to be able to compute and adapt (Langton 1990; Kauffman
1993).

RBNs will be used in Section 2.4.1 to illustrate the measures proposed in the next
section.

2.2.8 Limnology

Lakes are studied by limnology. Lakes can be divided in different zones, as shown
in Figure 2.1: (i) The macrophyte zone, composed mainly of aquatic plants, which
are rooted, floating or submerged. (ii) The planktonic zone corresponds to the open
surface waters; away from the shore in which organisms passively float and drift
(phyto and zooplankton). Planktonic organisms are incapable of swimming against
a current. However, some of them are motile. (iii) The benthic zone is the lowest
level of a body of water related with the substratum, including the sediment surface
and subsurface layers. (iv) The mixing zone is where the exchange of water from
planktonic and benthic zones occurs.

At different zones, one or more components or subsystems can be an assessment
for the ecosystem dynamics. For our case study to be presented in Section 2.4.2,
we considered three components: physiochemical, limiting nutrients and photosyn-
thetic biomass for the planktonic and benthic zones.

4 This K is different from the constant used in equation 2.1.
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Fig. 2.1 Zones of lakes studied in limnology

The physiochemical component refers to the chemical composition of water. It
is affected by various conditions and processes such as geological nature, the water
cycle, dispersion, dilution, solute and solids generation (e.g. photosynthesis), and
sedimentation. In this component, we highlight two water variables that are im-
portant for the aquatic life: (i) the pH equilibrium that affects, among others, the
interchange of elements between the organism and its environment and (ii) the tem-
perature regulation that is supported in the specific heat of the water.

Related to the physiochemical component, limiting nutrients which are basic for
photosynthesis are associated with the biogeochemical cycles of nitrogen, carbon,
and phosphorous. These cycles permit the adsorption of gases into the water or the
dilution of some limiting nutrients.

In addition, among limnetic biota, photoautotrophic biomass is the basis for the
trophic web establishment. The term autotrophs is used for organisms that increase
their mass through the accumulation of proteins which they manufacture, mainly
from inorganic radicals (Stumm 2004). This type of organisms can be found at the
planktonic and benthic zones.

The previous basic limnology concepts will be useful to follow the case study of
an Arctic lake, presented in Section 2.4.2.

2.3 Measures

We have recently proposed earlier versions of the measures presented in this chap-
ter (Fernández et al. 2012; Gershenson and Fernández 2012). The ones presented
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here are more refined and are based on axioms. The benefit of using axioms is that
the discussion is not taken so much at the level of the measures, but at the level of
the presuppositions or the properties we want measures to have.

A comparison of the proposed measures with others can be found in Gershen-
son and Fernández (2012). It is worth noting that all of the proposed measures are
unitless.

2.3.1 Emergence

We mentioned that emergence refers to properties of a phenomenon which are
present at one scale and are not at another scale. Scales can be temporal or spa-
tial. If we describe phenomena in terms of information, in order to have “new"
information, “old" information has to be transformed. This transformation can be
dynamic, static, active, or stigmergic (Gershenson 2012b). For example, new infor-
mation is produced when a dynamical system changes its behavior, but also when
a description of a system changes. Concerning the first case, approaches measur-
ing the difference between past and future states have been proposed, e.g. (Shalizi
and Crutchfield 2001). We can call this dynamic emergence. Concerning the second
case, approaches measuring differences between scales have been used, e.g. (Shal-
izi 2001; Holzer and De Meer 2011). We can call this scale emergence. Even when
there are differences between dynamic and scale emergencies, both can be seen as
new information being produced. In the first case, dynamics produce new informa-
tion. In the second case, the change of description produces new information. Thus,
information emergence E includes both dynamic emergence and scale emergence.
If we recall, Shannon proposed a quantity which measures how much information a
process “produces". Therefore, we can say that emergence is the same as Shannon’s
information I. From now on, we will consider the emergence of a process E as the
information I and we will use the base two logarithm.

E = I. (2.2)

We now revise that the intuitive idea of emergence fulfills the three basic notions
(axioms) that Shannon used to derive I (Shannon’s H). For the continuity axiom,
it is expected of a measure not to give big jumps when small changes are made.
The second axiom will be harder to show. It states that if we consider an auxiliary
function i which is the I function when there are n events with the same probability
1/n then the function i is monotonic increasing. If we have the same configuration
for emergence, then we could think the process to be with equally likelihood in any
of n available states. If something happens and now the process can be in n+ k
equally likely states we can say that the process has had emergence, since now we
need more information to know in which state the process is. For the third axiom,
we need to find a way to figure out how is that we can ’split’ the process. Lets recall
that the third property required by Shannon is that if a choice can be broken into
two different choices, the original I should be the average of the other two I. In a
process, we can think the choices as a fraction of the process that we are currently
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observing. For this purpose, we can make a partition5 of the domain, in our case, we
get two subsets whose intersection is the null set and whose union is the full original
set. After this, we compute the I function for each. Since we observe two different
parts of a process and in each observation we get the average6 new information
required to describe the (partial) process, then it makes sense to take the average of
both when observing the full process.

E , as well as I, is a probabilistic measure. E = 1 means that when any random
binary variable becomes known, one bit of information emerges. If E = 0, then no
new information will emerge, even as random binary variables become “known"
(they are known beforehand). Again, we emphasize that emergence can take place
at the level of a phenomenon observed or at the level of the description of the phe-
nomenon observed. Either can produce novel information.

2.3.1.1 Multiple Scales

When Shannon defined equation 2.1, he included K which is a positive constant.
This is important because we will change the value of K to normalize a measure
onto the [0,1] interval. The value of K will depend on the length of the finite alpha-
bet A we use. In the particular Boolean case when we have the alphabet A= {0,1}
with length |A| = 2. Then the value K = 1 will normalize the measure to the inter-
val [0,1]. Because of the relevance of the binary notation in computer science and
other applications, we will often use the Boolean alphabet. Nevertheless, we can
compute the entropy for alphabets with different lengths. We only have to consider
the equation

K =
1

log2 b
, (2.3)

where b is the length of the alphabet we use. In this way we will normalize E and
measures derived from it, having a maximum of 1 and a minimum of 0.

For example, consider the string in base 4 ‘0133013301330133...’. We can es-
timate P(0) = P(1) = 0.25, P(2) = 0, and P(3) = 0.5. Following equation 2.1,
we have I = −K(0.25 · log0.25+ 0.25 · log0.25+ 0+ 0.5 · log0.5). Since b = 4,
K = 1

log2 4 = 0.5. Thus, we obtain a normalized I = 0.75.

2.3.2 Self-organization

Self-organization has been correlated with an increase in order, i.e. a reduction of
entropy (Gershenson and Heylighen 2003). If emergence implies an increase of in-
formation, which is analogous to entropy and disorder, self-organization should be
anti-correlated with emergence.

5 We are using the set theory partition, we could have any finite number of partitions where
the intersection of all of them is the null set and whose union is the original set.

6 When there are more than two subsets in the partition, we can make a weighted average. A
sort of expectation where the distribution probability is given by the nature of the process.
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A measure of self-organization S should be a function S : Σ →R (where Σ =AN)
with the following properties:

1. The range of S is the real interval [0,1]
2. S(X) = 1 if and only if X is deterministic, i.e. we know beforehand the value of

the process.
3. S(X) = 0 if and only if X has a uniform distribution, i.e. any state of the process

is equally likely.
4. S(X) has a negative correlation with emergence E .

We propose as the measure

S = 1− I = 1−E (2.4)

It is straightforward to check that this function fulfills the axioms stated. Nev-
ertheless it is not unique. However, it is the only affine (linear) function which
fulfills the axioms. For simplicity, we propose the use of 2.4 as a measure of self-
organization.

S = 1 means that there is maximum order, i.e. no new information is produced
(I = E = 0). On the other extreme, S = 0 when there is no order at all, i.e. when any
random variable becomes known, information is produced/emerges (I = E = 1).
When S = 1, maximum order, dynamics do not produce novel information, so the
future is completely known from the past. On the other hand, when S = 0, minimum
order, no past information tells us anything about future information.

Note that equation 2.4 makes no distinction on whether the order is produced by
the system (self) or by its environment. Thus, S would have a high value in sys-
tems with a high organization, independently on whether this is a product of local
interactions or imposed externally. This distinction can be easily made describing
the detailed behavior of systems, but is difficult and unnecessary to capture with a
general probabilistic measure such as S. As an analogy, one can measure the tem-
perature of a substance, but temperature does not differentiate (and does not need to
differentiate) between substances which are heated or cooled from the outside and
substances whose temperature is dependent mainly on internal chemical reactions.

2.3.3 Complexity

Following Lopez-Ruiz et al. (1995), we can define complexity C as the balance
between change (chaos) and stability (order). We have just defined such measures:
emergence and self-organization. The complexity function C : Σ → R should have
the following properties:

1. The range is the real interval [0,1].
2. C = 1 if and only if S = E .
3. C = 0 if and only if S = 0 or E = 0.

It is natural to consider the product of S and I to satisfy the last two requirements.
We propose:
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C = 4 ·E ·S. (2.5)

Where the constant 4 is added to normalize the measure to [0,1], fulfilling the first
axiom. C can also be represented in terms of I as:

C = 4 · I · (1− I). (2.6)
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Fig. 2.2 Emergence E, self-organization S, and complexity C

Figure 2.2 plots the measures proposed so far for different values of P(x). It can
be seen that E is maximal when P(x) = 0.5 and minimal when P(x) = 0 or P(x) = 1.
The opposite holds for S: it is minimal when P(x) = 0.5 and maximal when P(x) = 0
or P(x) = 1. C is minimal when S or E are minimal, i.e. P(x) = 0, P(x) = 0.5, or
P(x) = 1. C is maximal when E = S = 0.5, which occurs when P(x) ≈ 0.11 or
P(x)≈ 0.89.

Shannon information can be seen as a balance of zeros and ones (maximal when
P(0) = P(1) = 0.5), while C can be seen as a balance of E and S (maximal when
E = S = 0.5).

2.3.4 Homeostasis

The previous three measures (E , S, and C) study how single variables change in time.
To calculate the measures for a system, one can plot the histogram or simply average
the measures for all variables in a system. For homeostasis H, we are interested on
how all variables of a system change or not in time. Table 2.1 shows this difference:
E , S, and C focusses on time series of variables (columns), while H focusses on
states (rows).

Let X = x1x2x3...xn represent the state of a system of n variables (i.e. a row in
Table 2.1). If the system has a high homeostasis, we would expect that its states do
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Table 2.1 Difference between observing single variables in time (columns) and several vari-
ables at one time (rows)

X Y Z
t = m−2 xm−2 ym−2 zm−2
t = m−1 xm−1 ym−1 zm−1
t = m xm ym zm

not change too much in time. The homeostasis function H : Σ ×Σ →R should have
the following properties:

1. The range is the real interval [0,1].
2. H = 1 if and only if for states X and X ′, X = X ′, i.e. there is no change in time.
3. H = 0 if and only if ∀i,xi �= x′i, i.e. all variables in the system changed.

A useful function for comparing strings of equal length is the Hamming dis-
tance. The Hamming distance d measures the percentage of different symbols in
two strings X and X ′. For binary strings, it can be calculated with the XOR function
(⊕). Its normalization bounds the Hamming distance to the interval [0,1]:

d(X ,X ′) =

∑
i∈{0,...,|X |}

xi ⊕ x′i

|X | . (2.7)

d measures the fraction of different symbols between X and X ′. For the Boolean
case, d = 0 ⇐⇒ X = X ′ and d = 1 ⇐⇒ X =¬X ′, while X and X ′ are uncorrelated
⇐⇒ d ≈ 0.5.

We can use the inverse of d to define h:

h(Xt ,Xt+1) = 1− d(Xt ,Xt+1), (2.8)

which clearly fulfills the desired properties of homeostasis between two states.
To measure the homeostasis of a system in time, we can generalize:

H =
1

m− 1

m−1

∑
t=0

h(Xt ,Xt+1), (2.9)

where m is the total number of time steps being evaluated. H will be simply the
average of different h from t = 0 to t = m− 1. As well as the previous measures
based on I, H is a unitless measure.

When H is measured at higher scales, it can capture periodic dynamics. For
example, let us have a system with n = 2 variables and a cycle of period 2:
11 → 00 → 11. H for base 2 will be minimal, since every time step all variables
change, i.e. ones turn into zeros or zeros turn into ones. However, if we measure H
in base 4, then we will be actually comparing pairs of states, since to make one time
step in base 4 we take two binary time steps. Thus, in base 4 the attractor becomes
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22 → 22, and H = 1. The same applies for higher bases. An example of the useful-
ness of measuring H at multiple scales in elementary cellular automata is explained
in Gershenson and Fernández (2012).

2.3.5 Autopoiesis

Let X̄ represent the trajectories of the variables of a system and Ȳ represent the tra-
jectories of the variables of the environment of the system. A measure of autopoiesis
A : Σ ×Σ →R should have the following properties:

1. A ≥ 0.
2. A should reflect the independence of X̄ over Ȳ . This implies:

a. A > A′ ⇐⇒ X̄ produces more of its own information than X̄ ′ for a given Ȳ .
b. A > A′ ⇐⇒ X̄ produces more of its own information in Ȳ than in Ȳ ′.
c. A = A′ ⇐⇒ X̄ produces as much of its own information than X̄ ′ for a given

Ȳ .
d. A = A′ ⇐⇒ X̄ produces as much of its own information in Ȳ than in Ȳ ′.
e. A = 0 if all of the information in X̄ is produced by Ȳ .

Following the classification of types of information transformation proposed
in Gershenson (2012b), dynamic and static transformations are internal (a system
producing its own information), while active and stigmergic transformations are ex-
ternal (information produced by another system).

It is problematic to define in a general and direct way how some informa-
tion depends on other information, as causality can be confounded with co-
occurrence. For this reason, measures such as mutual information are not suitable for
measuring A.

As it has been proposed, adaptive systems require a high C in order to be able
to cope with changes of its environment while at the same time maintaining their
integrity (Langton 1990; Kauffman 1993). If X̄ had a high E , then it would not be
able to produce the same patterns for different Ȳ . With a high S, X̄ would not be able
to adapt to changes in Ȳ . Therefore, we propose:

A =
C(X̄)

C(Ȳ )
. (2.10)

If C(X̄) = 0, then either X̄ is static (E(X̄) = 0) or pseudorandom (S(X̄) = 0).
This implies that any pattern (complexity) which could be observed in X̄ (if any)
should come from Ȳ . This case gives a minimal A. On the other hand, if C(Ȳ ) = 0,
it implies that any pattern (if any) in X̄ should come from itself. This case gives a
maximal A = ∞. A particular case occurs if C(X̄) = 0 and C(Ȳ ) = 0. A becomes
undefined. But how can we say something about autopoiesis if we are comparing
two systems which are either without variations (S = 1) or pseudorandom (E = 1)?
This case should be undefined. The rest of the properties are evidently fulfilled by
equation 2.10. This is certainly not the unique function to fulfill the desired axioms.
The exploration of alternatives requires further study.
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Since A represents a ratio of probabilities, it is a unitless measure. A ∈ [0,∞),
although it could be mapped to [0,1) using a function such as f (A) = A

1+A . We do not
normalize A because it is useful to distinguish A > 1 and A < 1 (see Section 2.5.8).

2.3.6 Multi-scale Profiles

Bar-Yam (2004) proposed the “complexity profile", which plots the complexity of
systems depending on the scale at which they are observed. This allows to com-
pare how a measure changes with scale. For example, the σ profile compares the
“satisfaction" of systems at different scales to study organization, evolution and co-
operation (Gershenson 2011).

In a similar way, multi-scale profiles can be used for each of the measures pro-
posed, giving further insights about the dynamics of a system than measuring them
at a single scale. This is clearly seen, for example, with different types of elementary
cellular automata (Gershenson and Fernández 2012).

2.4 Results

In this section we apply the measures proposed in the previous section to two case
studies: random Boolean networks and an aquatic ecosystem. A further case, ele-
mentary cellular automata, can be found in Gershenson and Fernández (2012).

2.4.1 Random Boolean Networks

Results show averages of 1000 RBNs, where 1000 steps were run from a random
initial state and E , S, C and H were calculated from data generated in 1000 addi-
tional steps.

R (R Project Contributors 2012) was used with packages BoolNet (Müssel et al.
2010) and entropy (Hausser and Strimmer 2012).

Figure 2.3 shows results for RBNs with 100 nodes, as the connectivity K varies.
For low K, there is high S and H, and a low E and C. This reflects the ordered
regime of RBNs, where there is high robustness and few changes. Thus, it can be
said that there is few or no information emerging and there is a high degree of
self-organization and homeostasis. For high K, there is high E , low S and C, and
uncorrelated H ≈ 0.5. This reflects the chaotic regime of RBNs, where there is high
fragility and many changes. Almost every bit (a new state for most nodes) carries
novel emergent information, and this constant change implies low organization and
complexity. For medium connectivities (2 ≤ K ≤ 3), there is a balance between E
and S, leading to a high C. This corresponds to the critical regime of RBNs, which
has been associated with complexity and the possibility of life (Kauffman 2000).

As for autopoiesis, to model a system and its environment, we coupled two
RBNs: One “internal" RBN with Ni nodes and Ki average connections and one “ex-
ternal" with Ne nodes and Ke average connections. A “coupled" RBN is considered
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Fig. 2.3 Averages for 1000 RBNs, N = 100 nodes and varying average connectivity K (Ger-
shenson and Fernández 2012)

with Nc = Ni +Ne nodes and Ki connections. At every time step, the external RBN
evolves independently. However, its state is copied to the Ne nodes representing it in
the coupled RBN, which now evolves depending partly on the external RBN. Thus,
the Ni nodes in the coupled RBN representing the internal RBN may be affected by
the dynamics of the external RBN, but not vice versa. The C of each node is calcu-
lated and averaged separately for each network, obtaining an internal complexity Ci

and an external complexity Ce.
Figure 2.4 and Table 2.2 show results for Ne = 96 and Ni = 32 for different com-

binations of Ke and Ki.

Table 2.2 A averages for 50 sets Ne = 96,Ni = 32. Same results as those shown in Figure 2.4.

Ki \Ke 1 2 3 4 5
1 0.4464025 0.5151070 0.7526248 1.6460345 3.4081967
2 1.6043330 0.9586809 1.1379227 2.0669794 3.2473729
3 2.4965328 0.9999926 0.9355231 1.3604272 2.6283798
4 2.1476247 0.7249803 0.6151742 0.8055051 1.3890630
5 1.8969094 0.4760027 0.3871875 0.4755580 0.8648389

As it was shown in Figure 2.3, C changes with K, so it is expected to have A ≈ 1
when Ki ≈ Ke. When Ce is high (Ke = 2 or Ke = 3), then the environment dominates
the patterns of the system, yielding A < 1. When Ce is low (Ke < 2 or Ke > 3), the
patterns produced by the system are not affected that much by its environment, thus
A> 1, as long as Ki <Ke (otherwise the system is more chaotic that its environment,
and so complex patterns have to come from outside).



2 Information Measures of Complexity, Emergence, Self-organization 35

1

2

3

4

5

1 2 3 4 5

K
i

Ke

N
i
=

3
2

Ne = 96

●

●

●

●

●

●

●

Fig. 2.4 A averages for 50 sets Ne = 96,Ni = 32. Values A < 1 are red while A > 1 are blue.
Size of circles indicate how far A is from A = 1. Numerical values shown in Table 2.2.

A does not try to measure how much information emerges internally or externally,
but how much the patterns are internally or externally produced. A high E means
that there is no pattern, as there is constant change. A high S implies a static pattern.
A high C reflects complex patterns. We are interested in A measuring the ratio of the
complexity of patterns being produced by a system compared to the complexity of
patterns produced by its environment.

2.4.2 An Ecological System: An Arctic Lake

The data from an Artic lake model used in this section was obtained using The
Aquatic Ecosystem Simulator (Randerson and Bowker 2008).

In general, Arctic lake systems are classified as oligotrophic due to their low pri-
mary production, represented in chlorophyll values of 0.8-2.1 mg/m3. The lakeÕs
water column, or limnetic zone, is well-mixed; this means that there are no stratifi-
cations (layers with different temperatures). During winter (October to March), the
surface of the lake is ice covered. During summer (April to September), ice melts
and the water flow and evaporation increase, as shown in Figure 2.5a. Consequently,
the two climatic periods (winter and summer) in the Arctic region cause a typical
hydrologic behavior in lakes as the one shown in Figure 2.5b. This hydrologic be-
havior influences the physiochemical subsystem of the lake.

Table 2.3 and Figure 2.6 show the variables and daily data we obtained from the
Arctic lake simulation. The model used is deterministic, so there is no variation in
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Fig. 2.5 (A) Climatic and (B) hydraulic regimes of Arctic lakes

different simulation runs. Figure 2.6 depicts a high dispersion for the following vari-
ables: temperature (T ) and light (L) at the three zones of the Arctic lake (surface=S,
planktonic=P and benthic=B), inflow and outflow (IO), retention time (RT ) and
evaporation (Ev). Ev is the variable with the highest dispersion.

Observing RT and IO in logarithmic scale, we can see that their values are lo-
cated at the extremes, but their range is not long. Consequently, these variables have
considerable variability in a short range. However, the ranges of the other variables
do not reflect large changes. This situation complicates the interpretation and com-
parison of the physiochemical dynamics. To attend this situation, we normalize the
data to base b of all points x of all variables X with the following equation:
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Table 2.3 Physiochemical variables considered in the Arctic lake model

Variable Units Acronym Max Min Median Mean std. dev.

Surface Light MJ/m2/day SL 30 1 5.1 11.06 11.27
Planktonic Ligth MJ/m2/day PL 28.2 1 4.9 10.46 10.57
Benthic Light MJ/m2/day BL 24.9 0.9 4.7 9.34 9.33
Surface Temperature Deg C ST 8.6 0 1.5 3.04 3.34
Planktonic Temperature Deg C PT 8.1 0.5 1.4 3.1 2.94
Benthic Temperature Deg C BT 7.6 1.6 2 3.5 2.29
Inflow and Outflow m3/sec IO 13.9 5.8 5.8 8.44 3.34
Retention Time days RT 100 41.7 99.8 78.75 25.7
Evaporation m3/day Ev 14325 0 2436.4 5065.94 5573.99
Zone Mixing %/day ZM 55 45 50 50 3.54
Inflow Conductivity uS/cm ICd 427 370.8 391.4 396.96 17.29
Planktonic Conductivity uS/cm PCd 650.1 547.6 567.1 585.25 38.55
Benthic Conductivity uS/cm BCd 668.4 560.7 580.4 600.32 40.84
Surface Oxygen mg/litre SO2 14.5 11.7 13.9 13.46 1.12
Planktonic Oxygen mg/litre PO2 13.1 10.5 12.6 12.15 1.02
Benthic Oxygen mg/litre BO2 13 9.4 12.5 11.62 1.51
Sediment Oxygen mg/litre SdO2 12.9 8.3 12.4 11.1 2.02
Inflow pH ph Units I pH 6.4 6 6.2 6.2 0.15
Planktonic pH ph Units PpH 6.7 6..40 6.6 6.57 0.09
Benthic pH ph Units BpH 6.6 6.4 6.5 6.52 0.07
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Fig. 2.6 Boxplots of variables from the physiochemical subsystem. Abbreviations expanded
in Table 2.3.
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f (x) =

⌊
b · x−minX

maxX −minX

⌋
, (2.11)

where �x� is the floor function of x.
Once all variables are in transformed into a finite alphabet, in this case, base 10

(b = 10), we can calculate emergence, self-organization, complexity, homeostasis
and autopoiesis. Figure 2.7 depicts the number of points in each of the ten classes
and shows the distribution of the values for each variable. Based on this distribution,
the behavior for variables can be easily described and compared. Variables with
a more homogeneous distribution will produce more information, yielding higher
values of emergence. Variables with a more heterogeneous distribution will produce
higher self-organization values. The complexity of variables is not easy to deduce
from Figure 2.7.
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Fig. 2.7 Transformed variables from the physiochemical subsystem to base 10

2.4.2.1 Emergence, Self-organization, and Complexity

Figure 2.8 shows the values of emergence, self-organization, and complexity of the
physiochemical subsystem. Variables with a high complexity C ∈ [0.8,1] reflect a
balance between change/chaos (emergence) and regularity/order (self-organization).
This is the case of benthic and planktonic pH (BpH; PpH), IO (Inflow and Out-
flow) and RT (Retention Time). For variables with high emergencies (E > 0.92),
like Inflow Conductivity (ICd) and Zone Mixing (ZM), their change in time is con-
stant; a necessary condition for exhibiting chaos. For the rest of the variables, self-
organization values are low (S < 0.32), reflecting low regularity. It is interesting to
notice that in this system there are no variables with a high self-organization nor
low emergence.

Since E,S,C ∈ [0,1], these measures can be categorized into five categories as
shown in Table 2.4. These categories are described on the basis of the range value,
the color and the adjective in a scale from very high to very low. This categorization
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Fig. 2.8 E, S, and C of physiochemical variables of the Arctic lake model (also shown in
Table 2.5) and daily variations of homeostasis H during a simulated year

Table 2.4 Categories for classifying E, S, and C

Category Very High High Fair Low Very Low

Range [0.8,1] [0.6,0.8) [0.4,0.6) [0.2,0.4) [0,0.2)

Color Blue Green Yellow Orange Red

is inspired on the categories for Colombian water pollution indices. These indices
were proposed by Ramírez et al. (2003) and evaluated in Fernández et al. (2005).

Table 2.5 shows results of E , S, and C using the categories just mentioned.
From Table 2.5 and a principal component analysis (not shown), we can divide

the values obtained in complexity categories as follows:

Very High Complexity: C ∈ [0.8,1]. The following variables balance self-
organization and emergence: benthic and planktonic pH (BpH, PpH), inflow
and outflow (IO), and retention time (RT ). It is remarkable that the increasing
of the hydrological regime during summer is related in an inverse way with the
dissolved oxygen (SO2; BO2). It means that an increased flow causes oxygen
depletion. Benthic Oxygen (BO2) and Inflow Ph (IpH) show the lowest levels of
the category. Between both, there is a negative correlation: a doubling of IpH is
associated with a decline of BO2 in 40%.

High Complexity: C ∈ [0.6,0.8). This group includes 11 of the 21 variables and
involves a high E and a low S. These 11 variables that showed more chaotic
than ordered states are highly influenced by the solar radiation that defines the
winter and summer seasons, as well as the hydrological cycle. These variables
were: Oxygen (PO2, SO2); surface, planktonic and benthic temperature (ST , PT ,
BT ); conductivity (ICd, PCd, BCd); planktonic and benthic light (PL,BL); and
evaporation (Ev).

Very Low Complexity: C ∈ [0,0.2). In this group, E is very high, and S is very
low. This category includes the inflow conductivity (ICd) and water mixing
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Table 2.5 E, S, and C of physiochemical variables of the Arctic lake model. Also shown in
Figure 2.2

Variable Acronym E S C

Benthic pH BpH 0.44196793 0.55803207 0.98652912
In and Outflow IO 0.52310253 0.47689747 0.99786509
Retention Time RT 0.53890552 0.46109448 0.99394544
Planktonic pH PpH 0.54122993 0.45877007 0.99320037
Sediment Oxygen SdO2 0.59328705 0.40671295 0.96519011
Benthic Oxygen BO2 0.67904928 0.32095072 0.87176542
Inflow pH I pH 0.69570975 0.30429025 0.84679077
Benthic Temperature BT 0.72661539 0.27338461 0.79458186
Planktonic Temperature PT 0.75293885 0.24706115 0.74408774
Planktonic Light PL 0.75582978 0.24417022 0.7382045
Surface Light SL 0.75591484 0.24408516 0.73803038
Benthic Light BL 0.76306133 0.23693867 0.72319494
Surface Oxygen SO2 0.76509182 0.23490818 0.71890531
Surface Temperature ST 0.76642121 0.23357879 0.71607895
Evaporation Ev 0.76676234 0.23323766 0.71535142
Planktonic Oxygen PO2 0.76887287 0.23112713 0.71082953
Benthic Conductivity BCd 0.77974428 0.22025572 0.68697255
Planktonic Conductivity PCd 0.78604873 0.21395127 0.6727045
Inflow Conductivity ICd 0.92845597 0.07154403 0.26570192
Zone Mixing ZM 0.94809050 0.0519095 0.1968596

variance (ZM). Both are high and directly correlated; it means that an increase of
the mixing percentage between planktonic and benthic zones is associated with
an increase of inflow conductivity.

2.4.2.2 Homeostasis

The homeostasis was calculated by comparing the daily values of all variables, rep-
resenting the state of the Arctic subsystem. The temporal timescale is very impor-
tant, because H can vary considerably if we compare states every minute or every
month.

The h values have a mean (H) of 0.95739726 and a standard deviation of
0.064850247. The minimum h is 0.60 and the maximum h is 1.0. In an annual cycle,
homeostasis shows four different patterns, as shown in Figure 2.8, which correspond
with the seasonal variations between winter and summer. These four periods show
scattered values of homeostasis as the result of transitions between winter and sum-
mer and winter back again. The winter period (first and last days of the year) has
very high h levels (1 or close to 1) and starts from day 212 and goes to day 87.
In this period, the winter conditions such as low light level, temperature, maximum
time retention due to ice covering, low inflow and outflow, water mixing interchange
between planktonic and benthic zones, low conductivities and pHs and high oxygen
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are present. The second, third and fourth periods correspond to summer. The sec-
ond period starts with an increase of benthic pH, zone mixing, and inflow-outflow
variables. Between days 83 and 154, this period is characterized for extreme fluctu-
ations as a result of an increase in temperature and light. Homeostasis fluctuates and
reaches a minimum of 0.6 in day 116. At the end of this period, the evaporation and
zone mixing increase, while oxygen decreases in the benthic zone and sediment.
The third period (days 155 to 162) reflects the stabilization of the summer condi-
tions; It means maximum evaporation, temperature, light, mixing zone, conductivity
and pH and the lowest oxygen level. Homeostasis is maximal again for this period.
The fourth period (days 163-211), which has h fluctuations near 0.9, corresponds to
the transition of summer to winter conditions.

As it can be seen, using h, periodic or seasonal dynamics can be followed and
studied.

2.4.2.3 Autopoiesis

Autopoiesis was measured for three components (subsystems) at the planktonic and
benthic zones of the Arctic lake. These were physiochemical, limiting nutrients and
biomass. They include the variables and organisms related in Table 2.6.

Table 2.6 Variables and organisms used for calculating autopoiesis

Component Planktonic zone Benthic zone
PhysiochemicalLight, Temperature, Con-

ductivity, Oxygen, pH.
Light, Temperature, Con-
ductivity, Oxygen, Sediment
Oxygen, pH.

Limiting Nu-
trients

Silicates, Nitrates, Phos-
phates, Carbon Dioxide.

Silicates, Nitrates, Phos-
phates, Carbon Dioxide.

Biomass Diatoms, Cyanobacteria,
Green Algae, Chlorophyta.

Diatoms, Cyanobacteria,
Green Algae.

According to the complexity categories established in Table 2.4, the planktonic
and benthic components have been classified in the following categories: limiting
nutrient variables in the low complexity category (C ∈ [0.2,0.4); orange color),
planktonic physiochemical variables in the high complexity category (C ∈ [0.6,0.8);
green color) and biomass and benthic physiochemical variables in the very high
complexity category (C ∈ [0.8,1]; blue color). A comparison of the complexity level
for each subsystem of each zone (averaging their respective variables) is depicted in
Figure 2.9.

In order to compare the autonomy of each group of variables, equation 2.10 was
applied to the complexity data, as shown in Figure 2.10. For the planktonic and
benthic zones, we calculated the autopoiesis of the biomass elements in relation to
limiting nutrient and physiochemical variables. All A values are greater than 1. This
means that the variables related to living systems have a greater complexity than
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Fig. 2.9 C of planktonic and benthic components

the variables related to their environment, represented by the limiting nutrient and
physiochemical variables. While we can say that some physiochemical variables,
including limiting nutrients have more or fewer effects on the planktonic and ben-
thic biomass, we can also estimate that planktonic and benthic biomass are more
autonomous compared to their physiochemical and nutrient environments. The very
high values of complexity of biomass imply that these living systems can adapt to
the changes of their environments because of the balance between emergence and
self-organization that they have.
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Fig. 2.10 A of biomass depending on limiting nutrients and physiochemical components

2.4.2.4 Multiple Scales

The previous analysis of the Arctic lake was performed using base ten. We obtained
the measures for the same data using bases 2i,∀i ∈ [1..6], as shown in Figures 2.11
and 2.12.

For base 2 (Figure 2.11a), there is a very high E for all variables, as the richness
of the dynamics cannot be captured by only two values. Thus, S and C are low. Base
8 (Figure 2.11c) gives results very similar to those of base 10 (Figure 2.8), indicating
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that the measures are not sensitive to slight changes of base. Base 4 (Figure 2.11b)
gives intermediate values between base 2 and base 8. Results for bases 16, 32, and
64 (Figure 2.12) are very similar to those of base 10 and 8, showing that the choice
of base is relevant but not a sensitive parameter.

As more diversity is possible with higher bases, homeostasis values decrease
with base. Still, the different periods of the year can be identified at all scales, with
different levels of detail.

In the case of the Arctic lake model, studying the dynamics with a single base, i.e.
at a single scale, can be very informative. However, studying the same phenomena
at multiple scales can give further insights, independently on whether the measures
change or not with scale.

2.5 Discussion

2.5.1 Measures

The proposed measures characterize the different configurations and dynamics that
elements of complex systems acquire through their interactions. Just like temper-
ature averages the kinetic energy of molecules, much information is lost in the
averaging, as the description of phenomena changes scale. The measures are prob-
abilistic (except for H) and they all rely on statistical samples7. Thus, the caveats
of statistics and probability should be taken into consideration when using the pro-
posed measures. Still, these measures capture the properties and tendencies of a
system, that is why the scale at which they are described is important. They will
not indicate which element interacted with which element, how and when. If we are
interested in the properties and tendencies of the elements, we can change scale
and apply the measures there. Still, we have to be aware that the measures are
averaging—and thus simplifying—the phenomena they describe. Whether relevant
information is lost on the averaging depends not only on the phenomenon, but on
what kind of information we are interested in, i.e. relevance is also partially depen-
dent on the observer (Gershenson 2002).

2.5.2 Complexity As Balance or Entropy?

Some approaches relate complexity with a high entropy, i.e. information con-
tent (Bar-Yam 2004; Delahaye and Zenil 2007). Just as chaos should not be con-
fused with complexity (Gershenson 2013), a very high entropy (high emergence
E) implies too much change, where complex patterns are destroyed. On the other
hand, very low entropy (high self-organization S), prevents complex patterns from
emerging. As it has been proposed by several authors, complexity can be seen as
balance between order and disorder (Langton 1990; Kauffman 1993; Lopez-Ruiz
et al. 1995), and thus, it is logical to postulate C as a balance of E and S.

7 This is also the reason for why all measures are unitless.



44 N. Fernández, C. Maldonado, and C. Gershenson

SL PL BL ST PT BT IO RT Ev ZM ICd PCd BCd SO2 PO2 BO2 SdO2 IpH PpH BpH

Emergence
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

SL PL BL ST PT BT IO RT Ev ZM ICd PCd BCd SO2 PO2 BO2 SdO2 IpH PpH BpH

Self−organization

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SL PL BL ST PT BT IO RT Ev ZM ICd PCd BCd SO2 PO2 BO2 SdO2 IpH PpH BpH

Complexity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Homeostasis

(a) . Base 2.

SL PL BL ST PT BT IO RT Ev ZM ICd PCd BCd SO2 PO2 BO2 SdO2 IpH PpH BpH

Emergence

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SL PL BL ST PT BT IO RT Ev ZM ICd PCd BCd SO2 PO2 BO2 SdO2 IpH PpH BpH

Self−organization

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SL PL BL ST PT BT IO RT Ev ZM ICd PCd BCd SO2 PO2 BO2 SdO2 IpH PpH BpH

Complexity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Homeostasis

(b) . Base 4.

SL PL BL ST PT BT IO RT Ev ZM ICd PCd BCd SO2 PO2 BO2 SdO2 IpH PpH BpH

Emergence

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SL PL BL ST PT BT IO RT Ev ZM ICd PCd BCd SO2 PO2 BO2 SdO2 IpH PpH BpH

Self−organization

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SL PL BL ST PT BT IO RT Ev ZM ICd PCd BCd SO2 PO2 BO2 SdO2 IpH PpH BpH

Complexity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Homeostasis

(c) . Base 8.

Fig. 2.11 Emergence, Self-organization, Complexity, and Homeostasis for Arctic lake model
at multiple scales: 2, 4, and 8
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Fig. 2.12 Emergence, Self-organization, Complexity, and Homeostasis for Arctic lake model
at multiple scales: 16, 32, and 64
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It might seem contradictory to define emergence as the opposite of self-
organization, as they are both present in several complex phenomena. However,
when one takes one to the extreme (emergence or self-organization), the other is
negligible. It is precisely when both of them are balanced that complexity occurs,
but this does not mean that both of them have to be maximal.

2.5.3 Fisher Information

C is correlated with Fisher information, which has been shown to be related to phase
transitions (Prokopenko et al. 2011). Following the view of high complexity as a bal-
ance, it is natural that C is maximal at phase transitions, which is the case for both
C and Fisher information. However, the steepness of Fisher information is much
higher than that of C. It is appropriate for determining phase transitions, but it makes
little distinction of dynamics farther from transitions. C is smoother, so it can rep-
resent dynamical change in a more gradual fashion. Moreover, to calculate Fisher
information, a parameter must be varied, which limits its applicability for analyzing
real data. This is because in many cases the data available is for a fixed set of pa-
rameters, with no variation. Under these circumstances, Fisher information cannot
be calculated.

2.5.4 Tsallis Entropy

Tsallis (1988) proposed a generalized measure of Shannon’s information for non-
ergodic systems. This measure has been correlated with complexity (Tsallis 2002;
Gell-Mann and Tsallis 2004). On the one hand, it would be interesting to compare
Tsallis entropy with C for different systems. On the other hand, it would be worth
exploring what occurs when I is replaced with Tsallis entropy in E (eq. 2.2) and
how this affects S, C, and A at multiple scales.

2.5.5 Guided Self-Organization

The measures proposed have several implications for GSO, beyond providing a mea-
sure of self-organization. In order to guide a complex system, one has to detect what
kind of dynamical regime it has. Depending on this, and on the desired configura-
tion for the system, different interventions can be made (Gershenson 2012a). The
measures can inform directly about the dynamical regime and about the effect of the
intervention.

For example, if we want to have a system with a high complexity, first we need to
measure what is its actual complexity. If it is not the desired one, then the dynamics
can be guided. But we also have to measure the complexity during the guiding
process, to evaluate the effectiveness of the intervention.
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2.5.6 Scales

The proposed measures can be applied at different scales, with drastic outcomes. For
example, the string ’1010101010’ will have E = 1 in base 2, as P(0) = P(1) = 0.5.
However, in base 4, each symbol pair is transformed into a single symbol, so the
string is transformed to ’22222’, and thus P(2) = 1 and P(0) = P(1) = P(3) = 0,
giving E = 0. Which scale(s) should be used is a question that has to be decided and
justified. Multiscale profiles can be helpful in visualizing how the measures change
with scale.

2.5.7 Normalization

For treating continuous data, we used equation 2.11 to normalize to a finite alpha-
bet, which is equally distributed. Clustering methods could also be used to process
data into finite categories. Still, an issue might arise for either case: if the avail-
able data does not represent the total range of possible values of a variable, e.g.
data ∈ [4.5,5.5] but the variable ∈ [0,10]. If we consider b = 10, then equation 2.11
would produce ten categories for the available data, which might be homogeneously
distributed and this give a high E . However, if we considered the variable range for
equation 2.11, it would categorize the available data in only two categories, lead-
ing to a low E . This problem is similar to the one of scales. We suggest to use the
viability zone of a variable when known to normalize variables.

2.5.8 Autopoiesis and Requisite Variety

Ashby’s Law of Requisite Variety (Ashby 1956) states that an active controller re-
quires as much variety (number of states) as that of the controlled system to be
stable. For example, if a system can be in four different states, its controller must be
able to discriminate between those four states in order to regulate the dynamics of
the system.

The proposed measure of autopoiesis is related to the law of requisite variety, as
a system with a A > 1 must have a higher complexity (variety) than its environment,
also reflecting its autonomy. Thus, a successful controller should have A > 1 (at
multiple scales (Gershenson 2011)), although the controller will be more efficient if
A → 1, assuming that higher complexities have higher costs.

2.6 Conclusions

We reviewed measures of emergence, self-organization, complexity, homeostasis,
and autopoiesis based on information theory. Axioms were postulated for each mea-
sure and equations were derived form them. Having in mind that there are sev-
eral different measures already proposed (Prokopenko et al. 2009; Gershenson and
Fernández 2012), this approach allows us to evaluate the axioms underlying the
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measures, as opposed to trying to compare different measures without a common
ground.

The generality and usefulness of the proposed measures will be evaluated grad-
ually, as these are applied to different systems. These can be abstract (e.g. Turing
machines (Delahaye and Zenil 2007, 2012), ε-machines (Shalizi and Crutchfield
2001; Görnerup and Crutchfield 2008)), biological (ecosystems, organisms), eco-
nomic, social or technological (Helbing 2011).

The potential benefits of general measures as the ones proposed here are man-
ifold. Even if with time more appropriate measures are found, aiming at the goal
of finding general measures which can characterize complexity, emergence, self-
organization, homeostasis, autopoiesis, and related concepts for any observable sys-
tem is a necessary step to take.
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Chapter 3
Generating Functionals for Guided
Self-Organization

Claudius Gros

3.1 Controlling Complex Systems

One may take it as a running joke, that complex systems are complex since they are
complex. It is however important to realize, this being said, that complex systems
come in a large varieties, and in many complexity classes, ranging from relatively
simple to extraordinary complex. One may distinguish in this context between clas-
sical and modern complex system theory. In the classical approach one would typi-
cally study a standardized model, like the Lorentz model or the logistic map, being
described usually by maximally a handful of variables and parameters (Gros 2008).
Many real-world systems are however characterized by a very large number of vari-
ables and control parameters, especially when it comes to biological and cognitive
systems. It has been noted, in this context, that scientific progress may generically
be dealing with complexity barriers of various severities, in far reaching areas like
medicine and meteorology (Gros 2012b), when researching real-world natural or
biological complex systems.

Generically, a complex system may be described by a set of first-order differential
equations (or maps), like

ẋi = fi(x1,x2, . . . |γ1,γ2, . . . ) , (3.1)

where the {xi} are the primary dynamical variables and the {γ j} the set of con-
trol parameters. Modern complex system theory has often to deal with the situation
where the phase space of dynamical variables and parameters are both high dimen-
sional. Everything in the macroscopic world, f.i. the brain, can be described by an
appropriate set of equations of motion, like (3.1), and we are hence confronted with
two types of control problems:
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– How do we derive governing equations of type (3.1)?
– Given a set of equations of motion, like (3.1), how do we investigate its proper-
ties and understand the resulting behavior as a function of the control parameters?

At its core, we are interested here in how to generically control, in general terms,
a complex and self-organizing system. A range of complementary approaches are
commonly used in order to alleviate the control problem, we discuss here some of
the most prominent (non mutually exclusive) approaches.

• Delegation to Evolution
One is often interested, especially in biology and in the neurosciences, in bio-
logically realistic models and simulations (Markram 2006). In this case both the
functional form and the parametric dependences are taken from experiment. One
may then expect, thanks to Darwinian selection, that the such constructed dy-
namical equation should exhibit meaningful behavior, replicating observations.

• Exploring Phase Space
A complete understanding would correspond, within dynamical system theory, to
a full control of both the qualitative behavior of the flow in phase space and of its
dependency on the control parameters. Achieving this kind of complete control
is clearly very desirable, but often extremely hard to achieve when dealing with
large numbers of dynamical variables and control parameters, the typical situa-
tion in modern complex system theory. The exploration of phase space, typically
through a combination of analytical and numerical investigations, is in any case
an indispensable tool, even when only a small fraction of the overall phase space
volume can be probed.

• Classical Control Theory
Classical control theory deals with the objective to control a real-world system,
like a rocket, such that a desired behavior is optimally achieved, in the wake of
noise both in the sensor readings and in the action effectiveness (Leigh 2004).
Classical control theory is of widespread use in engineering and for robot control
(De Wit et al. 1996). Our present discussion deals however with the general con-
trol of working regimens of a self-organizing complex system; if we knew what
the system is supposed to do, we would be done.

• Diffusive Control
Neuromodulators (Marder 2012), like dopamine, serotonin, choline, nore-
pinephrine, neuropeptides and neurohormons, act in the brain as messengers of
a diffusive control system (Gros 2010, 2012a), controlling intrinsic and synaptic
properties like neural gain and threshold, or synaptic plasticity. Diffusive control
is needed to stabilize a desired working regime, a process also denoted as met-
alearning (Doya 2002), and to switch between different working regimes in order
to achieve behavioral flexibility (Arnsten et al. 2012). Diffusive control is a very
general strategy for controlling a complex system.

• Generating Functionals
This is the subject we will develop here. One can achieve an improved under-
standing when considering classes of dynamical systems derived from superor-
dinated functionals. In this case the equations of motion are not given a priori, but
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derived from a generating principle. Here we will detail out how this approach
leads to an alleviation of the control problem.

One needs to recall, coming back to the introductory statement, that there is no one-
size-fits-all method for controlling complex systems (Frei and Serugendo 2011), as
there are many kinds and varieties of complex systems. Here we will consider pri-
marily systems made up of a potentially large number of similar functional units,
as typical for neural networks. A related aspect of the generic control problem dis-
cussed above regards, in this context, the stability of a default working regime with
regard to external influences and statistical fluctuations (Clarke 2007). This is par-
ticularly important in functional complex systems, such as an ecosystem (Holling
1973; May 2001), or cognitive architectures, the subject of our interest here.

3.2 Guiding Self-Organization

There is no strict scientific definition of what self-organization means or implies. It
is however generally accepted to consider processes as self-organizing when a rich
and structured dynamics results from a set of relatively simple evolution rules. The
term self-organization is of widespread use (Haken 2006), ranging from classical
non-equilibrium physical (Nicolis 1989) and biological (Camazine 2003) systems
to the assembly of complex macromolecules (Lehn 2002); it is quite generally ac-
cepted that the foundations of life are based on self-organizing principles (Kauffman
1993). The brain in particular, possibly the most complex object presently known
to humanity, is expected to result from a plethora of intertwined self-organizing
processes (Kelso 1995), ranging from self-organized cognitive functions (Kohonen
1988) to self-organized critical states (Bak 1999; Chialvo 2010).

Self-organization is, per se, content free, having no semantic relevancy. The stars
in a rotating galaxy, to give an example, may spontaneously organize into a set of
distinct density waves, known as the arms of a spiral galaxy. Even though pretty to
the eye, the spiral arms of the Milky Way do not serve any purpose; self-organization
is in this case just a byproduct of Newton’s law. The situation is however generically
distinct for biological settings, or for man-made systems, where functionality is the
key objective.

The design of functionality is of course a standard objective for the vast major-
ity of man-made systems, and contrasts with the absence of functionality of natural
phenomena. Here we are interested in self-organizing processes which are neither
fully designed nor without any objective. There is a middleway, which has been
denoted “targeted self-organization” (Gros 2008) or, alternatively, “guided self-
organization” (Prokopenko 2009; Martius and Herrmann 2010).

designed −→ guided −→ natural

For a designed system the functionality is specified in detail in order to achieve
optimal performance for a given task. The target for a self-organizing process is
however presumed to be a generic principle, often based on information theoretical
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considerations, with the actual functionality arising indirectly through self-
organizing processes. Targeted and guided self-organization are essentially iden-
tical terms, with guided self-organization having a somewhat broader breath. One
could guide, for example, a dynamical system by restricting its flow to a certain re-
gion in phase space, allowing for an otherwise unrestricted development within this
bounded area of phase space. Here we will neglect the differences in connotation
between targeted and guided self-organization and use both terms interchangeably.

Let us come back at this point to the general formulation of a complex dynamical
system through a set of parameterized first-order differential equations, as given by
(3.1). The distinction between a parameter γ j and a primary dynamical variable xk(t)
is a question of time scales.

ẋk : fast
γ̇k : slow

}
time evolution

The flow (x1(t),x2(t), . . . ) of the primary dynamics is taking place in the slowly
changing environment of parameter space, defining the adiabatic background. The
slow adaption of parameters is what controls in the end the working regime of a dy-
namical system, and is also denoted sometimes as metalearning (Vilalta and Drissi
2002). Not all parameters can be involved in metalearning, a small but finite set of
core parameters {γ ′j} ∈ {γk} must be constant and immutable,

γ̇ ′j = 0 .

This set of core parameters is what defines in the end the system. One has achieved
a dimensional reduction of the control problem if the number |{γ ′j}| of core param-
eters is small. This is the aim of guided self-organization, that a concise set of core
parameters controls the development and the dynamical properties of a system, with
quantitative tuning of the values of the control parameters inducing modifications
of the system’s characteristics, both on a quantitative and a qualitative level.

3.3 Generating Functionals

There are two principle venues on how to express guiding principles for dynamical
systems, implicitly or explicitly. In analogy, one can implement conservation laws
in physics by writing down directly appropriate equations of motion, demonstrating
that, e.g., energy is conserved. In this case energy conservation is implicitly present
in the formulation of the dynamical system. Alternatively one may consider directly
a time independent Lagrange function, a condition which explicitly guarantees en-
ergy conservation for the respective Lagrange equations of motion. Here we will
concentrate on the second approach, the explicit derivation of equations of motion
for targeted self-organization through appropriate generating functionals.

The term generating functional has a wide range of connotations in the sciences.
The action functional in classical mechanics and quantum field theory is a promi-
nent example from physics, the generating functional ∑k pkxk for a distribution
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function pk (with pk ≥ 0 and ∑k pk = 1) another from information theory. In the neu-
rosciences it is custom to speak of objective functions (Intrator and Cooper 1992;
Goodhill and Sejnowski 1997) instead of generating functionals.

As a first example we consider a simple energy functional

E({xk}) =
Γ
2 ∑

k

x2
k − 1

2 ∑
kl

y(xk)wkly(xl), (3.2)

which is suitable for a network of neurons with membrane potential xk and firing
rate y(xk). Here y(x) is the sigmoidal transfer function

y(x) =
1

1+ ea(b−x)
, (3.3)

parameterized by the gain a and the threshold b. The wi j in (3.2) will turn into the
synaptic weights, as we will show lateron, and Γ into a relaxation rate. Concerning
the terminology, one could consider E({xk}) also to be an energy function (instead
of a functional), being a function of the individual xk. Here we use the term energy
functional, for the functional dependence on the vector x=(x1,x2, . . . ) of membrane
potentials.

For our second example we consider a general functional based on the principle
of polyhomeostasis (Marković and Gros 2010). One speaks of a homeostatic feed-
back loop when a target value for a single scalar quantity is to be achieved. Life per
se is based on homeostasis, the concentrations of a plethora of biological relevant
substances, minerals and hormones need to be regulated, together with a vast num-
ber of physical properties, like the body temperature or the heart beating frequency.
Polyhomeostasis is, in contrast, typically necessary for time allocation problems.

The problem of allocating time for various tasks constitutes the foundation of
behavior. Every living being needs to decide how much time to spend, relatively, on
vitally important behaviors, like foraging, resting, exploring or socializing. Maxi-
mizing only a single of the possible behavioral patterns would be counterproductive,
only a suitable mix of behaviors, as an average over time, is optimal. Mathemati-
cally this goal is equivalent to optimizing a distribution function, hence the term
polyhomeostasis, in contrast to the case of homeostasis, corresponding to the opti-
mization of a single scalar quantity.

All a neuron can do, at any given moment, is to fire or not to fire, a typical time
allocation problem. The generic functional

F [p] =
∫

p(y) f (p(y)))dy (3.4)

of the firing rate distribution

p(y) =
1
T

∫ T

0
δ (y− y(t − τ))dτ (3.5)
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is an example of the polyhomeostatic principle. Minimizing F[p] corresponds to
optimizing a given function f (p) of the neural activity distribution p(y). The result-
ing adaption rates will then influence the timeline y(t) of the neural activity. This
is an example of guided self-organization, since the target functional is expressed
in terms of general statistical properties of the dynamical flow, independently of an
eventual semantic content. The explicit form and derivation of the adaption rates
will be discussed further below, both for the polyhomeostatic functional (3.4) and
for the energy functional (3.2).

3.4 Equations of Motion

There are several venues for deriving equations of motions from a given target func-
tional. One uses variational calculus, within classical mechanics, when deriving the
Lagrange equations of motion. In classical mechanics the target functional, the ac-
tion, needs to be stationary with respect to an arbitrary variation of the trajectory.
Here we will consider instead generic objective functions which are to be mini-
mized.

Minimizing an objective function is a very generic task for which a wide range
of methods and algorithms have been developed (Papadimitriou and Steiglitz 1998;
Goldberg 1989; Kennedy and Eberhart 1995). Here we are however interested in
a different aspect. Our aim is not to actually find the global minimum of a given
objective function, or any stationary point, which is not of interest per se. Objective
functions serve as a guiding principle and equations of motion induced by minimiz-
ing a given objective function will tend to minimize it. Other driving influence will
however in general compete with this goal and it is this very competition which may
result in complex and novel dynamical states.

For an objective function which is an explicit function of the dynamical vari-
able, like the energy functional (3.2), the equations of motion just correspond to the
downhill flow within the energy landscape,

ẋ j = − 1
Te

∂
∂x j

E({xk}) , (3.6)

where the timescale Te of the flow in normally set to unity, Te = 1. In our case we
obtain

ẋk = −Γ xk + akyk(1− yk)∑
j

wk jy j , (3.7)

where we have used (3.3) and

y′(x) =
∂y
∂x

= ay(1− y) . (3.8)

The dynamical system (3.7) just corresponds to a network of leaky integrators (Hop-
field 1982, 1984), with the xk and yk corresponding to the membrane potential and
the mean neural firing rate respectively. The neurons are coupled through the weight
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matrix wk j , the synaptic weights. The term akyk(1− yk) in front of the inter-neural
coupling is present only when deriving (3.7) from the energy functional (Linker-
hand and Gros 2012a), and not when formulating equivalent neural updating rules
directly from neurobiological considerations (Olshausen et al. 1993).

The polyhomeostatic functional (3.4) is used to derive adaption rules for the in-
trinsic parameters ai and bi of the transfer function (3.3). The lack of an explicit
dependence on either ai or bi rules out adaption rules like ȧi ∝ −∂F[p]/∂ai, which
would be the equivalent to (3.6). It is however possible to derive implicit adap-
tion rules, for which the minimization of the objective functions F [p] is performed
stochastically in the sense that the time-averaged firing rate p(y) is sampled along
the flow during the time evolution. For this purpose we change variables and rewrite
the generating functional

F [p] =
∫

p(x) f
(

p(y)/y′)
)
dx, p(y)dy = p(x)dx (3.9)

as an expectation value over the distribution p(x) of the membrane potential x, the
input. The transfer function (3.3) maps the input of a neuron to its output and adap-
tion rules for the intrinsic parameters should hence not depend explicitly on the
actual distribution p(x) of the input, they should be universal in the sense that the
intrinsic adaption rules should abstract from the actual semantic content of the in-
formation being processed. Noting that p(x) does not depend explicitly on the gain
a and the threshold b, we have

∂
∂θ

F[p] =
∫

dx p(x)
∂

∂θ
f
(

p(y)/y′)
)
, θ = a,b . (3.10)

For the overall global minimum of F [p] the weighting with respect to the input
distribution p(x) would be needed to be taken into account. As we are however
interested only in adaption rules abstracting from the actual form of the input dis-
tribution, and noting that p(x)≥ 0 is positive definite, we demand that the adaption
process should lead to a uniform minimization of the kernel of (3.10),

θ̇ = −εθ
∂

∂θ
f
(

p(y)/y′)
)
, θ = a,b , (3.11)

where εθ are the respective adaption rates. The adaption process should generally
be slow, as typical for metalearning, and the adaption rates εa and εb small. In this
case the updating rule (3.11) will statistically sample the input distribution p(x), as
an average over time, and become equivalent with (3.10).

The adaption rates (3.11) are generic and need to be concretized for a specific
polyhomeostatic function f (p). A straightforward target functional for the problem
of allocating time is to consider a target distribution function q(y) for the neural
firing rate. In this case the functional

F[p] =
∫

p(y) f (p(y))dy, f (p) = ln(p/q) (3.12)
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Fig. 3.1 The results of the intrinsic adaption rules (3.14) and (3.15) for the time averaged
firing rate distribution (boxes, see Eq. (3.5)) of a single neuron driven by a white-noise input
and for several information maximizing target distributions (points, see Eq. (3.13))

corresponds to the Kullback-Leibler divergence (Gros 2008), which is a positive def-
inite measure for the similarity of two distribution functions p and q. The Kullback-
Leibler divergence is minimal whenever p(y) and q(y) are as similar as possible,
within the configuration of all dynamically realizable firing rate distributions p(y).

The target firing rate distribution q(y) could be any positive and normalized distri-
bution function. Here we demand that q(y) should maximize Shannon’s information
entropy −q ln(q), which can be achieved using variational calculus:

0 = −δ
∫

q
[
ln(q)−λ1y−λ2y2]dy, q(y) ∝ eλ1y+λ2y2

. (3.13)

Here λ1/λ2 are suitable Lagrange parameters enforcing a given mean/variance. The
flat distribution λ1 = λ2 = 0 maximizes information entropy in the absence of any
constraint. Using (3.11) and y′ = ay(1−y), see Eq. (3.8), we obtain then the adaption
rules (Triesch 2005, 2007; Marković and Gros 2010; Linkerhand and Gros 2012b)

ȧ = εa

(
1
a
+(x− b)Δθ̃

)
(3.14)

ḃ = εb (−a)Δθ̃ , Δθ̃ = (1− 2y) + y(1− y) [λ1 + 2λ2y] . (3.15)

In Fig. 3.1 we present the results for a single polyhomeostatically adapting neuron,
driven by white noise, for various target distributions q(y). Note that there are only
two intrinsic parameters, the threshold b and the gain a, to be optimized and that the
transfer function (3.3) can hence not change, during the adaption process, its func-
tional form arbitrarily. The firing rate distribution p(y) approximates, considering
this limitation, the target distribution q(y) remarkably well, an exemplification of
the principle of targeted self-organization.

3.5 Adaptive Phase Space

It is illuminating to investigate somewhat in detail the behavior of the adaption pro-
cess in the phase space (a,b) of the intrinsic adaption parameters, and to study
individual trajectories (a(t),b(t)). In Fig. 3.2 we present a selection of trajectories
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Fig. 3.2 Sample trajectories (a(t),b(t)) resulting from the intrinsic adaption rules (3.14) and
(3.15), color coded for various parameters λ1 and λ2 of the target distributions q(t), compare
Eq. (3.13). All trajectories start at (a(0),b(0)) = (1,0) and then settle into distinct regions of
phase space, where they perform a confined stochastic walk, due to the white-noise input.

for distinct realizations of the target distribution q(y), as given by Eq. (3.13). The
neuron is driven by a white noise input, the starting gain and threshold are a = 1
and b = 0, for all trajectories. After a relatively fast initial transient the intrinsic pa-
rameters settle to distinct respective regions in the phase space, where they perform
a stochastic motion, reflecting the white-noise character of the driving input. Three
of the resulting firing rate distributions p(y) are shown in Fig. 3.1.

The target distribution q(y), see Eq. (3.13), can be selected to be bimodal, which
is generally the case for inverse Gaussians having λ1 < 0 and λ2 > 0. In Fig. 3.3
we present the adaptive walk through phase space (a(t),b(t)) for a bimodal target
distribution having λ1 =−20 and λ2 = 18.5 and for various adaption rates εa = εb.
When the adaption process is very slow, viz for small εa and εb the system average
over extended periods of the stochastic input and the dynamics becomes smooth
(Linkerhand and Gros 2012b), fluctuating with a reduced amplitude around a certain
target region in phase space, just as illustrated in Fig. 3.2.

For a bimodal target distribution q(y) there may however be two local minima in
adaptive space, since the transfer function (3.3) is always monotonic. For any given
pair of intrinsic parameters the system can hence approximate well only one of the
two peaks of a bimodal transfer function. For small adaption it remains trapped in
one of the local minima, but larger adaption rates εa and εb will lead to an enhanced
sensibility with respect to the stochastic driving, inducing stochastic tipping transi-
tions between the two local minima. This is a striking realization of the principle of
guided self-organization.
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Fig. 3.3 Sample trajectories (a(t),b(t)) resulting from the intrinsic adaption rules (3.14) and
(3.15), color coded for various adaption parameters εa = εb, as given in the legend. The
single neuron is driven by white noise and the target distribution, see Eq. (3.13) is bimodal,
parameterized by λ1 = −20 and λ2 = 18.5. For moderate large adaption rates the system is
able to make stochastically driven tipping transitions between two local minima (Linkerhand
and Gros 2012b).

3.6 Self-Organized Dynamical States

As a second example for the functioning of polyhomeostatic optimization we con-
sider a network of N randomly interconnected neurons,

xk = ∑
j �=k

wk j y j

which corresponds to (3.7) in the anti-adiabatic limit Γ → ∞ (and without the factor
y(1− y)). For the synaptic weights we select

wi j =

{
+1/

√
K with probability ρexc

−1/
√

K with probability 1−ρexc
, (3.16)

where K is the in-degree. The system is balanced for ρexc = 1/2. As a second control
parameter, besides the fraction ρexc of excitatory links, we consider the average
target activity μ ,

μ =

∫
yq(y)dy,

∫
q(y)dy = 1 , (3.17)

which is taken to be uniform, viz identical for all sites.
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Fig. 3.4 For a network of N = 1000 adapting neurons, according to Eqs. (3.14) and (3.15),
the activity of a randomly selected neuron and the average neural activity (green line). The
network is balanced, with as many excitatory and inhibitory links, randomly selected accord-
ing to Eq. (3.16). Shown are results for various target mean activities μ , see Eq. (3.17). The
right-hand axis is not a scale, the numbers are the values of the network-averaged Kullback-
Leibler divergence 〈Dλ 〉, as defined by Eq. (3.12). One observes that the mean target activity
μ entering the polyhomeostatic generating functional acts as a parameter controlling the re-
sulting self-organized dynamical state (Marković and Gros 2012).

In Fig. 3.4 we present the results for a balanced network with N = 1000 adapting
neurons, and an in-degree of K = 100. Shown are both the activity of a single, ran-
domly selected site and the average activity, averaged over all sites. We notice that
the network enters distinct dynamical states, as a function of the mean target activ-
ity μ (Marković and Gros 2010, 2012). For intermediate target activity levels the
dynamics is chaotic, for smaller mean activities μ a regime with intermittent bursts
is observed. One has hence the possibility to tune the self-organized dynamical state
through the target set by the polyhomeostatic generating functional, an example of
targeted self-organization. Interestingly the overall value of the network-averaged
Kullback-Leibler divergence is minimal in the chaotic state.

In Fig. 3.5 we present the results for the same network of N = 1000 sites as in
Fig. 3.4, but this time the network is not balanced, ρexc > 1/2. The mean target
firing-rate activity is kept constant at μ = 0.3. For larger values of ρexc the network
synchronizes, not surprisingly, as a result of the predominance of positive feedback
loops. For values of ρexc close to the balanced state, the system is chaotic, with
a large variability around a partly synchronized state in between. One can regard
ρexc as a controlling parameter of the energy functional (3.2), which hence allows
to guide the self-organization of the resulting dynamical state. The value of the
Kullback-Leibler divergence is, again, lowest in the chaotic state, which explores
phase space best.
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Fig. 3.5 For networks containing N = 1000 adapting neurons with an in-degree K = 100 and
a target mean activity μ = 0.3, see Eq. (3.17), the activity of a randomly selected neuron and
the average neural activity (green line). The networks are not balanced, having a slight excess
ρexc of randomly selected excitatory links see Eq. (3.16). Also given (on the right) are the
respective values of the network-averaged Kullback-Leibler divergence 〈Dλ 〉, as defined by
Eq. (3.12). The network shows a transition between chaos and synchronization, as a function
of ρexc (Marković and Gros 2012).

3.7 Discussion

A self-organizing process may be guided by presenting to the system one or more
targets. If these targets are very concrete they may destroy the self-organizing char-
acter of the process, resulting in a driving force. One possibility to achieve a gentle
way of controlling a self-organizing process is to formulate the targets in terms
of statistical properties of the desired dynamical state, with a basic example being
the time-average distribution function of activities. Optimizing the distribution of
activities is an example of a time-allocation problem, which is intrinsically of poly-
homeostatic nature.

A given set of goals may be achieved be a range of different tools, for example
using evolutionary algorithms. In this treatise we have discussed the perspective,
together with concrete examples, of explicitly deriving equations of motions from
generating functionals incorporating polyhomeostatic and other targets. We believe
that this approach offers several advantages. Having explicit time evolution equation
at hand is, in our view, mandatory for time-efficient simulations and applications.
Generating functionals can furthermore be seen as a route for solving the control
problem, as they offer a substantial dimensional reduction in the number of free
parameters. This is a particularily attractive feature, in view of the raising apprecia-
tion that the neuromodulator control system in the brain tunes the relative stability
of a wide range of possible dynamical operative states of the affected downstream
circuits.

From an alternative perspective one may view generating functionals also as a
middleway between the study of simplified model systems and biological realistic
simulations.
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simple
model systems

−→ generating
functionals

−→ detailed / realistic
simulations

Model systems may constitute important reference models, for understanding and
developing key concepts and methods. Detailed simulations are, at the other ex-
treme, often indispensable for obtaining a realistic comparison with experimental
data, having however the drawback that an in-depth understanding is in general
not achievable. We propose generating functionals as a venue for building increas-
ingly complex dynamical systems and cognitive architectures, a venue which allows
for the control of the operating modi of the system by tuning a limited number of
high-level control parameters incorporating the targets of the respective generating
functionals.
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Chapter 4
Empowerment — An Introduction

Christoph Salge, Cornelius Glackin, and Daniel Polani

4.1 Introduction

Is it better for you to own a corkscrew or not? If asked, you as a human being
would likely say “yes”, but more importantly, you are somehow able to make this
decision. You are able to decide this, even if your current acute problems or task do
not include opening a wine bottle. Similarly, it is also unlikely that you evaluated
several possible trajectories your life could take and looked at them with and without
a corkscrew, and then measured your survival or reproductive fitness in each. When
you, as a human cognitive agent, made this decision, you were likely relying on a
behavioural “proxy”, an internal motivation that abstracts the problem of evaluating
a decision impact on your overall life, but evaluating it in regard to some simple
fitness function. One example would be the idea of curiosity, urging you to act so
that your experience new sensations and learn about the environment. On average,
this should lead to better and richer models of the world, which give you a better
chance of reaching your ultimate goals of survival and reproduction.

But how about questions such as, would you rather be rich than poor, sick or
healthy, imprisoned or free? While each options offers some interesting new ex-
perience, there seems to be a consensus that rich, healthy and free is a preferable
choice. We think that all these examples, in addition to the question of tool owner-
ship above, share a common element of preparedness. Everything else being equal
it is preferable to be prepared, to keep ones options open or to be in a state where
ones actions have the greatest influence on ones direct environment.

The concept of Empowerment, in a nutshell, is an attempt at formalizing and
quantifying these degrees of freedom (or options) that an organism or agent has
as a proxy for “preparedness”; preparedness, in turn, is considered a proxy for
prospective fitness via the hypothesis that preparedness would be a good indicator to
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distinguish promising from less promising regions in the prospective fitness land-
scape, without actually having to evaluate the full fitness landscape.

Empowerment aims to reformulate the options or degrees of freedom that an
agent has as the agent’s control over its environment; and not only of its control —
to be reproducible, the agent needs to be aware of its control influence and sense it.
Thus, empowerment is a measure of both the control an agent has over its environ-
ment, as well as its ability to sense this control. Note that this already hints at two
different perspectives to evaluate the empowerment of an agent. From the agent per-
spective empowerment can be a tool for decision making, serving as a behavioural
proxy for the agent. This empowerment value can be skewed by the quality of the
agent world model, so it should be more accurately described as the agent’s approx-
imation of its own empowerment, based on its world model. The actual empower-
ment depends both on the agent’s embodiment, and the world the agent is situated
in. More precisely, there is a specific empowerment value for the current state of
the world (the agent’s current empowerment), and there is an averaged value over
all possible states of the environment, weighted by their probability (the agent’s
average empowerment).

Empowerment, as introduced by Klyubin et al. (2005a,b), aims to formalize the
combined notion of an agent controlling its environment and sensing this control in
the language of information theory. The idea behind this is that this should provide
us with a utility function that is inherently local, universal and task-independent.

1. Local means that the knowledge of the local dynamics of the agent is enough to
compute it, and that it is not necessary to know the whole system to determine
one’s empowerment. Ideally, the information that the agent itself can acquire
should be enough.

2. Universal means that it should be possible to apply empowerment “universally”
to every possible agent-world interaction. This is achieved by expressing it in the
language of information theory and thus making it applicable for any system that
can be probabilistically expressed.
For instance, even if an agent completely changes its morphology, it is still pos-
sible to compute a comparable empowerment value. Klyubin et al. (2005b) gave
the examples of money in a bank account, of social status in a group of chim-
panzees, and of sugar concentration around a bacterium as different scenarios, all
as examples which would be treated uniformly by the empowerment formalism.

3. Task-independent means that empowerment is not evaluated in regard to a spe-
cific goal or external reward state. Instead, empowerment is determined by
the agent’s embodiment in the world. In particular, apart from minor niche-
dependent parameters, the empowerment formalism should have the very same
structure in most situations.

More concretely, the proposed formulation of empowerment defines it via the
concept of potential information flow, or channel capacity, between an agent’s actu-
ator state at earlier times and their sensor state at a later time. The idea behind this is
that empowerment would quantify how much an agent can reliably and perceptibly
influence the world.
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4.1.1 Overview

Since its original inception by Klyubin et al. (2005a,b) in 2005, several papers have
been published about empowerment, both further developing the formalism, and
demonstrating a variety of behaviours in different scenarios. Our aim here is to both
present an overview of what has been done so far, and to provide readers new to
empowerment with an easy entry point to the current state-of-the-art in the field.
Due to the amount of content, some ideas and results are only reported in abstract
form, and we would refer interested reader to the cited papers, where models and
experiments are explained in greater detail.

Throughout the text we also tried to identify the open problems and questions
that we currently see, and we put a certain emphasis on the parameters that affect
empowerment. While empowerment is defined in a generic and general way, the re-
view of the literature shows that there are still several choices one can take on how to
exactly apply empowerment, and which can affect the outcome of the computation.

The remaining paper is structured as follows. First, after briefly outlining the
related work previous to empowerment, we will spell out the different empowerment
hypotheses motivating the research in empowerment. This will allow us to locate
empowerment in relation to different fields, and also makes it easier to see how and
where insights from the empowerment formalism apply to other areas.

The next section then focusses on discrete empowerment, first, in Sec. 4.4 intro-
ducing the formalism, and then, in Sec. 4.5, describing several different examples,
showcasing the genericity of the approach.

Section 4.6 then deals with empowerment in continuous settings, which is cur-
rently not as far developed and sees vigorous activity. Here we will discuss the ne-
cessity for suitable approximations, and outline the current technical challenges to
provide good but fast approximations for empowerment in the continuous domain.

4.2 Related Work

Empowerment is based on and connects to several fields of scientific inquiry. One
foundational idea for empowerment is to apply information theory to living, bio-
logical systems. (Gibson James 1979) points out the importance of information in
embodied cognition, and earlier work (Barlow 1959; Attneave 1954) investigates the
informational redundancy in an agent’s sensors. Later research (Atick 1992) based
on this identifies the importance of information bottlenecks for the compression
of redundancies, which are later formalized in information theoretic terms (Tishby
et al. 1999). Furthermore, it was also demonstrated that informational efficiency can
be used to make sense of an agent’s sensor input (Olsson et al. 2005; Lungarella
et al. 2005). The general trend observed in these works seems to be that nature opti-
mizes the information processing in organisms in terms of efficiency (Polani 2009).
Empowerment is, in this context, another of these efficiency principles.

Empowerment also relies heavily on the notion that cognition has to be un-
derstood as an immediate relationship of a situated and embodied agent with its
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surroundings. This goes back to the “Umwelt” principle by (von Uexküll 1909),
which also provides us with an early depiction of what is now commonly referred to
as the perception action loop. This idea was also at the center of a paradigm shift in
artificial intelligence towards enactivism (Varela et al. 1992; Almeida e Costa and
Rocha 2005), which postulates that the human mind organizes itself by interacting
with its environment. Embodied robotics (Pfeifer et al. 2007) is an approach trying
to replicate these processes “in silico”.

4.2.1 Intrinsic Motivation

Central to this body of work is the desire to understand how an organism makes
sense of the world and decides to act from its internal perspective. Ultimately all
behaviour is connected to an organism’s survival, but most natural organisms do not
have the cognitive capacity to determine this connection themselves. So, if an ani-
mal gets burned by fire, it will not consider the fire’s negative effect on its health and
potential risk of death and then move away. Instead, it will feel pain via its sensors
and react accordingly. The ability to feel pain and act upon it is an adaptation that
acts as a proxy criterion for survival, while it still offers a certain level of abstraction
from concrete hard-wired reactions. We could say the animal is motivated to avoid
pain. Having an abstract motivation allows an agent a certain amount of adaptabil-
ity; instead of acting like a stimulus-response look-up table the agent can evaluate
actions in different situations according to how rewarding they are regarding its
motivations.

Examining nature also reveals that not all motivations are based on external re-
wards, e.g. a well-fed and pain-free agent might be driven by an urge to explore
or learn. In the following we discuss related work covering different approaches to
specify and quantify such intrinsic motivations. The purpose of these models is both
to better understand nature, as well as to replicate the ability of natural organism to
react to a wide range of stimuli in models for artifical systems.

An evolution-based view of intrinsic motivations uses assumptions about preex-
isting saliency sensors to generate intrinsic motivations (Singh et al. 2005, 2010).
However, where one does not want to assume such pre-evolved saliency sensors,
one needs to identify other criteria that can operate with unspecialized generic
sensors.

One such family of intrinsic motivation mechanisms focusses on evaluating the
learning process. Artificial curiosity (Schmidhuber 2002, 1991) is one of the earlier
models, where an agent receives an internal reward depending on how “boring” the
environment is which it currently tries to learn. This causes the agent to avoid situ-
ations that are at either of the extremes: fully predictable or unpredictably random.

The autotelic principle by Steels (2004) tries to formalize the concept of “Flow”
(Csikszentmihalyi 2000): an agent tries to maintain a state were learning is challeng-
ing, but not overwhelming (see also Gordon and Ahissar 2012). Another approach
(Kaplan and Oudeyer 2004) aims to maximise the learning progress of different
classical learning approaches by introducing rewards for better predictions of future
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states. A related idea is behind the homeokinesis approach, which can be considered
a dynamic version of homeostasis. The basic principle here is to act in a way which
can be well predicted by a adaptive model of the world dynamics (Der et al. 1999).
There is a tendency of such mechanisms to place the agent in stable, easily pre-
dictable environments. For this reason, to retain a significant richness of behaviours
additional provisions need to be taken so that notwithstanding the predictability of
the future, the current states carry potential for instability.

The ideas of homeokinesis are originally based on dynamical system theory.
Further studies have transferred them into the realm of information-theoretical ap-
proaches (Ay et al. 2008). The basic idea here is to maximise the predictive informa-
tion, the information the past states of the world have about the future. Here, also,
predictability is desired, but predictive information will only be large if the predic-
tions about the future are decoded from a rich past, which captures very similar
ideas to the dynamical systems view of homeokinesis.

The empowerment measure which is the main concept under discussion in the
present paper, also provides a universal, task-independent motivation dynamics.
However, it focusses on a different niche. It is not designed to explore the envi-
ronment, as most of the above measures are, but rather aims at identify preferred
states in the environment, once the local dynamics are known; if not much is known
about the environment, but empowerment is high, this is perfectly satisfactory for
the empowerment model, but not for the earlier curiosity-based methods. Therefore,
empowerment is better described as a complement to the aforementioned methods,
rather than a direct competitor.

Empowerment has been motivated by a set of biological hypotheses, all related
to informational sensorimotor efficiency, the ability to react to the environment and
similar. However, it would be interesting to identify whether there may be a route
stemming from the underlying physical principles which would ultimately lead to
such a principle (or a precursor thereof). For some time, the “Maximum Entropy
Production Principle" (MEPP) has been postulated as arising from first thermody-
namic principles (Dewar 2003, 2005). However, unfortunately, and according to
current knowledge, the derivation from first principles still remains elusive and the
current attempts at doing so unsuccessful (Grinstein and Linsker 2007). If, however,
one should be able to derive the MEPP from first principles, then (Wissner-Gross
and Freer 2013) show that this would allow a principle to emerge on the physical
(sub-biological) level which acts as a simpler proto-empowerment which shares to
some extent several of the self-organizing properties with empowerment, even if in
a less specific way and without reference to the “bubble of autonomy” which would
accompany a cognitive agent. Nevertheless, if successful, such a line may provide
a route to how a full-fledged empowerment principle could emerge from physical
principles.
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4.3 Empowerment Hypotheses

In this section we want to introduce the main hypotheses which motivated the devel-
opment of empowerment. Neither the work presented here in this chapter, nor the
work on empowerment in general is yet a conclusive argument for either of the three
main hypotheses, but they should, nevertheless, be helpful to outline what empow-
erment can be used for, and to what different domains empowerment can be applied.
Furthermore, it should also be noted, that the hypotheses are stated in a generic form
which might be unsuitable for experimental testing, but this can be alleviated on a
case by case basis by applying a hypothesis to a specific scenario or task.

There are two main motivations for introducing the concept of empowerment:
one is, of course, the desire to come up with methods to allow artificial agents to
flexibly decide what to do generically, without having a specific task designed into
them in every situation. This is closely related to the idea of creating a general AI.
The other is to search for candidate proxies of prospective fitness, which could be
detected and driven towards during the lifetime of an organism to improve its future
reproductive success.

From these two starting points, several implicit and explicit claims have been
made about empowerment and how it would relate to phenomena in biology. In
the following section we structure these claims into three main hypotheses which
we would consider as driving the “empowerment program”. This should make it
easier for the reader to understand what the simulations in the later chapters should
actually demonstrate.

4.3.1 Behavioural Empowerment Hypothesis

The adaptation brought about by natural evolution produced organisms that in absence
of specific goals behave as if they were maximising their empowerment.

Klyubin et al. (2005a,b) argue that the direct feedback provided by selection in
evolution is relatively sparse, and therefore it would be infeasible to assume that
evolution adapts the behaviour of organisms specifically for every possible situation.
Instead they suggest that organisms might be equipped with local, task-independent
utility detectors, which allows them to react well to different situations. Such generic
adaptation might have arisen as a solution to a specific problem, and then persisted
as a solution to other problems, as well. This also illustrates why such a utility
function should be universal: namely, because it should be possible to retain the
essential structure of the utility model, even if the morphology, sensor or actuators
of the organism change through evolution.

This is also based on our understanding of humans and other organisms. We
seem to be, at least in part, adapted to learn, explore and reason, rather than to
only have hard-coded reactions to specific stimuli. As these abilities also usu-
ally generate actions, such a drive is sometimes called intrinsic motivation. Different
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approaches have been proposed (see Sec. 4.2) to formalize motivation that would
generate actions that are not caused by an explicit external reward. Empowerment
does not consider the learning process or the agent trajectory through the world, but
instead operates as a pseudo-utility which assigns a value (its empowerment) to each
state in the world1. Highly empowered states are preferred, and the core hypothesis
states that an agent or organism attempts to reach states with high empowerment.
Empowerment measures the ability of the agent to potentially change its future (it
does not mean that it is actually doing that). The lowest value for empowerment is 0,
which means that an agent has no influence on the world that it can perceive. From
the empowerment perspective, vanishing empowerment is equivalent to the agent’s
death, and the empowerment maximization hypothesis provides a natural drive for
death aversion.

The behaviour empowerment hypothesis now assumes that evolution has come
up with a solution that produces similar behaviour. To support this hypothesis, the
first step would be to demonstrate that empowerment can produce behaviour which
is similar to biological organisms in analogous situations. In turn, it should also
be possible to anticipate behaviour of biological organisms by considering how it
would affect their empowerment. If we follow this idea further and assume that
humans use empowerment-like criteria to inform their introspection, then one would
expect that those states identified by humans as preferable would also be more likely
to have high empowerment.

For the hypothesis to be plausible, it would also be good to ensure that empow-
erment is indeed local and can be computed from the information available to the
agent. Similarly, it should also be universally applicable to different kinds of or-
ganisms; we would expect organisms which have undergone small changes to their
sensory-motor set-up to still produce comparable empowerment values, and for or-
ganisms that discover new modalities of interaction that this is then reflected in the
empowerment landscape.

So far, we have discussed a weak version of the behavioural empowerment hy-
pothesis. A stronger version of the hypothesis2 would argue that an agent actually
computes empowerment. While this can be easily checked for artificial agents, in a
biological scenario, it becomes necessary to explain how empowerment could actu-
ally be computed by the agent. The weak version of the hypothesis, instead, says that
the agents just act “as if” driven by empowerment, or are using a suitable approxi-
mation. The hypothesis then states that natural behaviours favour highly empowered
behaviour routes.

1 Here we mostly adopt an “objective” perspective in that the objective states of the world
are known and their empowerment computed. However, truly subjective versions of em-
powerment are easily definable and will be discussed in Sec. 4.4.4 as context-dependent
empowerment.

2 We do not actually put forward this stronger version for the biological realm, but mention
it for completeness, and because of its relevance for empowerment in artificial agents.
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4.3.2 Evolutionary Empowerment Hypothesis

The adaptation brought about by natural evolution increases the empowerment of the
resulting organism.

Due to its universality, empowerment can in principle, be used to compare the av-
erage empowerment of different organisms. For instance, today, we could look at
a digital organism, and then come back later after several generations of simulated
adaptation, asking whether the organisms are now more empowered? Did that new
sensor (and/or actuator) increase the agents empowerment? The hypothesis put for-
ward, e.g. by Polani (2009), is that the adaptation in nature, on average, increases
an agent’s empowerment. He argues that (Shannon) information operates as a “cur-
rency of life”, which imposes an inherent cost onto an organism, and, for that rea-
son, a well-adapted organism should have efficient information processing. On the
one hand, there is some relevant information (Polani et al. 2006) that needs to be
acquired by an agent to perform at a given level, but any additional information
processing would be superfluous, and should be avoided, as it creates unnecessary
costs. Taking a look at agent morphologies, this also means that agents should be
adapted to efficiently use their sensors and actuators. For example, a fish population
living in perpetual darkness does not have a need for highly developed eyes (Jeffery
2005), and it is expected that adaptation will reduce the functionality and cognitive
investment (i.e. brain operation) related to vision. On the other hand, in the dark
the detection of sound could be useful; this perceptual channel could be made even
more effective by actively generating sound that is then reflected from objects and
could then be detected by the organism. The core question is: how can such potential
advantageous gradients in the space of sensorimotoric endowment be detected?

Empowerment is the channel capacity from an agent’s actuators to its sensors,
and as such, measures the efficiency of that channel. Having actuators whose effect
on the environment cannot be perceived, or sensors which detect no change relevant
to the current actions is inefficient, and should be selected against. In short, this
adaptation would be attained by an increase of the agent’s average empowerment.

A test for this hypothesis would be to evolve agents in regard to other objectives,
and then check how their empowerment develops over the course of the simulated
evolution, similar to studies about complexity growth under evolutionary pressures
(Yaeger 2009). Another salient effect of this hypothesis would be an adaptation of
an agent morphology based on empowerment should produce sensor layouts and
actions which are to some degree “sensible” and perhaps could also be compared to
those found in nature.

4.3.3 AI Empowerment Hypothesis

Empowerment provides a task-independent motivation that generate AI behaviour
which is beneficial for a range of goal-oriented behaviour.

In existing work, it was demonstrated that empowerment can address quite a se-
lection of AI problems successfully (see the remaining chapter for a selection);
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amongst these are pole balancing, maze centrality and others. However, a clear
contraindication exists for its use: if an externally desired goal state is not highly
empowered, then an empowerment-maximising algorithm is not going to seek it
out. Opposed to that, such tasks are the standard domain of operation for traditional
AI algorithms.

However, in the realm or robotics there have been developments to design robots
that are not driven by specific goals, but motivated by exploring their own morphol-
ogy or other forms of intrinsic motivation. The idea is to build robots that learn and
explore, rather than engineer solutions for specific problems determined externally
and in advance. Here, empowerment offers itself as another alternative. While em-
powerment is not designed to explicitly favour exploration, it has an inbuilt incentive
to avoid behaviour that leads to a robot being stuck. Having no options available to
an agent is bad for empowerment. Non-robotic AI could also benefit from this ap-
proach, but since empowerment is defined over the agent world dynamics, there
needs to be a clear interface between an agent and the world over which it can be
computed: in this case, there needs to be some kind of substitute for embodiment
or situatedness. On the other hand, for the robotics domain it is also important that
empowerment can be computed in real time and be applied to continuous variables.

The concrete and relevant question would be under which circumstances empow-
erment would provide a good solution, both in robotic and non-robotic settings?
Furthermore, in what situations would maximising empowerment be helpful for a
later to be specified task? To approach this question it is helpful to apply empow-
erment to a wider range of AI problems and inspect its operation in the different
scenarios. The remaining chapter will showcase several such examples and discuss
the insights gained from these.

In the robotic domain, one faces additional challenges, most prominently the ne-
cessity to handle empowerment in continuous spaces. This is discussed in Sec. 4.6.
Note, however, that there is still very little current experience on deploying empow-
erment on real robots, with exception of a basic proof-of-principle context recon-
struction example on an AIBO robot (Klyubin et al. 2008).

4.4 Formalism

Empowerment is formalized using terms from information theory, first introduced
by Shannon (Shannon 1948). To define a consistent notation, we begin by introduc-
ing several standard notions. Entropy is defined as

H(X) =− ∑
x∈X

p(x) log p(x) (4.1)

where X is a discrete random variable with values x ∈X, and p(x) is the probability
mass function such that p(x) = Pr{X = x}. Throughout this paper base 2 logarithms
are used by convention, and therefore the resulting units are in bits. Entropy can be
understood as a quantification of uncertainty about the outcome of X before it is
observed, or as the average surprise at the observation of X . Introducing another
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random variable Y jointly distributed with X , enables the definition of conditional
entropy as

H(X |Y ) =− ∑
x∈X

p(y) ∑
y∈Y

p(x|y) log p(x|y). (4.2)

This measures the remaining uncertainty about X when Y is known. Since Eq. (4.1)
is the general uncertainty of X , and Eq. (4.2), is the remaining uncertainty onceY has
been observed, their difference, called mutual information, quantifies the average
information one can gain about X by observing Y . Mutual information is defined as

I(X ;Y ) = H(Y )−H(Y |X). (4.3)

The mutual information is symmetric (see (Cover and Thomas 1991)), and it holds
that

I(X ;Y ) = H(Y )−H(Y |X) = H(X)−H(X |Y). (4.4)

Finally, a quantity which is used in communication over a noisy channel to deter-
mine the maximum information rate that can be reliably transmitted, is given by the
channel capacity:

C = max
p(x)

I(X ;Y ) . (4.5)

These concepts are fundamental measures in classical information theory.
Now, for the purpose of formalizing empowerment, we will now reinterpret the

latter quantity in a causal context, and specialize the channel we are considering to
the actuation-perception channel.

4.4.1 The Causal Interpretation of Empowerment

Core to the empowerment formalism is now the potential causal influence of one
variable (or set of variables: the actuators) on another variable (or set of variables:
the sensors). Further below, we will define the framework to define this in full gen-
erality; for now, we just state that we need to quantify the potential causal effect that
one variable has on the other.

When we speak about causal effect, we specifically consider the interventionist
notion of causality in the sense of Pearl (2000) and the notion of causal information
flow based upon it (Ay and Polani 2008). We sketch this principle very briefly and
refer the reader to the original literature for details.

To determine the causal information flow Φ(X →Y ) one cannot simply consider
the observed distribution p(x,y), but has to probe the distribution by actively in-
tervening in X . The change resulting from the intervention in X (which we denote
by X̂) is then observed in the system and used to construct the interventional con-
ditional p(y|x̂). This interventional condition will then be used as the causal chan-
nel of interest. While (causal) information flow according to (Ay and Polani 2008)
has been defined as the mutual information over that channel for an independent
interventional input distribution, empowerment considers the maximal potential in-
formation flow, i.e. it is not based on the actual distribution of the input variable
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X (with or without intervention), but considers the maximal information flow that
could possibly be induced by a suitable choice of X . This, however, is nothing other
than the channel capacity

C(X → Y ) = max
p(x̂)

I(X̂ ;Y ). (4.6)

for the channel defined by p(y|x̂), where by the hat we indicate that this is a channel
where we intervene in X .

There is a well-developed literature on how to determine the conditional proba-
bility distribution p(y|x̂) necessary to compute empowerment, for some approaches,
see (Pearl 2000; Ay and Polani 2008). This interventional conditional probability
distribution can then be treated as the channel; and the channel capacity, or empow-
erment, can be computed with established methods, such as the Blahut-Arimoto
algorithm (Blahut 1972; Arimoto 1972).

For the present discussion, it shall suffice to say that empowerment can be com-
puted from the conditional probability distribution of observed actuation/sensing
data, as long as we can ensure that the channel is a causal pair, meaning we can rule
out any common cause, and any reverse influence from y onto x.

4.4.2 Empowerment in the Perception Action Loop

The basic idea behind empowerment is to measure the influence of an agent on
its environment, and how much of this influence can be perceived by the agent. In
analogy to control theory, it is essentially a combined measure of controllability
(influence on the world) and observability (perception by the agent), but, unlike
in the control-theoretic context, where controllability and observability denote the
dimensionality of the respective vector spaces or manifolds, empowerment is a fully
information-theoretic quantity: This has two consequences: the values it can assume
are not confined to integer dimensionalities, but can range over the continuum of
non-negative real numbers; and, secondly, it is not limited to linear subspaces or
even manifolds, but can, in principle, be used in all spaces for which one can define
a probability mass measure.

We formalize the concept of empowerment, as stated earlier, as the channel ca-
pacity between an agent’s actions at a number of times and its sensoric stimuli at
a later time. To understand this in detail, let us first take a step back and see how
to model an agent’s interaction with the environment as a causal Bayesian network
(CBN). In general we are looking at a time-discrete model where an agent interacts
with the world. This can be expressed as a perception-action loop, where an agent
chooses an action for the next time step based on its sensor input in the current time
step. This influences the state of the world (in the next time step), which in turn in-
fluences the sensor input of the agent at that time step. The cycle then repeats itself,
with the agent choosing another action. Note that this choice of action might also be
influenced by some internal state of the agent which carries information about the
agent’s past. To model this, we define the following four random variables:
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A: the agent’s actuator3 which takes values a ∈A

S: the agent’s sensor which takes values s ∈ S

M: the agent’s internal state (or memory) which takes values m ∈M

R: the state of the environment which takes values r ∈ R

Their relationship can be expressed as a time-unrolled CBN, as seen in Fig. 4.1a.

Rt−1

St−1 At−1

Rt

St At

Rt+1

(a) Memoryless Perception Action Loop

Rt−1

St−1

Mt−1

At−1

Rt

St

Mt

At

Rt+1

(b) Perception Action Loop with Memory

Fig. 4.1 Causal Bayesian network of the perception-action loop, unrolled in time, showing
(a) a memoryless model, (b) a model including agent memory. In the memoryless model the
agent’s actions At only depend on its current sensor inputs St , while the perception action
loop with memory allows for agent models in which the agent can store information from
sensor inputs in the past in M, and use this information later for its decision making in A.

Empowerment is then defined as the channel capacity between the agent’s actua-
tors A and its own sensors S at a later point in time, here, for simplicity, we assume
the next time step:

E :=C(At → St+1)≡ max
p(at)

I(St+1;At) . (4.7)

This is the general empowerment of the agent. In the following text we will use E
as a shorthand for the causal channel capacity from the sensors to the actuators.

Note that the maximization implies that it is calculated under the assumption
that the controller which chooses the action A is free to act, and is not bound
by possible behaviour strategy p(a|s,m). Importantly, the distribution p∗(a) that
achieves the channel capacity is different from the one that defines the actions of

3 Saying actuator implicitly includes the case of multiple actuators. In fact, it is the most
general case. Multiple actuators (which can be independent of each other) can always be
written as being incorporated into one single actuator variable.
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an empowerment-driven agent. Empowerment considers only the potential infor-
mation flow, so the agent will only calculate how it could affect the world, rather
than actually carry out its potential.

4.4.3 n-Step Empowerment

In Sec. 4.4.2, we considered empowerment as a consequence of a single action taken
and the sensor being read out in the subsequent state. However, empowerment, as a
measure of the sensorimotor efficiency, may start distinguishing the characteristics
of the agent-environment interaction only after several steps. Therefore, a common
generalization of the concept is the n-step empowerment. In this case we consider
not a single action variable, but actually a sequence of action variables for the next
n time steps: (At+1, . . . ,At+n). We we will sometimes condense these into a single
action variable A for notational convenience. The sensor variable is the resulting sen-
sor state in the following timestep St+n+1, again sometimes denoted by S. Though it
is not the most general treatment possible, here we will consider only “open-loop”
action sequences, i.e. action sequences which are selected in advance and then car-
ried out without referring to a sensor observation until the final observation St+n+1.
This drastically simplifies both computations and theoretical considerations, as the
different possible action sequences A can be treated as if they were separate atomic
actions with no inner structure4.

As mentioned A can typically contain actuator variables from several time steps
and can also incorporate several variables per time step. S is typically chosen to
contain variables that are strictly temporally downstream from all variables in A, to
ensure a clean causal interpretation of the effect of A on S. However, the less studied
concept of interleaved empowerment has been mentioned in (Klyubin et al. 2008),
where S contains sensor variables that lie before some variables in A5.

4.4.4 Context-Dependent Empowerment

Until now, we have considered empowerment as a generic characterization of the
information efficiency of the perception-action loop. Now we go a step further and
resolve this informational efficiency in more detail; specifically, we are going to
consider empowerment when the system (e.g. agent and environment) is in different
states. Assuming that the state of the system is given by r, it will in general affect
the effect of the actions on the later sensor states, so that one now considers p(s|a,r)
and defines empowerment for the world being in state r as

4 Future work will investigate the effect of feedback, i.e. closed-loop sequences. However,
the current hypothesis is that there will be little qualitative and quantitative difference for
most scenarios, with significantly increased computational complexity.

5 The interpretation of interleaved empowerment is slightly subtle and still subject to study,
as in this case S is then capturing rather an aspect of the richness of the action sequences
and the corresponding action history, in addition to the state dynamics of the system.
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E(r) = max
p(a)

I(S;A|r), (4.8)

which is referred to as state-dependent empowerment. This also allows us to define
the average state-dependent empowerment for an agent that knows what state the
world is in as

E(R) = ∑
r∈R

p(r)E(r) (4.9)

Note that this is different from the general empowerment: the general empowerment
in Sec. 4.4.2 does not distinguish between different states. If different perception-
action loop characteristics p(s|a) are not resolved, the general empowerment can be
vanishing, while average state-dependent empowerment is non-zero. In other words,
empowerment can depend on being able to resolve states which affect the actuation-
sensing channel.

In general, an agent will not be able to resolve all states in the environment, and
will operate using a limited sensoric resolution of the world state. When we assume
this, the agent might still be able to recognize that the world is in a certain context
k ∈ K, based on memory and sensor input. So, an agent might not know its precise
state in the world, but may be able to identify some coarse position, e.g. that it
might be north or south of some distinct location. Klyubin et al. (2008) demonstrate
an example of how such a context can be created from data. Based on this context, it
is then possible to define the marginal conditional distribution p(s|a,k), which then
allows us to compute the (averaged) contextual empowerment for K as

E(K) = ∑
k∈K

p(k)E(k) (4.10)

In comparison, context free empowerment Efree has no assumption about the world
and is based on the marginal distribution p(s|a) = ∑r p(s|a,r)p(r) of all world
states. This is the empowerment that an agent would calculate which has no in-
formation about the current world state. It can be shown (Capdepuy 2010) with
Jensen’s Inequality that

Efree ≤ E(K)≤ E(R) (4.11)

This implies (see also Klyubin et al. 2008) that there is a (not necessarily unique)
minimal optimal context Kopt that best characterizes the world in relation to how the
agent’s actions affect the world, defined by:

Kopt = argmin
K

E(K)=E(R)

H(K). (4.12)

Such a context Kopt is one which leads to the maximal increase in contextual em-
powerment. Klyubin et al. (2008) argues that such an agent internal measure could
be useful to develop internal contexts which are purely intrinsic and based on the
agent sensory-motor capacity, and thereby allow developing an understanding of the
world based on the way they are able to interact with it.
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4.4.5 Open vs. Closed-Loop Empowerment

An important distinction to make is the one between open- and closed-loop em-
powerment. Open-loop empowerment treats the perception-action loop like a uni-
directional communication channel, and assumes that all inputs are chosen ahead
of time and without getting any feedback about their source. Closed-loop empow-
erment is computed under the assumption that some of the later actions in n-step
empowerment can change in reaction to the current sensor state.

In most of the existing work, empowerment calculations have been performed
with open-loop empowerment only. The framework for this simplest of cases
of communication theory is well developed and long known. For the more in-
tricate cases using feedback, Capdepuy (2010) pointed out that directed infor-
mation (Massey 1990) could be used to simplify the computation of closed
loop empowerment, and demonstrated for an example how feedback increases
empowerment.

4.4.6 Discrete Deterministic Empowerment

A deterministic world is one where each action leads to one specific outcome, i.e.
for every a ∈A there is exactly one sa ∈ S with the property that

p(s|a) =
{

1 if s = sa

0 else .
(4.13)

Since here every action only has one outcome, it is clear that the conditional un-
certainty of S given A is zero, i.e., H(S|A) = 0. From Eq. (4.4) it follows then that

E= max
p(a)

(A;S) = max
p(a)

H(S). (4.14)

Since the entropy is maximal for a uniform distribution, S can be maximised by
choosing any input distribution p(a) which results in a uniform distribution over the
set of all reachable states of S, i.e over the set SA = {s ∈ S|∃a ∈A : p(s|a)≥ 0}. As
a result, empowerment for the discrete deterministic case reduces to

E=− ∑
s∈SA

1
|SA| log(

1
|SA| ) = log(|SA|). (4.15)

The bottom line is that in a discrete deterministic world empowerment reduces to
the logarithm of the number of sensor states reachable with the available actions.
This means empowerment, in the deterministic case, is fully determined by how
many distinguishable states the agent can reach.
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4.4.7 Non-deterministic Empowerment Calculation

If noise is present in the system, an action sequence a will lead to multiple out-
comes s, and thus, we have to consider an actual output distribution p(s|a). In
this case, the optimizing distribution needs to be determined using the standard
Blahut-Arimoto (BA) algorithm (Blahut 1972; Arimoto 1972) which is an expec-
tation maximization-type algorithm for computing the channel capacity.

BA iterates over distributions pk(a), where k is the iteration counter, converg-
ing towards the distribution that maximises channel capacity, and thereby towards
the empowerment value defined in Eq. (4.8). Since the action variable A is discrete
and finite we are dealing with a finite number of actions av ∈ A, with v = 1, ...,n.
Therefore pk(a) in the k-th iteration can be compactly represented by a vector
pk(a) ≡ (p1

k , ..., pn
k), with pv

k ≡ Pr(A = av), the probability that the action A attains
the value av. Furthermore, let s ∈ S be the possible future states of the sensor input
as a result of selecting the various actions with respect to which empowerment is
being calculated, and r ∈ R is the current state of the environment. If we assume
that S is continuous we can follow the general outline from (Jung et al. 2011), and
define, for notational convenience, the variable dv,k as:

dv,k :=
∫
S

p(s|r,av) log

[
p(s|r,av)

∑n
i=1 p(s|r,ai)pi

k

]
ds. (4.16)

While this is the more general case, this integral is difficult to evaluate for arbitrary
distributions of S. We will later discuss, in Sec. 4.6.6, how this integral can be ap-
proximated, but even the approximations are very computationally expensive. If we
are dealing with discrete and finite S we can simply define dv,k with a sum as

dv,k := ∑
s∈S

p(s|r,av) log

[
p(s|r,av)

∑n
i=1 p(s|r,ai)pi

k

]
. (4.17)

The definition of dv,k encapsulates the differences between a continuous and discrete
S. Therefore, the following parts of the BA algorithm are identical for both cases.
The BA begins with initialising p0(a) to be (e.g.) uniformly distributed6, by simply
setting pv

0 =
1
n for all actions v = 1, ...,n. At each iteration k ≥ 1, the new approx-

imation for the probability distribution pk(a) is obtained from the old one pk−1(a)
using

pv
k :=

1
z k

pv
k−1 exp(dv,k−1) (4.18)

where zk is a normalisation parameter ensuring that the approximation for the prob-
ability distribution pk(a) sum to one for all actions v = 1, ...,n, and is defined as

zk :=
n

∑
v=1

pv
k−1 exp(dv,k−1). (4.19)

6 In principle, any distribution can be selected, provided none of the initial probabilities is
0, as the BA-algorithm cannot turn a vanishing probability into a finite one.
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Thus pk(a) is calculated for iteration step k, it can then be used to obtain an estimate
Ek(r) for the empowerment E(r) using

Ek(r) =
n

∑
v=1

pv
k ·dv,k. (4.20)

The algorithm can be iterated over a fixed number of times or until the absolute
difference |Ek(r)−Ek−1(r)| drops below an arbitrary chosen threshold ε .

4.5 Discrete Examples

4.5.1 Maze

Historically, the first scenario used to illustrate the properties of empowerment was
a maze setting introduced in (Klyubin et al. 2005a). Here, the agent is located in a
two-dimensional grid world. The agent has five different actions; it can move to the
adjacent squares north, east, south and west of it, or do nothing. An outer boundary
and internal walls block the agents movement. If an agent chooses the action to
move against a wall, it will not move.

The states of the agent’s action variable A for n-step empowerment are consti-
tuted by all 5n action sequences that contain n consecutive actions. The resulting
sensor value S consists of the location of the agent at time step tn+1, after the last
action was executed. Since we are dealing with a discrete and deterministic world,
empowerment can be calculated as in Eq. (9.22) in Sec. 4.4.6 by taking the logarithm
of all states reachable in n steps.

4.5.2 Average Distance vs. Empowerment

In this maze example, empowerment is directly related to how many states an agent
can reach within the next n steps. Now, note that, via the agent’s actions, a Finsler
metric-like (Wilkens 1995; López and Martínez 2000) structure is implied on the
maze, namely the minimum number of action steps necessary to move from one
given position in the maze to a target position. Calculating n-step empowerment for
the current location in the maze then is simply the logarithm of all states with a
distance of n or less to the current state.

Although this n-step horizon provides empowerment with an essentially local
“cone of view”, Klyubin et al. (2005a) showed in the maze example that empow-
erment of a location is negatively correlated with the average distance of that lo-
cation to all other locations in the maze. The first is a local, the latter, however, a
global property. This indicates that the local property of n-step reachability (essen-
tially n-step empowerment) would relate to a global property, namely that of average
distance.

It is a current study objective to which extent this local/global relation might be
true, and under which conditions. Wherever it applies, the empowerment of an agent
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Fig. 4.2 The graph depicts the empowerment values for 5 step action sequences for the dif-
ferent positions in a 10 × 10 maze. Walls are shown in white, and cells are shaded according
to empowerment. As the key suggests empowerment values are in the range [3.46, 5.52] bits.
This figure demonstrates that by simply assessing its options (in terms of movement possi-
bilities) reflected in its empowerment, the agent can discover various features of the world.
The most empowered cells in the labyrinth are those that can reliable reach the most positions
within the next 5 steps. The graph is a reproduction of the results in (Klyubin et al. 2005a).

(which can be determined from knowledge of the local dynamics, i.e. how are my
next n-steps going to affect the world) could then be used as a proxy for certain
global properties of the world, such as the average distance to all other states. It is
clear that this cannot, in general, be true, as outside of the empowerment horizon
n, an environment could change its characteristics drastically, unseen to the “cone
of view” of the agent’s local empowerment. However, many relevant scenarios have
some regularity pervading the whole system which has the opportunity to be de-
tected by empowerment.

This motif was further investigated by Anthony et al. (2008), who studied in
more detail the relationship between graph centrality and empowerment. The first
chosen model was a two-dimensional grid world that contained a pushable box,
similar to (Klyubin et al. 2005a). The agent could take five actions; move north,
south, west, east, or do nothing. If the agent moves into the location with the box,
the box would be pushed into the next square. The state space, the set of possible
world configurations, included the position of the agent, and also the position of the
box.

The complete system can be modelled as a directed labelled graph, where each
node represents a different state of the world and the directed edges, labelled with
actions, represent the transitions from one state to another under a specific action.
For an agent with 5 possible actions, all nodes have 5 edges leading away from them.
This is a generic representation of any discrete and deterministic model. The advan-
tage of this representation is that it provides a core characterization of the system in
graph-theoretic language which is abstracted away from a physical representation.
As before, the distance from one state to another depends on how many actions an
agent needs to move from the first to the second state. In general, this defines a
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Finsler metric-like structure (see Sec. 4.5.2), and is not necessarily tied to physical
distance.

Anthony et al. (2008) then studied the correlation between closeness centrality
and empowerment, both for the previously described box pushing scenario. In addi-
tion, he considered a different scenario, namely scale-free random networks as tran-
sition graphs. As before, one can consider closeness centrality (which is a global
property), and empowerment (which can be calculated from a local subset of the
graph). Anthony et al. (2008) find that:

“these results show a strong indication of certain global aspects of various worlds being
‘coded’ at a local level, and an appropriate sensory configuration can not only detect
this information, but can also use it. . . ”

It is, however, currently unknown how generally and under which circumstances this
observation holds. As mentioned before, it is possible to construct counterexamples.
A natural example is the one that Anthony et al. note in their discussion, namely
that the relationship breaks down for the box pushing example when the agents
horizon does not extend to the box; in this case, the agent is too far away for n-step
empowerment to be affected by the box. This might indicate that a certain degree of
structural homogeneity throughout the world is necessary for this relation to hold,
and that the existence of different “pockets” in the state space with different local
rules would limit the ability of empowerment to estimate global properties. After
all, if there is a part of the world that is radically different from the one the agent
is in, and the agent is not able to observe it in the near future, the current situation
may not be able to be informative concerning that remote part of the world.

At present, however, it remains an open question how empowerment relates to
global properties, such as in the example of graph centrality or average distance. No
full or even partial characterization of scenarios where empowerment correlates to
global values is currently known.

4.5.3 Sensor and Actuator Selection

An agent’s empowerment is not only affected by the state of the world, i.e., the con-
text of the agent, but also depends on what the agent’s sensors and actions are. This
was illustrated by Klyubin et al. (2005a) by variation of the previously mentioned
box-pushing example. In all scenarios we are dealing with a two dimensional grid
world where the agent has five different actions. The center of the world contains
a box. In Fig. 4.3 we see the 5-step empowerment values for the agent’s starting
position in four different scenarios. The scenarios differ depending on

1. whether the agent can perceive the box and
2. whether the agent can push the box.

In Fig 4.3.b the agent can push the box but cannot sense it. The box neither influ-
ences the agent’s outcome, nor is the agent able to perceive it. Basically, this is just
like a scenario without a box. Consequently, the empowerment map of the world
is flat, i.e., all states have the same empowerment. For empowerment applications
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stationary box pushable box

the agent
does not
perceive
the box

a. E ∈ [5.86;5.93] b. E= log2 61
≈ 5.93 bit

the agent
perceives
the box

c. E ∈ [5.86;5.93] d. E ∈ [5.93;7.79]

Fig. 4.3 Empowerment maps for 5-step empowerment in a 2 dimensional grid world, con-
taining a box in the center. The scenarios differ by whether the box can be pushed by the agent
or not, and whether the agent can perceive the box. Black indicates the highest empowerment.
Figure reproduced from (Klyubin et al. 2005a).

this is typically the least interesting case, as it provides no gradient for action selec-
tion (see also the comment on the “Tragedy of the Greek Gods” towards the end of
Sec. 4.5.4).

Fig. 4.3.d shows the empowerment map for an agent which can perceive the
box, the agent’s sensor input is both its own position and the position of the box.
This different sensor configuration changes the empowerment map of the world.
Being close to the box to affect it now allows the agent to “reach” more different
outcomes, because different paths that lead to the same final agent location might
affect the box differently, thereby resulting in different final states. This results in
higher empowerment closer to the box. Note that, comparing this to the previous
scenario where the box was not visible, the agent’s actions are not suddenly able to
create a larger number of resulting world states. Rather, the only change is that the
agent is now able to discriminate between different world states that where present
all along.

Figures 4.3.a and 4.3.c show the empowerment map for an non-pushable box, so
when the agent moves into the box’s square, its movement fails. As opposed to the
earlier cases, here we see that the empowerment around the box is lowered, because
the box is blocking the agents way, thereby reducing the number of states that the
agent can reach with its 5-step action sequence. We also see that the empowerment
maps in Fig. 4.3.a and 4.3.c are identical, and that it does not matter if the agent
can perceive the box or not. This connects back to our earlier arguments that em-
powerment is about influencing the world one can perceive. As it is not possible
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for the agent to affect the box’s positions, it is also not beneficial or relevant, from
an empowerment perspective, to perceive the box position. This also relates back
to earlier arguments about sensor and motor co-evolution. Once an agent loses it
ability to affect the box, it might just as well lose it ability to sense the box.

One important insight that is demonstrated by this experiment is how different
sensor and actuator configurations can lead to significantly different values for the
state-dependent empowerment maps. Thus, which state has the highest empower-
ment might depend on an agent-sensor configuration (and not only on the world
dynamics). This can be helpful when using empowerment to define an action pol-
icy. If an agent chooses its actions based on expected empowerment gain, then this
method is a candidate for causing an agent to change its behaviour by only calculat-
ing empowerment for partial sensor input. For example, to drive an agent to focus
on changing its location, then selecting a corresponding location sensor might be a
good strategy.

4.5.4 Horizon Extension

Extending the horizon, i.e., using a larger n in n-step empowerment, is another way
to change the actions under consideration. Since the n-step action sequences can
be treated just like atomic actions, lengthening the considered sequences creates
more distinct actions to consider, which usually also have a bigger effect on the
environment. Returning to the previous maze example, Fig. 4.4 illustrates how the
empowerment map changes for action sequences of different length.

E ∈ [1;2.32]
1-step

E ∈ [1.58;3.70]
2-step

E ∈ [3.46;5.52]
5-step

E ∈ [4.50;6.41]
10-step

Fig. 4.4 The n-step empowerment map for the same maze with different horizons. Figure
based on (Klyubin et al. 2005a).

The short-term, 1-step empowerment only takes into account its immediate local
surroundings. All that matters are if there are walls immediately next to the agent.
In general, an agent locked in a room with walls just one step away would have
the same empowerment as an agent on an open field. Also, this map only realizes 5
different empowerment values because the world is deterministic, and there can be
maximally 5 different outcome states.
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With more steps, the empowerment map starts to reflect the immediate surround-
ing of the agent and measures, as discussed by Anthony et al. (2008), how “central”
an agent is located on the graph of possible states. But, as discussed earlier, the world
could be shaped in a way that something just beyond the horizon of the agent’s em-
powerment calculation could change this completely. A possible solution would be
to further extend the horizon of the agent. One problem, which we will address in
the next section is that of computational feasibility.

Another problem is that the agent needs the sensor capacity to adequately re-
flect an increase in possible actions. Consider the following case: computing, say,
100-step empowerment, then the agent could reach every square from every other
square, creating a flat empowerment landscape with an empowerment of log(100)
everywhere. Since the agent itself is very (indeed maximally) powerful now, being
able to reach every state of the world, its empowerment landscape is meaningless,
as empowerment is incapable of distinguishing states via the number of options they
offer. In principle, an analogous phenomenon can be created by massively extend-
ing the sensor capacity. Imagine an agent would not only be able to sense it current
position, but also sense every action it has taken in the past. Now the agent could
differentiate between every possible action sequence, as every one is reflected as a
different sensor state. This again leads to a flat empowerment landscape, with em-
powerment being the logarithm of all possible actions.

So, in short, one has to be careful when the state-space of either actions or sensors
is much larger than the other. In this case it is possible that the channel capacity be-
comes the maximal entropy of the smaller variable for all possible contexts, thereby
creating a flat empowerment landscape. This phenomenon can be subsumed under
the plastic notion of the “Tragedy of the Greek Gods”: all-knowing, all-powerful
agents see no salient structure in the world and need to resort to avatars of limited
knowledge and power (in analogy to the intervention of the Greek gods with the hu-
man fighters in the Trojan War) to attain any structured and meaningful interaction.
In short, for meaningful interaction to emerge from a method such as an empower-
ment landscape, limitations in sensing and acting need to be present. The selection
of appropriate levels of power and resolution is a current research question.

4.5.5 Impoverished Empowerment

While seeking the right resolution for actions and sensors can be an issue in worlds
of limited complexity, a much more imminent challenge is the fact that as the em-
powerment horizon grows, the number of action sequences one needs to consider
grows exponentially with the horizon. Especially when noise is involved, this be-
comes quickly infeasible.

To address this dilemma, Anthony et al. (2011) suggest a modified technique
that allows for the approximation of empowerment-like quantities for longer action
sequences, arguing, among other, that this will bring the empowerment approach in
principle closer to what is cognitively plausible.



4 Empowerment — An Introduction 89

The basic idea of the impoverished empowerment approach is to consider all
n-step action sequences (as in the simple empowerment computation), but then to
select only a limited amount of sequences from these, namely those which contribute
the most to the empowerment at this state. From the endpoint of this “impoverished”
action sequence skeleton, this process is then repeated for another n-step sequence,
thereby iteratively building up longer action sequences.

In the deterministic case, the selection is done so that the collection of action
sequences has the highest possible empowerment. So, if several action sequences
would lead to the same end state, only one of them would be chosen.

Interestingly, a small amount of noise is useful for this process, as it favours se-
lecting action sequences which are further apart, because their end states overlap
less. If no noise is present, then two action sequences which would end in neigh-
bouring locations would be just as valid as two that lead to completely different
locations, but the latter is more desirable as it spans a wider space of potential
behaviours.

4.5.6 Sensor and Actuator Evolution

Since empowerment can be influenced by the choice of sensors, it is possible to
ask what choice of sensors is maximising an agent’s empowerment. Klyubin et al.
(2005b, 2008) addressed this question by using a Genetic Algorithm-based opti-
mization for a scenario in which sensors are being evolved to maximize an agent’s
empowerment. An agent is located in an infinite two-dimensional grid world. On
each turn it can take one of five different actions which are to move in one of four
directions, or to do nothing. Each location now has a value representing the concen-
tration of a marker substance which is inversely proportional to the distance of the
current location to the center at location (0,0).

In this scenario, the agents sensors can change, both in positioning and number.
A sensor configuration is defined by where each of the n sensors of the agent is
located relative to the agent. The sensor value has n states, and represents which of
the n sensors detects the highest concentration value of the marker.

Klyubin et al. (2005b, 2008) then evolved the agents sensor configuration to max-
imise empowerment for different starting locations with respect to the centre. So,
for example, they evolved the sensor configurations to achieve the highest empow-
erment when the agent starts its movement at location (0,0). To avoid degeneracy,
a slight cost factor for the number of sensors was added. In this way the adaptation
has to evaluate if the added cost of further sensors are worth the increase in empow-
erment. The resulting sensor configurations for a 4-step empowerment calculation
can be seen in Figure 4.5.

The result was unsurprisingly that different starting positions would lead to dif-
ferent sensor layouts. More interestingly, they realized that the space of possible
solutions can be more constrained in some places, so there is only one good solu-
tion, while other locations offer several different, nearly equally empowered solu-
tions. More importantly is the observation that empowerment agnostically selects
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Fig. 4.5 The Figures show what sensor configurations empowerment evolves for different
starting positions. The first number indicates how many spaces east of the center the agent
starts, and the second number is the resulting empowerment value of the sensor configuration.
Figure taken from (Klyubin et al. 2008).

modalities which are most appropriate for the various starting locations. Consider,
for instance, Fig. 4.5 which shows how the sensors are placed relative to the agent
as the agent moves increasingly away from the center of the world, and to the right
of it. The first images show the sensor placement when the agent is at the center of
the world. The sensors are placed with more-or-less precision around the center, and
there is some indifference as to their exact placement.

In the second row, when the agent has been moved seven and more fields to the
right of the centre, a more prominent “blob” is placed at around the location of
the centre (the diagram shows the relative placement of the sensors with respect to
the agent, so a blob of black dots is covering roughly the location at which the centre
of the world will be with respect to the agent.

Finally, as the agent moves further to the right (end of second and last row in
Fig. 4.5), a striking effect takes place: the blob sensor, which roughly determines
a two-dimensional location of the centre, collapses into a “heading” sensor which
is no longer a two-dimensional blob, but rather has 1-dimensional character. This
demonstrates that empowerment is able to switch to different modalities (or, in this
case, from a 2-dimensional to a 1-dimensional sensor). Because of its information-
theoretic nature, empowerment is not explicitly using any assumptions about modal-
ity or dimensionality of sensors. The resulting morphologies are purely a result of
the selection pressure via empowerment in interaction with the dynamics and struc-
ture of the world under consideration.

Another result of the evolutionary scenario involved the evolution of actuators.
Without repeating the full details that can be found in (Klyubin et al. 2008), we
would like to mention one important result, namely that the placement of actuators
via empowerment-driven evolution, unlike the sensors, was extremely unspecific.
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Many configurations led to maximum empowerment solutions. The authors suggest
that this results as a consequence of the agent being unable to choose what form the
’information’ takes, that it has to extract from the environment. Hence, the sensors
have to adapt to the information structure available in the environment, leaving the
agent free to choose its actions. Therefore many different actuator settings can be
used as the agent can utilize each of them to full effect by generation of suitable
action sequences. This is an indicator that an agent’s action choices should be a
more valuable and “concentrated” source of information than the information ex-
tracted from the environment, as every action choice is significant, while sensoric
information needs to be “scooped” in on a wide front to capture some relevant fea-
tures. This insight has been taken onboard in later work in form of the the concept
of digested information (Salge and Polani 2011) where agents observe other agents
because their actions are more informationally dense than other aspects of the en-
vironment. The core idea of digested information is that relevant information (as
defined in (Polani et al. 2006)) is often spread out in the environment, but since
an agent needs to act upon the information it obtains, the same information is also
present in the agent’s actions. Because the agent’s action state-space is usually much
smaller than the state-space of the environment, the agent “concentrates” the rele-
vant information in it actions. From the perspective of another, similar agent this
basically means that the agent digests the relevant information and then provides it
in a more compact format. It should be noted that all structure in the above example
emerges purely from informational considerations; no other cost structure (such as
e.g. energy costs) have been taken into account to shape the resulting features.

4.5.7 Multi-agent Empowerment

If two or more agents share an environment, so that their actions all influence the
state of the world, then their empowerment becomes intertwined. Capdepuy (2010);
Capdepuy et al. (2007, 2012) investigate this phenomenon in detail. Here, due to
lack of space, we will limit ourselves to briefly outline his results.

If both agents selfishly optimize their empowerment, then the outcome depends
heavily on the scenario. A fully formal categorization is still outstanding, but the
qualitative phenomenon can be described in terms similar to different game solution
types in game theory. One finds situations that are analogous to zero-sum games
where the empowerment of one agent can only be raised to the detriment of the
other. In other situations, selfish empowerment maximisation leads to overall high
empowerment, and, finally, there are scenarios where agent’s strategies converge
onto the analoga of intricate equilibria reminiscent of the Nash equilibria in games.

An interesting aspect in relation to biology is Capdepuy’s work on the emer-
gence of structure from selfish empowerment maximisation (Capdepuy et al. 2007).
The model consists of a two-dimensional grid world where agents are equipped
with sensors that measure the density of other agents in the directions around them.
In this case, there is a tension between achieving proximity to other agents (to at-
tain any variation in sensor input, as empty space does not provide any) and being
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sufficiently distant (as to attain sufficient freedom for action and not to be stuck
without ability to move); this tension, in turn, provides an incentive to produce non-
trivial dynamical structures. Some examples of agent populations evolved for greedy
empowerment maximization and some of the better empowered structures resulting
from this process can be seen in Fig. 4.6 Capdepuy et al. (2007).

Fig. 4.6 Structures resulting from agent behaviour that was evolved to maximise the agents’
individual empowerment. Each black dot in the figure represents an agent in one of the
empowerment-maximizing scenarios. Agents are equipped with directional density sensors,
measuring the number of other agents present in that particular direction. Creating structures
becomes beneficial for the agents, as it gives features to the environment that allow different
resulting sensor inputs. The different structures are high empowered solutions of the artificial
evolution. Figure taken from (Capdepuy 2010).

4.6 Continuous Empowerment

The empowerment computations that we considered earlier were all operating in
discrete spaces. But if we want to apply empowerment to the real world we need to
consider that many problems, especially those related to motion or motor control,
are continuous in nature. We could apply naive discretizations with finer and finer
resolutions, but this will quickly lead to large state and actions spaces, with a for-
bidding number of options where direct computation of empowerment become very
computationally expensive (Klyubin et al. 2008); therefore, different approaches
need to be taken to deal with continuous dynamics effectively.
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In this section, we will take a closer look at empowerment for continuous ac-
tuator and sensor variables. Compared to the discrete case, while channel capacity
is still well defined for continuous input/output spaces, there are some important
conceptual differences to be considered as compared to the discrete case.

One problem, as we shall illustrate, is that the continuous channel capacity could
— in theory — be infinite. The reason for this is as follows: if there is no noise, and
arbitrary continuous actions can be selected, these actions now allow to inject con-
tinuous, i.e. real-valued quantities (or vectors) into the world state. Reading in their
(again) noiseless effect through real-valued sensors means that the full precision
of a real number can be used in such a case. As arbitrary amounts of information
can be stored in an infinite precision — noiseless — real number, this implies (in
nondegenerate cases) an infinite channel capacity. Of course, such a situation is not
realistic; in particular, relevant real-world systems always have noise and therefore
the channel capacity will be limited.

However, when modeling a deterministic system with floating-point precision in
simulation, there is no natural noise level. In a nondegenerate system, empowerment
can be made as large as the logarithm of the number of actions (action sequences)
available. This is, of course, meaningless. To be meaningful, one needs to endow
the system with additional assumptions (such as an appropriate noise level) which
are not required in the deterministic case.

But the main problem in the continuous case is that there is at the time of this
review no known analytic solution to determine the channel capacity for a general
continuous channel. To address this problem, a number of methods to approximate
continuous channel capacity have been introduced. We will discuss them and how
they can be used to compute empowerment.

We will briefly discuss naive binning, then the Monte Carlo Integration method
developed by (Jung et al. 2011), and then focus mostly on the quasi-linear Gaussian
approximation, which is fast to compute.

4.6.1 Continuous Information Theory

The analogy to discrete entropy is rigorously defined for continuous random vari-
ables as differential entropy

h(X) =−
∫
X

p(x) log(p(x)) dx , (4.21)

where p(x) now denotes not the probability, but the probability density function of
X , defined over a support set ofX⊆R. Similarly, the conditional differential entropy
is defined as

h(X |Y ) =−
∫
Y

p(y)
∫
X

p(x|y) log(p(x|y)) dxdy . (4.22)

The differential entropies cannot be directly interpreted in the same way as discrete
entropies: they can become infinite or even negative. However, without delving too
much into their individual interpretation, we will just state here that the difference
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of two differential entropy terms again can be interpreted as a proper mutual in-
formation: I(X ;Y ) := h(X)− h(X |Y), which shares essentially all characteristics of
the discrete mutual information7. Thus, consequently, the channel capacity is again
defined by maximising the mutual information for the input probability density
function

E=C(A → S) = max
p(a)

I(A;S). (4.23)

We will still be dealing with discrete time steps. Just like in the discrete case, we
will use the notation At and St not just for single, but also for compound random
variables. So, for each time t, both variables At and St can consist of vectors of
multiple random variables. The variables A and (where relevant) S itself are then
again a selection of actuator and sensor variables at different times t, so for ex-
ample, the actuator input for n-step empowerment might be written compactly as
A = (At , ...,At+n−1).

4.6.2 Infinite Channel Capacity

As mentioned above, in contrast to the discrete case, the continuous channel capac-
ity can be infinite for some p(s|a). Formally, this results from the fact that differ-
ential entropy can become negative. For instance, it becomes negative infinity for a
Dirac δx(.) “distribution”. The Dirac “distribution” is a probability measure concen-
trated on a single point: it can be mathematically defined in a precise fashion, but
for the following discussion, the intuition is sufficient that δx(.) is normalized (the
integral over this “distribution” is 1), and is 0 everywhere with exception of the one
point x at which it is concentrated, where it assumes an infinite value.

To illustrate, imagine that the channel p(s|a) exactly reproduces the real-valued
input value of a ∈ R, i.e. that it implements s = a, i.e. p(s|a) ≡ δa(s). Every input
a precisely determines the output s, so h(S|a) =−∞. This remains negative infinity
when we integrate over all possible inputs, so h(S|A) = −∞. If we now choose for
p(a) the uniform input distribution between 0 and 1, which has a differential entropy
of 0, we then get the following mutual information8

I(A;S) = h(S)− h(S|A) = h(A)− (−∞) = ∞ . (4.24)

It holds H(S) = H(A), because the channel just copies the input distribution to the
output. Since this is the largest possible value, this is also the channel capacity.

7 One exception is that the continuous version of mutual information can become infinite
in the continuum. This, however, is perfectly consistent with the ability to store infinite
amount of information in continuous variables and does not change anything substantial
in the interpretation.

8 Strictly spoken, we should denote this quantity as differential mutual information, but un-
like the differential entropy, this term retains the same interpretation in the continuous as in
the discrete case, and therefore we will not especially qualify it by terming it “differential”.
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4.6.3 Continuous Empowerment Approximation

While channel capacity is well defined for any relationship between S and A, it can
only be computed for a subset of all possible scenarios. We will here approximate
the model of the world with one for which empowerment can be computed. The
following section discusses different approaches for doing so.

4.6.4 Binning

The most straightforward and naive approximation for continuous empowerment
is to discretize all involved continuous variables and then compute the channel as
described in the discrete empowerment section.

However, there are different ways to bin real-valued numbers and, as Olsson et al.
(2005) demonstrated, they clearly affect the resulting informational values. Uniform
binning considers the support of a real-valued random variable (i.e. the set of values
of x for which p(x) > 0), splits it into equally sized intervals and assigns to each
real number the bin it falls into. Of course, this does not necessarily result in the
same number of events in each bin and, furthermore, many bins can be left empty
or with very few events while others contain many events. This unevenness can
mean that significant “information” (in the colloquial sense) in the data is being
discarded. The response is to choose the binning in a not necessarily equally spaced
way, that ensures that all bins are used, and that the events are well distributed.
This is achieved by Max-Entropy binning where one adaptively resizes the bins
so the resulting distribution has the highest entropy, which usually results in bins
containing the approximately same number of events Olsson et al. (2005).

There are two caveats for this case: If adaptive binning is chosen, one needs to
take care that the informational values of different measurements are comparable,
and that the binning is the same throughout the same context of use. Therefore, it is
important to choose the binning in advance, say, adapted only to the overall, context-
free channel, and not adapt to each state-dependent channel separately. The second
caveat is that, while adaptive binning distributes the events more-or-less evenly over
the bins, this can thin out the sampling very considerably and cause the bins to be
almost empty or containing very few elements each. This can induce the appearance
of nonzero mutual information which, however, is spurious. In this case, it is better
to choose a binning that is wide enough to ensure a sufficient number of events per
bin. Both approaches require the availability of actual samples, so if the channel in
question is only specified as a continuous conditional probability, it is necessary to
generate random samples based on p(s|a).

A final note on information estimation: much more robust approaches for mu-
tual information estimation are known, such as the Kraskov-Stögbauer-Grassberger
(KSG) estimator (Kraskov et al. 2004). Unfortunately, this method is not suitable for
use with empowerment, as it requires the full joint distribution of the variables to be
given in advance. When computing empowerment, however, one iteratively selects
an input distribution, computes a joint distribution and then applies the informa-
tion estimator. This means that if one uses the KSG-estimator, it affects the joint
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distributions and hence its own estimates of mutual information at later iterations of
the process, and thus the conditions for correct operation of KSG cease to hold9.

4.6.5 Evaluation of Binning

One problem with this approach is that it can introduce binning artefacts. Consider
the following example: imagine one bins by proper rounding to integers. In this
case, outcomes such as, say, 0.6 and 1.4 become the same state, while 1.4 and 1.6
are considered different. If now an agent which moves along the real valued line by
an amount of 0.2 at each time step, this binning would make the agent appear to be
more empowered at 1.5 then it would be at 1.0, because it could move to two differ-
ent resulting states from 1.5. If the binning would reflect true sensoric resolution of
the agent, this would conform with the empowerment model of being able to resolve
the corresponding states; however, in our example, we did not imply anything like
that — the underlying continuous structure is completely uniform, and we did not
introduce any special sensoric structure. Thus, the difference in empowerment is a
pure artefact introduced by the binning itself.

Another problem that emerges with the use of a binning approach is the right
choice of granularity. If too few bins are chosen, then, while one has a good num-
ber of samples in the bins, interesting structural effect and correlations are lost. If
too many bins are chosen, then many (or all bins) contain very few samples, per-
haps as few as only one or even none. Such a sparse sampling can significantly
overestimate the mutual information of the involved variables. Another problem,
specifically in conjunction with empowerment, is that such a sparse sampling is
often likely to cause one action to produce exactly one distinguishable sensoric out-
come. This means that empowerment reaches its maximum log |A| for every context
r depriving it of any meaning. However, if the resolution is high enough and suf-
ficiently many samples are collected, binning can produce a quickly implemented
(but typically slow to compute) approximation for empowerment. Examples of its
application to the simple pendulum can be seen in (Klyubin et al. 2008).

4.6.6 Jung’s Monte Carlo Integration

Another approximation to compute empowerment which can still deal with any kind
of p(s|a) is Monte Carlo Integration (Jung et al. 2011). It is computed by sampling
the outcomes of applying a representative set of available action sequences.

Assume that you have a model, so for a state r you can take actions av, with
v = 1, ...,n, and draw NMC samples, which will result in sensor states sv, j , with j =
1, ...,NMC. This method then approximates the term dv,k from Eq. (4.16) in the BA
by

dv,k ≈
1

NMC

NMC

∑
j=1

log

[
p(sv, j |r,av)

∑n
i=1 p(sv, j |r,ai)pi

k

]
. (4.25)

9 The authors thank Tobias Jung for this information (private communication).
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To compute this the model needs to provide a way to compute how probable it
is that the outcome of one action was produced by another. The necessary noise in
the model basically introduces a “distance measure” that indicates how hard it is to
distinguish two different actions.

One simple model is to assume that p(s|r,av) is a multivariate Gaussian (depen-
dent on the current state of the world r), or can be reasonably well-approximated by
it, i.e.,

s|r,av ∼N(μv,Σv) (4.26)

where μv = (μv,1, ...,μv,n)
T is the mean of the Gaussian and the covariance matrix

is given by Σv = diag(σ2
v,1, ...,σ2

v,n). The mean and covariance will depend upon the
action av and the state r. Samples from the distribution will be denoted s̃v and can
be generated using standard algorithms.

The following algorithm summarises how to approximate the empowermentE(r)
given a state r ∈ R and transition model p(s|r,av):

1. Input:

a. Specify state r whose empowerment is to be calculated.
b. For every action av with v = 1, ...,n, define a (Gaussian) state transition model

p(s|r,av), which is fully specified by its mean μv and covariance Σv.

2. Initialise:

a. p0(av) := 1/n for v = 1, ...,n.
b. Draw NMC samples s̃v,i each, according to distribution density p(s|r,av) =

N(μv,Σv) for v = 1, ...,n.
c. Evaluate p(s̃v,i|r,aμ) for all v = 1, ...n; μ = 1, ...n; and sample i = 1, ...,NMC .

3. Iterate the following variables for k = 1,2, ... until |Ek −Ek−1|< ε or the maxi-
mum number of iterations is reached:

a. zk := 0, Ek−1 := 0
b. For v = 1, ...,n

i. dv,k :=
1

NMC

NMC

∑
j=1

log

[
p(s̃v, j |r,av)

∑n
i=1 p(s̃v, j |r,ai)pi

k

]

ii. Ek := Ek−1 + pk−1(av) ·dv,k−1
iii. pk := pk−1(av) · exp(dv,k−1)
iv. zk := zk + pk(av)

c. For v = 1, ...n
i. pk(av) := pk(av) · z−1

k

4. Output:

a. Empowerment E(r)≈ Ek−1 (estimated).
b. Distribution p(a) achieving the maximum mutual information.
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4.6.7 Evaluation of Monte Carlo Integration

Monte Carlo Integration can still deal with the same generic distributions p(s|a) as
the binning approach, and it removes the artefacts caused by the arbitrary boundaries
of the bins. On the downside, it requires a model with a noise assumption. In the
solution suggested by Jung et al. (2011) this lead to the assumption of Gaussian
Noise.

The other problem is computability. For good approximations the number of se-
lected representative action sequences should be high, but this also leads to a quick
growth of computation time. The several applications showcased in (Jung et al.
2011) all had to be computed off-line, which makes them infeasible for robotic
applications.

4.6.8 Quasi-Linear Gaussian Approximation

In the previous section we saw that Jung’s Monte Carlo Integration method could
deal with the rather general case where the relationship between actuators and sensor
can be characterized by s = f (r,a)+Z, where f is a deterministic mapping, and Z
is some form of added noise. The noise is necessary to limit the channel capacity,
and an integral part of the Monte Carlo Integration in Eq. 4.25. While the noise can
have different distributions, Jung’s example assumed it to be Gaussian.

We will now outline how the assumption of Gaussian noise, together with an
assumption regarding the nature of f , will allow us to accelerate the empower-
ment approximation. Consider now actuation-sensing mappings of the form s =
f (r,a) +N(0,Nr), i.e. which can be described by a deterministic mapping f on
which Gaussian noise (which may depend on r) is superimposed10.

In principle, if the actions A were distributed in an arbitrarily small neighbour-
hood around 0, one would need f to be differentiable in a with the derivative Da f
depending continuously on r. In practice, that neighbourhood will not be arbitrarily
small, so the mapping from a to s needs to be “sufficiently well” approximated at all
states r by an affine (or shifted linear) function in fr(a) for the allowed distributions
of actions p(a). To limit the channel capacity there has to be some constraint on
the possible action distributions, and the linear approximation has to be sufficiently
good for the actions that A can actually attain.11

In other words, assuming the channel can be adequately approximated by a linear
transformation applied to A with added Gaussian noise, then it is possible to speed
up the empowerment calculation significantly by reducing the general problem of
continuous channel capacity to parallel Gaussian channels which can be solved with

10 We will treat this as centred noise, with a mean of 0, but this is not necessary, as any non-
zero mean would just shift the resulting distribution, which would leave the differential
entropies and mutual information unaffected.

11 We will not make this notion more precise or derive any error bounds at this point; we just
informally assume that the Gaussian action distribution A is concentrated well enough for
fr to appear linear in a.
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well-established algorithms. This provides us with the quasi-linear Gaussian ap-
proximation for empowerment which will now be presented in detail.

Let S be a multi-dimensional, continuous random variable defined over the vector
space R

n. Let A be a multidimensional random variable defined over Rm. As in the
discrete, A is the action variable, and S the perception variable. According to the
quasi-linear Gaussian approximation assumption, we assume that there is a linear
transformation T : Rm → R

n that allows us to express the relation between these
variables via

S = TA+Z. (4.27)

Z is a suitable multi-dimensional, Gaussian variable defined over Rn, modelling the
combined acting/sensing noise in the system and is assumed to be independent of A
and S.

Consider first the simpler white noise case. Here we assume that the noise in each
dimension q ≤ n of Z is independent of the noise in all other dimensions, and has a
normal distribution with Zq ∼ N(0,Nq) for each dimension (where Nq depends on
the dimension). This particular form of noise can be interpreted as having n sensoric
channels where each channel q is subject to a source of independent Gaussian noise.

We now further introduce a limit to the power P available to the actions A, i.e.
we are going to consider only action distributions A with E(A2)≤ P. The reason for
that is that without this constraint, the amplitude of A could be made arbitrarily large
and this again would render all outcomes distinguishable and thus empowerment
infinite12. The actual mean of the distributions is irrelevant for our purpose, as a
constant shift does not affect the differential entropies. However, we need to ensure
that the actuation range considered does not extend the size for which our linearity
assumption holds.

It is plausible to consider this limitation as a physical power constraint13. Under
these constraints, the quantity of interest now becomes

E= max
p(a):E(A2)≤P

I(S;A) (4.28)

and the maximum being attained for normally distributed A (thus we only need to
consider Gaussian distributions for A in the first place).

12 This specific power limit also implies that the optimal input distributions for the channel
capacity results is Gaussian (Cover and Thomas 1991).

13 This point is subtle: throughout the text, we had made a point that empowerment is de-
termined by the structure of the actuation-perception loop, but otherwise purely informa-
tional. In particular, we did not include any further assumptions about the physics of the
system. In the quasi-linear Gaussian case, the choice of a “physics-like” quadratic form of
power limitation is only owed to the fact that it makes the problem tractable. Other con-
straints are likely to be more appropriate for a realistic robotic actuator model, but need to
be addressed in future work.
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4.6.9 MIMO Channel Capacity

Now, assume for a moment that, in addition to our assumption of independent noise,
the variance of the noise Z in each dimension has the same value, namely 1, then
the problem becomes equivalent to computing the channel capacity for a linear,
Multiple-Input/Multiple-Output channel with additive and isotropic Gaussian noise.
Though the methods to compute this quantity are well established in the literature,
for reasons of self-containedness, we reiterate them here.

The MIMO problem can be solved by standard methods (Telatar 1999), namely
by applying a Singular Value Decomposition (SVD) to the transformation matrix T ,
which decomposes T as

T =UΣV T (4.29)

where U and V are unitary matrices and Σ is a diagonal matrix with non-negative
real values on the diagonal. This allow us to transform Eq. (4.27) to

UT S = ΣV T A+UT Z. (4.30)

It can be shown that each dimension of the resulting vectorial variables UT S, ΣV T A
and UT Z can be treated as an independent channel (see (Telatar 1999)), and thus
reducing the computation of the overall channel capacity to computing the channel
capacity for linear, parallel channels with added Gaussian noise, as in (Cover and
Thomas 1991),

C = max
Pi

∑
i

1
2

log

(
1+

σiPi

E
[
(UT Z)2

i

]
)

= max
Pi

∑
i

1
2

log(1+σiPi) (4.31)

where σi are the singular values of Σ , and Pi is the average power used in the i-th
channel, following the constraint that

∑
i

Pi ≤ P. (4.32)

The simplification in the last step of Eq. (4.31) is based on the assumption of
isotropic noise. Because the expected value for the noise is 1.0 and the unitary ma-
trix applied to Z does not scale, but only rotates Z, the noise retains its original value
of 1.0.

We remind that the channel capacity achieving distribution for a simple linear
channel with added Gaussian Noise is Gaussian (Cover and Thomas 1991). In par-
ticular, the optimal input distribution for each subchannel is a Gaussian with a vari-
ance of Pi. The optimal power distribution which maximizes Eq. (4.31) can then be
found with the water-filling algorithm (Cover and Thomas 1991). The basic idea
is to first assign power to the channel with the lowest amount of noise. This has
an effect that could be described as one of “diminishing returns”: once a certain
power level is reached, where adding more power to that channel has the same re-
turn as adding to the next best channel, additional power is now allocated to the two
best channels. This is iterated to the next critical level and so on, until all power is
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allocated. Depending on the available total power, not all channels necessarily get
power assigned to them.

We can also see, directly from the formula in Eq. (4.31), that since we divide by
the variance of the noise Z, this value needs to be larger than zero. For vanishing
noise, the channel capacity becomes infinite. Only the presence of noise induces
an “overlap” of outcome states that allows one to obtain meaningful empowerment
values. However, this is not a significant limitation in practice, as virtually all appli-
cations need to take into account actuator, system and/or sensor noise.

4.6.10 Coloured Noise

In a more general model, the Gaussian noise added to the multi-inputs, multi-output
channel might also be coloured, meaning that the noise distributions in the different
sensor dimensions are not independent. Let us assume that the noise is given by
Z ∼N(0,Ks), where Ks is the covariance matrix of the noise. As above, we assume
that the distribution has a mean of zero, which is without loss of generality since
translations are information invariant. The relationship between S and A is again
expressed as

S = T ′A+Z′. (4.33)

Conveniently, this can also be reduced to a channel with i.i.d. noise. For this, note
that rotation, translation and scaling operators do not affect the mutual information
I(S;A). We start by expressing Z′ as

Z′ =U
√

ΣZV T , (4.34)

where Z ∼N(0, I) is isotropic noise with a variance of 1, and UΣV T =Ks is the SVD
of Ks. U and T are orthogonal matrices, and Σ contains the singular values. Note
that all singular values have to be strictly larger than zero, otherwise there would
be a channel in the system without noise, which would allow the empowerment
maximizer to inject all power into the zero-noise component of the channel and to
achieve infinite channel capacity.

√
Σ is a matrix that contains the square roots of

the singular values, which should scale the variance of the isotropic noise to the
singular values. The orthogonal matrices then rotate the distributions, so that they
resemble Z′.

If we consider
√

Σ−1
, a diagonal matrix whose entries are the inverse of the

square root of the singular values in Σ , this allows us to reformulate:

S = TA+U
√

ΣZV T (4.35)

UT SV = UT TAV +
√

ΣZ (4.36)
√

Σ
−1

UT SV =
√

Σ
−1

UT TAV +Z (4.37)
√

Σ
−1

UT S =
√

Σ
−1

UT TA+ZVT (4.38)
√

Σ
−1

UT S =
√

Σ
−1

UT TA+Z (4.39)
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The last step follows from the fact that the rotation of isotropic Gaussian noise re-
mains isotropic Gaussian noise. This reduces the whole problem to a MIMO chan-
nel with isotropic noise and with the same channel capacity. We simply redefine the
transformation matrix T as

T =
√

Σ
−1

UT T ′, (4.40)

and solve the channel capacity for S = TA+Z, as outlined in section 4.6.9.

4.6.11 Evaluation of QLG Empowerment

The advantage of the quasi-linear Gaussian approximation is that it is quick to com-
pute, the computational bottleneck being the calculation of a singular value decom-
position that has the same dimensions as the sensors and actuators.

The drawbacks are its introduction of several assumptions. Like Jung’s integra-
tion, the approximation forces us to assume Gaussian noise. However, a more ag-
gressive assumption than Jung’s approximation is that the QLG approximation also
needs a locally linear model. So it is not possible to represent locally non-linear re-
lationships between the actions and sensors. In particular the abrupt emergence of
novel degrees of freedom which the empowerment formalism is so apt at discover-
ing (see above, e.g. box pushing in Sec. 4.5.3) becomes softened by the Gaussian
bell of the agent’s actuations.

Finally, the quasi-linear Gaussian approximation also introduces a new free pa-
rameter, the power-constraint P which will be discussed in a later example. A more
detailed examination of QLG empowerment can be found in (Salge et al. 2012).

4.7 Continuous Examples

We are aware of currently only two publications dealing with continuous empow-
erment. The first, by Jung et al. (2011), provides a good technical tutorial, and in-
troduces the Monte Carlo Integration technique. Furthermore, it demonstrates that
those states generally chosen as goals have high state-dependent empowerment, and
that an empowerment-driven controller will tend to drive the system into them, even
when initialized from a far away starting point. So, for example, the simple pendu-
lum swings up, and stabilizes in the upright position, even when multiple swing-up
phases are required; unlike traditional Reinforcement Learning, there is no value
function that needs to be learnt over the whole phase space, but only the transition
dynamics, and that needs only to be determined around the actual path taken. In prin-
ciple, the algorithm does not need to visit any states but those in the neighbourhood
of the path taken by the empowerment-driven controller. The empowerment-driven
control method can be applied also to other, quite more intricate models, such as
bicycle riding or the acrobot scenario (double-pendulum hanging from the top joint
and driven by a motor at the middle joint).

The second paper (Salge et al. 2012) discusses the quasi-linear Gaussian method
as a faster approximation for empowerment, and focusses on the pendulum; both
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to compare the QLG method with previous approximations, and to investigate how
different parameters affect the empowerment map. In the following section we will
use the simple pendulum from the second paper to outline some of the challenges in
applying continuous empowerment.

4.7.1 Pendulum

The scenario we will focus on is that of a simple pendulum, because it incarnates
many features typical for the continuous empowerment scenarios. First we will pro-
duce an empowerment map, which assigns an empowerment value for each state the
pendulum can be in. Then we demonstrate empowerment-driven control; an algo-
rithm that generates actions for the pendulum by greedily maximising its expected
empowerment in the following step.

We start by observing that the pendulum’s current state at the time t is completely
characterized by its angle φ and its angular velocity φ̇ .

For the model we time-discretize the input. So, the actuator variable A contains
real values at , which represents the external acceleration applied to the pendulum.
So, at time t, the motor acceleration is set to at , and this acceleration is then applied
for the duration Δ t. At the end of Δ t, we will consider the system to be in time
t +Δ t, and the next value is applied.

4.7.2 Action Selection

In general, just having a state-dependent utility function, which assigns a utility to
each state (such as empowerment) does not immediately provide a control strategy.
One way to address this is to implement a greedy action selection strategy, where
each action is chosen based on the immediate expected gain in empowerment. Note
that empowerment is not a true value function, i.e. following its maximum local
gradient does not necessarily correspond to optimizing some cumulated reward.

For the discrete and deterministic case, implementing a greedy control is simple.
Since we have local model knowledge, we know what state each action a will lead
to. We can then evaluate the empowerment for each action a that can be taken in the
current state, and pick that action that leads to the subsequent state with the largest
empowerment. This basically provides a gradient ascent approach (modulated by
the effect of the action on the dynamics) on the empowerment landscape, with all is
benefits and drawbacks.

If we are dealing with a discrete but noisy system, one needs to specify in more
detail what a “greedy” action selection should look like, since empowerment is not
a utility function in the strict sense of utility theory, and the average empowerment
over the successor states is not the same as the empowerment of the averaged dy-
namics. This means that one has different ways of selecting the desired action for
the next step.

However, the most straightforward way remains, of course, the selection of the
highest average empowerment when a particular action is selected. Assume that,
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given an action a, and a fixed starting state which we do not denote separately,
one has the probability p(s|a) of getting into a subsequent state s14. Each of these
successor states s has an associated empowerment value E(s). Thus, the expected
empowerment for carrying out the action a is given by

E[E(S)|a] = ∑
s∈S

E(s)p(s|a) (4.41)

and one selects the action with the highest expected empowerment.
The necessity of distinction of deterministic and noisy cases becomes even more

prominent in the continuous case, where the situation is more complicated. As we
have to treat the continuum as a noisy system, there is usually no unique resulting
state for an action a, but rather a continuous distribution density of states p(s|a).
Ideally, one would integrate the empowerment values over this distribution, similar
to Eq. (4.41), but since empowerment cannot be expressed as a simple, integrable
function, this is not practicable. One solution is to simply look at the mean of a
sampled distribution over the resulting states and average their empowerment. At
this point, however, no bounds have been derived on how well this value represents
the empowerment values in the distribution of output states.

The continuity of actions creates another problem. Even if we can compute the
expected empowerment for a given action, then we still need to select for which
actions we want to evaluate their subsequent empowerment. Again, one possible
option is to sample several actions a, distributed in a regular fashion; for example,
one could look at the resulting states for maximal positive acceleration, for no ac-
celeration at all, and for maximal negative acceleration, and then select the best.
This may miss the action a with the highest expected empowerment which might
fall somewhere between these sample points. Potential for future work would lie in
developing an efficient method to avoid expensive searches for the highest-valued
successive expected empowerment.

4.7.3 Resulting Control

In Fig. 4.7 we can see a empowerment map for the pendulum, and the resulting
trajectory generated by greedy empowerment control. The controller sampled over
5 possible actuation choices, and chose the one where the resulting state had the
highest expected empowerment.

In this specific case, the pendulum swings up and comes to rest in the upright
position. This solution, while typical, is not unique. Varying the parameters for time
step length and power constraint can produce different behaviour, such as cyclic
oscillation and resting in the lower position. We will discuss these cases further
below.

One interesting observation to note here is that the empowerment of the pendu-
lum is not strictly increasing over the run, even though the control chooses the action
that leads to the most empowered successor state. If one considers the trajectory, it

14 To simplify the argument, we consider here only fully observed states s.
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Fig. 4.7 Graph depicting the state space of a pendulum and its associated empowerment
values. The solid line shows the trajectory of a pendulum in this state space, controlled by a
greedy empowerment maximization algorithm based on the underlying Gaussian quasilinear
empowerment landscape (shown in the background). For comparison of control, the dashed
line shows the trajectory created by a greedy maximisation based on a Monte Carlo Gaussian
empowerment landscape (not depicted here).

is possible to see that the pendulum passes through regions where the empowerment
lowers again. This can be seen in Fig. 4.7 where the trajectory passes through the
darker regions of lower empowerment after already being in much lighter regions of
the empowerment map. This is due to the specific dynamics of the system, in which
one can only control the acceleration of the pendulum, but, of course, not its position
change, which is mediated by the current velocity. So while the controller chooses
the highest empowered future state, all future states have lower empowerment than
the current state.

Contrast this with the discrete maze case: in the latter, the agent could maintain
any state of the environment, i.e. it position, indefinitely, by doing nothing. Greedy
control in the maze therefore moves the agent to increasingly higher empowered
states, until it would reach a local optimum, and then remain there.
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Strikingly, local empowerment maxima seem to be less of a problem in the pen-
dulum model (which is, in this respect, very similar to the mountain-car problem
(Sutton and Barto 1998)). One reason turns out to be that the pendulum cannot
maintain certain positions. If the pendulum has a non-zero speed, then its next posi-
tion will be a different one, because the system cannot maintain both the speed and
position of the pendulum at the same time. This sometimes forces the pendulum
to enter states that are of lower empowerment than its current state. In the pendu-
lum example this works out well in traversing the low empowered regions; and the
continued local optimization of empowerment happens to lead to later, even higher
empowered regions.

It is an open question to characterize actuation-perception structures which
would be particularly amenable for the local empowerment optimization to actu-
ally achieve global empowerment optimization or at least a good approximation of
global empowerment optimization. At this point, it is clear that sharp changes in the
empowerment landscape (e.g. discovery of new degrees of freedom, e.g. because of
the presence of a new manipulable object) need to be inside the local exploration
range of the action sequences used to compute empowerment. However, in the case
of the pendulum, the maximally empowered point of the upright pendulum seems to
“radiate” its basin of attraction into sufficiently far regions of the state space for the
local greedy optimization to pick this up. The characterization of the properties that
the dynamics of the system needs to have for this to be successful is a completely
open question at this point. Given the examples studied in (Jung et al. 2011), a cau-
tious hypothesis may suggest that dynamic scenarios are good candidates for such a
phenomenon.

4.7.4 Power Constraint

A closer look at the different underlying empowerment landscapes of the quasi-
linear approximation in Fig. 4.8 shows their changes in regard to power constraint
P and time step length Δ t.

How the change in the time step duration Δ t affects the empowerment, and also
how it leads to worse approximations is studied in greater detail in (Salge et al.
2012). In general, it is not surprising that empowerment is indeed affected by it, in
particular as the time step duration is closely related to the horizon length. The basic
insight is, however, that a greater time step length allows a further look-ahead into
the future, at the cost of a worsening approximation with the local linear model.

A more interesting effect in regard to the general applicability of the fast QLG
method is the varying power constraint P. In general, an increase in power will
result in an increase in empowerment, no matter where in the state space the system
is. This is not immediately visible in the figures shown, since the colouring of the
graphs is normalized, so the black and white correspond to the lowest and highest
empowerment value in the respective subgraph.

A more unexpected effect, however, is a potential inversion of the empowerment
landscape as seen in Fig. 4.8. Inversion means that for two specific points in the
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state space it might be that for one power level the first has a higher empowerment
than the other, but for a different power level this relationship is reversed, and now
the second point has a higher empowerment. For example, in Fig. 4.8 we can con-
sider the row of landscapes for a Δ t of 0.7. With increasing power there appears
a new ridge of local maximal empowerment around the lower rest position of the
pendulum.

This slightly counterintuitive effect is a result of how the capacity is distributed
on the separate parallel channels. Be reminded, each channel i contributes its own
amount to the overall capacity

C = max
Pi

∑
i

1
2

log(1+σiPi) (4.42)

subject to the total power constraint P. Depending on the different values for σi,
power is first allocated to the channel with the highest amplification value σi, up to
a point were the return in capacity for the invested power diminishes so much that
adding power to a different channel yields more capacity. From that point on the
overall system acts as if it was one channel of bigger capacity.

In other words, for low power the factor that determines the channel capacity is
the value of the largest σ alone. Once the power increases, the values of both the σ
become important. It is therefore possible that for low power, a point with one large
σ has comparatively high empowerment, while for a higher power level, another
point has a higher empowerment, because the combination of all the σ is better.
This is what actually happens in the pendulum example and causes the pendulum to
remain in the lower rest position in the examples with higher power.

This indicates that the the empowerment-induced dynamics is sensitive to the
given power constraint. One interpretation is that agents with weak actuators need
to fine-tune their dynamics to achieve high-empowered states. However, agents with
strong actuators can afford to stay in the potential minimum of the system, as their
engine is strong enough to reach all relevant points without complicated strategems
(“if in doubt, use a bigger hammer”). The inversion phenomenon is a special case
for a more generic principle that force may be used to change the landscape in which
the agent finds itself.

Another observation emerging from the inversion phenomenon is the general
question of whether the Gaussian choice for the input distribution is appropriate.
We know that some form of constraint must be applied, otherwise one could just
chose input distributions that are spaced so far apart that they would fully compen-
sate for the noise, giving rise to an (unrealistic) infinite channel capacity. Not only is
this unhelpful, but also, as realistic actuations will be usually limited. In the current
model, inspired by well-established channel capacity applications in communication
theory, the power constraints reflects how limited amount of energies are allotted to
broadcast a signal. But if we instead look, for example, at the acceleration which a
robot could apply to its arm, then for instance an interval constraint would be much
more natural to apply. For instance, an action a the robot could chose would lie, for
example, between -4.0 and +10.0 m/s2; a servo-based system may, instead specify
a particular location instead, but still constrained by a hard-bounded interval. As
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consequence, it might be better to have a model where, instead of a general power
constraint P, a hard upper and lower limit for each dimension of the actuator input A
is imposed. At present, we are not aware of a method to directly compute the chan-
nel capacity for a multiple input, multiple output channel with coloured Gaussian
noise that uses such a constraint.

4.7.5 Model Acquisition

Before we end this overview we will at least briefly address the problem of model ac-
quisition or model learning. As mentioned, empowerment needs the model p(s|a,r)
for its computation. Strictly spoken, the acquisition or adaptation of this model is
not part of the empowerment formalism. It is external to it, the model being either
given in advance, or being acquired by one of many candidate techniques. However,
given that empowerment will be used in scenarios where the model is not known
and has to be learnt at the same time as the empowerment gradient is to be followed,
model acquisition needs to be treated alongside the empowerment formalism itself.

As mentioned, empowerment only needs a local model of the dynamics from the
agent’s actuators to the agent’s sensor in the current state of the world, but this local
model is essential to compute empowerment.

Much of the earlier empowerment work operates under the assumption that the
agent in question has somehow obtained or is given a sufficiently accurate model
p(s|a,r). Without addressing the “how”, this acknowledges the fact that an agent-
centric, intrinsic motivation mechanism needs to have this forward model available
within the agent.

The earliest work to touch on this (Klyubin et al. 2008) deals with context-
dependent empowerment. To model the relationship between an AIBO’s discrete ac-
tions, and some discrete camera inputs, regular motions of the head are performed to
sample the environment. These were then used to construct joint probability distri-
butions and select an appropriate separation of all states of R into different contexts.
The choice of context itself was also a decision on how to internally represent the
world in an internal model, especially if there is only limited “resources” available
to model the world. By grouping together states that behave similarly, the agent gets
a good approximation of the world dynamics, and its internal empowerment com-
putation results in high-empowered states. If the agent groups states with different
behaviour together, then the resulting contexts have higher levels of uncertainty, and
result in comparatively lower empowerment values (from the agent’s perspective).

In general, it is clear that the quality of the model will affect the internal evalu-
ation of empowerment. If the dynamics of a state are modelled with a great degree
of uncertainty, then this noise will also reflect negatively in the empowerment value
for this state. The interesting question here is then how to distinguish between those
states that are truly random, and those where the action model is just currently not
well known. This also indicates another field of future research. The hypothesis
is that, if we would model how exploration or learning would affect our internal
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Fig. 4.8 A visualization of the different empowerment landscapes resulting from computa-
tion with different parameters for time step length Δ t and power constraint P. The graphs
plot empowerment for the two dimensional state space (angular speed, angular position) of
the pendulum. White areas indicate the highest empowerment, black areas the lowest possible
empowerment. The lower rest position is in the middle of the plots, and has low empower-
ment for less powered scenarios. The upper rest position is high empowered in all cases, it is
located in the middle of the right or left edge of the plots. The areas of high empowerment
close to the upright angel are those were the angular speed moves the pendulum towards the
upper rest position. Figure is taken from (Salge et al. 2012).
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model, then the maximisation of (internally computed) empowerment could also
lead to exploration and learning behaviour.

In the continuous case, we have to deal with the additional question on how
to best represent the conditional probability distributions, since, unlike the dis-
crete case, there is no general and exact way of doing so. Jung et al. (2011) uses
Gaussian Processes to store the dynamics of the world. This also offers a good in-
terface between the use of a Gaussian Process Learner and the Monte Carlo integra-
tion with assumed Gaussian noise. The faster quasi-linear Gaussian approximation
(Salge et al. 2012) also interact well with representation, and, conveniently, the co-
variance metric used for the coloured noise can be directly derived from the GP. In
general, one would assume that other methods and algorithms to acquire a world
model could be similarly combined with empowerment. It remains an open ques-
tion which of these models are well suited, not just as approximations of the world
dynamics in general, but in regard to how well they represent those aspects of the
world dynamics that are relevant to attain high empowerment values.

4.8 Conclusion

The different scenarios presented here, and in the literature on empowerment in gen-
eral, are highlighting an important aspect of the empowerment flavour of intrinsic
motivation algorithms, namely its universality. The same principle that organizes a
swarm of agents into a pattern can also swing the pendulum into an upright posi-
tion, seek out a central location in a maze, be driven towards a manipulable object,
or drive the evolution of sensors.

The task-independent nature reflected in this list can be both a blessing and a
curse. In many cases the resulting solution, such as swinging the pendulum into the
upright position, is the goal implied by default by a human observer. However, if
indeed a goal is desired that differs from this default, then empowerment will not be
the best solution. At present, the question of how to integrate explicit non-default
goals into empowerment is fully open.

Another strong assumption that comes with the use of empowerment is its lo-
cal character. On the upside, it simplifies the computation and makes the associ-
ated model acquisition much cheaper as only a very small part of the state space
ever needs to be explored; the assumption of the usefulness of empowerment as
a proxy principle for other implicit and less accessible optimization principles de-
pends heavily on how well the local structure of the system dynamics will reflect its
global structure. The precise nature of this phenomenon is not fully understood in
the successful scenarios, but is believed to have to do with the regularity (e.g. conti-
nuity/smoothness) of the system dynamics. Of course, if any qualitative changes in
the dynamics happen just outside of the empowerment horizon, the locality of em-
powerment will prevent them from being seen. This could be due to some disastrous
“cliff”, or something harmless like the discovery of an object that can be manipu-
lated. Once, however, the change enters the empowerment horizon, and assuming
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that one can obtain a model of how it will affect the dynamics without losing the
agent, empowerment will provide the gradients appropriate to the change.

Another central problem that, in the past, has reappeared across different appli-
cations is the computational feasibility. Empowerment quickly becomes infeasible
to compute, which is a problem for both the behavioural empowerment hypothesis,
and the application of empowerment to real-time AI or robotics problems. Newer
methods address both the case for continuous empowerment (such as the QLG),
and deeper empowerment horizons (such as the “impoverished” versions of em-
powerment). They, of course, come with additional assumptions and parameters,
and provide only approximate solutions, but maintain the general character of the
full solutions, allowing to export empowerment-like characteristics into domains
that were hitherto inaccessible.

Let us conclude with a remark regarding the biological empowerment hypothe-
ses in general: the fact that the default behaviours produced by empowerment seem
often to match what intuitive expectations concerning default behaviour seem to
imply, there is some relevance in investigating whether some of these behaviours
are indeed approximating default behaviours observed in nature. A number of ar-
guments in favour of why empowerment maximizing or similar behaviour could
be relevant in biology have been made in (Klyubin et al. 2008), of which in this
review we mainly highlighted its role as a measure of sensorimotor efficiency and
the advantages that an evolutionary process would confer to more informationally
efficient perception-action configurations.

Together with other intrinsic motivation measures, empowerment is thus a candi-
date measure which may help bridge the gap between understanding how organisms
may be able to carry out default adaptations into their niche in an effective manner,
and methods which would also allow artificial devices to try and copy the success
that biological organisms have in doing so.
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Chapter 5
A Framework for the Local Information
Dynamics of Distributed Computation in
Complex Systems

Joseph T. Lizier, Mikhail Prokopenko, and Albert Y. Zomaya

5.1 Introduction

The nature of distributed computation has long been a topic of interest in complex
systems science, physics, artificial life and bioinformatics. In particular, emergent
complex behavior has often been described from the perspective of computation
within the system (Mitchell 1998b,a) and has been postulated to be associated with
the capability to support universal computation (Langton 1990; Wolfram 1984c;
Casti 1991).

In all of these relevant fields, distributed computation is generally discussed in
terms of “memory”, “communication”, and “processing”. Memory refers to the stor-
age of information by some variable to be used in the future of its time-series pro-
cess. It has been investigated in coordinated motion in modular robots (Prokopenko
et al. 2006), in the dynamics of inter-event distribution times (Goh and Barabási
2008), and in synchronization between coupled systems (Morgado et al. 2007).
Communication refers to the transfer of information between one variable’s time-
series process and another; it has been shown to be of relevance in neuroscience
(Wibral et al. 2011; Lindner et al. 2011; Marinazzo et al. 2012) and in other biolog-
ical systems (e.g. dipole-dipole interaction in microtubules (Brown and Tuszynski
1999), and in signal transduction by calcium ions (Pahle et al. 2008)), social animals
(e.g. schooling behavior in fish (Couzin et al. 2006)), agent-based systems (e.g. the
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influence of agents over their environments (Klyubin et al. 2005), and in inducing
emergent neural structure (Lungarella and Sporns 2006)). Processing refers to the
combination of stored and/or transmitted information into a new form; it has been
discussed in particular for biological neural networks and models thereof (Kinouchi
and Copelli 2006; Atick 1992; Sánchez-Montañés and Corbacho 2002; Yamada and
Aihara 1994) (where it has been suggested as a potential biological driver), and
also regarding collision-based computing (e.g. (Jakubowski et al. 1997; Adamatzky
2002), and including soliton dynamics and collisions (Edmundson and Enns 1993)).

Significantly, these terms correspond to the component operations of Turing uni-
versal computation: information storage, information transfer (or transmission)
and information modification. Yet despite the obvious importance of these in-
formation dynamics, until recently there was no framework for either quantify-
ing them individually or understanding how they interact to give rise to distributed
computation.

Here, we review the first complete framework (Lizier et al. 2007, 2008b, 2012c,
2010, 2012b; Lizier and Prokopenko 2010; Lizier 2013) which quantifies each of
these information dynamics or component operations of computation within a sys-
tem, and describes how they inter-relate to produce distributed computation. We refer
to the dynamics of information for two key reasons here. First, this approach describes
the composition of information in the dynamic state update for the time-series pro-
cess of each variable within the system, in terms of how information is stored, trans-
ferred and modified. This perspective of state updates brings an important connection
between information theory and dynamical systems. Second, the approach focuses
on the dynamics of these operations on information on a local scale in space and
time within the system. This focus on the local scale is an important one. Several
authors have suggested that a complex system is better characterized by studies of
its local dynamics than by averaged or overall measures (Shalizi et al. 2006; Hanson
and Crutchfield 1992), and indeed here we believe that quantifying and understand-
ing distributed computation will necessitate studying the information dynamics and
their interplay on a local scale in space and time. Additionally, we suggest that the
quantification of the individual information dynamics of computation provides three
axes of complexity within which to investigate and classify complex systems, allow-
ing deeper insights into the variety of computation taking place in different systems.

An important focus for discussions on the nature of distributed computation
have been cellular automata (CAs) as model systems offering a range of dynamical
behavior, including supporting complex computations and the ability to model com-
plex systems in nature (Mitchell 1998b). We review the application of this frame-
work to CAs here because there is very clear qualitative observation of emergent
structures representing information storage, transfer and modification therein (Lang-
ton 1990; Mitchell 1998b). CAs are a critical proving ground for any theory on
the nature of distributed computation: significantly, Von Neumann was known to
be a strong believer that “a general theory of computation in ‘complex networks
of automata’ such as cellular automata would be essential both for understanding
complex systems in nature and for designing artificial complex systems” (Mitchell
(1998b) describing Von Neumann (1966)).
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Information theory provides the logical platform for our investigation, and we
begin with a summary of the main information-theoretic concepts required. We
provide additional background on the qualitative nature of distributed computa-
tion in CAs, highlighting the opportunity which existed for our framework to pro-
vide quantitative insights. Subsequently, we consider each component operation of
universal computation in turn, and describe how to quantify it locally in a spa-
tiotemporal system. As an application, we review the measurement of each of these
information dynamics at every point in space-time in several important CAs. We
show that our framework provided the first complete quantitative evidence for a
well-known set of conjectures on the emergent structures dominating distributed
computation in CAs: that blinkers provide information storage, particles provide
information transfer, and particle collisions facilitate information modification. Fur-
thermore, we describe the manner in which our results implied that the coherence
of information may be a defining feature of complex distributed computation. Our
findings are significant because these emergent structures of computation in CAs
have known analogues in many physical systems (e.g. solitons and biological pat-
tern formation processes, coherent waves of motion in flocks), and as such this work
will contribute to our fundamental understanding of the nature of distributed com-
putation and the dynamics of complex systems. We finish by briefly reviewing the
subsequent application of the framework to various complex systems, including in
analyzing flocking behavior and in a computational neuroscience setting.

5.2 Information-Theoretic Preliminaries

Information theory (Shannon 1948; Cover and Thomas 1991; MacKay 2003) is an
obvious tool for quantifying the information dynamics involved in distributed com-
putation. In fact, information theory has already proven to be a useful framework
for the design and analysis of complex self-organized systems (e.g. see (Prokopenko
et al. 2009)).

We begin by reviewing several necessary information theoretic quantities, in-
cluding several measures explicitly defined for use with time-series processes.
We also describe local information-theoretic quantities - i.e. the manner in which
information-theoretic measures can be used to describe the information content as-
sociated with single observations.

5.2.1 Fundamental Quantities

The fundamental quantity is the Shannon entropy, which represents the uncertainty
associated with any measurement x of a random variable X (using units in bits):

HX =−∑
x

p(x) log2 p(x). (5.1)

The joint entropy of two (or more) random variables X and Y is a generalization
to quantify the uncertainty of the joint distribution of X and Y:
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HX ,Y =−∑
x,y

p(x,y) log2 p(x,y). (5.2)

The conditional entropy of X given Y is the average uncertainty that remains
about x when y is known:

HX |Y =−∑
x,y

p(x,y) log2 p(x | y). (5.3)

The mutual information (MI) between X and Y measures the average reduction
in uncertainty about x that results from learning the value of y, or vice versa:

IX ;Y = ∑
x,y

p(x,y) log2
p(x,y)

p(x)p(y)
. (5.4)

IX ;Y = HX −HX |Y = HY −HY |X . (5.5)

One can also describe the MI as measuring the information contained in X about Y
(or vice versa).

The conditional mutual information between X and Y given Z is the mutual
information between X and Y when Z is known:

IX ;Y |Z = HX |Z −HX |Y,Z (5.6)

= HY |Z −HY |X ,Z . (5.7)

Importantly, the conditional MI IX ;Y |Z can be larger or smaller than the uncondi-
tioned IX ;Y (MacKay 2003); it is reduced by redundant information held by Y and
Z about X , and increased by synergy between Y and Z about X (e.g. where X is the
result of an exclusive-OR or XOR operation between Y and Z).

5.2.2 Measures for Time-Series Processes

Next, we describe several measures which are explicitly defined for time-series pro-
cesses X .

The entropy rate is the limiting value of the rate of change of the joint en-
tropy over k consecutive values of a time-series process X , (i.e. measurements

x(k)n = {xn−k+1, . . . ,xn−1,xn}, up to and including time step n, of the random variable

X(k)
n = {Xn−k+1, . . . ,Xn−1,Xn}), as k increases (Cover and Thomas 1991; Crutchfield

and Feldman 2003):

HμX = lim
k→∞

H
X(k)

n

k
= lim

k→∞
H ′

μX(k), (5.8)

H ′
μX(k) =

H
X(k)

n

k
, (5.9)
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where the limit exists. Note that X(k)
n is a k-dimensional embedding vector of the

state of X (Takens 1981). A related definition is given by the limiting value of the
conditional entropy of the next value of X (i.e. measurements xn+1 of the random
variable Xn+1) given knowledge of the previous k values of X (i.e. measurements

x(k)n of the random variable X(k)
n ):

HμX = lim
k→∞

H
Xn+1|X(k)

n
= lim

k→∞
HμX(k), (5.10)

HμX(k) = H
X(k+1)

n+1
−H

X(k)
n
, (5.11)

again, where the limit exists. This can also be viewed as the uncertainty of the next

state x(k)n+1 given the previous state x(k)n , since xn+1 is the only non-overlapping quan-

tity in x(k)n+1 which is capable of carrying any conditional entropy. Cover and Thomas
(1991) point out that these two quantities correspond to two subtly different notions.
These authors go on to demonstrate that for stationary processes X , the limits for
the two quantities H ′

μ(X) and Hμ(X) exist (i.e. the average entropy rate converges)
and are equal. For our purposes in considering information dynamics, we are inter-
ested in the latter formulation Hμ(X), since it explicitly describes how one random

variable Xn+1 is related to the previous instances X(k)
n .

Grassberger (1986b) first noticed that a slow approach of the entropy rate to its
limiting value was a sign of complexity. Formally, Crutchfield and Feldman (2003)
use the conditional entropy form of the entropy rate (5.10)1 to observe that at a
finite block size k, the difference HμX(k)−HμX represents the information carrying
capacity in size k-blocks that is due to correlations. The sum over all k gives the total
amount of structure in the system, quantified as the effective measure complexity
or excess entropy (measured in bits):

EX =
∞

∑
k=0

[
HμX(k)−HμX

]
. (5.12)

The excess entropy can also be formulated as the mutual information between
the semi-infinite past and semi-infinite future of the system:

EX = lim
k→∞

I
X(k)

n ;X(k+)
n+1

, (5.13)

where X(k+)
n+1 = {Xn+1,Xn+2, . . . ,Xn+k} is the random variable (with measurements

x(k
+)

n+1 = {xn+1,xn+2, . . . ,xn+k}) referring to the k future values of the process X (from
time step n+1 onwards). This interpretation is known as the predictive information
(Bialek et al. 2001), as it highlights that the excess entropy captures the information
in a process’ past which is relevant to predicting its future.

1 HμX (k) here is equivalent to hμ (k+1) in (Crutchfield and Feldman 2003).
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5.2.3 Local Information-Theoretic Measures

Finally, we note that the aforementioned information-theoretic quantities are aver-
ages over all of the observations used to compute the relevant probability distribu-
tion functions (PDFs). One can also write down local or pointwise measures for each
of these quantities, representing their value for one specific observation or configu-
ration of the variables (x,y,z) being observed. The average of a local quantity over
all observations is of course the relevant average information-theoretic measure.

Primarily, the Shannon information content or local entropy of an outcome x
of measurement of the variable X is (MacKay 2003):

h(x) =− log2 p(x). (5.14)

Note that by convention we use lower-case symbols to denote local information-
theoretic measures throughout this chapter. The quantity h(x) is simply the infor-
mation content attributed to the specific symbol x, or the information required to
predict or uniquely specify that value. Less probable outcomes x have higher infor-
mation content than more probable outcomes, and we have h(x) ≥ 0. Specifically,
the Shannon information content of a given symbol x is the code-length for that sym-
bol in an optimal encoding scheme for the measurements X , i.e. one that produces
the minimal expected code length.2

Now, note that although the PDF p(x) is evaluated for h(x) locally at the given
observation x, it is defined using all of the available (non-local) observations of the
variable X which would go into evaluation of the corresponding H(X). That is to
say, we define a certain PDF p(x) from all given measurements of a variable X : we
can measure local entropies h(x) by evaluating p(x) for a given observation x, or
we can measure average entropies H(X) from the whole function p(x), and indeed
we have H(X) = 〈h(x)〉 when the expectation value is taken over p(x).

Similarly, we have the local conditional entropy h(x | y) = − log2 p(x | y) with
H(X | Y ) = 〈h(x | y)〉.

Next, the local mutual information (Fano 1961) for a specific observation (x,y)
is the information held in common between the specific values x and y:

i(x;y) = h(x)− h(x | y), (5.15)

= log2
p(x | y)

p(x)
. (5.16)

The local mutual information is the difference in code lengths between coding the
value x in isolation (under the optimal encoding scheme for X), or coding the value
x given y (under the optimal encoding scheme for X given Y ). Similarly, we have
the local conditional mutual information:

2 This “optimal code-length” may specify non-integer choices; full discussion of the impli-
cations here, practical issues in selecting integer code-lengths, and block-coding optimisa-
tions are contained in (Cover and Thomas 1991, Chapter 5).
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i(x;y | z) = h(x | z)− h(x | y,z), (5.17)

= log2
p(x | y,z)
p(x | z)

. (5.18)

Indeed, the form of i(x;y) and i(x;y | z) are derived directly from four postu-
lates by Fano (1961, ch. 2): once-differentiability, similar form for conditional MI,
additivity (i.e. i({yn,zn} ;xn) = i(yn;xn)+ i(zn;xn | yn)), and separation for indepen-
dent ensembles. This derivation means that i(x;y) and i(x;y | z) are uniquely spec-
ified, up to the base of the logarithm. Of course, we have I(X ;Y ) = 〈i(x;y)〉 and
I(X ;Y | Z) = 〈i(x;y | z)〉, and like I(X ;Y ) and I(X ;Y | Z), the local values are sym-
metric in x and y.

Importantly, i(x;y) may be positive or negative, meaning that one variable can
either positively inform us or actually misinform us about the other. An observer is
misinformed where, conditioned on the value of y the observed outcome of x was
relatively unlikely as compared to the unconditioned probability of that outcome
(i.e. p(x | y) < p(x)). Similarly, i(x;y | z) can become negative where p(x | y,z) <
p(x | z).

Applied to time-series data, local measures tell us about the dynamics of informa-
tion in the system, since they vary with the specific observations in time, and local
values are known to reveal more details about the system than the averages alone
(Shalizi 2001; Shalizi et al. 2006).

5.3 Cellular Automata

5.3.1 Introduction to Cellular Automata

Cellular automata (CA) are discrete dynamical systems consisting of an array of
cells which each synchronously update their discrete value as a function of the val-
ues of a fixed number of spatially neighboring cells using a uniform rule. Although
the behavior of each individual cell is very simple, the (non-linear) interactions be-
tween all cells can lead to very intricate global behavior, meaning CAs have become
a classic example of self-organized complex behavior. Of particular importance,
CAs have been used to model real-world spatial dynamical processes, including
fluid flow, earthquakes and biological pattern formation (Mitchell 1998b).

The neighborhood of a cell used as inputs to its update rule at each time step
is usually some regular configuration. In 1D CAs, this means the same range r of
cells on each side and including the current value of the updating cell. One of the
simplest variety of CAs – 1D CAs using binary values, deterministic rules and one
neighbor on either side (r = 1) – are known as the Elementary CAs, or ECAs. Ex-
ample evolutions of ECAs from random initial conditions may be seen in Fig. 5.2a
and Fig. 5.6a. For more complete definitions of CAs, including the definition of the
Wolfram rule number convention for specifying update rules, see Wolfram (2002).

Wolfram (1984c, 2002) sought to classify the asymptotic behavior of CA rules
into four classes: I. Homogeneous state; II. Simple stable or periodic structures;
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III. Chaotic aperiodic behavior; and IV. Complicated localized structures, some
propagating. Much conjecture remains as to whether these classes are quantita-
tively distinguishable, e.g. see Gray (2003), however they do provide an interesting
analogy (for discrete-state and time) to our knowledge of dynamical systems, with
classes I and II representing ordered behavior, class III representing chaotic behav-
ior, and class IV representing complex behavior and considered as lying between
the ordered and chaotic classes.

More importantly though, the approach seeks to characterize complex behavior
in terms of emergent structure in CAs, regarding gliders, particles and domains.
Qualitatively, a domain may described as a set of background configurations in a
CA, for which any given configuration will update to another such configuration in
the set in the absence of any disturbance. Domains are formally defined within the
framework of computational mechanics (Hanson and Crutchfield 1992) as spatial
process languages in the CA. Particles are qualitatively considered to be moving
elements of coherent spatiotemporal structure. Gliders are particles which repeat
periodically in time while moving spatially (repetitive non-moving structures are
known as blinkers). Formally, particles are defined within the framework of com-
putational mechanics as a boundary between two domains (Hanson and Crutchfield
1992); as such, they can also be termed as domain walls, though this is typically
used with reference to aperiodic particles.

These emergent structures are more clearly visible when the CA is filtered in
some way. Early filtering methods were hand-crafted for specific CAs (relying on
the user knowing the pattern of background domains) (Grassberger 1983, 1989),
while later methods can be automatically applied to any given CA. These include:
ε-machines (Hanson and Crutchfield 1992), input entropy (Wuensche 1999), lo-
cal information (Helvik et al. 2004), and local statistical complexity (Shalizi et al.
2006). All of these filtering techniques produce a single filtered view of the struc-
tures in the CA: our measures of local information dynamics will present several
filtered views of the distributed computation in a CA, separating each operation on
information. The ECA examples analyzed in this chapter are introduced in Section
5.3.3.

5.3.2 Computation in Cellular Automata

CAs can be interpreted as undertaking distributed computation: it is clear that
“data represented by initial configurations is processed by time evolution" (Wol-
fram 1984c). As such, computation in CAs has been a popular topic for study (see
Mitchell (1998b)), with a particular focus in observing or constructing (Turing) uni-
versal computation in certain CAs. An ability for universal computation is defined
to be where “suitable initial configurations can specify arbitrary algorithm proce-
dures" in the computing entity, which is capable of “evaluating any (computable)
function" (Wolfram 1984c). Wolfram (1984c,a) conjectured that all class IV com-
plex CAs were capable of universal computation. He went on to state that prediction
in systems exhibiting universal computation is limited to explicit simulation of the
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system, as opposed to the availability of any simple formula or “short-cut", drawing
parallels to the halting problem for universal Turing machines (Wolfram 1984c,a)
which are echoed by Langton (1990) and Casti (1991). (Casti extended the analogy
to undecidable statements in formal systems, i.e. Gödel’s Theorem). The capability
for universal computation has been proven for several CA rules, through the de-
sign of rules generating elements to (or by identifying elements which) specifically
provide the component operations required for universal computation: information
storage, transmission and modification. Examples here include most notably the
Game of Life (Conway 1982) and ECA rule 110 (Cook 2004); also see Lindgren
and Nordahl (1990) and discussions by Mitchell (1998b).

The focus on elements providing information storage, transmission and modifica-
tion pervades discussion of all types of computation in CAs, e.g. (Adamatzky 2002;
Jakubowski et al. 2001). Wolfram (1984a) claimed that in class III CAs information
propagates over an infinite distance at a (regular) finite speed, while in class IV CAs
information propagates at an irregular speed over an infinite range. Langton (1990)
hypothesized that complex behavior in CAs exhibited the three component opera-
tions required for universal computation. He suggested that the more chaotic a sys-
tem becomes the more information transmission increases, and the more ordered a
system becomes the more information it stores. Complex behavior was said to occur
at a phase transition between these extremes requiring an intermediate level of both
information storage and transmission: if information propagates too well, coherent
information decays into noise. Langton elaborates that transmission of information
means that the “dynamics must provide for the propagation of information in the
form of signals over arbitrarily long distances", and suggests that particles in CAs
form the basis of these signals. To complete the qualitative identification of the el-
ements of computation in CAs, he also suggested that blinkers formed the basis of
information storage, and collisions between propagating (particles) and static struc-
tures (blinkers) “can modify either stored or transmitted information in the support
of an overall computation". Rudimentary attempts were made at quantifying the
average information transfer (and to some extent information storage), via mutual
information (although as discussed later this is a symmetric measure not captur-
ing directional transfer). Recognizing the importance of the emergent structures to
computation, several examples exist of attempts to automatically identify CA rules
which give rise to particles and gliders, e.g. (Wuensche 1999; Eppstein 2002), sug-
gesting these to be the most interesting and complex CA rules.

Several authors however criticize the aforementioned approaches of attempting to
classify CAs in terms of their generic behavior or “bulk statistical properties", sug-
gesting that the wide range of differing dynamics taking place across the CA makes
this problematic (Hanson and Crutchfield 1992; Mitchell 1998b). Gray (2003) sug-
gests that there there may indeed be classes of CAs capable of more complex
computation than universal computation alone. More importantly, Hanson and
Crutchfield (1992) criticize the focus on universal computational ability as draw-
ing away from the ability to identify “generic computational properties", i.e. a lack
of ability for universal computation does not mean a CA is not undertaking any com-
putation at all. Alternatively, these studies suggest that analyzing the rich space-time
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dynamics within the CA is a more appropriate focus. As such, these and other stud-
ies have analyzed the local dynamics of intrinsic or other specific computation, fo-
cusing on particles facilitating the transfer of information and collisions facilitating
the information processing. Noteworthy examples here include: the method of ap-
plying filters from the domain of computational mechanics by Hanson and Crutch-
field (1992); and analysis using such computational mechanics filters of CA rules
selected via evolutionary computation to perform classification tasks by Mitchell
et al. (1994, 1996). Related are studies which deeply investigate the nature of parti-
cles and their interactions, e.g. particle types and their interaction products identified
for particular CAs (Mitchell et al. 1996; Boccara et al. 1991; Martinez et al. 2006),
and rules established for their interaction products by Hordijk et al. (2001).

Despite such interest, until recently there was no complete framework that locally
quantifies the individual information dynamics of distributed computation within
CAs or other systems. In this review, we describe how the information dynamics
can be locally quantified within the spatiotemporal structure of a CA. In particu-
lar, we describe the dynamics of how information storage and information transfer
interact to give rise to information processing. Our approach is not to quantify com-
putation or overall complexity, nor to identify universal computation or determine
what is being computed; it is simply intended to quantify the component operations
in space-time.

5.3.3 Examples of Distributed Computation in CAs

In this chapter, we review analysis of the computation carried out by several impor-
tant ECA rules:

• Class IV complex rules 110 and 54 (Wolfram 2002) (see Fig. 5.4a and Fig. 5.2a),
both of which exhibit a number of glider types and collisions. ECA rule 110 is
the only proven computationally universal ECA rule (Cook 2004).

• Rules 22 and 30 as representative class III chaotic rules (Wolfram 2002) (see rule
22 in Fig. 5.6a);

• Rules 18 as a class III rule which contains domain walls against a chaotic back-
ground domain (Wolfram 1984b; Hanson and Crutchfield 1992).

These CAs each carry out an intrinsic computation of the evolution to their ultimate
attractor and phase on it (see Wuensche (1999) for a discussion of attractors and
state space in finite-sized CAs). That is to say, we view the attractor as the end point
of an intrinsic computation by the CA – the dynamics of the transient to the attractor
may contain information storage, transfer and modification, while the dynamics on
the attractor itself can only contain information storage (since the attractor is either
a fixed point or periodic process here). As such, we are generally only interested in
studying computation during the transient dynamics here, as non-trivial computation
processes.

We also examine a CA carrying out a “human-understandable” computational
task. Rule φpar is a 1D CA with range r = 3 (the 128-bit Wolfram rule number
0xfeedffdec1aaeec0eef000a0e1a020a0) that was evolved by Mitchell et al. (1994,
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1996) to classify whether the initial CA configuration had a majority of 1’s or 0’s by
reaching a fixed-point configuration of all 1’s for the former or all 0’s for the latter.
This CA rule achieved a success rate above 70% in its task. An example evolution
of this CA can be seen in Fig. 5.5a. The CA appears to carry out this computation
using blinkers and domains for information storage, gliders for information trans-
fer and glider collisions for information modification. The CA exhibits an initial
emergence of domain regions of all 1’s or all 0’s storing information about local
high densities of either value. Where these domains meet, a checkerboard domain
propagates slowly (1 cell per time step) in both directions, transferring information
of a soft uncertainty in this part of the CA. Some “certainty” is provided where the
glider of the leading edge of a checkerboard encounters a blinker boundary between
0 and 1 domains, which stores information about a hard uncertainty in that region
of the CA. This results in an information modification event where the domain on
the opposite side of the blinker to the incoming checkerboard is concluded to rep-
resent the higher density state, and is allowed to propagate over the checkerboard.
This new information transfer associated with local decision of which is the higher
density state has evolved to occur at a faster speed (3 cells per time step) than the
checkerboard uncertainty; it can overrun checkerboard regions, and in fact colli-
sions of opposing types of this strong propagation give rise to the (hard uncertainty)
blinker boundaries in the first place. The final configuration is therefore the result of
this distributed computation.

Quantification of the local information dynamics via these three axes of com-
plexity (information storage, transfer and modification) will provide quite detailed
insights into the distributed computation carried out in a system. In all of these CAs
we expect local measures of information storage to highlight blinkers and domain
regions, local measures of information transfer to highlight particles (including glid-
ers and domain walls), and local measures of information modification to highlight
particle collisions.

This will provide a deeper understanding of computation than single or generic
measures of bulk statistical behavior, from which conflict often arises in attempts to
provide classification of complex behavior. In particular, we seek clarification on the
long-standing debate regarding the nature of computation in ECA rule 22. Sugges-
tions that rule 22 is complex include the difficulty in estimating the metric entropy
(i.e. temporal entropy rate) for rule 22 by Grassberger (1986b), due to “complex
long-range effects, similar to a critical phenomenon" (Grassberger 1986a). This ef-
fectively corresponds to an implication that rule 22 contains an infinite amount of
memory (see Section 5.4.1). Also, from an initial condition of only a single “on"
cell, rule 22 forms a pattern known as the “Sierpinski Gasket” (Wolfram 2002)
which exhibits clear fractal structure. Furthermore, rule 22 is a 1D mapping of the
2D Game of Life CA (known to have the capability for universal computation (Con-
way 1982)) and in this sense is referred to as “life in one dimension” (McIntosh
1990), and complex structure in the language generated by iterations of rule 22 has
been identified by Badii and Politi (1997). Also, we reported in (Lizier et al. 2012b)
that we have investigated the C1 complexity measure (Lafusa and Bossomaier 2005)
(an enhanced version of the variance of the input entropy (Wuensche 1999)) for all
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ECAs, and found rule 22 to clearly exhibit the largest value of this measure (0.78
bits to rule 110’s 0.085 bits). On the other hand, suggestions that rule 22 is not
complex include its high sensitivity to initial conditions leading to Wolfram (2002)
classifying it as class III chaotic. Gutowitz and Domain (1997) claim this renders it
as chaotic despite the subtle long-range effects it displays, further identifying its fast
statistical convergence, and exponentially long and thin transients in state space (see
Wuensche (1999)). Importantly, no coherent structure (particles, collisions, etc.) is
found for typical profiles of rule 22 using a number of known filters for such struc-
ture (e.g. local statistical complexity (Shalizi et al. 2006)): this reflects the paradigm
shift to an examination of local dynamics rather than generic, overall or averaged
analysis. In our approach, we seek to combine this local viewpoint of the dynamics
with a quantitative breakdown of the individual elements of computation, and we
will review the application to rule 22 in this light.

5.4 Information Storage

In this section we review the methods to quantify information storage on a local
scale in space and time, as presented in (Lizier et al. 2012c). We describe how total
information storage used in the future is captured by excess entropy, and introduce
active information storage to capture the amount of information storage that is cur-
rently in use. We review the application of local profiles of both measures to cellular
automata.

5.4.1 Excess Entropy As Total Information Storage

Although discussion of information storage or memory in CAs has often focused
on periodic structures (particularly in construction of universal Turing machines),
information storage does not necessarily entail periodicity. The excess entropy
Eq. (5.12, 5.13) more broadly encompasses all types of structure and memory by
capturing correlations across all lengths of time, including non-linear correlations.
It is quite clear from the predictive information formulation of the excess entropy
Eq. (5.13) – as the information from a process’ past that is contained its future – that
it is a measure of the total information storage used in the future of a system.3

We use the term univariate excess entropy4 to refer to measuring the excess
entropy for individual variables X using their one-dimensional time-series pro-
cess, i.e. EX = limk→∞ I

X(k)
n ;X(k+)

n+1

from Eq. (5.13). This is a measure of the average

3 In (Lizier et al. 2012c) we provide further comment on the relation to the statistical com-
plexity (Crutchfield and Young 1989), which measures all information stored by the sys-
tem which may be used in the future, while the excess entropy measures that information
which is used by the system at some point in the future. The relation between the two
concepts is covered in a more general mathematical context by Shalizi and Crutchfield
(2001).

4 Called “single-agent excess entropy” in (Lizier et al. 2012c).
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memory for each variable X . Furthermore, we use the term collective excess en-
tropy to refer to measuring the temporal excess entropy for a collective of variables
X = {X1,X2, . . . ,Xm} (e.g. a set of neighboring cells in a CA) using their two-
dimensional time-series process. Considered as the mutual information between
their joint past and future, i.e. a joint temporal predictive information:

EX = lim
k→∞

I
{X(k)

1,n,X
(k)
2,n,...,X

(k)
m,n};{X(k+)

1,n+1,X
(k+)
2,n+1,...,X

(k+)
m,n+1}

, (5.19)

this is a measure of the average total memory stored in the collective (i.e. stored
collectively by a set of cells in a CA). Collective excess entropy could be used for
example to quantify the “undiscovered collective memory that may present in certain
fish schools" (Couzin et al. 2006).

Grassberger (1986b,a) studied temporal entropy rate estimates for several ECAs
in order to gain insights into their excess entropies. He revealed divergent collec-
tive excess entropy for a number of rules, including rule 22, implying a highly
complex process. This case has been described by Lindgren and Nordahl (1988)
as “a phenomenon which can occur in more complex environments”, as with strong
long-range correlations a semi-infinite sequence “could store an infinite amount of
information about its continuation” (as per the predictive information form of the
excess entropy Eq. (5.13)). On the other hand, infinite collective excess entropy can
also be achieved for systems that only trivially utilise all of their available memory
(e.g. simply copying cell values to the right when started from random initial states).
Rule 22 was inferred to have Hμ,N = 0 and infinite collective excess entropy, which
was interpreted as a process requiring an infinite amount of memory to maintain an
aperiodicity (Crutchfield and Feldman 2003).

In attempting to quantify local information dynamics of distributed computation
here, our focus is on information storage for single variables or cells rather than
the joint information storage across the collective. Were the univariate excess en-
tropy found to be divergent (this has not been demonstrated), this may be more
significant than for the collective case: divergent collective excess entropy implies
that the collective is at least trivially utilizing all of its available memory (and even
the chaotic rule 30 exhibits this), whereas divergent univariate excess entropy im-
plies that all cells are individually highly utilizing the resources of the collective in
a highly complex process. Again though, we emphasize that our focus is on local
measures in time as well as space, which we present in the next section.

First we note that with respect to CAs, where each cell has only a finite number
of values b and takes direct influence from only its single past value and the values
of a finite number of neighbors, the meaning of (either average or local) information
storage being greater log2 b bits (let alone infinite) in the time series process of a
single cell is not immediately obvious. Clearly, a cell in an ECA cannot store more
than 1 bit of information in isolation. However, the bidirectional communication
in CAs effectively allows a cell to store extra information in neighbors (even be-
yond the immediate neighbors), and to subsequently retrieve that information from
those neighbors at a later point in time. While measurement of the excess entropy
does not explicitly look for such self-influence communicated through neighbors,
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(a) Excess Entropy (b) Active Information Storage

Fig. 5.1 Measures of information storage in the time-series processes of single variables in
distributed systems. (a) Excess Entropy: total information from the variable’s past that is pre-
dictive of its future. (b) Active Information storage: the information storage that is currently
in use in determining the next value of the variable. The stored information can be con-
veyed directly through the variable itself or via feedback from neighbors. (NB: This figure is
reprinted from (Lizier et al. 2012c), Lizier, J. T., Prokopenko, M., and Zomaya, A. Y., Local
measures of information storage in complex distributed computation, Information Sciences,
208:39–54, Copyright (2012), with permission from Elsevier.)

it is indeed the method by which a significant portion of information is channeled.
Considering the predictive information interpretation in Eq. (5.13), it is easy to pic-
ture self-influence between semi-infinite past and future blocks being conveyed via
neighbors (see Fig. 5.1a). This is akin to the use of stigmergy (indirect communica-
tion through the environment, e.g. see Klyubin et al. (2004)) to communicate with
oneself.

A measurement of more than log2 b bits stored by a cell on average, or indeed
an infinite information storage, is then a perfectly valid result: in an infinite CA,
each cell has access to an infinite amount of neighbors in which to store information
which can later be used to influence its own future. Note however, that since the
storage medium is shared by all cells, one should not think about the total memory
as the total number of cells multiplied by this average. The total memory would be
properly measured by the collective excess entropy, which takes into account the
inherent redundancy here.

Following similar reasoning (i.e. that information may be stored and retrieved
from one’s neighbors), we note that a variable can store information regardless of
whether it is causally connected with itself. Also, note that a variable can be per-
ceived to store information simply as a result of how that variable is driven (Obst
et al. 2013), i.e. where information is physically stored elsewhere in the system but
recurs in the variable at different time steps (e.g. see the description of information
storage in feed-forward loop motifs in (Lizier et al. 2012a)).
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5.4.2 Local Excess Entropy

We now shift focus to local measures of information storage, which have the poten-
tial to provide more detailed insights into information storage structures and their
involvement in computation than single ensemble measures.

The local excess entropy is a measure of how much information a given variable
is storing at a particular point in time (Shalizi 2001).5 The local excess entropy
eX(n+1) of a process is simply the local mutual information Eq. (5.16) of the semi-
infinite past and future of the process X at the given time step n+ 1:

eX (n+ 1) = lim
k→∞

log2
p(x(k)n ,x(k

+)
n+1 )

p(x(k)n )p(x(k
+)

n+1 )
. (5.20)

Note that the excess entropy is the average of the local values, EX = 〈eX (n)〉. The
limit k → ∞ is an important part of this definition, since correlations at all time
scales should be included in the computation of information storage. Since this is
not computationally feasible in general, we retain the notation eX (n+1,k) to denote
finite-k estimates of eX(n+ 1).

The notation is generalized for lattice systems (such as CAs) with spatially-
ordered variables to represent the local excess entropy for cell Xi at time n+ 1 as:

e(i,n+ 1) = lim
k→∞

log2

p(x(k)i,n ,x
(k+)
i,n+1)

p(x(k)i,n )p(x(k
+)

i,n+1)
. (5.21)

Again, e(i,n+ 1,k) is used to denote finite-k estimates of e(i,n+ 1). Local excess
entropy is defined for every spatiotemporal point (i,n) in the system. (Alternatively,
the collective excess entropy can only be localized in time).

As a local mutual information, the local excess entropy may be positive or nega-
tive, meaning the past history of the cell can either positively inform us or actually
misinform us about its future. An observer is misinformed where a given semi-
infinite past and future are relatively unlikely to be observed together as compared
to the product of their marginal probabilities. Another view is that we have misin-

formative values when p(x(k
+)

i,n+1 | x(k)i,n )< p(x(k
+)

i,n+1), meaning that taking the past x(k)i,n

into account reduced the probability of the future which was observed x(k
+)

i,n+1.

5.4.3 Active Information Storage

The excess entropy measures the total stored information which will be used at some
point in the future of the time-series process of a variable, possibly but not neces-
sarily at the next time step n+ 1. In examining the local information dynamics of

5 This is as per the original formulation of the local excess entropy by Shalizi (2001), how-
ever this presentation is for a single time-series rather than the light-cone formulation used
there.
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computation, we are interested in how much of the stored information is actually in
use at the next time step. As we will see in Section 5.6, this is particularly important
in understanding how stored information interacts with information transfer in in-
formation processing. As such, the active information storage AX was introduced
in (Lizier et al. 2012c) as the average mutual information between the (semi-infinite)
past state of the process and its next value, as opposed to its whole (semi-infinite)
future:

AX = lim
k→∞

I(X(k)
n ;Xn+1). (5.22)

The local active information storage is then a measure of the amount of informa-
tion storage in use by the process at a particular time-step n+ 1:

aX(n+ 1) = lim
k→∞

log2
p(x(k)n ,xn+1)

p(x(k)n )p(xn+1)
, (5.23)

= lim
k→∞

log2
p(xn+1 | x(k)n )

p(xn+1)
, (5.24)

and we have AX = 〈aX(n)〉. We retain the notation aX(n+1,k) and AX(k) for finite-k
estimates. Again, we generalize the measure for variable Xi in a lattice system as:

a(i,n+ 1) = lim
k→∞

log2

p(x(k)i,n ,xi,n+1)

p(x(k)i,n )p(xi,n+1)
, (5.25)

and use a(i,n+ 1,k) to denote finite-k estimates there, noting that the local active
information storage is defined for every spatiotemporal point (i,n) in the lattice
system.

The average active information storage will always be positive (as for the excess
entropy), but is bounded above by log2 b bits if the variable takes one of b discrete
values. The local active information storage is not bound in this manner however,
with values larger than log2 b indicating that the particular past of an variable pro-
vides strong positive information about its next value. Furthermore, the local active
information storage can be negative, where the past history of the variable is actually
misinformative about its next value. An observer is misinformed where the past his-
tory and observed next value are relatively unlikely to occur together as compared
to their separate occurrence.

5.4.4 Local Information Storage Results

In this and subsequent results sections, we review the application of these local
measures in (Lizier et al. 2007, 2008b, 2012c, 2010, 2012b; Lizier and Prokopenko
2010; Lizier 2013) to sample CA runs. As described earlier, we are interested in
studying the non-trivial computation during the transient dynamics before an attrac-
tor is reached. Certainly it would be easier to study these information dynamics on
attractors – since the dynamics there are cyclo-stationary (because the attractors in
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finite-length CAs involve only fixed or periodic dynamics) – however as described
in Section 5.3.3 the computation there is trivial. To investigate the dynamics of the
transient, we estimate the required probability distribution functions (PDFs) from
CA runs of 10 000 cells, initialized from random values, in order to generate a large
ensemble of transient automata dynamics. We retain only a relatively short 600 time
steps for each cell, in order to avoid attractor dynamics and focus on quasi-stationary
transient dynamics during that short time period. Alternatively, for φpar we used 30
000 cells with 200 time steps retained. Periodic boundary conditions were used.
Observations taken at every spatiotemporal point in the CA were used in estimat-
ing the required PDFs, since the cells in the CA are homogeneous variables and
quais-stationarity is assumed over the relatively short time interval.

The results and the figures displayed here were produced using the open
source Java Information Dynamics Toolkit (Lizier 2012), which can be used
in Matlab/Octave and Python as well as Java. All results can be repro-
duced using the Matlab/Octave script GsoChapterDemo2013.m in the
demos/octave/CellularAutomata example distributed with this toolkit.
We make estimates of the measures with finite values of k, noting that the insights
described here could not be attained unless a reasonably large value of k was used in
order to capture a large proportion of the correlations. Determination of an appropri-
ate value of k was discussed in (Lizier et al. 2012c), and in (Lizier et al. 2008b) for
the related transfer entropy measure presented in Section 9.12. As a rule of thumb, k
should at least be larger than the period of any regular background domain in order
to capture the information storage underpinning its continuation.

We begin by examining the results for rules 54 and 110, which contain regu-
lar gliders against periodic background domains. For the CA runs described above,
sample areas of the large CAs are shown in Fig. 5.2a and Fig. 5.4a, while the cor-
responding local profiles of e(i,n,k = 8) generated are displayed in Fig. 5.2b and
Fig. 5.4b, and the local profiles of a(i,n,k = 16) in Fig. 5.2c and Fig. 5.4c. It is
quite clear that positive information storage is concentrated in the vertical gliders or
blinkers, and the domain regions. As expected, these results provide quantitative ev-
idence that the blinkers are the dominant information storage entities. That the
domain regions contain significant information storage should not be surprising,
since as a periodic sequence its past does indeed store information about its future.

In fact, the local values for each measure form spatially and temporally periodic
patterns in the domains, corresponding to the spatial and temporal periodicities ex-
hibited in the underlying raw values. Certainly if the dynamics are only composed
of a consistent domain pattern (which is deterministic when viewing single cells’

time series), then for a(i,n,k) for example we will always have p(xn+1 | x(k)n ) = 1
and if p(xn+1) is balanced then a(i,n,k) would be constant across the CA. However,

the existence of discontinuities in the domain, e.g. gliders, reduces p(xn+1 | x(k)n )

here, and does so differently for each x(k)n configuration in the domain. Imbalances
in p(xn+1) can also contribute to differences in storage across the domain. These
factors leads to the spatiotemporal periodicities of information storage that are ob-
served in the domains.
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While the local active information storage indicates a similar amount of stored
information in use to compute each space-time point in both the domain and blinker
areas, the local excess entropy reveals a larger total amount of information is stored
in the blinkers. For the blinkers known as α and β in rule 54 (Hordijk et al. 2001)
this is because the temporal sequences of the center columns of the blinkers (0-0-
0-1, with e(i,n,k = 8) in the range 5.01 to 5.32 bits) are more complex than those
in the domain (0-0-1-1 and 0-1, with e(i,n,k = 8) in the range 1.94 to 3.22 bits),
even where they are of the same period. We have e(i,n,k = 8) > 1 bit here due
to the distributed information storage supported by bidirectional communication
(as discussed earlier). Such bidirectional communication is also critical to these
periodic domain sequences being longer than two time steps – the maximum period
that a binary cell could sustain in isolation (e.g. the period-7 domain in rule 110).

Another area of strong information storage appears to be the “wake” of the more
complex gliders in rule 110 (see the glider at top right of Fig. 5.4b and Fig. 5.4c).
This result aligns well with our observation (Lizier et al. 2008b) that the dynamics
following the leading edge of regular gliders consists largely of “non-traveling”
information. The presence of the information storage is shown by both measures,
although the relative strength of the total information storage is again revealed only
by the local excess entropy.

Negative values of a(i,n,k = 16) for rules 54 and 110 are also visible in Fig. 5.2c
and Fig. 5.4c. Interestingly, negative local components of local active information
storage measure are concentrated in the traveling glider areas (e.g. γ+ and γ− for
rule 54 (Hordijk et al. 2001)), providing a good spatiotemporal filter of these struc-
tures. This is because when a traveling glider is encountered at a given cell, the
past history of that cell (being part of the background domain) is misinformative
about the next value, since the domain sequence was more likely to continue than
be interrupted. For example, see the marked positions of the γ gliders in Fig. 5.3.

There we have p(xn+1 | x(k=16)
n ) = 0.25 and p(xn+1) = 0.52: since the next value

occurs relatively infrequently after the given history, we have a misinformative
a(n,k = 16) =−1.09 bits. This is juxtaposed with the points four time steps before

those marked “x", which have the same history x(k=16)
n but are part of the domain,

with p(xn+1 | x(k=16)
n ) = 0.75 and p(xn+1) = 0.48 giving a(n,k = 16) = 0.66 bits,

quantifying the positive information storage there. Note that the points with mis-
informative information storage are not necessarily those selected by other filtering
techniques as part of the gliders: e.g. the finite state transducers technique (using left
to right scanning by convention) by Hanson and Crutchfield (1997) would identify
points 3 cells to the right of those marked “x" as part of the γ+ glider.

The local excess entropy produced some negative values around traveling glid-
ers, though these were far less localized on the gliders themselves and less con-
sistent in occurrence than for the local active information storage. This is because
the local excess entropy, as measure of total information storage into the future, is
more loosely tied to the dynamics at the given spatiotemporal point. The effect of a
glider encounter on e(i,n,k) is smeared out in time, and in fact the dynamics may
store more positive information in total than the misinformation encountered at the
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Fig. 5.2 Local information dynamics in rule 54 for the raw values in (a) (black for “1”,
white for “0”). 35 time steps are displayed for 35 cells, and time increases down the page
for all CA plots. All units are in bits. (b) Local excess entropy e(i,n,k = 8); (c) Local ac-
tive information storage a(i,n,k = 16); Local apparent transfer entropy: (d) one cell to the
right t(i, j = 1,n,k = 16), (e) one cell to the left t(i, j = −1,n,k = 16); (f) Local separable
information s(i,n,k = 16).
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Fig. 5.3 Close up of raw values of rule 54. “x” and “+” mark some positions in the γ+ and
γ− gliders respectively. Note their point of coincidence in collision type “A", with “•” mark-
ing the subsequent non-trivial information modification as detected using s(i,n,k = 16) < 0.
(Reprinted with permission from (Lizier et al. 2010) J. T. Lizier, M. Prokopenko, and
A. Y. Zomaya, “Information modification and particle collisions in distributed computation,”
Chaos, vol. 20, no. 3, p. 037109, 2010. Copyright 2010, AIP Publishing LLC.)

specific location of the glider. For example, glider pairs were observed in (Lizier
et al. 2012c) to have positive total information storage, since a glider encounter
becomes much more likely in the wake of a previous glider.

As another rule containing regular gliders against a periodic background domain,
analysis of the raw values of φpar in Fig. 5.5a provides similar results for e(i,n,k =
5) (not shown, see (Lizier 2013)) and a(i,n,k= 10) in Fig. 5.5b here. One distinction
is that the blinker here contains no more stored information than the domain, since it
is no more complicated. Importantly, we confirm the information storage capability
of the blinkers and domains in this human understandable computation.

Another interesting example is provided by ECA rule 18, which contains domain
walls against a seemingly irregular background domain. We measured the local in-
formation profiles for e(i,n,k = 8) and a(i,n,k = 16) in (Lizier et al. 2012c) (shown
in that paper, but not here). Importantly, the most significant negative components of
the local active information storage are concentrated on the domain walls: analogous
to the regular gliders of rule 54, when a domain wall is encountered the past history
of the cell becomes misinformative about its next value. There is also interesting
information storage dynamics in the background domain for rule 18, discussed in
detail in (Lizier et al. 2012c).

Finally, we examine ECA rule 22, suggested to have infinite collective excess
entropy (Grassberger 1986b,a) but without any known coherent structural elements
(Shalizi et al. 2006). For the raw values of rule 22 displayed in Fig. 5.6a, the cal-
culated local excess entropy profile is shown in Fig. 5.6b, and the local active in-
formation storage profile in Fig. 5.6c. While information storage certainly occurs
for rule 22, these plots provide evidence that there is no coherent structure to this
storage. This is another clear example of the utility of examining local information
dynamics over ensemble estimates, given the earlier discussion on collective excess
entropy for rule 22.
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(a) Raw CA (b) e(i,n,k = 8)

(c) a(i,n,k = 16) (d) hμ (i,n,k = 16)

(e) t(i, j =−1,n,k = 16) (f) s(i,n,k = 16)

Fig. 5.4 Local information dynamics in rule 110 for the raw values displayed in (a) (black
for “1”, white for “0”). 50 time steps are displayed for 50 cells, and all units are in bits. (b)
Local excess entropy e(i,n,k = 8); (c) Local active information storage a(i,n,k = 16); (d)
Local temporal entropy rate hμ (i,n,k = 16); (e) Local apparent transfer entropy one cell to
the left t(i, j =−1,n,k = 16); (f) Local separable information s(i,n,k = 16).
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(a) Raw CA (b) a(i,n,k = 10)

(c) t(i, j =−1,n,k = 10) (d) tc(i, j =−1,n,k = 10)

(e) t(i, j =−3,n,k = 10) (f) s(i,n,k = 10)

Fig. 5.5 Local information dynamics in r = 3 rule φpar for the raw values displayed in (a)
(black for “1”, white for “0”). 70 time steps are displayed for 70 cells, and all units are in bits.
(b) Local active information storage a(i,n,k = 10); Local apparent transfer entropy: (c) one
cell to the left t(i, j =−1,n,k = 10), and (e) three cells to the left t(i, j =−3,n,k = 10); (d)
Local complete transfer entropy one cell to the left tc(i, j =−1,n,k = 10); (f) Local separable
information s(i,n,k = 10).
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(a) Raw CA (b) e(i,n,k = 8)

(c) a(i,n,k = 16) (d) hμ (i,n,k = 16)

(e) t(i, j = 1,n,k = 16) (f) s(i,n,k = 16)

Fig. 5.6 Local information dynamics in rule 22 for the raw values in (a) (black for “1”,
white for “0”). 50 time steps displayed for 50 cells, and all units are in bits. (b) Local excess
entropy e(i,n,k = 8); (c) Local active information storage a(i,n,k = 16); (d) Local temporal
entropy rate hμ (i,n,k = 16); (e) Local apparent transfer entropy one cell to the right t(i, j =
1,n,k = 16); (f) Local separable information s(i,n,k = 16).
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In summary, we have demonstrated that the local active information storage and
local excess entropy provide insights into information storage dynamics that, while
often similar in general, are sometimes subtly different. While both measures pro-
vide useful insights, the local active information storage is the most useful in a
real-time sense, since calculation of the local excess entropy requires knowledge of
the dynamics an arbitrary distance into the future.6 Furthermore, it also provides
the most specifically localized insights, including filtering moving elements of co-
herent spatiotemporal structure. This being said, it is not capable of identifying the
information source of these structures; for this, we turn our attention to a specific
measure of information transfer.

5.5 Information Transfer

Information transfer refers to a directional signal or communication of dynamic
information from a source to a destination. In this section, we review descriptions of
how to measure information transfer in complex systems from (Lizier et al. 2008b,
2010; Lizier 2013), and the associated application to several ECA rules.

5.5.1 Local Transfer Entropy

Schreiber (2000) presented transfer entropy as a measure for information transfer
in order to address deficiencies in the previous de facto measure, mutual information
(Eq. (5.4)), the use of which he criticized in this context as a symmetric measure
of statically shared information. Transfer entropy is defined as the deviation from
independence (in bits) of the state transition of an information destination X from
the previous state of an information source Y:

TY→X (k, l) = ∑
wn

p(wn) log2
p(xn+1 | x(k)n ,y(l)n )

p(xn+1 | x(k)n )
, (5.26)

where wn is the state transition tuple (xn+1,x
(k)
n ,y(l)n ). This is shown diagrammati-

cally in Fig. 5.7a. The transfer entropy will be zero if the next value of the destination
is completely dependent on its past (leaving no information for the source to add),
or if the state transition of the destination is independent of the destination. At the
other extreme, it will be maximal if the state transition is completely specified by
the source (in the context of the destination’s past). As such, the transfer entropy
is a directional, dynamic measure of information transfer. It is a conditional mu-
tual information, casting it as the average information in the source about the next

6 Calculation of e(i,n,k) using local block entropies analogous to Eq. (5.12) would also
require block entropies to be taken into the future to compute the same local information
storage values. Without taking account of the dynamics into the future, we will not measure
the information storage that will be used in the future of the process, but the information
storage that is likely to be used in the future.
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state of the destination conditioned on the destination’s past. We have provided a
thermodynamic interpretation of transfer entropy in (Prokopenko et al. 2013).

The role of the past state of the destination x(k)n is particularly important here.
This past state can indirectly influence the next value via the source or other neigh-
bors: this may be mistaken as an independent flow from the source here (Lizier et al.
2008b). In the context of distributed computation, this is recognizable as the active

information storage. That is, conditioning on the destination’s history x(k)n serves
to eliminate the active information storage from the transfer entropy measurement.
Yet any self-influence transmitted prior to these k values will not be eliminated: in
(Lizier et al. 2008b) we suggested that the asymptote k → ∞ is most correct for
variables displaying non-Markovian dynamics. Just as the excess entropy and active
information storage require k → ∞ to capture all information storage, accurate mea-
surement of the transfer entropy requires k → ∞ to eliminate all information storage
from being mistaken as information transfer. Further to these, even if the destina-
tion variable does display Markovian dynamics of order k, synergistic interactions
between the source and the past of the destination beyond k time steps necessitate
the use of a longer destination history to capture the information transfer, again lead-
ing us to k → ∞ to capture all transfer. We describe other interpretations of the role

of x(k)n in (Lizier and Mahoney 2013), including properly capturing the state transi-
tion of the destination and capturing the contribution of the source in the context of
that state transition; which align with the above. The most generally correct form of
the transfer entropy is therefore computed as:

TY→X (l) = lim
k→∞∑

wn

p(wn) log2
p(xn+1 | x(k)n ,y(l)n )

p(xn+1 | x(k)n )
, (5.27)

with TY→X (k, l) retained for finite-k estimates.

Also, we note that considering a source state y(l)n rather than a scalar yn is most
appropriate where the observations y mask a hidden causal process in Y , or where
multiple past values of Y in addition to yn are causal to xn+1. Otherwise, where yn

is directly causal to xn+1, and where it is the only direct causal source in Y (e.g. in
CAs), we use only l = 1 (Lizier et al. 2008b; Lizier and Prokopenko 2010) and drop
it from our notation here. Furthermore, note that one may use source-destination
delays other than one time step, and indeed it is most appropriate to match any
causal delay from Y to X (Wibral et al. 2013).

Next, we introduced the corresponding local transfer entropy at each observa-
tion n in (Lizier et al. 2008b):

tY→X (n+ 1, l) = lim
k→∞

tY→X (n+ 1,k, l), (5.28)

tY→X (n+ 1,k, l) = log2
p(xn+1 | x(k)n ,y(l)n )

p(xn+1 | x(k)n )
. (5.29)
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(a) Transfer Entropy (b) Separable Information

Fig. 5.7 (a) Transfer Entropy t(i, j,n+ 1,k): information contained in the source cell Xi− j
about the next value of the destination cell Xi at time n+1 in the context of the destination’s
past. (b) Separable information s(i,n+ 1,k): information gained about the next value of the
destination from separately examining each causal information source in the context of the
destination’s past. For CAs these causal sources are within the cell range r. (NB: Fig. 5.7a is
reprinted with kind permission from Springer Science+Business Media: (Lizier 2013) Lizier,
J. T. , The Local Information Dynamics of Distributed Computation in Complex Systems,
Springer Theses, Springer, Berlin / Heidelberg, Copyright 2013. Fig. 5.7b is reprinted with
permission from (Lizier et al. 2010) J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, “Infor-
mation modification and particle collisions in distributed computation,” Chaos, vol. 20, no. 3,
p. 037109, 2010. Copyright 2010, AIP Publishing LLC.)

The local transfer entropy describes the information added by a specific source state

y(l)n about xn+1 in the context of the past of the destination x(k)n . Of course, we have
TY→X (k, l) = 〈tY→X (n+ 1,k, l)〉.

For lattice systems such as CAs with spatially-ordered variables, the local infor-
mation transfer to agent Xi from Xi− j (across j cells to the right) at time n+ 1 is
represented as:

t(i, j,n+ 1, l) = lim
k→∞

t(i, j,n+ 1,k, l), (5.30)

t(i, j,n+ 1,k, l) = log2

p(xi,n+1 | x(k)i,n ,x
(l)
i− j,n)

p(xi,n+1 | x(k)i,n )
. (5.31)

This information transfer t(i, j,n+ 1,k, l) to variable Xi from Xi− j at time n+ 1 is
illustrated in Fig. 5.7a. Then t(i, j,n,k, l) is defined for every spatiotemporal des-
tination (i,n), for every information channel or direction j; sensible values for j
correspond to causal information sources, i.e. for CAs, sources within the cell range
| j| ≤ r. Again, for homogeneous variables (with stationarity) it is appropriate to es-
timate the PDFs used in Eq. (5.31) from all spatiotemporal observations, and we
write the average across homogeneous variables as T ( j,k) = 〈t(i, j,n,k)〉.
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Calculations conditioned on no other information contributors (as in Eq. (5.31)))
are labeled as apparent transfer entropy (Lizier et al. 2008b). Local apparent transfer
entropy t(i, j,n,k) may be either positive or negative, with negative values occurring
where (given the destination’s history) the source element is actually misleading
about the next value of the destination. In deterministic systems, this can only oc-
cur where another source is influencing the destination at that time. To counter that
effect, the transfer entropy may be conditioned on other possible causal informa-
tion sources Z, to eliminate their influence from being attributed to the source in
question Y (Schreiber 2000). We call this the conditional transfer entropy (Lizier
et al. 2010), given (as a finite-k estimate) along with the local conditional transfer
entropy as follows:

TY→X |Z(k, l) =
〈
tY→X |Z(n+ 1,k, l)

〉
, (5.32)

tY→X |Z(n+ 1,k, l) = log2
p(xn+1 | x(k)n ,y(l)n ,zn)

p(xn+1 | x(k)n ,zn)
. (5.33)

Z may of course be multivariate, or be an embedded state vector z(m)
n itself. Indeed,

a special case involves conditioning on all sources jointly in the set of causal in-
formation contributors VX to X , except for the source Y , i.e. VX \Y . This gives the
complete transfer entropy T c

Y→X (k, l) = TY→X |VX \Y (k, l) (Lizier et al. 2008b). At
time step n, this set VX \Y has joint state vx,y,n, giving the local complete transfer
entropy (Lizier et al. 2008b):7

tc
Y→X (n+ 1,k, l) = tY→X |VX ,Y

(n+ 1,k, l), (5.34)

vx,y,n = {zn | ∀Z ∈ VX \Y} . (5.35)

For CAs the set of causal information contributors to Xi is the neighborhood Vr
i of Xi,

and for the complete transfer entropy we condition on this set except for the source
Xi− j: Vr

i \Xi− j. At time step n this set has joint value vr
i, j,n, giving the following

expression for the local complete transfer entropy in CAs (Lizier et al. 2008b):

tc(i, j,n+ 1,k) = log2

p
(

xi,n+1 | x(k)i,n ,xi− j,n,vr
i, j,n

)

p
(

xi,n+1 | x(k)i,n ,v
r
i, j,n

) , (5.36)

vr
i, j,n =

{
xi+q,n | ∀q : −r ≤ q ≤+r,q �=− j,q �= 0

}
. (5.37)

Again, the most correct form is tc(i, j,n+ 1) in the limit k → ∞. In deterministic
systems (e.g. CAs), complete conditioning renders tc(i, j,n)≥ 0 because the source
can only add information about the outcome of the destination.

7 Note that if past values of X are causal sources to the next value xn+1, they can be included

in vx,y,n, but this is irrelevant for complete TE since they are already conditioned on in x(k)n .
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5.5.2 Total Information, Entropy Rate and Collective Information
Transfer

The total information required to predict the next value of any process X is the
local entropy hX(n + 1) Eq. (5.14). Similarly, the local temporal entropy rate

hμX(n+ 1,k) = − log2 p(xn+1 | x(k)n ) is the information to predict the next value of
that process given that its past, and the entropy rate is the average of these local val-
ues: HμX(k) =

〈
hμX(n+ 1,k)

〉
. For lattice systems we have hμ(i,n+1,k). Now, the

entropy can be considered as the sum of the active information storage and temporal
entropy rate (Lizier et al. 2010, 2012c):

HXn+1 = I
Xn+1;X(k)

n
+H

Xn+1|X(k)
n
, (5.38)

hX(n+ 1) = aX(n+ 1,k)+ hμX(n+ 1,k). (5.39)

For deterministic systems (e.g. CAs) there is no intrinsic uncertainty, so the lo-
cal temporal entropy rate is equal to the local collective transfer entropy (Lizier
and Prokopenko 2010) and represents a collective information transfer: the informa-
tion about the next value of the destination jointly added by the causal information
sources in the context of the past of the destination. This suggested that the local
collective transfer entropy (or simply the local temporal entropy rate hμ(i,n,k) for
deterministic systems) is likely to be a meaningful measure and filter for incoming
information.

Also, we showed that the information in a destination variable can be expressed as
a sum of incrementally conditioned mutual information terms, considering each of
the sources iteratively (Lizier et al. 2010; Lizier and Prokopenko 2010). For ECAs,
these expressions become:

h(i,n+ 1) = a(i,n+ 1,k)+ t(i, j =−1,n+ 1,k)+ tc(i, j = 1,n+ 1,k), (5.40)

(and vice-versa in j = 1,−1). Clearly, this total information is not simply a sim-
ple sum of the active information storage and the apparent transfer entropy from
each source, nor the sum of the active information storage and the complete transfer
entropy from each source.

5.5.3 Local Information Transfer Results

In this section, we review the application of the local apparent and complete transfer
entropies, as well as the local entropy rate, to several ECA rules (Lizier et al. 2007,
2008b, 2010; Lizier 2013). We focus in particular here on the local apparent transfer
entropy, whose profiles t(i, j = 1,n,k = 16) (measuring transfer across one unit to
the right per time step) are plotted for rules 54 (Fig. 5.2d) and 22 (Fig. 5.6e), with
t(i, j = −1,n,k = 16) (transfer across one unit to the left per time step) plotted for
rules 54 (Fig. 5.2e), 110 (Fig. 5.4e) and φpar (Fig. 5.5c).
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Both the local apparent and complete transfer entropy highlight particles as
strong positive information transfer against background domains. This is true
for both regular gliders as well as domain walls in rule 18 (not shown here, see
(Lizier et al. 2008b)). Importantly, the particles are measured as information trans-
fer in their direction of macroscopic motion, as expected. As such, local transfer
entropy provided the first quantitative evidence for the long-held conjecture that
particles are the dominant information transfer agents in CAs. For example, at the
“x" marks in Fig. 5.3 which denote parts of the right-moving γ+ gliders, we have

p(xi,n+1 | x(k=16)
i,n ,xi−1,n) = 1.00 and p(xi,n+1 | x(k=16)

i,n ) = 0.25: there is a strong in-
formation transfer of t(i, j = 1,n,k = 16) = 2.02 bits here because the source (in
the glider) added a significant amount of information to the destination about the
continuation of the glider.

For φpar we confirm the role of the gliders as information transfer agents in the
human understandable computation, and demonstrate information transfer across
multiple units of space per unit time step for fast-moving gliders in Fig. 5.5e. Inter-
estingly, we also see in Fig. 5.5c ( j =−1) and Fig. 5.5e ( j = −3) that the apparent
transfer entropy can attribute information transfer to several information sources,
whereas the complete transfer entropy (see Fig. 5.5d) is more likely to attribute the
transfer to the single causal source. We emphasize though that information transfer
and causality are distinct concepts, as discussed in detail in (Lizier and Prokopenko
2010). This result also underlines that the apparent and complete transfer en-
tropies have a similar nature but are complementary in together determining
the next state of the destination (as in Eq. (5.40)). Neither measure is more correct
than the other though – both are required to understand the dynamics fully. A more
detailed example contrasting the two is studied for rule 18 in (Lizier et al. 2008b),
showing that the complete TE detects transfer to X due to synergies between the
source Y and conditioned variable Z, whereas the apparent TE does not.

We also examine the profiles of the local temporal entropy rate hμ(i,n+ 1,k)
(which is equal to the local collective transfer entropy in these deterministic sys-
tems) here in Fig. 5.4d for rule 110 and Fig. 5.6d for rule 22. As expected, the
local temporal entropy rate profiles hμ(i,n+1,k) highlight particles moving in each
relevant channel and are a useful single spatiotemporal filter for moving emergent
structure. In fact, these profiles are quite similar to the profiles of the negative values
of local active information storage. This is not surprising given they are counterparts
in Eq. (5.39): where hμ(i,n+ 1,k) is strongly positive (i.e. greater than 1 bit), it is
likely that a(i,n+ 1,k) is negative since the local single cell entropy will average
close to 1 bit for these examples. Unlike a(i,n+ 1,k) however, the local temporal
entropy rate hμ(i,n+ 1,k) is never negative.

Note that while achieving the limit k → ∞ is not computationally feasible, a large
enough k was required to achieve a reasonable estimates of the transfer entropy;
without this, as discussed earlier the active information storage was not eliminated
from the transfer entropy measurements in the domains, and the measure did not
distinguish the particles from the domains (Lizier et al. 2008b).

We also demonstrated (Lizier et al. 2008b) that while there is zero informa-
tion transfer in an infinite periodic domain (since the dynamics there only involve
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information storage), there is a small non-zero information transfer in domains act-
ing as a background to gliders, effectively indicating the absence of gliders. These
small non-zero information transfers are stronger in the wake of a glider, indicating
the absence of (relatively common) following gliders. Similarly, we note here that
the local temporal entropy rate profiles hμ(i,n+ 1,k) contain small but non-zero
values in these periodic domains. Furthermore, there is interesting structure to the
information transfer in the domain of rule 18, described in detail in (Lizier et al.
2008b). As such, while particles are the dominant information transfer agents in
CAs, they are not the only transfer entities.

The highlighting of structure by local transfer entropy is similar to results from
other methods of filtering for structure in CAs (Shalizi et al. 2006; Wuensche 1999;
Hanson and Crutchfield 1992; Helvik et al. 2004), but subtly different in revealing
the leading edges of gliders as the major transfer elements in the glider structures,
and providing multiple profiles (one for each direction or channel of information
transfer).

Also, a particularly relevant result for our purposes is the finding of negative
values of transfer entropy for some space-time points in particles moving orthogonal
to the direction of measurement in space-time. This is displayed for t(i, j = 1,n,k =
16) in rule 54 (Fig. 5.2d), and t(i, j = −1,n,k = 16) for rule 110 (Fig. 5.4e), and
also occurs for rule 18 (see (Lizier et al. 2008b; Lizier 2013)). In general this is
because the source, as part of the domain, suggests that this same domain found in
the past of the destination is likely to continue; however since the next value of the
destination forms part of the particle, this suggestion proves to be misinformative.
For example, consider the “x” marks in Fig. 5.3 which denote parts of the right-
moving γ+ gliders. If we now examine the source at the right (still in the domain),

we have p(xi,n+1 | x(k=16)
i,n ,xi+1,n) = 0.13, with p(xi,n+1 | x(k=16)

i,n ) = 0.25 as before,
giving t(i, j =−1,n,k = 16) =−0.90 bits: this is negative because the source (still
in the domain) was misinformative about the destination.

Regarding the local information transfer structure of rule 22, we note similar
results as for local information storage. There is much information transfer here
(in fact the average value T ( j = 1,k = 16) = 0.19 bits is greater than for rule 110
at 0.07 bits), although there is no coherent structure to this transfer. Again, this
demonstrates the utility of local information measures in providing more detailed
insights into system dynamics than their global averages.

In this section, we have described how the local transfer entropy quantifies the in-
formation transfer at space-time points within a system, and provides evidence that
particles are the dominant information transfer agents in CAs. We also described the
collective transfer entropy, which quantifies the joint information contribution from
all causal information contributors, and in deterministic systems is equal to the tem-
poral entropy rate. However, we have not yet separately identified collision events
in CAs: to complete our exploration of the information dynamics of computation,
we now consider the nature of information modification.
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5.6 Information Modification

Langton (1990) interpreted information modification as interactions between trans-
mitted and/or stored information which resulted in a modification of one or the other.
CAs provide an illustrative example, where the term interactions is generally inter-
preted to mean collisions of particles (including blinkers as information storage),
with the resulting dynamics involving something other than the incoming particles
continuing unperturbed. The resulting dynamics could involve zero or more parti-
cles (with an annihilation leaving only a background domain), and perhaps even
some of the incoming particles. Given the focus on perturbations in the definition
here, it is logical to associate a collision event with the modification of transmitted
and/or stored information, and to see it as an information processing or decision
event. Indeed, as an information processing event the important role of collisions
in determining the dynamics of the system is widely acknowledged (Hordijk et al.
2001), e.g. in the φpar density classification.

Attempts have previously been made to quantify information modification or pro-
cessing in a system (Sánchez-Montañés and Corbacho 2002; Yamada and Aihara
1994; Kinouchi and Copelli 2006). However, these have either been too specific to
allow portability across system types (e.g. by focusing on the capability of a system
to solve a known problem, or measuring properties related to the particular type of
system being examined), focus on general processing as movement or interpretation
of information rather than specifically the modification of information, or are not
amenable to measuring information modification at local space-time points within a
distributed system.

In this section, we review the separable information (Lizier et al. 2010) as a tool
to detect non-trivial information modification events, and demonstrate it as the first
measure which filtered collisions in CAs as such. At the end of the section however,
we describe criticisms of the separable information, and describe current efforts to
develop new measures of information modification.

5.6.1 Local Separable Information

We begin by considering what it means for a particle to be modified. For the simple
case of a glider, a modification is simply an alteration to the predictable periodic
pattern of the glider’s dynamics. At such points, an observer would be surprised
or misinformed about the next value of the glider, having not taken account of the
entity about to perturb it. The intuition behind the separable information (Lizier
et al. 2010) is that this interpretation is reminiscent of the earlier findings that local
apparent transfer entropy t(i, j,n) and local active information storage a(i,n) were
negative where the respective information sources were misinformative about the
next value of the information destination (in the context of the destination’s past
for transfer entropy). Local active information storage was misinformative at glid-
ers, and local apparent transfer entropy was misinformative at gliders traveling in
the orthogonal direction to the measurement in space-time. This being said, one
expects that the local apparent transfer entropy measured in the direction of glider
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motion will be more informative about its evolution than any misinformation con-
veyed from other sources. However, where the glider is modified by a collision with
another glider, we would no longer expect the local apparent transfer entropy in its
macroscopic direction of motion to remain informative about the dynamics. Assum-
ing that the incident glider is also perturbed, the local apparent transfer entropy in its
macroscopic direction of motion will also not be informative about the dynamics at
this collision point. We expect the same argument to be true for irregular particles,
or domain walls.

As such, we made the hypothesis that at the spatiotemporal location of a local in-
formation modification event or collision, separate inspection of each information
source will misinform an observer overall about the next value of the modified infor-
mation destination. More specifically, the information sources referred to here are
the past history of the destination (via the local active information storage) and each
other causal information contributor (examined in the context of the past history of
the destination, via their local apparent transfer entropies).

We quantified the independent sum of information gained from separate obser-
vation of the information storage and information transfer contributors Y ∈ V to a
process X as the local separable information sX (n) (Lizier et al. 2010):

sX (n) = aX(n)+ ∑
Y∈V,Y �=X

tY→X (n). (5.41)

sX (n,K) is used for finite-k estimates. For CAs, where the causal information con-
tributors are homogeneously within the neighborhood r, we write the local separable
information in lattice notation as:

s(i,n) = a(i,n)+
+r

∑
j=−r, j �=0

t(i, j,n). (5.42)

We use s(i,n,k) to represent finite-k estimates, and show s(i,n,k) in Fig. 5.7b.
As inferred earlier, we expected the local separable information to be positive or

highly separable where separate observations of the information contributors are in-
formative overall regarding the next value of the destination. This was be interpreted
as a trivial information modification, because information storage and transfer are
not interacting in any significant manner. More importantly, we expected the local
separable information to be negative at spatiotemporal points where an information
modification event or collision takes place. Here, separate observations are mislead-
ing overall because a non-trivial information modification is taking place (i.e. the
information storage and transfer are interacting).

Importantly, this formulation of non-trivial information modification aligns with
the descriptions of complex systems as consisting of (a large number of) elements
interacting in a non-trivial fashion (Prokopenko et al. 2009), and of emergence as
where “the whole is greater than the sum of its parts”. “The whole” meant to re-
fer to examining all information sources together; the whole is greater where all
information sources must be examined together in order to receive positive infor-
mation on the next value of the examined entity. The thinking behind the separable
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information was in the direction of measuring synergies between information stor-
age and transfer sources, prior to the development of a proper framework for exam-
ining such synergies (Williams and Beer 2010), as discussed in Section 5.6.3.

5.6.2 Local Separable Information Results

Next, we review the application of the separable information to several ECA rules
from (Lizier et al. 2010). The simple gliders in ECA rule 54 give rise to relatively
simple collisions which we focus on in our discussion here. Notice that the positive
values of s(i,n,k = 16) for rule 54 (displayed in Fig. 5.2f) are concentrated in the do-
main regions and at the stationary gliders (α and β ). As expected, these regions are
undertaking trivial computations only. The negative values of s(i,n,k = 16) are also
displayed in Fig. 5.2f, with their positions marked. The dominant negative values
are clearly concentrated around the areas of collisions between the gliders, includ-
ing collisions between the traveling gliders only (marked by “A”) and between the
traveling gliders and the stationary gliders (marked by “B” and “C”).

Collision “A” involves the γ+ and γ− particles interacting to produce a β parti-
cle (γ+ + γ− → β (Hordijk et al. 2001)). The only information modification point
highlighted is one time step below (or delayed from) that at which the gliders ini-
tially appear to collide (see close-up of raw values in Fig. 5.3). The periodic pattern
in the past of the destination breaks there, however the neighboring sources are
still able to support separate prediction of the value (i.e. a(i,n,k = 16) = −1.09
bits, t(i, j = 1,n,k = 16) = 2.02 bits and t(i, j = −1,n,k = 16) = 2.02 bits, giving
s(i,n,k = 16)= 2.95 bits). This is no longer the case however where our measure has
successfully identified the modification point; there we have a(i,n,k = 16) =−3.00
bits, t(i, j = 1,n,k = 16) = 0.91 bits and t(i, j = −1,n,k = 16) = 0.90 bits, with
s(i,n,k = 16) = −1.19 bits suggesting a non-trivial information modification. A
delay is also observed before the identified information modification points of col-
lision types “B” and “C”; possibly these delays represent a time-lag of information
processing. Not surprisingly, the results for these other collision types imply that the
information modification points are associated with the creation of new behavior: in
“B” and “C” these occur along the newly created γ gliders, and for “C” in the new
α blinkers.

Importantly, weaker non-trivial information modification points continue to be
identified at every second point along all the γ+ and γ− particles after the initial
collisions. These can also be seen for a similar (right-moving) glider in rule 110 in
Fig. 5.4f). This was unexpected from our earlier hypothesis. However, these events
can be understood as non-trivial computations of the continuation of the glider in
the absence of a collision; in effect they are virtual collisions between the real glider
and the absence of an incident glider. Interestingly, this finding is analogous to the
small but non-zero information transfer in periodic domains indicating the absence
of gliders.

We also note that measurements of local separable information must be per-
formed with a reasonably large value of k. Here, using k < 4 could not distinguish
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any information modification points clearly from the domains and particles, and
even k < 8 could not distinguish all the modification points (results not shown).
Correct quantification of information modification requires satisfactory estimates of
information storage and transfer, and accurate distinction between the two.

We observe similar results in s(i,n,k = 10) for φpar (see Fig. 5.5f). Note that the
collisions at the left and right of the figure do in fact contain significant negative
values of s(i,n,k = 10) – around 1 to 2 bits – however these are difficult to see in
comparison to the much larger negative value at the collision in the centre of the
diagram. These results confirm the particle collisions here as non-trivial informa-
tion modification events, and this therefore completes the evidence for all of the
conjectures about this human understandable computation.

The results for s(i,n,k = 16) for ECA rule 110 (see Fig. 5.4f) are also similar
to those for rule 54. Here, we have collisions “A” and “B” which show non-trivial
information modification points slightly delayed from the collision in a similar fash-
ion to those for rule 54. We note that collisions between some of the more complex
glider structures in rule 110 (not shown) exhibit non-trivial information modifica-
tion points which are more difficult to interpret, and which are even more delayed
from the initiation of the collision. The larger delay is perhaps this is a reflection of
the more complex gliders requiring more time steps for the processing to take place.
An interesting result not seen for rule 54 is a collision where an incident glider is
absorbed by a blinker, without any modification to the absorbing glider (not shown
here, see (Lizier et al. 2010)). No information modification is detected for this ab-
sorption event by s(i,n,k = 16): this is as expected because the information storage
for the absorbing blinker is sufficient to predict the dynamics at this interaction.

As a further test of the measure, we examined collisions between the domain
walls of rule 18; see (Lizier et al. 2010). We found that collisions between the do-
main walls were quite clearly highlighted as the dominant information modification
events for this rule - importantly, this result provides evidence that collision of ir-
regular particles are information modification events, as expected. The reader is
referred to (Lizier et al. 2010) for further discussion of the information modification
dynamics of rule 18.

We also apply s(i,n,k = 16) to ECA rule 22, as displayed in Fig. 5.6f. As could
be expected from our earlier results, there are many points of both positive and neg-
ative local separable information here. The presence of negative values implies the
occurrence of non-trivial information modification, yet there does not appear to be
any structure to these profiles. Again, this aligns well with the lack of coherent struc-
ture found using the other measures in this framework and from the local statistical
complexity profile of rule 22 (Shalizi et al. 2006).

5.6.3 Outlook for Information Modification

Here, we have reviewed the local separable information, which attempts to quantify
information modification at each spatiotemporal point in a complex system. The
separable information suggests that information modification events occur where
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the separable information is negative, indicating that separate or independent in-
spection of the causal information sources (in the context of the destination’s past)
is misleading because of non-trivial interaction between these sources. The local
separable information was demonstrated to provide the first quantitative evidence
that particle collisions in CAs are the dominant information modification events
therein, and is capable of identifying events involving both creation and destruction.

With that said however, it has been shown that the separable information double-
counts parts of the information in the next state of the destination (Flecker et al.
2011). This is clear, and so it is a heuristic more than a measure. Efforts to properly
quantitatively define information modification, by combining information dynamics
with the partial information decomposition approach (Williams and Beer 2010) to
properly measure synergies between information storage and transfer, are ongoing
and described in (Lizier et al. 2013). While the separable information is not a proper
information-theoretic measure, it remains the only technique which has uniquely
filtered particle collision events.

5.7 Importance of Coherent Computation

Our framework has proven successful in locally identifying the component opera-
tions of distributed computation. We then considered in (Lizier et al. 2012b) whether
this framework can provide any insights into the overall complexity of computation.
In other words, what can our results say about the difference in the complex com-
putations of rules 110 and 54 as compared to rule 22 and others? We review those
considerations in this section.

We observed that the coherence of local computational structure appears to be
the most significant differentiator here. “Coherence" implies a property of sticking
together or a logical relationship (Oxford English Dictionary 2008): in this context
we use the term to describe a logical spatiotemporal relationship between values
in local information dynamics profiles. For example, the manner in which particles
give rise to similar values of local transfer entropy amongst spatiotemporal neigh-
bors is coherent. From the spatiotemporal profiles presented here, we note that rules
54 and 110 exhibit the largest amount of coherent computational structure, with rule
18 containing a smaller amount of less coherent structure. Rules 22 and 30 (results
for rule 30 not shown, see (Lizier et al. 2012b)) certainly exhibit all of the elemen-
tary functions of computation, but do not appear to contain any coherent structure to
their computations. This aligns well with similar explorations of local information
structure for these rules, e.g. by Shalizi et al. (2006). Using language reminiscent of
Langton’s analysis (Langton 1990), we suggested that complex systems exhibit very
highly-structured coherent computation in comparison to ordered systems (which
exhibit coherence but minimal structure in a computation dominated by informa-
tion storage) and chaotic systems (whose computations are dominated by rampant
information transfer eroding any coherence).

Coherence may also be interpreted as a logical relationship between profiles of
the individual local information dynamics (as three axes of complexity) rather than
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(a) 110 (b) 54

(c) 30 (d) 22

Fig. 5.8 State space diagrams of local transfer entropy (one step to the right) t(i, j = 1,n,k =
16) versus local active information a(i,n,k = 16) (both in bits) at the same space-time point
(i,n) for several ECA rules: (a) 110, (b) 54, (c) 30 and (d) 22 (after (Lizier et al. 2012b)).

only within them. To investigate this possibility, Fig. 5.8 plots state-space diagrams
of the local apparent transfer entropy for j = 1 versus local active information stor-
age (after (Lizier et al. 2012b)). Each point in these diagrams represents the local
values of each measure at one spatiotemporal point, thereby generating a complete
state-space for the CA. Such state-space diagrams are known to provide insights
into structure that are not visible when examining either measure in isolation; for
example, in examining structure in classes of systems (such as logistic maps), Feld-
man et al. (2008) demonstrate that plotting average excess entropy versus entropy
rate (while changing a system parameter) reveals loci of the two which are not clear
from observing either in isolation. Here however we are looking at structure within
a single system rather than across a class of systems.

The state-space diagram for rule 110 (Fig. 5.8a) exhibits interesting structure,
with significant clustering around certain areas and lines in the state space, reflecting
its status as a complex rule. (The two diagonal lines are upper limits representing
the boundary condition tc(i, j = −1,n,k = 16) ≥ 0 for both destination states “0”
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and “1”). Rule 54 (Fig. 5.8b) exhibits similar structure in its state-space diagram.
On the other hand, the example state space diagram for rule 30 (Fig. 5.8c) exhibits
minimal structure (apart from the mathematical upper limit), with a smooth spread
of points across the space reflecting its underlying chaotic nature. From the apparent
absence of coherent structure in its space-time information profiles, one may expect
state-space diagrams for rule 22 to exhibit a similar absence of structure to rule 30.
As shown by Fig. 5.8d however this is not the case: the state-space diagram for rule
22 exhibits significant structure, with similar clustering to that of rules 110 and 54.

Importantly, the apparent information structure in the state-space diagrams lends
some credence to the claims of complex behavior for rule 22 discussed in Section
5.3.3. However it is a very subtle type of structure, not complex enough to be re-
vealed in the individual local information profiles shown here or by other authors
(e.g. by Shalizi et al. (2006)). The structure does not appear to be coherent in these
individual profiles, though the state space diagrams indicate a coherent relationship
between the local information dynamics which may underpin coherent computation
at other scales.

There are certain clues as to the type of coherence which may be displayed by
rule 22. Fig. 5.6e does appear to have some traces of coherent transfer entities mov-
ing diagonally in space-time; however these seem to be distributed through the CA,
seemingly without structure or interactions. More concretely, Grassberger (1983)
observed that for rule 22, “there are (at least) four different sets of ordered states,
corresponding to Si(t) = 0 for all even/odd i and all even/odd t” – i.e. rule 22 does
have a domain pattern which self-replicates (with four possible configurations, just
offset from each other in space and time). Indeed, ε-machines have been generated
to recognize these domains (Crutchfield et al. 2013). Grassberger (1983) goes on to
note that “In contrast to the ordered states of rule 18, these states however are unsta-
ble: after implanting a kink in an otherwise ordered state, the kink widens without
limit, leaving behind it a seemingly disordered state.” That is to say, this domain
pattern does not self-organise and it is not robust to perturbations. This means that,
despite the existence of such domains, they are highly unlikely to be found “in the
wild” (i.e. when rule 22 is started from random initial states, as we have done for
Fig. 5.6). One could also view this as inferring that “life in one dimension” (the
perspective that rule 22 is a 1D projection of the 2D Game of Life (McIntosh 1990))
is less stable than “life in two dimensions”.

Coming back to Fig. 5.8d – it is possible that these domain patterns, or small ver-
sions of them, are what is detected as a signature of coherent information structure
by our methods above. Furthermore, emerging evidence suggests that rule 22 can
be set up in certain initial states which sustain such domains for a longer period,
with certain stable domain walls (Crutchfield 2009), and that these domain walls
are detected as information transfer by our methods. Our investigations in this area
remain ongoing.

Given the subtlety of structure in the bounds of our analysis, and using our mutual
information heuristics, at this stage we conclude that the behavior of this rule is
less complex than that exhibited by rules 110 and 54. As such, we suggested that
coherent information structure is a defining feature of complex computation, and
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explored a technique for inferring this property using local information dynamics.
These state-space diagrams for local information dynamics produced useful visual
results and were shown to provide interesting insight into the nature of computation
in rule 22.

5.8 Conclusion

In this chapter, we have reviewed our complete quantitative framework for the in-
formation dynamics of distributed computation in complex systems. Our framework
quantifies the information dynamics in terms of the component operations of univer-
sal computation: information storage, information transfer and information modifi-
cation. Our framework places particular importance on examining computation on
a local scale in space and time. While averaged or system-wide measures have their
place in providing summarized results, this focus on the local scale is vital for un-
derstanding the information dynamics of computation and provides many insights
that averaged measures cannot.

We reviewed the application of the framework to cellular automata, an important
example because of the weight of previous studies on the nature of distributed com-
putation in these systems. Significantly, our framework provided the first quantita-
tive evidence for the widely accepted conjectures that blinkers provide information
storage in CAs, particles are the dominant information transfer agents, and particle
collisions are the dominant information modification events. In particular, this was
demonstrated for the human-understandable density classification computation car-
ried out by the rule φpar. This is a fundamental contribution to our understanding of
the nature of distributed computation, and provides impetus for the framework to be
used for the analysis and design of other complex systems.

The application to CAs aligned well with other methods of filtering for complex
structure in CAs. However, our work is distinct in that it provides several differ-
ent views of the system corresponding to each type of computational structure. In
particular, the results align well with the insights of computational mechanics, un-
derlining the strong connection between these approaches.

From our results, we also observed that coherent local information structure is
a defining feature of complex distributed computation, and used local information
state-spaces to study coherent complex computation. Here, our framework provides
further insight into the nature of computation in rule 22 with respect to the accepted
complex rules 54 and 110. Certainly rule 22 exhibits all of the elementary functions
of computation, yet (in line with Shalizi et al. (2006)) there is no apparent coherent
structure to the profiles of its local information dynamics (“in the wild” at least). On
the other hand, state space views of the interplay between these local information
dynamics reveal otherwise hidden structure. Our framework is unique in its ability
to resolve both of these aspects. We conclude that rule 22 exhibits more structure
than chaotic rules, yet the subtlety of this structure prevents it from being considered
as complex as rules 110 and 54.
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The major thrust of our work since the presentation of this framework was to
apply it to other systems, because the information-theoretic basis of this framework
makes it readily applicable as such. For example, we have used the measures in
this framework to: quantitatively demonstrate coherent waves of motion in flocks
and swarms as information cascades (Wang et al. 2012); evolve a modular robot
for maximal information transfer between components, observing the emergence
of glider-like information cascades (Lizier et al. 2008a); and to study interactions
in robotic football and the relation of information measures to success on the field
(Cliff et al. 2013). We have also inferred information structure supporting cogni-
tive tasks using fMRI brain imaging data (Lizier et al. 2012), and studied how the
computational capabilities of artificial neural networks relate to underlying param-
eters and ability to solve particular tasks (Boedecker et al. 2012). We have also
made more specific investigations of the relationship between underlying network
structure and computational capabilities, including: revealing that intrinsic infor-
mation storage and transfer capabilities are maximized near the phase transition in
dynamics for random Boolean networks (Lizier et al. 2008a); showing that regular
networks are generally associated with information storage, random networks with
information transfer, and small-world networks exhibit a balance of the two (Lizier
et al. 2011b); revealing that feedback and feedforward loop motifs determine infor-
mation storage capability (Lizier et al. 2012a); and exploring how these information
measures relate to synchronization capability of network structures (Ceguerra et al.
2011). We have also explored the relationship of the framework to the context of
the observer (Lizier and Mahoney 2013), and provided thermodynamic interpreta-
tions of transfer entropy (Prokopenko et al. 2013) and related information-theoreic
quantities (Prokopenko et al. 2011). And finally, we have begun reformulating our
approach to information modification in seeking a proper measure rather than a
heuristic (Lizier et al. 2013). Further developments in all of these directions are
expected in the future, due to the utility of the framework.

Acknowledgements. The authors thank Melanie Mitchell for helpful comments and sugges-
tions regarding an early version of this manuscript.
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Chapter 6
Quantifying Synergistic Mutual Information

Virgil Griffith∗ and Christof Koch

6.1 Introduction

Synergy is a fundamental concept in complex systems that has received much atten-
tion in computational biology (Narayanan et al. 2005; Balduzzi and Tononi 2008).
Several papers (Schneidman et al. 2003a; Bell 2003; Nirenberg et al. 2001; Williams
and Beer 2010) have proposed measures for quantifying synergy, but there remains
no consensus which measure is most valid.

The concept of synergy spans many fields and theoretically could be applied to
any non-subadditive function. But within the confines of Shannon information the-
ory, synergy—or more formally, synergistic information—is a property of a set of
n random variables X = {X1,X2, . . . ,Xn} cooperating to predict (reduce the uncer-
tainty of) a single target random variable Y .

One clear application of synergistic information is in computational genetics.
It is well understood that most phenotypic traits are influenced not only by single
genes but by interactions among genes—for example, human eye-color is coop-
eratively specified by more than a dozen genes(White and Rabago-Smith 2011).
The magnitude of this “cooperative specification” is the synergistic information
between the set of genes X and a phenotypic trait Y . Another application is neuronal
firings where potentially thousands of presynaptic neurons influence the firing rate
of a single post-synaptic (target) neuron. Yet another application is discovering the
“informationally synergistic modules” within a complex system.
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The prior literature(Schneidman et al. 2003b; Anastassiou 2007) has termed sev-
eral distinct concepts as “synergy”. This paper defines synergy as how much the
whole is greater than (the union of) its atomic elements.1

The prior works on Partial Information Decomposition (Williams and Beer 2010;
Harder et al. 2013; Bertschinger et al. 2012; Lizier et al. 2013) start with properties
that a measure of redundant information, I∩ satisfies and builds a measure of synergy
from I∩. Although this paper deals directly with measures of synergy on “easy”
examples, we are immensely sympathetic to this approach. Our proposed measure
of synergy does give rise to an I∩ measure.

The properties our I∪ satisfies are discussed in Appendix C.
For pedagogical purposes all examples are determinstic, however, these methods

equally apply to non-deterministic systems.

6.1.1 Notation

We use the following notation throughout. Let

n: The number of predictors X1,X2, . . . ,Xn. n ≥ 2.
X1...n: The joint random variable (coalition) of all n predictors X1X2 . . .Xn.
Xi: The i’th predictor random variable (r.v.). 1 ≤ i ≤ n.
X: The set of all n predictors {X1,X2, . . . ,Xn}.
Y : The target r.v. to be predicted.
y: A particular state of the target r.v. Y .

All random variables are discrete, all logarithms are log2, and all calculations are
in bits. Entropy and mutual information are as defined by Cover and Thomas (1991),
H(X) ≡ ∑x∈X Pr(x) log 1

Pr(x) , as well as I(X :Y ) ≡ ∑x,y Pr(x,y) log Pr(x,y)
Pr(x)Pr(y) .

6.1.2 Understanding PI-Diagrams

Partial information diagrams (PI-diagrams), introduced by Williams and Beer
(2010), extend Venn diagrams to properly represent synergy. Their framework has
been invaluable to the evolution of our thinking on synergy.

A PI-diagram is composed of nonnegative partial information regions (PI-
regions). Unlike the standard Venn entropy diagram in which the sum of all regions
is the joint entropy H(X1...n,Y ), in PI-diagrams the sum of all regions (i.e. the space
of the PI-diagram) is the mutual information I(X1...n :Y ). PI-diagrams are immensely
helpful in understanding how the mutual information I(X1...n :Y ) is distributed across
the coalitions and singletons of X.2

1 The techniques here are unrelated to the information geometry prospective provided by
(Amari 1999). The well-known “total correlation” measure(Han 1978), does not satisfy
the desired properties for a measure of synergy.

2 Formally, how the mutual information is distributed across the set of all nonempty an-
tichains on the powerset of X(Weisstein 2011; Comtet 1998).
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Fig. 6.1 PI-diagrams for two and three predictors. Each PI-region represents nonnegative
information about Y . A PI-region’s color represents whether its information is redundant
(yellow), unique (magenta), or synergistic (cyan). To preserve symmetry, the PI-region
“{12,13,23}” is displayed as three separate regions each marked with a “*”. All three *-
regions should be treated as through they are a single region.

How to Read PI-Diagrams. Each PI-region is uniquely identified by its “set nota-
tion” where each element is denoted solely by the predictors’ indices. For example,
in the PI-diagram for n = 2 (Fig. 6.1a): {1} is the information about Y only X1 car-
ries (likewise {2} is the information only X2 carries); {1,2} is the information about
Y that X1 as well as X2 carries, while {12} is the information about Y that is speci-
fied only by the coalition (joint random variable) X1X2. For getting used to this way
of thinking, common informational quantities are represented by colored regions in
Fig. 6.2.

The general structure of a PI-diagram becomes clearer after examining the PI-
diagram for n = 3 (Fig. 6.1b). All PI-regions from n = 2 are again present. Each
predictor (X1,X2,X3) can carry unique information (regions labeled {1}, {2}, {3}),
carry information redundantly with another predictor ({1,2}, {1,3}, {2,3}), or spec-
ify information through a coalition with another predictor ({12}, {13}, {23}). New
in n= 3 is information carried by all three predictors ({1,2,3}) as well as information
specified through a three-way coalition ({123}). Intriguingly, for three predictors,
information can be provided by a coalition as well as a singleton ({1,23}, {2,13},
{3,12}) or specified by multiple coalitions ({12,13}, {12,23}, {13,23}, {12,13,23}).
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Fig. 6.2 PI-diagrams for n = 2 representing standard informational quantities

6.2 Information Can Be Redundant, Unique, or Synergistic

Each PI-region represents an irreducible nonnegative slice of the mutual information
I(X1...n :Y ) that is either:

1. Redundant. Information carried by a singleton predictor as well as available
somewhere else. For n= 2: {1,2}. For n= 3: {1,2}, {1,3}, {2,3}, {1,2,3}, {1,23},
{2,13}, {3,12}.

2. Unique. Information carried by exactly one singleton predictor and is available
no where else. For n = 2: {1}, {2}. For n = 3: {1}, {2}, {3}.

3. Synergistic. Any and all information in I(X1...n :Y ) that is not carried by a single-
ton predictor. n= 2: {12}. For n= 3: {12}, {13}, {23}, {123}, {12,13}, {12,23},
{13,23}, {12,13,23}.

Although a single PI-region is either redundant, unique, or synergistic, a single
state of the target can have any combination of positive PI-regions, i.e. a single
state of the target can convey redundant, unique, and synergistic information. This
surprising fact is demonstrated in Fig. 6.9.

6.2.1 Example Rdn: Redundant Information

If X1 and X2 carry some identical3 information (reduce the same uncertainty) about
Y , then we say the set X = {X1,X2} has some redundant information about Y .
Fig. 6.3 illustrates a simple case of redundant information. Y has two equiprobable
states: r and R (r/R for “redundant bit”). Examining X1 or X2 identically specifies
one bit of Y , thus we say set X = {X1,X2} has one bit of redundant information
about Y .

3 X1 and X2 providing identical information about Y is different from providing the same
magnitude of information about Y , i.e. I(X1 :Y ) = I(X2 :Y ). Example UNQ (Fig. 6.4) is an
example where I(X1 :Y ) = I(X2 :Y ) = 1 bit yet X1 and X2 specify “different bits” of Y .
Providing the same magnitude of information about Y is neither necessary or sufficient for
providing some identical information about Y .
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6.2.2 Example Unq: Unique Information

Predictor Xi carries unique information about Y if and only if Xi specifies informa-
tion about Y that is not specified by anything else (a singleton or coalition of the
other n− 1 predictors). Fig. 6.4 illustrates a simple case of unique information. Y
has four equiprobable states: ab, aB, Ab, and AB. X1 uniquely specifies bit a/A,
and X2 uniquely specifies bit b/B. If we had instead labeled the Y -states: 0, 1, 2,
and 3, X1 and X2 would still have strictly unique information about Y . The state
of X1 would specify between {0,1} and {2,3}, and the state of X2 would specify
between {0,2} and {1,3}—together fully specifying the state of Y . Accepting the
property (Id) from (Harder et al. 2013) is sufficient but not necessary for the desired
decomposition of example UNQ.

6.2.3 Example Xor: Synergistic Information

A set of predictors X = {X1, . . . ,Xn} has synergistic information about Y if and
only if the whole (X1...n) specifies information about Y that is not specified by any
singleton predictor. The canonical example of synergistic information is the XOR-
gate (Fig. 6.5). In this example, the whole X1X2 fully specifies Y ,

X1 X2 Y

r r r 1/2
R R R 1/2

(a) Pr(x1,x2,y)

Y

X1

X2

(b) circuit diagram

0

0

0

+1

{12}

{1} {2}
{1,2}

(c) PI-diagram

Fig. 6.3 Example RDN. Fig. 6.3a shows the joint distribution of r.v.’s X1, X2, and Y , the joint
probability Pr(x1,x2,y) is along the right-hand side of (a), revealing that all three terms are
fully correlated. Fig. 6.3b represents the joint distribution as an electrical circuit. Fig. 6.3c
is the PI-diagram indicating that set {X1,X2} has 1 bit of redundant information about Y .
I(X1X2 :Y ) = I(X1 :Y ) = I(X2 :Y ) = H(Y ) = 1 bit.

X1 X2 Y

a b ab 1/4
a B aB 1/4
A b Ab 1/4
A B AB 1/4

(a) Pr(x1,x2,y)

Y

X1

X2

(b) circuit diagram

+1

0

+1

0

{12}

{1} {2}
{1,2}

(c) PI-diagram

Fig. 6.4 Example UNQ. X1 and X2 each uniquely specify a single bit of Y .
I(X1X2 :Y ) = H(Y ) = 2 bits. The joint probability Pr(x1,x2,y) is along the right-hand
side of (a).
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I(X1X2 :Y ) = H(Y ) = 1 bit, (6.1)

but the singletons X1 and X2 specify nothing about Y ,

I(X1 :Y ) = I(X2 :Y ) = 0 bits. (6.2)

With both X1 and X2 themselves having zero information about Y , we know that
there can not be any redundant or unique information about Y—that the three PI-
regions {1} = {2} = {1,2} = 0 bits. As the information between X1X2 and Y
must come from somewhere, by elimination we conclude that X1 and X2 synergisti-
cally specify Y .

X1 X2 Y

0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

(a) Pr(x1,x2,y)

Y

X1

X2

XOR

(b) circuit diagram

0

+1

0

0

{12}

{1} {2}
{1,2}

(c) PI-diagram

Fig. 6.5 Example XOR. X1 and X2 synergistically specify Y . I(X1X2 :Y ) = H(Y ) = 1 bit.
The joint probability Pr(x1,x2,y) is along the right-hand side of (a).

6.3 Two Examples Elucidating Properties of Synergy

To help the reader develop intuition for a proper measure of synergy we illustrate
two desired properties of synergistic information with pedagogical examples derived
from XOR. Readers solely interested in the contrast with prior measures can skip to
Section 6.4.

6.3.1 Duplicating a Predictor Does Not Change Synergistic
Information

Example XORDUPLICATE (Fig. 6.6) adds a third predictor, X3, a copy of predictor
X1, to XOR. Whereas in XOR the target Y is specified only by coalition X1X2, dupli-
cating predictor X1 as X3 makes the target equally specifiable by coalition X3X2.

Although now two different coalitions identically specify Y , mutual information
is invariant to duplicates, e.g. I(X1X2X3 :Y ) = I(X1X2 :Y ) bit. Likewise for synergis-
tic information to be likewise bounded between zero and the total mutual informa-
tion I(X1...n :Y ), synergistic information must similarly be invariant to duplicates,
e.g. the synergistic information between set {X1,X2} and Y must be the same as the
synergistic information between {X1,X2,X3} and Y . This makes sense because if
synergistic information is defined as the information in the whole beyond its parts,
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duplicating a part does not increase the net information provided by the parts. Alto-
gether, we assert that duplicating a predictor does not change the synergistic infor-
mation. Without the property that duplicating a predictor does not change synergistic
information, the synergistic mutual information will not be bounded between 0 and
I(X1...n :Y ). Synergistic information being invariant to duplicated predictors follows
from the equality condition of the monotonicity property (M) from Bertschinger
et al. (2012).4

X1 X2 X3 Y

0 0 0 0 1/4
0 1 0 1 1/4
1 0 1 1 1/4
1 1 1 0 1/4

(a) Pr(x1,x2,x3,y)

Y
X1

X2

X3

XOR

(b) circuit diagram

+1{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

**

0

+1

0

0

{12}

{1} {2}
{1,2}

XORDUPLICATE

XOR

(c) PI-diagram

Fig. 6.6 Example XORDUPLICATE shows that duplicating predictor X1 as X3 turns the
single-coalition synergy {12} into the multi-coalition synergy {12,23}. After duplicating X1,
the coalition X3X2 as well as coalition X1X2 specifies Y . Synergistic information is unchanged
from XOR, I(X3X2 :Y ) = I(X1X2 :Y ) = H(Y ) = 1 bit.

4 For a proof see Appendix E.
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6.3.2 Adding a New Predictor Can Decrease Synergy

Example XORLOSES (Fig. 6.7) adds a third predictor, X3, to XOR and concretizes
the distinction between synergy and “redundant synergy”. In XORLOSES the target
Y has one bit of uncertainty and just as in example XOR the coalition X1X2 fully
specifies the target, I(X1X2 :Y ) = H(Y ) = 1 bit. However, XORLOSES has zero intu-
itive synergy because the newly added singleton predictor, X3, fully specifies Y by it-
self. This makes the synergy between X1 and X2 completely redundant—everything
the coalition X1X2 specifies is now already specified by the singleton X3.

X1 X2 X3 Y

0 0 0 0 1/4
0 1 1 1 1/4
1 0 1 1 1/4
1 1 0 0 1/4

(a) Pr(x1,x2,x3,y)

Y

X3

X1

X2

XOR

XOR

(b) circuit diagram

+1

0

+1

0

0

{12}

{1} {2}
{1,2}

XOR

XORLOSES

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

**

(c) PI-diagram

Fig. 6.7 Example XORLOSES. Target Y is fully specified by the coalition X1X2 as well as
by the singleton X3. I(X1X2 :Y ) = I(X3 :Y ) = H(Y ) = 1 bit. Therefore the information
synergistically specified by coalition X1X2 is a redundant synergy.
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6.4 Prior Measures of Synergy

6.4.1 Imax synergy: Smax (X : Y )

Imax synergy, denoted Smax, derives from (Williams and Beer 2010). Smax defines
synergy as the whole beyond the state-dependent maximum of its parts,

Smax (X : Y ) ≡ I(X1...n :Y )− Imax ({X1, . . . ,Xn} : Y ) (6.3)

= I(X1...n :Y )− ∑
y∈Y

Pr(Y = y)max
i

I(Xi :Y = y) , (6.4)

where I(Xi :Y = y) is (DeWeese and Meister 1999)’s “specific-surprise”,

I(Xi :Y = y) ≡ DKL[Pr(Xi|y)‖Pr(Xi)] (6.5)

= ∑
xi∈Xi

Pr(xi|y) log
Pr(xi,y)

Pr(xi)Pr(y)
. (6.6)

There are two major advantages of Smax synergy. First, Smax obeys the bounds of
0 ≤ Smax(X1...n : Y )≤ I(X1...n :Y ). Second, Smax is invariant to duplicate predictors.
Despite these desired properties, Smax sometimes miscategorizes merely unique in-
formation as synergistic. This can be seen in example UNQ (Fig. 6.4). In example
UNQ the wires in Fig. 6.4b don’t even touch, yet Smax asserts there is one bit of
synergy and one bit of redundancy—this is palpably strange.

A more abstract way to understand why Smax overestimates synergy is to imag-
ine a hypothetical example where there are exactly two bits of unique informa-
tion for every state y ∈ Y and no synergy or redundancy. Smax would be the whole
(both unique bits) minus the maximum over both predictors—which would be the
max [1,1] = 1 bit. The Smax synergy would then be 2− 1 = 1 bit of synergy—even
though by definition there was no synergy, but merely two bits of unique informa-
tion.

Altogether, we conclude that Smax overestimates the intuitive synergy by miscate-
gorizing merely unique information as synergistic whenever two or more predictors
have unique information about the target.

6.4.2 WholeMinusSum Synergy: WMS(X : Y )

The earliest known sightings of bivarate WholeMinusSum synergy (WMS) is
(Gawne and Richmond 1993; Gat and Tishby 1999) with the general case in Chechik
et al. (2002). WholeMinusSum synergy is a signed measure where a positive value
signifies synergy and a negative value signifies redundancy. WholeMinusSum syn-
ergy is defined by eq. (6.7) and interestingly reduces to eq. (6.9)—the difference of
two total correlations.5

5 TC(X1; · · · ;Xn) =−H(X1...n)+∑n
i=1 H(Xi) per Han (1978).
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WMS (X : Y ) ≡ I(X1...n :Y )−
n

∑
i=1

I(Xi :Y ) (6.7)

=
n

∑
i=1

H(Xi|Y )−H(X1...n|Y )−
[

n

∑
i=1

H(Xi)−H(X1...n)

]
(6.8)

= TC(X1; · · · ;Xn|Y )−TC(X1; · · · ;Xn) (6.9)

Representing eq. (6.7) for n = 2 as a PI-diagram (Fig. 6.8a) reveals that WMS
is the synergy between X1 and X2 minus their redundancy. Thus, when there is an
equal magnitude of synergy and redundancy between X1 and X2 (as in RDNXOR,
Fig. 6.9), WholeMinusSum synergy is zero—leading one to erroneously conclude
there is no synergy or redundancy present.6

The PI-diagram for n = 3 (Fig. 6.8b) reaveals that WholeMinusSum double-
subtracts PI-regions {1,2}, {1,3}, {2,3} and triple-subtracts PI-region {1,2,3}, re-
vealing that for n> 2 WMS (X : Y ) becomes synergy minus the redundancy counted
multiple times.

A concrete example demonstrating WholeMinusSum’s “synergy minus redun-
dancy” behavior is RDNXOR (Fig. 6.9) which overlays examples RDN and XOR to
form a single system. The target Y has two bits of uncertainty, i.e. H(Y ) = 2. Like
RDN, either X1 or X2 identically specifies the letter of Y (r/R), making one bit of
redundant information. Like XOR, only the coalition X1X2 specifies the digit of Y
(0/1), making one bit of synergistic information. Together this makes one bit of
redundancy and one bit of synergy.

Note that in RDNXOR every state y ∈ Y conveys one bit of redundant informa-
tion and one bit of synergistic information, e.g. for the state y = r0 the letter “r”
is specified redundantly and the digit “0” is specified synergistically. Example RD-
NUNQXOR (Appendix A) extends RDNXOR to demonstrate redundant, unique, and
synergistic information for every state y ∈ Y .

In summary, WholeMinusSum underestimates synergy for all n with the poten-
tial gap increasing with n. Equivalently, we say that WholeMinusSum synergy is a
lowerbound on the intuitive synergy with the bound becoming looser with n.

6.4.3 Correlational Importance: Δ I(X;Y )

Correlational importance, denoted Δ I, comes from Panzeri et al. (1999); Nirenberg
et al. (2001); Nirenberg and Latham (2003); Pola et al. (2003); Latham and Niren-
berg (2005). Correlational importance quantifies the “informational importance of
conditional dependence” or the “information lost when ignoring conditional depen-
dence” among the predictors decoding target Y . As conditional dependence is nec-
essary for synergy, Δ I seems related to our intuitive conception of synergy. Δ I is
defined as,

6 This is deeper than Schneidman et al. (2003a)’s point that a mish-mash of synergy and
redundancy across different states of y ∈ Y can average to zero. Fig. 6.9 evaluates to zero
for every state y ∈Y .
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{12}

{1} {2}

{1,2}

(a) WMS({X1,X2} : Y )

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*
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(b) WMS({X1,X2,X3} : Y )

Fig. 6.8 PI-diagrams illustrating WholeMinusSum synergy for n = 2 (left) and n = 3 (right).
For this diagram the colors denote the added and subtracted PI-regions. WMS(X : Y ) is the
green PI-region(s), minus the orange PI-region(s), minus two times any red PI-region.
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(a) Pr(x1,x2,y)
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(b) circuit diagram

0
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{1} {2}
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(c) PI-diagram

Fig. 6.9 Example RDNXOR has one bit of redundancy and one bit of synergy. Yet for this
example, WMS(X : Y ) = 0 bits.
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Δ I(X;Y ) ≡ DKL[Pr(Y |X1...n)‖Prind (Y |X)] (6.10)

= ∑
y,x∈Y,X

Pr(y,x1...n) log
Pr(y|x1...n)

Prind(y|x)
, (6.11)

where Prind (y|x)≡ Pr(y)∏n
i=1 Pr(xi |y)

∑y′ Pr(y′)∏n
i=1 Pr(xi|y′) . After some algebra7 eq. (6.11) becomes,

Δ I(X;Y ) = TC(X1; · · · ;Xn|Y )−DKL

[
Pr(X1...n)

∥∥∥∥∥∑
y

Pr(y)
n

∏
i=1

Pr(Xi|y)
]
. (6.12)

Δ I is conceptually innovative and moreover agrees with our intuition for all of
our examples thus far. Yet further examples reveal that Δ I measures something ever-
so-subtly different from intuitive synergistic information.

The first example is (Schneidman et al. 2003a)’s Figure 4 where Δ I exceeds the
mutual information I(X1...n :Y ) with Δ I(X;Y ) = 0.0145 and I(X1...n :Y ) = 0.0140.
This fact alone prevents interpreting Δ I as a loss of mutual information from
I(X1...n :Y ).8

Could Δ I upperbound synergy instead? We turn to example AND (Fig. 6.10)
with n = 2 independent binary predictors and target Y is the AND of X1 and
X2. Although AND’s PI-region exact decomposition remains uncertain, we can
still bound the synergy. For example AND, the WMS({X1,X2} : Y ) ≈ 0.189 and
Smax ({X1,X2} : Y ) = 0.5 bits. So we know the synergy must be between (0.189,0.5]
bits. Despite this, Δ I(X;Y ) = 0.104 bits, thus Δ I does not upperbound synergy.

Finally, in the face of duplicate predictors Δ I often decreases. From example
AND to ANDDUPLICATE (Appendix A, Fig. 6.13) Δ I drops 63% to 0.038 bits.

Taking all three examples together, we conclude Δ I measures something funda-
mentally different from synergistic information.

6.5 Synergistic Mutual Information

We are all familiar with the English expression describing synergy as when the
whole exceeds the “sum of its parts”. Although this informal adage captures the
intuition underlying synergy, the formalization of this adage, WholeMinusSum syn-
ergy, “double-counts” whenever there is duplication (redundancy) among the parts.
A mathematically correct adage should change “sum” to “union”—meaning syn-
ergy occurs when the whole exceeds the union of its parts. The sum adds duplicate
information multiple times, whereas the union adds duplicate information only once.
The union of parts never exceeds the sum.

7 See Appendix F for the steps between eqs. (6.11) and (6.12).
8 Although Δ I can not be a loss of mutual information, it could still be a loss of some

alternative information such as Wyner’s common information (Lei et al. 2010).
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X1 X2 Y

0 0 0 1/4
0 1 0 1/4
1 0 0 1/4
1 1 1 1/4

(a) Pr(x1,x2,y)

c

b

a

b

(b) PI-diagram

0.189 ≤ c ≤ 0.5

0 ≤ b ≤ 0.311

0 ≤ a ≤ 0.311

Y
X1

X2

AND

(c) circuit diagram

Fig. 6.10 Example AND. The exact PI-decomposition of an AND-gate remains uncertain.
But we can bound a, b, and c using WMS and Smax. In section 6.5 these bounds will be
tightened. Most intriguingly, we’ll show that a > 0 despite I(X1 :X2) = 0.

The guiding intuition of “whole minus union” leads us to a novel measure de-
noted SVK({X1, . . . ,Xn} :Y ), or SVK(X :Y ), as the mutual information in the whole
beyond the union of elements {X1, . . . ,Xn}.

Unfortunately, there’s no established measure of “union-information” in contem-
porary information theory. We introduce a novel technique, inspired by Maurer and
Wolf (1999), for defining the union information among n predictors. We numerically
compute the union information by noisifying the joint distribution Pr(X1...n,Y ) such
that only the correlations with singleton predictors are preserved. This is achieved
like so,

IVK({X1, . . . ,Xn} : Y )≡ min
Pr∗(X1, . . . ,Xn,Y )

I∗(X1...n : Y ) (6.13)

subject to: Pr∗(Xi,Y ) = Pr(Xi,Y ) ∀i,

where I∗(X1...n : Y )≡ DKL[Pr∗(X1...n,Y )‖Pr∗(X1...n)Pr∗(Y )].
Without any constraint on the distribution Pr∗(X1, . . . ,Xn,Y ), the minimum of

eq. (6.13) is trivially found to be zero bits because simply setting Pr∗(X1...n) to a
constant makes I∗(X1...n : Y ) = 0 bits. Therefore we must put some constraint on
Pr∗(X1, . . . ,Xn,Y ). As all bits a singleton Xi knows about Y are determined by the
joint distribution Pr(Xi,Y ), we simply prevent the minimization from altering these
distributions, and presto we arrive at the constraint Pr∗(Xi,Y ) = Pr(Xi,Y ) ∀i.9

9 We could have instead chosen the looser constraint I∗(Xi : Y ) = I(Xi :Y ) ∀i, but
Pr∗(Xi,Y ) = Pr(Xi,Y ) ∀i ensures we preserve the “same bits”, not just the same magnitude
of bits.
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Finally, we prove that a minimum of eq. (6.13) always exists because setting
Pr∗(x1, . . . ,xn,y) = Pr(y)∏n

i=1 Pr(xi|y) always satisfies the constraints.
Unfortunately, we currently have no analytic way to calculate eq. (6.13), however,

we do have an analytic upperbound on it. Applying this to AND’s PI-decomposition
allows us to tighten the bounds in Fig. 6.10 to those in Fig. 6.11.

X1 X2 Y

0 0 0 1/3
0 1 0 1/6
1 0 0 1/6
1 1 0 1/12

1 1 1 1/4

(a) Pr∗(x1,x2,y)

c

b

a

b

(b) PI-diagram

0.270 ≤ c ≤ 0.500

0 ≤ b ≤ 0.230

0.082 ≤ a ≤ 0.311

Fig. 6.11 Revisiting example AND. Using the analytic upperbound on IVK in Appendix D,
we arrive at the Pr∗ distribution in (a). Using this distribution, we tighten the bounds on a,
b, and c. Intriguingly, we see that despite I(X1 :X2) = 0, that a > 0. Note: Previous versions
(preprints) of this paper erroneously asserted independent predictors could not convey redun-
dant information, i.e. that I(X1 :X2) = 0 entailed I∩({X1,X2} :Y ) = 0.

Our union-information measure IVK satisfies several desired properties given in
(Bertschinger et al. 2012; Harder et al. 2013). Specifically, IVK satisfies: (GP), (M),
(SR), (S0), (TM), (Id1), and (LP0). For details see Section 6.6 and Appendix C.

Once the union information is computed, the SVK synergy is simply,

SVK({X1, . . . ,Xn} :Y )≡ I(X1...n :Y )− IVK({X1, . . . ,Xn} : Y ) . (6.14)

SVK synergy quantifies the total “informational work” strictly the coalitions
within X1...n perform in reducing the uncertainty of Y . Pleasingly, SVK is bounded10

by the WholeMinusSum synergy (which underestimates the intuitive synergy) and
Smax (which overestimates intuitive synergy),

max [0,WMS(X : Y )]≤ SVK(X :Y )≤ Smax (X : Y )≤ I(X1...n :Y ) . (6.15)

6.6 Properties of IVK

Our measure of the union information IVK satisfies a number of properties from the
prior literature (for proofs, see Appendix C):

(GP) Global Positivity. IVK(X :Y )≥ 0
(SR) Self-Redundancy. The redundant information a single predictor X1 has about

the target Y is equal to the Shannon mutual information between the predic-
tor and the target, i.e. IVK(X1 :Y ) = I(X1 :Y ).

10 Proven in Appendix E.3.
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(S0) Weak Symmetry. IVK(X1, . . . ,Xn :Y ) is invariant under reordering X1, . . . ,Xn.
(M) Monotonicity. IVK(X1, . . . ,Xn :Y ) ≤ IVK(X1, . . . ,Xn,W :Y ) with equality if W

is a “subset” (or equivalent to) an Xi ∈ {X1, . . . ,Xn}. W is a subset of a ran-
dom variable Xi if and only if there exists a function f such that W = f (Xi).

(TM) Target Monotonicity. For all random variables Y and Z, IVK(X :Y ) ≤
IVK(X :Y Z).

(LP0) Weak Local Positivity. For n = 2 predictors, the derived “partial informa-
tions” (Williams and Beer 2010) are nonnegative. This is equivalent to,

max [I(X1 :Y ) , I(X2 :Y )]≤ IVK(X1,X2 :Y )≤ I(X1X2 :Y ) .

(Id1) Strong Identity. IVK(X1 . . . ,Xn :X1...n) = H(X1...n).

6.7 Applying the Measures to Our Examples

Table 6.1 summarizes the results of all four measures applied to our examples.
RDN (Fig. 6.3). There is exactly one bit of redundant information and all mea-

sures reach their intended answer. For the axiomatically minded, the equality con-
dition of (M) is sufficient for the desired answer.

UNQ (Fig. 6.4). Smax’s miscategorization of unique information as synergistic re-
veals itself. Intuitively, there are two bits of unique information and no synergy.
However, Smax reports one bit of synergistic information. For the axiomatically
minded, property (Id) is sufficient (but not nessecary) for the desired answer.

XOR (Fig. 6.5). There is exactly one bit of synergistic information. All measures
reach the desired answer of 1 bit.

XORDUPLICATE (Fig. 6.6). Target Y is specified by the coalition X1X2 as well as
by the coalition X3X2, thus I(X1X2 :Y ) = I(X3X2 :Y ) = H(Y ) = 1 bit. All measures
reach the expected answer of 1 bit.

XORLOSES (Fig. 6.7). Target Y is specified by the coalition X1X2 as well as by
the singleton X3, thus I(X1X2 :Y ) = I(X3 :Y ) = H(Y ) = 1 bit. Together this means
there is one bit of redundancy between the coalition X1X2 and the singleton X3 as
illustrated by the +1 in PI-region {3,12}. All measures account for this redundancy
and reach the desired answer of 0 bits.

RDNXOR (Fig. 6.9). This example has one bit of synergy as well as one bit
of redundancy. In accordance with Fig. 6.8a, WholeMinusSum measures synergy
minus redundancy to calculate 1−1 = 0 bits. On the other hand, Smax, Δ I, and SVK

are not mislead by the co-existance of synergy and redundancy and correctly report
1 bit of synergistic information.

AND (Fig. 6.10). This example is a simple case where correlational impor-
tance, Δ I(X;Y ), disagrees with the intuitive value for synergy. The WholeMinus-
Sum synergy—an unambiguous lowerbound on the intuitive synergy—is 0.189 bits,
yet Δ I(X;Y ) = 0.104 bits. We can’t perfectly determine SVK, but we can lower-
bound SVK using our analytic bound, as well as upperbound it using Smax. This
gives 0.270 ≤ SVK ≤ 1/2.
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Table 6.1 Synergy measures for our examples. Answers conflicting with intuitive synergistic
information are in red. The SVK value for AND and ANDDUPLICATE is not conclusively
known, but can be bounded.

Example Smax WMS Δ I SVK

RDN 0 –1 0 0
UNQ 1 0 0 0
XOR 1 1 1 1

XORDUPLICATE 1 1 1 1
XORLOSES 0 0 0 0

RDNXOR 1 0 1 1
AND 1/2 0.189 0.104 [0.270,1/2]

RDNUNQXOR 2 0 1 1
ANDDUPLICATE 1/2 –0.123 0.038 [0.270,1/2]
XORMULTICOAL 1 1 1 1

The three supplementary examples in Appendix A: RDNUNQXOR, ANDDUPLI-
CATE, and XORMULTICOAL aren’t essential for understanding this paper and are
for the intellectual pleasure of advanced readers.

Table 6.1 shows that no prior measure of synergy consistently matches intuition
even for n = 2. To summarize,

1. Imax synergy, Smax, overestimates the intuitive synergy when two or more predic-
tors convey unique information about the target (e.g. UNQ).

2. WholeMinusSum synergy, WMS, inadvertently double-subtracts redundancies
and thus underestimates the intuitive synergy (e.g. RDNXOR). Duplicating pre-
dictors often decreases WholeMinusSum synergy (e.g. ANDDUPLICATE).

3. Correlational importance, Δ I, is not bounded by the Shannon mutual informa-
tion, underestimates the known lowerbound on synergy (e.g. AND), and duplicat-
ing predictors often decreases correlational importance (e.g. ANDDUPLICATE).
Altogether, Δ I does not quantify the intuitive synergistic information (nor was it
intended to).

6.8 Conclusion

Fundamentally, we assert that synergy quantifies how much the whole exceeds the
union of its parts. Considering synergy as the whole minus the sum of its parts in-
advertently “double-subtracts” redundancies, thus underestimating synergy. Within
information theory, PI-diagrams, a generalization of Venn diagrams, are immensely
helpful in improving one’s intuition for synergy.
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We demonstrated with RDNXOR and RDNUNQXOR that a single state can
simultaneously carry redundant, unique, and synergistic information. This fact is
under-appreciated, and prior work often implicitly assumed these three types of in-
formation could not coexist in a single state.

We introduced a novel measure of synergy, SVK, (eq. (6.14)). Unfortunately our
expression is not easily computable, and until we have an explicit analytic solution
to the minimization in IVK the best one can do is numerical optimization using our
analytic upperbound (Appendix D) as a starting point.

Along with our examples, we consider our introduction of a candidate for the
union information, IVK (eq. (6.13)) and its upperbound our primary contributions to
the literature.

Finally, by means of our analytic upperbound on IVK we’ve shown that, at least
for our measure, independent predictors can convey redundant information about a
target, e.g. Fig. 6.11.
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Adami, Giulio Tononi, Jim Beck, Nihat Ay, and Paul Williams for extensive discussions. This
research was funded by the Paul G. Allen Family Foundation and a DOE CSGF fellowship
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Appendix

A Three Extra Examples

For the reader’s intellectual pleasure, we include three more sophisticated examples:
RDNUNQXOR, ANDDUPLICATE, and XORMULTICOAL.

Example AndDuplicate

ANDDUPLICATE adds a duplicate predictor to example AND to show how Δ I re-
sponds to a duplicate predictor in a less pristine example than XOR. Unlike XOR,
in example AND there’s also unique and redundant information. Will this cause the
loss of synergy in the spirit of XORLOSES? Taking each one at a time:

• Predictor X2 is unaltered from example AND. Thus X2’s unique information stays
the same. AND’s {2}→ ANDDUPLICATE’s {2}.

• Predictor X3 is identical to X1. Thus all of X1’s unique information in AND

becomes redundant information between predictors X1 and X3. AND’s {1} →
ANDDUPLICATE’s {1,3}.

• In AND there is synergy between X1 and X2, and this synergy is still present in
ANDDUPLICATE. Just as in XORDUPLICATE, the only difference is that now an
identical synergy also exists between X3 and X2. Thus AND’s {12}→ ANDDU-
PLICATE’s {12,23}.
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X1 X2 Y

ra0 rb0 rab0 1/32

ra0 rb1 rab1 1/32

ra1 rb0 rab1 1/32

ra1 rb1 rab0 1/32

ra0 rB0 raB0 1/32

ra0 rB1 raB1 1/32

ra1 rB0 raB1 1/32

ra1 rB1 raB0 1/32

rA0 rb0 rAb0 1/32

rA0 rb1 rAb1 1/32

rA1 rb0 rAb1 1/32

rA1 rb1 rAb0 1/32

rA0 rB0 rAB0 1/32

rA0 rB1 rAB1 1/32

rA1 rB0 rAB1 1/32

rA1 rB1 rAB0 1/32

X1 X2 Y

Ra0 Rb0 Rab0 1/32

Ra0 Rb1 Rab1 1/32

Ra1 Rb0 Rab1 1/32

Ra1 Rb1 Rab0 1/32

Ra0 RB0 RaB0 1/32

Ra0 RB1 RaB1 1/32

Ra1 RB0 RaB1 1/32

Ra1 RB1 RaB0 1/32

RA0 Rb0 RAb0 1/32

RA0 Rb1 RAb1 1/32

RA1 Rb0 RAb1 1/32

RA1 Rb1 RAb0 1/32

RA0 RB0 RAB0 1/32

RA0 RB1 RAB1 1/32

RA1 RB0 RAB1 1/32

RA1 RB1 RAB0 1/32

Fig. 6.11 (a) Pr(x1,x2,y)

X2

XOR
Y

X1

}
a/A

b/B

r/R

circuit diagram

+1

+1

+1

+1

{12}

{1} {2}
{1,2}

(c) PI-diagram

Fig. 6.12 Example RDNUNQXOR weaves examples RDN, UNQ, and XOR into one.
I(X1X2 :Y ) = H(Y ) = 4 bits. This example is pleasing because it puts exactly one bit
in each PI-region.

• Predictor X3 is identical to X1. Therefore any information in AND that is specified
by both X1 and X2 is now specified by X1, X2, and X3. Thus AND’s {1,2} →
ANDDUPLICATE’S {1,2,3}.
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X1 X2 X3 Y

0 0 0 0 1/4
0 1 0 0 1/4
1 0 1 0 1/4
1 1 1 1 1/4

(a) Pr(x1,x2,x3,y)

Y
X1

X2

AND

X3
(b) circuit diagram

c

b

b{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}
{1,2,3}

{12,13}
{12,23}

{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

*
*

c

a
b b

{12}

{1} {2}

{1,2}

a

AND

ANDDUPLICATE

(c) PI-diagram

Fig. 6.13 Example ANDDUPLICATE. The total mutual information is the same as in AND,
I(X1X2 :Y ) = I(X1X2X3 :Y ) = 0.811 bits. Every PI-region in example AND maps to a PI-
region in ANDDUPLICATE. The intuitive synergistic information is unchanged from AND.
However, correlational importance, Δ I, arrives at 0.104 bits of synergy for AND, and 0.038
bits for ANDDUPLICATE. Δ I is not invariant to duplicate predictors.
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X1 X2 X3 Y

ab ac bc 0 1/8
AB Ac Bc 0 1/8
Ab AC bC 0 1/8
aB aC BC 0 1/8

Ab Ac bc 1 1/8
aB ac Bc 1 1/8
ab aC bC 1 1/8
AB AC BC 1 1/8

(a) Pr(x1,x2,x3,y)

X2
PARITY Y

X1

X3

a/A
b/B

c/C

(b) circuit diagram

+1

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

**

(c) PI-diagram

Fig. 6.14 Example XORMULTICOAL demonstrates how the same information can be spec-
ified by multiple coalitions. In XORMULTICOAL the target Y has one bit of uncertainty,
H(Y ) = 1 bit, and Y is the parity of three incoming wires. Just as the output of XOR is spec-
ified only after knowing the state of both inputs, the output of XORMULTICOAL is specified
only after knowing the state of all three wires. Each predictor is distinct and has access to
two of the three incoming wires. For example, predictor X1 has access to the a/A and b/B
wires, X2 has access to the a/A and c/C wires, and X3 has access to the b/B and c/C wires.
Although no single predictor specifies Y , any coalition of two predictors has access to all
three wires and fully specifies Y , I(X1X2 :Y ) = I(X1X3 :Y ) = I(X2X3 :Y ) = H(Y ) = 1
bit. In the PI-diagram this puts one bit in PI-region {12,13,23} and zero everywhere else. All
measures reach the expected answer of 1 bit of synergy.
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B Connecting Back to I∩

Our candidate measure of the union information, IVK, gives rise to a measure of the
intersection information denoted Idual

VK . This is done by,

Idual
VK (X :Y ) = ∑

S⊆X
(−1)|S|+1 IVK(S :Y ) . (6.16)

C Desired Properties of I∪

What previously proposed properties does Idual
VK satisfy? We originally worked on

proofs for which properties Idual
VK satisfies, but for n > 2 we were blocked by not

having an analytic solution to IVK. So we instead translated the I∩ properties into the
analogous I∪ properties. Although one can’t prove the I∩ version from the analogous
I∪ property, it is a start.

In addition to the properties in Section 6.6, we have the properties,

(S1) Strong Symmetry. I∪({X1, . . . ,Xn} :Y ) is invariant under reordering
X1, . . . ,Xn,Y .

(TC) Target Chainrule. I∪(X : Y Z) = I∪(X : Y )+ I∪(X : Z|Y ).
(UB) Upperbound. From applying inclusion/exclusion rule to

I∩({QX1, . . . ,QXn} :Y ) ≥ I(Q :Y ), we have the following upperbound on
the union information,

I∪({X1, . . . ,Xn} :Y )≤ (1− n) I(X1 ∧·· ·∧Xn :Y )+
n

∑
i=1

I(Xi :Y ) .

(LP1) Strong Local Positivity. For all n, the derived “partial informations”
(Williams and Beer 2010) are nonnegative.

We’ve proven that IVK does not satisfy (S1). And thus far we’ve been unable to
determine whether IVK satisfies (TC) and (LP1).

Proof of (GP)

Proven by the nonnegativity of mutual information.

Proof of (SR)

IVK(X1 :Y ) ≡ min
p∗(x1,y)

p∗(x1,y)=p(x1,y)

I∗(X1 :Y )

= I(X1 :Y ) .
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Proof of (S0)

There’s only one instance of the terms in X in the definition of IVK, which is,

IVK(X :Y )≡ min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1 · · ·Xn :Y ) .

The term I∗(X1 · · ·Xn :Y ) is invariant to the ordering of X1 · · ·Xn. This is
due to Pr∗(x1, . . . ,xn) = Pr∗(xn, . . . ,x1). Thus IVK is invariant to the ordering of
{X1, . . . ,Xn}.

Proof of (M)

We prove the inequality condition of (M), that IVK(X1, . . . ,Xn :Y ) ≤
IVK(X1, . . . ,Xn,W :Y ).

IVK(X1, . . . ,Xn :Y ) ≡ min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n :Y )

= min
p∗(x1,...,xn,w,y)

p∗(xi,y)=p(xi,y) ∀i
p∗(w,y)=p(w,y)

I∗(X1...n :Y )

≤ min
p∗(x1,...,xn,w,y)

p∗(xi,y)=p(xi,y) ∀i
p∗(w,y)=p(w,y)

I∗(X1...n :Y )+ I∗(W :Y |X1...n)

= min
p∗(x1,...,xn,w,y)

p∗(xi,y)=p(xi,y) ∀i
p∗(w,y)=p(w,y)

I∗(X1...nW :Y )

= IVK({X1, . . . ,Xn,W} :Y ) .

We prove the equality condition of (M), that,

IVK({X1, . . . ,Xn,W} : Y ) = IVK({X1, . . . ,Xn} : Y )

where ∃i s.t. W = f (Xi), for some function f .

Without loss of generality we reorder the predictors so that the Xi above is the
last predictor, Xn.

Proof

IVK({X1, . . . ,Xn,W} : Y ) = min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i
p∗(W,Y )=p∗(W,Y )

I∗(X1...n−1XnW : Y )

= min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i
p∗(W,Y )=p∗(W,Y )

I∗(X1...n−1Xn : Y ) .
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Then, because the constraint p∗(Xn,Y ) = p(Xn,Y ) wholly encapsulates the con-
straint p∗(W,Y ) = p(W,Y ), we can remove the constraint p∗(W,Y ) = p(W,Y ). This
yields,

IVK({X1, . . . ,Xn,W} : Y ) = min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n−1Xn : Y )

= min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n : Y )

= IVK({X1, . . . ,Xn} : Y ) .

Proof of (TM)

For notational brevity, we define the following terms,

α ≡ min
p∗(x1,...,xn,y)

p∗(xi,y)=p(xi,y) ∀i

I∗(X1...n :Y )

β ≡ min
p∗(x1,...,xn,yz)

p∗(xi,yz)=p(xi,yz) ∀i

I∗(X1...n :Y Z)

γ ≡ min
p∗(x1,...,xn,y,z)

p∗(xi,y,z)=p(xi,y,z) ∀i

I∗(X1...n :Y )

δ ≡ min
p∗(x1,...,xn,yz)

p∗(xi,yz)=p(xi,yz) ∀i

I∗(X1...n :Z|Y ) .

The proof of (TM) is complete by showing α ≤ β . First because no term in
γ depends on Z, we can drop γ’s constraints on Z leaving α = γ . Then, by the
nonnegativity of mutual information, we know α,β ,γ,δ ≥ 0. So thus far we have
α ≤ γ +δ . Next we can prove γ +δ ≤ β because the sum of two minimums, γ +δ ,
is less than the same minimum over the sum, β .

Taken together,
α ≤ γ + δ ≤ β ,

and the proof is complete.

Proof of (LP0)

IVK(X :Y )≤ I(X1...n :Y ) .

This is proven by the condition that Pr(X1, . . . ,Xn,Y ) satisfies the constraints on
the minimizing distribution in IVK. Thus I∗(X1...n :Y )≤ I(X1...n :Y ).
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Disproof of (S1)

We show that, IVK({X ,Y} :Z) �= IVK({X ,Z} :Y ) by setting X =Y where H(X) > 0,
and Z is a constant, IVK({X ,Y} :Z) = 0 yet IVK({X ,Z} :Y ) = H(X).

Proof of (Id1)

IVK(X : X1...n) ≡ min
p∗(X1,...,Xn,X1...n)

p∗(Xi,X1...n)=p(Xi,X1...n) ∀i

I∗ (X1...n : X1...n) (6.17)

= min
p∗(X1,...,Xn,X1...n)

p∗(Xi,X1...n)=p(Xi,X1...n) ∀i

H*(X1...n) , (6.18)

Then because p∗(X1...n) = p(X1...n),

IVK(X : X1...n) = H(X1...n) . (6.19)

D Analytic Upperbound on IVK(X : Y )

Our analytic upperbound on IVK starts with the n joint distributions we wish to pre-
serve: Pr(X1,Y ) , . . . ,Pr(Xn,Y ). From one these joint distributions, e.g. Pr(X1,Y ), we
compute the marginal probability distribution Pr(Y ) by summing over the index of
x1 ∈ X1,

Pr(Y ) =

{
∑

x1∈X1

Pr(x1,y) : ∀y ∈ Y

}
. (6.20)

Then, for every state y ∈ Y we compute n conditional distributions
Pr(X1|y) , . . . ,Pr(Xn|y) via,

Pr(Xi|Y = y) =

{
Pr(xi,y)

Pr(y)
: ∀xi ∈ Xi

}
. (6.21)

With the marginal distribution Pr(Y ) and the |Y | · n conditonal distributions, we
construct a novel, artificial joint distribution Pr∗(X1, . . . ,Xn,Y ) defined by,

Pr∗(x1, . . . ,xn,y)≡ Pr(y)∏n
i=1 Pr(xi|y) . (6.22)

This novel, artificial joint distribution Pr∗(X1, . . . ,Xn,Y ) satisfies the constraints
Pr∗(Xi,Y ) = Pr(Xi,Y ) ∀i. This is proven by,
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Pr∗(xi,y) = ∑
x1∈X1

· · · ∑
xn∈Xn︸ ︷︷ ︸

All except xi ∈ Xi

Pr∗(x1, . . . ,xn,y) (6.23)

= ∑
x1∈X1

· · · ∑
xn∈Xn︸ ︷︷ ︸

All except xi ∈ Xi

Pr(y)
n

∏
j=1

Pr(xi|y) (6.24)

= ∑
x1∈X1

· · · ∑
xn∈Xn︸ ︷︷ ︸

All except xi ∈ Xi

Pr(xi,y)
n

∏
j=1
j �=i

Pr(x j|y) (6.25)

= Pr(xi,y) ∑
x1∈X1

· · · ∑
xn∈Xn︸ ︷︷ ︸

All except xi ∈ Xi

n

∏
j=1
j �=i

Pr(x j|y)

︸ ︷︷ ︸
sums to 1

(6.26)

= Pr(xi,y) . (6.27)

Y

X1 X2 Xn

Fig. 6.15 The Directed Acyclic Graph generating the joint distribution Pr∗(x1, . . . ,xn,y). This
is a graphical representation of eq. (6.22).

The upperbound on IVK is then the mutual information using this artificial Pr∗

distribution,

I∗(X1 . . .Xn : Y ) = ∑
x1∈X1

· · · ∑
xn∈Xn

∑
y∈Y

Pr∗(x1, . . . ,xn,y) log Pr∗(x1, . . . ,xn,y)
Pr∗(x1, . . . ,xn)Pr∗(y)

,

(6.28)
where the terms Pr∗(x1, . . . ,xn) and Pr∗(y) are defined by summing over the relevant
indices of joint distribution Pr∗(X1, . . . ,Xn,Y ),

Pr∗(x1, . . . ,xn) = ∑
y′∈Y

Pr∗(x1, . . . ,xn,y′) (6.29)

= ∑
y′∈Y

Pr
(
y′
) n

∏
i=1

Pr
(
xi|y′

)
; (6.30)
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Pr∗(y) = ∑
x1∈X1

· · · ∑
xn∈Xn

Pr∗(x1, . . . ,xn,y) (6.31)

= ∑
x1∈X1

· · · ∑
xn∈Xn

Pr(y)
n

∏
i=1

Pr(xi|y) (6.32)

= Pr(y) ∑
x1∈X1

· · · ∑
xn∈Xn

n

∏
i=1

Pr(xi|y)
︸ ︷︷ ︸

sums to 1

(6.33)

= Pr(y) . (6.34)

Putting everything together, our analytic upperbound on IVK is,

IVK({X1, . . . ,Xn} : Y ) ≤ I∗(X1...n : Y ) (6.35)

= ∑
x1

· · ·∑
xn

∑
y

Pr∗(x1, . . . ,xn,y) log
Pr∗(x1, . . . ,xn,y)

Pr∗(x1, . . . ,xn)Pr∗(y) (6.36)

= ∑
x1

· · ·∑
xn

∑
y

Pr∗(x1, . . . ,xn,y) log Pr(y)∏n
i=1 Pr(xi|y)

Pr∗(x1, . . . ,xn)Pr(y)
(6.37)

= ∑
x1

· · ·∑
xn

∑
y

Pr∗(x1, . . . ,xn,y) log ∏n
i=1 Pr(xi|y)

Pr∗(x1, . . . ,xn)
(6.38)

= ∑
y

Pr(y)∑
x1

· · ·∑
xn

n

∏
i=1

Pr(xi|y) log
∏n

i=1 Pr(xi|y)
∑y′∈Y Pr(y′)∏n

i=1 Pr(xi|y′)
.

E Essential Proofs

These proofs underpin essential claims about our introduced measure, synergistic
mutual information.

E.1 State-Dependent IVK and SVK

For a single state y ∈Y , the IVK and SVK are defined as,

IVK(X : Y = y) ≡ min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗ (X1...n : Y = y) (6.39)

= min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

DKL[Pr∗(X1...n|y)‖Pr∗(X1...n)]

SVK(X :Y = y) = I(X1...n :Y = y)− IVK(X : Y = y) (6.40)

= DKL[Pr(X1...n|y)‖Pr(X1...n)]− IVK(X : Y = y) .

Naturally, EY IVK(X :y) = IVK(X :Y ) and EYSVK(X :y) = SVK(X :Y ).
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E.2 Proof Duplicate Predictors Don’t Increase Synergy

We show that synergy being invariant to duplicate predictors follows from the equal-
ity condition of (M) of the intersection (as well as union) information.

We show that,
SVK(X :Y ) = SVK

(
X′ :Y

)
,

where X′ ≡ {X1, . . . ,Xn,X1}. We show that SVK(X :Y )−SVK(X′ :Y ) = 0.

0 = SVK(X :Y )−SVK

(
X′ :Y

)
(6.41)

= I(X1...n :Y )− IVK(X :Y )− I(X1...nX1 :Y )+ IVK

(
X′ :Y

)
(6.42)

= IVK

(
X′ :Y

)
− IVK(X :Y ) (6.43)

= ∑
T⊆X′

(−1)|T|+1 Idual
VK (T :Y )− ∑

S⊆X
(−1)|S|+1 Idual

VK (S :Y ) . (6.44)

The terms that S enumerates over is a subset of the terms that T enumerates.
Therefore the ∑S⊆X completely cancels, leaving,

0 = ∑
T⊆X

(−1)|T| Idual
VK

(
{X1,T1, . . . ,T|T|} :Y

)
. (6.45)

If Idual
VK obeys (M), then each term of eq. (6.45) s.t. X1 �∈ T cancels with the same

term but with X1 ∈ T. This makes eq. (6.45) sum to zero, and completes the proof.

E.3 Proof of Bounds of SVK(X :Y )

We show that,
WMS (X : Y )≤ SVK (X : Y )≤ Smax (X : Y ) . (6.46)

Proof that SVK(X :Y )≤ Smax (X : Y )

We invoke the standard definitions of SVK and Smax,

SVK(X :Y ) ≡ I(X1...n :Y )− IVK(X : Y )

Smax(X : Y ) ≡ I(X1...n :Y )− Imax(X : Y ) ,

where IVK and Imax are defined as,

IVK(X : Y ) = EY IVK(X : Y = y)

= EY min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n : Y = y) (6.47)

Imax (X : Y ) ≡ EY max
i

I(Xi :Y = y) . (6.48)

Now we prove SVK(X :Y ) ≤ Smax(X : Y ) by showing that
IVK(X : Y ) ≥ Imax(X : Y ).
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Proof

EY IVK(X : Y = y) ≥ EY Imax (X : Y = y) (6.49)

EY [IVK(X : Y = y)− Imax (X : Y = y)] ≥ 0 . (6.50)

Now expanding IVK(X : Y = y) and Imax(X : Y = y),

EY

⎡
⎢⎣
⎛
⎜⎝ min

p∗(X1,...,Xn,Y )
p∗(Xi,Y )=p(Xi,Y) ∀i

I∗(X1...n : Y = y)

⎞
⎟⎠−max

i
I(Xi :Y = y)

⎤
⎥⎦≥ 0 . (6.51)

We define the index m ∈ {1, . . . ,n} such that m = argmaxi I(Xi :Y = y). The
predictor with the most information about state Y = y is thus Xm. This yields,

EY

⎡
⎢⎣
⎛
⎜⎝ min

p∗(X1,...,Xn,Y )
p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n : Y = y)

⎞
⎟⎠− I(Xm :Y = y)

⎤
⎥⎦≥ 0 . (6.52)

The constraint p∗(Xi,Y ) = p(Xi,Y ) entails that I(Xm :Y = y) = I∗(Xm : Y = y).
Therefore we can pull I(Xm :Y = y) inside the minimization as a constant,

EY

⎡
⎢⎣ min

p∗(X1,...,Xn,Y )
p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n :Y = y)− I∗(Xm : Y = y)

⎤
⎥⎦≥ 0 . (6.53)

As Xm is a subset of predictors X1...n, we can subtract it yielding,

EY

⎡
⎢⎣ min

p∗(X1,...,Xn,Y )
p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗
(
X1...n\m : Y = y

∣∣Xm
)
⎤
⎥⎦≥ 0 . (6.54)

The state-dependent conditional mutual information I∗
(
X1...n\m : Y = y

∣∣Xm
)

is a
Kullback-Liebler divergence. As such it is nonnegative. Likewise the minimum of a
nonnegative quantity is also nonnegative.

EY

⎡
⎢⎢⎢⎢⎢⎢⎣

min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗
(
X1...n\m : Y = y

∣∣Xm
)

︸ ︷︷ ︸
≥0

⎤
⎥⎥⎥⎥⎥⎥⎦
≥ 0 . (6.55)

Finally, the expected value of a list of nonnegative quantities is nonnegative. And
the proof that SVK(X :Y )≤ Smax(X : Y ) is complete.
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Proof that WMS(X : Y )≤ SVK(X :Y )

We invoke the standard definitions of WMS and SVK,

WMS(X : Y ) ≡ I(X1...n :Y )−
n

∑
i=1

I(Xi :Y ) (6.56)

SVK(X :Y ) ≡ I(X1...n :Y )− IVK(X1...n : Y ) (6.57)

= I(X1...n :Y )− min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n : Y ) . (6.58)

We prove the conjecture WMS(X : Y )≤ SVK(X :Y ) by showing,

min
p∗(X1,...,Xn,Y )

p∗(Xi,Y )=p(Xi,Y ) ∀i

I∗(X1...n : Y )≤
n

∑
i=1

I(Xi :Y ) . (6.59)

Given:
min

p∗(X1,...,Xn,Y )
p∗(X1,Y )=p(X1,Y )

...
p∗(Xn,Y )=p(Xn,Y )

I∗(X1...n : Y ) , (6.60)

the individual constraint p∗(X1,Y ) = p(X1,Y ) can add at most I(X1 :Y ) bits to
I∗ (X1...n : Y ). Therefore we can upperbound eq. (6.60) by dropping the constraint
p∗(X1,Y ) = p(X1,Y ) and adding I(X1 :Y ). This yields,

IVK(X :Y )≤ min
p∗(X1,...,Xn,Y )

p∗(X2,Y )=p(X2,Y )
...

p∗(Xn,Y )=p(Xn,Y )

I∗(X1...n : Y )+ I(X1 :Y ) . (6.61)

Likewise, the righthand-side of eq. (6.61) can be upperbounded by dropping the
constraint p∗(X2,Y ) = p(X2,Y ) and adding I(X2 :Y ). This yields,

min
p∗(X2,...,Xn,Y )

p∗(X2,Y )=p(X2,Y )
...

p∗(Xn,Y )=p(Xn,Y )

I∗(X1...n : Y )≤ min
p∗(X3,...,Xn,Y )

p∗(X3,Y )=p(X3,Y )
...

p∗(Xn,Y )=p(Xn,Y )

I∗(X1...n : Y )+ I(X1 :Y )+ I(X2 :Y ) .

(6.62)
Repeating this process n times yields,

IVK(X : Y ) ≤ min
p∗(X1,...,Xn,Y )

I∗(X1...n : Y )+
n

∑
i=1

I(Xi :Y ) (6.63)

=
n

∑
i=1

I(Xi :Y ) . (6.64)
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F Algebraic Simplification of Δ I

Prior literature (Nirenberg et al. 2001; Nirenberg and Latham 2003; Pola et al. 2003;
Latham and Nirenberg 2005) defines Δ I(X;Y ) as,

Δ I(X;Y ) ≡ DKL[Pr(Y |X1...n)‖Prind (Y |X)] (6.65)

= ∑
x,y∈X,Y

Pr(x,y) log
Pr(y|x)

Prind(y|x)
. (6.66)

Where,

Prind(Y = y|X = x) ≡ Pr(y)Prind(X = x|Y = y)
Prind(X = x)

(6.67)

=
Pr(y)∏n

i=1 Pr(xi|y)
Prind(x)

(6.68)

Prind(X = x) ≡ ∑
y∈Y

Pr(Y = y)
n

∏
i=1

Pr(xi|y) (6.69)

The definition of Δ I, eq. (6.65), reduces to,

Δ I(X;Y ) = ∑
x,y∈X,Y

Pr(x,y) log
Pr(y|x)

Prind(y|x)
(6.70)

= ∑
x,y∈X,Y

Pr(x,y) log
Pr(y|x)Prind(x)

Pr(y)∏n
i=1 Pr(xi|y)

(6.71)

= ∑
x,y∈X,Y

Pr(x,y) log
Pr(x|y)

∏n
i=1 Pr(xi|y)

Prind(x)
Pr(x)

(6.72)

= ∑
x,y∈X,Y

Pr(x,y) log
Pr(x|y)

∏n
i=1 Pr(xi|y)

+ ∑
x,y∈X,Y

Pr(x,y) log
Prind(x)
Pr(x)

= ∑
x,y∈X,Y

Pr(x,y) log
Pr(x|y)

∏n
i=1 Pr(xi|y)

− ∑
x∈X

Pr(x) log
Pr(x)

Prind(x)
(6.73)

= DKL

[
Pr(X1...n|Y )

∥∥∥∥∥
n

∏
i=1

Pr(Xi|Y )
]
−DKL[Pr(X1...n)‖Prind(X)]

= TC(X1; · · · ;Xn|Y )−DKL[Pr(X1...n)‖Prind(X)] . (6.74)

where TC(X1; · · · ;Xn|Y ) is the conditional total correlation among the predictors
given Y .
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Part III
Coordinated Behaviour and Learning

within an Embodied Agent



Chapter 7
On the Role of Embodiment for Self-Organizing
Robots: Behavior As Broken Symmetry

Ralf Der

7.1 Introduction

Embodiment and SO form two cornerstones of both modern robotics and the un-
derstanding of human and animal intelligence. In particular, the role of the embodi-
ment for the behavior of both artificial and natural beings has become of much and
increasing interest in recent times. In robotics, there are essentially two attitudes
towards the physical embodiment. On the one hand, with rule based systems and/or
systems intended to execute a given motion plan, embodiment is more or less con-
sidered as a (nasty) problem opposing the execution of the plan. On the other hand,
it is well believed and verified by many examples that living beings are taking much
advantage from the physico-mechanical properties of their bodies in order to create
natural motion patterns. In robotics, this can be of immediate benefit for more ro-
bust or energy effective control, The importance of the embodiment for the behavior
generation and intelligence in general has been advocated with great impact on the
scientific community mainly by the lab of Rolf Pfeifer, see (Pfeifer and Bongard
2006; Pfeifer et al. 2007; Pfeifer and Gomez 1999) for excellent surveys. In recent
years this has been further established under the connotation of morphological com-
putation (Pfeifer and Gómez 2009; Hauser et al. 2012; Pfeifer 2012; Hauser et al.
2011). Seminal contributions are also by the lab of Helge Ritter (Ritter et al. 2009;
Grossekathofer et al. 2011; Behnisch et al. 2011; Elbrechter et al. 2011; Steffen et al.
2010; Maycock et al. 2010) and others.

Self-Organization (SO) may provide an essential progress in the realization of
embodied control. Viewing a robot in its environment as a complex dynamical sys-
tem, SO can help to let highly coordinated and low dimensional modes emerge in the
coupled system of brain, body and environment. In this way, instead of being pro-
grammed for solving a specific task, the robot may find out by itself what its bodily

Ralf Der
Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103,
Leipzig, Germany
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M. Prokopenko (ed.), Guided Self-Organization: Inception, 193
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affordances are, focusing only in a second step on the exploitation of the emerging
motion patterns—by guiding the SO process into the directions of potential benefits.

This paper studies the relation of embodiment to self-organization in autonomous
robots. This project faces essentially two challenges. One is how to organize a
robotic system in such a way that it starts to self-organize. There are several ap-
proaches into that direction based on formulating objective functions (OFs) for SO.
In recent years, several such OFs have been proposed, ranging from the maximiza-
tion of predictive information (Ay et al. 2008, 2012; Martius et al. 2013) or empow-
erment (Klyubin et al. 2005, 2007; Anthony et al. 2009; Jung et al. 2012), to the
minimization of free energy (Friston 2010; Friston et al. 2012; Friston and Stephan
2007; Friston 2012) or the so called time-loop error in the homeokinesis approach
(Der 2001; Der and Liebscher 2002; Der and Martius 2012), see also (Prokopenko
2008, 2009; Prokopenko et al. 2009) for more details on how to organize SO. Given
an objective function, the optimization process can be translated into a learning rule
that is driving the SO process. This paper introduces a new learning rule together
with some case studies demonstrating its usefulness. So, there are several pretty
satisfying approaches in the SO paradigm.

The second challenge actually is more serious and might be the reason why in
the community SO is seen more as a wishful thinking than a systematic approach
to autonomous robot development. With genuine SO one must be careful not to
plug in (by biasing the system) what one actually wants to get out. The approaches
mentioned above all seem to fit that criterion. However, and this seems to be the ar-
gument, if nothing is specified from outside, will SO simply make the robot an arbi-
trary subject that is completely unpredictable in its behaviors and thus rather a thread
than a hope. The aim of this paper is to show that this attitude is wrong. Instead, we
will develop an understanding of what happens if the system is self-organizing, what
the role of the embodiment is and how we can find clues for predicting and shaping
the behavior patterns emerging in a genuine SO scenario.

In order to prepare the ground for the role of the embodiment in SO, we give
some examples of systems unfolding complex motion patterns with minimalistic
control. We start from the famous example of the Braitenberg vehicles (BVs) which
we consider as an early case study of machines which develop complicated behav-
iors on the basis of an extremely simple construction. By these examples, we want
to make the reader aware of the phenomenon of spontaneous symmetry breaking
that in our opinion is instrumental for understanding how SO can be effective in
robotic systems. We think that the robotic community so far has overlooked the im-
portance and substance of that phenomenon. Therefore, this paper will also follow
a pedagogical purpose.

The paper is organized as follows. After introducing the original idea of Valentin
Braitenberg and variations thereof in Sect. 7.2, we introduce in Sect. 7.3 a much
more complex body, our HUMANOID, that develops a complex behavior mode un-
der a minimalistic control. This gives us the opportunity to introduce the concept of
fundamental modes, dynamical patterns that are specific for a particular body under
homogeneous energy feeding condition. This is also a first example of spontaneous
symmetry breaking (SSB). Sect. 7.4 introduces the new learning rules for driving
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SO based on a recent result from maximizing predictive information (Martius et al.
2013), followed by a short aside on the principle of homeokinesis in Sect. 7.5 con-
taining a comparison between the two methods. Sect. 7.6 is devoted to a deeper dis-
cussion of fundamental modes and the mechanism of SSB. After discussing these
phenomena with the example of the autistic vehicles, Sect. 7.7 and Sect. 7.8 study
these questions with the HUMANOID and the HEXAPOD robot.

7.2 Vehicles

Let us start with a few ideas on what we want to understand by embodiment and
its synergy with the “brain". Let us go back to a very instructive example given by
Braitenberg (Braitenberg 1984) in order to better understand the synergy concept.

7.2.1 Braitenbergs Idea

His idea was to use very simple machines in order to demonstrate the emergence of
complex behaviors determined by the very physical construction of those machines.
In the most simple case, the machine is a two-wheeled robot with two photo cells
mounted to the left an right front side of the trunk. The photocells are wired to
the motors either diagonally so that the vehicle is approaching the light source and
bangs into it, or directly so that light sources are acting as a repeller.

Besides the phenomenon of emerging functionality observed in those machines,
there is another fact we want to draw attention to. Both in the basic and also in the
more elaborate examples, it seems more or less artificial to make a distinction, as
is done in most robotics approaches, between the body and the “brain". Instead, we
see a physical system—a mechanical part consisting of the body and the wheels
combined with an electrical part consisting of the photo cells, the motors and the
wires. With this setting it seems more natural to see the machine as a whole, instead
of subdividing it into a body and a controller acting as a (kind of) brain. Of course,
which attitude to take is always a matter of taste, preferences shifting more toward
a clear partitioning with increasing complexity of the “brain”. This paper, keeping
control as simple as possible, is more in favor of the holistic attitude: considering the
machine—body, sensors, and wiring—as one physical system. In the Braitenberg
case, this system may function even completely autonomously since it receives all
the energy it needs from its sensors, the photocells.

7.2.2 Autistic Vehicles

The properties of the most simple vehicles are self-explaining given that the be-
havior is driven by the energy provided by the photo cells together with the spe-
cific wiring. If translated to humans or higher animals, this corresponds to a system
driven by vision alone. However, motion control is largely depending also on the
signals they are receiving from proprioception, like the joint angles and the muscle
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tensions. In order to mimic the role of those sensors, we are going now to restruc-
ture the BVs by including proprioceptive sensors. In particular, we introduce wheel
counters, measuring the rotational velocity of each of the wheels. Wiring can be
done in the most simple case by connecting the right (left) wheel sensor to the right
(left) motor and vice versa. However, we do now need active wires which feed en-
ergy into the system (there is no perpetual motion machine of the first kind).

Such an active, nonlinear wire can be realized by a simple neuron, that trans-
lates the input (wheel velocity) into an output— the target wheel velocity that is
subsequently realized by the motor using electrical energy supplied from outside. In
detail, we use a neuron as

y = tanh(cx+ h) (7.1)

where c is the coupling strength and h a threshold to be put equal to zero for the
moment. This setting has been studied before in different contexts. The behavior of
the wheel can be seen if we consider the full sensorimotor loop (SML). What we
need for that is the connection between the target motor values y and the correspond-
ing wheel velocity x as measured by the wheel counter. Assuming a linear relation
between the two, the SML can be modeled by the following dynamical system.

x′ = ay+ ξ = a tanh(cx+ h)+ ξ (7.2)

where x′ is the new vector of sensor values, ξ is to contain all the deviations from
the linear law, and a is a hardware constant, with a= 1 if the wheel counter is scaled
appropriately. In many applications, ξ can be treated as pure noise.

The behavior of the vehicle can be analyzed best by asking for the fixed points
(FPs) of the dynamical system which are obtained from x = ay or (with a = 1)

x = tanh(cx) (7.3)

There are a number of different regimes. Let us consider first the case 0 < c < 1
with the single FP x = 0 corresponding to wheel velocity equal to zero. With noise,
each wheel velocity is fluctuating around zero so that the vehicle executes a random
walk. With c > 1 the system is bistable. If c = 1+ δ , with δ > 0 small, the FP
is given approximately as x = ±

√
δ , see (Der and Martius 2012) for details. In

this case, the system is in one of the FPs but can be switched by the noise. So,
the wheel is rotating for some time into one direction with occasional changes of
direction. This effect generates an irregular motion of the vehicle due to the noise.
In particular, upon colliding with an obstacle, the velocity may switch so that the
vehicle is kind of reflected by the obstacles. This may be seen as a basic survival
strategy emerging from this minimalistic control. In this sense, the autistic vehicle
still does show certain reactions to the environment. However, these are restricted to
noise or physical encounters and the perturbations generated thereby.

With c < 0, the output of the neuron (motor command) is always opposite in
sign to its input so that the motor always gets contradictory commands which might
eventually lead to the destruction of the motor. Therefore, this regime was called the
regime of self-destruction. However, we will see in Sect. 7.3 below that, based on
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the specific physical embodiment, this regime may also deploy highly interesting
modes.

Altogether there are not much interesting properties of that autistic vehicle. A
first interesting result is observed if several such two-wheeled vehicles are coupled
passively together. In that case, the physical cross-talk—the coupling forces pro-
duced by different wheel velocities of neighboring vehicles—may switch the wheel
velocities so that eventually a collective motion of the system emerges. This has
been studied extensively earlier (Der et al. 2008; Zahedi et al. 2010; Der and Mar-
tius 2012) so that we do not go into details here. Instead we consider other more
complex systems where a collective motion is emerging from decentralized control
in a surprising way, see Sect. 7.3 below.

7.2.3 Symmetries

Symmetries and their breaking play a central role in this approach. Let us start
here with the standard scenario of inducing the breaking of a given symmetry by
manually driving certain parameters of the system over a bifurcation point. The
self-induced breaking that is of actual interest for this paper will be discussed in
Sect. 7.6 below. By way of example, let us consider the autistic vehicle introduced
above with a single wheel running on a rail. Assuming there is a perfect forward-
backward symmetry of the morphology, the system is invariant against inversion of
the x-axis, i. e. it obeys the symmetry S : x →−x.

Given that the controller is invariant against S and assuming that the noise also is,
we find that there is no clue for the controlled system to prefer a specific direction in
space1. In the regime with only a single FP (0<c<1), this means that the trajectory
is fluctuating around the FP x = 0. In the sense of a classical bifurcation analysis,
we can now increase the coupling strength c. When crossing the bifurcation point,
the system is entering its bistable regime with two stable attractors corresponding to
the wheel rotating forward or backward. Which one is chosen is determined by the
noise so that we have here a trivial case of noise-induced symmetry breaking.

7.3 The Braitenberg Man—Fundamental Modes

Let us now extend Braitenberg’s idea to a more complicated machine—our HU-
MANOID with a specific wiring.

7.3.1 The HUMANOID

We consider a humanoid robot with 17 active degrees of freedom. Each joint is
driven by a simulated servo motor, the motor values y ∈ R

17 sent by the controller

1 With noise the symmetry is to be understood in the stochastic sense, meaning that each
trajectory finds its counterpart—a trajectory that is realized with the same probability—by
applying the symmetry operation.
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being the target angles of the joints and the sensor values x ∈ R
17 are the true,

i. e. observed angles. This is the only knowledge the robot has about its physical
state. The physics of the robot is simulated realistically in the LPZROBOTS simula-
tor. Let us introduce a specific wiring in analogy to the autistic vehicle: each joint
i is controlled by a single neuron generating the control yi = tanh(cxi) for motor
i, with c a constant coupling strength, the same for all joints. In the terminology
of Braitenberg the neuron can be considered as an active, nonlinear wire. By this
wiring, like in the case of the coupled vehicles mentioned above, we have a system
with fully decentralized control (called split control in (Zahedi et al. 2010)).

7.3.2 A Fundamental Mode of the HUMANOID

The interesting behavior emerges if we give the robot much freedom to develop its
specific, body-inspired motions. In the experiment, we suspend the HUMANOID

like a bungee jumper. After starting it in a position slightly above the equilibrium
point of the robot-spring system, the robot is seen to fall down a short distance and
then oscillates vertically for a while due to the elastic forces of the spring, without
developing internal motions of its own. Its further fate depends essentially on the
coupling strength c. We do not observe much of interest for positive coupling
strengths. Instead, there is a critical negative value ccrit so that, with c < ccrit ,
the robot is seen in the experiment—after the oscillatory phase—pretty soon to
go into a regular, periodic motion2. This is caused by the self-amplification
of initial, very small perturbations, see the video S1 (in the supplementary
material on http://robot.informatik.uni-leipzig.de/research/
supplementary/GSO2012/). The interesting and on first sight surprising ob-
servation is that this motion is very similar to a running behavior. In particular,
despite of the completely decentralized control, arms, legs and hip motions are seen
to be synchronized with fixed phase relations like with a running human.

Why is that? How do the individual controller know of each other? In order to
discuss this point we must remember that the coupling constant is strongly negative
so that actually we are in the regime of self-destruction. However, in the physical
system, motor forces are confined to a low range so that—given the inertia due to
the masses of the segments—the joint angles can change only slowly. Thus, as long
as a joint angle is largely negative, a strong positive motor command is generated
that engenders a motion towards the region of positive joint angles. Overshooting
(by both inertia and the time averaging of the sensor values) the region of small joint
angles, the scenario repeats with an impact towards negative joint angles. Altogether
this produces an oscillatory motion of the joint with frequency and amplitude de-
pending on the motor forces and masses of the moved segments in a complicated
way.

This effect explains the latent oscillatory mode of each individual joint. But why
the (running like) coordination between the segments? Well, the motions are seen
to be quite rapid so that there are heavy intra-robot physical forces: by the inertia

2 We have to smooth the sensor values in a short time horizon to obtain that result.

http://robot.informatik.uni-leipzig.de/research/supplementary/GSO2012/
http://robot.informatik.uni-leipzig.de/research/supplementary/GSO2012/
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Fig. 7.1 One half-period in the running motion pattern of the Braitenberg man. In the simu-
lation we use a time average over 15 steps of the sensor values.

effects, any motor activity changing a joint angle will generate a heavy impact on
its neighbors. So, like with the chain of wheeled robots, there is a strong physi-
cal cross-talk that is the communication basis of the intra-robot coordination phe-
nomenon. Spontaneous symmetry breaking (SSB) comes into play here. By its ge-
ometry, the specific wiring, and the identity of all the coupling constants, the system
is highly symmetric, any emerging motion pattern corresponding to a specific break-
ing of that symmetry. Due to the overcritical negative feed-back strength given by
c < ccrit , there is a strong tendency of self-amplification of the physical cross talk.
Given the high degree of symmetry at the start, this self-amplification induces a
symmetry breaking with a specific motion pattern emerging. Choosing the pertur-
bations by hand, many different motion patterns are possible but in the experiments,
the running motion pattern (RMP) is dominating, i. e. it seems to be the most stable
one—once the pattern is established one may perturb it by external forces but, in
most cases, the pattern is recovered after a short time.

The above mechanism also explains why we want to call the emerging dynam-
ics a fundamental mode of the system. We borrowed that term from physics where
fundamental modes (often called normal modes) are common phenomena. For in-
stance, in coupled systems of linear or nonlinear oscillators, low frequency modes
are emerging where all oscillators are synchronized with a fixed phase relation. In
neuroscience such modes are also known for networks of integrate-and-fire neurons,
e. g. Synchrony and fixed phase relations are also featuring in the RMP—the indi-
vidual constituents of the body are moving in a highly coordinated manner. More-
over, the mode may be called fundamental since it is a dynamical pattern that is
specific for this particular body under the homogeneous energy feeding condition:
the intake of energy is regulated for each motor in the same way by an individual
feed-back loop with the same coupling constant. Yet, despite this structural homo-
geneity we get a highly structured dynamics.

The existence of the fundamental mode heavily relies on the specific conditions,
in particular the freedom of movement as realized in the case of the bungee jumper.
When lying on the ground, the robot will not develop any interesting activity. With
most values of |c|< ccrit , the robot will reach a fixed point behavior, ccrit correspond-
ing to the overall critical feed-back strength. With super-critical values, the motions
are confined by the contact with the ground. These restrictions are overcome with a
convenient method for self-organization of the behavior as we will develop it in the
following.
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7.4 Unsupervised Learning for Self-Organization

So far, we have organized the system for generating specific modes by hand, guided
by an intuitive understanding of the physics and the physical cross-talk mechanisms.
Let us now start with developing a scheme for the self-organization of the system,
hoping that the system itself discovers such interesting phenomena like the existence
of fundamental modes.

In recent work, the so called predictive information (PI) was introduced as a
general objective function for SO (Ay et al. 2008, 2012; Zahedi et al. 2010; Martius
et al. 2013). By maximizing the PI, a general learning rule for the synaptic strengths
of a neural controller network was derived on the basis of such an Infomax principle.
Different from Infomax principles derived so far, that method solves the task of
relating the general principle, formulated at the level of behavior, to the internal
world of the robot, in to its brain so to say.

The controller of the robot is given in our case by an artificial neural network
(ANN) transforming sensor values x ∈R

n into motor values y ∈ R
m like

y = K (x, ...,w) (7.4)

where w are the parameters (synaptic strengths) and ... means some other, internal
variables which we will drop for the moment. The translation between the external
and the internal world can be done if there is a forward model predicting future
sensor values on the basis of the current sensor and motor values. In particular we
need only the relation between two time steps so that

xt+1 = φ (xt ,yt)+ ξt+1

where ξ is the prediction error and the parametrized function φ : Rn ×R
m → R

n is
the predictor.

7.4.1 Learning Rules for Self-model and Control

We consider here only the result for a specific controller—a one layer feed-forward
neural network realized as

K (x) = g(Cx+ h) (7.5)

so that the set of parameters w = (C,h) is given by the synaptic values (matrix C)
and the vector h of threshold values for the neurons. In the concrete applications
done in this paper, we specifically use gi (z) = tanh(zi) ( so that g : Rm → R

m is to
be understood as a vector function).

Moreover, the forward model φ is given by a layer of linear neurons, so that

φ (x,y) = Ay+ Sx+ b . (7.6)

The matrices A and S, and the vector b represent the parametrization of the forward
model that can be adapted on-line by a supervised gradient procedure as
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ΔA = ηξ y�, ΔS = ηξ x�, Δb = ηξ (7.7)

with ξt = xt −ψ (xt−1). In the applications, the learning rate η may be large such
that the low complexity of the model is compensated by a fast adaptation process.

The learning rule for the controller, given in (Martius et al. 2013), was derived
from maximization of the predictive information. Based on that, we postulate a new
unsupervised learning rule (ULR) which will not be derived here but considered as
intuitively grounded by the discussion in Sect. 7.4.2 below. The rule is written as
(all quantities are at time t)

1
ε

ΔCi j = δyiδx j − γiyix j (7.8)

1
ε

Δhi =−γiyi (7.9)

where δxt originally was the prediction error but in the new rule we are free to con-
sider δx as any perturbation of the sensor dynamics. In the experiments described
below we used the change of the sensor values in one time step, i. e. δxt = xt −xt−1.
δyt is obtained by backpropagating δxt+1 through the world model as

δyt = JT δxt+1 (7.10)

where

J =
∂φ (x,y)

∂y

is the Jacobian matrix of the model relating its output to the input y. In our linear
model, we simply have J = AG′ (z) where G′ (z) = diag[g′1 . . .g

′
m]. Moreover, γi is a

neuron specific learning rate defined as

γi = 2β δyiδ zi (7.11)

where β is the so called sensitivity, an empirical quantity with β > 1, and

δ z =Cδx

is the perturbation of the post-synaptic potential due to δxt .

7.4.2 Anti-Hebbian and Differential Hebbian Learning:
A Productive Competition

The specific form of the learning rule allows for a very basic interpretation. Let us
start with the last term −γiyix j contributing to ΔCi j which is easily recognized as a
Hebbian like term since it is the product of the input x j into the synapse Ci j times
the activation yi of the neuron. In standard situations, the prefactor γi is positive,
so that overall the term represents an anti-Hebbian mechanism. As such it would
weaken all tracks in the SM loop for which there is a strong output of the motor
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neuron combined with a strong response from the outside world as reported by the
sensor value xi. In general, this would weaken the activation of any neuron in such
a loop, preventing it from saturation.

The first contribution given by δyiδx j is formulated not in the excitations itself
but in their time derivatives. This is a differential Hebbian mechanism as it has found
much interest recently, see (Kolodziejski et al. 2008, 2009; Kulvicius et al. 2010).
Given the relation between δyt and δxt+1, see Eq. (7.10), Ci j is strengthened if there
is a strong correlation between3 δxt

j and those components of δxt+1 which are fed
by δyt

i . Roughly speaking, the first term in the learning rule tries to increase the
dynamical correlations across time, driving the system towards activity, while the
second term keeps the neurons in their sensitive regions, away from saturation.

This has an important impact on the symmetry breaking scenarios. In the bifur-
cation scenario discussed in Sect. 7.2.3, symmetry breaking was induced by chang-
ing the controller parameter from outside: when crossing the bifurcation point, the
system became bistable, the system state jumping into one of the two emerging al-
ternatives. What we have now is a self-referential system, a dynamical system that
changes its parameters by itself (Der and Martius 2012). The decisive point in this
scenario is the fact that (i) the learning rule does not introduce explicitly any viola-
tions of symmetries of the physical system it is applied to, but that (ii) the learning
is driving the physical dynamics towards activity, eventually causing a spontaneous
breaking of existing symmetries. This paper will present many examples of behav-
iors arising from this mechanism of spontaneous symmetry breaking.

7.4.3 Relation to Infomax Principles

As mentioned already in (Martius et al. 2013), there is a close relationship of the
learning rules to the so called Infomax principles. Maximizing the mutual informa-
tion between input and output of a unit is widely known as InfoMax. Applied to a
layer of neurons the principle yields an explicit parameter dynamics (Bell and Se-
jnowski 1995) structurally similar to the one presented in (Martius et al. 2013) and
the one given here. Also, similar rules have been obtained in (Triesch 2005) where
the entropy of the output of a neuron was maximized under the condition of a fixed
average output firing-rate. The resulting dynamics is called intrinsic plasticity as it
acts on the membrane instead of on the synaptic level and it was shown to result in
the emergence of complex dynamical phenomena (Butko and Triesch 2005; Lazar
et al. 2006; Triesch 2007; Lazar et al. 2011). In (Markovic and Gros 2010, 2012) a
related dynamics is obtained at the synaptic level of a feedback circuit realized by an
autaptic (self) connection. In a recurrent network of such neurons it was shown that
any finite update rate (ε in our case) destroys all attractors, leading to intermittently
bursting behavior and self-organized chaos.

Our work differs in two aspects. On the one hand, while the information theoret-
ical principle—the starting point for our more intuitively based learning rule—was
formulated at the level of behaviors of the whole system, explicit learning rules were

3 We write the time as a superscript if components of a vector are considered.
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derived at the neuronal level by rooting the behavioral level (outside world) back to
the level of the neurons (internal world). On the other hand, as a direct consequence
of that approach, there is no need to specify the average output activity of the neu-
rons as in (Triesch 2005). Instead, the latter is self-regulating by the closed loop
setting. Independent of the specific setting, the general message is that these self-
regulating neurons realize a specific working regime where they are both active and
sensitive to influences of their environment. Instead of studying those neurons in
internal (inside the “brain”) recurrences, we embed them into a feedback loop with
complex physical systems where these self-active and highly responsive neurons
produce surprising phenomena at the level of behaviors—in the outside world.

7.5 Homeokinesis: Body Inspired Behavior

The unsupervised learning rule (ULR) given above shares some common features
with the corresponding rule forming the basis of homeokinesis. In the Chapter by
Martius, Der, and Hermann, the latter approach will be considered in some detail,
demonstrating the potential of that approach for guided SO. This section will give
a very short account of the principle of homeokinesis in order to discuss the par-
allels and differences of the two related approaches. Reader not interested in this
comparison may skip this section and go directly to the applications.

Homeokinesis (HK), a general principle originally proposed in (Der 2001; Der
and Liebscher 2002), stands for the dynamical symbiosis between brain, body, and
environment. It was shown by many works to drive robots to a self-determined,
individual development in a playful and obviously embodiment-related way, see
(Der and Martius 2012) for a detailed consideration. HK is not only the descrip-
tion of a goal, namely the dynamical symbiosis between brain, body, and environ-
ment but comes with a concrete realization in the form of a universal, unsupervised
learning rule.

In order to discuss similarities and differences with the ULR of this work, we
directly consider the HK rule obtained by the minimization of the so-called time
loop error (TLE)4

ETLE = vT v = ζ T 1
CCT ζ . (7.12)

where ξ is the prediction error5, ζ = (AG′)−1 ξ , μ =
(
CCT

)−1 ζ , and v =Cμ . Gra-
dient descending the TLE leads to the following unsupervised learning rules for the
parameters of the controller

4 The matrix inverses have to be understood as pseudo inverses if the normal inverse does
not exist.

5 The minimization of the prediction error is also at the basis of more recent approaches on
minimizing the free energy of the sensor process (Friston 2010; Friston et al. 2012; Friston
and Stephan 2007; Friston 2012). In Friston’s approach, the tendency of stasis is overcome
by assuming additional priors that drive the system to activities. This is not necessary both
in homeokinesis and in the present approach.
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ΔCi j = εcμiv j − γiyix j ,

Δhi =−γiyi (7.13)

displaying a noteworthy similarity with Eqs. (7.8, 7.9). Indices are running over all
sensors and motors as before, i. e. i = 1,2, . . . ,n and j = 1,2, . . . ,m and we intro-
duced the channel specific learning rate

γi = 2εcμiζi .

These relatively simple update rules define the parameter dynamics of the controller,
the learning of the self model being given by Eq. (7.7). The rules need some numer-
ical precautions due to the matrix inverses which are discussed in detail in (Der and
Martius 2012). Both in HK and in the present work, learning is not to be under-
stood as the convergence towards a specific goal. Instead, the learning rates usually
are chosen such that the parameter and system dynamics run on comparable time
scales. In the neural network interpretation we have a fast synaptic dynamics which
is constitutive for the behavior of the system.

7.5.1 Principles of Action

The peculiarities of the general learning rules has been demonstrated in various
robot examples using both real and simulated robots, see (Der and Martius 2012).
At a general level, essential features of a learning rule are revealed by consider-
ing the landscape of the objective over the parameter space. The time loop error,
Eq. (7.12) is characterized by singularities acting as repeller (infinitely repulsive re-
gions) for the gradient flow. This is a direct result of learning the system backward
in time. These repulsive regions are easily identified. A first class of singularities is
given by the zeros of g′ (featuring in ζ ), i. e. in the saturation regions of the neu-
rons. The effect of this singularity, which leads to the anti-Hebbian term −2εiyix j

in Eq. (7.13), is to keep the neurons away from the saturation regime. This is very
reasonable since in that region neurons are not sensitive to their inputs.

Typical for the landscape based on the TLE is a further repulsive region resulting
from the inverted matrix CCT . The role of this singularity is most immediately seen
if the robot is initialized in the situation C = 0, h = 0, (the least biased one in the
sense explained in Sect. 7.6.1) so that the controller does not react to its sensor
values at all. The slightest perturbation will quickly drive the parameters of the
controller away from this unstable fixed point of the combined dynamics. In this
way, feedback in the sensorimotor loop is generated and the robot is quickly driven
away from this “do nothing” region in behavior space. This is a definite advantage
if it is important to get away from that singularity as fast as possible. In our new
rule, the “do nothing” region is not a repeller but an unstable fixed point. This may
be a disadvantage in the bootstrapping process. However, with the new rule, one
may start directly with the least biased initialization. This is beneficial if one wants
to make maximum use of the symmetry breaking phenomenon. This paper presents
several examples which were not possible in the HK approach.
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Another singularity is produced by the inverse of the self-model matrix A featur-
ing in ζ . That one can also be present in the new approach if δy is calculated not by
backpropagation but by the so called backprojection method. We consider this as a
more or less technical issue so that we will not discuss it here, see (Der and Martius
2012) for details.

Behaviors generated by either the HK or our new rule are inherently contingent
(there is no influence from outside) but by far not arbitrary since the whole boot-
strapping process is driven by the specific reactions of the embodied robot to the
controller signals. Thus, it is the body itself which plays the most active part in
the emerging control process so that this phenomenon has also been called body-
inspired behavior.

7.6 Vehicles: Behavior As Broken Symmetry

Let us now apply the new learning rule to some specific examples chosen such
that the characteristic properties of the self-organization process are illustrated. This
section will focus on the TWOWHEELED robot.

7.6.1 Least Biased Initialization

In applications, a first point is about the choice of the initial parameters of the net-
works and the initial configuration of the robot. With our specific choice of the
controller network, the initialization with C = 0 seems most natural because this
corresponds to a controller that is completely numb, i. e. deprived of any function-
ality. Putting additionally h = 0, we find that all motor neurons send the command
yi = 0 to the controller, independently of any inputs.

Choosing the initialization in the described way has different effects on the initial
pose the robot is taking. For example, in the wheeled robots case this means that all
wheels are held at rest. In robots consisting of several segments tied together by
joints, y = 0 means that all joints are driven towards their center position. We will
follow up this point in the detailed examples of the HEXAPOD and the HUMANOID

further below.
The combined system, comprising the physical and the synaptic dynamics, is

fully deterministic, in the virtual case at least. If starting in the least biased initial-
ization the combined system may be in an unstable fixed point so that we have to
add, for a short time interval, a little noise to the sensors. After switching the noise
off, the actual initial condition is fixed. From this time on, the further time evo-
lution of the entire system is deterministic, being fully determined by the values
of the sensor vector, the current pose of the robot and the values of all parameters
of the controller (now already different from zero). This set of values may be called
the behavior code of the robot.
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7.6.2 Symmetry Breaking—A Rule of Thumb

Before going to present the experiments, let us formulate a simple rule of thumb
on the development of the robot when starting from the least biased condition: in
typical experiments we observe that the behavior of the robot can be described as
being active (caused by the differential Hebbian term in the learning rule) while con-
serving as much of the original symmetries of the system as possible. This was also
formulated as the economy or parsimony of symmetry breaking. Note that symme-
tries involve not only the geometry of the robots body but also all the symmetries of
the physical dynamics. In the two-wheel robot case the body geometry is described
by the invariance against both left-right and forward-backward transformations. The
physical symmetries are based on the robot being an object in space and time, the
physics being invariant against both translations and rotations of the frame of ref-
erence, taking however account of the physical boundaries (objects, the ground the
robot is on). Moreover, there is the invariance against the inversion of time combined
with the inversion of all velocities.

Let us also emphasize that symmetry breaking observed in this scenario is emerg-
ing as a phenomenon “from inside” the deterministic system itself so that we may
speak of a spontaneous symmetry breaking (SSB). We would also like to stress that
fundamental modes are singled out by a maximum degree of symmetry. This may
give the concept of fundamental modes a more solid founding but this still needs
some work to be done. As an additional feature, the breaking of the symmetries
can largely be influenced by external impacts (physical forces in the sense of a de-
sired mode) and/or by choosing specific sensor combinations that help to organize
the symmetry breaking scenario. We will give an example with the bungee jumper
below.

7.6.3 The Autistic Vehicle: Fundamental Modes

We have introduced above the vehicle with the wheel counters as the only sensors.
We have called it autistic because its only contact with the external world is by
proprioception. Moreover, the learning starts in the least biased way, so that the
symmetry breaking should follow the principle of parsimony mentioned above. In
particular, the physical system (realized in the simulator by N differential equations,
where N = 8 with the vehicle), is invariant against spatial transformations, i. e. trans-
lations or rotations of the spatial frame of reference. With the constraints given by
the (elastic) surface, the remaining symmetry operations are rotations around the z
axis and translations in the x− y plane. Also, as discussed, the learning rule gives
no clue of how symmetries are to be broken.

We consider now the TWOWHEELED with a two-neuron controller receiving sen-
sor vector x ∈ R

2 representing the wheel velocities and sending its output y ∈ R
2 to

the motors. Starting with the least biased initialization, and believing in our rule of
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Fig. 7.2 The TWOWHEELED as a 3D physical object. The ground is elastic so that the wheels
are sinking in, depending on their load. Left, wheelsize = 1: with the given elasticity, the robot
is lying more or less flat on the ground when driving straight. There is a strong slip effect when
accelerating. Moreover, when moving in a curve, there is an inclination due to the physical
forces making the effective radius of the wheels different, see the video S2. This is even more
pronounced with larger wheel sizes (middle and left, size = 1.2). These 3D effects make both
odometry and the execution of motion plans very difficult as they involve the full physics of
the robot.

thumb, we expect the robot to start moving after some time6 while trying to conserve
as much of the original symmetries as possible.

However, when using a learning rate ε not too small, the robot is seen to engage
in a sequence of left and right turns combined with motions back and forth along
curved lines, without any regularity to be seen, see Fig. 7.3, top left panel. Still, we
must note that these trajectories are fully deterministic. Restarting the simulation
with exactly the same parameters C,h and in the same physical state reproduces
exactly the same trajectory however irregular it is. Nevertheless, our rule of thumb
obviously is not valid in this regime as there is no visible footprint of the underlying
symmetries—the invariance against rotations and translations of the physical space.

The situation changes drastically when using smaller learning rates so that the
interplay between learning and physical state dynamics is given time to unfold.
Fig. 7.3 is demonstrating a typical behavior of the robot. As the top right panel
shows, after starting, the robot is running through a kind of metastable patterns,
converging after some time toward a large scale CP. The bottom left panel shows
the fine structure of that limit cycle behavior.

In order to discuss this phenomenon, let us take at first the perspective of an
external observer in the sense of Braitenberg. From this external point of view, the
robot is drawing a complex geometrical pattern with a surprisingly high accuracy.
In order to do that, the robot would have to have a detailed plan of the pattern
to be drawn. In order to execute that plan, the robot would need a very accurate
system of self-localization for finding its exact local position and heading direction.
This could be done by either using a compass and a GPS system (which is not
available) or by odometry, based on the measured wheel velocities. However, this
is very inaccurate, given that the robot in the simulation is moving on an elastic

6 When using low learning rates, this time can be very long so that we often start the robot
with an initialization close to the bifurcation point, choosing C = cI with c close to 1.
Contrary to the HUMANOID and HEXAPOD treated below, in the TWOWHEELED case, no
substantial differences in the behaviors were observed.
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Fig. 7.3 Deterministic trajectories of the robot in the 2D plane emerging with different learn-
ing rates ε . If learning is fast (ε > 0.01), irregular trajectories are the rule. With lower rates
(here ε = 0.001), after a transient phase of irregular motion through a kind of metastable at-
tractors, the dynamics is converging toward a limit cycle behavior (top right and bottom left
panel). A first explanation for the emergence of a circular pattern (CP) is given by using an
SO(2) matrix for controlling the robot (bottom right). This leads to a CP but does not explain
the fine structure of the CPs observed under learning.

ground so that, when accelerating or moving in a curve, there is an inclination due
to the inertia and/or centrifugal forces making the effective radius of the wheels
different, see Fig. 7.2. On top of that, the odometry would be very demanding in the
computational resources given the required accuracy.

7.6.4 Synergy of Learning and Physical State Dynamics

On the other hand, when looking inside the system, none of the above ingredients
for drawing a prescribed pattern with the observed accuracy can be found. Instead,
all we see are the two poor neurons with their universal, low-complexity synaptic
dynamics. Metaphorically, from this point of view, nothing like a concept of space
and/or a plan for drawing a particular pattern can be uncovered. Even more so, it is
even impossible of finding the plan inside the robot. In fact, given the wiring, the
emerging patterns are specific with the concrete embodiment as they emerge by the
interplay with the physics of the system only.

Still, an understanding of the phenomenon is in reach when looking at the struc-
ture of the controller in one of the limit cycle patterns. When taking a snapshot
of the controller matrix C, we discover a nearly perfect SO(2) structure of the C-
matrix, see Fig. 7.4, with tiny modulations in synchrony with the motions of the
robot. Any such matrix can be written as a rotation of a given vector v by an angle
α and a stretching factor ρ . When using such a matrix in Eq. (7.5), the robot will
either draw a (nearly) perfect cycle or, as shown in Fig. 7.3 (bottom right), will gen-
erate a circular pattern similar to the co-learning case but with a very different fine
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structure. Obviously, the fine structure of the patterns is produced by the coupling
between physical and learning dynamics so that the rotation matrix does give only
a first orientation on the emerging structures. Instead, as we will see below, both
the very nature and the fine structure depend additionally on the embodiment in an
intricate way.

Fig. 7.4 The circular pattern formation is hidden in the dynamics of the controller parameters
as driven by the general learning rule. The C-matrix (left and middle panel) is seen to be of a
nearly perfect SO(2) structure. This reveals another aspect of the general learning rules—the
emerging dimension reduction in the parameter space. Instead of 4 parameters, the SO(2)
matrix is described by only one parameter (the rotation angle). The middle panel displays the
interplay with the h dynamics which is seen to be periodic with a slight bias. Right panel: the
two sensor values (wheel velocities).

So, from looking inside, there is a coarse explanation of how the robot does it,
once it has “understood” so to say, what a rotation matrix is and how it can be used.
However, this does not explain why the learning discovers these special matrices
in the four dimensional matrix space and moreover how to use them in the fine
interplay between the parameter and the (physical) state dynamics.

On a general level, an understanding is given by or rule of thumb: a pattern in
space can only emerge from breaking the spatial symmetries inherent in the physics
of the robot as mentioned above. When trying to make this symmetry breaking as
parsimonious as possible, a circle is nearly perfect: while it has broken the trans-
lational symmetry (the center is a fixed point in space), rotation symmetry (around
that center) is fully conserved. Yet, because of its fine structure, the real patterns
emerging in our learning scenario are not circles, but they are still invariant against
rotations about a definite angle, see in particular the patterns of Fig. 7.5. This may be
seen as a noteworthy parallel to the hexagonal patterns known from many phenom-
ena in nature. So, the observed patterns apparently are the ones with a high degree
of preserving the spatial symmetries of the physical system.

There is a more naive argument for the predominance of such regular patterns.
We have seen above that, once the initial condition is fixed (see Sect. 7.6.1), the
trajectory of the robot is exactly determined for all future by the values of that
initialization—its behavior code. Our point is that a completely irregular trajectory
needs infinitely much information stored in its code. To the contrary, codes of reg-
ular trajectories need much less information so that there are whole sets of values
generating one and the same regular trajectory (in a finite but large time interval) so
that the latter are realized with much higher probability.
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Fig. 7.5 Pattern spin-off effect in the learning on-off scenario. When in a limit cycle (circu-
lar pattern) and temporarily switching learning off, a new stable structure is emerging. After
switching learning on again, the full dynamics is converging back to the limit cycle. In rep-
etition, this produces a large variety of different structures. Top left: Pattern with robot for
size comparison. However, patterns come on very different length scales. See video S3 for an
example.

7.6.5 The Pattern Factory

Further insight into the role of the learning dynamics in the pattern formation can be
gained in a kind of learning on-off scenario: we start with the full learning dynamics,
let a circular pattern, see Fig. 7.3, develop and put ε = 0 for a while. Most aston-
ishingly, the robot starts drawing a new pattern of very high geometric regularity
resembling only remotely the circular structure it was spinning off. Upon switch-
ing on learning again, the system rapidly returns to the original CP (with a different
center in space). This procedure can be repeated with ever new patterns emerging.

In discussing this pattern spin-off effect, we have to remember that once ε = 0,
both C and h are fixed so that the spin-off pattern is fully determined by the physical
starting state. In a number of experiments we even observed that each parameter
set created in the learning on-off scenario is seen to even support several behaviors,
each with its own basin of attraction. What we want to emphasize is that all these
patterns are off-springs of the CP with behavior codes defined by the snapshots of
the parameter dynamics. So, actually, we may say that, once in (or close to) the
limit cycle attractor, the learning (parameter dynamics) produces a whole sequence
of behavior codes for potential behaviors.

7.6.6 Patterns As Expressions of Embodiment

Let’s now have a closer look at the role of the embodiment. As already explained
with Fig. 7.2, the TWOWHEELED must be considered as a full 3D system moving on
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Fig. 7.6 The role of embodiment. Left panel: wheel size 1.1, ε = .001 and cInit=1.2. After a
very irregular initial phase, the robot enters an aligned wiggly pattern, running at first to the
right and then back toward the left lower corner. Middle: Wheel size 1.15. Right: asymmetry
of 1.5:1.75 in the wheel-trunk system with wheel size 1.2. The pattern is less regular.

an elastic ground. Let’s consider a few experiments demonstrating how sensitively
the emerging behaviors depend on the concrete realization of the robot’s body.

As explained with Fig. 7.2, the physics of the robot already changes substan-
tially with changing the wheel size. As demonstrated with the left panel of Fig. 7.6,
changing the wheel size from 1 to 1.1 leads to a new pattern—instead of a circu-
lar structure we get convergence toward an aligned pattern structure, i. e. a wiggly
structure organized along a line. On the general level we may argue that now it is
not the rotation symmetry that is partially conserved, but the translational one. In
fact, a line is invariant against translations but not rotations in the plane.

As the middle panel of Fig. 7.6 shows, this effect is very sensitive to the choice of
the wheel size—increasing the size to 1.15 produces a circular pattern again but with
a very different fine structure. The emerging patterns are also very sensitive to the
forward-backward asymmetry of the wheel-trunk system, see right panel of Fig. 7.6
for an example. Depending on that degree of asymmetry many different patterns can
be observed, mostly circular ones but with widely varying fine structure.

7.6.7 Modes

We see that the hidden symmetries of the physical system can in a very intricate way
propagate into the combined state-parameter dynamics of the developing system to
produce large-scale effects in space and time7. When looking at the limit cycle pat-
terns (the circular structures), we see a very complicated periodic or quasi-periodic
structure interweaving the physics and the learning dynamics in an irreducible
way. This synergy between state and parameter dynamics is breaking down

7 This effect seems to have been observed already in the homeokinesis (HK) approach (Der
and Martius 2012) with the sphere that adapts its rolling motion to the geometry of the
basin. Here, we have a more subtle effect, given that there is no formative external geome-
try, the only link between the internal world (learning dynamics) and outer world (physics)
is by the wheel velocities which give information about the behavior in space only in an
indirect way and, even in the simulations, with much restricted accuracy. It is only by this
window into the outer world by which physical effects, mainly the inertia due to the mass
of the body and the wheels, take influence on the behavior generation.
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immediately as soon as we freeze the learning dynamics, with a new pattern emerg-
ing as explained above.

We may consider each emerging limit-cycle dynamics as a mode of the system.
These are of different nature, either with the parameters fixed or driven by the learn-
ing dynamics. In the no-learning case, there is an immediate parallel to Braitenberg’s
idea of interchanging perspectives: looking from inside, we see a vehicle with a fixed
wiring of sensors to motors, now also with cross connections and some bias for the
neurons (active wires). This extremely simple electro-mechanical system is able of
drawing very complex geometrical patterns like the ones shown in Fig. 7.5. Looking
from outside, even if the self-localization problem was solved, the system seems to
follow a very complex plan for drawing such highly regular geometric patterns. But
also in the learning case, the Braitenberg perspectives are still appropriate. If con-
sidering the parameter dynamics as the dynamics of some internal state variables,
we still have a very simple controller exciting those very complex modes.

Yet another perspective is suggested by the autism metaphor: we could say that,
by the learning dynamics, the robot is somehow taking note of its being in space
(creating patterns) but this without any internal reflection of that fact. Metaphori-
cally, we may say that the robot does not know what it does but it does this with
high accuracy and dedication, discovering by proprioception alone a specific way of
being in space and time.

The observed limit cycle attractors, both with and without learning, are examples
of the many modes this specific brain-body system is able of developing. We are
free to call each of them a fundamental/normal mode but we also may single out the
co-learning mode as the most fundamental one as it is the host of all the spin-off
modes. This is the attitude taken in this paper.

7.7 The Looping HUMANOID

Let us now continue our considerations with a more complex system, the HU-
MANOID introduced above. The results in Sect. 7.3 have demonstrated that under
certain conditions this system is particularly amenable to fundamental modes. The
observed modes may be attributed to a specific form of broken symmetries under
minimalistic control. Using the HUMANOID we are now going to look a little deeper
into the scenario of spontaneous symmetry breaking in systems of higher complex-
ity than that of the TWOWHEELED.

7.7.1 High Symmetry Motion Patterns

As in the TWOWHEELED case we start with the least biased initialization, won-
dering what the emerging symmetry breaking scenario will look like. We use the
bungee scenario with the same physical setting as in Sect. 7.3. After letting the
robot fall, we observe again the vertical oscillations around the equilibrium point
but after a while (several minutes real time with ε = .001) the robot develops a
specific motion pattern looking like a swimming motion, see Fig. 7.7 and video S4.
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On a general level, the observed pattern illustrates very clearly the rule of thumb:
the robot is being active but the original symmetries of the physical system are
conserved as much as possible. This is obvious for the geometrical left-right sym-
metry but we may also argue that the original symmetries of the physical system
are still dominating the behavior. In the least biased initialization, there is an in-
variance against inversion of joint angles8. Breaking the symmetry means to define
for each joint angle where to go by what velocity. Without any external clue, the
most parsimonious solution would be to change all the joint angles with the same
velocity, generating a phase and frequency locked dynamics of the mechanical sys-
tem. Actually, this is what we observe at least in the early phases of the behavioral
self-organization.

Looking more into the details, we see a qualitative difference to the running mo-
tion pattern (RMP) of Sect. 7.3 with its in-phase and anti-phase signature. As all
other conditions are equivalent, this must be caused by the different initializations.
In the RMP, the strong negative feed-back strength of the system was discussed re-
sponsible for the specifics of the RMP, see Sect. 7.3.2. In this setting, we start with
C = 0 and h = 0, the least biased initialization, everything being determined by the
learning, starting with the initial perturbations introduced by the physics. In the be-
ginning, the vertical oscillations introduce tiny changes in the joint angles due to
inertia effects not fully counteracted by the motors. These are acting on all joints
simultaneously as they are caused by the motions of the center of gravity. Once
started, these perturbations are self-amplifying which may explain why all angles
are changing simultaneously. Later on, there may also be some physical cross-talk
as described with the RMP in Sect. 7.3. This is now possible not only in the joints
of a single limb but may propagate also between the upper and the lower part of the
body and between the arms and legs.

The cross-talk phenomenon shows that the symmetry breaking mechanism is
very sensitive to the concrete morphology of the robot. By way of example, we use
an experiment where the robot was given an additional back joint, giving the robot
more freedom in movements of its lower part. Moreover, we fixed the trunk so that
there is no starting perturbation by the vertical oscillations as in the bungee setting.
Still, there is a physical starting signal given by the difference of the joint angles in
the initial configurations (all equal to zero) and their equilibrium position (different
due to gravity). Again, after a transient initial phase, we observe the emergence of a
collective mode involving all degrees of freedom of the lower part, see Fig. 7.8. We
guess that this collective motion is more a result of the physical cross-talk than the
fingerprint of the initial symmetries, but we still have to study this in more detail.

7.7.2 Exterioception May Guide Self-Organization

Up to now we were using only proprioceptive sensors so that the orientation of the
bungee jumper in space came into play only in a very indirect way, for instance by

8 In order to make this explicit, think of a linearization of the system around its equilibrium
point defined by the initialization. Details will be given elsewhere.
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Fig. 7.7 One period of an emerging motion pattern in the bungee scenario. The pattern is an
example of minimal symmetry breaking.

Fig. 7.8 One period of an emerging periodic motion pattern with the trunk fixed and an
additional back joint giving the robot more freedom of motion. Coherence is now caused not
only by the original symmetries but also by the physical cross-talk becoming “louder” with
increasing activity of the robot.

the gravity forces providing additional loads on the joint motors. Let us now include
a sensor that is orientation sensitive. In a first experiment we use a sensor that mea-
sures the rotation velocity of the trunk around its yaw axis (the one running through
both the shoulders). This velocity is simply taken as an additional component of the
sensor vector x. We let the system run with the learning algorithm of Eq. (7.8) just
as in the previous case.

Astonishingly, the emerging behavior is completely different from the previous
one. We observe now already after a short time that the robot tries rotational motions
around that axis (known to him only by one sensor value without any knowledge
what this sensor is measuring). In the video S 5, the amplitude of these rotational
motions is seen to increase steadily until the robot is looping, see Fig. 7.9. After that
it is in a physically less stable state (by loss of symmetry in its motion pattern) so
that it needs some time until the play may begin again.

Again, we can recognize the rule of thumb here. In fact, the motion still—while
being of quite some variability—reflects the original symmetries of the physical
system in its least biased initialization. In particular, the looping is performed only
if the robot is keeping in a motion regime where the left-right symmetry with respect
to the yaw axis is nearly perfect, see the video S 5.

Fig. 7.9 With a sensor measuring the rotation velocity of the trunk around its yaw axis, the
robot synchronizes its internal motions with the trunk rotation. After a while, the robot learns
rotating its entire body around the trunk axis, eventually executing a loop.
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7.7.3 Starting in a Mode

What happens if we start with the above minimalistic controller, i.e. use the initial-
ization C = cI with c <−1? As video S 6 shows, the learning enhances the running
motion pattern (RMP) in the course of time more and more by steadily increasing
the step length until the whole motion pattern gets unstable after a long time. How-
ever, as video S 6 also shows, the stability of the RMP is holding up to a very large
step length. This video also shows that the RMP is entirely self-generated. When
the bungee force is reduced so that the robot reaches ground, the RMP decays but is
resumed rapidly if the conditions of its existence (hanging in air) are reestablished.

7.8 The HEXAPOD

Let us now follow the trace of symmetry breaking a little further down the road with
a robot of comparable complexity as the HUMANOID but with a different symmetry
and interaction with the environment: the HEXAPOD. We choose this robot since
it has not been treated in earlier work on HK (Der and Martius 2012) and because
it will be seen to reveal symmetry breaking phenomena in a particular clear way.
The robot consists of a trunk with two whiskers (passive joints), and six legs, each
one consisting of a shoulder with two joints and a knee with a single joint. Each
of the 18 joints is activated by a motor and contains a sensor that is measuring the
true joint angle. The effective torques acting on the joint axes are determined by a
PID controller so that there is an elastic reaction of the robot to the nominal joint
positions y ∈ R

18, similar as in a system controlled by muscles.
In a typical experiment, the HEXAPOD is falling down from a starting position a

little above the ground. With the least biased initialization, y = 0 in the beginning so
that all joints are in their center positions. When hitting the ground, the robot gets
into a damped vertical oscillation due to the elasticity of the joint-motor system.
This is sufficient for providing an initial perturbation that is further amplified by the
bootstrapping mechanism as sketched in Sect. 7.6.

7.8.1 Modes

What can we expect to happen? Depending on the concrete situation (for instance
the meta learning parameter, in particular ε) different behaviors may emerge. In
most cases the robot starts with a swaying and rolling motion pattern, see Fig. 7.10
and video S 7. We may claim again, that this is in agreement with our rule of thumb
since in this motion the joint angles are changing with a pretty high degree of coher-
ence as allowed by the (soft) physical constraints enforced by the ground contacts.

More interesting behaviors emerge after some time. Most exciting is the emer-
gence of a jumping behavior as a stable phenomenon, see Fig. 7.11 and the corre-
sponding video S 8 and S 9. In these jumping patterns the robot is seen to be very
active but still with a large coherence in the joint angles as suggested by our rule
of thumb. There is still a surprise when looking at the parameters of the controller.
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Fig. 7.10 Initially, the robot develops a swaying motion pattern, as if it is very actively trying
to move the legs in a coherent way while keeping ground contact

Fig. 7.11 Emerging jumping motion pattern

In the TWOWHEELED case we observed that the C-matrix displays a definite struc-
ture, it developed into a SO(2) matrix which is prominent among all R2 ×R

2 matri-
ces in forming a group. This is like the symmetries of the physical space leaving a
fingerprint since the physical space in 2D is invariant against all transformations by
the group of SO(2) matrices.

Of course, we can not expect such a clear result in the case of our HEXAPOD

because of the much higher dimensionality of the physical space and the fact that
the robot is also interacting with the ground. Yet, a look at the C-matrix is the more
surprising. As Fig. 7.12 shows, the emerging sensor-to-motor coupling matrix is
highly structured, reflecting the original symmetries to an amazingly high degree.
Both the shoulders and the knees are seen to follow essentially the same strategy for

Fig. 7.12 The parameters of the controller (C-matrix, upper right panel) and the model (A-
matrix). In the C-matrix, the upper left 12× 12 block displays the matrix elements of the
shoulder couplings, each row i representing the coupling strength of the 12 angle sensors into
the ith motor neuron. Reading each row from the diagonal element to the right and wrapping
the reading back to the diagonal, one sees that each shoulder follows essentially the same
strategy. A related understanding of the control strategy holds for the knee joints, see the
lower right sub-matrix.
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moving the body. This is in agreement with our rule of thumb since this collective
strategy allows the body to be moving, even to jump, but with a maximum degree
of coherence between the individual constituents of the body.

Moreover, we also see from that figure the whole-body nature of the behavior.
The periodic jumping pattern are not created by using a central pattern generator
producing a master signal that is sent with the necessary phase corrections to the
individual motors. Instead, the motion of each body part is generated by combining
both excitatory and inhibitory signals from the sensors of all joints in a systematic
manner. This is a new control strategy for generating jumping (and, hopefully, also
walking like) patterns emerging from simply applying the general learning rule to
the physical system.

7.8.2 Perspectives for Guidance and Reinforcement Learning

Important is also the observation that, by including exterioceptive sensors, the de-
velopment of the modes can be influenced and driven into desired directions. For
instance, as our experiments show (to be presented in detail in a later paper), the
jumping height can be increased by simply including a sensor measuring the verti-
cal velocity of the robot trunk. The effect can be increased if, like in reinforcement
learning, the parameter updates are weighted according to the agreement with the
reward. For instance, by using the forward velocity of the robot as a reward, we can
guide the SO process towards jumping into the forward direction, see Fig. 7.13 and
video S 10 as an example.

There are many more interesting phenomena observed with that kind of robots
but we are not going into more details here. We think that the few examples given
may serve as an outline for the bunch of phenomena emerging from SSB under the
general learning rule, given a convenient initialization and some patience for doing
the experiments.

Fig. 7.13 Jumping motion pattern driven by rewarding the forward direction

7.9 Concluding Remarks

This paper tried to answer essentially two questions. The first question is about how
to organize self-organization, asking how can we find intrinsic mechanisms that
make a system able to self-organize. The answer was given by the unsupervised
learning rule (ULR), see Eqs. (7.8, 7.9), that drives systems into self-organization.
The ULR stages a weighted competition between a differential Hebbian and an
anti-Hebbian learning mechanism. While the former drives the system to activ-
ity, the latter acts as a confinement, keeping the system under control. The rule
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is strictly local—synaptic changes exclusively depend on excitations at the ports of
the synapse—yet creates global, whole-body motion patterns of the robotic system.
This is demonstrated in applications with (i) a wheeled robot that spontaneously
is moving in geometric patterns, and (ii) a hexapod robot with 18 degrees of free-
dom self-organizing from scratch into several locomotion patterns like jumping and
walking.

The second bunch of questions is suggested by exactly that bootstrapping sce-
nario: with nothing specified from outside, what can we expect the learning system
to do. What will the emerging behaviors look like and what will the relation to
the embodiment of the robot be? How and to what extend are the emerging behav-
iors determined by the embodiment; and can we find systematic criteria for those
behaviors?

Several answers could be given by looking into the role of the underlying sym-
metries of the system in space and time. The invariance of the physical space against
symmetry operations (like translations and rotations) induces corresponding invari-
ances modified by the constraints (like contact with the ground). The point then is
that, while driving the system towards instability, the ULR is preserving these sym-
metries. As a result, the evolution of the system in the learning process is realized
by a sequence of spontaneous symmetry breaking following—similar to what we
know from nature—a kind of parsimony principle. This lead to our rule of thumb:
the emerging behaviors in physical systems (robots) driven by our ULR are qual-
ified by a high activity while preserving as much of the underlying symmetries as
possible.

This rule brings the embodiment to the foreground. The symmetries are embodi-
ment specific and, moreover, breaking the symmetries is a process that is related to
the very physics of the system. This was demonstrated by a number of examples.
The first and probably the most surprising one was given by the TWOWHEELED

robot. Controlled by two neurons with a fast synaptic dynamics given by the ULR,
the system in many cases was converging towards a limit cycle behavior with the
trajectories of the robot forming nearly perfect geometric patterns. The emerging
geometric patterns where seen to depend on the embodiment (like the wheel size) in
a very intricate and sensitive way. Interestingly, the limit cycle features as a pattern
factory: in a learning on-off scenario it was seen to produce a great variety of fur-
ther patterns, spinning off the limit cycle if the learning is turned down (called the
pattern spin-off effect). It would be very interesting to ground this phenomenon in
dynamical system theory.

Similar effects of symmetry breaking were obtained by the examples of the HU-
MANOID and the HEXAPOD. In the latter case, we also observed the excitation of
body related, high activity modes with a high degree of coherence between the body
parts. In particular, with the HEXAPOD, we observed a jumping mode demonstrat-
ing our rule of thumb: emerging behaviors are qualified by high activity while pre-
serving the underlying symmetries of the system as far as possible (the principle
of parsimony in spontaneous symmetry breaking). In future work we will be look-
ing for a parallel of the pattern spin-off effect, hoping to thereby uncover a kind of
pattern factory for these more complex systems, too.
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These results are a step forward as compared to the state of the art. Previous
work in self-organizing robot behavior was either restricted to small, easy to analyze
systems or produced—like with the principle of homeokinesis—behaviors which
looked interesting and were often completely surprising (Der and Martius 2012),
as it should be. However, by the same token, it was often not clear what the robot
actually is doing. With the concept of behaviors as broken symmetries, this is now
(a little) different. The principles and examples given in this paper—in particular
the emergence of fundamental modes, the TWOWHEELED as a pattern factory, the
looping behavior of the HUMANOID, and last but not least the jumping modes of
the HEXAPOD—may help us to better understand and exploit the synergy between
embodiment and SO of autonomous robots.
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Chapter 8
Robot Learning by Guided Self-Organization

Georg Martius, Ralf Der, and J. Michael Herrmann

8.1 Introduction

Self-organizing processes are not only crucial for the development of living beings,
but can also spur new developments in robotics, e. g. to increase fault tolerance
and enhance flexibility, provided that the prescribed goals can be realized at the
same time. This combination of an externally specified objective and autonomous
exploratory behavior is very interesting for practical applications of robot learning.
In this chapter, we will present several forms of guided self-organization in robots
based on homeokinesis.

Self-organization in the sense used in natural sciences means the spontaneous
creation of patterns in space and/or time in systems consisting of many individ-
ual components. This involves the emergence, meaning the spontaneous creation,
of structures or functions that are not directly explainable from the interactions be-
tween the constituents of the system. Examples are for instance spontaneous magne-
tization, convection patterns and reaction diffusion systems leading to the wonderful
coloring of shells or animal coats. For robotic applications it is important to trans-
late self-organization effects to a single robots considered as complex physical sys-
tems consisting of many constituents that are constraining each other in an intensive
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manner. This is what homeokinesis (Der 2001; Der and Liebscher 2002; Der and
Martius 2012) or information theoretic approaches (Martius et al. 2013; Klyubin
et al. 2005) to behavioral self-organization are after.

Homeokinesis or homeokinetic learning is based on a dynamical systems
formulation of sensorimotor loops and introduces an objective function, called the
time-loop-error. Intuitively it maximizes the sensitivity to sensor inputs while main-
taining predictability with respect to an internal adaptive forward model. In practice
homeokinetic control enables a robot to self-organize its behavior in a playful in-
teraction with its environment and explores the suitable movement patterns for its
particular embodiment. A short introduction to homeokinesis will be given in the
following section. Then, we will face the question how goals can be introduced
into a self-organizing system. Instead of imposing a goal we will aim at guiding
the agents towards the desired behavior using as much of the intrinsic behavior as
possible.

For the combination of self-organizing and external drives we coined (Martius
et al. 2007) the term guided self-organization (GSO), which was before only rarely
used e. g. in nano technology (Choi et al. 2005) or swarm robotics (Rodriguez 2007)
and gained now a much larger scientific interest (Prokopenko 2009). Goal-oriented
methods optimize for a specific task and require a prestructuring of the control prob-
lem in high-dimensional systems. Self-organization, on the other side, can generate
coherent behavior and structure in the behavior space. Furthermore self-organiz-
ing systems show a great flexibility and high tolerance against failures and degrade
gracefully rather than catastrophically (Prokopenko 2008, 2009). The perspective of
GSO is to obtain a system which unites benefits of both. In the main sections of this
chapter we discuss several approaches for guided self-organization with homeo-
kinesis (GSOH). These methods span the range from incorporation of supervised
learning signals to reward based methods and to teaching of structural relations.

8.2 Homeokinesis

Homeokinesis (Der 2001; Der and Liebscher 2002; Der and Martius 2012) is about
establishing/stabilizing an internally defined dynamic regime of the sensorimotor
dynamics and is thus conceptually similar to homeostasis (Cannon 1939; Wikipedia
2013), where a system has a internal set of states that are stabilized against external
perturbation. So homeostasis is about keeping things fixed whereas homeokinesis
is about keeping things moving. In effect homeokinesis produces a variety of be-
haviors in dependence on the interaction between control, internal dynamics and
environment. Homeokinetic control arises from optimizing the sensorimotor coor-
dination of an embodied agent to stay in a certain dynamical regime of sensitive but
well controlled behavior. For that the movements are compared to the predictions
by an internal adaptive model, and it works best with a controller and a model of
similar complexity. The robot is thus controlled by a quasi-linear controller that re-
ceives sensor values and determines the motor values. If the coefficients of the con-
troller are fixed then we have a purely reactive setup which can produce a particular
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reactive behavior. If, however, the parameters change the robot can produce a variety
of behaviors. If done appropriately, e. g. as proposed below, a sequence of behaviors
is obtained that are all locally smooth and simple but globally rather complex. The
approach consists of adapting the parameters to maximize prediction quality and
simultaneously to maximize sensitivity to changes in the sensor values.

Formally, we denote the vector of sensor values at time t by xt ∈ R
n. The vector

of motor values yt ∈ R
m is generated by a controller function

yt = K (xt ,C,h) = g(Cxt + h) , (8.1)

where g(·) is a componentwise sigmoidal function, e.g. a hyperbolic tangent. The
matrix C contains the modifiable parameters of the controller and h is a vector of
bias values. The predictive internal model M uses sensor values and motor values to
predict the sensory inputs one time step ahead.

xt+1 = M(xt ,yt ;A,S,b)+ ξt+1 , (8.2)

M(xt ,yt ;A,S,b) = Ayt + Sxt + b , (8.3)

where ξ is the deviation of the actually observed sensor values from their predic-
tions. The matrices A and S are adapted such as to represent the effect of the actions
and the previous sensory values, respectively, onto the new sensor values. The vec-
tor b, similar to h above, serves as an offset. Inserting Eq. (8.1) into Eq. (8.2) yields

xt+1 = M(xt ,K(xt ,C,h);A,S,b)+ ξt+1 = ψ(xt)+ ξt+1 , (8.4)

which is a stochastic dynamical system describing the temporal evolution of the
sensor values. Considering that all the information the robot obtains arrives through
its sensors, the dynamics (8.4) describes the behavior of the robot completely. Note,
however, in this interpretation, Eq. (8.4) assumes a Markov property with respect to
a fixed time step which may not be realizable in real robots in general.

While the controller determines the behavior of the robot and changes its state
in the environment, the internal predictive model learns any new arriving sensory
inputs by an online adaptation of the parameters A, S, and b via gradient descent. As
a consequence, the prediction error ‖ξ‖2 (8.4) tends to decrease.

If the parameters C and h of the controller are also adapted by the minimization of
the prediction error then the robot dynamics is subject to stabilization. The resulting
behavior reflects the complexity of the environment to some extent, but is typically
relatively simple or may simply approach a resting state.

Activity in the sensorimotor loop can by achieved by the homeokinetic paradigm,
namely by considering instead the reconstruction which is given by

vt = xt −ψ−1 (xt+1) (8.5)

between the previous sensory inputs xt and their reconstructed values obtained by
ψ−1 (xt+1), where it is assumed that ψ is invertible. It can be interpreted as the
amount by which the sensor values would have had to be changed in order to
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Fig. 8.1 The homeokinetic controller connected to a wheeled robot in a sensorimotor
loop. The robot is equipped with wheel counters and a camera. The controller is represented
by the function K and the predictor M, both together form the map ψ (Eq. (8.4)). The TLE is
obtained by propagating ξt+1 through the inverse of ψ .

preempt any prediction error. The objective function minimizing the reconstruc-
tion error vt is called time-loop error (TLE) and it can be approximated using the
linearization vt = L−1ξt+1:

ETLE = ‖vt‖2 = ξ�
t+1

(
LtL

�
t

)−1
ξt+1 , (8.6)

where (Lt)i j =
∂ψ(xt )i
∂ (xt ) j

is the Jacobian matrix of ψ at time t. The entire framework

is sketched in Fig. 8.1. Note that minimizing this error quantity increases the small
eigenvalues of L, i. e. it tends to destabilize the system which is, however, con-
fined by the nonlinearity g(·) (8.1). This eliminates the trivial fixed points (in sensor
space) and enables spontaneous symmetry breaking.

The parameters of the controller (C,h) are adapted by a gradient descent on the
TLE (8.6). This gives rise to the parameter dynamics

ΔC =−εc
∂

∂C
E = εcμv�− ε ′yx� , (8.7)

Δh =−εc
∂

∂h
E =−ε ′y , (8.8)

where εc is a global learning rate and ε ′ is channel-dependent learning rate given by

ε ′i = 2εcμiζi, where μ = G′A� (L�)−1
v, and ζ =Cv and G′ is the diagonal matrix

defined as G′
i j = δi jg′i (Cx+ h). The derivation of the learning rules can be found in

Der and Martius (2012). In our parameterization the Jacobian matrix is given as

L = AG′C+ S. (8.9)

We will generally assume that there are more sensors than motors, which, for
S = 0, implies that the Jacobian matrix L cannot be inverted such that a pseudo-
inverse is being used instead in the above formulas. The parameters A, S and b (8.3)
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are adapted online in order to minimize the prediction error ‖ξ‖2 (8.4). However,
the minimization is ambiguous with respect to A and S because y is a function of x,
see (8.1). In order to capture as much as possible of the relationship by the matrix A
we introduce a bias by using partly the TLE for learning of the model:

ΔA = εAξt+1
(
yt +ρAG′Cv

)�
, (8.10)

ΔS = εSξt+1x�t , Δb = εbξt+1 , (8.11)

where the parameter ρA = 0.1 controls the bias. The learning rates εS and εb are
chosen to be smaller than εA, but the exact parameter values are not critical; for
ρA = 0 the original delta-rule is restored.

The learning rates are chosen to result in a fast dynamics for the weights. As-
suming sensory noise, the TLE is never zero nor has a vanishing gradient such that
the rule (8.7) produces an itinerant trajectory in the parameter space, i. e. the robot
traverses a sequence of behaviors that are determined by the interaction with the
environment. An intuitive idea of the resulting dynamics can be obtained for a robot
with just two wheels each equipped with a proprioceptive velocity sensor (see for
instance Fig. 8.16(a)). Initially the robot rests, but after a short while it starts to
drive autonomously forward and backward or to turn. If the robot arrives at an ob-
stacle, the wheels stop, thus causing a large error because of which the learning
dynamics will quickly stop the motors and eventually drive in the free direction.
Also high-dimensional systems such as snake- or chain-like robots, quadrupeds,
hexapods and wheeled robots can be successfully controlled with the learning dy-
namics of Eqs. (8.7) to (8.11) (Der and Martius 2012).

8.2.1 Example of Emergent Behavior

To get a more clear idea of what homeokinetic control is about we will present two
examples here: the spherical robot and the Cricket robot. The design of the spherical
robot is inspired by the artist Julius Popp (2004). It has a ball shaped body and is
equipped with three internal masses whose positions are controlled by motors, see
Fig. 8.2(a). The motor values define the target positions of the masses along the axes
which are realized by simulated servo motors. Collisions of these masses especially
at the intersection point are ignored in the simulation.

If we put the spherical robot on level ground and connect the homeokinetic con-
troller initially only small fluctuations due to the sensor noise occur. The learning
dynamics increases the feedback strength steadily so that the controller is getting
more and more sensitive to the sensor values. Once the critical level is exceeded
fluctuations get amplified so that the symmetry of the system is spontaneously
broken and the body starts to roll into a decided direction. This is the first moment
when the sensor values show a defined response to the actions. The most simple of
the natural modes of the robot is realized by rotating around one of the internal axes
with the mass on that axis being used for steering and the other ones for shifting the
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Fig. 8.2 The spherical robot exploring its behavioral capabilities. (a) Sensor setup and
sketch of four typical behaviors (A-D), namely the rolling mode around the three internal axis
(A-C) and around another axis (D). (b) Amplitudes of the motor value oscillations (y1...3)
and the time-loop error E (scaled for visibility) averaged over 10 and 30 sec, respectively.
Corresponding behaviors are indicated with letters A-D.

center of gravity. The experiments demonstrate, Fig. 8.2, that the controller picks
up such a rolling mode and amplifies it very quickly. The explorative nature of the
control algorithm is illustrated in the fact that different rolling modes emerge.

8.2.2 Behavior and Critical Dynamics in High-Dimensional
Cricket Robot

In simplified systems the self-organization of the movement parameters of the robots
can be studied analytically (Der and Martius 2012), which provides an intuition
about the noise amplification and the emergence of behavior in such systems. It is
beyond the scope of the present text to represent these results here. Instead we take
a phenomenological look at a more realistic system, namely a cricket robot Fig. 8.3.

As before the robot would not move after initialization until the self-amplification
of the sensor noise will eventually lead to an initial movement. Because all legs are
connected to the trunk their movements are physically coupled, which is automat-
ically extracted by the learning algorithm. The robot starts to sway and becomes
more and more active until it starts to lift the feet from the ground. A range of
jumping and wobbling motions is emerging that are coming and going.

Theoretically homeokinetic learning should bring the sensorimotor loop into a
critical state also termed the edge of chaos. In this state small perturbation in the
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Fig. 8.3 Cricket robot with realistic leg sizes, ranges and mass distribution, cf. (Cruse
et al. 2006). The robot has twelve active degrees of freedom (DoF) and 14 passive DoF (lower
legs and antennae). (a) Schematic diagram of the robot and actuated joints. (b) Screen shot
from the computer simulations using LPZROBOTS (Martius et al. 2012).

sensor values are neither damped nor amplified. An indication for this state can be
obtained from the largest eigenvalue of the mapping from current sensor values to
future sensor values, which should be 1. That this is indeed the case for the cricket
robot shows Fig. 8.4, where the linearization of the map was used. In linear systems,
eigenvalues of unity represent an on-going movement, however, the nonlinearity of
the controller or of certain interactions with the environment, such as collisions be-
tween feet and ground, require a more powerful controller which leads to larger
eigenvalues as shown in the figure. So homeokinetic learning works also in dynam-
ically complex systems and leads to an exploration of the behavioral capabilities of
the system under control.

8.3 Guided Self-Organization

The homeokinetic learning rule causes a robot to move actively and to react sensi-
tively to its environment. The resulting behaviors are, however, waxing and waning
and their time span and transitions are hard to predict. There are only a number
of exceptional cases where a robot could directly make use of the above learning
scheme. Assume for instance that the robot has a number of options or schemes to
follow in specific situations, but when none of these are applicable then a generic
search behavior is certainly helpful. Moreover, if the robot has received a prescribed
plan it can still explore similar behaviors which may be more smooth or better with
respect to an external reward.

In many robotic applications, however, a defined and goal-oriented behavior is
desired. With traditional learning methods these may be hard to obtain, especially if
the control space is high-dimensional. A promising route, reflecting some properties
of biological learning, is to allow the robot to explore its basic behaviors in a playful
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Fig. 8.4 Analysis of the Cricket robot (s. Fig. 8.3). In order to demonstrate the criticality in
a complex robot we considered the main eigenvalue of the sensorimotor loop. In accordance
with the analytical results for the one-dimensional case (Der and Martius 2012), we observe
here eigenvalues with a mean values of approximately 1.2. The y-axes in the plots show
the projection of the state of the robot onto the corresponding eigenvector which shows a
symmetric distribution. Data was obtained in a single run for each of the plots with a different
level of noise in each case. During the run the dominant eigenvector frequently changed its
orientation. It is interesting that maximal flexibility is reached at an intermediate noise level
as indicated by the heat map. White areas represent a high density of points; in low-density
areas individual points are drawn in black.

and self-organized phase and internalize some of the intrinsic properties of the sen-
sorimotor loops. Why should it be more effective? Self-organizing systems tend to
scale well to higher dimensions and may exploit the constraints and properties of the
embodiment. Also, self-organizing systems show a great flexibility and tolerance
against failures and degrade gracefully rather than catastrophically (Prokopenko
2008, 2009). After this or even already during this self-exploratory phase, the
robot receives information about the task it is expected to execute. This informa-
tion can be imposed on the robot in an imperative way, but this is possible only if
the exploratory properties cease to have an effect on the robot. Taking it further,
we need a continuous balance between external and intrinsic learning: The robot
continues to behave exploratory, but will preferentially choose those behavioral
patterns that comply best with the external information. This is what guided self-
organization (GSO) for robot control is about, which we introduced (Martius et al.
2007) for the combination of a desired goal with self-organizing behavior. The term
has been used before in contexts such as nanotechnology (Choi et al. 2005), city
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development (Butera 1998) or swarm robotics (Rodriguez 2007) representing es-
sentially the same idea: exploiting the intrinsic complex dynamics to achieve a goal
without much engineering effort or strong interference with the intrinsic dynamics
of the system. An illustrative example from nature is again the shell patterns (and
animal coat pigmentation). The self-organizing reaction-diffusion systems creating
the patterns are guided by comparably simple chemical gradients leading to a spe-
cific (species typical) formation. It would have been much more difficult (in terms
of e. g. coding length) for evolution to come up with a precise description of pattern
in the genome. More importantly this GSO system act as a pattern factory. A new
pattern only needs different gradient. However, to engineer a new desired pattern
may be difficult, which is part of the challenge of guided self-organization.

By the way, the same general idea also underlies chaos control (Ott et al. 1990)
and, more recently, self-motivated learning. GSO is different from active learning,
reinforcement learning (Sutton and Barto 1998) and evolutionary learning (Nolfi
and Floreano 2001) at least because the exploration is self-organized rather than
following a defined scheme or being exhaustive.

To get an intuitive idea how guidance could look like we consider again the emer-
gence of self-organized behavior. In terms of the theory of dynamical systems, the
homeokinetically controlled behavior can be considered to consist of series of sym-
metry breaking events. E. g. a simple robot that is not moving initially, starts to
choose to move either forward or backward. If the robot’s hardware does not indi-
cate a preference for either direction, the robot chooses a random orientation caused
by a possibly tiny fluctuation at the critical moment when the breaking of the sym-
metry happened. Obviously, the same effect can be achieved if the robot is biased
(namely, to move forwards rather than backwards) either by a hardware asymmetry
or by any external information. It can be further expected that the external input that
the robot receives does not need to be strong. In all cases the robot will continue to
self-organize its behavior, but with the difference that the specific decision which
was previously due to a noise effect, is now due to an external guidance.

More formally, we will distinguish a number of possibilities for guidance in de-
pendence on the type of information the robot receives. The first one allows for
the incorporation of supervised learning signals, e. g. specific nominal motor com-
mands. To make this possible we study the integration of problem-specific error
functions into the homeokinetic learning dynamics in the next section. Using a dis-
tal learning (Jordan and Rumelhart 1992) setup we also study the use of teaching
signals in terms of sensor values and give an example of guidance by visual target
stimuli. Interestingly we find a remarkable robustness to sensorimotor disruptions.
The second mechanism is discussed in Sect. 8.6 and uses online reward signals to
shape the emerging behaviors. The third mechanism for guiding the self-organiza-
tion can be used to formulate relationships between motors, see Sect. 8.7. This will
be proven to be an effective and simple way to introduce constraints into the system
and facilitate the unsupervised development of specific behaviors.
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8.4 Guidance by Mild Supervision

8.4.1 Integration of Problem-Specific Error Functions

The combination of self-organizing processes and additional constraints is not triv-
ial and essentially an instance of the well-known dilemma that arises when both
exploration and exploitation is desired at the same time. A problem-specific error
function expressed the goal, i.e. a specification what is to be exploited in a given
context, while the behavioral self-organization provides an efficient means for ex-
ploration. Whether or not the exploration indeed serves the goal in the long run, is a
question of the balance between the two which we are going to discuss in this sec-
tion. A particular goal can be specified in terms of a problem-specific error function
(PSEF) that is minimal if the goal is met.

A suggestive way of combining the TLE and a PSEF could be a weighted sum
of the two error functions. Performing gradient descent on this sum minimizes then
this combination such that we could expect learning to both improve the active en-
gagement with the environment as well as top approach the goal. It is, however,
likely that either one of the learning tasks may improve on the cost of the other one.

The optimal balance between the exploration and exploitation depends not only
on the specific problem but also on the course of learning and the current state of
the system. The reason is that the size of the TLE varies often over several orders
of magnitude, whereas the goal-specific terms will usually stay in a smaller range
or will not covary with the TLE. Therefore, a fixed weighting in the combined error
function cannot be expected to exist in non-trivial problems.

In order to achieve a goal-orienting effect without destroying the self-organiza-
tion process, we have proposed to scale the gradient on the PSEF in order to be
compatible with the TLE (Martius and Herrmann 2010, 2012). This approach was
motivated by the natural gradient method (Amari 1998). This method is based on
the fact that for an arbitrary Riemann metric of the parameter space the steepest di-
rection is given by the transformed gradient, which is obtained by multiplying with
the inverse of the metric. We use a metric which is defined by the matrix JJ�, where
J is the Jacobi matrix of the sensorimotor loop, similar to Eq. (8.9) but now in motor
space. We can think of this procedure as map of the error into the action space of
the robot.

The PSEF is denoted by EG and it must be non-trivially dependent on the con-
troller parameters such that the gradient can be effective. So the main formula for
guided self-organization with homeokinesis is the new update rule for the controller
matrix C as

1
εc

ΔC =−(1− γ)
∂ETLE

∂C
− γQ

∂EG

∂C
, (8.12)

where ∂ETLE

∂C is the homeokinetic learning rule (8.7), 1 ≤ γ ≤ 0 is the guidance
factor defining the weighting between goal following and self-organization, and
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Q =
(
JJ�

)−1
defines the metric. The latter can also be expressed as Q =

A� (LL�)−1
A, see Martius (2013). For γ = 0 there is no guidance and we obtain

the unmodified dynamics, and for γ = 1 there is no homeokinetic adaptation but
only guidance.

The entire update size is still controlled by the learning rate εc. For the update of
the parameter h we apply an analogous procedure.

Below we will look at a few concrete examples of problem-specific error func-
tions (PSEFs) that implement the guidance by teaching signals. In this way a super-
vised learning procedure is introduced which, however does not imprint its effect on
the system but rather have the system explore the learning objective implied by the
PSEF.

8.4.2 Direct Motor Teaching

In order use motor-teaching signals we define a PSEF, which penalizes the mismatch

ηt = yG
t − yt (8.13)

between motor teaching values yG
t and actual motor values yt (output by the homeo-

kinetic controller). Similarly to the prediction error for the forward model we find

EG = ηt
�ηt . (8.14)

Using the gradient descent we get the additional update for the controller matrix C
as

∂EG

∂C
=−G′ηt x

�
t , (8.15)

where G′ is the diagonal matrix given by G′
i j = δi jg′i(Cx+ h). Similarly, for h we

obtain ∂EG

∂h = −G′ηt . These additional terms are integrated into the final learning
rule using Eq. (8.12). The guidance factor γ regulates the strength of the additional
drive and has to be determined empirically. A small value of γ leads to a small
influence of the teaching signal and results in a behavior that is mostly dominated
by the original homeokinetic controller. For large values of γ the teaching signals
are followed narrowly and few exploratory actions are performed, however, with the
increasing danger to break down the self-organization.

8.4.2.1 Experiment

Using a two-wheeled robot, see Fig. 8.16(a), we will show that teaching signals can
be used to specify a certain behavior and that the influence of the teaching can be
conveniently adjusted using γ . For that let us consider two different motor teaching
signals, which are subsequently applied. First the nominal motor values are given
by a sine wave and then by a rectangular function with the same value for both
motors, i. e.
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Fig. 8.5 Two-wheeled robot controlled with homeokinetic controller and direct motor
teaching signals. (a) The teaching signals yG (identical in both components) are followed
partially by the motor values y1,2 after teaching was switched on with γ = 0.01 at 60 sec.
(b) Time evolution of the controller parameters affecting the first motor is shown to illustrate
that only little changes are necessary, however, the adaptations do not vanish. (c) Average
value of the PSEF EG (for 5 experiments à 5 min) in dependence of γ (note the logarithmic
scale). The noise level (dotted gray line) is reached at γ = 1. Parameters: εc = εA = 0.1,
γ = 0.01 (a,b).

(yG
t )i =

{
0.85 · sin(ωt) t < 75

0.65 · sgn(sin(ωt)) otherwise ,
(8.16)

with i = 1,2 and ω = 2π/50. For the choice of the teaching signal we have to
consider that the nominal motor values should not be too large because otherwise
the controller is driven into the saturation region of the motor neurons. The fixed
point of the sensor dynamics in the simplified world condition is at y ≈ ±0.65.
This is a good mean teaching signal size, which was also used in Eq. (8.16). As a
rule of thumb we recommend confining the motor teaching values to the interval
[−0.85,0.85].

In Fig. 8.5 the produced motor values and the parameter dynamics are displayed
for different values of the guidance factor γ . For a low value of γ the desired behavior
is only followed by trend, whereas for higher values, e. g. γ = 0.01, the robot mostly
follows the given teaching value with occasional exploratory interruptions. These in-
terruptions cause the robot, for example, to move in curved fashion instead of strictly
driving in a straight line as the teaching signals dictate. The exploration around the
teaching signals might be useful to find modes which are better predictable or more
active. The long performance of a single low-dimensional behavior can lead to the
inaccuracy of the adaptive forward model. Thus, the explorative actions can supply
the forward model with necessary sensation-actions pairs for complete learning.

The experiment demonstrated that motor teaching signals can be used to achieve
a specific behavior. This result is not very surprising, because the system is very
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simple and the target behavior did not conflict with the homeokinetic principle (sen-
sitive and predictable). However, it served as a proof of principle and showed that
the balance between target behavior and remaining self-organized behavior can be
adjusted using a single parameter.

8.4.3 Direct Sensor Teaching and Distal Learning

In this section we transfer the direct teaching paradigm from motor teaching signals
(Sect. 8.4.2) to sensor teaching signals. This is a useful way of teaching because
desired sensor values can be more easily obtained than motor values, for instance
by moving the robot, or parts of the robot by hand. This kind of teaching is also
commonly used when humans learn a new skill, e. g. think of a tennis trainer that
teaches a new stroke by moving the arm and the racket of the learner and is a sub-
set of imitation learning (Schaal et al. 2004). Thus, a series of nominal sensations
can be acquired that can serve as teaching signals. Setups where the desired outputs
are provided in a different domain than the actual controller outputs are called dis-
tal learning (Jordan and Rumelhart 1992; Stitt and Zheng 1994; Dongyong et al.
2000). Usually a forward model is learned that maps actions to sensations (or more
generally to the space of the desired output signals). Then the mismatch between a
desired and occurred sensation can be transformed to the required changes of action
by inverting the forward model.

The distal learning error is the mismatch between desired sensations xG
t and ac-

tual sensations xt

ξ G
t = xt − xG

t . (8.17)

The mismatch ηt in motor space can be obtained via the forward model M (8.3) in
linear order

ηt = A+ξ G
t , (8.18)

where A = ∂M(x,y)
∂y and the A+ denotes the pseudoinverse of A. Now the update

formulas (8.15) for C and h from the direct motor teaching setup can be used based
on the teaching error EG = ‖ηt‖2.

8.4.3.1 Experiment

For the two-wheeled robot (Fig. 8.16(a)) the forward model is simply a multiple of
the unit matrix. The spherical robot (Fig. 8.6(a)), however, has a non-trivial relation
between sensor and motor values and is thus better suited for an illustrative experi-
ment to show that a simple teaching signal in terms of sensor values can be effective
in guiding the behavior.

A desired behavior for the spherical robot could be to rotate around the one of its
internal axes. For the particular sensor setup we need to assure the the corresponding



236 G. Martius, R. Der, and J. Michael Herrmann

x2

x1

x3

(a)

0. 0.001 0.002 0.003 0.004 0.005
Γ0

20

40

60

80

rot.ax. ���

� of
ch an ges

3

2

1

Rotation
Axes

(b)

Fig. 8.6 The spherical robot in a homeokinetic plus distal learning setup. (a) Illustration
of the robot with its sensor values. (b) Behavior with the distal learning signal, Eq. (8.19).
The plot shows the percentage of rotation time around each of the internal axes and the
number of times the behavior was changed for different values of the guidance factor γ (no
teaching for γ =0). The rotation around the red (first) axis is clearly preferred for non-zero
γ . The mean and standard deviation are plotted for 20 runs each 60 min long, excluding the
first 10 min (initial transient, no guidance). For too large values of the guidance factor the
self-organization process is too much disturbed such that the robot gets trapped in a random
behavior (dash-dotted line). Parameters: εc = εA = 0.1.

sensor returns consistently a low absolute value. This can be directly specified in the
distal learning scheme, here for the first axis:

xG
t =

⎛
⎝ 0
(xt)2

(xt)3

⎞
⎠ . (8.19)

Now only the first component of the sensor value produces an error signal. The
resulting behavior is characterized in Fig. 8.6.

The distal learning scheme requires a well trained forward model. Therefore pure
self-organization was used during the first 10 min of the experiment (γ = 0). As a
descriptive measure of the behavior, we used the index of the internal axis around
which the highest rotational velocity was measured at each moment of time. Fig-
ure 8.6(b) displays for different values of the guidance factor and for each of the
axes the percentage of time it was the major axis of rotation. Without teaching there
is no preferred axis of rotation. With distal learning the robot shows a significant
preference (up to 75%) for a rotation around the first axis. For overly strong teach-
ing, a large variance in the performance occurs. This is caused by a destructive
influence of the teaching signal on the homeokinetic learning dynamics. Remember
that the rolling modes can emerge due to the fine regulation of the sensorimotor loop
to the working regime of the homeokinetic controller, which cannot be maintained
for large values of γ .

The robot will not stay in the rotational mode about one axis. While the robot is
in this rotational mode the teaching signal is negligible. However, the sensitization
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property of homeokinetic learning increases the impact of the first sensor, such that
the mode becomes eventually unstable again. Again this may be considered as an
advantage since the temporary breaking out avoids a too narrow specialization of
the internal model. Note, moreover, that the learning success in the current setting
of controller and forward model could not be achieved by the distal learning alone,
at least not with a constant learning signal.

To recapitulate, the direct teaching mechanism allows us to specify motor pat-
terns that are more or less closely followed, depending on the strength of integrating
the additional drives into the learning dynamics. In this section we considered sensor
teaching signals that were transformed into motor teaching signals using the internal
forward model. We have shown that the spherical robot with the homeokinetic con-
troller can be guided to locomote mostly around one particular axis, by specifying a
constant sensor teaching signal at one of the sensors Martius and Herrmann (2010).

8.5 Self-Organized Interaction with the Environment

Let us know consider a more involved application with direct sensor teaching using
a camera sensor.

8.5.1 Integration of Vision into the Sensorimotor Loop

Vision adds a new level of complexity to any robotic system. In particular in most of
the applications of the homeokinetic principle, mostly proprioceptive sensors have
been used, which helps to generate a sensible control of the body, but may not be
sufficient to produce a tight interaction with complex environments. In the following
we will discuss the integration of visual information into the framework of self-
organizing control, see also Martius (2013).

Fig. 8.7 Camera setup, image processing and sensor values

In the following we will describe experiments with a four-wheeled robot
(Fig. 8.1). The robot is operated such that the two motors on one side of the robot
receive the same target velocity. The two velocity sensors (xl and xr) return the av-
erage of the actual wheel velocities on one side.

A simplification can be reached by restricting the interacting of the robot to with
objects of a certain color, yellow in our case. We start by calculating the center of
mass (xh,xv) over all pixels of this color based on the assumption that only one
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yellow object is visible. If this not the case the approach of the robot will help with
the disambiguation. Next, we approximate the size (xs) of the object by the sum of
all yellow pixels (normalized to [0,

√
2]). This is prone to light and shadow effects

and is again a crude approach but it will turn out to be sufficient for our purposes.
In addition we also use the time derivatives of the quantities such that the vector of
sensor values reads

x = (xl ,xr,xh, ẋh,xv, ẋv,xs, ẋs)
�. (8.20)

We are often adding a small amount of sensory noise to the simulated sensors which
is not only more realistic, but also has the side effect that the TLE does not become
zero. The vision sensors are, if any objects are visible at all, rather inaccurate and
noisy, e.g. due to illumination, such that additional noise is not required here. There-
fore, only the wheel velocities sensors xl and xr are subject to Gaussian noise with
a small standard deviation.

Exteroceptive sensors in general and our vision sensors in particular may not
be active for substantial periods during operation. For instance the position sensor
(xh,xv) is essentially undefined if no object is in sight. Since the predictive model is
to correlate actions with perceptions, the absence of any object nullifies the corre-
lations such that a prediction becomes impossible. A simple solution is to prevent
learning of the predictive model on invalid sensor values. We implement this by as-
suming an undefined sensor value to be zero and set the prediction error (ξi)t to zero
as well, if (xi)t = 0 or (xi)t−1 = 0 while it remains unchanged otherwise.

8.5.2 Guiding towards an Object

We will now define a guidance mechanism that drives the robot towards a visible
object. In order to fixate the object in the center of the field of vision, the position
sensors (xh,xv) should approach zero unless a specific target position (ph, pv) is
given. If the robot should push objects, e. g. a ball, then the value of the size sensor
(xs) should be large. Alternatively if the robot should keep a certain distance, for
instance when interacting with other robots, then a smaller value is required. We
denote the desired size by s.

The linear predictive model can represent the relation between actions and po-
sition/size only in certain situations. In particular we deal here with stationary and
moving objects that cause a different sensory response. A new mechanism could
make use of the desired value for the derivatives, too. Fortunately, we can use pro-
portional set-point control formula with damping: ẋ =−α(x− xdesired)−β ẋ, where
α is a rate and β is the damping constant. This differential equation has a fixed point
at x = xdesired.

The sensor teaching vector xG is thus given in components as

xG
l = xl , xG

r = xr, (8.21)

xG
h = ph, ẋG

h =−α(xh − ph)−β ẋh, (8.22)
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xG
v = pv, ẋG

v =−α(xv − pv)−β ẋv, (8.23)

xG
s = s, ẋG

s =−α (xs − s)−β ẋs , (8.24)

where β = 0.1 and α = 1 here. Note, the wheel velocity sensors xl and xr produce
no teaching signal. For the following experiments we use for the center position
ph = pv = 0 and set the maximal size to s =

√
2.

8.5.3 Emergent Behaviors

The first experiment should test whether the guidance mechanism is able to influ-
ence the self-organized behavior to find and push balls. This involves the establish-
ment of the required sensorimotor mappings from scratch in a changing environment
(balls can move). All the experiments are performed in virtual reality in our robot
simulator (Martius et al. 2012). The formal definition of the goal is specified by the
target sensor state xG Eqs. (8.21–8.24). We place the robot together with five balls
into a circular corridor, as displayed in Fig. 8.8(a), such that the robot can possibly
push a ball for a long distance without getting stopped by corners. Those parame-
ters of the model (A) connecting to the vision sensors are initialized with zero, such
that the guidance has no effect independently of the guidance factor. Recall that the
forward model transforms the teaching signal to nominal changes in motor values
Eq. (8.18), which will be zero if the model did not learn anything. Once the robot
learns to move, the model starts to correlate actions with the visual sensors. In this
way the guidance starts to actually influence the behavior, such that the robot sees
a ball more often and the model can improve further. Eventually the robot starts to
steer at a ball and pushes it along the arena. Note that the robot has a round front
shape such that the ball easily drifts away to either side while pushed. From time
to time the robot still performs exploratory actions such that the ball gets lost and a
ball needs to be found again. A part of a trajectory of the guided robot is shown in
Fig. 8.8(b).

Note that there can be more than one ball in the field of view at the same time.
However, the sensors cannot distinguish different objects, since the visual sensor
(xh,xv) provides a position between the objects and the size (xs) sensor returns a
sum of the sizes. Nevertheless, the robot copes with this situation without problems.
The robot steers at a group of balls and decides rather spontaneously which one
it will touch. The final choice depends on how well the different balls are visible,
when they leave the field of view, and other perturbations.

In order to analyze quantitatively the behavior of the robot, we consider the av-
erage distance to the closest ball and the cumulative time a ball was in the sight of
the robot. This gives a good measure on whether the guidance was followed and the
robot is indeed approaching the balls. If the robot is also pushing the balls along the
arena, then the traveling distance of the balls raises, which we display together with
the other quantities in Fig. 8.9(a). Indeed, for intermediate values of the guidance
factor the time a ball was in sight increases from 100 sec to 600 sec. The same holds
for the average distance of the robot to the closest ball which decreases from 5 to a
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Fig. 8.8 Ball playing scenario. The robot is placed in a circular corridor. (a) Screen shot
from the simulation. The right inlet shows the camera image and the left displays the color
filtered image; (b) Part of a sample trajectory of the robot (minutes 5–10) for γ = 0.1 colored
in red (solid) if the robot is close (within two body length) to the ball and it was in sight, and
in blue (dashed) otherwise. The yellow disks show the initial positions of the balls.

value of 2. The size of the robot is 1 and the ball has radius of 0.3, resulting in a min-
imum of 0.8. Why does not the average distance go much below 2? Firstly, the plots
include the entire simulation time including the phase where the robot has to acquire
basic knowledge about its body. Secondly, it can take a long time and driving dis-
tance to find a ball again when it is lost, for instance through an exploratory action.
Due to the inner circular walls of the arena the balls are not visible everywhere and
finally the distribution of distances is skewed, see below.

The traveling distance of the balls raises from nearly zero to more than 7500
units, which corresponds to about 100 rounds in the arena (in 30 min).

In Fig. 8.9(b) we show that the aspects of the behavior that are not particularly
subject to the guidance, namely the covered area of the arena by the robot and its
average velocity are not negatively effected by the guidance, at least for moderate
guidance strengths. The area coverage and the velocity go up when the task is per-
formed, because the robot drives much more straight and forward than without the
guidance.

When the guidance is too strong self-organized adaptation and external pressures
become out of balance and the performance drops. Especially visible is this effect
at γ = 1 where no homeokinetic learning takes place (Eq. (8.12)) and the robot fails
to move in a coordinated fashion, see Fig. 8.9(b).

Taking a closer look at the distance to the closest ball, we find that the mean is
not such an appropriate measure in the guided situation since the distribution of dis-
tances is not Gaussian but rather skewed as shown in Fig. 8.10. Without guidance the
distribution of distances is almost flat, whereas for weak and intermediate guidance
strengths the distribution is skewed with a strong preference for short distances. For
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Fig. 8.9 Behavioral quantification of the ball playing scenario. Both panels show the
mean and standard deviation of 10 simulations each 30 min long, in dependence of the
guidance factor γ . (a) Traveling distance of the balls sball (scaled), cumulative time a ball
was in sight tsight (in sec), and average distance to the closest ball 〈d〉 (right axis, min-
imum 0.8). (b) Average absolute velocity of the robot (left axis) and area coverage (box
counting method), given in percent of the case without guidance (γ =0) (right axis).
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Fig. 8.10 Distribution of distance to the ball in the ball playing scenario. All panels show
the histogram (in sec) of the distance d averaged over all simulations for one particular value
of the guidance factor γ . (a) No guidance; (b) weak guidance; (c) intermediate guidance;
(d) overly strong guidance (no self-organization).

overly strong guidance (γ = 1) the robot gets predominantly stuck at the walls be-
cause the sensorimotor coordination is pushed away from its sensitive regime, such
that the histogram is rather arbitrary.

8.5.4 Robustness against Structural Changes

In fact we performed quite radical changes to the camera setup, namely to rotate and
flip the camera abruptly, see Fig. 8.11. These changes have severe consequences for
the sensorimotor dynamics, because some sensor values swap signs or change from
being useless to becoming important and vice versa.

We use the same circular arena as in the previous section. In our simulated ex-
periments the camera setup is initially normal and is changed every 10 minutes to
the setups shown in Fig. 8.11. Only the backwards view is kept for 20 min. Finally
the normal setup is used again, such that an experiment lasted 70 min in total. We
conducted 10 experiments with γ = 0.1 and present the evolution of the relevant
model and controller parameters in Fig. 8.12.
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(a) Tilt 45◦ (b) Tilt −90◦ (c) Backward
view

(d) Upside
down

Fig. 8.11 Radical changes to the visual perception. In addition to the normal setup of
the camera (Fig. 8.8) it is rotated by 45◦ (a), −90◦ (b), and 180◦ (d) along the optical axis,
and lifted and rotated by 180◦ (c) along the vertical axis yielding a backward view. Note the
different perspective and the appearance of the robot’s body in the camera view in (c).
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Fig. 8.12 Fast relearning: evolution of parameters for a changing camera. The camera
is changed every 10 min, illustrated by the vertical lines. Its orientation on the body is shown
by the icons. All values are mean values for 10 independent runs. Shown are elements of
the model matrix (A) and controller matrix (C). The indexes refer to the sensor and motor
value vectors, see Eq. (8.20). (a) Model parameters connecting left and right motor command
with visual motion input (ẋh,ẋv). (b) Controller parameters connecting visual position (xh,xv)
with left and right motor neuron. (c) Controller parameters connecting visual motion (ẋh,ẋv)
with left and right motor neuron. (d) Controller and Model parameters connecting visual
size (xs,ẋs) and left wheel. The model parameters adapt very quickly to the new camera
configurations. The controller utilizes both the position and the motion of the ball, however
its adaptation is much slower compared to the model. Parameters: γ = 0.1.
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Especially the model parameters relating motor values with the motion sensors,
Fig. 8.12(a), evidently show that the correct correspondence is learned within a few
minutes after each switching event. This, however, is only possible if the behavior
of the robot is such that a ball remains frequently in the field of vision, which is
very hard, if e.g., the positional sensation just swapped sign. In this situation the
major strength of the homeokinetic controller shows its fruits, namely its continu-
ous and embodiment related explorative and drive. The controller parameters show
that the incorporation of the vision sensors is changed drastically for the different
situations, but also that both motion and position information is used. The positional
information is required to steer towards the ball and the motion sensor is used avoid
overshooting. The parameters C change slower than the model parameters. Note that
the behavior is also influenced by the parameters h (not shown). These change more
rapidly and help to realize the teaching signals on a shorter timescale until the C
matrix captures the correspondence with the sensor values.
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Fig. 8.13 Performance recovery for a changing camera configuration. Depicted is the
summed average velocity of all balls within intervals of 5 min corresponding to the simula-
tions in Fig. 8.12. For comparison the case without guidance (γ = 0) is displayed. The base
line (green, dotted) represents the average ball movement of a blind robot.

How is the performance in the task after the structural changes? To answer this
question we present in Fig. 8.13 the average ball velocities within 5 minute intervals
summed over all balls. Note, that since the balls are subject to rolling friction a con-
stant pushing is required. For comparison the values without guidance and without
vision (chance level as a baseline) are displayed. The performance within the first 5
minutes is already far above the baseline and it is doubled from the first to the second
5 minute interval. After each structural disruption the performance drops a bit and is
recovered in the second 5 min interval for each setting. Only the setting with camera
pointing backward yields worse performance, which is due to the partial obstruc-
tion of the visual field by the body. Then the most drastic disruption occurs when
the view is switched from backward to forward, but upside down. Here all visual
sensor modalities change sign. Nevertheless the performance raises in the second 5
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min interval to the performance of before. We can conclude that the performance is
rapidly recovered even after severe changes in the sensor modalities.

At the beginning of an experiment the robot learns the behavior from scratch.
When the camera is first turned by 45◦ comparably small adaptations occur, see
interval 10-20 min in Fig. 8.12. For instance the sensors for vertical position and
motion get slowly integrated, but the remaining structure stays the same and in fact
the performance drops only slightly (Fig. 8.13). When the camera is turned to −90◦

a drastic change occurs. The meaning of the size sensor does not change, but the
position and motion sensors require a completely different coupling, which is slowly
established (interval 20-30 min). This may be called learning from scratch, but in
fact it is worse, it is learning from a wrong configuration. When the switch occurs
the controller acts to avoid the ball. To manage this challenge an exploration is
required that focuses on the wrong aspects of the model, which is what happens
in our approach, where the adaptation speed is actually increased if the prediction
errors raise (see Eq. (8.6)). Since the controller does not explicitly know when a
structural change occurs it is always adapting in a continuous manner. However,
there is no long-term memory such that the controller cannot remember previously
experienced configurations.

To summarize, the entire sensorimotor coordination to fulfill the task was learned
by the robot within a few minutes. This involves the basic coordination to drive the
robot and the integration of the vision sensors such that the balls are approached and
balanced while pushed. The task to push the balls is not very complicated and can
be achieved with a simple hand-crafted controller. However, to learn it from scratch
in a short amount of time is hard. On top of that the orientation of the camera was
abruptly changed such that a completely different sensorimotor coordination be-
comes necessary. We found that guided self-organizing with homeokinesis can cope
with a wide range of configuration changes, even those where a complete change in
the visual sensation occurs. To our knowledge there is no other system that offers
this kind of robustness and the rapid on-line learning.

8.6 Reward-Driven Self-Organization

8.6.1 Reinforcement Learning and Guided Self-Organization

In many applications an explicit objective function is not available, instead a qual-
itative signal is given that can be interpreted as reward of punishment of a recent
state or action of the robot. Reinforcement learning studies the generation of poli-
cies under such conditions typically relying on an exploration mechanism that dis-
covers better solutions from present ones. While it is possible to apply a learning
rule similar to homeokinesis to shape exploration in reinforcement learning (Smith
and Herrmann 2012), we will consider here the usage of the reward signal for the
guidance of the homeokinetic exploration.

For example the behavior of the simple robot with one-degree of freedom shows a
systematic sweeping through the accessible frequencies of the sensor state reflected
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by rolling modes with different velocities (Der and Martius 2012). In the case of the
spherical robot with its three dimensional motor and sensor space we also observed
a sweeping through a large set of possible behaviors. In a setup where the robot can
move freely, it will exhibit different slow and fast rolling modes around different
axes.

Before introducing the new mechanisms, let us recall that well predictable behav-
iors persist longer than others. Due to this effect the well predictable behaviors are
also quickly found because badly predictable ones are left quickly. Translating this
into the case of reward and punishment, we want that rewarded behaviors persist
longer than punishment ones and that predictable ones are found quickly. Thus we
have to modulate the learning speed according to the online reinforcement signal in
a way that in rewarded situations the adaptation speed is reduced and in punished
ones the speed in increased. At first glance it seems to be counterintuitive that we
have to reduce learning speed in order to keep a behavior, but the self-organized
search should be slowed down to find even better behaviors locally. Moreover, the
controller is already able to produce the behavior at the time it is exhibited by the
robot.

The real-valued reward signal r(t) for each time t is supposed to act as a reward
for positive values and as a punishment for negative values. It is incorporated into
the error function in the following way

E r = (1− tanh(r(t)))E , (8.25)

where E is the usual TLE (8.6) and r(t) is expected to assume values mainly in
the interval between −1 and +1. Larger amplitudes are squashed by the hyperbolic
tangent such that differences tend to be ignored for high positive or negative rewards.
The effect of the factor (1− tanh(r(t))) is is the same as a rescaling of the learning
rate which is increased for negative and decreased for positive rewards. Therefore,
we can expect that rewarded behaviors persist longer and punished behaviors are left
quicker. We will demonstrate the effect of the reward-based weighting in shaping the
behaviors of the spherical robot (see Fig. 8.5a).

8.6.2 Modulation of Behavior in a Spherical Robot

8.6.2.1 Reinforcing Speed

In the following experiment we will use the spherical robot, see Fig. 8.6(a). One of
the simplest possible desired behaviors of this robot is fast unidirectional rotation.
A reward function for this goal can be constructed from the angular velocity of the
robot. For small velocities the reward should be negative, thus causing a stronger
change of behavior, whereas larger velocities should result in a positive reward. To
achieve that, the reinforcement signal can be expressed as

r(t) =
1
3
‖vt‖− 1 , (8.26)
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Fig. 8.14 Performance of the spherical robot rewarded for speed. (a) Mean and standard
deviation of the velocity of the spherical robot for 20 runs each 60 min long with (red) and
without (blue) speed reinforcement, sorted by velocity. The label ‘all’ denotes the mean and
std. deviation over the means of all runs, which is significantly (p < 0.001) higher for the
reinforced runs. (b) Time course of the robot’s velocity for run number 10 and 14, where
blue/dotted shows the normal case and red/solid line shows the reinforced case.

where vt is the velocity vector of the robot, see Fig. 8.6(a). In order to compare
the results with the unguided case the reward is shifted, such that it is zero for the
average velocity of normal runs. The scaling is done to keep the reward within the
effective range.

We conducted 20 trials with the spherical robot with reinforcement and 20 trials
without reinforcement, all with random initial conditions, each for 60 min in simu-
lated real time on a flat surface without obstacles. The robot also experiences rolling
friction, so that fast rolling really requires continuous motor activity. In Fig. 8.14 the
mean velocity (measured at the center of the robot) for each simulation is plotted
and the velocity trace of the robot for two reinforced and two normal runs are dis-
played as well. The simulations are sorted by performance and plotted pairwise for
comparison. As desired, the mean velocities of the reinforced runs are larger than
the ones of the normal runs. This is especially evident in the overall mean (mean
of means marked by ‘all’ in Fig. 8.14(a)), which is significantly different. The null
hypothesis that the set of means of the reinforced runs and of the normal runs have
an indistinguishable mean was rejected with p < 0.001 using the t-test. However,
since straight and also fast rolling modes are easily predictable and active they are
also exhibited without reinforcement for a long time. It is important to note that
the fast rolling modes are also found again, after the robot was moving slower, see
Fig. 8.14(b).

The guidance of the homeokinetic controller using a reward for fast motion has
shown to increase the average speed of the robot significantly. Although there are
also trials where no increased speed was found.
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8.6.2.2 Reinforcing Spin

In a different setup we want the robot to follow curves and spin at the spot. We use
the angular velocity ωz around the z-axis of the world coordinates system, which is
perpendicular to the ground plane, as depicted in Fig. 8.6(a). The reward function is
now given by

r(t) =
1
3
‖ωz‖− 1 . (8.27)

Again the reward is scaled and shifted to be zero for normal runs and to be in an
appropriate interval. Positive reward can be obtained by rolling in a curved fashion
or by entering a pirouette mode. The latter can be compared to a pirouette done by
figure-skaters—with some initial rotation the masses are moved towards the center,
so that the robot spins fast in place. The robot also experiences rolling friction, so
that fast pirouettes are not persistent.

Again, we conducted 20 trials with reinforcement and 20 trials without reinforce-
ment, each for 60 min simulated real time on a flat surface without obstacles. In
Fig. 8.15(a) the mean angular velocity ωz for each simulation is plotted, again sorted
by performance. The time evolution of the angular velocity for two reinforced and
two normal runs are displayed in Fig. 8.15(b). In this scenario the differences be-
tween the normal runs and the reinforced runs are remarkable. Nearly all reinforced
runs show a large mean angular velocity. The reason for this drastic difference is
that these spinning modes are less predictable and therefore quickly abandoned in
the non-reinforced setup. The traces show that the robot in a normal setup rarely
performs spinning motion, whereas the reinforced robot performs, after some time
of exploration, very fast spinning motions, which are persistent for several minutes.
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Fig. 8.15 Performance of the spherical robot rewarded for spin. (a) Mean and std. devi-
ation of the angular velocity ωz of the spherical robot for 20 runs each 60 min long with (red)
and without (blue) spin reinforcement, sorted by angular velocity. The label ‘all’ denotes the
mean and std. deviation over the means of all runs. (b) Time course of the velocity for run
number 12 and 20, where blue/dotted shows the normal case and red/solid line shows the
reinforced case.
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In this setup it can also be seen that the rewarded behaviors are found again after
they were lost, see Fig. 8.15(b).

The mechanism to modulate the learning speed by a reward signal showed
a strong effect on the behavior of the spherical robot. When controlled by the
homeokinetic controller without guidance the robot rarely exhibits narrow curves or
spinning behavior. In contrast the guided controller engaged the system into curved
motion most of the time. One might wonder how it is possible that this technique
is able to reach a behavior that is normally not exhibited. The reason is that when
the robot is starting to follow a curve, then the learning rate of the controller goes
down, although the forward model is still learning normally. In the unguided case
the prediction error rises (because it is a new behavior) and thus the controller will
quickly leave this behavior. This actually happens before a fast spinning is reached.
In the rewarded case the forward model is able to capture the behavior before it is
left (because of the slower drift), which in turn enables the control system to enter
modes of more narrow curves.

8.7 Channeling Self-Organization

Periodic behaviors, such as observable in locomotion, are characterized by a par-
ticular spatio-temporal structure which can be described in terms of phase relations
between the joints. Vice versa, by imposing certain phase relations a bias towards
a specific behavior can be conveniently introduced into the dynamical system. For
this purpose we will use again soft constraints that break symmetries in a particular
way, reduce the effective dimension of the sensorimotor dynamics, and guide thus
the self-organizational process towards a subspace of the original control problem.
In biological systems similar constraints are known to be effective on a low level of
neuronal circuitry, e. g. linking pairs of antagonistic muscles such that the activity of
one muscle inhibits activity of the other via inter-neurons in the spinal cord (Pearson
and Gordon 2000).

We will apply here an analogous regulation method which refers to motor values
of one effector as teaching signals for another one, and will call this scheme cross-
motor teaching. It will be used to prescribe which motor neuron receives a teaching
signal from which other neuron. Note that despite the use of ‘teaching signals’ the
algorithm is completely unsupervised, because the signals are generated internally.
The self-organization progress preserves a high amount of symmetries of the phys-
ical system. As an example, consider a two-wheeled robot that drives forward and
backward and rotates clockwise and counterclockwise equally often. The physical
system (morphology of the body and interaction) is essentially symmetric with re-
spect to forward-backward, left-right (lateral), and also straight-rotational behavior.
To the contrary, if the robot lacks forward-backward symmetry and, more impor-
tantly, also straight-rotational symmetry because of friction and inertia. This is also
reflected in behavior in that the robot is more driving straight than rotating.
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8.7.1 From Spontaneous to Guided Symmetry Breaking

To achieve symmetry breaking in a predefined way, we will first consider pairwise
relations as constraints for the broken-symmetric state. Later we will generalize this
by using permutation relations. Let us, e.g. influence the controller to prefer a pair-
wise in-phase or antiphase relations in the motor patterns (Martius and Herrmann
2010). For a particular pair of motors (r,s), we place a bidirectional cross-motor
connection from r to s, which means that the motor s receives its teaching signal
from motor r and vice versa. In this way both motors are guided towards an in-
phase activity. The (internal) teaching signal is

(
yG

t

)
r = (yt)s and

(
yG

t

)
s = (yt)r , (8.28)

which is used then in Eqs. (8.12–8.15).
Likewise, an antiphase teaching relation can be expressed by

(
yG

t

)
r =−(yt)s and

vice versa. In this simple setup the cross-motor connections have either a positive
or negative sign. For those motors i that are not part of a connected pair we need to
set

(
yG

t

)
i = (yt)i, in order to suppress the error signal, see Sect. 8.4.2.

8.7.1.1 Experiment

To illustrate the concept we will consider the above-mentioned two-wheeled robot,
cf. Fig. 8.16c. The robot has two motors actuated according to y1 and y2 and is
subject to the goal of straight driving. This can be obtained by an in-phase relation
between both motors following Eq. (8.28), i. e.

(
yG

t

)
1 = (yt)2 and

(
yG

t

)
2 = (yt)1 . (8.29)

For experimental evaluation we placed the robot in an environment cluttered with
obstacles.

We performed, for different values of the factor γ , five runs of 20 min length. In
order to quantify the influence of the cross-motor teaching we recorded the trajec-
tory, the linear velocity, and the angular velocity of the robot. We expect an increase
in linear velocity because the robot is to move straight instead of turning. For the
same reason the angular velocity should go down. In Fig. 8.16 a sample trajectory
and the behavioral quantifications are plotted. Additionally, we plot the relative area
coverage which is calculated from the trajectory using a box-counting method. It re-
flects how much area of the environment was covered by the robot with cross-motor
teaching compared to the original homeokinetic controller. As expected, the robot
shows a distinct decrease in mean turning velocity and a higher area coverage with
increasing values of the guidance factor. Note that the robot is still performing turns
and drives both backwards and forwards and does not get stuck at the walls, as seen
in the trajectory in Fig. 8.16(c). The properties of the homeokinetic controller, such
as sensitivity and exploration, remain.

We have seen that a pairwise cross-motor teaching can be used to guide the self-
organizing control to drive mostly straight in the two-wheeled robot. The strength
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(a) (b)

γ = 0 γ = 0.001 γ = 0.01 γ = 0.1

(c)

Fig. 8.16 Behavior of a two-wheeled robot (a) guided to move preferably straight.
(b) Mean and standard deviation (of 5 runs each 20 min) of the area coverage, the average
velocity 〈|v|〉, and the average turning velocity 〈|ωz|〉 for different values of the guidance fac-
tor γ . Area coverage (box counting method) is given relative to the the case without influence
(γ =0: 100%) (right axis). The robot drives straighter and covers more area for increasing γ ,
until at large γ the teaching strictly dominates the behavior of the robot. (c) Example trajec-
tories for different guidance factors. Parameters: εc = εA = 0.01.

of this preference can be adjusted by the guidance factor. The algorithm is self-
supervised and the only specific information that is given is the pair of motors to be
synchronized.

8.7.2 Multiple Motor Relations

Now we want to consider a more general cross-motor connection setup where each
motor has one incoming and one outgoing connection, such that there is still only
one teaching signal per motor neuron (Martius and Herrmann 2011). The cross-
motor connections can be described by a permutation πm of the m motor neurons
assigning each motor neuron a source of teaching input. The teaching signal is then
given by (dropping the time index)

yG
i = yπm(i) for i = 1, . . . ,m. (8.30)

Additionally a sign function could be used defines whether the motors are supposed
to be in-phase or antiphase, but we do not need it in the following. The pairwise
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(a) (b)

Fig. 8.17 The armband robot. (a) Screen shots of the simulation. The transparent sphere
in the center marks the center of mass of the robot. (b) Track-robot armband with cross-
motor connections. The arrows indicate unidirectional cross-motor connections, where the
head points to the receiving unit. All links are equal, but for visibility reasons only four links
are drawn boldly. For this connection setup the robot preferably moves leftwards.

setup (Eq. (8.28)) is of course a special case of this notation. Note, that with a cyclic
schema of connections also a group of motors can be synchronized.

8.7.3 Guiding to Directed Locomotion

In order to study a robot with a scalable complexity, we will consider the armband
robot—a bracelet- or track-like structure. We will see that we can explicitly guide
the robot to a directed and fast locomotion by organizing the initially decentralized
control into a cooperative mode which can be considered as the emergence of a
single controller for the entire robot.

This robot consists of a sequence of m flat segments placed in a ring-like con-
figuration, where subsequent segments are connected by the m hinge joints. The
resulting body has the appearance of a bracelet or chain, see Fig. 8.17(a). Each joint
is driven by a servo motor and has a joint-angle sensor. The center positions of the
joints are such that the robot is in a perfectly circular configuration (deviating by an
angle of 2π/m from a straight positioning). The motor values and sensor values are
represented as well as joint angle deviations, see Fig. 8.17(b). The joints are highly
coupled through the ring configuration. Therefore, an independent movement of a
single joint is not possible. Instead it has to be accompanied by a movement of the
neighboring joints and of distant joints.

Since the robot is symmetric there is by construction no preferred direction
of motion, meaning that the robot controlled by the homeokinetic controller will
equally probable move forward or backward. The robot cannot turn or move side-
ways, but it can produce a variety of postures and locomotion patterns.

With the method of cross-motor teaching we can help to break different symme-
tries, such that the robot is more likely to perform a directed motion. One possibility
is to connect motors on opposite sides of the robot with a bias in clockwise or coun-
terclockwise direction. For that we define the permutation (used in Eq. (8.30)) as
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πm(i) = (i+ k+ �m/2�) mod m , (8.31)

where k ∈ {−1,0,1} and �·� denotes the truncation rounding (floor). We will only
use positive connections, such that the sign function is not required. Thus, the teach-
ing signals are (omitting the time index)

yG
i = y(i+k+�m/2�) mod m for i = 1, . . . ,m . (8.32)

The choice of k depends on the desired direction of motion and on whether the
number of joints m is even or odd. If m is even then k = −1 and k = 1 are used for
both directions (forward or backward) and k = 0 represents a symmetric connection
setup. In the latter case the robot will not prefer a direction of motion and the be-
havior is similar to the one without guidance. For an odd value of m, which is also
used here, k = 0 and k = 1 need to be used for backward and forward motion.

In the following experiments the robot has m= 13 motors. The motor connections
for k = 1 are illustrated in Fig. 8.17. Each motor connection is displayed by an arrow
pointing to the receiving motor. Note that the connections are directed and a motor
neuron is not teaching the motor neuron from which it is receiving teaching signals.
For k = 0 all arrows are inverted, meaning that for each connection the sending and
receiving motor neurons swap roles.

To evaluate the performance we conducted, for different values of the guidance
factor γ , 5 trials each 30 min long. In a first setting the cross-motor connections were
fixed (k = 1) for the entire duration of the experiment. Without guidance the robot
moves equally to both directions but with comparably low velocity. This can be
seen at the mean of the absolute velocity in Fig. 8.18(a). If the value of the guidance
factor is chosen conveniently, we observed the formation of a locomotion behavior
after a very short time and the robot moves in one direction with varying speed see
Fig. 8.18(b) for three velocity traces. Note that this behavior requires all joints of
the robot to be highly coordinated. We also observe a peak of high velocity after
the first few minutes, which is followed by a dip before a more steady regime is
attained. During this time the controller is going from a subcritical regime (at t = 0)
to a slightly supercritical regime.

The locomotory behavior can also be seen in Fig. 8.19 for a low value of guid-
ance factor (γs = 0.001) and in Fig. 8.20 for a medium value of guidance factor
(γ = 0.003). The average velocity of the robot increased distinctively with rising
guidance factors, see Fig. 8.18(a). However, for excessively large values of the
guidance factor the velocity goes down again. This occurs for two reasons: First,
the cross-motor teaching has a too strong influence on the working regime of the
homeokinetic controller and second the actual motor pattern of the locomotion be-
havior does not perfectly obey the relations between the motor values as specified
by Eq. (8.32). In order to satisfy the constraints imposed by Eq. (8.32) all motor
values need to be equal, which is of course not the case in the locomotion behavior.

In a second setup we changed the cross-motor connections every 5 min, i. e. k was
changed from 0 to 1 and back. A value of k = 0 should lead to a negative velocity
and a value of k = 1 to a positive velocity.
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Fig. 8.18 Performance of the armband robot with constant cross-motor teaching.
(a) Mean and standard deviation of the average velocity 〈v〉 and the average absolute velocity
〈|v|〉 of 5 runs for different value of the guidance factor γ . (b) Velocity of the robot v (averaged
over 1 minute sliding window) for 3 runs at γ = 0.003. Parameters: k = 1, εc = εA = 0.1.

Fig. 8.19 The armband robot learns to locomote by weak guidance. Behavior of the robot
with cross-motor teaching and weak guidance (γ = 0.001). A slow locomotive behavior with
different velocities is exhibited. Explorative actions cause the posture of the robot to vary in
the course of time.

Fig. 8.20 The armband robot quickly learns to locomote. Behavior of the robot with
cross-motor teaching and medium guidance (γ = 0.003). Comparable fast locomotive behav-
ior emerges quickly and is persistent. Nevertheless the velocity varies. Only small exploratory
actions are takes, such that the posture is mainly constant.

To study the dependence on the guidance factor and to measure the performance
we use the average absolute velocity 〈|v|〉 and the correlation of the velocity with
the configuration of the coupling ρ(v,k), see Fig. 8.21(a). Without guidance (γ = 0)
there is, as expected, no correlation with the supposed direction of locomotion. For
a range of values of the guidance factor we find a high total locomotion speed with
a strong correlation to the supposed direction of motion. Note that the size of the
correlation depends on the length of the intervals of one connection setting. For
long intervals the correlation will approach one. In Fig. 8.21(b) the velocity of the
robot is plotted for different runs with the same value of the guidance factor that was
used in the previous experiment (γ = 0.003). We observe that the robot changes the
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Fig. 8.21 Performance of the armband robot for variable cross-motor teaching.
(a) Mean and standard deviation of the average absolute velocity 〈|v|〉 and the correlation
ρ(v,k) of the velocity with the configuration of the coupling for 5 runs with different values
of the guidance factor γ . (b) Velocity (averages over 10 sec sliding windows) of the robot
for 3 runs at γ = 0.003 and the target direction of motion D = 2k− 1 for better visibility.
Parameters: εc = εA = 0.1.

direction of motion shortly after the configuration of the coupling was changed, see
Fig. 8.21

8.7.4 Scaling Properties

The locomotion of the robot is essentially influenced by the number of cross-motor
connections. To study this we use again the fixed connectivity. In a series of simu-
lations a number 0 ≤ l ≤ m of equally spaced cross-motor connections (Fig. 8.17)
are used. With increasing l the robot starts to locomote earlier. Full performance is
reached already if 8 out of the 13 connections are used, see Fig. 8.22(a).

In order to study the scaling properties of the learning algorithm we varied the
number of segments m of the robot and thus the dimensionality of the control prob-
lem. The results are astonishing, see Fig. 8.22(b): The behavior is learned with the
same speed also for large number (40) of segments. There is no scaling problem here
for the following reason. In the closed loop with an approximate feedback strength
(self-regulated by the homeokinetic controller) the robot needs only very little influ-
ence to roll. The length of the robot can even help because other behavioral modes
(e. g. wobbling) are damped increasingly due to gravitational forces. For the same
reason, small robots are slower than medium ones. Large robots are again slower
because the available forces at the joints become too weak.

The experiment illustrates that specific behaviors can be achieved in a high-di-
mensional robot by using cross-motor teaching. Cross-motor connections can break
the symmetry between the two directions of motion such that a locomotion behavior
is produced quickly. When the connections are switched during runtime, the behav-
ior of the robot changes reliably.

The mechanism proposed here can also be transferred to sensor space using the
direct sensor teaching (Sect. 8.4.3) instead of the motor teaching. One obtains a
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Fig. 8.22 Scaling of learning time and performance for different robot complexity. The
plots show mean and standard deviation of the distance traveled by the robot (‘dist’ in units
of 1 segment size) and of the time-to-start (‘tts’ in seconds) of 20 runs à 10 min (γ = 0.003).
(a) Performance as a function of the number of cross-motor connections l (equally spaced
around a robot with m = 13 joints). (b) Performance for different numbers of segments m
(DoF) with full cross-motor connectivity (l = m).

cross-sensor teaching analogously to the definitions given above. This can become
useful, for example if a certain behavior is demonstrated by a human operator by
activity moving the robot. In the case of the armband robot, one can imagine push-
ing the robot along the ground forcing it into a locomotion pattern. Based on the
observed sensor readings, the correlations between the sensor channels may be de-
termined and used as a basis for the construction of a specific cross-sensor teaching
setup. This highly interesting idea was, however, not yet implemented and remains
for future work.

Starting from the guidance by teaching we introduced the concept of cross-motor
teaching allowing for the specification of abstract relations between motor chan-
nels. There are no external teaching signals required, because the motor values are
used mutually as teaching signals. The only specific information put into the system
is the cross-motor relation. First we studied simple pairwise relations and shaped
the behavior of the two-wheeled robot to drive mostly straight through the coupling
between both motors. The couplings introduce soft constraints that guide the self-or-
ganization process to a subspace of the entire sensorimotor space and therewith the
effective dimension of the search space for behaviors is reduced. This was demon-
strated using the high-dimensional armband robot. With a simple cross-motor teach-
ing the robot developed within a short time fast locomotion behaviors from scratch.
The direction of motion was altered by a change in the connection setup. Remark-
able is also the scaling property with respect to the dimensionality of the control
problem.

8.7.5 Coordination of Finger Movements for Grasping

An interesting application of the above method is in neuroprosthetics, where often
little information is available in complex control problems. We will consider the
control of a prosthetic hand in a simulation. The simulated hand has six controllable
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(a) (b)

Fig. 8.23 Guided self-organization with homeokinesis in a simulated hand prosthesis.
(a) The prostheses has six controllable degrees of freedom. A teaching term based on the
similarity of the finger angles keeps the fingers in near synchrony while they are moving
independently when controlled by the basic homeokinetic rule. (b) For a guidance factor
γ ≈ 0.03 correlations between fingers are reached that are similar to observations in healthy
humans (Santello and Soechting 2000). The red line shows the mean value over 10 trial and
black lines the respective standard deviation.

DoF, two for the thumb and one for the other fingers, i.e. the fingers have a fixed
coupling between their three degrees of mobility, see Fig 8.23(a). All fingers are
equipped with position sensors of the joints and proximity sensors in the tip. If
the fingers are controlled by the homeokinetic controller they develop independent
movements because no physical coupling is present in this robotic model. Since
in a natural environment the fingers interact mostly because of the manipulation
of objects and because of physiological constraints, we can also try learning such
correlations by a guidance principle. In this way we will arrive at a measure of
the required interaction which then can be compared with observations in healthy
humans.

In order to enforce movement synergies between the fingers, we implemented
finger correlation by cross motor teaching between all fingers. Here we have multi-
ple teaching signals for each motor neuron, where simply the arithmetic average is
used.

The mean correlation of the homeokinetic controller without guidance (γ = 0) is
0, which means here the fingers move independently. At high values of γ the cor-
relation approaches unity, which indicates that the fingers have lost independence
which however would be needed in grasping applications. Considering the corre-
lation value of 0.582 given for human fingers (Santello and Soechting 2000), the
optimal value of γ would be around 0.03, see Fig. 8.23(b). Again a very weak guid-
ance is sufficient to influence the behavior in the desired direction.
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8.8 Discussion

In this chapter we have presented several mechanisms for guided self-organization
of robot behavior based on homeokinetic control (GSOH). Homeokinesis bootstraps
the exploration process of embodied systems and leads to self-organization of be-
havior. Various patterns of behavior emerge depending on the robotic hardware and
its environment. With a general framework of problem specific error functions we
set the foundation for guidance by teaching signals and guidance by cross-motor
teaching. The balance between self-organized behavior and target behavior can be
adjusted with a single parameter.

Interestingly, teaching signals can as well be provided in terms of desired sensor
values. In this setting, for instance a spherical robot was taught to rotate around one
particular axis solely by requesting a zero value of the sensor value corresponding
to that axis. In a more elaborate example we show how the task of finding balls and
pushing them around in an environment can be achieved by simply providing a de-
sired visual sensor state. The entire sensorimotor coordination to fulfill this goal was
learned by the robot within a few minutes. This involves the basic coordination to
drive the robot and to integrate the vision sensors such that the balls are approached
and balanced while pushed. To probe the robustness of the approach the orientation
of the camera was abruptly changed such that a completely different sensorimotor
coordination becomes necessary. We found that GSOH can cope with a wide range
of configuration changes, even those where a complete change in the visual sensa-
tion occurs (signs of all visual sensors swapped).

The teaching mechanisms form the basis for a higher level guiding mechanism,
namely cross-motor teaching. It allows to specify relations between motor chan-
nels to be in-phase or antiphase activity. This induces soft constraints and therewith
reduces the effective dimensionality of the system. This was especially illustrative
with the high-dimensional armband robot. A cross-motor teaching with only one
connection per joint leads to a fast and coordinated locomotion behavior. Similar
to the robustness in the vision experiments, we observe here a rapid and reliable
change in the direction of locomotion by an altered connection setup. A particularly
promising result is that the performance and speed of learning is almost independent
of the dimensionality of the system, at least in the here considered cases of up to
40 DoF. The discrete cross-motor connections offers a good way for higher level
control structures to direct the behavior of the robot.

We also presented a simple method to guide the self-organizing behavior using
online reward signals, originally published in (Martius et al. 2007). In essence the
original time-loop error is multiplied by a strength factor, obtained from the reward
signal. The approach was applied to the spherical robot with two goals, fast mo-
tion and curved rolling, which was successfully achieved. Notably, the exploratory
character of the paradigm still remains intact.

To compare the different methods of GSOH we can ask for the amount and
type of information that is required about the behavior and the robotic system. For
the direct teaching methods a rather detailed insight into the sensorimotor patterns
of the desired behavior is required. In sensor space this is typically easier than in
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motor space as demonstrated by the examples. For the cross-motor teaching a more
high-level knowledge is sufficient, for instance about the symmetries of the body
and of the desired motion. In both cases the designer needs to expect a specific be-
havior, e. g. a locomotion behavior with a certain gait. In the reward based method,
on the other hand, the realization is not specified, e. g. the gait would be found
autonomously. To be successful, however, the exploration needs to be structured
enough to produce short segments of locomotion behavior to be picked and ampli-
fied. Here the newest methods for behavioral self-organization using information-
theoretic quantities show promising results (Martius et al. 2013; Der and Martius
2013).

Let us briefly compare GSOH with other approaches to learning of autonomous
robot behavior, namely evolutionary algorithms (EA) (Nolfi and Floreano 2001) and
reinforcement learning (RL) (Sutton and Barto 1998). EA and RL can optimize the
parameters of the controller (e. g. a neural network) and can in principle achieve the
behaviors demonstrated here. There are many impressive results where systems of
similar dynamical complexity have been successfully controlled, see for example
(EA) Chemova and Veloso (2004); Bongard et al. (2006); Mazzapioda and Nolfi
(2006); de Margerie et al. (2007); Ijspeert et al. (1999) and (RL) Peters and Schaal
(2008). In high-dimensional systems, however, identical subcomponents are typi-
cally used or the problem is appropriately prestructured by hand. Additionally, long
learning times are required (many generations with many individuals or repetitions)
which is often prohibitively long for physical robots. Here we see the main strength
of our system: The desired behaviors are found very fast even in high-dimensional
and dynamically complex systems—we have very fast online-learning. Another dif-
ference is that the finally evolved or learned controllers are typically static, such
that it only works in the conditions it was evolved/trained in. In contrast we demon-
strated the robustness of GSOH to extreme sensor disruption, which is successful
due to a continuous self-modeling and exploration.

Of course there is also a downside, namely that the here proposed approaches are
rather limited in which behaviors can be achieved and how for instance the reward
can be given. Also in GSOH the desired behaviors are only partially followed and
no optimality guarantees can be given which is in contrast to RL that was proven to
converge to the optimal solution under certain conditions (Sutton and Barto 1998).
However, for practical applications these proves are of questionable value because
a prohibitive amount of time is required.

To conclude, the GSOH methods offer a fast development of goal-oriented behav-
iors in high-dimensional continuous-domain robotic systems from scratch, which
cannot be achieved with other learning control systems so far. However, the im-
plementation of goals is comparably limited. The reward-based guidance allows
any reward signals, but no time delays are tolerated and it is not guaranteed that
the reward is maximized. The cross-motor teaching method is suitable to select a
subset of behaviors, but cannot be generalized to all behaviors. A combination of
both methods is also conceivable, namely using cross-motor teaching to be very ef-
fective in high-dimensional systems and additionally using rewards to give a more
fine grain control over the behavior. Another line of future research would be the
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proposed cross-sensor teaching that would allow for the specification of behaviors
on the level of sensor relations. We also expect that superior results can be ob-
tained when the here proposed methods are combined with the new algorithms for
behavioral self-organization (Der and Martius 2013) as they produce more structure
in the emerging behaviors.
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Chapter 9
On the Causal Structure of the Sensorimotor
Loop

Nihat Ay and Keyan Zahedi

9.1 Introduction

In recent years, the application of information theory to the field of embodied intelli-
gence has turned out to be extremely fruitful. Here, several measures of information
flow through the sensorimotor loop of an agent are of particular interest. There are
mainly two ways to apply information theory to the sensorimotor setting.

First, information-theoretic measures can be used within various analysis meth-
ods. Sensorimotor interactions of an embodied agent lead to the emergence of
redundancy and structure of the agent’s intrinsic processes. Understanding the
generation of structure in the sensorimotor process and its exploitation is important
within the field of embodied intelligence (Pfeifer and Bongard 2006). The quan-
tification and analysis of information flows through an agent’s sensorimotor loop
from the perspective of an external observer, that is from the perspective of a scien-
tist, proves to be effective in this regard (Lungarella and Sporns 2005, 2006). Here,
transfer entropy (Schreiber 2000) has been used in order to quantify the flows of
information between various processes of the sensorimotor loop, such as the sensor
process on the actuator process. Furthermore, excess entropy, also known as pre-
dictive information (Bialek et al. 2001), has been used to analyse the interplay be-
tween information-theoretic measures and behavioral patterns of embodied agents
(Der et al. 2008).

Second, information-theoretic measures can be used as objective functions for
self-organized learning. This is based on the hypothesis that learning in natural in-
telligent systems is partly governed by an information-theoretic optimisation princi-
ple. Corresponding studies aim at the implementation of related principles, so-called
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Infomax principles, in artificial systems. Emergent structures at various levels are
then analysed in view of corresponding biological structures. In the sensorimotor
setting, predictive information maximization has been used as a driving force for
self-organised learning (Ay et al. 2008; Zahedi et al. 2010; Ay et al. 2012; Martius
et al. 2013). As a result, the emergence of coordinated behavior with distributed
control has been shown. The excess entropy has also been applied to similar sys-
tems within an evolutionary optimisation context (Prokopenko et al. 2006). Other
measures of interest are the notion of relevant information (Polani et al. 2006) and
empowerment (Klyubin et al. 2005). In the latter case, the maximization of empow-
erment determines the behavior of the agent and is not the basis of learning.

Most of the information-theoretic quantities mentioned above have the mutual
information of two variables as an important building block. In information the-
ory, this fundamental quantity is used as a measure of the transmission rate of
a sender-receiver channel. Therefore, the objective functions for learning that are
based on mutual information are usually associated with some kind of informa-
tion flow. There is one problem with this interpretation, which is not visible in the
simple sender-receiver context. Information flows are causal in nature, and related
measures should be consistent with this fact. However, the causal aspects are usu-
ally not explicitly addressed. In order to do so, it has been proposed to combine
information theory with the theory of causal networks (Ay and Polani 2008), based
on the causal structure of the sensorimotor loop (Klyubin et al. 2004). This com-
bination allows us to understand how stochastic dependence, and, in particular, the
statistical structure of the sensorimotor process, is built up by causal relationships.
Various (associational) information flow measures can be formulated in causal terms
and lead, in general, to a modification of these measures. Thereby, the repertoire of
information-theoretic quantities that can be used within the above-mentioned lines
of research is extended. However, currently it is not clear to what extent realistic
objective functions for self-organised learning should be causal in nature.

In Section 9.2 we sketch the theory of causal networks and its application to the
sensorimotor loop setting. Section 9.3 introduces the notion of a causal effect and
the identifiability problem of causal effects. In particular, the identifiability of causal
effects from the intrinsic perspective of an agent is discussed. In Section 9.4 basic
information-theoretic quantities are introduced. Within the context of temporal pro-
cesses, such as the sensorimotor process, transfer entropy and predictive information
are highlighted as important quantities. The maximization of predictive information
is studied in an experimental setup in the final Section 9.5.

9.2 Causal Networks

9.2.1 The Definition of Causal Networks

The formal tool that we use for modelling causality is given in terms of Bayesian
networks (Pearl 2000). They have two components, a structural and a functional
one. The structural component is given in terms of a network. The network consists
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A B C

U

A B C

U

Fig. 9.1 Left: A network without a directed cycle, referred to as directed acyclic network
(DAG). Right: A network with a directed cycle.

α

β γ

ϕ

A B C

U

Fig. 9.2 Causal network

of vertices, or nodes, and directed edges. We denote the vertex set by V and the
edge set by E which is formally a set of pairs (v,w) ∈ V ×V . Here, the pair (v,w)
denotes the edge from v to w. The causal interpretation is that v is a direct cause of
w and w is a direct effect v. The direct causes of a node v are referred to as parents
of v and denoted by pa(v). Extending this direct cause-effect relation, we say that a
node v is a cause of a node w, and that w is an effect of v, if there is a directed path
from v to w, denoted by v � w (here, we exclude paths of length 0). According to
this causal interpretation of the network we have to postulate that an effect cannot
precede its cause. Stated differently, if v is a cause of w then w cannot be a cause
of v. This is equivalent to the property that the network does not have any directed
cycles as shown in Figure 9.1. A directed network with this property is called a
directed acyclic graph (DAG).

Given a node v with state set Xv, the mechanism of v is formalized in terms of a
stochastic map κ(x;x′), x∈Xpa(v), x′ ∈Xv, that is ∑x′ κ(x;x′) = 1 for all x. We refer
to these maps also as (Markov) kernels. Before we provide a general definition of a
Bayesian network, we illustrate its basic concepts in terms of an instructive example.
To this end, we consider the DAG with the nodes U,A,B, and C that is shown in
Figure 9.2. In addition to the graph, the mechanisms ϕ , α , β , and γ are given. They
describe how the nodes function and are formalized in terms of stochastic maps. For
example, γ(u,b;c) stands for the probability that node C is in state c given that it
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has received b and u. Based on these mechanisms, the probability of observing the
states u,a,b, and c in the unperturbed system can be computed as the product

p(u,a,b,c) = ϕ(u) ·α(u;a) ·β (a;b) · γ(u,b;c) . (9.1)

This equation connects the phenomenological level (left-hand side of equation (9.1))
and the mechanistic level (the individual terms on the right-hand side of equation
(9.1)).

Now we come to the general setting of a Bayesian network. Bayesian networks
are based on DAGs but have a further structure as model of the involved mecha-
nisms. As in the previous example of Figure 9.2, in a Bayesian network to each
node v a mechanism κv is assigned. For simplicity of the arguments and derivations,
we assume that the nodes v have finitely many states Xv. Each node gets inputs
xpa(v) from the parents pa(v) = {u ∈V : (u,v) ∈ E} and generates a stochastic out-
put according to the distribution κv(xpa(v); ·). All the mechanisms together generate
a distribution of global states. In order to describe this distribution, we choose a
numbering of the nodes, that is v1,v2, . . . ,vn, which is compatibe with the causal
order given by the graph. More precisely, we assume the following: if there is a di-
rected path from vi to v j then i is smaller than j. We use this numbering in order to
generate the states of the individual nodes.

p(xv1 ,xv2 , . . . ,xvn) = κv1(xv1) ·κv2(xpa(v2);xv2) · · ·κvn(xpa(vn);xvn).

This is clearly independent of the particular choice of such an admissible number-
ing. Therefore, we can write

p(xv : v ∈V ) = ∏
v∈V

κv(xpa(v);xv). (9.2)

On the left-hand side of this equation we have the probability of observing a partic-
ular global configuration xv, v ∈V . On the right-hand side we have the mechanisms.
The equation postulates the transition from the mechanistic level to the phenomeno-
logical level. Given a joint distribution describing the phenomenological level, there
is always a Bayesian network that generates that distribution. In order to see this,
choose an arbitrary ordering v1,v2, . . . ,vn of the nodes. The following equality holds
in any case (whenever the conditional probabilities on the right-hand side are de-
fined):

p(xv1 ,xv2 , . . . ,xvn) =
n

∏
i=1

p(xvi

∣∣xv1 , . . . ,xvi−1). (9.3)

Consider now the graph in which a pair (vi,v j) is an edge if and only if i is
smaller than j. With respect to this graph, the parent set of a node vi is given by
v1,v2, . . . ,vi−1. Defining stochastic maps κvi with

κvi(xpa(vi);xvi) := p(xvi

∣∣xv1 , . . . ,xvi−1),
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whenever p(xv1 , . . . ,xvi−1) > 0, the equation (9.3) reduces to (9.2). Note that there
are many possible mechanistic explanations of a given joint distribution. Having a
particular one only means that one possible explanation is given, which does not
necessarily represent the actual mechanisms that underly the joint distribution.

Definition 1 (Causal Markov Property). Given a DAG G = (V,E), we say that
a probability measure p on ×v∈VXv satisfies the causal Markov property, if, with
respect to p, each variable is stochastically independent of its non-effects (V minus
set of effects), conditional on its direct causes.

This property is also referred to as local Markov property. The conditional indepen-
dence statements of the local Markov property imply also other conditional indepen-
dence statements that can be deduced from the graph. In order to be more precise,
we have to introduce the notion of d-separation.

Definition 2. Let G = (V,E) be a DAG, and let S be a (possibly empty) subset of V .
We say that a path (v1, . . . ,vk) is blocked by S if there is a node vi on the path such
that

• either vi ∈ S, and edges of the path do not meet head-to-head at vi, or
• vi and all its descendants are not in S, and edges of the path meet head-to-head at

vi.

Two non-empty and disjoint sets A,B ⊆ V \ S are d-separated by S if all paths be-
tween A and B are blocked by S.

The notion of d-separation is completely structural. The local Markov property
provides a way of coupling the structure with the joint probability distribution p.
This condition implies a seemingly stronger Markov property: we say that p satisfies
the global Markov property, if

A and B are d-separated by S =⇒ A and B are stochastically independent given S.

The following theorem is central in graphical models theory (Lauritzen 1996).

Theorem 1. Let G = (V,E) be a DAG. For a probability measure p on ×v∈VXv, the
following conditions are equivalent:

1. p admits a factorization according to G (a factorization like in formula (9.2)).
2. p obeys the global Markov property, relative to G.
3. p obeys the causal Markov property, relative to G.

A simple application of this theorem to the causal graph of Figure 9.2 yields the
following conditional independence statements:
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U and B are stochastically independent given A. (9.4)

A and C are stochastically independent given U and B. (9.5)

These and similar conditional independence statements will be used in the context
of the sensorimotor loop.

9.2.2 The Causal Structure of the Sensorimotor Loop

The following figure (Figure 9.3) illustrates the components of a sensorimotor loop
with their respective interactions. In order to apply the theory of causal networks
to the sensorimotor loop, we have to consider a causal network that captures the
main aspects of this structure. Figure 9.4 shows the general causal network of a
sensorimotor loop, where Wt ,St ,Ct ,At denote the state of the world, the sensor, the
controller, and the actuator at some time point t, respectively (Klyubin et al. 2004;
Ay and Polani 2008). We denote the corresponding state spaces by W ,S ,C , and
A . The stochastic maps α , β , ϕ , and π describe the mechanisms that are involved
in the sensorimotor dynamics:

Fig. 9.3 Sensorimotor loop

Ct

AtSt−1

Wt

At−1 St

Wt−1

Ct−1

α
β

α
β

π π
ϕϕ

Fig. 9.4 Sensorimotor loop
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α : W ×A → P(W ),

β : W → P(S ),

ϕ : C ×S → P(C ),

π : C → P(A ).

Here, P(X ) denotes the set of probability measures on X . The kernels α and
β encode the constraints of the sensorimotor loop due to the agent’s morphology
and the properties of its environment. The mechanisms α and β are extrinsic and
encode the agent’s embodiment which sets constraints for the agent’s behavior and
learning. The kernels ϕ , π are intrinsic with respect to the agent and are assumed to
be modifiable through a learning process (for details, see (Zahedi et al. 2010)).

The process (Wt ,St ,Ct ,At), t = 0,1,2, . . . , is generated by Markov transition ker-
nels. Given the above kernels as models of the mechanisms that constitute the sen-
sorimotor loop, and given an initial distribution μ , we obtain the joint distribution

p(w0,s0,c0,a0, . . . ,wn,sn,cn,an)

= μ(w0, s0, c0, a0) ·
n

∏
t=1

α(wt−1,at−1;wt)β (wt ;st)ϕ(ct−1,st ;ct)π(mt ;at).

As examples, we now consider sensorimotor loops where particular arrows are re-
moved.

Example 1. 1. Passive observer. If the agent does not act on the world at all or,
stated differently, if it only observes its environment then there is no edge from
At to Wt and the kernel α does not involve the actuator state. More precisely,

α(w,a;w′) = α(w;w′) for all w, a, and w′.

Obviously, in this situation we can remove the edges from A to W and from C to
A, which leads to the diagram shown in Figure 9.5.

St−1 St

Ct−1

Fig. 9.5 Sensorimotor loop of a passive observer

2. Open loop controller. The situation in which the agent does not sense anything
in the world is referred to as open loop control. Here, the kernel ϕ does not use
the sensor state s, that is
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ϕ(c,s;c′) = ϕ(c;c′) for all c, s, and c′.

Here, the edges from S to C and from W to S can be removed, and we obtain the
diagram shown in Figure 9.6.

At−1

Ct−1

Fig. 9.6 Sensorimotor loop of an open loop controller

3. Memoryless or reactive controller. In this example, we assume that there is no
edge from the controller state at time t − 1 to the controller state at time t (see
Figure 9.7 (A)). This means

ϕ(c,s;c′) = ϕ(s;c′) for all c, s, and c′.

If we combine the kernels ϕ and π to one kernel, which we again denote by π ,
then we have a representation of a memoryless controller that is often referred to
as reactive controller (see Figure 9.7 (B)).

St−1 At−1 St

Ct−1

St−1 At−1 St

(A) (B)

Fig. 9.7 Sensorimotor loop of a memoryless or reactive controller

9.3 Causal Effects

9.3.1 The Definition of Causal Effects

In order to study causal effects, one has to apply an interventional operation, which
we also call clamping. Clamping the state of a node means a change of the mech-
anism of that node, and it is formalized by the so-called do-operation. In order to
explain the main idea behind the do-operation, we first consider our example of Fig-
ure 9.2. In this example we compute the causal effect of A on C. If we clamp â, or,
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in Pearl’s terminology (Pearl 2000), do â, we would have to replace equation (9.1)
by

pâ(u,a,b,c) = ϕ(u) · α̂(a) ·β (a;b) · γ(u,b;c) , (9.6)

where α̂(a) = 1, if a = â, and α̂(a) = 0, if a �= â. In particular, after clamping node
A the new mechanism α̂ is not sensitive to u anymore. In terms of the do-formalism,
the post-interventional probability measure pâ(u,a,b,c) is written as pâ(u,a,b,c) =
p(u,a,b,c |do(â)). Summation over u,a,b yields the probability of observing c after
having clamped â:

p(c |do(â)) = ∑
u,b

ϕ(u) ·β (â;b) · γ(u,b;c) . (9.7)

We refer to this post-intervational probability measure as causal effect of A on C
(see Figure 9.8).

α β γ

ϕ

A B C

U

Fig. 9.8 Intervention

Now, we extend this idea of intervention to the general setting of Bayesian
networks. Knowing the mechanisms, it is possible to model the consequences of
intervention. Consider the equation (9.2), a subset A of V , and assume that the con-
figuration of A is externally set to xA. What does this mean? It means that the mech-
anisms of the nodes v in A are replaced by the mechanisms

δxv(x
′
v) =

{
1, if x′v = xv

0, otherwise
.

This leads to the truncated product

p(xV\A |do(xA)) = ∏
v∈V\A

κv(xpa(v);xv) . (9.8)

Although it is not essential for what follows, we present the formula for the usual
way of conditioning:
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p(xV\A | xA) =
p(xV\A, xA)

p(xA)

=
∏v∈V κv(xpa(v);xv)

∑x′V : x′V\A=xV\A
∏v∈V κv(x′pa(v);x′v)

. (9.9)

This shows that the interventional conditioning, given by equation (9.8), is much
easier to compute than the standard conditioning of equation (9.9).

In the above derivations we considered a set A where the intervention takes
place and observed the complement V \A of A, which corresponds to the causal
effect p(xV\A |do(xA)) (see Figure 9.9 (A)). In more general situations, the post-
interventional distribution is observed in a subset B of V \A. In order to define this,
we simply have to marginalize out the unobserved nodes:

p(xB |do(xA)) = ∑
xV\(A∪B)

p(xB, xV\(A∪B) |do(xA)). (9.10)

Comparing this interventional conditioning with classical conditioning, we observe
one important difference. The latter is only possible when the event that is condi-
tioned on has positive probability. It describes the probability of observing an event
F if an event E has already been observed. However, if the probability for E van-
ishes then, already at an intuitive level, it is not clear with which probability the
occurrence of F should be expected. Formally, if p(xA) = 0 then the expression
(9.9) is not well defined. The interventional conditioning is different. Already at an

A

V \A

A

V \A

B

(A) (B)

Fig. 9.9 (A) intervention in A and observation in the complement V \A of A in V , (B) inter-
vention in A and observation in B
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intuitive level it is clear that any intervention will lead to some reaction of the sys-
tem. Formally, we see this in equation (9.8). The product on the right-hand side of
this equation is always well defined.

Although interventional conditioning differs from observational conditioning, in
some cases both operations coincide. In order to be more precise, we note that any
observed association of two variables A and B in a Bayesian network has basically
three sources: A is a cause of B, B is a cause of A, or there is a common cause of
A and B. This is known as the common cause principle (Reichenbach 1956). If we
assume that B is not a cause of A and there is no common cause of A and B then
there is no explanation for the association of A and B other than A being a cause
of B. In that case, all stochastic dependence between A and B is due to the causal
effect of A on B. For such a situation we say that the pair (A,B) is a causal pair.
One can show that for causal pairs interventional and observational conditioning are
equivalent.

Proposition 1. If (A,B) is a causal pair with respect to a DAG G, then for any
Bayesian network with graph G, we have p(xB |do(xA)) = p(xB |xA).

This proposition shows that in some cases the post-interventional distribution, that is
p(xB |do(xA)), can be obtained by observation only. More precisely, if observations
of all joint events (xA,xB) allow us to estimate their probabilities p(xA,xB), then one
can compute the causal effect as

p(xB |do(xA)) =
p(xA,xB)

∑x′B
p(xA,x′B)

, (9.11)

whenever p(xA) = ∑x′B
p(xA,x′B)> 0. If a causal effect can be computed in this way,

that is without intervention, we say that it is identifiable. In the next section, this
subject is discussed to the extent to which it is used in the context of the sensori-
motor loop. We will argue that causal effects that are relevant to an agent should be
identifiable with respect to the intrinsic variables of that agent.

9.3.2 Identification of Causal Effects

The equation (9.8) provides a formal definition of a causal effect. Such a causal
effect can be determined in various ways depending on the available experimental
operations. If we can experimentally intervene into the system, then the mechanisms
will generate the post-interventional probability measure which can be observed. In
many cases, however, experimental intervention is not possible. Then one has to ask
the following question: Is it possible to conclude the consequences of intervention
solely on the basis of observation, that is without actual intervention? At first sight,
the answer seems to be clearly No! In some sense, this is already the whole answer
to this question. On the other hand, Proposition 1 proves that in the case of a causal
pair, it is indeed possible to compute the causal effect, left-hand side of (9.11), with-
out intervention, from the right-hand side of (9.11). This demonstrates that, in order
to identify a causal effect observationally, we require some structural information.
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Without any structural information, it is not possible at all to identify causal effects.
However, this does not mean that we need to know the complete structure, that is
the DAG, in order to identify a causal effect. Partial structural knowledge can be
sufficient for the identification of a causal effect, as we will see.

In what follows we further illustrate the problem of causal effect identification
using our standard example. We want to compute the causal effect of A on C. Obvi-
ously, U is a common cause of A and C, and therefore the pair (A,C) is not a causal
pair, which implies p(c |do(a)) �= p(c |a) in general. The following formula shows
a different way of obtaining p(c |do(a)) by assuming that we can observe A, B,
and C:

p(c |do(a)) = ∑
b

p(b |a)∑
a′

p(a′) · p(c |a′,b). (9.12)

This equality is quite surprising and not obvious at all. Here is the proof:

p(c |do(a)) = ∑
u,b

ϕ(u) ·β (a;b) · γ(u,b;c) (formula (9.7))

= ∑
u,b

p(u) · p(b |a) · p(c |u,b)

= ∑
u,b

(
∑
a′

p(a′) · p(u |a′)
)

p(b |a) · p(c |u,b)

= ∑
b

p(b |a)∑
a′

p(a′)∑
u

p(u |a′) · p(c |u,b)

= ∑
b

p(b |a)∑
a′

p(a′)∑
u

p(u |a′,b) · p(c |u,b,a′)

(conditional inedependence statements (9.4) and (9.5))

= ∑
b

p(b |a)∑
a′

p(a′) · p(c |a′,b)

The structure of this example will be revisited in the context of the sensorimotor
loop.

9.3.3 Causal Effects in the Sensorimotor Loop

In this section we study the problem of the identification of causal effects in the
sensorimotor loop. In this context, there are various causal effects of interest, for
instance the effect of actions on sensor inputs. We are mainly interested in causal
effects that involve intrinsic variables of the agent, that is the variables St , Ct , and
At , t = 0,1,2, . . . . Other causal effects can not be evaluated by the agent, because
extrinsic variables are by definition not directly available to the agent. In the propo-
sition below, we list three causal effects in the sensorimotor loop that are identifiable
by the agent without actual intervention and purely based on in situ observations of
the agent. In order to be more precise, we have a closer look at the causal diagram
of the transition from time t − 1 to t. Here, as shown in Figure 9.10, we consider
the future sensor value of only one time step and summarize the past process by one
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Fig. 9.10 Reduction procedure of the causal diagram

α
β

C
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W

AH

Fig. 9.11 Reduced causal diagram for one time step

variable Ht−1. We focus on the resulting causal diagram of Figure 9.11. The joint
distribution in the reduced diagram is given as

p(h,c,a,w,s) = p(h)ϕ(h;c)π(c;a)α(h,a;w)β (w;s). (9.13)

We can now consider, for instance, the causal effect of A on S. In general, we do
not have p(s |do(a)) = p(s |a), which follows from the fact that H is a common
cause of A and S. Nevertheless, it turns out that this causal effect, among others, is
identifiable with respect to the intrinsic variables of the agent.

Proposition 2. Let the joint distribution (9.13) be strictly positive. Then the follow-
ing equations hold:

(1) p(s |do(a),c) :=
p(s,c |do(a))
p(c |do(a))

= p(s |c,a)
(2) p(s |do(a)) = ∑

c
p(s |c,a) p(c)

(3) p(s |do(c)) = ∑
a

p(a |c)∑
c′

p(s |c′,a) p(c′).

The proof of Proposition 2 is given in the appendix. In all three causal effects of
this proposition, the conditional distribution p(s |c,a) turns out to be essential as
building block for the identification of the causal effects. It describes the expectation
of the agent to observe s, given that it is in state c and performs an action a. We refer
to this conditional probability distribution as world model of the agent. Note that
in the strictly positive case, according to Proposition 2 (1), the world model is not
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dependent on the agent’s policy. These results indicate that the world model plays
an important role in evaluating causal effects in the sensorimotor loop. Furthermore,
it is an essential object within the empowerment approach to behavior (Klyubin
et al. 2005). We will see that the world model also plays a fundamental role within
learning processes.

9.4 Information Flows

9.4.1 Information-Theoretic Preliminaries

In this section, we introduce a few fundamental quantities known from information
theory. First, we consider Shannon information. Assume that p(x) describes the ex-
pectation that the outcome of a random experiment is going to be x. The information
that we receive by knowing the outcome x is equal to the surprise about that out-
come, which is quantified by − ln p(x). Events x that we expect to occur with very
low probability will highly surprise us when they do occur. This is expressed by
a large value of − ln p(x) for a low probability p(x). The expectation value of this
function is known as Shannon entropy or Shannon information:

Hp(X) := − ∑
x∈X

p(x) ln p(x) .

The Shannon entropy quantifies the uncertainty about the outcome of the random
variable X . Note that for p(x) = 0, the term p(x) ln p(x) is not directly defined.
However, the function t ln t can be continuously extended in t = 0 with value equal
to 0, which justifies the convention 0 ln0 = 0. If we know the outcome of a random
experiment beforehand, that is if our expectation p is concentrated around one value
x0, then the Shannon entropy is small. On the other hand, if the distribution is equally
spread over all events, then the uncertainty about the outcome of X is maximal. With
the uniform distribution u and the cardinality n of X , we have

Hu(X) = − ∑
x∈X

1
n

ln
1
n

= − ln
1
n

= lnn .

Now we consider two variables X and Y . With the expectation p(x,y) we associate
the measure Hp(X ,Y ) of uncertainty. Now assume that we have observed the vari-
able X and have a remaining uncertainty about Y given X . This is given as

H(Y |X) = − ∑
x∈X

p(x) ∑
y∈Y

p(y|x) ln p(y|x) .

Observation of X reduces the uncertainty about the outcome of Y and we define the
reduction of uncertainty by

I(X ;Y ) := H(Y )−H(Y |X) .



9 On the Causal Structure of the Sensorimotor Loop 275

This quantity is symmetric and has various other representations:

I(X ;Y ) = H(Y )−H(Y |X)

= ∑
x∈X

p(x) ∑
y∈Y

p(y|x) ln p(y|x)− ∑
y∈Y

p(y) ln p(y)

= I(Y ;X) .

This quantity is referred to as mutual information and quantifies the stochastic de-
pendence of variables X and Y . We have I(X ;Y ) = 0 if and only if X and Y are
stochastically independent, that is p(x,y) = p(x) p(y). Introducing a further variable
Z, we can consider the conditional mutual information

I(Z;Y |X) = H(Z|X)−H(Z|X ,Y) .

This vanishes if and only if Z and Y are conditionally independent given X .
The mutual information of two variables X and Y can be extended to more

than two variables. Given variables Xv, v ∈ V := {1,2, . . . ,N}, we define the multi-
information as

I(X1;X2; . . . ;XN) :=
N

∑
v=1

H(Xv)−H(X1, . . . ,XN).

This definition is clearly independent of the order of the Xv.
Information-theoretic quantities can be used to characterize conditional indepen-

dence. They can also be used to quantify the deviation from (conditional) inde-
pendence as a measure for (conditional) stochastic dependence. Combined with the
notion of intervention, this also leads to measures of causal information flows (Ay
and Polani 2008).

9.4.2 Transfer Entropy and Causality

In this section, we draw a close connection between the multi-information and
another information-theoretic quantity which addresses causal aspects of interact-
ing processes. This quantity has been studied as transfer entropy by Schreiber
(Schreiber 2000) and a slightly different version of it has been called directed in-
formation by Massey (Massey 1990). Recently, a thermodynamic interpretation of
transfer entropy has been provided (Prokopenko et al. 2013). Using a somewhat
implicit terminology, we argue that a more careful consideration of causality is nec-
essary for understanding the sources of stochastic dependence.

In order to simplify the arguments we first consider only a pair Xt ,Yt , t = 1,2, . . . ,
of stochastic processes which we also denote by X and Y . The extension to more
than two processes will be straight-forward. Furthermore, we use the notation
Xt for the random vector (X1, . . . ,Xt) and similarly xt for the particular outcome
(x1, . . . ,xt).
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Given a time n, consider the following quantity, which we refer to as mutual
information rate:

I(Xn;Y n) :=
1
n

I(Xn;Y n) (9.14)

=
1
n

(
H(Xn)+H(Y n)−H(Xn,Y n)

)
(9.15)

=
1
n

n

∑
t=1

{
H(Xt |Xt−1)+H(Yt |Y t−1)−H(Xt ,Yt |Xt−1,Y t−1)

}
(9.16)

=
1
n

n

∑
t=1

⎧⎪⎨
⎪⎩I(Xt ;Yt |Xt−1,Y t−1)︸ ︷︷ ︸

I

+T (Y t−1 → Xt)︸ ︷︷ ︸
II

+T (Xt−1 →Yt)︸ ︷︷ ︸
III

⎫⎪⎬
⎪⎭ (9.17)

with the transfer entropy terms (Schreiber 2000)

T (Yt−1 → Xt) := I(Xt ;Yt−1 |Xt−1)

T (Xt−1 → Yt) := I(Yt ;Xt−1 |Yt−1).

Furthermore, using standard arguments we easily see that in the case of stationary
processes the following limit exists:

I(X ;Y ) := lim
n→∞

I(Xn;Y n).

Note that in the case of independent and identically distributed variables (Xt ,Yt),
t = 1,2, . . . , the transfer entropy terms II and III in (9.17) vanish and the only contri-
butions to I(Xn;Y n) then are the mutual informations I(Xt ;Yt). In the case of station-
ary processes these mutual informations coincide and we have I(X ;Y ) = I(X1;Y1).
In this sense the quantity I extends the mutual information of two variables to a
corresponding measure for two processes.

In general, the first term I of (9.17) quantifies the stochastic dependence of Xt

and Yt after “screening off" the causes of Xt and Yt that are intrinsic to the system,
namely Xt−1 and Yt−1. Assuming the principle of common cause (Reichenbach
1956), which postulates that all stochastic dependences are based on causal interac-
tions, we can infer common causes of Xt and Yt that act from outside on the system,
if the first term I is positive. If, on the other hand, the system is closed in the sense
that

p(xt ,yt |xt−1,yt−1) = p(xt |xt−1,yt−1) p(xt |xt−1,yt−1), t = 1,2, . . . ,

then the first term in (9.17) vanishes and the transfer entropies II and III are the
only contributions to I(Xn;Y n). They refer to causal interactions within the system.
As example we consider the term II:

T (Yt−1 → Xt) = H(Xt |Xt−1)−H(Xt |Xt−1,Yt−1).
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It quantifies the reduction of uncertainty about the outcome xt if, in addition to
the knowledge about the previous outcomes x1, . . . ,xt−1 of X , also the previous out-
comes y1, . . . ,yt−1 of Y are known. Therefore, the transfer entropy T (Yt−1 →Xt) has
been used as a measure for the causal effect of Yt−1 on Xt (Schreiber 2000), (Kaiser
and Schreiber 2002), which is closely related to the concept of Granger causal-
ity. On the other hand, a direct interpretation of transfer entropy as a measure for
causal effects has some shortcomings which are already mentioned in (Kaiser and
Schreiber 2002) and further addressed in (Ay and Polani 2008) within the context of
Pearl’s (Pearl 2000) causality theory. Below, we will illustrate these shortcomings
demonstrating the need for an alternative formalization of causality.

The definitions of the multi-information rate and the transfer entropy naturally
generalize to more than two processes.

Definition 3. Let Xv be stochastic processes with state space Xv, v ∈ V . We define
the transfer entropy and the multi-information rate in the following way:

T (XV\v
t−1 → Xv,t) := I(Xv,t ;XV\v

t−1 |Xv
t−1)

I(Xv
n : v ∈V ) :=

1
n

(
∑
v∈V

H(Xv
n)−H(XV

n)

)

=
1
n

n

∑
t=1

{
I(Xv,t : v ∈V |XV

t−1)+ ∑
v∈V

T (XV\v
t−1 → Xv,t)

}

and, if stationarity is assumed,

I(Xv : v ∈V ) := lim
n→∞

I(Xv
n : v ∈V ).

In order to illustrate the problem of interpreting transfer entropy in a causal way,
consider a finite node set V and a set E ⊆ V ×V of directed edges. This is a way
of encoding the structure of the nodes’ causal interactions. The mechanisms are
described in terms of Markov transition kernels

κv : Xpa(v)×Xv → [0,1], (xpa(v),x
′
v) �→ κv(xpa(v);x′v).

They define a “global kernel" as follows:

κ : XV ×XV → [0,1], (x,x′) �→ ∏
v∈V

κv(xpa(v);x′v).

With a stationary distribution p1 of κ , that is ∑x1
p1(x1)κ(x1;x2) = p1(x2), we con-

sider the process XV,t = (Xv,t )v∈V , t = 1,2, . . . , that satisfies

P{X1 = x1, . . . ,Xn = xn} = p1(x1)κ(x1;x2) · · ·κ(xn−1;xn).
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In these definitions, the corresponding multi-information rate simplifies to

I(Xv
n : v ∈V ) =

1
n

n

∑
t=1

∑
v∈V

T (XV\v
t−1 → Xv,t).

If we assume that the individual kernels κv are deterministic then the global kernel
κ is also deterministic. This implies that for all nodes v there is a time s such that all
transfer entropies T (XV\v

t−1 → Xv,t), t ≥ s, vanish, and thus the multi-information
rate converges to zero. This appears counterintuitive because even if we have strong
causal interactions within a deterministic system, the dynamics creates redundancy
that allows all nodes v to predict their own next states xv,t from their previous states
xv,1, . . . ,xv,t−1 without the need of additional information from the other nodes V \
v. This intrinsic prediction is not required to be mechanistically implemented and
therefore screens off the actual mechanisms that might involve causal effects from
the complement of v. We illustrate this effect by a more specific example.

We consider again two processes X and Y and assume, as illustrated in the fol-
lowing diagram, that the next state of X as well as the next state of Y only depend
on the current state of Y .

Y1 ��

���
��

��
��

� Y2 ��

���
��

��
��

��
. . . ��

���
��

��
��

�� Yt−2 ��

���
��

��
��

� Yt−1 ��

���
��

��
��

� Yt

X1 X2 . . . Xt−2 Xt−1 Xt

In what follows we define a one-dimensional family of transition kernels. To this
end, we first consider two extreme situations. In the first situation, we assume that
there is no memory:

κX(xt−1,yt−1;xt) = κY (xt−1,yt−1;yt) =
1
2
. (9.18)

Obviously, in this situation there is no temporal information flow at all. The other
extreme situation is given in the following way: In order to compute the next state,
both nodes copy the current state of node Y and invert it.

(x,y)→ (−y,−y), x,y ∈ {±1}. (9.19)

In this case, the current state of Y completely determines the next state of X . There-
fore, intuitively, one would expect a maximal amount of information flow from Y
to X . We now interpolate these two extreme situations of minimal and maximal in-
formation flow in order to get a one-parameter family of transition kernels. More
precisely, we define

κY (xt−1,yt−1;yt) :=
1

1+ e2β ytyt−1
, κX(xt−1,yt−1;xt) :=

1

1+ e2β xtyt−1
.
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Here, β plays the role of an inverse temperature. In the high-temperature limit (β →
0) we recover the completely random transition (9.18), and in the low-temperature
limit (β → ∞) we recover the maximum information transition (9.19). In order to
compute the stationary distribution, we consider the stochastic matrix describing the
global dynamics (the rows denote (xt−1,yt−1), the columns (xt ,yt) and the entries
the transition probabilities from a state at time t − 1 to time t):

(−1,−1) (+1,−1) (−1,+1) (+1,+1)

(−1,−1) a2 ab ab b2

(+1,−1) a2 ab ab b2

(−1,+1) b2 ab ab a2

(+1,+1) b2 ab ab a2

where

a :=
1

1+ e2β , b :=
1

1+ e−2β .

The stationary distribution is given by

p(+1,+1) = p(−1,−1) =
1
2
− ab, p(−1,+1) = p(+1,−1) = ab.

Obviously, for β = 0 we have uniform distribution p(x,y) = 1
4 , which implies that

there is no correlation between the two nodes. As β increases, we get more and
more redundancy, and in the limit β → ∞ we get totally correlated nodes with dis-
tribution 1

2

(
δ(−1,−1) + δ(+1,+1)

)
. This redundancy increase allows for compensating

information about yt−1 by xt−1 and computing xk on the basis of this information.
More precisely, the two distributions p(xt |xt−1,yt−1) and p(xt |xt) come closer to
each other. Therefore, the conditional mutual information I(Xt ;Yt−1 |Xt−1), which is
an upper bound of the transfer entropy T (Yt−1 → Xt), converges to zero. This fact
shows that although there is no arrow from Xt−1 to Xt , the conditional distribution
p(xt |xt−1) is effectively dependent on xt−1, which appears causally inconsistent. In
order to derive a corresponding causal variant, we consider the conditional mutual
information:

I(Xt ;Yt−1 |Xt−1)

= ∑
xt−1

p(xt−1) ∑
yt−1

p(yt−1 |xt−1)∑
xt

p(xt |xt−1,yt−1) ln
p(xt |xt−1,yt−1)

∑y′t−1
p(y′t−1 |xt−1) p(xt |xt−1,y′t−1)

= ∑
xt−1

p(xt−1) ∑
yt−1

p(yt−1 |xt−1)∑
xt

p(xt |yt−1) ln
p(xt |yt−1)

∑y′t−1
p(y′t−1 |xt−1) p(xt |y′t−1)

(9.20)

With an abuse of terminology we refer to this conditional mutual information
also as transfer entropy, which is plotted in Figure 9.12. Replacing all conditional
probabilities in (9.20) by corresponding interventional ones leads to I(Xt ;Yt−1) as a
causal variant of the above measure I(Xt ;Yt−1 |Xt−1), which we refer to as informa-
tion flow. More precisely, we have
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∑
xt−1

p(xt−1) ∑
yt−1

p(yt−1 |do(xt−1))∑
xt

p(xt |do(yt−1))×

ln
p(xt |do(yt−1))

∑y′t−1
p(y′t−1 |do(xxt−1))p(xt |do(yt−1))

= ∑
xt−1

p(xt−1) ∑
yt−1

p(yt−1)∑
xt

p(xt |yt−1) ln
p(xt |yt−1)

∑y′t−1
p(y′t−1) p(xt |y′t−1)

= ∑
yt−1

p(yt−1)∑
xt

p(xt |yt−1) ln
p(xt |yt−1)

∑y′t−1
p(y′t−1) p(xt |y′t−1)

= I(Xt ;Yt−1)

Comparing these two quantities, we have

I(Xt ;Yt−1)− I(Xt;Yt−1 |Xt−1) = I(Xt ;Xt−1) ≥ 0.

Intuitively speaking, in this example, the transfer entropy captures only one part of
the causal information flow.

The following diagram shows the shape of the conditional mutual information
and the information flow as function of β . As we see, the information flow is con-
sistent with the intuition that moving from β = 0 to β = ∞ corresponds to an inter-
polation between a transition with vanishing information flow and a transition with
maximal information flow. Near β = 0 the transfer entropy increases as β becomes
larger and is close to the information flow. But for larger β ’s it starts decreasing and
converges to zero for β → ∞. The reason for that is simply that the transition for
large β generates more redundancy between the two processes X and Y . Therefore,
as β grows, an increasing amount of information about Yt−1 can be computed from
information about Xt−1, which lets the transfer entropy decrease towards zero.

1 2 3 4

0.2

0.4

0.6

0.8

1.0

Β

Information Flow Transfer Entropy

Fig. 9.12 Transfer entropy and information flow
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9.4.3 Information Flows in the Sensorimotor Loop

In this section, we apply the notion of transfer entropy to the context of the sensori-
motor loop. Sporns and Lungarella used the transfer entropy in order to describe in-
formation flows through the sensorimotor loop (Lungarella and Sporns 2006). Here,
we approach this subject from a theoretical perspective and point out that one has
to be very careful with the interpretation of transfer entropy as a causal measure.
Our considerations will be based on the causal diagram shown in Figure 9.13. Here,
we have four processes Wt , St , Ct , At , t ≥ 1, and the initial node H which stands for
“history.”

α
β

α
β

ππ
ϕϕ

Ct

AtSt−1

Wt

At−1 St

Wt−1

Ct−1

α
β

α
β

π π
ϕϕ

W1

S1

C1

A1

W2

S2

C2

A2H

Fig. 9.13 Causal diagram of the sensorimotor loop

Let us study the two simple cases of a passive observer and an open loop con-
troller (see Figures 9.5 and 9.6). In these cases, some of the arrows are missing, and
therefore we know from the definition of the respective causal structure that partic-
ular causal effects are not present. We can then evaluate the corresponding transfer
entropy and thereby test its consistency with the given causal structure. We start
with the passive observer, shown in Figure 9.5. Here, the actuator with its arrows is
removed, which means that the agent is not able to act on the world. Therefore, we
expect T (Ct−1 →Wt) = 0 and T (St−1 →Wt) = 0. This is confirmed by the fact that
Ct−1 and Wt are d-separated by Wt−1 (see Figure 9.14). Similarly, St−1 and Wt are
d-separated by Wt−1.

Now let us consider the open loop controller. Here, the sensor with its arrows is
removed, and we expect no causal effect of W on C and also no causal effect of A
on C. Therefore, consistency of the transfer entropy with the causal structure would
require T (Wt−1 →Ct) = 0 and T (At−1 →Ct) = 0. This is confirmed in terms of the
same d-separation arguments as in the above case of a passive observer (see Figure
9.15).

Summarising the above considerations, we have the following proposition.

Proposition 3. For the passive observer one has T (Ct−1 →Wt) = 0 and T (St−1 →
Wt) = 0 for all t ≥ 1. In the context of open loop control we have T (Wt−1 →Ct ) = 0
and T (At−1 →Ct) = 0 for all t ≥ 1.

Proposition 3 confirms our expectation that a passive observer has no causal ef-
fect on the world, and that within open loop control there is no causal effect of the
world on the agent (note that, with “agent” we mean the internal process C of the
agent). However, one has to be careful with this measure. For example, in the sit-
uation of a passive observer, there is no directed path from C to S. Therefore, one
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Fig. 9.14 Sensorimotor loop of a passive observer. The diagram (A) shows that T (Ct−1 →
Wt ) = 0, and diagram (B) shows T (St−1 →Wt ) = 0.

Ct

At

Wt

At−1

Wt−1

Ct−1

W1

C1

A1

W2

C2

A2H

(A)

Ct

At

Wt

At−1

Wt−1

Ct−1

W1

C1

A1

W2

C2

A2H

(B)

Fig. 9.15 Sensorimotor loop of an open loop controller. The diagram (A) shows that
T (W t−1 →Ct) = 0, and diagram (B) shows T (At−1 →Ct) = 0.

would not only expect the absence of causal effects of the agent on the world but also
the absence of causal effects on the sensor process, which is obtained from the world
process. In other words, it is natural to have not only T (Ct−1 → Wt) = 0, which is
confirmed in Proposition 3, but also T (Ct−1 → St) = 0. From the causal structure
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Ct
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Fig. 9.16 (A) Sensorimotor loop of a passive observer. Although Ct−1 is not a cause of St ,
that is Ct−1 �� St , it is indeed possible that T (Ct−1 → St)> 0. This is seen by the fact that the
sets Ct−1 and St are not d-separated by St−1 (see unblocked path). (B) Sensorimotor loop of
an open loop controller. Although Wt−1 is not a cause of At , that is W t−1 �� At , it is indeed
possible that T (Wt−1 → At) > 0. This is seen by the fact that the sets W t−1 and At are not
d-separated by At−1 (see unblocked path).

shown in Figure 9.16 (A) this is not confirmed in terms of the d-separation criterion.
More precisely, St and Ct−1 are not d-separated by St−1, and T (Ct−1 → St) > 0 is
indeed possible, which appears counterintuitive. We have the same problem with
open loop control (see Figure 9.16 (B)). In this case, one would expect that there
is no causal effect of the world on the agent’s actions, that is T (Wt−1 → At) = 0.
However, At and Wt−1 are not d-separated by At−1, and, again, T (Wt−1 → At) > 0
is possible although Wt−1 is not a cause of At .

A further method to study information flows, which has been proposed in (Ay
and Polani 2008), is based on the interventional calculus of conditioning as already
applied at the end of Section 9.4.2. Here, we briefly outline how this method can be
applied within the context of the sensorimotor loop. In order to do so, we consider
the causal effects listed in Proposition 2. The information flow from C to S, for
instance, can be quantified by

IF(C → S) := ∑
c

p(c)∑
s

p(s |do(c)) ln
p(s |do(c))

∑c′ p(c′) p(s |do(c′))
(9.21)

which is a causal variant of the mutual information

I(C;S) = ∑
c

p(c)∑
s

p(s |c) ln
p(s |c)

∑c′ p(c′) p(s |c′) .
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This expression (9.21) requires an intervention in C, which will, in general, disturb
the system. Therefore, it is not clear to what extent this quantity refers to the in situ
situation of a system while functioning. It is possible that information flow patterns
change as consequence of intervention. One attempt to resolve this problem is given
by the method of virtual intervention. Here, one predicts the consequences of in-
terventions based on observations only, without actually applying an interventional
operation. The system remains unperturbed, and one can still evaluate the expression
(9.21). To be more precise, we use Proposition 2 and replace in (9.21) all distribu-
tions p(s |do(c)) by ∑a p(a |c)∑c′ p(s |c′,a) p(c′). This leads to an expression of
the information flow IF(C → S) that does not involve any experimental intervention
but only observation. In addition, all involved variables are accessible to the agent,
which enables the agent to evaluate the information flow while being embedded in
the sensorimotor loop. Currently, it remains unclear whether this method of virtual
intervention resolves the above-mentioned problem.

9.5 Predictive Information and Its Maximization – An
Experimental Case Study

In the previous Sections 9.4.2 and 9.4.3 we focussed on information flows between
various interacting processes, such as the control process C on the sensor process
S in the sensorimotor loop. In this section, we now concentrate on temporal flows
within one single process. To this end, consider first a stochastic process Xt , t ∈ Z.
Furthermore, given three time points t− < t < t+, we consider the mutual informa-
tion

I(Xt− , . . . ,Xt ;Xt+1, . . . ,Xt+) = H(Xt+1, . . . ,Xt+)−H(Xt+1, . . . ,Xt+ |Xt− , . . . ,Xt).

If we assume that the variables Xt− , . . . ,Xt represent the past (and present) of ob-
served variables and Xt+1, . . . ,Xt+ the future or unobserved variables with respect
to t, then this mutual information quantifies the reduction of uncertainty about the
future given the past. In other words, it quantifies the amount of information in the
future that can be predicted in terms of past observations. Therefore, the correspond-
ing limit for t− ↑ ∞ and t+ ↑ ∞, which always exists but can be infinite, is referred to
as predictive information (PI) (Bialek et al. 2001). It is also known as excess entropy
(Crutchfield and Young 1989) and effective measure complexity (Grassberger 1986).
Note that the predictive information is independent of t if the process is stationary.

In the context of the sensorimotor loop, the predictive information and related
quantities serve as objective functions for self-organized learning. Of particular
interest is the predictive information of the sensor process S = (St)t∈Z, which
quantifies the amount of information in the agent’s future sensor process that can be
predicted by the agent based on the observation of its past (and present) sensor pro-
cess. For simplicity, we also consider the lower bound I(St ;St+1) of the predictive
information and, with abuse of terminology, we refer to this simplified quantity also
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as predictive information (PI). Clearly, the predictive information is, on one hand,
dependent on the policy and, on the other hand, also dependent on the embodiment
of the agent. Policies with high predictive information correspond to niches of pre-
dictability within the sensorimotor loop and allow the agent to exploit these niches
for task oriented behavior. Learning processes that maximize several variants of
predictive information have been proposed and studied in view of their behavioral
implications (Ay et al. 2008; Zahedi et al. 2010; Ay et al. 2012; Martius et al. 2013).

Here, we focus on the experimental case study of our previous work (Zahedi
et al. 2010). In our experiments, embodied agents maximize the predictive infor-
mation calculated on their sensor data by modulation of their policies. Different
controller types are evaluated and the results are coordinated behaviors of passively
coupled, individually controlled robots. From these results, three conclusions will
be drawn and discussed. First, the different controller structures lead to a conclusion
about optimal design, second, PI maximization leads to the formation of behavioral
modes, and third, PI maximization leads to morphological computation (Pfeifer and
Bongard 2006).

For the implementation of the learning rule in an embodied system, we chose a
discrete-valued representation of the probability distributions for the following rea-
son. At this initial step of evaluating the PI as a self-organised learning principle, we
wanted to use as few assumptions as possible about the underlying model. Imple-
menting the learning rule in the continuous domain generally requires more assump-
tions and restrictions, as the following example demonstrates. An implementation
of the policy as a (recurrent) neural network binds the space of possible functions
to the structure of the neural network (Pasemann 2002). Changing the weights and
biases of the network only permits variation among the functions defined by the
structure (and neural models). To avoid such a pruning in the space of policies, we
chose stochastic matrices. To reduce the complexity, we first concentrated on reac-
tive control (see Figure 9.7). Given a world model γ and a policy π , an estimate of
the PI can be calculated with intrinsically available information by the following set
of equations

I(γ)(St ;St+1) = ∑
st ,st+1∈S

p(st ,st+1) ln
p(st ,st+1)

p(st) p(st+1)
(9.22)

p(st ,st+1) = ∑
at∈A

p(st ,at ,st+1) = ∑
at∈A

p(st)π(st ;at)γ(st ,at ;st+1) (9.23)

p(st) = ∑
st+1∈S

p(st ,st+1), p(st+1) = ∑
st∈S

p(st ,st+1) (9.24)

which can be used to calculate a natural gradient iteration (Amari 1998) of the PI
with respect to the policy π(st ;at) in the following way (Zahedi et al. 2010)
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π (0)(s;a) :=
1

|S | n ∈ N\{0}

π (n)(s;a) = π (n−1)(s;a)+
1

n+ 1
π (n)(s;a)

(
F(s)−∑

a
π (n−1)(s;a)F(s)

)
(9.25)

F(s) := p(n)(s)∑
s′

γ(n)(s,a;s′) log2
∑a π (n−1)(s;a)γ(n)(s,a;s′)

∑s′′ p(n)(s′′)∑a π (n−1)(s′′;a)γ(n)(s′′,a;s′)

The sensor distribution p(st) and the intrinsic world model γ(st ,at ;st+1) are sampled
according to

p(0)(s) :=
1

|S |

p(n)(s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
n+ 1

p(n−1)(s)+
1

n+ 1
if Sn+1 = s

n
n+ 1

p(n−1)(s) if Sn+1 �= s

(9.26)

γ(0)(s,a;s′) :=
1

|S |

γ(n
s
a)(s,a;s′) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ns
a

ns
a + 1

γ(n
s
a−1)(s,a;s′)+

1
ns

a + 1
if Sns

a+1 = s′, Sn = s, Ans
a+1 = a

ns
a

ns
a + 1

γ(n
s
a−1)(s,a;s′) if Sns

a+1 �= s′, Sn = s, Ans
a+1 = a

γ(ns
a−1)(s,a;s′) if Sns

a �= s or Ans,a+1 �= a

(9.27)

This concludes the brief presentation of the learning rule. See (Zahedi et al. 2010)
for a detailed description. The next paragraphs describe the experiments and discuss
the results.

All experiments were conducted purely in simulation for the sake of simplicity,
speed and analysis. Current simulators, such as YARS (Zahedi et al. 2008), which
was chosen for the experiments presented below, are shown to be sufficiently re-
alistic to simulate the relevant physical properties of mobile robots, and designed
such that experimental runs can be automated, run at faster than real-time speed,
and require minimum effort to set-up.

The experiments are conducted with differential wheeled robots (see Figure
9.17A). The only sensors of each robot are the current wheel velocities St and the
only actions are the motor commands for the next wheel velocities At . Each robot is
either controlled by a single controller (see Figure 9.17C) or by two controllers (see
Figure 9.17D). We refer to the single controller setting as combined control and to
the two controller setting as split control.
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Fig. 9.17 Experimental set-up. A) Single circular differential wheeled robot. The image
shows the two driving wheels and the possible movements that they allow for. B) This image
shows the passive coupling between the robots. C) This image is a schema of the combined
control, where one controller reads the information of both wheels and controls the velocity
of both wheels. D) In the split controller configuration, each wheel has a controller that is
independent of the other. Hence, each controller only reads the information of one wheel and
controls the velocity of only one wheel.

Three and five robots are passively connected to a chain of robots (see Figure
9.17B), which results in the following four experiments:

1. three robots with combined control,
2. three robots with split control,
3. five robots with combined control, and
4. five robots with split control.

We will refer to these settings by the number of robots and the controller type. This
means that 3C, 3S, 5C, and 5S refer to three robots with combined control, three
robots with split control, etc.

The results of the experiments (see Figure 9.18) show that all systems maximize
the PI and that they all perform some sort of exploration behavior. As the maximiza-
tion of the PI does not specify a behavior of a system that can be evaluated directly,
we need to define a measure based on our observations. In a chain of individually
controlled robots, the travelled distance over time is a good indication for the quality
of the coordination, as only well coordinated robots will be able to travel far. This
is why we chose a sliding window coverage entropy (see Figure 9.18 and (Zahedi
et al. 2010) for details) to measure the exploration behavior. It must be noted, that
we are not interested in the exploration itself, but rather in the quantifiable, qual-
itative change of the observable behavior of the systems which result from the PI
maximization. In this context, two counter-intuitive results are shown in Figure 9.18.
First, the robot chains with five robots outperform the robot chains with three robots
(compare 5C with 3C and 5S with 3S in Figure 9.18), and second, the split control
systems outperform the corresponding combined control systems (compare 5S with
5C and 3S with 3C in Figure 9.18), in both, maximizing the PI and maximizing the
coordination of the robots in a chain.

The first result is counter-intuitive, because longer chains means that more robots,
and hence, more controllers have to coordinate based on the local information
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Fig. 9.18 PI maximization results. The graph on the left-hand shows four plots with one sub-
plot each. The trajectory plots show the initial ten minutes (purple) and the final ten minutes
(green) of the behavior (after 106 policy updates, which is approximately 27 hours). The
sub-plots show the progress of the PI averaged over 100 runs for the same amount of time,
normalised to the unit interval. The plot on the right-hand side shows how the exploration
quality of the controllers progresses over time. For this purpose, the entropy H(Xt ,Yt) over
the spatial coordinates Xt , Yt is calculated for a sliding window (see (Zahedi et al. 2010) for
a discussion). Both plots show, indirectly measured by the sliding window coverage entropy,
that the chains with five robots show a higher coordination compared to those with three
robots, and that split control results in a higher coordination compared to combined control.

available through the wheel velocity sensors only. The second result is counter-
intuitive, because the combined controller should, if anything, have additional prop-
erties compared to the split control as it combines the sensor information of both
wheels. The next paragraph will analyse the behavior of one representative policy
of the 5S setting and thereby explain all the results.

The behavior of all robots can be categorised into three modes. The first mode is
called forward movement and it is characterised by (mainly) positive wheel veloc-
ities. The second mode is called backward movement and it is analogously charac-
terised by (mainly) negative wheel velocities. The third is a transition between the
two previous modes in which there is no clear direction of the robot chain.

To understand how the modes occur, we recorded the data stream of the sensors
and actions (s(t) and a(t)) of one representative controller of the 5S setting. Ac-
cording to the update rules used for the world model (see Eq. 9.27) we sampled
the following four conditional probabilities p(At ≥ 0|St ≥ 0), p(At < 0|St ≥ 0),
p(At < 0|St < 0), and p(At ≥ 0|St < 0), where the first two and the latter two sum
up to one (see Figure 9.19). The two conditional probabilities p(At ≥ 0|St ≥ 0)
and p(At < 0|St < 0) refer to maintaining the current direction of travel, whereas,
p(At < 0|St ≥ 0) and p(At ≥ 0|St < 0) refer to a switching of the current direction
of travel. At the beginning of the learning process, all conditional probabilities are
by definition equal (see Eq. 9.25). After a while, it is seen that the system is more
likely to maintain its current movement compared to switching as the sign of the
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Fig. 9.19 Formation of modes. This graph shows the four conditional probabilities p(At ≥
0|St ≥ 0), p(At < 0|St ≥ 0), p(At < 0|St < 0), and p(At ≥ 0|St < 0) plotted above each
other over time and summed accordingly. The plot reveals that the policies are learned such
that they maintain their current mode (forward or backward) with a high probability and that
switching between the two modes occurs with the same probability. This fulfils the require-
ments of diversity and compliance posed by the PI.

action a(t) is more likely chosen to be equal to the sign of the sensed wheel velocity
s(t) (see Figure 9.19). At the end of the learning process (106 iterations), the condi-
tional probabilities are approximately p(At ≥ 0|St ≥ 0)≈ p(At < 0|St < 0)≈ 0.85
and p(At < 0|St ≥ 0) ≈ p(At ≥ 0|St < 0) ≈ 0.15. From these estimations, we can
now reconstruct how the modes occur. If a robot chain is currently in the forward
mode (St ≥ 0 for all wheels), it requires more than half the controllers to decide on
switching the mode for the robot chain to change its direction of movement. For the
chain with three robots, it requires at least four controllers, and for the chain with
five robots, six controllers to decide to switch directions. Hence, the probability of
switching, denoted by ps, is ps ≤ 0.154 for the three robot chain and ps ≤ 0.156

for the five robot configuration, where the probability refers to the controller update
frequency (10Hz). For the two chains of robots, this means that the overall proba-
bility of maintaining the current behavioral mode in every time step is larger than
1− 0.154 = 99.949% for 3S and larger than 1− 0.156 = 99.999% for 5S. This ex-
plains why longer chains outperform shorter chains in terms of exploration as they
are more likely to maintain their current direction of movement. The modes of the
5S are more distinctive compare to the 3S due to the larger number of robots in the
chain. This can also be considered as a form of morphological computation (Pfeifer
and Bongard 2006), which we will address later in this chapter again. The next ques-
tion to answer is why the modes are beneficial in term of maximizing the PI. From
the discussion above it follows that H(St+1|St) is minimized because knowledge of
the current wheel velocity reduces the uncertainty of the next wheel velocity signif-
icantly due to the formation of the modes. As the switching probabilities are almost
equal, all sensor states are equally often perceived, which maximizes the entropy
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H(St+1). This means the system shows a compliant variance in its behavior as it is
demanded by the PI.

The second counter-intuitive result was that split controllers outperform com-
bined controllers in exploration and PI maximization (see Figure 9.18). This is
counter-intuitive because the combined controller has additional features (compare
Figure 9.17C with Figure 9.17D)) compared to two split controllers. If the split con-
trollers are likely to find the good or optimal solutions, then the combined controllers
should be able to

1. find the same good or optimal solutions,
2. find other good or optimal solutions, and
3. find even better solutions.

The question is, why is this not the case? The space of possible policies spanned by
the two split controllers is a subspace of possible controllers spanned by one com-
bined controller. It happens to be that this subset of the split controllers encloses
only a few maximizers and that a sufficiently large number of them is optimal with
respect to the maximization of the PI. This is more obvious if only one robot is al-
lowed to learn with two split and one combined controller. This is not shown here
but discussed in detail in (Zahedi et al. 2010). Due to the low number of param-
eters defining the subspace of the split controllers, the optimisers are found faster
and more reliably. In the superset of the combined controller, we find many sub-
optimal solutions which are more likely to be found compared to the optimisers.
This means, by splitting the controllers we have made a large subspace of the com-
bined controller space inaccessible to learning. The resulting subspace still had all
the maximizers of the PI which is why the split controller outperforms the combined
controller. Concluding, if one finds a natural way to restrict the policy space (pos-
sibly according to the morphology), such that it captures all maximizers of a given
function, then this would be called an optimal control as the policy is optimally pa-
rameterised for learning and control. Finding such a natural method is an ongoing
topic in this field of research.

As stated earlier, we want to discuss the results also from the perspective of
morphological computation (Pfeifer and Bongard 2006). We already saw that the
number of robots in the chain directly influences the exploration behavior. That the
maximization of the PI leads to morphological computation is more obvious, if we
take the 5S system, and remove the passive joints between the robots (see Figure
9.20). Both plots in the figure show the trajectories of all 10 wheels of the five
robots, where the wheels of each robot share one color. The left-hand side shows
the exploration behavior that we have already seen (compare with Figure 9.18). The
right-hand side of the figure shows that the uncoupled robots loose a lot of their
original behavior. They rotate more often on the spot and the trajectories are not as
long and smooth as in the coupled system.

As the controllers are identical in both settings, this means that there is a contri-
bution of the world (morphology and environment) to the behavior which cannot
be assigned to the controller as they are identical in both systems. This contri-
bution is called morphological computation (Pfeifer and Bongard 2006). Various
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Fig. 9.20 Morphological computation. The two plots show the trajectories of all wheels of
all five robots of the split control setting for ten seconds. The wheels of one robot share the
same color in the plots. The plot on the left-hand side shows the trajectories of the original,
passively coupled robots. The plot on the right-hand side shows the same five robots with
the same ten controllers but with the passive connections removed. The comparison of the
plots shows that the behavior changes significantly, which leads to two conclusions. First, PI
maximization adapts to the world, and second, PI maximization leads to morphological com-
putation, as the behavior is also significantly determined by the morphology of the system.

quantifications of morphological computation are derived and evaluated in ex-
periments in (Zahedi and Ay 2013). They are based on causal and associative
information-theoretic measures.

Appendix

Proof of Proposition 2:
(1)

p(h,c,w,s |do(a)) = p(h)ϕ(h;c)α(h,a;w)β (w;s).

This implies

p(s,c |do(a)) = ∑
h,w

p(h)ϕ(h;c)α(h,a;w)β (w;s)

p(c |do(a)) = ∑
s

∑
h,w

p(h)ϕ(h;c)α(h,a;w)β (w;s)

= p(c)
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p(s |do(a),c) =
p(s,c |do(a))
p(c |do(a))

= ∑
h,w

p(h)
p(c) ϕ(h;c)α(h,a;w)β (w;s)

= ∑
h,w

p(h |c) p(w |h,a) p(s |w)

= ∑
h,w

p(h |c,a) p(w |h,a,c) p(s |w,h,a,c)

(conditional independence, see diagram in Figure 9.11)

= p(s |a,c).

The second and third equations of the proposition follow from the general theory
(see (Pearl 2000), Theorem 3.2.2 (Adjustment for Direct Causes), and Theorem
3.3.4 (Front-Door Adjustment)). For completeness, we prove them directly.

(2)

p(s |do(a)) = ∑
h,c,w

p(h,c,w,s |do(a))

= ∑
h,c,w

p(h)ϕ(h;c)π(c;a)α(h,a;w)β (w;s)
1

p(a|c)

= ∑
h,c,w

p(h,c,a,w,s)
p(c,a)

p(c)

= ∑
c

p(s|c,a) p(c).

(3) p(s |do(c)) = ∑
h,a,w

p(h,a,w,s |do(c))

= ∑
a

π(c;a)∑
h,w

p(h)α(h,a;w)β (w;s)

= ∑
a

p(a|c)∑
h,w

(
∑
c′

p(c′) p(h|c′)
)

p(w|h,a) p(s|w)

= ∑
a

p(a|c)∑
c′

p(c′) ∑
h,w

p(h|c′) p(w|h,a) p(s|w)

= ∑
a

p(a|c)∑
c′

p(c′) ∑
h,w

p(h|c′,a) p(w|h,a,c′) p(s|w)

= ∑
a

p(a|c)∑
c′

p(c′) p(s|c′,a). �
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Chapter 10
Action Switching in Brain-Body-Environment
Systems

Eran Agmon

10.1 Introduction

In recent years, the cognitive sciences have been converging upon an integrated per-
spective, a perspective that reframes behavior and cognition as a special type of
self-organization that arises through the nonlinear, distributed interactions between
brain, body and environment (abbreviated BBE). The BBE perspective has been
separately developed by multiple lines of research such as the extended mind (Clark
and Chalmers 1998), distributed cognition (Hutchins 2000), embodied cognition
(Clark 1998), enactive cognition (Noė 2005; Thompson 2007; Varela et al. 1992) ),
situated cognition (Clancey 1997; Hutchins 1995), and the dynamical approaches to
cognition (Beer 1995b; Thelen and Smith 1996; Kelso 1995; Port and van Gelder
1995). These different theories all emphasize different elements of the BBE; either
the body, or the environment, or the temporal element. But their different theories
are friendly to each other and can be brought together into a broader, integrated per-
spective. By bringing focus to all of the relevant components and their interactions,
cognitive systems are transformed into seemingly self-organizing systems, in which
behavior and cognition become a dynamical process that unfolds through distributed
interactions (Kelso 1995; Maturana and Varela 1980; Thompson 2007).

We need now proceed with caution; the term self-organization has been a widely
used term in scientific fields from physics to human social networks, and has acted
as a unifying theme in systems sciences such as cybernetics and complex systems.
But when we consider the different definitions surrounding self-organization, there
is an abundance of philosophical stances and formal methodologies (Polani 2008).
In this chapter we will focus on a single perspective of self-organization, which
will be called the “absolute system” perspective, after Ross Ashby’s framework for
describing what he considers to be adaptive behavior and self-organization (Ashby
1962, 1952). An absolute system takes what some describe as the omniscient per-
spective (Dupuy 2009), which takes all of a system’s relevant variables and puts
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them in a model that fully describes the system’s dynamics. For Ashby, a system
has a finite set of internal states and a transformation rule that maps a state onto it-
self as it unfolds in time. An absolute system is an autonomous system, in which all
relevant variables are accounted for. With such systems an initial state has a regular
trajectory that follows, and upon repeated re-initializations to the same initial state
there are no divergences in following behaviors. If there are divergences, then some
relevant variables must not have been accounted for and the system is not absolute.
A characterization of systems in this sense is ideal for science, because it allows
for perfect predictability of the system’s behavior. It can be argued that striving for
an absolute system description is not practical when dealing with real-world sys-
tems for which there are essentially infinite relevant variables. But in this chapter
we follow through with the assumption to see what insight can be gained.

Sect 2 describes this perspective in greater detail, and follows Ashby’s argument,
which he believed demystified the notion of self-organization by attributing the
apparent self-organization to an opportune matching of system and environment.
We move along this intellectual thread leading from Ashby’s definition of self-
organization to the modern theories of the BBE framework and show that a very
similar approach has been converged upon, perhaps unknowingly, by an integrated
BBE perspective. We will see that Ashby’s insights are pervasive in this framework,
and have been developed into to a rigorous research methodology. The desire to un-
derstand the relevant causal variables that come together to generate our cognitive
behavior has led scientists to “extend” the mind (Clark and Chalmers 1998), and to
attribute mental processes to the complex interactions that take place between many
distributed components in the brain, body, and environment. The field is develop-
ing a terminology much like Ashby’s, which is rooted in dynamical systems theory,
and focuses on the temporal elements of cognitive behaviors that arise through dis-
tributed interaction.

In Sect 3, we dive deeper into the BBE framework by outlining Randall Beer’s
adaptive behavior research program (Beer 1997; Beer et al. 1996). This project ex-
tends Ashby’s insights into a more rigorous methodology that focuses on minimal
instances of adaptive behavior, and integrates many of the motivations behind the
BBE framework. It does this by combining the insights with modern computer simu-
lation and the mathematical toolset of dynamical systems theory. The goal of Beer’s
project is to simulate the entire conditions for simple adaptive systems, which in-
cludes their environment, their body, and their recurrent dynamical nervous sys-
tem. He uses evolutionary algorithms to produce dynamical models of brain-body-
environment systems that can engage in minimally cognitive tasks, and then ana-
lyzes their resulting dynamics to illuminate the dynamical strategies for adaptive
behavior. The result of such analysis yields a similar effect as Ashby had intended,
of demystifying adaptive behavior by fully reconstructing the system’s conditions
in a model and then studying its temporal structure.

Most models developed by this methodology have focused on the production of
single actions through BBE interactions, and have uncovered the temporal patterns
that allow for these particular actions to unfold. But this does not provide a com-
plete picture of living systems, which can generate many possible actions and switch
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between them in a context-appropriate manner. Considering the problem of multi-
ple actions brings up new questions about coordination between brain, body, and
environment. We ask how multiple actions can arise out of a single absolute system,
in which at one time a particular coordination pattern is engaged, and at a differ-
ent time a completely different coordination pattern is engaged. In Sect 4, we use
Beer’s methodology to evolve an agent that can generate multiple different actions
and smoothly switch between them. An analysis uncovers the strategy that allows
it to behave in different ways that requires the coordination of different sensors,
effectors, and brain regions.

For the last section we bring together many of the discussed ideas, examine
their limitations and suggest improvements for future research. The brain-body-
environment framework in cognitive science is a young science and still in its early
stages of development. Because of this there are many assumptions left untested
and many questions left unexplored. By building up a dialogue and continuing to
improve our models, we may someday bring this science from its current emphasis
on minimal behavior to the complexities of real living behavior.

10.2 Ashby’s Self-Organization in Brain-Body-Environment
Systems

In this section we review Ross Ashby’s absolute system perspective, from which
he believes to have demystified self-organization in his 1962 paper, “Principles of
the self-organizing system” (abbreviated PSOS), (Ashby 1962), and with which he
presents a scientific framework for the study of adaptive behavior in “Design for
a Brain” (abbreviated DFB),(Ashby 1952). The similarity between Ashby’s theo-
retical framework and the one suggested by an integrated BBE framework will be
demonstrated by following Ashby’s argument as laid out in these two publications,
and comparing it to the arguments made by the various fields of research of the BBE.
Where Ashby’s arguments were based in purely mathematical formalisms, fields
within the BBE framework have looked at the structure of particular sensori-motor
interactions in the real world and have therefore extended theoretical intuitions into
empirical. By following through with Ashby’s arguments, we gain a better under-
standing of how a more integrated BBE framework might someday appear.

Ashby begins PSOS with a definition of a system as an arbitrary assignment
of parts, as based on an observer’s perspective and not limited to material com-
ponents. This is a constructivist definition of a system, which is often described
synonymously with the term “model.” The parts of this system are described math-
ematically as variables that take a range of states and unfold through time based
in the dynamical laws of system. Dynamical rules captures these laws mathemat-
ically by defining a transformation rule (evolution operator) that determines how
the set of states at one point in time changes to a new set of states in the following
point in time. Ashby defines organization as conditionality of variables; “As soon
as the relation between two entities A and B becomes conditional on C’s value or
state then a necessary component of ‘organization’ is present”(Ashby 1962). An
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organized system is one with components whose states are conditional on other
states, with dynamical rules that bring this conditionality into effect as the states un-
fold through time. Central to Ashby’s perspective is that the goal of a scientist should
be a description of a system as an absolute system, with a mathematical model that is
free from internal contradictions. The equations that define a system’s states and dy-
namics needs to be refined and reduced until it is described in a “machine-like way,
namely, that its internal state, and the state of its surroundings, defines uniquely the
next state it will go to” (Ashby 1962).

With this basis for defining systems and organization, Ashby lays the foundations
for the dynamical approach in cognitive science, which is one of the cornerstones
of the BBE framework. For Ashby, the ideal description of a system defines its rel-
evant variables, their interdependences, and the dynamical rules that systematically
unfold the structure through time. This is the foundational principle of “the dynam-
ical hypothesis” (Van Gelder 1998), which received much attention many decades
after Ashby. The dynamical hypothesis proposes a unifying philosophical stance in
cognitive science, which insists that cognitive systems are dynamical systems, that
they are best understood as dynamical systems, and that therefore scientists should
thrive for dynamical explanation of such systems. This stance brings with it a certain
understanding; it influences the questions asked, the analyses performed, and the in-
terpretation of results (Beer 2007). Many separate lines of research have come upon
this same line of reasoning, and have employed dynamical explanation of cognitive
behavior. Dynamical systems have been used to model neuronal system (Izhikevich
2006), entire brain systems (Skarda and Freeman 1987), coordinated motor behav-
ior (Turvey 1990), child development (Thelen and Smith 1996), language (Elman
1995), interaction between language and vision (Spivey et al. 2005), and many more.

As we will see shortly, Ashby rejects the interpretation of self-organization (in
PSOS) or adaptive behavior (in DFB) as something that can come out of the internal
organization of an organism on its own. He instead attributes it to an opportune
matching of organism and environment. The organism alone is a non-autonomous
system, whose behavior is partially dependent on its environmental situation. For
Ashby, the agent and environment together make an absolute system, and so it is
only on this level of description that we can truly understand adaptive behavior.
“The organism affects the environment, the environment affects the organism: such
a system is said to have ‘feedback”’ (Ashby 1952). Systems with feedback cannot
be treated as if their action was controlled in a linear way; they possess properties
that cannot be reproduced in systems that lack feedback. Because of this, if we are
to describe an organism’s behavior in a model we must bring relevant variables from
the environment into the absolute system definition, or else we would miss out on
the behavioral effects of feedback.

This essential pairing of organism and environment has been broken up into sep-
arate fields in cognitive science and extended in empirical study. The first related
field, called situated cognition, finds its roots in the phenomenological philosophy
(Heidegger 1962), in classical ethology (Tinbergen 1963), and in ecological psy-
chology (Gibson 1986). Situated cognition concludes that cognition and behavior
is a contingent on the situation in which it is enacted (Hutchins 1995; Clark and
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Chalmers 1998). A cognitive system is always interacting with its environmental
through sensors that perceive, and effectors that produce behavioral output. This
leads to the same conclusion as Ashby; behavior is controlled via sensory-motor
feedback. Perceptions trigger actions, actions produce changes in the environment,
these changes are again perceived and trigger new actions that correct for or extend
the effects of the previous actions. Different environmental situations will produce
different perceptions, and therefore trigger different actions. This field’s emphasis
shifts many problems, such as memory and reasoning, from the brain to the envi-
ronment. Instead of having to conceive, predict, and remember the consequences
of an action, action is simply executed by reading off and reacting to information
available in the environment.

Embodied cognition is a complementary field, which rather than placing empha-
sis on the role of the environment, places its emphasis on the role of the body. The
significance of embodiment was also first described phenomenological philosophy
(Merleau-Ponty 1996), and was recognized by cognitive science in the 1980’s with
Rodney Brooks’ robotics, which emphasized the role of physical embodiment in co-
ordinated behavior (Brooks 1991). Brooks ideas provided a radical alternative to the
then-dominant computational approach. Following research in embodied cognitive
science has emphasized the role of activity in perception (Noe 2004), autonomy in
cognition (Pfeifer and Scheier 2001), the use of metaphor as based in sensori-motor
experience (Lakoff and Johnson 1999), and in the philosophy of cognitive science
(Clark 1998). These projects recognize how the physical aspects of an organism’s
body are crucial to its behavior and provide enormous constraints on behavior. The
nervous system receives input though the embedding of sensors on its spatially ex-
tended body, and their physical properties directly affects that information avail-
able to the organism. Additionally, the particular assemblage of bones, joints, and
muscles create a unique control problem for the brain. As the cognitive system de-
velops, both physically and behaviorally, it is constrained by a body and can only
learn through information provided through a body. Ashby did not place emphasis
on the physical embodiment, but would certainly agree with these scientists that the
body is a relevant variable, and must be accounted for when describing behavior and
cognition from an absolute systems perspective.

The final definition that Ashby offers in PSOS before turning his attention to
the demystification of self-organization is what he calls “good organization.” This
aspect of Ashby’s framework has been less influential in the majority of the fields
under the BBE umbrella, but has still been advanced in one of the most far-reaching
fields called enactive cognition (Varela et al. 1992; Thompson 2007; Di Paolo 2005).
For enactive cognition, as well as for Ashby, “good” is a relative term that is depen-
dent on the fit between the system in question and its given environment. If the
pairing is such that it acts to further the system’s survival, then the system has good
organization. Ashby describes what he calls “essential variables” as variables that
are closely related to survival (e.g. heartbeat, core body temperature, oxygen level).
A successful organism acts to maintain these variables within a narrow range, but
when one of the essential variables is significantly altered, the organism dies, and
the rest of the essential variables are also dramatically changed. Enactive cognition



300 E. Agmon

introduces a “boundary of viability,” which surrounds the subset of an organism’s
state space within which it must remain to survive (called a viable set). It asks how
adaptive agents engage with an environment in such a way that they discover possi-
ble actions, and engage in actions that bring them to increasingly robust regions of
the viable set (Di Paolo 2005).

Now, back to Ashby’s argument in PSOS: with the definitions of absolute sys-
tem and good organization nicely laid out, Ashby proceeds with his demystifica-
tion of self-organization. For Ashby, the term self-organization implies a system’s
ability for “changing from a bad organization to a good one,” (Ashby 1962). A
self-organizing system is one that at first does not have a chance of surviving as an
organized system, and by dynamically unfolding through time it changes its organi-
zation and is able to persist robustly in the environment. Ashby turns the omniscient
lens of the absolute system perspective onto this adaptive behavior, and attempts to
describe the dynamical organization that could produce such behavior. He quickly
rejects an interpretation of self-organization as something that can come out of a
system’s internal organization; “no machine can be self-organizing in this sense.”

For Ashby, organization cannot autonomously improve itself because it is math-
ematical nonsense to talk of a function that is a function of the state that it defines;
an evolution operator, which determines how states unfold through time, cannot be
updated by the states that it transforms. There must be some additional variable that
drives this apparent organizational change, but which is not contained within the
organized system. “The appearance of being ‘self-organizing’ can be given only by
a machine being coupled to another machine” (Ashby 1962). Ashby then proceeds
to assert that the appearance of self-organization in systems is not only unremark-
able in the sense that there are no special conditions that govern self-organization,
but that it is in fact an inevitable property of large dynamic systems that have been
given sufficient time to come to equilibrium. When we examine this equilibrium,
we can split up the relevant components into “organism” and “environment,” and
will find that the organism is highly robust to perturbations from the environment,
creating what Ashby calls an “adaptive fit.”

This forecasts a demystification of adaptive behavior that would result if there
were a complete integration of a BBE framework. By bringing focus to the dy-
namical approach in which a cognitive system is characterized by a set of states
and dynamical operator, proponents of the BBE framework have adopted a fasci-
nation with self-organization (Kelso 1995; Maturana and Varela 1980; Thompson
2007). They have recognized that adaptive behavior is the result of feedback be-
tween brains, bodies, and environments, and that all relevant variables across this
system must be integrated into our models. Just like self-organization cannot come
out of a system in isolation, adaptive behavior cannot come out of an organism
without an environment to couple with. If we identify the relevant components of a
particular cognitive system, and bring them together in a dynamical model, cogni-
tion becomes an unfolding process that takes place between distributed components,
and can be understood in a purely dynamical terminology. The coupled brain-body
subsystem is called the “agent”. It interacts with the environment through coupled
interactions that generate feedback. Coupling that flows from the environment to the
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agent is called “sensory,” and coupling that flows in the opposite direction is called
“motor”. The agent’s behavior is defined by its trajectory of motor outputs (Beer
2007). Cognitive capacities such as memory, learning, attention, and recognition
are predicted to fall out of this description if such an ideal model is obtained, not
as intrinsic properties of a system but as patterns that emerge from the dynamical
trajectories of the system.

10.3 Beer’s Adaptive Behavior Program

Where Ashby had compelling terminology based in dynamics, and a complete vi-
sion for the study of adaptive behavior, he lacked on an ability to explain any cogni-
tive behavior that we might find in the real world. Ashby’s example adaptive systems
were based in formal systems, which he defined and brought to life by running the
equations. He was able to make his conclusions by studying the dynamical prop-
erties that arise from such simulation. But the proof that adaptive behavior cannot
come out of an isolated system is not sufficient to explain the cognitive behavior we
observe in real living organisms. We must ask about their particular structural prop-
erties, how these particular properties produce an adaptive fit with the properties
of environment, and how the behaviors that we observe result from this opportune
matching.

Meanwhile, the BBE framework has approached the cognitive process from an
empirical perspective; relevant variables that signify states of real living agents are
identified and brought into models that predict how they unfold through time. But
the complexity of real living systems is hard to overcome. There are many compo-
nents, and with their nonlinearity, accurate prediction appears futile. Ashby himself
recognized this difficulty, and asserted that real systems likely have infinite vari-
ables (Ashby 1952). The difficulty in creating complete models leads to an inability
to theorize about adaptive behavior in the terminology of dynamical systems.

A bridge between Ashby’s theory and the BBE’s empirical interest is attempted
in Randall Beer’s adaptive behavior project (Beer 1997). What began as the rejec-
tion of traditional artificial intelligence led Beer to set as his goal the simulation of
an organism’s entire capacities. His research has developed a rigorous methodology
to simulate the entire conditions of a brain, body, and environment that engage in
minimal instances of adaptive behavior. Beer then adopted dynamical systems the-
ory to analyze the resulting behavior’s dynamical underpinnings. These models are
developed by first defining an environment and body in a computer program, and
then using genetic algorithms to evolve a dynamical neural network that can control
the body effectively in a way that generates the desired action. These agents are of
interest to the BBE framework because their simulated behavior is easily related to
behavior observed in the real world, yet they are simple enough to be analyzed and
completely described with a dynamical terminology.

Beer’s first examples of evolved embodied agents were designed to produce the
behaviors of insect walking and chemotaxis (Beer and Gallagher 1992). The chemo-
taxis agent will be described in greater detail later on in this section. These examples
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demonstrated successful situated behavior, but drew some criticism for only study-
ing simple sensory-motor tasks, and not addressing high-order cognitive function.
Beer’s next step was to extend the framework to simulated examples of minimally
cognitive behavior (Beer et al. 1996), which would demonstrate higher-level cog-
nitive behavior as the result of dynamical BBE interactions. Following from this
proposal, many agents were evolved to produce behaviors such as selective atten-
tion (Slocum et al. 2000), categorical perception (Beer 2003), learning and memory
(Izquierdo et al. 2008), relational categorization (Williams et al. 2008a), referential
communication (Williams et al. 2008b).

Minimization allows the researcher to focus on a particular cognitive function of
interest, and provide this function with a dynamical explanation. By evolving sys-
tems that specialize in specific behaviors such as learning, attention, or categorical
perception, the cognitive system is reduced to a minimal organization that allows
for only the behavior of interest and removes the additional functionality inherent
in living systems. This is the concept Beer calls “frictionless brains”; the nervous
systems are evolved to produce a well-defined function, which can then be stud-
ied without interference by other influencing factors. Real organisms don’t have
this specialization, and usually take part in many types of behavior who’s neuronal
underpinning cannot be easily teased apart (this capacity for multiple functions is
further addressed in the section on action switching). Because of this, it is much
more straightforward to study frictionless brains with well-defined behavioral func-
tions because the neuronal behavior can be directly linked to the production of that
particular behavior.

Simple simulated agents are also far more ideal than real living systems for full
dynamical analysis. Scientists gain full access to the final, successful agents, be-
cause all of the interactions that come into producing the behavior are readily avail-
able to the scientist, and just have to be recorded and analyzed. The simulation is
a full absolute system model by definition, and does not require a process of ab-
straction to creating a simplified model. With access to this model, behavior can be
analyzed in the way dreamt about by Ashby many decades ago. Beer’s framework
allows him to ask questions that Ashby could not have begun to answer, such as
“How do the individual components across brain, body, and environment contribute
to a specific behavior?”, “What classes of control mechanisms are best suited to the
generation of adaptive behavior?”, and “how does manipulation of the variables and
parameters affect resulting behavior?”

10.3.1 CTRNNs and Genetic Algorithms

Continuous-time recurrent neural networks (CTRNNs) are adopted as the model
nervous systems for these simulations. The general form of these equations is shown
below. In this equation, yi is the state of the neuron, τ is the time constant, w
is the weight between neurons j and i, θ is the bias term, I is external input, and
σ (x)=1/(1+e−x) is the standard logistic activation function.
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Beer justifies this selection for a neural model with several points (Beer 1995a).
First off, this model’s recurrent connections allow the agent to initiate its own be-
haviors as a result of its internal state unlike the feed forward networks that were
popular at the time. Additionally, Beer argues that they are the simplest case of a
nonlinear, continuous dynamical neural network model and despite this simplicity,
they are universal dynamics approximators (Funahashi and Nakamura 1993). They
lend themselves to a biological interpretation, in which a state is associated with
a neuron’s mean membrane potential, and the output is associated with its average
firing frequency. Finally, CTRNNs are computationally and analytically tractable,
and they are evolvable by searching through the combinations of the CTRNN’s pa-
rameter values.

Just like real-world systems produce an adaptive fit between the agent’s inter-
nal control mechanism and its given environment, so too must the BBE simulation
produce a fit between the dynamical nervous system, its body, and its environment.
To produce this fit, Beer adopted the use of genetic algorithms (GAs) to evolve
CTRNNs that optimize a fitness function by controlling a simulated body in a sim-
ulated environment (Beer and Gallagher 1992). This approach was separately de-
veloped at around the same time period by some other research groups (Cliff et al.
1993)(Nolfi et al. 2000). These GAs encode the CTRNN parameters, τ , w, and θ in
genetic strings. An initial random population of such strings is created, and in each
generation the fitness of each individual is evaluated by running a simulation with
the individuals’ CTRNNs. A new generation is created by selecting highly fit indi-
viduals and slightly mutating them to explore nearby regions of parameter space.
The selection process chooses individuals with a probability proportional to their
fitness, so that more highly fit individuals are represented in the next generation. A
set of genetic operators modifies the selected individuals’ genetic strings with mu-
tation and crossover. Mutation randomly modifies portions of the strings with some
fixed mutation probability, and crossover combines chunks of genetic strings from
multiple individuals to create a whole new individual. Once a new population has
been constructed, the entire process repeats, and after many such generations the
population’s fitness increases and converges onto some final local maximum.

The creative part of making these models lies in the experimenter’s design of the
agent’s body and environment, and in the definition of a fitness function that can
select for a behavior of interest. If the conditions are designed well, then the GA
can move through the space of possible CTRNNs in a gradual way, towards regions
of increased adaptive fit. With a good design, a highly successful CTRNN is results
from the evolutionary search, and provides the modeler with a BBE system that
can be further analyzed to uncover the dynamical strategies that generate successful
behavior.
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10.3.2 Dynamical Systems Theory

The evolved and well-adapted CTRNN is a system of nonlinear differential equa-
tions. Each variable makes an axis in the system’s state space, which is the set of
all possible states that the system can be in. Every point in this state space has an
instantaneous trajectory, as determined by the equations, that leads it to a different
state (or in the case of equilibrium points, there is no trajectory and the state re-
main constant). A particular behavior results by setting an initial condition in this
space, and following the resulting trajectory through time. A phase portrait is the
set of all trajectories that can result in the system. It is the BBE scientist’s goal to
fully describe this phase portrait, including different factors that shape this space
and determine the system’s behaviors.

Nonlinear systems such as CTRNNs are difficult, if not impossible, to solve an-
alytically. This makes the characterization of their temporal structure difficult to
study in traditional ways. But luckily, the mathematical field of Dynamical Sys-
tems Theory (DST) has developed various approaches for characterizing a system’s
given these constraints. DST has learned that it can uncover much of the systems
behavior by focusing on invariant sets within the system’s phase space, and on lin-
earized behavior in these invariant sets’ direct proximity. Based in this realization,
a highly developed set of mathematical tools has been developed, which includes
ways to identify a system’s invariant sets (e.g. fixed points, limit cycles, chaotic
attractors), a characterization of their local structure around these sets (e.g. stabil-
ity), global structure that connects the sets (e.g. attractor basins, saddle manifolds),
and the changes in qualitative structure that occurs with changing parameters (e.g.
bifurcations), (Beer 1995b).

Beer adopted the DST toolset to analyze the evolved CTRNNs and uncover how
particular trajectories seen in simulated behavior are guided by the system’s intrin-
sic dynamical properties (Beer 1995a). But, as the BBE perspective emphasizes,
a characterization of the brain’s (or CTRNN’s) dynamical landscape is not suffi-
cient to describe the generation of behavior. The CTRNN is not autonomous, and
its interactions with the environment cause perturbations of state that would not re-
sult from the CTRNN in isolation. Because of this, the CTRNN typically moves
through its state space not according to a phase portrait found by a dynamical anal-
ysis of the CTRNN alone. This analysis only provides knowledge of the CTRNN’s
inclinations. For a full explanation of behavior the dynamics of brain, body, and
environment have to be brought back together into an absolute system.

By evolving complete dynamical system models of brains, with formally defined
bodies and environments, a modeler gains full access to all information about the ab-
solute system and can investigate the underlying dynamical space to explain how a
system produces adaptive behavior. Simulated experiments explore multiple scenar-
ios’ behavioral trajectories, all of which come together in the absolute phase space
uncovered by DST. Each component’s contribution can be directly determined with
such experimentation: agents can be removed from their environments, and the ef-
fects of stimuli on motor output directly analyzed. Connections in the CTRNN can
be lesioned, or states held fixed by experimenter control. By doing this, the scientists
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can determine how each component contributes to the overall dynamical landscape.
Such analyses demonstrate that the CTRNN is attracted to equilibrium points in its
state space, and that movement towards these points determines motor output. But
as a result of behavioral output, the agent moves within its environment leading
to changes in sensory inputs, which in turn alter the CTRNN’s phase portrait and
influence its next instantaneous behavior.

These ongoing interactions continue to shift the CTRNN’s phase portrait either
by adjusting the phase portrait slightly, or by creating bifurcations that qualitatively
alter the phase space. With these ongoing changes, the system continues to chase a
moving equilibrium point. We see that with DST, what were once somewhat vague
descriptions of a system’s dynamics are given real meaning that can be approached
scientifically. Specific actions that are evolved with Beer’s method can then be fully
described in all their specific nuanced details. By evolving many such agents, each
with unique dynamical properties, a general space of strategies is uncovered and
builds up a broader picture of adaptive behavior.

10.3.3 A Simple Chemotaxis Agent

In this section we introduce Beer’s chemotaxis agents, which were first described in
1992 (Beer and Gallagher 1992), and later extended with a full dynamical systems
analysis (Beer 1995a). Chemotaxis is an ideal case of minimal sensori-motor goal-
directed behavior, in which agents direct their movement according to chemical sig-
nals that are present in the environment. Such behavior is used often by organisms,
such as bacteria and nematodes, to approach resources by moving up a chemical
gradient. We introduce this basic example now to illustrate an example of the expla-
nation made possible by Beer’s framework. We also introduce the chemotaxis agent
here because the next section on action switching is based on this early example,
but extends it to capture a broader explanation of behavior. By first describing the
simpler case, we will be prepared to extend the model later.

For the simple chemotaxis simulations, an agent is given a simple body (shown in
Figure 10.1), in this example with a 6-neuron fully interconnected CTRNN. These
CTRNN neurons include two spatially extended sensors that detect chemical con-
centrations at their location, two interneurons, and two motor neurons whose com-
bined outputs produce a torque and thrust, which propel it through the environment.
The agent is enclosed in a 2-dimensional square-shaped environment that contains
a single circular resource at its center. This resource emits a chemical signal, which
diffuses through the environment with intensity proportionate to the inverse square
of the distance from the center. The GA’s fitness function is to minimize distance
between the agent and the resource, which would select for agents that can approach
the resource and remain as close as possible for the duration of the simulation.

Beer found that multiple chemotactic strategies evolved under these conditions.
We will discuss only the most common strategy here, which is reproduced in a novel
agent shown in Figure 10.2. This agent moves forward while turning toward the side
on which the chemical signal is stronger. A dynamical analysis demonstrated that
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Fig. 10.1 Basic chemotaxis agent morphology, with 6 fully-interconnected CTRNN neurons

Fig. 10.2 Multiple simulated trajectories, in which the agent is initialized randomly in the
environment and moves to the resource

the CTRNN has a single equilibrium point, which shifts with different levels of ac-
tivation from the two chemosensors. When he examined how this equilibrium point
is projected onto the left and right motor outputs, he uncovered a simple explana-
tion for the resulting behavior. When the left chemosensor is more active than the
right, the leftward orienting motor neuron becomes more active than the left. When
there is higher activation of the right chemosensor, the rightward orienting effec-
tor becomes more active. This directly explains the observer turning and approach
behaviors, and is rooted in dynamics

10.4 Action Switching

The minimally cognitive behavior project has described many different dynamical
strategies for specific cognitive behaviors, but the emphasis on specific behavior
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leads to an incomplete picture of organisms’ full behavioral capabilities. There are
many questions that arise when we shift our focus from the dynamics of performing
single actions, to the broad repertoire of actions that all organisms have accessible.
Real living organisms depend on the ability flexibly switch between their possible
actions. For example, a subtle movement in distant shrubs might be all the informa-
tion available to a monkey to determine if a predator is on the prowl. This move-
ment in the environment couples with the monkey’s relevant sensors, and elicits a
dramatic behavioral change from gathering food off of the ground to scampering up
a tree for safety. Such actions require very different patterns of sensorimotor coor-
dination; picking food might require fine finger dexterity and acute eye movements
for examining food sources. Running up a tree would require full limb coordination
and tactile or proprioceptive sensory input. By committing to the dynamical per-
spective, the scientist is obligated to describe how the many interacting components
of the brain, body, and environment become engaged throughout these different ac-
tions and in the transition between them.

More traditional approaches in Artificial Intelligence assume that a higher-level
mechanism must be used to determine action. This mechanism uses logical or statis-
tical reasoning to decide upon the most beneficial action out of a repertoire of pos-
sible actions given the information it has available about the present context. After
this decision-making process selects an action, the action is initiated. Some might
claim that the BBE approach does contradict this depiction of higher-level mech-
anisms for action selection. For descriptions that attempt to bring BBE dynamics
with higher-level mechanisms of action selection, self-organization and dynamics
only account for feedback let loose on a one-way path towards a particular end-state
or goal. The initial conditions that allow particular such actions to be instantiated
are determined and initialized by a higher-level decision process.

But this misses out on the real underlying message intended by the BBE frame-
work. This perspective aims to describe an absolute system, which has a phase space
that describes the systems full range of possible behavior that result from a single,
unchanging evolution operator. For this perspective, the agent’s behavioral reper-
toire has to be completely contained within the dynamical explanation, including
its movement from the state space region that defines one action to the regions that
defines another. Action switching must be a product of self-organization that falls
out from these dynamics, and not a higher-level mechanism that sets initial condi-
tions. Many novel questions come up from defining the problem in this way; how
is a systems phase space divided between its full repertoire of possible actions. Are
there specific regions of this phase space that become responsible for each action
(modularity)? How do the different types of action constrain the sensorimotor appa-
ratus in their own unique way that produces appropriate behavior? When an action
is completed, how does the system transition to a different action?

Few dynamical systems agents have explored the questions of multiple actions.
It has been shown that the same CTRNN is able to implement qualitatively different
behaviors when coupled to different bodies (Izquierdo and Buhrmann 2008), and
that globally stable CTRNNS containing a single basin of attraction are able to sus-
tain multiple modes of behavior (Buckley et al. 2008). In this section we introduce



308 E. Agmon

a new model capable of engaging in multiple different actions, which autonomously
switches between these actions without a higher-level mechanism. A highly suc-
cessful agent is examined in depth to reveal its dynamical organization, and how it
allows for efficient action and switching.

10.4.1 Evolving an Action Switcher

To study action switching, a chemotaxis agent of the same basic design introduced
in the previous section on simple chemotaxis agents was evolved, but with some
additions that forced it to switch between the approaches of two different resources.
Its environment was encoded as a 100x100 unit plane, with two sources of food that
were held in fixed locations for each trial. The agent was given an initial position
and directionality in this environment, and was allowed to move spatially by coor-
dinating its motor neurons. Its task was to maintain two nutrient levels above zero
by coming within the spatial boundaries of each food source. When it is within the
resource’s boundaries, the corresponding nutrient level is increased at a fixed rate to
simulate the uptake of nutrients. But there is also a constant decay of nutrient levels
at a fixed rate that simulates a simple metabolism. In order to sustain both nutrient
levels above empty, the agent must switch between its approaches of each resource,
and to spend sufficient time on each one to refill the nutrient supplies.

Fig. 10.3 The image on the left shows the action switcher’s environment. The agent exists in
a 2-D bounded environment with two different resources and their diffusing chemical signals.
The image on the right shows the agent’s morphology. Two types of chemosensors on each
spatially-extend stalk detect the different chemicals, nutrient sensors detect internal nutrient
levels, and motor neurons produce force that moves the agent.

The agent is given a body that is controlled by the CTRNN via sensors and effec-
tors that were embedded in different locations along its body. Of the neuronal com-
ponents, four are chemosensors, two are nutrient sensors, two are motor neurons,
and six are interneurons. Chemosensors receive input regarding the concentration
of a chemical, which just like the original chemotaxis agent, is proportionate to the
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inverse square of the distance between sensor and resource. The two chemosensor
stalks were extended outward from the body’s assigned coordinate location by 6
units, therefor spatially extending the agent’s sensors within the environment. The
outputs of the two effectors are used to generate movement through the environ-
ment. The output of each effector is a vector of force that pushes one side of the
body. Directional change is determined by the difference between the two effectors’
outputs, while magnitude of movement was determined by the sum of the effectors’
outputs. Additionally, the velocity was multiplied by a friction coefficient of 0.9 at
every time step, such that the agent would slow down and eventually stop if the
effectors produced no force.

The two nutrient levels serve as measures of how much nutrient for each resource
is stored in the agent. These values can be anywhere between 0 and 10. When the
agent is within the boundary of a resource, its corresponding nutrient is replenished
by 0.02 units per time step. Additionally, there is a decay of 0.004 units per time
step throughout the entire simulation to simulate a constant metabolism. The sim-
ulation continues as long as both internal nutrient values are above empty, but as
soon as either value dropped to 0 the agent dies and simulation ends. If the agent
is successful and does not die, the simulation is halted after 5000 time steps, which
is sufficient time to guarantee that the agent had to move to each resource several
times. To further guarantee robustness of the agent in many different environments,
it had to succeed in 11 different environments. The average length of time the agent
survives in the 11 simulations defines its fitness value for the genetic algorithm.

Figure 10.4 shows the evolutionary progression of twenty different evolution-
ary runs that had the same morphology but different initial random seeds. The top
performing agent’s evolutionary run is shown in black. The evolutionary search in-
crementally increases their fitness as a strategy is converged upon and refined. There
are many different possible strategies for action switching given the constraints pro-
vided to the GA, and the evolutionary runs can only come upon some of them. In
typical experiments of this framework, researchers are recommended to investigate
the full space of possible strategies by examining many of the evolved solutions, and
also evolving agents with different morphologies (e.g. different amounts of sensors,
interneurons, connectivity, etc.). These different morphologies produce constraints
on the genetic search, and can lead to very different final strategies. By analyz-
ing multiple strategies, the researcher attains a more general understanding of the
behavior, which abstracts over the particular details of an individual instantiation.
However, in this chapter only the top-performing agent is selected from the twenty
evolutionary runs shown. A more comprehensive examination of different strategies
will described in an article currently in preparation (Agmon and Beer 2013).

10.4.2 The Agent’s Behavior and Dynamics

The top-performing agent’s final fitness score is .86, which means that it sur-
vived through 86 percent of the maximum time provided in the 11 trial configura-
tions. This indicates a high robustness to different environmental conditions, and
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persistence in continued action switching between the approaches and eating of
the two resources. A typical behavioral trajectory is plotted in Figure 10.5, where
the agent moves towards a resource, performs several loops on top of the resource
(which we will call eating behavior), then after some time, it leaves the resource and
approaches the other resource for a similar eating behavior. We will call the behav-
ior in which the agent moves toward and eats resource 1 action 1, and the behavior
towards resource 2 we will call action 2. Accomplishing these actions requires the
engagement of different chemosensors that allows for appropriate, directed motor
behavior. Somehow, between the two approaches, these different coordination pat-
terns come into effect.

We can attempt to localize action 1 and action 2 by observing and experimenting
on the agent’s state during the different actions. This helps identify the relevant vari-

Fig. 10.4 Twenty evolutionary runs, with the top performing evolutionary run in black

Fig. 10.5 A typical behavioral trajectory (solid line) between the two resources (outline by
the dashed line)
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ables for each action. Part of the trick in this agent’s evolution was the introduction
of nutrient sensors, which provide input to the interneurons about the two nutrient
levels. It is reasonable that the evolutionary search of the GA would take advantage
of this information to determine action, and this agent did just that. Figures 10.6
and 10.7 demonstrate how action is dependent on nutrient levels, by showing the
behavioral effects of nutrient level manipulation. In Figure 10.6(A), nutrient 1 is
held fixed at the near-empty value of 0.5 (out of 10) and nutrient 2 is held full at
a value of 10. The agent is shown to approach resource 1, as if it was hungry for
the resource, and remains eating the resource for the entire extent of the simulation.
Figure 10.6 (B) shows the exact opposite scenario, with nutrient 1 held at 10 and
nutrient 2 held at 0.5. We again clearly see that the agent approaches resource 2 and
continues to engage in eating behavior for the simulation’s full duration.

Fig. 10.6 A) Action 1, the agent moves to resource 1 and engages in eating behavior for the
duration of the simulation. B) Action 2, the agent moves to resource 2 and engages in eating
behavior for the duration of the simulation.

These demonstrate that the nutrient level plays a role in determining which ac-
tion the agent is engaged in. But in the reality of a simulation, nutrient levels are
constantly increased by eating or decreased by metabolism, such that these ideal-
ized actions shown in Figures 10.6 (A) and (B) can never happen. The agent passes
through intermediate nutrient states that generate different behavioral tendencies.
Figure 10.7(A) shows the behavior when both nutrient levels were held really high,
which looks like the agent is not attracted to either resource but instead explores
the full environment. Figure 10.7(B) shows behavior when both nutrient sensors are
held at a low level, in which the agent moves around in tight circles. These figures
also show behaviors that can never be achieved in simulation, because both nutrient
levels can never be completely full at the same time, and can’t be equally empty.
Even though these behaviors are not realistic in a typical environment, they provide
interesting insight into the dynamical properties of the system. We gain an under-
standing of the agent’s behavior as ongoing transitions between more explorative
modes when nutrient levels are higher, to more exploitative mode when nutrient
levels are low. Additionally, off-balanced nutrient levels lead to action directed to-
wards one of the two resources.
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Fig. 10.7 A) The agent explores the environment without approaching either resource. B)
The agent moves around in tight circles, while slowly drifting downwards.

Both actions 1 and 2 were further investigated to reveal how sensorimotor inter-
actions are determined by the system, and how this generates the resulting observed
behavior. We will focus our explanation on actions 1 by describing Figure 10.8, an
identical analysis was done on action 2 and produced similar results, shown in Fig-
ure 10.9. We use the constraints of Figure 10.6(A) to approximate the nutrient levels
for action 1, with nutrient 1 held at 0.5 and nutrient 2 held at 10. Additionally, it is
assumed that the resource 2’s chemical trace is irrelevant during action 1, and so the
chemosensors for resource 2 are both held fixed at 0. We then calculated the sys-
tem’s equilibrium points as the left and right chemosensors for resource 1 (C1L, and
C1R) are varied through their range of states. As it turns out, the system has only
one stable equilibrium point for this range chemosensor levels. In Figure 10.8, this
equilibrium point is projected onto the left and right motor neurons’ outputs (ML

and MR), which shows the outputs that the motor neurons would tend towards given
the chemosensor values were held fixed.

For a reminder of how the total force on the agent is determined: the angular
force is determined by the difference between the two outputs. This leads to a
slightly counter-intuitive relation between effectors and behavioral output such that
when there is more force coming from right motor neuron, the agent turns left. When
there is more force coming from the left motor neuron, the agent turns right. When
there are equal amounts of force, the agent moves forward with a thrust determined
by the effector’s added outputs. There is an additional friction constant that reduces
the velocity at each time step. With this quick summary, we can interpret the mo-
tor surfaces of Figure 10.8. These show that when the right chemosensor is more
active than the left chemosensor, the right motor becomes less active than the left
motor. This turns the agent to the right. When the left chemosensor is less active
than the right, there is tendency to turn left. When both chemosensors are about
equally active, both motor neurons are also about equally active, which drives the
agent forward. With every movement, the agent’s chemosensors move, and elicit
new inputs, which through ongoing feedback moves the agent successfully to the
resource. These surfaces fully describe the strategy used by the agent, which suc-
cessfully brings it to resource 1 as shown in Figure 10.6(A).
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Fig. 10.8 Individual motor projections of the system’s single equilibrium point for action1
(shown in Figure 10.6(A). These surfaces are functions of the two chemosensors, C1L and
C1R, which when held at a particular state produce the stable motor outputs in effectors ML

and MR. Action 2, shown in Figure 10.9, but not identical motor projections.

Fig. 10.9 Individual motor projections of the system’s single equilibrium point for action2
(shown in Figure 10.6(B). These surfaces are functions of the two chemosensors, C2L and
C2R, which when held at a particular state produce the stable motor outputs in effectors ML
and MR.

We now turn our attention to Figure 10.10, which examines the agent’s internal
states throughout a full simulation of both actions without any imposed constraints.
This aims to provide insight into how the internal state behaves in each of the two
actions and how it transitions between them. To produce this image, the states of
the six interneurons are recorded throughout the same simulation of behavior pre-
viously shown in Figure 10.5. There are 6 interneurons, and so their state makes
a 6-dimensional state space, which can, for obvious reasons, not be visualized in
its completeness here. Instead, a principal component analysis (PCA) is performed
on the data, and the top three principal components are identified to make up the
axes of Figure 10.5. These components account for 92 percent of the variance of
the full interneuron space. The data is transformed into the coordinates defined by
these principle components, and projected into the 3-dimensional space. In this plot,
the interneurons trajectories throughout two actions are colored in different colors
to demonstrate the clear separation of the actions that takes place in the interneu-
ron’s activity. This separation should not be interpreted as a universal rule of action
switching, but it is certainly pronounced in this particular case.
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Fig. 10.10 This shows the trajectory of interneuron states throughout the two actions shown
in Figure 10.5., projected onto a dimensionally reduced space made of the top 3 principle
components. The black trajectory is the interneurons’ state during action 1 and the gray tra-
jectory is the interneurons’ state during action 2.

10.4.3 Discussion of Action Switching

This agent provides a proof of concept that a distributed dynamical system, such as a
CTRNN, can control a body in multiple different directed actions and autonomously
switch between them. There is no higher-level mechanism imposed, and all the ob-
served actions exist within the same defined absolute system. Though it is a minimal
case, it can help set a basis from which dynamical systems terminology can explain
more complex examples of action switching.

We gain an understanding of the system as existing in a high-dimensional state
space, with specific actions resulting from the agent’s state and coupled interactions
with an environmental situation. The agent demonstrates that specific actions appear
as reductions in the state space, in which some temporarily irrelevant variables can
be removed from the analysis. The actions are approximated through projections of
the high-dimensional state space onto a reduced subspace made of the temporarily
relevant variables, such as C1L, and C1R left during action 1. But with our analysis
of this agent we recognize that these reductions are approximations, and the real sys-
tem actually exists in the higher-dimensional state space that contains all variables.
Action switching is movement through the higher-dimensional space, between these
actions’ approximated subspaces.

When analyzing how an agent traverses the state space between actions, the mod-
eler needs to demonstrate how a trajectory moves from one projection to another,
as when action 1’s sensorimotor surfaces, shown in Figure 10.8, would transition to
action 2’s surfaces, shown in Figure 10.9, which are defined by different variables.
This requires movement in more dimensions than we can illustrate directly on pa-
per, and will require different kinds of analyses. In this agent we see the transitions
in Figure 10.10, though this image does not illustrate the dynamical landscape, such
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as equilibrium points, which would drive the system from one action to another. A
more complete description would show the dynamical properties, such as a bifur-
cation or moving equilibrium point. A more complete picture is provided in a later
article (Agmon and Beer 2013).

10.5 The Prospect of Brain-Body-Environment Systems

There is much left to develop and discover in this sapling scientific field; what we
have covered in this chapter only provides minimal depictions of what in reality
are very complex phenomena. If it is true that we need to take an absolute system
perspective by modeling all of the relevant variables underlying adaptive behavior,
then the current dynamical system models will need to scale up many orders of
magnitude if we are to describe the behavior capacity of living systems. Neuronal,
biological, and ecological systems have many relevant variables that come into play
in the production of an individual organism’s behavior. The actions performed by
simulated agents will need to diversify and complexify if they are going to describe
these behaviors as seen in reality.

Real repertoires of action are typically much less symmetric than in this pa-
per’s example; whereas the agent studied here directed its behaviors towards two
resources in functionally very similar ways, real organisms can engage in very
qualitatively different types of actions such as reaching, peeling rind off of a fruit,
chewing, or fighting an opponent. These actions are coordinated in different environ-
mental situations, by utilizing different sets of sensors and effectors. In dynamical
models of such actions, the agent will need to coordinate many degrees of freedom
in morphologies that have an increased number of bones, muscles and joints. They
will need to gather information about context by integrating different sources of sen-
sory input. Environments will need to expand to include more entities with complex
properties that an agent can engage with.

Not only will models of brain-body-environment systems need to scale up to
more complex structures and behavior, they will also need to demonstrate adaptiv-
ity. Adaptivity is a system’s ability to structurally reconfigure itself to behave in
increasingly advantageous ways (Di Paolo 2005). As we know from the section on
Ashby’s self-organization, the change from bad organization to good organization
cannot come out of the system’s internal organization. Instead we must ask how an
adaptive system’s robustness increases through experience within the environment.
Here, robustness is defined as the maintenance of essential variables (as introduced
in the earlier section on Ashby’s self-organization). A highly robust system main-
tains its essential variables far from their boundary of viability, and by doing so
reduces its chance of failure or death. When at one time an adaptive system might
have faired poorly and closely approached possible failure, at a later time when
confronted with the same environmental situation, the system behaves in a more
efficient and robust manner.

The model presented in this paper has a static behavioral repertoire, which
is given to the agent at its inception by the fixing of dynamical parameters.
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Additionally, its body and environment are determined a priori and are unchanged
for the duration of simulation. But actions seen in living systems are often acquired
through learning and development, during which the environment and body change.
Organisms tune their actions and come up with new actions that engage sensors
and effectors in novel ways to optimize their interactions. With the absolute sys-
tems perspective on BBE systems, learning and development become a type of self-
organization that unfolds through interactions across many timescales. Future agents
will need to demonstrate this capacity, and their analysis will need to uncover the
underlying structures that allow for such abilities.

All of these complexifications will yield new types of behaviors and dynamics
that have not yet been described with the methodology introduced here. The field
is facing an explanatory gap that it must overcome if it is to provide scientific in-
sight about the adaptive capabilities of life. By starting with minimal models, it
has promised to lay a foundation that can be incrementally built up towards more
realistic behavior. Minimization has allowed simple behaviors to be analyzed, and
their dynamics fully unpacked. But there is no certainty that the types of analyses
used in the minimal cases will transfer to more complex instances. The field will
need to develop whole new approaches for grappling with these complexifications.
It will need new methods for evolving models of behavior that demonstrate diver-
sity, complexity and adaptivity, and new methodologies to analyze their structure
and dynamics.
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Chapter 11
Guided Self-Organization of Input-Driven
Recurrent Neural Networks∗

Oliver Obst and Joschka Boedecker

11.1 Introduction

To understand the world around us, our brains solve a variety of tasks. One of the
crucial functions of a brain is to make predictions of what will happen next, or in
the near future. This ability helps us to anticipate upcoming events and plan our
reactions to them in advance. To make these predictions, past information needs
to be stored, transformed or used otherwise. How exactly the brain achieves this
information processing is far from clear and under heavy investigation. To guide
this extraordinary research effort, neuroscientists increasingly look for theoretical
frameworks that could help explain the data recorded from the brain, and to make
the enormous task more manageable. This is evident, for instance, through the fund-
ing of the billion-dollar "Human Brain Project", of the European Union, amongst
others. Mathematical techniques from graph and information theory, control the-
ory, dynamical and complex systems (Sporns 2011), statistical mechanics (Rolls
and Deco 2010), as well as machine learning and computer vision (Seung 2012;
Hawkins and Blakeslee 2004), have provided new insights into brain structure and
possible function, and continue to generate new hypotheses for future research.

A marked feature of brain networks is the massive amount of recurrent connec-
tions between cortical areas, especially on a local scale (Douglas et al. 2004). Since
information in these recurrent connections, or loops, can circulate between many
neurons in a given circuit, they are ideally suited to provide a time-context for com-
putations leading to predictions about future events. One particular mathematical
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model that is used to investigate the consequences of loops for computation and
optimization in neuronal circuits are recurrent neural networks (RNNs).

In RNNs, many detailed properties of real neurons are abstracted for the sake of
tractability, but important general concepts are kept. Elements of these networks are
simple nodes that combine inputs from other nodes in the network, usually in a non-
linear fashion, to form their outputs. They are connected in a directed graph, which
may contain cycles. In input-driven RNNs, a constant stream of input data drives
the dynamics of the network. Dedicated output units can then use this dynamics to
compute desired functions, for instance for prediction or classification tasks. Since
they can make use of the temporal context provided by the recurrent connections,
RNNs are very well suited for time-series processing, and are in principle able to
approximate any dynamical system (Maass et al. 2007).

While the recurrent connections of RNNs enable them to deal with time-
dependencies in the input data, they also complicate training procedures compared
to algorithms for networks without loops (e.g., Backpropagation (Rumelhart et al.
1986) or R-Prop (Riedmiller and Braun 1993)). Notably, training RNNs with tradi-
tional training methods suffer from problems like slow convergence and vanishing
gradients. This slow convergence is due to the computational complexity of the al-
gorithms training all of the connections in a network (such as BPTT (Werbos 1990)
or RTRL (Williams and Zipser 1989)), as well as to bifurcations of network dynam-
ics during training, which can render gradient information unusable (Doya 1992).
Also, derivatives of loss functions need to be propagated over many time steps,
which leads to a vanishing error signal (Bengio et al. 1994; Hochreiter 1998).

The realization of these fundamental issues led to alternative ways of using and
training RNNs, some of which can be summarized in the field of Reservoir Com-
puting methods (see, e.g., a recent overview by Lukovsevivcius and Jaeger 2009),
specialized architectures like the Long Short Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber 1997) or training by evolutionary algorithms as
in the Evolino approach (Schmidhuber et al. 2007). The Reservoir Computing field
has been an active part of RNN research over the last decade, while there was less
activity in gradient-descent-like methods which appear to generate renewed interest
only recently (Bengio et al. 2012), partially due to the development of more efficient
training techniques as in (Martens and Sutskever 2011).

Reservoir methods implement a fixed high-dimensional reservoir of neurons, us-
ing random connection weights between the hidden units, chosen small enough to
guarantee dynamic stability. Input weights into this reservoir are also selected ran-
domly, and reservoir learning procedures train only the output weights of the net-
work to generate target outputs. A particular appeal of reservoir methods is their
simplicity, and that the computation required for training is relatively low.

Taking the echo state network approach as a specific example of a typical reser-
voir network (see Fig. 11.1), it will consist of the following components: A random
input-matrix Win combines input values u linearly and sends them to the units in the
high-dimensional hidden layer, referred to as the reservoir. The units in the reser-
voir also have recurrent connections amongst each other, collected in the matrix
Wres. These loops implement a fading memory, so information can remain in the
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Fig. 11.1 The architecture of a typical Echo State Network (ESN), which belongs to the class
of reservoir computing networks. In ESNs, the input and recurrent hidden layer (reservoir)
connections are fixed randomly, and only output weights are trained. The reservoir projects
the input stream nonlinearly into a high-dimensional representation, which can then be used
by a linear readout layer. An important precondition for the approach to work is that the
reservoir implements a fading memory, i.e. that reservoir states do not amplify, but fade out
over time if no input is presented to the network.

system for some time. In this context, the metaphor of a reservoir is often used since
the hidden layer can be seen as a water reservoir that gets disturbed by a drop, but
slowly returns to its initial state after the ripples from the input have decayed. This
reservoir state x is mapped at time step t +1 by an activation function f () such as a
hyperbolic tangent, in the following way:

xt+1 = f (Wres ∗ xt +Win ∗ut+1) (11.1)

The input and hidden layer connections, Win and Wres, are not trained in reservoir
computing approaches. It is also possible to introduce feedback connections from
outputs back into the reservoir (Lukovsevivcius and Jaeger 2009). To approximate a
specific target function, only the output weights wout are trained with a simple lin-
ear regression. This drastically simplifies the training procedure compared to previ-
ous approaches, while leading to excellent performance on time-series processing
tasks (Jaeger and Haas 2004). It also avoids the problems of vanishing gradient in-
formation and disruptive bifurcations in the dynamics since no error gradients have
to be propagated into the fixed, random parts of the network.

This approach works very well in practice. However, results will depend on the
particular random set of weights that is drawn. In fact, there is considerable vari-
ability in performance between runs of networks with equal parameter settings, but
different reservoir weights drawn each time (Ozturk et al. 2007). Striking a balance
between the two extremes of fully trained RNNs and reservoir methods, it is in-
teresting to retain some of the simplicity and efficiency of reservoir methods, but
at the same time avoid some of the variability that comes with randomly created
reservoirs. Self-organized methods are of interest here, because the initial random
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configuration of the reservoir is in general already useful to perform the task. Each
unit or connection then could, by way of local updates, contribute to an improved
version of the reservoir, dependent on the data that each unit or weight processes
over time. Advantages of self-organized methods are their potential for scalability,
since they usually rely mainly on locally available information, making them good
candidates for distributed processing.

Driving self-organization into a desired direction requires an understanding what
properties a good RNN or reservoir network has. The mathematical tools to un-
derstand computation in these networks (which are instances of the larger class
of input-driven dynamical systems) are still under active development (Manjunath
et al. 2012). However, different perspectives, e.g., from functional analysis, dynam-
ical systems, information theory, or statistical learning theory already offer insights
towards this goal. They can provide answers to questions such as: how well can a
given RNN approximate a given class of functions? How does it implement a cer-
tain function within the collective of its distributed nodes? How much memory does
an RNN provide about past inputs and where is this information stored? How does
information flow through the system at different time points in time and space? How
well can it separate different inputs into different network states, and how well will
it generalize on data that has not been seen during training? All of these aspects
contribute to the successful performance of a network on a given task (or class of
tasks). Understanding how to improve them will provide possible target signals to
enrich and guide the self-organized optimization process of an RNN.

In this chapter, we review attempts that have been made towards under-
standing the computational properties and mechanisms of input-driven dynamical
systems like RNNs, and reservoir computing networks in particular. We provide
details on methods that have been developed to give quantitative answers to the
questions above. Following this, we show how self-organization may be used to im-
prove reservoirs for better performance, in some cases guided by the measures pre-
sented before. We also present a possible way to quantify task performance using
an information-theoretic approach, and finally discuss promising future directions
aimed at a better understanding of how these systems perform their computations
and how to best guide self-organized processes for their optimization.

11.2 Assessing the Computational Power and Mechanisms of
Information Processing of Reservoirs

In many cases, artificial neural networks are created with a specific goal in mind,
for example to approximate a particular function or system. Training success and
computational capability of the network with respect to this task are usually assessed
on data that have not been used for training. Similarly to the training data, these are
expected to match properties of the (yet unknown) application data well enough.
A loss functional like the mean square error (MSE) or the cross-entropy is used to
assess the quality of the trained system. For specific applications of the network,
this is a standard approach that usually delivers meaningful results. When a neural
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network is trained for a single purpose, it is not necessary to determine its general
computational power, and the loss on the validation data or during its application
may be the only relevant property.

The loss on a specific class of problems does not express the general computa-
tional power of the network, though. This property becomes more interesting when a
part of the system is used for more than one task: relevant cases would be dynamical
reservoirs that are used for multiple applications, networks that are trained “online”
when the task changes, or to set up or to compare generic microcircuits. One of our
motivations to evaluate mechanisms of information processing is to compare self-
organized approaches within reservoirs. Ideally, self-organization leads to measur-
able effects in the reservoir which positively affect the performance of the system.
In this section, we present a number of measures for different qualities of dynamical
systems that are useful in this evaluation. These measures can be roughly divided
into approaches that are based on or related to information theory, approaches that
relate to learning theory, and dynamical systems theory.

11.2.1 Information-Theory Related Measures

Information theory and (Shannon) entropy have been used in a number of ways in
neural network and complex systems research. One particular heuristic to measure
(and eventually improve) RNN is to estimate and influence the entropy distribution
of firing rates of a neuron. In individual biological neurons, for example, an approx-
imate exponential distribution of the firing rate has been observed in visual cortical
neurons (Baddeley et al. 1997). Under the constraint of a fixed energy budget, i.e., a
fixed mean firing rate, an exponential distribution maximizes the potentially avail-
able information: it is the maximum entropy distribution for positive random values
with a given mean. Triesch (2005) uses this idea to adapt the intrinsic excitability of
a neuron with an online adaption. In this approach, the Kullback-Leibler divergence
is used to measure the difference between the sample distribution of an individ-
ual neuron’s output, and the exponential distribution. Target distributions different
from the exponential distribution are plausible dependent on specific circumstances.
For example, in reservoir networks with real-valued units, normal distributions have
been used (Schrauwen et al. 2008) to reflect the use of both negative and posi-
tive values. In both cases, the mechanism attempts to maximize the information per
available energy unit locally at each neuron. Since energy constraints in reservoirs
of artificial neural networks are typically not an issue, the maximum entropy dis-
tribution for these would in fact be the uniform. Without an energy constraint, the
approach resembles the Infomax principle (Linsker 1987), where the average mutual
information between input and output is maximized. As Bell and Sejnowski point
out in their approach to maximize the mutual information for non-linear units (Bell
and Sejnowski 1995), for invertible continuous deterministic mappings this mutual
information is maximized by maximizing the output entropy alone. Due to the lim-
ited degrees of freedom of the approach, the desired target distribution cannot be
approximated for every kind of input (Boedecker et al. 2009). Intrinsic plasticity
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as well as its particular limitation can be related to Ashby’s law of requisite va-
riety (Ashby 1956) in that by increasing variety available in the reservoir a larger
variety of outputs can be successfully approximated on one hand. On the other hand,
the lack of variety in the mechanism adapting the individual neurons is also respon-
sible for the difficulty in increasing the entropy for a variety of inputs.

The field of information dynamics (Lizier et al. 2007, 2012) provides
information-theoretic measures that explicitly deal with processes or time-series.
Information storage, as one of the tools, quantifies how much of the stored informa-
tion is actually in use at the next time step when the next process value is computed.
A(X) is expressed as the mutual information between the semi-infinite past of the
process X and its next state X ′, with X (k) denoting the last k states of that process:

A(X) = lim
k→∞

A(k)(X) (11.2)

A(X ,k) = I(X (k);X ′) (11.3)

Information transfer, expressed as transfer entropy (Schreiber 2000), quantifies
the influence of another process on the next state (for a formal definition, see
Sect. 11.3.3 below). Boedecker et al. (2011) use these measures, to gain a better
understanding of computational mechanisms inside the reservoir, and how they in-
crease task performance for certain tasks at the phase transition between ordered and
unstable dynamics. For a rote-memory task, a sharp peak can be observed in both
information storage and information transfer near this phase transition, and suggests
that a maximized capacity for information storage and information transfer corre-
lates well with task performance in this dynamics regime, and this particular task.
Prokopenko et al. (2011) suggest the Fisher information matrix as a way to detect
phase transitions, but this has, to our knowledge, not been applied to RNN yet.

Fisher information also plays a role in quantifying the memory stored in a dy-
namical reservoir: Information about the recent input in reservoir networks is stored
in the transient dynamics, rather than in attractor states. To quantify this information
storage, Ganguli et al. (2008) use Fisher information as basis for a measure of mem-
ory traces in networks. The measure is applicable for systems with linear activations
f(x) = x, subject to Gaussian noise z, and input v(t):

x(t) = f(Winv(t)+Wx(t − 1)+ z(t)). (11.4)

The Fisher Memory Matrix (FMM) between the present state of the system x and
the past signal is defined as

Jk,l(v) =
〈
− δ 2

δvkδsl

logP(x(t)|v)
〉

P(x(t)|v)
. (11.5)

Diagonal elements J(k) ≡ Jk,k are the Fisher information that the system keeps in
x(t) about a pulse at k steps back in the past, i.e., the decay of the memory trace
of a past input. J(k) is called the Fisher memory curve (FMC). Tino and Rodan
(2013) investigate the relation between J(k) and the short term memory capacity
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MC (Jaeger 2001) (details on MC in the following subsection), and show that the
two are closely related in linear systems. For these, J(k) is independent of the actual
input used. In the general, nonlinear case that is interesting for us, however, the
FMC depends on the input signal, as the memory capacity MC does, and is hard to
analyze.

A measure for Active Information Storage in input-driven systems has been pro-
posed to quantify storage capabilities of a nonlinear system independent of particu-
lar inputs (Obst et al. 2013). The measure is an Active Information Storage (Lizier
et al. 2012) where the current input un+1 is conditioned out:

AU
X (k) =

〈
aU

X (n+ 1,k)
〉

n , with (11.6)

aU
X (n+ 1,k) = log

p(x(k)n ,xn+1|un+1)

p(x(k)n ) p(xn+1|un+1)
(11.7)

= log
p(xn+1|x(k)n ,un+1)

p(xn+1|un+1)
. (11.8)

The idea for this measure is to remove influences of structure in input data, and
to only characterize the system itself, rather than a combination of system and input
data. In theory, this influence would be removed by having the history sizes in com-
puting the information storage converge to infinity. Large history sizes, however,
require large amounts of data to estimate the involved joint probabilities, and this
data, and the time required for the estimation is often not available. Active infor-
mation Storage for input-driven systems assesses one aspect of the computational
capabilities of a dynamical system, others, like the information transfer, would need
to be defined for input-driven systems in a similar way.

11.2.2 Measures Related to Learning Theory

Legenstein and Maass (2007) propose two measures to quantify the computational
capabilities of reservoirs in the context of liquid state machines, one of the two
main flavors of reservoir computing networks: the linear separation property and
the generalization capability. The linear separation property quantifies the ability
of a computational system to map different input streams to significantly different
internal states. This is useful because only then will the system be able to (linearly)
map internal states to different outputs. The measure is based on the rank of an
n×m matrix M whose columns are state vectors xui(t0) of circuit C after having
been driven by input stream ui up to a fixed time t0. These state vectors are collected
for m different input streams, i.e., u1, . . . ,um. If the rank of M is m, then C, together
with a linear readout, is able to implement any assignment of output units yi ∈ R at
time t0 for inputs ui.

For the generalization ability, they propose to approximate the VC-dimension
of class HC of the reservoir, which includes all maps from a set Suniv of inputs
u into {0,1} which can be implemented by a reservoir C. They present a theorem
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(and corresponding proof sketch) stating that under the assumption that Suniv is finite
and contains s inputs, the rank r of a n×s matrix whose columns are the state vectors
xu(t0) for all inputs u in Suniv approximates the VC-dimension(HC), specifically
r ≤ VC-dimension(HC)≤ r+ 1.

According to (Legenstein and Maass 2007), a simple difference of both (normal-
ized) measures leads to good predictions about which reservoirs perform well on a
range of tasks.

The loss or the success on a set of test functions is another possibility to charac-
terize the systems from a learning point of view. One such measure is the short term
memory capacity MC (Jaeger 2001) that we briefly mentioned above. To compute
the MC, a network is trained to generate delayed versions v(t − k) of a single chan-
nel input v(k). The measure then is the sum of the precisions for all possible delays,
expressed as a correlation coefficient:

MC =
∞

∑
k=1

MCk (11.9)

MCk = max
wout

k

cov2(v(t − k),yk(t))
σ2(v(t))σ2(yk(t))

, with (11.10)

yk(t) = wout
k

(
v(t)
x(t)

)
, and x(t) = f(Winv(t)+Wx(t − 1)).

The symbols cov and σ2 denote covariance and variance, respectively. Each co-
efficient takes values between 0 and 1, and expresses how much of the variance in
one signal is explainable by the other. As shown in (Jaeger 2001), for i.i.d. input and
linear output units, the MC of N-unit RNN is bounded by N. The measure is related
to the Fisher memory matrix approach above.

Another approach in this area is the information processing capacity of a dynam-
ical system (Dambre et al. 2012). It is a measure based on the mean square error
MSE in reconstructing a set of functions z(t). The idea is to distinguish from ap-
proaches that view dynamical systems merely providing some form of memory for
a – possibly nonlinear – readout. In (Dambre et al. 2012), systems are regarded as
both providing memory and performing nonlinear computation. The readouts then
only combine states of the system linearly, attempting to minimize the MSE for a
function z(t), so that all essential aspects of computation have to be covered by the
dynamical system. The capacity of the system for approximating the desired output
is computed using the (normalized) MSE of the optimal linear readout,

CT [X ,z] = 1− minW MSET [ẑ]
〈z2〉T

(11.11)

This computed capacity is dependent on the input. In order to avoid an influence
of structure in the input on the results, i.i.d. input is required for the purpose of mea-
suring the capacity. To measure information processing capacity, several functions z
have to be evaluated. The idea is that if z and z′ are orthogonal,CT [X ,z] and CT [X ,z′]
measure independent properties of the system. The total capacity, on the other hand,
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is limited by the number of variables xi, so that a finite number of output functions is
sufficient. A possible choice of output functions are Legrende polynomials, which
are orthogonal over (−1,1).

The proposed approach has been used to compare different implementations of
dynamical systems, like reaction-diffusion systems and reservoirs. An interesting
idea that is also mentioned in (Dambre et al. 2012) would be to extend the approach
so that the underlying system adapts to provide specific mappings. One possibility
might be to adjust the number of internal units in an online-learning setting, e.g.,
when the task changes. The requirement for i.i.d. input is a limitation of the current
approach, though it appears that even in the non-i.i.d. input case useful information
about the system can be gathered. It might also be interesting to compare how the
approach relates to the information-dynamics framework (Lizier et al. 2007, 2012)
to quantify computation in non-linear systems.

11.2.3 Measures Related to Dynamical Systems Theory

To gain understanding of the internal operations that enable high-dimensional RNNs
solving a given task, a recent effort by Sussillo and Barak (2013) draws on tools
from dynamical systems theory. Using numerical optimization techniques, the au-
thors identify fixed points and points of only gradual change (also called slow points)
in the dynamics of the networks. Linearization around these points then reveals com-
putational mechanisms like fixed points that implement memories, saddle points
(fixed points with one unstable dimension) that enable switching between memory
states, and approximate plane attractors that organize the storage of two consecutive
input values to be memorized. For the tasks that were looked at in this work, the
computational mechanisms could be inferred from the linearized dynamics around
the set of fixed and slow points, and task performance of the trained networks was
well explained.

In (Williams and Beer 2010), the authors argue for a complementary role
of dynamical analysis, which involves, e.g., looking at attractors and switching
between attractor states, and also an information-theoretic analysis when trying to
understand computation in dynamical systems (including input-driven ones – even
though the input might simply be considered as part of the environment and is as-
sumed to be distributed uniformly). They evolve agents that are controlled by small
continuous-time recurrent neural networks (CTRNNs) and evaluate their behavior
in a relational categorization task. This involves keeping a memory about different
objects the agent can sense, and reacting with avoid or catch behaviors based on
the relation of both objects. Dynamical analysis shows that the state of a specific
neuron in the CTRNN is correlated with the size of the first object, and switching on
or off a different neuron determines whether the agent catches or avoids the second
object. Both features are found to be connected through a saddle-node bifurcation
in the CTRNN dynamics whose timing and location depends on properties of
the second object. The desire to understand the flow of information through the
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brain-body-environment system between these events leads the authors to
information-theoretic measures unrolled over time (similar to the motivation and
approach in (Lizier et al. 2007)). By considering the temporal evolution of measures
like conditional mutual information, they are able to measure information gain or
information loss of a state variable at specific time points. Similarly, they can quan-
tify the specific information that a state variable carries about a particular stimulus
at each time step. The behavior of the agent can then be explained by a sudden gain
and then loss of information about object sizes in the first neuron, and then a rapid
gain of information about relative size of the objects. In summary, the authors state
that the two different ways to look at the computational mechanisms of the RNN
differ, but provide coherent and even complementary information on how the agent
solves the task that would be difficult to get with either approach alone.

Another approach from dynamical systems theory to understand and predict
computational capabilities in RNNs builds on the concept of Lyapunov exponents.
Although these concepts are only defined for autonomous dynamical systems, an
analogous idea is to introduce a small perturbation into the state of one of two iden-
tical networks but not the other, and observe the time evolution of the state differ-
ence while the networks are driven with identical input. In case the perturbation
fades out, the network is assumed to be in the stable phase of the dynamics. If it
amplifies, the network is in the unstable, and possibly, the chaotic dynamics regime.
If it approximately persists, the network is arguably at the phase-transition between
stable and unstable regimes. Example applications of this approach can be found
in (Bertschinger and Natschläger 2004; Boedecker et al. 2011). In (Bertschinger
and Natschläger 2004), it was observed that the performance of binary threshold
unit RNNs is maximized at this phase-transition for a task that requires memory
and nonlinear processing to be solved successfully. This result was later replicated
for analogue Echo State Networks in (Boedecker et al. 2011) for a rote-memory
task; however, it was also found that some tasks do not benefit from reservoirs at the
phase-transition, as observed before in the complex systems literature (e.g., Mitchell
et al. 1993).

11.3 Improving Reservoir Information Processing Capabilities
through Self-Organized Adaptation

A pragmatic way to evaluate the quality of a reservoir is to train the output, and
evaluate it on a training or validation set (Lukovsevivcius 2012a). In most circum-
stances, training is fast so that a number of hyper-parameter settings can be tested.
Lukovsevivcius (2012a) proposes a number of invaluable recipes to reservoir pro-
duction. The recipes are very helpful for creating a good enough reservoir before
output weights are trained. They show up promising directions for exploration, but
are intended to be used as a guide rather than hard and fast rules, as some of them
are mutually exclusive. The approaches selected for this section are intended to im-
prove the reservoir itself in a self-organized way after it was created or selected.
Possibly, this might happen simultaneously in combination with online learning of
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output weights, or, alternatively, as a self-organized pre-training approach followed
by the standard offline output weight training.

11.3.1 SORN: Self-Organized Optimization Based on 3 Local
Plasticity Mechanisms

One approach that has demonstrated how self-organization can be leveraged to op-
timize a reservoir network can be found in (Lazar et al. 2009). SORN is a self-
organizing recurrent network architecture using discrete-time binary units. The three
plasticity mechanisms are: a variant of spike-time dependent plasticity (STDP), ad-
justing certain weights in the reservoir, a synaptic normalization rule (SN) responsi-
ble to keep the sum of afferent weights of a neuron constant, and intrinsic plasticity
(IP) learning to adapt the unit firing threshold. The network state evolves using the
following update functions:

Ri(t + 1) =
NE

∑
j=1

W EE
i j (t)x j(t)−

NI

∑
k=1

W EI
ik yk(t)−T E

i (t) (11.12)

xi(t + 1) =Θ(Ri(t + 1)+ vU
i (t)) (11.13)

yi(t + 1) =Θ(
NE

∑
j=1

W IE
i j (t)x j(t)−TI

j ) (11.14)

T E and T I are threshold values, drawn randomly from positive intervals for ex-
citatory units and inhibitory units, respectively. Θ is the Heaviside step function,
and vU

i (t) the network input drive. Matrices W IE and W EI are fully connected, and
represent connections between inhibitory and excitatory units, and vice versa. W EE

holds connections between excitatory units. These are random, sparse, and with-
out self-recurrence. Inhibitory units are not directly connected to each other. All
weights are drawn from the interval [0,1], and the three matrices W IE , W EI , and
W EE are normalized, i.e., ∑ j Wi j = 1. The network state at time t is given by the two

binary vectors x(t) ∈ {0,1}NE
, and y(t) ∈ {0,1}NI

, representing activity of the NE

excitatory and the NI inhibitory units, respectively.
STDP and synaptic scaling update connections of excitatory units of the reser-

voir, while IP changes their thresholds. Inhibitory neurons and their connections
remain unchanged. In the SORN the STDP for some small learning constant ηstd p

is formalized as:

ΔW EE
i j (t) = ηstd p(xi(t)x j(t − 1)− xi(t − 1)x j(t)). (11.15)

Synaptic scaling normalizes the values to sum up to one:

ΔW EE
i j (t) =W EE

i j (t)/∑
j

W EE
i j (t). (11.16)
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Fig. 11.2 (left) Normalized performance versus task difficulty as indicated by n, the number
of repeated characters of a word which the network should predict. Different network sizes
were tested. The numbers on top indicate the maximum possible performance – which is
limited by the inherent randomness of the first character of a word within the sequence.
Standard deviation among trials is indicated by the error bars. (right) Highest value of n for
which a network achieved more than 95% of maximum performance as function of network
size. The plastic SORN networks are able to deal with significantly harder tasks than the
static reservoirs at this performance level. Graphs reproduced from (Lazar et al. 2009).

IP learning is responsible for spreading activations more evenly, using a learning
rate ηip, and a target firing rate of HIP:

T E
i (t + 1) = T E

i (t)+ηip(xi(t)−HIP (11.17)

Lazar et al. (2009) show that the SORN outperforms static reservoir networks us-
ing a letter prediction task. The network has to predict the next letter in a sequence of
two different artificial words of length n+2. These words are made up of three dif-
ferent characters, with the second character repeated n times. The first character of a
word is random and the network cannot do better than randomly guessing which one
will come up. If the reservoir is able to efficiently separate the repeated character in
the middle part of the word, though, the network can learn to count these characters
and predict the rest of the sequence correctly. Figure 11.2 compares the normalized
performance of SORNs and static reservoir networks of different sizes on instances
of the task with increasing n (increased difficulty). SORNs are able to outperform
static reservoirs clearly on this task. A PCA analysis in (Lazar et al. 2009) reveals
that the SORN indeed shows a much better separation property and maps repeated
inputs to distinct network states, while the states of static reservoirs are much more
clustered together and thus harder to distinguish by the linear readout.

The combination of the three mechanisms appears to be a key to successful self-
organization in an RNN. Figure 11.3 illustrates that the dynamics of SORN reser-
voir become sub-optimal if only two of the three plasticity mechanisms are active.
Without synaptic normalization, the network units become highly synchronized.
This severely restricts the representational power of the reservoirs. If IP learning
is switched off, the activity of neurons in the network becomes unbalanced. Some
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Fig. 11.3 Activity snapshots for 50 randomly selected reservoir neurons. (left) A reservoir
without synaptic scaling develops highly synchronized, seizure-like firing patterns. (right)
Without the IP mechanism, neuron activity is unevenly distributed with some neurons firing
almost constantly while others are nearly silent. Graphs reproduced from (Lazar et al. 2009).

neurons fall nearly silent while others are active almost all the time. This is in con-
trast to the case with IP where activity is more evenly distributed, enabling a richer
representation of information in the reservoir.

Though some of the self-organizing mechanisms like STDP are biologically plau-
sible, there are not too many examples of successful applications for training RNNs,
or, as Lazar et al. (2009) states, “Understanding and controlling the ensuing self-
organization of network structure and dynamics as a function of the network’s in-
puts is a formidable challenge”. For time-series prediction and system identification
tasks, an extension of the approach to analog units would be required. Also, an in-
vestigation of the information dynamics during and after adaptation may provide
insights, for example into the relation between reservoir configuration and informa-
tion transfer.

11.3.2 Hierarchical Self-Organizing Reservoirs

A different approach based on self-organized optimization of reservoirs is presented
in (Lukovsevivcius 2012b). The author compares classical ESNs and recurrent RBF-
unit based reservoir networks (called Self-Organizing Reservoirs, SORs) which re-
semble Recurrent Self-Organizing Maps (RSOMs) (Voegtlin 2002). The input and
reservoir weights of the SOR are adapted by learning rules traditionally used for
Self-Organizing Maps (SOMs) (Kohonen 2001) and NeuralGas networks (Martinetz
and Schulten 1991).

The update equations for the SOR are:

x̃i(n) = exp(−α‖vin
i −u(n)‖2 −β‖vi− x(n− 1)‖2), i = 1, . . . ,Nx, (11.18)

x(n) = (1− γ)x(n− 1)+ γ x̃(n). (11.19)

Here, the internal reservoir neuron states at time n are collected in vector x ∈
R

Nx and their update in vector x̃ ∈ R
Nx . The factor γ ∈ (0,1] is the leak-rate. The

vector u ∈ R
Nu contains the input-signal, while matrices Vin and V are the input

and recurrent weight matrix, respectively, whose ith column vectors are denoted by
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vin
i ∈R

Nx and vi ∈R
Nx . Parameters α and β scale the input and recurrent distances,

and ‖ · ‖ denotes the Euclidean norm.
The unsupervised training of the SOR updates the input and recurrent weights as:

vall
i (n+ 1) = vall

i (n)+η(n)h(i,n)([u(n);x(n)]− vall
i (n)), (11.20)

where vall
i (n) ≡ [vin;v] and η(n) is a time-dependent learning rate. The learning-

gradient distribution function h is defined either as:

h(i,n) = exp(−dh(i,bmu(n))2/bh(n)
2), (11.21)

where dh(i, j) is the distance between reservoir units i and j on a specific topol-
ogy, bmu(n) = argmaxi(xi(n)) is a function returning the index of a best matching
unit (BMU), and bh(n) is the time-dependent of the learning gradient distribution.
With this definition of h, the learning proceeds according to the SOM algorithm. To
implement NeuralGas-like learning, it suffices to change this definition to:

hng(i,n) = exp(−dng(i,n)/bh(n)), (11.22)

where dng(i,n) denotes the index of node i in the descending ordering of activ-
ities xi(n) (see (Lukovsevivcius 2012b) for additional details). Both algorithms
were found to be similarly effective to improve the pattern separation capability
of reservoirs compared to standard ESNs when tested on detection of certain signal
components on a synthetic temporal pattern benchmark, and on classification of
handwritten digits from a stream of these characters. Further improvements are re-
ported if these SORs are stacked on top of each other in a hierarchy, trained in a
layer-by-layer fashion. However, results only improve if enough time is given for
the self-organization process to find suitable representations. If layers are stacked
with very little training time for each of them, performance actually worsens.

11.3.3 Guided Self-Organization of Reservoir Information
Transfer

In (Obst et al. 2010), the information transfer between input data and desired out-
puts is used to guide the adaptation of the self-recurrence in the hidden layer of a
reservoir computing network. The idea behind this step is to change the memory
within the system with respect to the inherent memory in input and output data (see
Section 11.4 below for a a discussion which develops these ideas further).

The network dynamics is updated as:

x(k+ 1) = diag(a)Wy(k)+ (I− diag(a))y(k)+winu(k) (11.23)

y(k+ 1) = f(x(k+ 1)), (11.24)

where xi, i = 1, . . . ,N are the unit activations, W is the N ×N reservoir weight ma-
trix, win the input weight vector, a = [a1, . . . ,aN ]

T a vector of local decay factors,
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I is the identity matrix, and k denotes the discrete time step. As a nonlinearity,
f (x) = tanh(x) is used. The ai represent the coupling of a unit’s previous state with
the current state, and are computed as:

ai =
2

1+mi
,

where mi represents the memory length of unit i (mi ∈ {1,2,3, . . .}), initialized to
mi = 1. Increasing individual mi through adaptation increases the influence of a
unit’s past states on its current state. The information transfer is quantified as a
conditional mutual information or transfer entropy (Schreiber 2000):

TX→Y = lim
k,l→∞

T (k,l)
X→Y ,with (11.25)

T (k,l)
X→Y = I(X (l);Y ′|Y (k)). (11.26)

Parameters k and l are history sizes, which lead to finite-sized approximations of the
transfer entropy for finite values.

In a first step, the required history size l is determined which maximizes the
information transfer Tu→v from input u to output v. This value will increase for
successively larger history sizes, but the increases are likely to level off for large
values of l. Therefore, l is determined as the smallest value which is still able to
increase Tu→v by more than a threshold ε:

Tu→v(1, l̂+ 1)≤ Tu→v(1, l̂)+ ε and (11.27)

Tu→v(1, l)> Tu→v(1, l − 1)+ ε for all l < l̂. (11.28)

In a second step, the local couplings of the reservoir units are adapted so that the
transfer entropy from the input of each unit to its respective output is optimized for
the particular input history length l̂, as determined in step one. Over each epoch θ
of length �, we compute the transfer entropy from activations x(�)i to output y(�)i for
each unit i:

teθ
i = T

x(�)i →y(�)i
(1, l̂).

If the information transfer during the current epoch θ exceeds the information trans-
fer during the past epoch by a threshold (i.e., teθ

i > teθ−1
i + ε), the local memory

length mi is increased by one. In case teθ
i < teθ−1

i − ε , the local memory length is
decreased by one, down to a minimum of 1. The decay factors ai are fixed once they
stabilize, which ends the pre-training phase.

In (Obst et al. 2010), the method is tested on a one-step ahead prediction of unidi-
rectionally coupled maps and of the Mackey-Glass time series benchmark. Showing
results for the former task as an example, Figure 11.4 (left) displays the mean square
errors of the prediction over the test data for different coupling strengths e and fixed
order parameter ω for both echo state learning with and without adaptation of in-
formation transfer in the reservoir (averages over 50 trials). For each individual trial
the same reservoir and time series have been used once with and without adaptation.
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Fig. 11.4 (left) Mean squared errors of the prediction over the test data for different coupling
strengths and fixed ω = 0. (right) Mean squared error for different ω using a fixed coupling
of e = 0.75.

The prediction using the reservoir adaptation is better over almost the entire range
of e, with the improvement becoming more significant as the influence of the input
time series becomes larger. Figure 11.4 (right) is a plot of the mean square error for
different ω using a fixed coupling e. In all but one cases the reservoir adaptation
improves results.

11.4 Quantifying Task Complexity

Most currently existing measures capture some of the generic computational proper-
ties of recurrent neural networks (as an important class of input-driven system), such
as memory capacity or entropy at the neuron-level, but do not take task complexity
into account. Optimization of the network properties based on these generic mea-
sures therefore will only do a “blind” adjustment of parameters while no optimality
guarantee for the task at hand can be given. More positively put, the philosophy be-
hind these measures is that a maximization of some of them leads to reservoirs that
are capable to solve a variety of tasks. The self-organizing mechanisms in Sect. 11.3
are one way to achieve this maximization. In situations where no teaching signal is
given, e.g., in clustering tasks, one can do no better than that; however, if the de-
sired output signal is available, it can be used to quantify the task complexity as a
relationship between inherent difficulty of predicting the output based on its own
history, and to what extent the input data can contribute to improve these predic-
tions. This would inform us how achievable a task is, and may also be used to trade
off complexity of the system against the expected quality of the solution.

It is possible to use some of the tools that we introduced above, and take an
information-theoretic approach to tackle this problem. Essentially we are interested
in quantifying how difficult it is for a system to produce its next output. The systems
we are interested in take a time series X as an input, and have the goal to generate
output Y , another time series. To produce the next state yt+1, both the output’s past
(y1...yt ) as well as the input up to the current step (y1, ...,yt+1) can be considered.

The Active Information Storage AY (Lizier et al. 2012) can be used to capture the
influence of previous outputs in producing the next output: how much information
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is contained in the past of Y that can be used to compute its next state? This is
expressed as the average mutual information between past Y (k) of the output and the
next state Y ′:

AY = lim
k→∞

AY (k),with (11.29)

AY (k) = I(Y (k);Y ′). (11.30)

We use AY (k) to represent finite-k estimates. Now, AY and AY (k) allow for two kind
of measurements: (a) higher values for AY indicate better predictability of Y from its
own past, i.e., AY is one component of the overall task difficulty. (b) With increasing
values of ki = 1,2, ...,n, estimates AY (ki) indicate the amount of memory that is
in use. As the information that can be used to predict the next state increases with
larger values of ki, AY (ki) will monotonically increase with ki, and asymptotically
converge to some maximum. Finding k∗ so that AY (k∗)≥ AY (k)+ε , for some small
ε > 0 and k →∞, thus gives us a useful quantity for the amount of memory required,
and at the same time AY (k∗) ≈ AY quantifies the difficulty in predicting Y ′ from its
own past.

The other component that plays a role in the task is the input X . Its contribution to
producing the next output Y ′ of the system, too, can be quantified, using the transfer
entropy introduced above. The transfer entropy indicates how much information the
input X contributes to the next state Y ′, given that the past of Y is known. Increasing
the input history size l increases the information available in computing Y ′, for fixed
output history size k∗. Large TX→Y suggest that the input X helps in computing the
next output, i.e., the task for the system is less difficult than for smaller transfer

entropies. Finding an input history size l∗ so that T (k∗,l∗)
X→Y ≈ liml→∞ T (k∗,l)

X→Y gives us
another useful quantity for the amount of memory required.

Unfortunately, using these quantities to compare tasks or to design systems is
not entirely straightforward, for a number of reasons. For continuous-valued time
series X and Y , estimating mutual informations is cumbersome, and requires larger
amounts of data in particular for larger history sizes l and k. To compare task dif-
ficulties, it would also be helpful to normalize both quantities, e.g., for the Active
Information Storage by the joint entropy H(Y ;Y ′), to values between 0 and 1. The
true output history Y may also be simply not available to the system, dependent on
how it operates. For example, in batch mode, the only information that is available
is the input X and the estimated output Ŷ . The true history of Y is usually only ac-
cessible if the system operates online. Finally, the two components AY and TX→Y

cannot be simply added to specify the overall task difficulty since input and output
may redundantly share some information.

We will reserve a detailed investigation of applying both measures to a later pub-
lication. As a concept to explain contributions of input and output history, they can
be an indicator for how complex the information processing system needs to be. It
will also be interesting to see how other measures relate to them, and to show which
aspect of the computation they measure. As an example, the memory capacity MC,
as a sum of correlation coefficients can be seen as a linear measure of the potential
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information transfer between input X and the desired output Y . Mutual information
expresses a nonlinear relationship between two variables, and so does the transfer
entropy, a conditional mutual information between X and Y . In contrast to MC, the
TX→Y measures actual information transfer between input and desired output, i.e.,
TX→Y is a purely a property of the task. MC is a property of the RNN, but as it is
using task specific input, it combines the properties of the RNN with properties of
the input. The two quantities could be used to adjust the architecture of a neural
network for better performance on a specific task.

As another example, measuring the individual distributions of unit activations
in the reservoir and their divergence from a maximum entropy distribution capture
properties of the input combined with properties of the network. On the other hand,
Active Information Storage for input-driven systems, applied to reservoirs or indi-
vidual reservoir units, expresses the amount of information in the system that is in
use to predict the next state, and is meant to measure capabilities of the system only.

Related work on complexity measures includes Grassberger’s forecast complex-
ity (Grassberger 1986, 2012), which considers the difficulty of making an optimal
prediction of a sequence created by a stochastic process. A sequence can be com-
pressed up to its entropy rate, and the forecast complexity is the computational
complexity of the algorithm responsible for the decompression. The probability of
the next symbol is needed for this decompression. Related ideas can be found in
Minimum Description Length (MDL) approaches (Rissanen 1978) and Kolmogorov
complexity (Kolmogorov 1965) as measures for complex objects. Also introduced
by Grassberger (1986, 2012) is the Effective Measure Complexity (EMC), the rel-
ative memory required to calculate the probability distribution of the next symbol
of a sequence. The EMC is a lower bound on the forecast complexity. Both forecast
complexity and EMC look at sequences, e.g., the output of an autonomous system
without regard to its input, whereas we are interested in systems that produce an
output based on some input. More complexity measures can be found in a special
issue on “Measures of Complexity from Theory to Applications”, with (Crutchfield
and Machta 2011) as an introductory article.

11.5 Conclusion

We presented methods to assess different computational properties of input-driven
RNNs, and reservoir computing networks in particular, in the first part of the pa-
per. These methods were drawn from information-theory, statistical learning theory,
and dynamical systems theory, and provided different perspectives on important
aspects of information processing in these systems. They help to quantify proper-
ties like the memory capacity a certain network provides, the flow of information
through the system and its modification over time, the ability to separate similar in-
puts and generalize to new, unseen data, and others. In addition to their usefulness
in their own right when trying to understand how RNNs implement the functions
they are trained for, they also have the potential to be used as target signals to guide
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self-organized optimization procedures aimed at improving the quality of reservoirs
for a specific task over random initialization.

In the second part of the paper, we presented some recent efforts at implement-
ing self-organized optimization for reservoir computing networks. One approach
combined different plasticity mechanisms to improve coding quality and separa-
tion ability of the network, while a different approach was using methods similar to
recursive self-organizing maps with SOM and NeuralGas-like learning rules. The
final approach we presented proceeds in two phases: determining a learning goal in
terms of information transfer between input and desired output, and using this quan-
tity to guide local adjustments to the self-recurrence of each reservoir unit. All of
these methods showed the potential of self-organized methods to improve network
performance over standard, random reservoirs while avoiding problems associated
with back propagation of error-gradients throughout the whole networks.

As a next step towards methods that are able to automatically generate or opti-
mize recurrent neural networks for a specific task (or class of tasks), it seems worth-
while to combine measures for network properties and task complexity, and devise
algorithms that adjust the former based on the latter. The approach taken in (Dambre
et al. 2012) of using orthogonal functions to measure information processing capac-
ity could be extended to construct suitable dynamical systems for a task when the
requirements for a specific task can be measured in a similar way.

A comparison of how the measures of the information dynamics frame-
work (Lizier et al. 2007, 2012), the information processing capacity for dynamical
systems (Dambre et al. 2012), measures of criticality (Bertschinger and Natschläger
2004; Prokopenko et al. 2011) or of memory capacity (Jaeger 2001; Ganguli et al.
2008) relate to each other should reveal some interesting insights (see, e.g., Tino and
Rodan 2013), since they all cover some aspects of dynamical systems. Establishing
the relation between the information dynamics framework, with recent extension for
input-driven systems, and information processing capacity, for example, could help
to overcome requirements for i.i.d. input in the latter, to better understand dynamical
systems with arbitrary input.
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Part IV
Swarms and Networks of Agents



Chapter 12
Measuring Information Dynamics in Swarms

Jennifer M. Miller, X. Rosalind Wang, Joseph T. Lizier,
Mikhail Prokopenko, and Louis F. Rossi

12.1 Introduction

We propose a novel, information theoretic characterization of dynamics within
swarms, through explicitly measuring the extent of collective communications and
tracing collective memory. These elements of distributed computation provide com-
plementary views into the capacity for swarm coherence and reorganization. The
approach deals with both global and local information dynamics ultimately discov-
ering diverse ways in which an individual’s location within the group is related to
its information processing role.

Many animals display examples of spatial aggregations such as schools of fish,
swarms of locusts, herds of wildebeest, and flocks of birds (Lissaman and Shol-
lenberger 1970; Parrish and Edelstein-Keshet 1999; Sinclair and Norton-Griffiths
1979; Uvarov 1928). A group is better equipped to assist individuals with pro-
tection, mate choices, foraging, habitat assessment, migratory route information,
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etc. (Camazine et al. 2003; Giraldeau et al. 2002; Partridge 1982). These groups are
self-organized through local interactions, and so a disturbance, such as detection of
a predator by some individuals, can quickly spread through the entire group (Tre-
herne and Foster 1981). Complex large-scale patterns and structures emerge within
a swarm through individual decisions based on perception of local conditions. For
example, in response to a predator, many schools of fish display complex collective
patterns, including compression, ‘hourglass’, ‘vacuole’, ‘flash expansion’, or form
highly parallel translating groups (Parrish et al. 2002).

Even a few individuals may strongly bias the motion of an entire group. For
instance, if a certain number of fishes in close proximity turn together, this may
result in a wave of turning across the whole group (Radakov 1973). Studies have
shown that formation of waves is a wide spread phenomenon observed in insect
swarms, bird flocks, fish schools and mammalian herds (Couzin et al. 2006; Tre-
herne and Foster 1981; Kastberger et al. 2008; Potts 1984; Procaccini et al. 2011).
Crucially, these waves serve to transfer information rapidly within a group. For ex-
ample, Treherne and Foster (1981) showed that marine isopods, Halobates robustus,
increased velocity in response to a model predator and this change of motion spreads
across the group faster than the speed of approaching predator, and labeled this phe-
nomenon the ‘Trafalgar effect’. Procaccini et al. (2011) quantified “wave collective
behavior in flocks”, observing that the velocity of propagation of the perturbation
inside the group is greater than the velocity of the predator.

12.1.1 Background on Information Cascades

Information that is propagated within swarms can be understood both as Shannon
information (“reduction in uncertainty”) and semantic information (“meaningful
data”). In this paper, we adopt characterization of swarm dynamics in Shannon
information-theoretic terms. Specifically, we utilize measures for average and lo-
cal information storage as well as directed information transfer, used by Wang et al.
(2012). This allows us to directly measure information properties of swarms, and
directly compare complex aspects of swarm dynamics such as collective memory
and collective communications across different models. Before describing details
of this framework, we briefly review some previous related works that attempted to
deal with information cascades in groups.

Couzin et al. (2006) pointed out that information cascades in collective systems
often result in a rapid autocatalytic adaptive response to changing conditions. They
argued that this heightened response allows the group to be extremely sensitive to
weak or ambiguous external stimuli, while keeping it fairly susceptible to noise and
false alarms. They called for new mathematical approaches that link the behavior
of individuals to the resultant higher-order group/population properties, specifically
hoping for new insights into how information is acquired, processed and storage. In
a later review, Couzin (2009) posed a specific challenge: “How does spatial position
within groups reflect informational status, or information-processing capability, of
individuals?”
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Sumpter et al. (2008) used self-propeled particle (SPP) simulations to exam-
ine the transfer of information from a leader or a threat. They measured the
information transfer by the alignment of individuals. This measure indicated that
highest transfer occurred when the group was close to a phase transition between
ordered and random motion. They also used pairs of homing pigeons to collect data
on how an individual might combine its own information with transferred informa-
tion. Dall et al. (2005) mentioned that public information favors group cohesion,
argued that information implies utility as well as uncertainty reduction, and pro-
posed an explicit statistical decision theory framework.

Information cascades may induce long series of incorrect decisions (e.g. false
alarms). For example, Galef and Giraldeau (2001) explored the applicability of
informational cascades to social-foraging systems trying to estimate the extent to
which the short-term profitability of social learning can lead to potential costly er-
rors. Giraldeau et al. (2002) highlighted that cascades are extremely sensitive to the
initial sequence of events and may occasionally lead to errors.

As pointed out by Katz et al. (2011), important questions include how animals
integrate information from widely disparate sources in real time (Couzin 2007) and
how this nonlinear integration translates into higher-order computational capabili-
ties that emerge at the level of the collective.

12.1.2 Motivation and Objectives

In previous work, we attempted to answer these questions from a generic informa-
tion theoretic viewpoint on distributed computation (Wang et al. 2012). Specifically,
we proposed to measure swarm coherence as Active Information Storage (AIS), and
information cascades as changes in Transfer Entropy (TE). This approach allowed
us to formalize the study of information transmitted within a swarm in ‘waves’, as
well as relate swarm coherence/synchrony to dampening down incorrect decisions
carried out by some cascades.

In this work, we investigate differences in information dynamics brought about
by constraints imposed on the system, e.g. by limiting the speed of individuals
within the swarm. This investigation contrasts dynamics created by two different
swarm models: variable-speed model and constant-speed model. The variable-speed
model allows individuals to respond to the local influences by changing speed and/or
direction, and the constant-speed model allows only changes in the direction. This
comparative analysis demonstrates how one may guide self-organisation in a swarm.

Guided Self-Organization (GSO) typically has the following features: (i) an in-
crease in organization (structure and/or functionality) over some time; (ii) the local
interactions are not explicitly guided by any external agent; (iii) task-independent
objectives are combined with task-dependent constraints (Ay et al. 2011). The
constant-speed model exemplifies the second feature, by constraining local interac-
tions without any explicit interference with the individuals’ decision-making mech-
anism. The main focus of our study is to observe how such changes affect generic
information-theoretic dynamics. For instance, we explore whether a (possibly
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task-dependent) constraint for constant speed affects (task-independent) distributed
computation: collective memory and collective long-range communications within
the swarm.

To investigate changes brought about by constraints on speed, we explore two
scenarios in each of the two swarm models. Our first scenario reveals how different
local initial perturbations affect a single swarm. The second scenario introduces a
different type of perturbation, introduced by three separate but merging swarms. The
experiments trace global and local AIS and TE over time. These measures identify
multiple information cascades, changes to global coherence, local processing of in-
correct decisions, and eventual synchrony. Furthermore, the observed differences in
information dynamics between these two models reveal that under constraints, the
global coherence is harder to achieve and sustain, and the information cascades are
less well-formed. At the same time, some generic principles are observed for both
models: e.g. maximal information transfer tends to follow the stage with maximal
collective memory.

12.2 Three Zones Model for Swarms

In this study, we use an individual-based model for modeling and simulating ag-
gregations of discrete individuals interacting with three groups of neighbors. Each
individual responds to its neighbors in three concentric zones with either repulsion,
orientation, or attraction, respectively (Aoki 1982; Couzin et al. 2002; Huth and
Wissel 1992; Lukeman et al. 2010; Vicsek et al. 1995). The contribution from the
repulsion response results in an individual moving away from a weighted average of
the relative positions of neighbors with velocity vr. Similarly, attraction causes an
individual to move toward a weighted average of the relative positions of neighbors,
va. In addition, an individual aligns its velocity with a weighted average of its own
velocity and neighbors’ velocities, vo.

We explore a three-zone swarming model that uses continuous, overlapping
zones with smooth transitions (see (Miller et al. 2011)). This model has a rigorous
continuum limit in both space and time so that it captures the behavior of arbitrarily
large swarms as a system of PDE’s. The individual based model that we use in this
paper is a discretization of the continuum system. The response of individual i to
nearby individuals is determined by a weighted sum of contributions from the three
zones:

vr,i =
N

∑
j=1

− 1

8πσ4
1

si j exp(−|si j|2/4σ2
1 ), (12.1)

va,i =
N

∑
j=1

1

64πσ6
3

si j|si j|2 exp(−|si j|2/4σ2
3 ), (12.2)

vo,i =
∑N

j=1
1

4πσ 2
2

exp(−|sij|2/4σ2
2 )v j

∑N
j=1

1
4πσ 2

2
exp(−|sij|2/4σ2

2 )
, (12.3)
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where si j := s j − si, the relative position of individuals i and j. The lengths σ1 <
σ2 < σ3 represent the sizes of the repulsion, orientation and attraction zones, re-
spectively. The three responses are combined to determine the desired velocity, vd :

vd,i = vr,i + vo,i + cava,i,

for the ith individual, and ca specifies the relative importance of attraction to ori-
entation and repulsion. The desired velocity vector is used to control the change in
velocity.

We examine the information transfer and storage in two similar models for
swarms. The first is a variable-speed model, which allows individuals to respond
to the local influences by changing speed and/or direction. The velocity is updated
by

vn+1
i = vn

i + δτ ·κ
(
vn

d,i − vn
i

)
,

where δτ is the time step length, n is the discrete time step index and κ is the turning
rate.

The second swarm model is a constant-speed model, in which only the direction
can change. Without loss of generality, each individual moves with unit speed. We
update the direction θi by

θ n+1
i = θ n

i + δτ ·κ(vn
i )

⊥ ·vn
d,i

where (vn
i )

⊥ = [−sinθ n
i ,cosθ n

i ]
T . The velocity becomes

vn+1
i = [cosθ n+1

i ,sin θ n+1
i ]T .

The models differ in that the first allows individuals’ speeds to vary over time while
the second requires that all individuals have unit velocity vectors.

12.3 Information Dynamics in Swarms

We utilized a framework for local information dynamics developed by Lizier et al.
(2007, 2008b, 2010, 2012) (and see Lizier (2013)). The framework precisely quan-
tifies information storage, transfer and modification at each spatiotemporal point in
a complex system. We measure the information dynamics of a swarm by computing
the local and average values of active information storage (Lizier et al. 2012, 2007)
and conditional transfer entropy (Lizier et al. 2008b, 2010).

The local active information storage of an agent in the system is the amount
of information in its past that is used in predicting its next state. AIS for agent

X is defined as the local mutual information between its semi-infinite past x(k)n =
{xn,xn−1, . . . ,xn−k+1} (as k → ∞) and its next state xn+1 at time step n+ 1:

aX(n+ 1) = lim
k→∞

log2
p(x(k)n ,xn+1)

p(x(k)n )p(xn+1)
, (12.4)
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with aX(n,k) representing an approximation with finite history length k. Note that
AIS captures both the information stored internally by an agent, and also that stored
in a distributed fashion in its neighbors and retrieved at a later time point. We char-
acterize the collective memory within the swarm that is used for computation by the
swarm’s average AIS over all agents at each time step: A(n,k) = 〈aX(n,k)〉X .

The information transfer between a source and a destination agent is defined as
the information provided by the source about the destination’s next state, in the
context of the past of the destination. This concept is quantified by the transfer
entropy (Schreiber 2000), which properly measures a directed, dynamic flow of
information. The local transfer entropy (Lizier et al. 2008b) from a source agent
Y to a destination agent X is the local mutual information between the previous
value of the source yn and the next value of the destination xn+1, conditioned on the

semi-infinite past of the destination x(k)n (as k → ∞):

tY→X (n+ 1) = lim
k→∞

log2
p(xn+1|x(k)n ,yn)

p(xn+1|x(k)n )
. (12.5)

Again, tY→X (n,k) represents finite-k approximation, and we characterize overall
transfer within the swarm as the average over all causally connected pairs Y → X at
each time step: T (n,k) = 〈tY→X (n,k)〉Y→X . We also make a single characterization
of the local transfer into an agent at a given time step by averaging over the transfer
from each of its causal sources: tX (n,k) = 〈tY→X(n,k)〉Y .

Note that one can also condition the TE on another information contributor W to
form the conditional transfer entropy (Lizier et al. 2010):

tY→X |W (n+ 1) = lim
k→∞

log2
p(xn+1|x(k)n ,wn,yn)

p(xn+1|x(k)n ,wn)
. (12.6)

It is this form of transfer entropy that we used for measuring local information
transfer and overall/collective communications (see below).

To apply information dynamics to swarms, we accumulated the observations
across agents and measured the state transitions with relative variables as described
by Wang et al. (2011). For local information storage, the variables in the equation
are composed of the change in velocity and the speed of the swarm particle. That is,
for a particle p and k = 1:

xn = {vn
p − vn−1

p , |v|n},
xn+1 = {vn+1

p − vn
p, |v|n+1}.

For transfer entropy, we condition on the current speed of the destination variable
(since this could modulate the effect of the source on the destination) as wn = |v|n.
We do not take into account the speed in the destination variable’s next state; thus
the relevant variables for the conditional transfer entropy in Equation 12.6 are:
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yn ={sn
p − sn

p′ ,v
n
p − vn

p′},
wn =|v|n,
xn =vn

p − vn−1
p ,

xn+1 =vn+1
p − vn

p

where p is the destination particle and p′ is the source particle.

12.4 Results and Discussion

12.4.1 Variable-Speed Swarm Model

Results for the variable-speed swarm model were described in detail by Wang et al.
(2012), here we reproduce the results for completeness.

12.4.1.1 Experiment 1: One Group, Variable Speed

Initially, the individuals are positioned in a square configuration 49× 49 in size.
This experiment models different local initial perturbations which are absorbed by
the swarm. The simulation is run until the swarm reaches a steady state.

Figure 12.1 shows the local active information storage of individual particles
at some key steps during the simulation. These figures show that local AIS can
be positive and negative. Positive local information storage indicates that the next
state can be accurately predicted from past states, while negative values indicate
that the past misinforms about the next state (Lizier et al. 2008b, 2010). For swarm
particles, negative local storage means the particle’s movement is unusually strongly
influenced by other neighboring particles (via high transfer) at this point in time,
given the past history of that particle.

As argued previously (Wang et al. 2012), negative local storage represents pro-
cessing of incorrect decisions propagated from the periphery. For example, at
T = 19.0 (Figure 12.1 (e)) some of individuals in the center are trying to compute
their next state while being influenced by competing signals from their neighbors.
In such situations, their past is misinformative about the next state.

Similar to local AIS, local TE can also be positive or negative (see plots of tX(n,k)
in Figure 12.2). Positive local transfer entropy means that the source agent is in-
formative about the next state, while negative local TE indicates that the source
misleads an observer about the next state of the destination given the destination’s
history (Lizier et al. 2008b, 2010). Here, positive local TE shows the swarm indi-
vidual’s movement is strongly coherently affected by individual neighbors, while
negative local TE shows the particle is either exhibiting strong independent motion
or is under the collective influence of several neighbors (rather than the coherent in-
fluence of individual neighbors) (e.g. T = 19.0). This understanding of information
storage and transfer for swarm dynamics suggests low information transfer may of-
ten be found with high storage and vice versa. Indeed, Figures 12.1 and 12.2 show
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Fig. 12.1 Local information storage through the variable-speed swarm at key time steps. The
swarm has an initial configuration of one large square. Note, to visualize the range of values,
we map 0 to the center of the colorbar and the maximum and minimum values to the extremes
of the colorbar. Values vary linearly on the left half and the right half, but the scales on the
two halves are different.

that in most cases, areas of high local storage often have low or negative local trans-
fer and vice versa.

The next interesting stage can be observed at T = 20.2 when a front of a cascade
is formed by the individuals that begin to move coherently, i.e. have comparably
high local TE.

We turn our attention now to collective aspects of swarm dynamics.
The collective memory within the swarm that is used for computation is modeled

by average AIS. At early stages, the particles in the center of the swarm are not
affected by changes at the swarm’s periphery, i.e. they do not participate in collective
computation. As the changes propagate deeper, more and more particles get engaged
and the collective memory used in computation grows. This computation is needed
to create coordinated motion. As the swarm reaches a state where the majority of
particles are dynamically coordinated, AIS reaches its maximum (blue solid curve in
Fig. 12.3 at T = 16.8). This results in a ‘bell’ shaped curve of average AIS shown in
Fig. 12.3. Such a curve characterising a complex collective behavior is not dissimilar
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Fig. 12.2 Local information transfer through the variable-speed swarm at key time steps. The
swarm has an initial configuration of one large square. Note, as with the previous figure, the
scales on the positive and negative halves of the colorbar are different.

to many complexity curves (Mathews et al. 2005; Lizier et al. 2008a; Prokopenko
et al. 2009).

The communication aspect of computation, that is, information cascades is mod-
eled by average TE (cf. blue solid curve in Fig. 12.4). We can observe several waves.
The first wave occurs when the initial changes originated at the periphery are ‘ab-
sorbed’ by the swarm. This slightly increases the overall TE (T < 10.0). When the
wave reaches the center we can observe some individuals with high local TE. This
is followed by an outward wave spreading in the opposite direction away from the
center. The overall TE achieves a local maximum at T = 15.7 followed by a lo-
cal minimum when it dissipates at T = 16.8. As has been observed by Wang et al.
(2012), at this time AIS attained its global maximum. In other words, at this point
the computation is non-trivial involving both memory and communication.

At T = 20.2, average TE reaches its own global maximum because at this time
the formed cascades dominate incoherent individuals. Interestingly, this stage has
followed the time when the collective memory (AIS) was highest. The cascades
help to stablize and coordinate the swarm, supported by a steady decrease of TE
during this process.
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Fig. 12.3 Comparison of global average active information storage (AIS) between variable-
speed and constant-speed model swarms. The swarm is initially in a square configuration.
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Fig. 12.4 Comparison of global average transfer entropy (TE) between variable-speed and
constant-speed model swarms. The swarm is initially in a square configuration.

12.4.1.2 Experiment 2: Three Groups, Variable Speed

The second experiment for the variable-speed model (Wang et al. 2012) had the
swarm individuals in three squares of checker configuration initially, each square is
28× 28 in size, with each individual having an initial velocity of 1 (i.e., being set
in motion towards the right). Initially the three groups simply form three individual
swarms much like that in the previous case, while generally moving towards the
right. Eventually, these groups start interacting with each other more noticeably.
Thus, this experiment allows us to model different boundary perturbations caused by
the interactions between the swarms. It is also interesting to observe how the initial
asymmetry in the swarms’ position and motion is propagated during the process.

The detailed observations are described by Wang et al. (2012). Here we point out
only some of the local dynamics (see Fig. 12.5 for local AIS, and Fig. 12.6 for local
TE), and note two general stages, each characterized by a ‘bell’ shaped curve for
both average AIS and TE. The first AIS maximum (cf. blue solid curve in Fig. 12.7)
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Fig. 12.5 Local information storage in a variable-speed swarm at key time steps. The swarm
initially consists of three square groups in a checker configuration. Note, to visualize the
range of values, we map 0 to the center of the colorbar and the maximum and minimum
values to the extremes of the colorbar. Values vary linearly on the left half and the right half,
but the scales on the two halves are different.

corresponds to dynamic coordination within each swarm, while the second, global,
AIS maximum at T = 76.0 indicates the moment when all three swarms merge into
a single coordinated entity (Fig. 12.5 (c)), confined within a spatial extent that will
not change significantly in size past this point. The TE maxima follow shortly after
the corresponding AIS maxima (cf. blue solid curve in Fig. 12.8).
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Fig. 12.6 Local information transfer in a variable-speed swarm at key time steps. The swarm
initially consists of three square groups in a checker configuration. Note, as with the previous
figure, the scales on the positive and negative halves of the colorbar are different.

The study of Wang et al. (2012) pointed out the asymmetry in local values (e.g.,
Fig. 12.6 (b)-(c)). This is due to an initial asymmetry in the swarm propagated during
the process. The eventual decline in information storage and transfer is similar to
the one observed by Ceguerra et al. (2011) when the system of coupled oscillators
approached a synchronized (steady) state. Both of these phenomena indicate that the
distributed computation is complete (if and) when the dynamics within the system
become synchronized.
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Fig. 12.7 Comparison of global average active information storage (AIS) between variable-
speed and constant-speed model swarms. The swarm initially consists of three square groups
in a checker configuration.
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Fig. 12.8 Comparison of global average transfer entropy (TE) between variable-speed and
constant-speed model swarms. The swarm initially consists of three square groups in a
checker configuration.

12.4.2 Constant-Speed Swarm Model

12.4.2.1 Experiment 3: One Group, Constant Speed

We use the same initial conditions in our investigation of the constant-speed model.
We begin with a square configuration 49× 49 in size with individuals placed on a
1×1 grid. The red dashed curves in Figures 12.3 and 12.4 show the global AIS and
TE values for this system over time, notable time steps and their individual local
dynamics are shown in Fig. 12.9 and Fig. 12.10.

We use the AIS to measure memory in use for computation. Again, the individ-
uals in the middle of the swarm do not feel the boundary effects at first and do not
participate in computation. However, those on the top and bottom edges are actively
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Fig. 12.9 Local information storage in a constant-speed swarm at key time steps: (b) first
local maximum average AIS; (c) local minimum average AIS; (d) first local maximum TE;
(e) second local maximum average AIS; (f) second local maximum average TE. The swarm
is initially in a square configuration. Note, to visualize the range of values, we map 0 to the
center of the colorbar and the maximum and minimum values to the extremes of the colorbar.
Values vary linearly on the left half and the right half, but the scales on the two halves are
different.

participating. The TE has a similar spatial pattern early on, with higher values at the
edge. The center is negative because information from neighbors is misleading.

Note that the individuals in the front and back of the swarm (the left and right
sides) have low AIS even though they are near the edge. This is because the direction
of the desired velocity is opposite the current velocity (for those in the front) or
coincides with the current velocity (for those in the back), and so the net effect is
zero. No change in velocity (i.e. a static state) means AIS and TE values are close
to zero.

At first, waves of TE and AIS in the constant-speed model tend to travel from
front to back and from the top and bottom edges. This is different from the variable-
speed model where the waves traveled from every edge inward or from the center
outward in a circle.
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Fig. 12.10 Local information transfer in a constant-speed swarm at key time steps: (b) first
local maximum average AIS; (c) local minimum average AIS; (d) first local maximum aver-
age TE; (e) second local maximum average AIS; (f) second local maximum average TE. The
swarm is initially in a square configuration. Note, as with the previous figure, the scales on
the positive and negative halves of the colorbar are different.

The group has a wave of low local TE in a similar place to the AIS wave (cf.
Figures 12.10(c) and 12.9(c)). However, either side of the wave of negative TE has
some of the highest values of TE at these time steps (T = 16.7 and T = 23.2).
The individuals with negative TE are receiving conflicting information from their
neighbors. On either side of this wave with low TE, individuals with higher TE have
more coordination with their neighbors.

The global AIS increases steadily before dropping briefly and then attaining its
absolute maximum. When the average AIS drops a little, we observe a wave of low
or negative local AIS starting from the front center of the swarm and moving out
and back. On either side of this wave, the individuals are coordinated, and the wave
of low AIS marks the place where the individuals also have the smallest change in
direction.

Each local maximum of average AIS is followed by a local maximum of average
TE. The first local maximum of average AIS at T = 12.7 is before the waves of
low AIS begin. As the wave of low AIS moves through the group, the overall AIS
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drops. However, the AIS rises again once the wave nears the back of the group
until it achieves its absolute maximum at T = 21.2. The average AIS decreases for
T > 21.2 because first the middle of the swarm and then the edges reach a static
state (cf. red dashed line in Fig. 12.3).

We would like to point out that soon after this stage the global TE reaches its
second maximum (cf. red dashed line in Fig. 12.4), and the front and center of the
group is settling into synchrony, as indicated by the decreasing AIS.

Comparison between Models. Comparing the global AIS values between the two
models in Fig. 12.3, there are two differences in the maximum AIS: (i) the peak av-
erage value for constant-speed model is lower than that in the variable-speed model,
which shows that a system under constraints will have lower maximum memory; (ii)
it occurs at a considerably later time, in other words, it is harder for this system to
achieve coherence. In addition, we point out that the spatiotemporal representation
of local AIS for the variable-speed model was symmetrical (Fig. 12.1(f)), while the
corresponding representation for the constant-speed model lost the complete sym-
metry showing a preferred direction for local values (Fig. 12.9(f)).

Compared to the variable-speed model, the maximum of average TE in the con-
stant speed model has lower value and is less pronounced (refer to Fig. 12.4). This
indicates that communications within the system are less informative, thus leading
to less well-formed cascades. Finally, we note that the final configurations of the
models are very different (see Miller et al. (2011) for details), configurations driven
by the differences in the collective memory and communication within the swarms.

12.4.2.2 Experiment 4: Three Groups, Constant Speed

We also consider the constant-speed model with initial placement in three squares
in a checker configuration and examine the TE and AIS as the three groups interact.
The red dashed curves in Figures 12.7 and 12.8 show the overall information dynam-
ics in the swam over time, with key time steps shown in Fig. 12.11 and Fig. 12.12.

In general, the AIS is higher in the center and leftmost groups, since they have
the most directional change. As the center group turns downward with fixed speed,
the left group begins to ‘catch up’ to the center group. This means that the cen-
ter and left groups feel a stronger influence from one another than from the right
group. The right group has little change in its shape or direction until after T = 49.6
(Fig. 12.11(c)). As the left and center groups combine, more and more individuals
join in the collective computation. The maximum AIS at T = 91.5 (Fig. 12.11(g))
occurs when all the individuals in this new, larger group are actively participating
in the collective computation. As this larger group begins to settle into its steady
state, the AIS decreases. The AIS in the right group is close to zero the whole time.
By T = 105.0, the two groups are moving away from each other since the distance
between them is great enough that they have only a small influence on each other.

The local TE values in the groups increased very slowly prior to T = 42.7
(Fig. 12.12). Notice that at T = 56.9, the rightmost group has an attraction to the
other two groups, but can not slow down to merge with them. We can also observe
a wave of negative TE on the left side of the rightmost group, since the neighbors
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Fig. 12.11 Local information storage (AIS) in a constant-speed swarm at key time steps: (b)
local minimum average TE; (d) local maximum average TE; (e) local minimum average TE;
(f) local maximum average TE; (g) maximum average AIS; (h) maximum average TE. The
swarm initially consists of three square groups in a checker configuration. Note, to visualize
the range of values, we map 0 to the center of the colorbar and the maximum and minimum
values to the extremes of the colorbar. Values vary linearly on the left half and the right half,
but the scales on the two halves are different.

(in the leftmost and center groups) misinform about the next state of the nearest
individuals in the rightmost group.

At T = 73.0, there is a high spot of AIS (Fig. 12.11 (e)) and a low spot of TE
(Fig. 12.12 (e)) where the leftmost and center groups are merging. The groups are
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Fig. 12.12 Local information transfer (TE) in a constant-speed swarm at key time steps: (b)
local minimum average TE; (d) local maximum average TE; (e) local minimum average TE;
(f) local maximum average TE; (g) maximum average AIS; (h) maximum average TE. The
swarm initially consists of three square groups in a checker configuration. Note, as with the
previous figure, the scales on the positive and negative halves of the colorbar are different.

still moving toward each other. This means that the neighbors are misinforming each
other since they are not aligned.

Comparison between Models. Comparing to the corresponding experiment in the
variable-speed model (refer to Fig. 12.7 for AIS, and Fig. 12.8 for TE), we note
that the constraints imposed by the constant speed model prevented formation of a
single fully merged swarm. Information-theoretically, the differences in global AIS
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and TE amounted to the following: (i) both information dynamics have lower max-
imum values here; (ii) the maximum AIS and TE occurs at a later time; (iii) the TE
peaks are less pronounced.

12.5 Conclusions

This paper applies a novel information theoretic characterization of information dy-
namics within swarms in the context of GSO. We argue that collective communica-
tion and memory are two necessary elements of distributed computation, and study
these elements in two different models (one being more constrained/guided than the
other).

The proposed framework measures cascades in precise information theoretic
terms using well defined notions of conditional transfer entropy. The results con-
firm that the information cascades occur in waves propagating through the swarm
and can be observed via coherent changes in local transfer entropies of individual
particles. Local transfer entropy was recently given a thermodynamic interpretation
as external entropy production (Prokopenko et al. 2013). This interpretation relates
higher local TE (brought about by information cascades) to negentropy, the entropy
that the system exports (dissipates) to keep its own entropy low (Schrödinger 1944;
Prokopenko 2013).

Our characterization deals with weak and ambiguous external stimuli by incor-
porating both positive and negative local information transfer values. Information
cascades are not just observed as changes in behaviors and activities, but rather
are rigorously determined and computed as coherent collective communication. On
the other hand, collective memory is identified with active information storage —
another novel but well defined concept. Higher values of AIS are associated with
higher levels of dynamic coordination.

The comparative analysis shows that there are significant differences between
the information dynamics that emerge from our two models. Firstly, the maxima
of the global AIS and TE are lower for the constrained constant-speed model. This
indicates that a system under constraints (which therefore has lower uncertainty or
entropy of its state) tends to have a lower collective memory, and that communica-
tions within such a system are less informative. Secondly, the overall maximum TE
in the constrained system is less pronounced, leading to less well-formed cascades.
Thirdly, the global maxima of AIS and TE are attained at a later stage for the swarm
constrained by constant speed. In other words, it is harder for a constrained system
to self-organize into a coherent, swarming state. However, the constrained system
was observed to produce a different pattern in the spatiotemporal representation of
local AIS, rather than being isotropic. In general, the principle of maximal infor-
mation transfer following the stage with maximal collective memory is observed
under both models. This analysis exemplifies the use of information-theoretic tools
for GSO studies.
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The overall study, following the work of Wang et al. (2012), demonstrates the
strength of an information-theoretic approach that allows us to directly compare
different systems.
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Chapter 13
Guiding Designs of Self-Organizing Swarms:
Interactive and Automated Approaches

Hiroki Sayama

13.1 Introduction

Engineering design has traditionally been a top-down process in which a designer
shapes, arranges and combines various components in a specific, precise, hierarchi-
cal manner, to create an artifact that will behave deterministically in an intended
way (Minai et al. 2006; Pahl et al. 2007). However, this process does not apply to
complex systems that show self-organization, adaptation and emergence. Complex
systems consist of a massive amount of simpler components that are coupled locally
and loosely, whose behaviors at macroscopic scales emerge partially stochastically
in a bottom-up way. Such emergent properties of complex systems are often very
robust and dynamically adaptive to the surrounding environment, indicating that
complex systems bear great potential for engineering applications (Ottino 2004).

In an attempt to design engineered complex systems, one of the most challeng-
ing problems has been how to bridge the gap between macro and micro scales.
Some mathematical techniques make it possible to analytically show such macro-
micro relationships in complex systems (e.g., those developed in statistical mechan-
ics and condensed matter physics (Bar-Yam 2003; Boccara 2010)). However, those
techniques are only applicable to “simple” complex systems, in which: system com-
ponents are reasonably uniform and homogeneous, their interactions can be approx-
imated without losing important dynamical properties, and/or the resulting emergent
patterns are relatively regular so that they can be characterized by a small number
of macroscopic order parameters (Bar-Yam 2003; Doursat et al. 2012). Unfortu-
nately, such cases are exceptions in a vast, diverse, and rather messy compendium of
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Fig. 13.1 Relationships of macroscopic and microscopic properties in complex systems and
how complex systems engineering has been handling the gap between them

complex systems dynamics (Camazine 2003; Sole and Goodwin 2008). To date, the
only generalizable methodology available for predicting macroscopic properties of
a complex system from microscopic rules governing its fundamental components is
to conduct experiments—either computational or physical—to let the system show
its emergent properties by itself (Fig. 13.1, top).

More importantly, the other way of connecting the two scales—embedding
macroscopic requirements the designer wants into microscopic rules that will col-
lectively achieve those requirements—is by far more difficult. This is because the
mapping between micro and macro scales is highly nonlinear, and also the space of
possible microscopic rules is huge and thus hard to explore. So far, the only gen-
eralizable methodology available for macro-to-micro embedding in this context is
to acquire microscopic rules by evolutionary means (Bentley 1999) (Fig. 13.1, bot-
tom). Instead of trying to derive local rules analytically from global requirements,
evolutionary methods let better rules spontaneously arise and adapt to meet the re-
quirements, even though they do not produce any understanding of the macro-micro
relationships. The effectiveness of such “blind” evolutionary search (Dawkins 1996)
for complex systems design is empirically supported by the fact that it has been the
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primary mechanism that has produced astonishingly complex, sophisticated, highly
emergent machinery in the history of real biological systems.

The combination of these two methodologies—experiment and evolution—that
connect macro and micro scales in two opposite directions (the whole cycle in
Fig. 13.1) is now a widely adopted approach for guiding systematic design of self-
organizing complex systems (Minai et al. 2006; Anderson 2006). Typical design
steps are to (a) create local rules randomly or using some heuristics, (b) conduct
experiments using those local rules, (c) observe what kind of macroscopic patterns
emerge out of them, (d) select and modify successful rules according to the observa-
tions, and (e) repeat these steps iteratively to achieve evolutionary improvement of
the microscopic rules until the whole system meets the macroscopic requirements.

Such experiment-and-evolution-based design of complex systems is not free from
limitations, however. In typical evolutionary design methods, the designer needs to
explicitly define a performance metric, or “fitness”, of design candidates, i.e., how
good a particular design is. Such performance metrics are usually based on relatively
simple observables easily extractable from experimental results (e.g., the distance
a robot traveled, etc.). However, simple quantitative performance metrics may not
be suitable or useful in evolutionary design of more complex structures or behav-
iors, such as those seen in real-world biological systems, where the key properties
a system should acquire could be very diverse and complex, more qualitative than
quantitative, and/or even unknown to the designer herself beforehand.

In this chapter, we present our efforts to address this problem, by (1) utilizing and
enhancing interactive evolutionary design methods and (2) realizing spontaneous
evolution of self-organizing swarms within an artificial ecosystem.

13.2 Model: Swarm Chemistry

We use Swarm Chemistry (Sayama 2007, 2009) as an example of self-organizing
complex systems with which we demonstrate our design approaches. Swarm Chem-
istry is an artificial chemistry (Dittrich et al. 2001) model for designing spatio-
temporal patterns of kinetically interacting heterogeneous particle swarms using
evolutionary methods. A swarm population in Swarm Chemistry consists of a num-
ber of simple particles that are assumed to be able to move to any direction at any
time in a two- or three-dimensional continuous space, perceive positions and veloc-
ities of other particles within its local perception range, and change its velocity in
discrete time steps according to the following kinetic rules (adopted and modified
from the rules in Reynolds’ Boids (Reynolds 1987); see Fig. 13.2):

• If there are no other particles within its local perception range, steer randomly
(Straying).

• Otherwise:

– Steer to move toward the average position of nearby particles (Cohesion,
Fig. 13.2(a)).
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Fig. 13.2 Kinetic interactions between particles. Top: Particle i senses only positions and
velocities of nearby particles within distance Ri. Bottom: (a) Cohesion. Particle i accelerates
toward the center of mass of nearby particles. (b) Alignment. Particle i steers to align its
orientation to the average orientation of nearby particles. (c) Separation. Particle i receives
repulsion forces from each of the nearby particles whose strength is inversely related to dis-
tance.

– Steer toward the average velocity of nearby particles (Alignment,
Fig. 13.2(b)).

– Steer to avoid collision with nearby particles (Separation, Fig. 13.2(c)).
– Steer randomly with a given probability (Randomness).

• Approximate its speed to its own normal speed (Self-propulsion).

These rules are implemented in a simulation algorithm that uses kinetic parameters
listed and explained in Table 13.1 (see (Sayama 2009, 2010) for details of the al-
gorithm). The kinetic interactions in our model uses only one omni-directional per-
ception range (Ri), which is much simpler than other typical swarm models that use
multiple and/or directional perception ranges (Reynolds 1987; Couzin et al. 2002;
Kunz and Hemelrijk 2003; Hemelrijk and Kunz 2005; Cheng et al. 2005; Newman
and Sayama 2008). Moreover, the information being shared by nearby particles is
nothing more than kinetic one (i.e., relative position and velocity), which is exter-
nally observable and therefore can be shared without any specialized communica-
tion channels1. These features make this system uniquely simple compared to other
self-organizing swarm models.

1 An exception is local information transmission during particle recruitment processes,
which will be discussed later.
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Table 13.1 Kinetic parameters involved in the simulation of particle behavior. Unique values
are assigned to these parameters for each particle i as its own kinetic properties.

Name Min Max Meaning Unit
Ri 0 300 Radius of local perception range pixel
V i

n 0 20 Normal speed pixel step−1

V i
m 0 40 Maximum speed pixel step−1

ci
1 0 1 Strength of cohesive force step−2

ci
2 0 1 Strength of aligning force step−1

ci
3 0 100 Strength of separating force pixel2 step−2

ci
4 0 0.5 Probability of random steering —

ci
5 0 1 Tendency of self-propulsion —

97 * (226.76, 3.11, 9.61, 0.15, 0.88, 43.35, 0.44, 1.0)
38 * (57.47, 9.99, 35.18, 0.15, 0.37, 30.96, 0.05, 0.31)
56 * (15.25, 13.58, 3.82, 0.3, 0.8, 39.51, 0.43, 0.65)
31 * (113.21, 18.25, 38.21, 0.62, 0.46, 15.78, 0.49, 0.61)

Fig. 13.3 Example of a recipe, formatted as a list of kinetic parameter sets of different types
within a swarm. Each row represents one type, which has a number of particles of that type at
the beginning, followed by its parameter settings in the format of (Ri,V i

n,V
i
m,c

i
1,c

i
2,c

i
3,c

i
4,c

i
5).

Each particle is assigned with its own kinetic parameter settings that specify pre-
ferred speed, local perception range, and strength of each kinetic rule. Particles that
share the same set of kinetic parameter settings are considered of the same type.
Particles do not have a capability to distinguish one type from another; all particles
look exactly the same to themselves.

For a given swarm, specifications for its macroscopic properties are indirectly and
implicitly woven into a list of different kinetic parameter settings for each swarm
component, called a recipe (Fig. 13.3) (Sayama 2009). It is quite difficult to manu-
ally design a specific recipe that produces a desired structure and/or behavior using
conventional top-down design methods, because the self-organization of a swarm
is driven by complex interactions among a number of kinetic parameters that are
intertwined with each other in highly non-trivial, implicit ways.

In the following sections, we address this difficult design problem using evolu-
tionary methods. Unlike in other typical evolutionary search or optimization tasks,
however, in our swarm design problem, there is no explicit function or algorithm
readily available for assessing the quality (or fitness) of each individual design. To
meet with this unique challenge, we used two complementary approaches: The inter-
active approach, where human users are actively involved in the evolutionary design
process, and the automated approach, where spontaneous evolutionary dynamics of
artificial ecosystems are utilized as the engine to produce creative self-organizing
patterns.
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“swinger” “rotary” “walker-follower”

Fig. 13.4 Examples of swarms designed using IEC methods. Their recipes are
available on the Swarm Chemistry website (http://bingweb.binghamton
.edu/˜sayama/SwarmChemistry/).

13.3 Interactive Approach

The first approach is based on interactive evolutionary computation (IEC) (Banzhaf
2000; Takagi 2001), a derivative class of evolutionary computation which incorpo-
rates interaction with human users. Most IEC applications fall into a category known
as “narrowly defined IEC” (NIEC) (Takagi 2001), which simply outsources the task
of fitness evaluation to human users. For example, a user may be presented with
a visual representation of the current generation of solutions and then prompted to
provide fitness information about some or all of the solutions. The computer in turn
uses this fitness information to produce the next generation of solutions through the
application of a predefined sequence evolutionary operators.

Our initial work, Swarm Chemistry 1.1 (Sayama 2007, 2009), also used a varia-
tion of NIEC, called Simulated Breeding (Unemi 2003). This NIEC-based applica-
tion used discrete, non-overlapping generation changes. The user selects one or two
favorable swarms out of a fixed number of swarms displayed, and the next gener-
ation is generated out of them, discarding all other unused swarms. Selecting one
swarm creates the next generation using perturbation and mutation. Selecting two
swarms creates the next generation by mixing them together (similar to crossover,
but this mixing is not genetic but physical). Figure 13.4 shows some examples of
self-organizing swarms designed using Swarm Chemistry 1.1.

As a design tool, NIEC has some disadvantages. One set of disadvantage stems
from the confinement of the user to the role of selection operator (Fig. 13.5, left).
Creative users who are accustomed to a more highly involved design process may
find the experience to be tedious, artificial, and frustrating. Earlier literature sug-
gests that it is important to instill in the user a strong sense of control over the
entire evolutionary process (Bentley and O’Reilly 2001) and that the users should
be the initiators of actions rather than simply responding to prompts from the system
(Shneiderman et al. 2009).

These lines of research suggest that enhancing the level of interaction and control
of IEC may help the user better guide the design process of self-organizing swarms.
Therefore, we developed the concept of hyper-interactive evolutionary computa-
tion (HIEC) (Bush and Sayama 2011), a novel form of IEC in which a human
user actively chooses when and how to apply each of the available evolutionary

http://bingweb.binghamton.edu/~{}sayama/SwarmChemistry/
http://bingweb.binghamton.edu/~{}sayama/SwarmChemistry/
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Fig. 13.5 Comparison of control flows between two interactive evolutionary computation
(IEC) frameworks (redrawn based on figures in (Bush and Sayama 2011)). Left: Narrowly
defined IEC (NIEC). Right: Hyper-interactive IEC (HIEC).

operators, playing the central role in the control flow of evolutionary search pro-
cesses (Fig. 13.5, right). In HIEC, the user directs the overall search process and
initiates actions by choosing when and how each evolutionary operator is applied.
The user may add a new solution to the population through the crossover, mutate,
duplicate, or random operators. The user can also remove solutions with the delete
operator. This naturally results in dynamic variability of population size and contin-
uous generation change (like steady-state strategies for genetic algorithms).

We developed Swarm Chemistry 1.2 (Sayama et al. 2009; Bush and Sayama
2011), a redesigned HIEC-based application for designing swarms. This version
uses continuous generation changes, i.e., each evolutionary operator is applied only
to part of the population of swarms on a screen without causing discrete generation
changes. A mutated copy of an existing swarm can be generated by either selecting
the “Mutate” option or double-clicking on a particular swarm. Mixing two existing
swarms can be done by single-clicking on two swarms, one after the other. The
“Replicate” option creates an exact copy of the selected swarm next to it. One can
also remove a swarm from the population by selecting the “Kill” option or simply
closing the frame. More details of HIEC and Swarm Chemistry 1.2 can be found
elsewhere (Sayama et al. 2009; Bush and Sayama 2011).

We conducted the following two human-subject experiments to see if HIEC
would produce a more controllable and positive user experience, and thereby better
swarm design outcomes, than those with NIEC.



372 H. Sayama

easiness of
operation

controllability intuitiveness fun factor fatigue quality satisfaction

—
—

—

—

—
—

—

—

— —

—
—

—

—

—

—

—

—

—

—

—

—

—
—

—

—
—

—

NIEC HIEC NIEC HIEC NIEC HIEC NIEC HIEC NIEC HIEC NIEC HIEC NIEC HIEC
0

1

2

3

4

5

Rating
* * *

p < 0.01 p < 0.01 p < 0.01

Fig. 13.6 Comparison of rating distribution between the NIEC and HIEC applications across
seven factors. Mean ratings are shown by diamonds, with error bars around them showing
standard deviations. Significant differences are indicated with an asterisk and corresponding
t-test p-values.

13.3.1 User Experience

In the first experiment, individual subjects used the NIEC and HIEC applications
mentioned above to evolve aesthetically pleasing self-organizing swarms. We quan-
tified user experience outcomes using questionnaire, in order to quantify potential
differences in user experience between the two applications.

Twenty-one subjects were recruited from students and faculty/staff members at
Binghamton University. Each subject was recruited and participated individually.
The subject was told to spend five minutes using each of two applications to design
an “interesting and lifelike” swarm. Each of these two applications ran on their
own dedicated computer station. After completing two sessions, each of which used
either NIEC or HIEC application, the subject filled out a survey, rating each of
the two platforms on the following factors: easiness of operation, controllability,
intuitiveness, fun factor, fatigue level, final design quality, and overall satisfaction.
Each factor was rated on a 5-point scale.

The results are shown in Fig. 13.6. Of the 7 factors measured, 3 showed statis-
tically significant difference between two platforms: controllability, fun factor, and
overall satisfaction. The higher controllability ratings for HIEC suggest that our
original intention to re-design an IEC framework to grant greater control to the user
was successful. Our results also suggest that this increased control may be asso-
ciated with a more positive user experience, as is indicated by the higher overall
satisfaction and fun ratings for HIEC. In the meantime, there was no significant dif-
ference detected in terms of perceived final design quality. This issue is investigated
in more detail in the following second experiment.
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13.3.2 Design Quality

The goal of the second experiment was to quantify the difference between HIEC
and NIEC in terms of final design quality. In addition, the effects of mixing and mu-
tation operators on the final design quality were also studied. The key feature of this
experiment was that design quality was rated not individually by the subjects who
designed them, but by an entire group of individual subjects. The increased amount
of rating information yielded by this procedure allowed us to more effectively de-
tect differences in quality between designs created using NIEC and designs created
using HIEC.

Twenty-one students were recruited for this experiment. Those subjects did not
have any overlap with the subjects of experiment 1. The subjects were randomly
divided into groups of three and instructed to work together as a team to design an
“interesting” swarm design in ten minutes using either the NIEC or HIEC applica-
tion, the latter of which was further conditioned to have the mixing operator, the
mutation operator, or both, or none. The sessions were repeated so that five to seven
swarm designs were created under each condition. Once the sessions were over, all
the designs created by the subjects were displayed on a large screen in the experi-
ment room, and each subject was told to evaluate how “cool” each design was on
a 0-to-10 numerical scale. Details of the experimental procedure and data analysis
can be found elsewhere (Sayama et al. 2009; Bush and Sayama 2011).

The result is shown in Fig. 13.7. There was a difference in the average rating
scores between designs created using NIEC and HIEC (conditions 0 and 4), and the
rating scores were higher when more evolutionary operators were made available.
Several final designs produced through the experiment are shown in Fig. 13.8 (three
with the highest scores and three with the lowest scores), which indicate that highly
evaluated swarms tended to maintain coherent, clear structures and motions without
dispersal, while those that received lower ratings tended to disperse so that their
behaviors are not appealing to students.

To detect statistical differences between experimental conditions, a one-way
ANOVA was conducted. The result of the ANOVA is summarized in Table 13.2.
Statistically significant variation was found between the conditions (p < 0.005).
Tukey’s and Bonferroni’s post-hoc tests detected a significant difference between
conditions 0 (NIEC) and 4 (HIEC), which supports our hypothesis that the HIEC
is more effective at producing final designs of higher quality than NIEC. The post-
hoc tests also detected a significant difference between conditions 1 (HIEC without
mixing or mutation operators) and 4 (HIEC). These results indicate that the more
active role a designer plays in the interactive design process, and the more diverse
evolutionary operators she has at her disposal, the more effectively she can guide
the evolutionary design of self-organizing swarms.
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Fig. 13.7 Comparison of normalized rating score distributions between swarms produced
using NIEC and HIEC. Average rating scores are shown by diamonds, with error bars around
them showing standard deviations.

(a)

(b)

Fig. 13.8 Samples of the final swarm designs created by subjects. (a) Best three that received
the highest rating scores. (b) Worst three that received the lowest rating scores.

Table 13.2 Results of one-way ANOVA on the rating scores for five conditions obtained
in experiment 2 (from (Bush and Sayama 2011)). Significant difference is shown with an
asterisk.

Source of variation Degrees of freedom Sum of squares Mean square F F-test p-value
Between groups 4 14.799 3.700 4.11 0.003*
Within groups 583 525.201 0.901
Total 587 540
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13.4 Automated Approach

The second approach we took was motivated by the following question: Do we
really need human users in order to guide designs of self-organizing swarms? This
question might sound almost paradoxical, because designing an artifact implies the
existence of a designer by definition. However, this argument is quite similar to the
“watchmaker” argument claimed by the English theologist William Paley (as well as
by many other leading scientists in the past) (Dawkins 1996). Now that we know that
the blind evolutionary process did “design” quite complex, intricate structures and
functions of biological systems, it is reasonable to assume that it should be possible
to create automatic processes that can spontaneously produce various creative self-
organizing swarms without any human intervention.

In order to make the swarms capable of spontaneous evolution within a simulated
world, we implemented several major modifications to Swarm Chemistry (Sayama
2010, 2011; Sayama and Wong 2011), as follows:

1. There are now two categories of particles, active (moving and interacting kineti-
cally) and passive (remaining still and inactive). An active particle holds a recipe
of the swarm (a list of kinetic parameter sets) (Fig. 13.9(a)).

2. A recipe is transmitted from an active particle to a passive particle when they
collide, making the latter active (Fig. 13.9(b)).

3. The activated particle differentiates randomly into one of the multiple types spec-
ified in the recipe, with probabilities proportional to their ratio in it (Fig. 13.9(c)).

4. Active particles randomly and independently re-differentiate with small probabil-
ity, r, at every time step (r = 0.005 for all simulations presented in this chapter).

5. A recipe is transmitted even between two active particles of different types when
they collide. The direction of recipe transmission is determined by a competition
function that picks one of the two colliding particles as a source (and the other as
a target) of transmission based on their properties (Fig. 13.9(d)).

6. The recipe can mutate when transmitted, as well as spontaneously at every time
step, with small probabilities, pt and ps, respectively (Fig. 13.9(e)). In a single
recipe mutation event, several mutation operators are applied, including dupli-
cation of a kinetic parameter set (5% per set), deletion of a kinetic parameter
set (5% per set), addition of a random kinetic parameter set (10% per event; in-
creased to 50% per event in later experiments), and a point mutation of kinetic
parameter values (10% per parameter).

These extensions made the model capable of showing morphogenesis and self-
repair (Sayama 2010) and autonomous ecological/evolutionary behaviors of self-
organized “super-organisms” made of a number of swarming particles (Sayama
2011; Sayama and Wong 2011). We note here that there was a technical problem in
the original implementation of collision detection in an earlier version of evolution-
ary Swarm Chemistry (Sayama 2011), which was fixed in the later implementation
(Sayama and Wong 2011).

In addition, in order to make evolution occur, we needed to confine the parti-
cles in a finite environment in which different recipes compete against each other.
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function winner:

Fig. 13.9 How particle interactions work in the revised Swarm Chemistry (from (Sayama
2010b)). (a) There are two categories of particles, active (blue) and passive (gray). An active
particle holds a recipe of the swarm in it (shown in the call-out). Each row in the recipe repre-
sents one kinetic parameter set. The underline shows which kinetic parameter set the particle
is currently using (i.e., which kinetic type it is differentiated into). (b) A recipe is transmitted
from an active particle to a passive particle when they collide, making the latter active. (c) The
activated particle differentiates randomly into a type specified by one of the kinetic parameter
sets in the recipe given to it. (d) A recipe is transmitted between active particles of different
types when they collide. The direction of recipe transmission is determined by a competition
function that picks one of the two colliding particles as a source (and the other as a target)
of transmission based on their properties. (e) The recipe can mutate when transmitted with
small probability.

We thus conducted all the simulations with 10,000 particles contained in a finite,
5,000× 5,000 square space (in arbitrary units; for reference, the maximal percep-
tion radius of a particle was 300). A “pseudo”-periodic boundary condition was
applied to the boundaries of the space. Namely, particles that cross a boundary reap-
pear from the other side of the space just like in conventional periodic boundary con-
ditions, but they do not interact across boundaries with other particles sitting near
the other side of the space. In other words, the periodic boundary condition applies
only to particle positions, but not to their interaction forces. This specific choice of
boundary treatment was initially made because of its simplicity of implementation,
but it proved to be a useful boundary condition that introduces a moderate amount of
perturbations to swarms while maintaining their structural coherence and confining
them in a finite area.

In the simulations, two different initial conditions were used: a random initial
condition made of 9,900 inactive particles and 100 active particles with randomly
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generated one-type recipes distributed over the space, and a designed initial condi-
tion consisted of 9,999 inactive particles distributed over the space, with just one
active particle that holds a pre-designed recipe positioned in the center of the space.
Specifically, recipes of “swinger”, “rotary” and “walker-follower” (shown in Fig.
13.4) patterns were used.

13.4.1 Exploring Experimental Conditions

Using the evolutionary Swarm Chemistry model described above, we studied what
kind of experimental conditions (competition functions and mutation rates) would
be most successful in creating self-organizing complex patterns (Sayama 2011).

The first experiment was to observe the basic evolutionary dynamics of the model
under low mutation rates (pt = 10−3, ps = 10−5). Random and designed (“swinger”)
initial conditions were used. The following four basic competition functions were
implemented and tested:

• faster: The faster particle wins.
• slower: The slower particle wins.
• behind: The particle that hit the other one from behind wins. Specifically, if a

particle exists within a 90-degree angle opposite to the other particle’s velocity,
the former particle is considered a winner.

• majority: The particle surrounded by more of the same type wins. The local
neighborhood radius used to count the number of particles of the same type was
30. The absolute counts were used for comparison.

Results are shown in Fig. 13.10. The results with the “behind” competition func-
tion were very similar to those with the “faster” competition function, and therefore
omitted from the figure. In general, growth and replication of macroscopic structures
were observed at early stages of the simulations. The growth was accomplished by
recruitment of inactive particles through collisions. Once a cluster of active parti-
cles outgrew maximal size beyond which they could not maintain a single coherent
structure (typically determined by their perception range), the cluster spontaneously
split into multiple smaller clusters, naturally resulting in the replication of those
structures. These growth and replication dynamics were particularly visible in sim-
ulations with designed initial conditions. Once formed, the macroscopic structures
began to show ecological interactions by themselves, such as chasing, predation and
competition over finite resources (i.e., particles), and eventually the whole system
tended to settle down in a static or dynamic state where only a small number of
species were dominant. There were some evolutionary adaptations also observed
(e.g., in faster & designed (“swinger”); second row in Fig. 13.10) even with the low
mutation rates used.

It was also observed that the choice of competition functions had significant im-
pacts on the system’s evolutionary dynamics. Both the “faster” and “behind” com-
petition functions always resulted in an evolutionary convergence to a homogeneous
cloud of fast-moving, nearly independent particles. In contrast, the “slower” compe-
tition function tended to show very slow evolution, often leading to the emergence
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Fig. 13.10 Evolutionary processes observed in the evolutionary Swarm Chemistry model.
Each image shows a snapshot of the space in a simulation, where dots with different colors
represent particles of different types. Labels on the left indicates the competition function and
the initial condition used in each case. Snapshots were taken at logarithmic time intervals.

of crystallized patterns. The “majority” competition function turned out to be most
successful in creating and maintaining dynamic behaviors of macroscopic coherent
structures over a long period of time, yet it was quite limited regarding the capability
of producing evolutionary innovations. This was because any potentially innovative
mutation appearing in a single particle would be lost in the presence of local major-
ity already established around it.

Based on the results of the previous experiment, the following five more competi-
tion functions were implemented and tested. The last three functions that took recipe
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length into account were implemented in the hope that they might promote evolution
of increasingly more complex recipes and therefore more complex patterns:

• majority (probabilistic): The particle surrounded by more of the same type wins.
This is essentially the same function as the original “majority”, except that the
winner is determined probabilistically using the particle counts as relative prob-
abilities of winning.

• majority (relative): The particle that perceives the higher density of the same type
within its own perception range wins. The density was calculated by dividing the
number of particles of the same type by the total number of particles of any
kind, both counted within the perception range. The range may be different and
asymmetric between the two colliding particles.

• recipe length: The particle with a recipe that has more kinetic parameter sets
wins.

• recipe length then majority: The particle with a recipe that has more kinetic pa-
rameter sets wins. If the recipe length is equal between the two colliding particles,
the winner is selected based on the “majority” competition function.

• recipe length × majority: A numerical score is calculated for each particle by
multiplying its recipe length by the number of particles of the same type within
its local neighborhood (radius = 30). Then the particle with a greater score wins.

Results are summarized in Fig. 13.11. As clearly seen in the figure, the majority-
based rules are generally good at maintaining macroscopic coherent structures, re-
gardless of minor variations in their implementations. This indicates that interaction
between particles, or “cooperation” among particles of the same type to support one
another, is the key to creating and maintaining macroscopic structures. Experimen-
tal observation of a number of simulation runs gave an impression that the “majority
(relative)” competition function would be the best in this regard, therefore this func-
tion was used in all of the following experiments.

In the meantime, the “recipe length” and “recipe length then majority” competi-
tion functions did not show any evolution toward more complex forms, despite the
fact that they would strongly promote evolution of longer recipes. What was oc-
curring in these conditions was an evolutionary accumulation of “garbage” kinetic
parameter sets in a recipe, which did not show any interesting macroscopic struc-
ture. This is qualitatively similar to the well-known observation made in Tierra (Ray
1992).

The results described above suggested the potential of evolutionary Swarm
Chemistry for producing more creative, continuous evolutionary processes, but none
of the competition functions showed notable long-term evolutionary changes yet.
We therefore increased the mutation rates to a 100 times greater level than those
in the experiments above, and also introduced a few different types of exogenous
perturbations to create a dynamically changing environment (for more details, see
(Sayama 2011)). This was informed by our earlier work on evolutionary cellular au-
tomata (Salzberg et al. 2004; Salzberg and Sayama 2004), which demonstrated that
such dynamic environments may make evolutionary dynamics of a system more
variation-driven and thus promote long-term evolutionary changes.
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Initial condition: random Initial condition: designed (“swinger”)

faster slower behind faster slower behind

majority majority majority majority majority majority

(probabilistic) (relative) (probabilistic) (relative)

recipe length recipe length recipe length recipe length recipe length recipe length

then majority × majority then majority × majority

Fig. 13.11 Comparison between several different competition functions. The nine cases on
the left hand side started with random initial conditions, while the other nine on the right hand
side started with designed initial conditions with the “swinger” recipe. Snapshots were taken
at time = 22,000 for all cases.

With these additional changes, some simulation runs finally demonstrated con-
tinuous changes of dominant macroscopic structures over a long period of time (Fig.
13.12). A fundamental difference between this and earlier experiments was that the
perturbation introduced to the environment would often break the “status quo” es-
tablished in the swarm population, making room for further evolutionary innova-
tions to take place. A number of unexpected, creative swarm designs spontaneously
emerged out of these simulation runs, fulfilling our intension to create automated
evolutionary design processes. Videos of sample simulation runs can be found on
our YouTube channel (http://youtube.com/ComplexSystem).

13.4.2 Quantifying Observed Evolutionary Dynamics

The experimental results described above were quite promising, but they were eval-
uated only by visual inspection with no objective measurements involved. To ad-
dress the lack of quantitative measurements, we developed and tested two simple
measurements to quantify the degrees of evolutionary exploration and macroscopic
structuredness of swarm populations (Sayama and Wong 2011), assuming that the
evolutionary process of swarms would look interesting and creative to human eyes
if it displayed patterns that are clearly visible and continuously changing. These

http://youtube.com/ComplexSystem
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Fig. 13.12 An example of long-term evolutionary behavior seen under dynamic environmen-
tal conditions with high mutation rates. Snapshots were taken at constant time intervals (2,500
steps) to show continuous evolutionary changes.

Table 13.3 Four conditions used for the final experiment to quantify evolutionary dynamics

Name Mutation rate Environmental Collision detection
perturbation algorithm

original-low low off original
original-high high on original
revised-low low off revised
revised-high high on revised

measurements were developed so that they can be easily calculated a posteriori from
a sequence of snapshots (bitmap images) taken in past simulation runs, without re-
quiring genotypic or genealogical information that was typically assumed available
in other proposed metrics (Bedau and Packard 1992; Bedau and Brown 1999; Ne-
haniv 2000).

Evolutionary exploration was quantified by counting the number of new RGB
colors that appeared in a bitmap image of the simulation snapshot at a specific time
point for the first time during each simulation run (Fig. 13.13, right). Since different
particle types are visualized with different colors in Swarm Chemistry, this mea-
surement roughly represents how many new particle types emerged during the last
time segment. Macroscopic structuredness was quantified by measuring a Kullback-
Leibler divergence (Kullback and Leibler 1951) of a pairwise particle distance
distribution from that of a theoretical case where particles are randomly and ho-
mogeneously spread over the entire space (Fig. 13.13, left). Specifically, each snap-
shot bitmap image was first analyzed and converted into a list of coordinates (each
representing the position of a particle, or a colored pixel), then a pair of coordinates
were randomly sampled from the list 100,000 times to generate an approximate pair-
wise particle distance distribution in the bitmap image. The Kullback-Leibler diver-
gence of the approximate distance distribution from the homogeneous case is larger
when the swarm is distributed in a less homogeneous manner, forming macroscopic
structures.
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Fig. 13.14 Temporal changes of the evolutionary exploration measurement (i.e., number of
new colors per 500 time steps) for four different experimental conditions, calculated from
snapshots of simulation runs taken at 500 time step intervals (from (Sayama and Wong
2011)). Each curve shows the average result over 12 simulation runs (3 independent runs × 4
different initial conditions given in (Sayama 2011)). Sharp spikes seen in “high” conditions
were due to dynamic exogenous perturbations.

We applied these measurements to simulation runs obtained under each of the
four conditions shown in Table 13.3. Results are summarized in Figs. 13.14 and
13.15. Figure 13.14 clearly shows the high evolutionary exploration occurring un-
der the conditions with high mutation rates and environmental perturbations. In the
meantime, Figure 13.15 shows that the “original-high” condition had a tendency to
destroy macroscopic structures by allowing swarms to evolve toward simpler, homo-
geneous forms. Such degradation of structuredness over time was, as mentioned ear-
lier, due to a technical problem in the previous implementation of collision detection
(Sayama 2011; Sayama and Wong 2011) that mistakenly depended on perception
ranges of particles. The “revised” conditions used a fixed collision detection algo-
rithm. This modification was found to have an effect to maintain macroscopic struc-
tures for a prolonged period of time (Fig. 13.15). Combining these results together
(Fig. 13.16), we were able to detect automatically that the “revised-high” condi-
tion was most successful in producing interesting designs, maintaining macroscopic
structures without losing evolutionary exploration. This conclusion also matched
subjective observations made by human users.



384 H. Sayama

Fig. 13.15 Temporal changes of the macroscopic structuredness measurement (i.e.,
Kullback-Leibler divergence of the pairwise particle distance distribution from that of a
purely random case) for four different experimental conditions, calculated from snapshots
of simulation runs taken at 500 time step intervals (from (Sayama and Wong 2011)). Each
curve shows the average result over 12 simulation runs (3 independent runs with 4 different
initial conditions). The “original-high” condition loses macroscopic structures while other
conditions successfully maintain them.

Fig. 13.16 Evolutionary exploration and macroscopic structuredness averaged over t =
10,000−30,000 for each independent simulation run (from (Sayama and Wong 2011), with
slight modifications). Each marker represents a data point taken from a single simulation run.
It is clearly observed that the “revised-high” condition (shaded in light blue) most success-
fully achieved high evolutionary exploration without losing macroscopic structuredness.
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13.5 Conclusions

In this chapter, we have reviewed our recent work on two complementary ap-
proaches for guiding designs of self-organizing heterogeneous swarms. The com-
mon design challenge addressed in both approaches was the lack of explicit criteria
for what constitutes a “good” design to produce. In the first approach, this challenge
was solved by having a human user as an active initiator of evolutionary design pro-
cesses. In the second approach, the criteria were replaced by low-level competition
functions (similar to laws of physics) that drive spontaneous evolution of swarms in
a virtual ecosystem.

The core message arising from both approaches is the unique power of evolution-
ary processes for designing self-organizing complex systems. It is uniquely pow-
erful because evolution does not require any macroscopic plan, strategy or global
direction for the design to proceed. As long as the designer—this could be either an
intelligent entity or a simple unintelligent machinery—can make local decisions at
microscopic levels, the process drives itself to various novel designs through unpre-
scribed evolutionary pathways. Designs made through such open-ended evolution-
ary processes may have a potential to be more creative and innovative than those
produced through optimization for explicit selection criteria.

We conclude this chapter with a famous quote by Richard Feynman. At the time
of his death, Feynman wrote on a blackboard, “What I cannot create, I do not un-
derstand.” This is a concise yet profound sentence that beautifully summarizes the
role and importance of constructive understanding (i.e., model building) in scien-
tific endeavors, which hits home particularly well for complex systems researchers.
But research on evolutionary design of complex systems, including ours discussed
here, has illustrated that the logical converse of the above quote is not necessar-
ily true. That is, evolutionary approaches make this also possible—“What I do not
understand, I can still create.”
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Chapter 14
Mutual Information As a Task-Independent
Utility Function for Evolutionary Robotics

Valerio Sperati, Vito Trianni, and Stefano Nolfi

14.1 Introduction

The design of the control system for a swarm of robots is not a trivial enterprise.
Above all, it is difficult to define which are the individual rules that produce a desired
swarm behaviour without an a priori knowledge of the system features. For this
reason, evolutionary or learning processes have been widely used to automatically
synthesise group behaviours (see, for instance, Matarić 1997; Quinn et al. 2003; Bal-
dassarre et al. 2007). In this paper, we investigate the use of information-theoretic
concepts such as entropy and mutual information as task-independent utility func-
tions for mobile robots, which adapt on the basis of an evolutionary or learning
process. We believe that the use of implicit and general purpose utility functions—
fitness functions or reward/error measures—can allow evolution or learning to ex-
plore the search space more freely, without being constrained by an explicit de-
scription of the desired solution. In this way, it is possible to discover behavioural
and cognitive skills that play useful functionalities, and that might be hard to iden-
tify beforehand by the experimenter without an a priori knowledge of the system
under study. Such task-independent utility functions can be conceived as universal
intrinsic drives toward the development of useful behaviours in adaptive embodied
agents.

In this paper, we investigate whether information-theoretic measures can be used
to drive the evolution of coordinated behaviours in groups of evolving robots. In
particular, we demonstrate how the use of a utility function that maximises the mu-
tual information between the motor states of wheeled robots leads to the evolution
of a variety of effective coordinated behaviours.

In the present study, three robots driven by identical neural controllers prove ca-
pable of displaying behaviours that are both structured and coordinated. Looking at
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the individual level, we define a “structured” behaviour as a temporal sequence of
several elementary behaviours, where the latter are sequences of atomic actions that
produce a well-defined outcome (e.g., “move-straight”, “move-to-light”, “avoid-
obstacle”, etc.). For instance, an oscillatory behaviour in which a single robot moves
back and forth from a light bulb is structured as it can be described as a periodic
sequence of “move-to-light” and “move-away-from-light” behaviours. In contrast,
sequences of random atomic actions would not be considered structured. Looking at
the collective level, we define a “coordinated” behaviour as a situation in which the
behaviours produced by the individuals are correlated as for example, in the case of
the production of similar and synchronized oscillatory movements or as in the case
of alternated turn-taking behaviours.

We present two sets of experiments, which differ by the environmental cues avail-
able to the robots. In the first experiment, referred to as El , robots evolve within an
arena presenting a clearly distinguishable cue, that is, a light bulb perceivable from
every location. In the second experiment, referred to as Ed , there is no light bulb to
provide exploitable environmental cues, and the robots have to autonomously create
the conditions required to perform structured and coordinated behaviours. We show
how the proposed measure leads to the evolution of a rich—non trivial—repertoire
of coordinated behaviours. Moreover, the paper assesses the effectiveness of the
proposed methodology through the use of realistic simulations and through the test
of the solutions evolved in simulation on the physical robots.

The rest of the paper is organised as follows. In the next section, we briefly review
the relevant aspects of information theory. In Sec. 14.3 we briefly review related
literature. In Sec. 14.4 and 14.5, we describe the experimental setup and the results
obtained. Finally, in Sec. 14.6 we discuss the main contributions of the paper and
we draw our conclusions.

14.2 Short Introduction to Information Theory

In this section, we briefly discuss the information theory concepts and measures
first introduced by Shannon (1948), used in the definition of the task-independent
utility function described in Sec. 14.4.3. Regarding notation, we follow Feldman’s
style: we use capital letters to indicate a random variable, and lowercase letters to
indicate a particular value of that variable (Feldman 2002). For example, let X be
a discrete random variable. The variable X may take on the values x ∈ X. Here, X
is the finite set of M possible values (or states) for X , referred to as the alphabet
of X . The probability that X takes on the particular value x is written p(X = x),
or just p(x) (first order probability density function). We may also form joint and
conditional probabilities. Let Y be another random variable with Y = y ∈ Y. The
probability that X = x and Y = y is written p(X = x,Y = y), or simply p(xy) (second
order probability density function), and is referred to as a joint probability. The
conditional probability that X = x given Y = y, is written p(X = x|Y = y) or simply
p(x|y). Now, we can introduce the Shannon entropy equation, which is formally
defined as:
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H[X ] =− ∑
x∈X

p(x) · log2 p(x). (14.1)

The entropy H[X ] - or marginal entropy - is equal to zero if the variable X always
takes on the same value. The maximum value is equal to log2M, and it is obtained
when X takes on all M possible values in alphabet X with the same probability ( 1

M ).
There are many interpretations about the meaning of Shannon entropy. In our case,
we consider entropy as “a precise measure of the amount of freedom of choice in an
object; an object with many possible states has high entropy” (see Prokopenko and
Wang 2003). The same formula and interpretation is applicable to a joint distribu-
tion:

H[XY ] =− ∑
x∈X

∑
y∈Y

p(xy) · log2 p(xy). (14.2)

Note that, by definition, H[XY ]≤ H[X ]+H[Y ]. The equality is obtained if and only
if X and Y are statistically independent. Given a conditional distribution we can
define the conditional entropy:

H[X |Y ] =− ∑
x∈X

∑
y∈Y

p(xy) · log2 p(x|y). (14.3)

The conditional entropy quantifies the remaining entropy about X , given that the
value of Y is known. Note that H[X |Y ] = 0 if and only if the value of X is completely
determined by the value of Y . Conversely, H[X |Y ] = H[X ] if and only if X and Y are
statistically independent. It is quite useful to see that the equation of joint entropy
can be re-expressed in terms of marginal entropy and conditional entropy:

H[XY ] = H[X ]+H[Y |X ] = H[Y ]+H[X |Y ]. (14.4)

Finally, we present the Mutual Information (MI), which is formally defined as:

MI[X ;Y ] =− ∑
x∈X

∑
y∈Y

p(xy) · log2
p(x) · p(y)

p(xy)
. (14.5)

The properties of MI are more evident if we re-express the above formula in terms of
marginal entropy and joint entropy and in terms of marginal entropy and conditional
entropy:

MI[X ;Y ] = H[X ]+H[Y ]−H[XY ]. (14.6)

MI[X ;Y ] = H[X ]−H[X |Y ] = H[Y ]−H[Y |X ]. (14.7)

Looking at eq. (14.5), it is possible to notice that MI[X ;Y ] = 0 if the two variables
are statistically independent. On the other hand, eq. (14.6) shows that MI[X ;Y ] = 0 if
the two variables have zero entropy. The measure is symmetric, namely MI[X ;Y ] =
MI[Y ;X ].

The interpretation of MI is quite clear looking at eq. (14.7). Feldman describes
MI as “the reduction in uncertainty of one variable due to knowledge of another.
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If knowledge of Y reduces our uncertainty of X , then we say that Y carries informa-
tion about X” (Feldman 2002). In other words, if X and Y are independent variables,
the mutual information that one variable brings about the other is null. On the other
extreme, mutual information is maximised if the knowledge of one variable is suffi-
cient to completely describe the other variable. When this happens, we can imagine
that a bidirectional communication channel through whom the information flows,
establishes between the two variables. In practice, MI can be used as a powerful in-
dex of correlation: the greater the value of MI, the more correlate are two variables.
The great advantage of MI is that it takes into account both linear and nonlinear
dependencies (Lungarella and Pfeifer 2001).

14.3 Related Work

The above measures and related derivations have been successfully used as analytic
tools in different fields. In ethology for example, information theory was used to
describe the interplay between pheromone molecules and ants’ movements. By ob-
serving ants’ foraging behaviour, Van Dyke Parunak and Brueckner (2001) showed
that the increase in entropy at the micro-level of the chemical particles is compatible
with the reduction of disorder at the macro-level of the ants’ movements. Brenner
et al. (2000) used information entropy to describe the behaviour of the visual system
of the fly. The authors showed how the fly’s response to the environmental features is
dynamically adapted in order to maximise the information inflow. In neurosciences,
the dynamics observable in the human brain have been studied under the light of
information theory (Tononi et al. 1994, 1996, 1998; Sporns et al. 2000). A measure
called neural complexity (CN) captures some aspects of the interplay between the
functional segregation of different cortical areas and their global integration during
perception and behaviour. CN is shown to be high when functional segregation co-
exists with global integration, and to be low when the components of a system are
either completely independent (segregated) or completely dependent (integrated).

In robotics, Olsson et al. (2005) proved that the perceptions of a robot can be
treated in an efficient and computationally economic way if sensors can adapt to the
statistical properties of the incoming signals. Tarapore et al. (2004, 2006) applied
entropy and mutual information to the sensory channels of a two wheeled simulated
robot: These measures are used to classify different behaviours, such as exploring
the environment, searching for red objects and tracking them. The authors argued
that information theory can provide useful methods to discover the “fingerprints” of
particular agent-environment interactions. Similarly, Lungarella and Pfeifer (2001)
used entropy and mutual information to analyse the input data obtained by a robotic
arm holding a colour camera. The authors compared coordinated movements (e.g.,
foveation on a red object), with uncoordinated ones (e.g., random movements),
detecting clear informational structures in the first case. Comparable results were
obtained by Lungarella and Sporns (2005) and Lungarella et al. (2005), using a
robotic setup very similar to the previous work. The authors argued that coordinated
sensory-motor activity induces information structures in the sensory experience.
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This idea has been further elaborated by Klyubin et al. (2005a) with the notion
of Empowerment, an information based quantity that allows to characterise the effi-
ciency of the perception-action loop of an organism model. This quantity measures
the potential of the organism to imprint information on the environment via its actu-
ators in a way that can be recaptured by its sensors. A generalization of this measure
for continuous domains has been later proposed by Jung et al. (2011).

Finally, other recent works investigated the use of information-based measures
to characterise collective behaviour. Wang et al. (2011) investigate how information
propagate in groups of coordinated individuals. In particular the authors showed
how crucial phases in collective behaviours (corresponding to clustering, merging,
and separation) are characterised by well-marked peaks of the active information
storage and transfer entropy measures. Harder et al. (2010) instead demonstrated
how the mutual information among the actions displayed by a couple of coordi-
nated individuals can be used to characterise the autonomy level of the individuals
and whether the couple can be characterised as a unique coherent entity. Harder
et al. (2011) demonstrated how information theoretic measures can be used to quan-
tify the ability of individual agents to extract information locally about global fea-
tures. Finally, information theoretic measures have been used to characterise the
emergence of self-organizing collective properties, e.g. the abrupt formation of a
dynamic chain pattern within a swarm of robots evolved for the ability to navigate
between two target areas (Sperati et al. 2011).

More importantly, from the point of view of the objectives of this paper, sev-
eral recent works demonstrated how information theoretic measures can be used to
synthesize sensory-motor coordination capabilities and/or co-ordinated behaviours.
Sporns and Lungarella (2006) demonstrated how the maximisation of the informa-
tion structure of the sensory states experienced by embodied and situated agents
might lead to the development of useful behavioural skills. The agent is a simulated
arm provided with visual and tactile sensors, placed in an environment including
an object that moves in a random direction at constant speed. The object is charac-
terised by a uniform colour which can be distinguished from the randomly coloured
pixels of the background. By selecting evolving agents on the basis of the informa-
tion structure of their experienced sensory states, the authors observed the develop-
ment of useful behavioural skills consisting in the ability to foveate and to touch
the moving object. Prokopenko et al. (2006) demonstrated how the maximisation
of Excess Entropy (a measure of apparent memory or structure in a system), can
lead to useful coordinated behaviour. In particular, the authors showed how a sim-
ulated snake-like modular robot, evolved on the basis of this measure, displays an
effective locomotion behaviour: the linked actuators composing the robot get coor-
dinated and produce a forward motion which interestingly adapts to the environment
features, and makes the robot capable to face challenging terrains characterised by
obstacles, narrow passages and ragged textures. In a subsequent work involving the
same robotic setup, the authors used as fitness function the Transfer Entropy, i.e.
a measure of information transfer (Lizier et al. 2008). In the experiment reported
in this paper the authors observed a propagation of information between the head
and the tail of the robot. The observed information transfer structures are analogous



394 V. Sperati, V. Trianni, and S. Nolfi

to gliders in cellular automata, which have been demonstrated to represent the co-
herent transfer of information across space and time, and play an important role in
facilitating distributed computation.

Zahedi et al. (2010) proposed a learning method based on the maximisation of the
predictive information, i.e. the mutual information between past and future sensors
states, in the sensory-motor loop. The method was evaluated on a series of experi-
ments involving robot constituted by chains of individually controlled elements of
varying length. The Empowerment measure mentioned above has been used as a se-
lection criteria for evolving the properties of the agent sensors and actuators (Klyu-
bin et al. 2008, 2005b). As observed by the authors this triggers a process in which
the morphology of the sensors and of the actuators adapts to the characteristics of the
environment in which the agents are situated. More generally the authors claim that
empowerment, being a measure of what the agents could do rather than a measure
of what they actually do, can constitute a general adaptive drive that could enable
the development of survival-relevant behaviour even in the absence of behaviour
specific drives (Klyubin et al. 2008). Empowerment and Infotaxis, a measure that
encodes the expected reduction of entropy achieved by selecting actions, have also
been successfully used to synthesize coordinated collective behaviours (Capdepuy
et al. 2007; Salge and Polani 2011).

Most of these works—as much as the study presented in this chapter—belong to
a novel methodology in evolutionary robotics called information-driven evolution,
in which information based measures that are task-independent are used as utility
functions.

14.4 Experimental Setup

As mentioned in Sec. 14.2 , MI[X ;Y ] can be seen as a powerful measure to grasp the
correlation between two stochastic processes X and Y . Moreover, maximising MI
also corresponds to maximising the entropy of the single processes H[X ] and H[Y ],1

which is related to an higher probability of observing X or Y in multiple states. In
this paper, we study whether MI can be used to evolve coordinated behaviours in a
group of robots (see also Sperati et al. (2008)). The application of such a measure
as utility function for an evolutionary robotics experiment is not straightforward.
Given the experimental setup, it is necessary to define which are the stochastic pro-
cesses under observation, discretise them in a suitable way and compute the desired
utility functions. We chose to maximise the mutual information of the motor states
observed in a group of autonomous robots (see Section 14.4.3). In particular, we
focus on the wheels’ speed, which characterise the robot movements in the envi-
ronment. In this way, we aim at evaluating the quality of the individual and group
behaviour, without any reference to the sensory pattern perceived by the robots.

The experimental setup involves three wheeled robots provided with a neu-
ral controller and different types of actuators and sensors (see Section 14.4.1).
Robots are placed in a square arena of 1x1 m in side surrounded by walls. In the

1 This is true if the joint entropy is kept constant, see eq. (14.6).
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Fig. 14.1 Left: The e-puck robot developed at the EPFL in Lausanne, Switzerland (Mondada
and Bonani 2007). Right: A close up view of the environment with the light bulb in the centre
and three robots.

experiment El , a light bulb is placed in the centre of the arena. The intensity of the
light decreases quadratically with the distance from the light bulb, but it is anyway
perceivable by the robots from every location in the arena. Therefore, the light bulb
provides a clearly distinguishable environmental cue to be exploited by the robots
for coordination. In the experiment Ed , such environmental cue is not present, mak-
ing the coordination between the robots more difficult to achieve.

We performed 20 evolutionary runs per experiment, in order to establish the via-
bility of the approach varying the initial population of genotypes. Each evolutionary
run lasts 200 generations. In each generation, the population is evaluated and geno-
types are selected for reproduction on the basis of an estimate of their fitness (see
Section 14.4.2). This estimate is obtained by testing each genotype 10 times—i.e.,
we perform 10 independent trials randomly varying the initial conditions (see Sec-
tion 14.4.3). The best evolved genotypes resulting from each evolutionary run is
then selected for a qualitative and quantitative analysis, presented in Section 14.5.

14.4.1 The Robot and the Neural Controller

The experiments presented in this paper are performed using the e-puck robots (see
Fig. 14.1 left), which are wheeled robots with a cylindrical body having a diameter
of 70 mm (Mondada and Bonani 2007; Cianci et al. 2007). A rich subset of the
sensory-motor features of the e-puck has been exploited, as detailed in the following
sections. In fact, by using an implicit and task-independent fitness function, we do
not define a particular goal to be pursued by the robots. As a consequence, we do
not know in advance which are the sensory-motor features that can be exploited to
maximise the fitness function. We therefore decided to provide the robots with a
rich set of sensors and actuators in order to leave the evolutionary process free to
explore a wide set of possible solutions.

Each robot is provided with various sensory systems to perceive the environment,
including the other robots. Among these, we make use of infrared proximity sensors,
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ambient light sensors and a VGA camera pointing in the direction of forward mo-
tion. Moreover, the robots can communicate with their neighbours in two different
ways. They can light up the 8 red LEDs distributed around their body, in order to
be detected by the camera of the other robots. Additionally, robots can exploit their
wireless bluetooth interface to send and receive short messages (see Fig. 14.2).
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Fig. 14.2 Robot sensors and actuators. Left: sensors “IR” ( 8 infrared sensors), “AL” ( 8
light sensors), ”V” ( 3 fields of view from pre-processed camera data), “IS” (average group
signal), “OS” (own signal). Right: actuators “m” (wheel velocity and direction), ”L” (leds ring
on/off), “SO” (signal). Note that gray symbols refer to virtual actuators/sensors not present
in the physical robot, but implemented through the wireless bluethoot interface.

The robots are controlled by artificial neural networks, whose parameters are set
by an evolutionary algorithm. A single genotype is used to create a group of robots
with an identical control structure—a homogeneous group. Each robot is controlled
by a fully connected two layer neural network with fixed topology, characterised by
an input layer with leaky integrator neurons and by an output layer of motor neurons
(see Fig. 14.3). The activation of the output neurons is computed as the weighted
sum of all input units and the bias, filtered through a sigmoid function:

O j(t) = σ

(
∑

i

wi jIi(t)+β j

)
, σ(z) =

1
1+ e−z , (14.8)

where Ii(t) corresponds to the activation of the ith sensory neuron at time t, wi j is
the weight of the synaptic connection between the sensory neuron i and the motor
neuron j, and β j is a bias term. Sensory neurons are leaky integrators, that is, they
hold a certain amount of their activation from the previous time step, and the effect
of the previous state on their current state is determined by their time constant:

Ii(t) = τi · Ii(t − 1)+ (1− τi) · Ii(t), (14.9)

where τi is the time constant of the ith neuron, and I(t) is the sensory input at
time t.

The activations of the output neurons are real valued numbers in the range
[0.0,1.0], and are used to control the actuators of the robot (see Fig. 14.3).
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Two motor neurons (m1 and m2) encode the desired speed of the two motors which
control the two corresponding wheels. The activation of each neuron is linearly
scaled in the range [−2π ,2π ] rad/sec, and used to set the desired angular speed of
the corresponding motor. One motor neuron (L) controls the red LEDs: all eight
LEDs are switched on or off depending on whether the activation of the motor neu-
ron is above or below an arbitrary threshold of 0.9. Finally, one motor neuron (SO)
encodes the value of the communication signal produced by the robot at each cycle,
which varies in the range [0.0, 1.0]. This signal is transmitted to the other robots
through the wireless bluetooth interface.

Concerning the sensory inputs, they are set by the robot sensors after normalising
their value onto the range [0.0,1.0]. Eight sensory inputs are dedicated to the in-
frared proximity sensors (IFi, i = 1, . . . ,8), which can detect an obstacle up to a dis-
tance of approximately 25 mm (see Fig. 14.3). Three sensory inputs (Vi, i = 1, . . . ,3)
encode the presence of nearby robots—provided that they have their red LEDs
switched on—as detected by the camera: the image that is grabbed at each cy-
cle is pre-processed, in order to extract the percentage of pixels that have a pre-
dominant red colour within the following three vertical visual sectors: [−18◦,−6◦],
[−6◦,+6◦], and [+6◦,+18◦]. The two remaining sensory inputs are dedicated to the
communication signal: one input (IS) encodes the average signal produced by all the
robots placed in the arena, the other input (OS) encodes the signal produced by the
robot itself during the previous cycle. Additionally, in the experimental setup that
includes the light bulb, the robots are provided with eight further sensory inputs,
which are dedicated to the ambient light sensors (ALi, i = 1, . . . ,8), shown in grey in
Fig. 14.3.

In the experiments performed in simulation, the state of the infrared and ambient
light sensors has been simulated through a sampling technique (Miglino et al. 1995).
The visual sensors have been simulated through a ray tracing technique, by using 36
rays uniformly distributed over the camera range. All sensors have been subjected
to noise implemented as a random value with a uniform distribution in the range

m1 m2 L So

AL1 AL8... IR1 IR8 V1 V2 V3... IS OS

output layer

input layer
Fig. 14.3 The architecture of the neural controller. Note that gray neurons refers to vir-
tual actuator/sensors not present in the physical robot, but implemented through the wireless
bluethoot interface. Neurons “AL” are used in the experiment El only, while the other neurons
are common to both setups.
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[−0.05,0.05], added to the state of each simulated sensor. The use of simulated
noise should favour the portability of the controllers evolved in simulation to the
physical robots (see Jakobi 1997, for a detailed discussion about this topic).

14.4.2 The Evolutionary Process

The free parameters of the robot’s neural controller are adapted through an evolu-
tionary process (Nolfi and Floreano 2000). The initial population consists of 100
randomly generated binary genotypes, that encode the connection weights, the bias
terms and the time constants of 100 corresponding neural controllers. Each param-
eter is encoded by 8 bits, and its value is linearly scaled from the range [0,255] to
the range [−5.0,5.0] in the case of connection weights and bias terms, and in the
range [0.0,0.95] in the case of time constants. The 20 best genotypes of each gen-
eration were allowed to reproduce by generating five copies each, with 4% of their
bits replaced with a new randomly selected value, excluding one copy (elitism). The
evolutionary process lasted 200 generations.

Each genotype is translated into three identical neural controllers which are
downloaded onto three identical robots (i.e., the robots are homogeneous). Each
team was tested for 10 trials, lasting 200 seconds (i.e., 2000 simulation cycles of
100 ms each). The performance of the genotype is the average fitness, as computed
by eq. (14.12), over 10 trials. At the beginning of each trial, the three robots are
placed in the arena with a random position and orientation. In case of collision the
team is repositioned randomly again. The evolutionary process has been conducted
in simulation.2 The best evolved neural controllers have been tested with physical
robots.

14.4.3 The Fitness Function

Evolving individuals are selected on the basis of a fitness function which measures
the Mutual Information MI between the motor states Xi of all possible robot pairs.
The maximisation of MI should drive evolution towards the development of co-
ordinated behaviours. In fact, high values of MI correspond to motor states that are
positively correlated: the knowledge of motor state Xi gives information about motor
state Xj and vice versa. In other words, Xi and Xj result from processes that we can
describe as “coordinated”. Moreover, since the maximisation of MI also requires
the maximisation of the entropy of the motor state Xi of each robot, this fitness
function rewards evolving robots for the ability to produce structured behaviours.
In fact, entropy is maximised not only by very random behaviours, but also by
very structured behaviours that systematically vary through time. In particular, peri-
odic sequences of equally frequent elementary behaviours such as “move-forward”,

2 Using a similar setup, a single evolutionary run—i.e., 200 generations, 100 individuals,
10 trials per individual, 200 seconds per trial—performed with physical robots would last
longer than one year.



14 Mutual Information As a Task-Independent Utility Function 399

“move-backward”, “turn-left” and “turn-right” allow the robot to uniformly cover
many possible motor states, therefore maximising entropy.

For the purpose of computing the fitness function as the MI between the motor
states of a robot pair, we need to define a discrete variable X that accounts for the
current motor state—the wheels’ speed. To avoid that motor state variations are
caused by the random noise injected in the simulation, we filter the motor state
through a slow moving average. In this way, for robots not having internal dynamics,
systematic variations of Xi can solely be produced by exploiting the dynamics of the
robot/environment interaction (i.e., by exploiting sensory-motor coordination). The
activation values m j, j = 1,2 of the two motor neurons controlling the wheels has
been averaged through time into the variables Mj:

Mj(t) = γ ·Mj(t − 1)+ (1− γ) ·m j(t), j = 1,2 (14.10)

where m j(t) ∈ [0.0,1.0] indicates the current activation of the motor neuron j and
γ = 0.9 is a fixed time constant that represents the rate at which Mj(t) ∈ [0.0,1.0]
changes over time. This moving average also channels the evolutionary process
towards the synthesis of behaviours that extend for sensible time durations.3 The
overall motor state X of a robot is a discrete variable computed according to the
following equation:

X = �M1 ·5�+ �M2 ·5� ·5, (14.11)

where �Mj · 5� means that the value Mj has been discretised into the integer range
[0,4], encoding all possible activation values of the motor neuron into five discrete
states.4 As a consequence, X takes on integer values in the range [0,24].

In order to compute the MI of a robot pair, the value Xi of each robot i = 1,2,3
is recorded in every cycle, obtaining statistics about the states encountered during
a trial. On the basis of these statistics, it is possible to estimate the probability dis-
tribution p(Xi = x) and the joint distribution P(Xi = x,Xj = y) needed to compute
MI[Xi;Xj], according to equation (14.5). Having estimated the probability distribu-
tion, the fitness function F of the group of robots in a trial is calculated on the basis
of the following equation:

F =
∑N

i=1 ∑N
j=i+1 MI[Xi;Xj] · 20−c

20

a
a =

(
N
2

)
(14.12)

3 Preliminary experiments conducted without the moving average produced behaviours that
were coordinated but neither periodic nor structured (result not shown). In these experi-
ments, we observed that the motor state of each robot varied in a quasi-random way (e.g.,
alternating at each time-step very different actions such us move-forward, move-backward,
turn-right, turn-left), therefore maximising the individual entropy without actually being
structured or periodic. Such variations were produced by achieving and maintaining a
given relative position with respect to an obstacle or to the other robots, so that each move-
ment resulted in a large variation of the sensory pattern.

4 The activation value equal to Mj = 1.0 is considered as state 4.
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where N is the number of robots, c is the number of times in which one of the robots
collided against a wall or against another robot, truncated to 20, a is the binomial
coefficient for couples of robots. In other worlds, this equation computes the average
Mutual Information calculated between all possible pairs of robots. The second term
of the fitness function has been introduced in order to reward robots for the ability
to avoid collisions. All robots are randomly repositioned whenever a collision is
detected: in this way, we bypass the problem of accurately simulating the physical
interactions during a collision, offering the robots further possibilities to coordinate.
Moreover, a maximum of 20 collisions per trial is allowed before the trial is stopped.
These choices channel the evolution of good collision avoidance behaviours.

The maximum value of F is obtained when no collisions are detected and all
robot pairs have maximum MI. Since X can assume 25 different states, the fitness
takes values in the range [0.0, log2 25]. It is worth noting, however, that the max-
imum value cannot be achieved in practice. The main reason for this is that the
individual entropy cannot be maximised because robots are embodied and their dy-
namical interaction with the environment—as it is defined by the neural controller—
constrains the number of motor states visited during the robot’s lifetime, and their
relative frequency. Moreover, the motor state X is the result of a moving average
with a fixed time constant, which influences X’s variability. Finally, the computa-
tion of the MI includes the initial transitory phase during which the robots try to
achieve a coordinated behaviour.

14.5 Results

In this section, we describe the results obtained in the two experiments El and Ed .
As detailed in the following sections, in both experiments the evolved robots display
behaviours that are structured (i.e., they consist of a sequence of atomic movements
with varying time durations), periodic (i.e., the sequence of atomic movements is
repeated through time), and coordinated (i.e., the different robots tend to produce
the same structured behaviour in a synchronised manner). From a qualitative point
of view, the evolved behaviours vary considerably between the two experiments,
and also across the different evolutionary runs of the same experiment.

14.5.1 Experiment El

In the experiment El , the robots are situated in in square arena of 1x1 m in side
presenting a light bulb, which can be perceived by means of the robot’s ambient
light sensors. As mentioned above, we performed 20 evolutionary runs, each time
starting with a different randomly generated population. After the evolutionary pro-
cess, we selected the best individual of each run for post-evaluation. In this case, the
fitness of each individual was further evaluated for 500 trials, using eq. (14.12). The
results obtained are summarised in Table 14.1, in which we show mean and standard
deviation over the 500 trials of the fitness F , of the average mutual information M̂I
over all possible robot pairs, and of the average entropy Ĥ computed over all robots.
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The results of the post-evaluation show that the average fitness varies between 1.70
and 3.24, respectively obtained in run 1 and 16. Given that F has been explicitly
constructed as a task independent and implicit utility function, the absolute value
of F is not very informative about the quality of the evolved behaviour. Recall that
the absolute value of F is mainly given by the M̂I. The latter is constrained by the
robots’ embodiment which limits the number of possible motor states actually vis-
ited during the robot’s lifetime. A qualitative analysis revealed that 18 out of 20
evolutionary runs resulted in controllers that produce structured and coordinated
behaviours (see the runs indicated by a black dot in Table 14.1). This is a first re-
sult proving that the proposed methodology is viable: mutual information can be
exploited as a generic utility function to obtain task-less adaptation in a group of
robots.

Table 14.1 Experiment El : fitness F , average mutual information M̂I and average entropy Ĥ
computed by testing in simulation the best evolved controller of each evolutionary run for 500
trials of 2000 cycles. Mean value and standard deviation are shown. The symbol • indicates
a run in which the best evolved individuals clearly show behaviours that an external observer
can judge as structured and coordinated.

run F M̂I Ĥ run F M̂I Ĥ

1 1.70±0.27 1.72±0.28 2.55±0.39 11 • 2.73±0.17 2.75±0.13 3.51±0.09
2 • 2.81±0.14 2.84±0.11 3.55±0.05 12 • 2.27±0.15 2.29±0.13 3.52±0.19
3 • 1.91±0.20 1.93±0.17 2.97±0.08 13 • 2.38±0.22 2.39±0.21 3.19±0.25
4 • 2.99±0.21 3.02±0.18 3.96±0.04 14 • 2.72±0.13 2.75±0.09 3.55±0.06
5 • 2.97±0.13 2.99±0.11 3.84±0.08 15 • 2.47±0.18 2.51±0.12 3.23±0.04
6 • 2.50±0.07 2.50±0.07 3.24±0.13 16 • 3.24±0.14 3.25±0.12 4.01±0.06
7 • 2.41±0.14 2.42±0.12 3.26±0.15 17 • 2.49±0.16 2.50±0.13 3.55±0.02
8 • 2.19±0.19 2.24±0.16 3.43±0.08 18 1.72±0.17 1.75±0.16 3.05±0.21
9 • 2.40±0.18 2.43±0.14 3.32±0.05 19 • 2.99±0.17 3.01±0.14 3.96±0.04
10 • 2.17±0.20 2.18±0.19 3.07±0.13 20 • 3.12±0.17 3.14±0.14 4.08±0.06

14.5.1.1 Behavioural Analysis

The qualitative inspection of the results obtained indicates that the robots always
display structured and coordinated behaviours. Generally, the environmental cue
offered by the light bulb is exploited by the robots to achieve the same relative po-
sition and to display a periodic, structured behaviour. Moreover, robots perform a
coordinated behaviour through the synchronisation of their movements. Synchroni-
sation is generally achieved through the exploitation of the communication signal
only. Infrared sensors are generally exploited to avoid collisions with walls and with
other robots, while visual information is often ignored.

A particularly interesting example of structured and coordinated behaviour is
produced by the controller evolved in run 16, characterised by the highest mean
performance (see Table 14.1). In this case, robots circle anticlockwise around the
light bulb maintaining a distance of about 20 cm (see the trajectories of the robots
shown in Fig. 14.4 and the video “replication 16 El” in the online supplementary
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Fig. 14.4 Analysis of the behaviour produced by the best evolved controller in run 16 of
experiment El . Left: trajectories of the robots. Right: activation of the motor neurons of each
robot, plotted from cycle 950 to cycle 1150 to highlight the periodic motion of the robots.
The solid and dotted lines indicate respectively the left and right motor neurons.

material5 ). While circling around the light bulb, robots display a structured be-
haviour composed of four atomic movements: (i) forward motion on the circle, (ii)
clockwise turn on the spot, (iii) backward motion on the circle, and (iv) anticlock-
wise turn on the spot. These atomic movements can be clearly identified looking at
the plots in Fig. 14.4 right, in which we show the activation of the motor neurons
that control the two wheels. Recall that maximum forward rotation corresponds to
1, while maximum backward rotation corresponds to 0. Starting at cycle 950, both
wheels present forward rotation, resulting in forward movement on the circle. Af-
terwards, the activation of the right motor neuron sharply decreases to 0, leading
to a clockwise rotation on the spot. Then, the left motor activations also drops to
0, resulting in backward motion. Finally, the right motor activation increases to 1,
producing an anticlockwise rotation on the spot. After this, the robot starts again
with forward motion.

The above description accounts for the structure of the evolved behaviour. The
coordination between the robots can be appreciated by observing how the mo-
tor activations of the three robots coincide in time (see Fig. 14.4 right). In short,
robots are synchronised as they perform the same movements at the same time.
The mechanism that the robots exploit to achieve and maintain synchronisation is
based on communication, and on the fact that robots are homogeneous. An indi-
vidual robot mainly signals during forward motion, and stops signalling as soon as
the clockwise movement starts. All robots perform the same individual movements,
which synchronise on the basis of the mutual interactions through communication.
If an external signal is perceived, the robot keeps moving forward until signalling
stops. As a consequence, the clockwise movement cannot start until all robots are

5 See http://laral.istc.cnr.it/esm/sperati-etal-GSO_2012.html
for videos and other supplementary material.

http://laral.istc.cnr.it/esm/sperati-etal-GSO_2012.html
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Fig. 14.5 The motor states of the three robots—computed using eq. (14.11)—are plotted
against the number of cycles. Notice the initial coordination phase, followed by synchronised
movements.

performing forward motion. When this happens, synchronisation is achieved. This
simple mechanism—already observed by Trianni and Nolfi (2009) —is based on
a simple reaction to the perception of a signal, that allows a robot to achieve and
maintain a certain sensory-motor condition—referred to as reset configuration by
Trianni and Nolfi (2009) —waiting for the other robots. Synchronised movements
start when all robots achieve the reset configuration.

Having described qualitatively the evolved behaviour, the questions remain: how
did this behaviour evolve? In what way is MI maximised? To answer these ques-
tions, it is necessary to observe the motor states Xi and to analyse their statistics.
Figure 14.5 shows how the motor states vary through time. First of all, it is pos-
sible to notice how the initial coordination phase is followed by a phase in which
the group behaviour is perfectly synchronised. Moreover, it is possible to observe
how, during the coordinated phase, the motor states take on many different values.
In other words, the motor states of the robots vary considerably through time, which
corresponds to a high individual entropy. Besides, once robots are synchronised, the
motor states are highly correlated. This means that the joint entropy is minimised
and the mutual information maximised.

Similar conclusions can be drawn looking at Fig. 14.6. In the left part, the his-
tograms represent the probability p(Xi = x),x ∈ [0 : 24] estimated on a single trial.
It is possible to notice how Xi takes on many different values with relatively high
probability. As a consequence, the individual entropy H[Xi] is rather high (see the
individual values shown above the plot). Similarly, in the right part of Fig. 14.6, the
3D histogram represents the probability p(X1 = x1,X2 = x2) estimated on the same
trial.6 Here, it is worth noting that the joint distribution takes values mainly on the
diagonal X1 = X2, meaning that the probability of having X1 �= X2 is rather low. As
a consequence, we observe a small value for the joint entropy H[X1X2], and a high
value for the mutual information MI[X1;X2].

Owing to the above analysis, it is possible to claim that (i) structured behaviours
maximise the individual entropy, because they are characterised by motor states that

6 The histograms for the other pairs 〈X1,X3〉 and 〈X2,X3〉 are extremely similar and have
been omitted for space reasons.
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Fig. 14.6 Left: Probability distribution for the motor states Xi of each robot i = 1,2,3. Right:
Probability distribution of the joint state 〈X1,X2〉.

Table 14.2 Experiment El : average mutual information (M̂I) and average entropy (Ĥ) com-
puted by testing the evolved controllers on physical robots for 5 trials of 2000 cycles each. We
show here only the evolutionary runs that successfully transfer to reality from a qualitative
standpoint. The column labelled ‘ratio’ indicates the ratio between the performance observed
in hardware with respect to the performance observed in simulation.

run M̂I Ĥ ratio run M̂I Ĥ ratio
2 2.29±0.07 3.55±0.03 0.81 12 1.83±0.12 3.65±0.22 0.81
3 1.34±0.24 3.23±0.16 0.70 13 1.78±0.51 2.89±0.28 0.75
5 2.62±0.17 3.87±0.05 0.88 16 2.82±0.05 3.96±0.01 0.87
6 2.24±0.04 3.14±0.09 0.90 17 1.89±0.13 3.45±0.06 0.76
9 2.22±0.12 3.44±0.05 0.92 19 2.42±0.17 3.54±0.10 0.81
11 1.93±0.05 3.31±0.07 0.71 20 2.55±0.12 4.17±0.05 0.82

have sensible time duration and vary systematically across the range of possible val-
ues; (ii) coordinated behaviours maximise the mutual information, because they en-
sure that a certain motor state of one robot is correlated with the motor state of other
robots; (iii) the homogeneity of the robots results in synchronisation behaviours that
ensure the one-to-one correspondence of the motor states between robots.

14.5.1.2 Porting to Reality

By testing with physical robots all controllers that proved successful in simulation,
we observed qualitatively similar behaviours with respect to simulation in the ma-
jority of the evolutionary runs (12 out of 18 runs).7 In all other cases, we observed a
fairly good correspondence with simulation for individual behaviours, but not for
coordination among robots. In fact, coordination was difficult to achieve and to
maintain throughout a whole trial.

7 See videos in the online supplementary material.
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Fig. 14.7 Average mutual information (M̂I) and entropy (Ĥ) computed by testing the best
evolved controller of run 9 of experiment El in simulation and in reality for 20 trials of 2000
cycles. During the tests in hardware, the robots were situated in the same randomly generated
positions and orientations that were used for the tests in simulation.

In order to quantitatively determine the correspondence between tests with sim-
ulated and physical robots, we tested the evolved controllers by placing three real
robots in locations randomly chosen from a set of 32 possible initial positions and
8 possible rotations. We performed 5 trials for each evolutionary run, and we mea-
sured the average mutual information computed among all possible robot pairs. The
results obtained are shown in Table 14.2, along with the ratio with the average mu-
tual information resulting from simulation. It is worth noting that the ratio between
the mutual information observed in simulation and in the real environment is gener-
ally quite high, indicating that the behaviours tested in reality correspond fairly well
to those observed in simulation.

After this preliminary test was performed on all evolutionary runs, we analysed in
detail the best individual of run 9 (i.e., the individual with the highest ratio between
the performance observed in simulation and in reality8 ). We performed 20 further
evaluations keeping exactly the same initial conditions in both simulated and real
tests. We observed a good correspondence between the mean mutual information
observed in simulation and in reality, as shown in Fig. 14.7 left. Similarly, the mean
entropy over 20 trials computed on the tests with physical robots corresponds to the
value obtained in simulation (see Fig. 14.7 right).

14.5.2 Experiment Ed

In the second set of experiments, the robots are situated in an arena without a light
bulb. Moreover, robots are not provided with ambient light sensors. Also in this
case, we performed 20 evolutionary runs, we selected the best individual of each
run and we post-evaluated it in 500 different trials. As shown in Table 14.3, the
evolved controllers present lower fitness values compared to the results obtained
in experiment El . In this case, in fact, the fitness varies between 1.24 and 2.93,

8 See video “replication 9 El” in the online supplementary material.
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obtained respectively in run 14 and 10. The qualitative analysis revealed that 11 out
of 20 evolutionary runs converge toward structured and coordinated behaviours. In
other two cases—namely runs 17 and 19—the average performance is rather high
but robots display behaviours that are structured and coordinated only initially, and
later degenerate toward non-structured behaviours.

Despite the lower number of successful evolutionary runs, the proposed method-
ology for the evolution of coordinated behaviour still proves capable of producing
good results in the majority of the tests performed (11 out of 20 evolutionary runs).
The smaller number of successful evolutionary runs and the lower performance ob-
tained in the average within experiment Ed is a consequence of the absence of the
environmental cue that characterises experiment El . Indeed, all evolutionary runs of
experiment El exploit such environmental cue, which gives a reference point that
can be perceived from far away and that can be used by the robots to initiate and
maintain a structured and coordinated behaviour. In contrast, the absence of the
environmental cue forces the robots to search for other regularities that can be ex-
ploited for coordination. Given that the environment does not offer such obvious
regularities, they must be extracted from the sensory-motor experience of the robots
interacting with the social environment. Clearly, solutions of this kind are more dif-
ficult to evolve, because they are based on dynamical interactions among robots.
However, as we show in the next section, a number of possible strategies exist to
solve this problem.

Table 14.3 Experiment Ed : fitness F , average mutual information M̂I and average entropy Ĥ
computed by testing in simulation the best evolved controller of each evolutionary run for 500
trials of 2000 cycles. Mean value and standard deviation are shown. The symbol • indicates
the runs in which the best evolved individuals display structured and coordinated behaviours.
The symbol ◦ indicates the runs characterised by behaviours that degenerate with time.

run F M̂I Ĥ run F M̂I Ĥ

1 • 2.56±0.15 2.57±0.13 3.42±0.03 11 1.45±0.27 1.48±0.25 2.88±0.26
2 • 2.66±0.12 2.71±0.06 3.35±0.08 12 1.46±0.33 1.49±0.33 2.22±0.51
3 • 1.75±0.15 1.77±0.14 2.53±0.13 13 • 1.85±0.08 1.88±0.07 2.99±0.09
4 1.82±0.13 1.84±0.12 3.44±0.25 14 1.24±0.22 1.31±0.21 2.72±0.39
5 • 1.98±0.11 1.99±0.10 3.16±0.06 15 • 2.59±0.12 2.61±0.09 3.31±0.04
6 • 2.69±0.15 2.72±0.11 3.55±0.04 16 1.42±0.12 1.42±0.12 2.35±0.23
7 1.54±0.07 1.54±0.07 1.76±0.06 17 ◦ 2.22±0.15 2.22±0.14 2.55±0.12
8 • 1.92±0.14 1.94±0.12 2.62±0.12 18 1.27±0.28 1.27±0.28 2.07±0.39
9 • 2.17±0.12 2.19±0.10 3.18±0.19 19 ◦ 1.93±0.28 1.94±0.28 2.31±0.21
10 • 2.93±0.07 2.95±0.04 3.54±0.04 20 • 2.02±0.08 2.03±0.08 2.72±0.07

14.5.2.1 Behavioural Analysis

As mentioned before, the qualitative inspection of the evolved controllers allowed
us to identify 11 evolutionary runs that produce structured and coordinated be-
haviours. Also in this case, after an initial transitory phase, robots perform synchro-
nised movements. Communication is exploited to achieve and maintain synchrony.
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Fig. 14.8 Left: Trajectories of the robots produced by the best evolved controller in run 6 of
experiment Ed . Right: The motor states of the three robots are plotted against the number of
cycles.

The behaviours produced by the evolved controllers can be grouped into three strate-
gies, described as follows.

The first strategy—the most common one—encompasses the controllers evolved
in runs 1, 3, 5, 6, 9, 15 and 20. An interesting example of this strategy is given
by run 6, which presents the highest average fitness within its group. This strategy
is characterised by robots that periodically aggregate and disband, performing os-
cillatory movements around the centre of mass of the group and faraway from the
walls (see the trajectories in Fig. 14.8 left and video “replication 6 Ed” in the online
supplementary material). To do so, robots exploit vision, infrared proximity sensors
and communication. Vision is mainly exploited in the aggregation phase, during
which robots get close to one other assuming a triangular formation. When robots
are close enough to perceive each other through the infrared proximity sensors, they
disband moving backward. Due to relative differences in robots positions and ori-
entations with respect to the centre of mass of the group, the behaviour of the three
robots is not well coordinated during the first oscillatory movements. However, the
robots quickly converge toward a well coordinated behaviour, as is apparent looking
at the motor states plotted in Fig.14.8 right. Notice also how the motor states vary
through time, taking on many different values: this corresponds to a very structured
behaviour, which is also well coordinated as the robots perform the same actions at
the same time. Moreover, the oscillations have different amplitude and duration dur-
ing a trial, as can be noticed in Figure 14.8 right. This fact indicates that robots are
able to perform a variety of atomic movements, which can be triggered depending
on the particular contingency the robots experience. Nevertheless, they prove capa-
ble of maintaining coordination even when switching between different oscillation
modalities.

The second strategy encompasses the controllers evolved in runs 2, 10 and 13.
The highest average fitness within this group is obtained by run 10 (see Fig. 14.9 and
video “replication 10 Ed” in the online supplementary material). In this case, robots
do not interact visually or through their proximity sensors. They mainly produce a
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Fig. 14.9 Left: Trajectories of the robots produced by the best evolved controller in run 10
of experiment Ed . Right: The motor states of the three robots are plotted against the number
of cycles.
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Fig. 14.10 Left: Trajectories of the robots produced by the best evolved controller in run 8
of experiment Ed . Right: The motor states of the three robots are plotted against the number
of cycles.

behaviour structured in a sequence of atomic movements, such as backward motion
on a large circle followed by forward motion on a small circle. These movements are
performed without any reference to the position and orientation of the other robots
or to the position and orientation of the robot in the arena, provided that robots
are located far enough from walls. Robots exploit only the communication signal
to coordinate, and the robots display synchronised movements without keeping any
relation between their relative positions in the arena. As a consequence, coordinated
movements are performed from the very beginning of the trial, because there is
no need to achieve a particular spatial formation (see the motor states plotted in
Fig.14.9 right).

Finally, the last strategy includes only the controller evolved in run 8 (see
Fig. 14.10 and video “replication 8 Ed” in the online supplementary material). This
controller produces a peculiar behaviour characterised by four atomic movements
that last from 10 to 40 seconds—i.e., a time span considerably longer than those
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observed in other evolutionary runs, which can be appreciated by looking at the
motor states in Fig.14.10 right—which are periodically repeated: (i) rotating several
times to produce a nearly circular trajectory with a diameter of about 8 cm, (ii) rotat-
ing several times to produce a spiral trajectory with a diameter decreasing to 0 cm,
(iii) rotating several times on the spot at full speed, (iv) rotating several times to pro-
duce a spiral trajectory with a diameter increasing from about 0 to about 8 cm. Also
in this case, the movements of the robot are performed without any reference to the
position and orientation of the other robots. However, we observed that visual in-
formation is exploited to switch between different rotating modes. Synchronisation
of movements also characterises this behaviour (see the coordinated motor states in
Fig.14.10 right), and it is achieved and maintained exploiting communication only.

14.5.2.2 Porting to Reality

By testing with physical robots all controllers that proved successful in simulation,
we observed good generalisation only in 5 out of 11 cases, namely runs 2, 8, 9,
10, 139 The main reason to explain the limited generalisation ability of these con-
trollers is likely to be found in the fine grained interactions between robots that take
place by means of the infrared proximity sensors. We found that proximity sen-
sors differ significantly in sensitivity and perceptual range among different physical
robots. Similar inter-robot differences were not systematically simulated, reducing
the portability in hardware of the results obtained in simulation. Indeed, the evolu-
tionary runs that produce qualitatively similar behaviour in simulation and in reality
are characterised by limited interactions through infrared sensors.

For all evolutionary runs that properly generalise to the physical setup, the com-
parison of the mean mutual information M̂I and mean entropy Ĥ measured in sim-
ulation and in reality reveals a very good correspondence, as indicated by the high
values of the ratio between the measures in the two conditions (see Table 14.4).

Table 14.4 Experiment Ed : average mutual information (M̂I) and average entropy (Ĥ) com-
puted by testing the evolved controllers on physical robots for 5 trials of 2000 cycles each. We
show here only the evolutionary runs that successfully transfer to reality from a qualitative
standpoint. The column labelled ‘ratio’ indicates the ratio between the performance observed
in hardware and in simulation.

run M̂I Ĥ ratio

2 2,69±0,06 3,36±0,07 0.99
8 1,91±0,03 2,65±0,06 0.94
9 2,06±0,10 3,21±0,26 0.95
10 2,88±0,05 3,51±0,06 0.98
13 1,66±0,06 2,90±0,20 0.92

9 See videos in the online supplementary material.
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14.6 Conclusion

In this paper, we investigated the use of information theoretic measures for the evo-
lution of coordinated behaviours in groups of homogeneous robots. In particular,
we defined a fitness function based on the average mutual information between the
motor states of all possible robot pairs within a group of three robots. The results
obtained show that evolution is able to find solutions that maximise the mutual infor-
mation. This corresponds, in qualitative terms, to controllers that produce structured
and coordinated behaviours. This is mainly the result of two different evolutionary
drives. On the one hand, the maximisation of the mutual information corresponds to
the maximisation of the individual entropy (see eq. (14.6)). This favours the evolu-
tion of individual behaviours that allow the robot to produce different actions during
its lifetime. The embodiment of the robot, and the particular way we defined the
computation of the motor state—as defined by eq. (14.10) and (14.11)—favour the
evolution of behaviours in which the motor state varies smoothly with time, produc-
ing sequences of atomic movements with varying time duration. These sequences
are also periodic, due to the necessity to visit as many motor states as possible for
multiple times. On the other hand, the maximisation of the mutual information cor-
responds to the minimisation of the joint entropy between the motor states of two
robots, which also corresponds to the observation of motor states that are positively
correlated. The homogeneity of the robotic group ensures that this positive correla-
tion leads to coordinated synchronous behaviours.

We presented the results of two experiments that differ mainly in the character-
istics of the environment, which may or may not offer obvious regularities to be
exploited for coordination among the robots. We observed that, when these regular-
ities are present, artificial evolution finds a way to exploit them to produce structured
behaviours and to support the achievement of coordination among the robots. The
situation is more complicated when the environment does not provide such regu-
larities. In this case, the robots exploit the possibility to generate the required reg-
ularities through social behaviours (i.e. by aggregating and/or by communicating).
Moreover we observed how the obtained results can be validated in hardware. More
specifically, we demonstrated how several of the controllers evolved in simulation
work also with physical robots (12 out of 18 in the El setup, 5 out of 11 in the Ed

setup). Overall this demonstrates how the proposed measure is able to synthesize
robust solution that can overcome the problems caused the simulation-reality gap.

We believe that the proposed methodology is particularly relevant for swarm
robotics research, as it can efficiently synthesise self-organising, coordinated be-
haviours for a robotic swarm. In fact, there is a fundamental problem—referred to
as the design problem—that arises in the development of self-organising behaviours
for a group of robots (see also Funes et al. 2003; Trianni et al. 2008, for a detailed
discussion of this topic). This problem consists in defining the appropriate individ-
ual rules that will lead to a certain global pattern, and it is particularly challeng-
ing due to the indirect relationship between control rules and individual behaviour,
and between interacting individuals and the desired global pattern. In this respect,
evolutionary robotics is particularly suited to synthesise self-organising behaviours
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(Trianni and Nolfi 2012). In fact, it bypasses the design problem as it relies on the
automatic generation, test and selection of control solutions for the robotic system
as a whole, without the need of an arbitrary decomposition of the given control
problem into sub-problems (e.g., the desired global behaviour into individual be-
haviours and inter-individual interactions, as well as the individual behaviour in a
set of control rules). The methodology we propose in this paper goes a step further in
this direction: it promotes the evolution of coordinated behaviours without any con-
straint imposed by an explicit description of the desired solution. As a consequence,
the proposed approach does not require a thorough knowledge of the system under
study to devise the individual control rules, neither does it need a description of
the desired solution to promote cooperative behaviours, as it can benefit of a task-
independent, implicit utility function.

The proposed methodology represents a first step towards the evolution of
self-organising behaviours for robotic swarms. In future work, we plan to exploit
information theoretic measures in support of the evolution of task-oriented group
behaviours. So far, we obtained synchrony without any constraint on the character-
istics of the individual behaviour. We believe that a task-independent function can
be successfully used in combination with a task-oriented one (on this issue, see also
Prokopenko et al. 2006). The former should provide the drives to synthesise struc-
tured and coordinated behaviour. The latter should simply channel the evolutionary
process towards individual and group behaviours that serve specific functionalities.
Another possible extension over the work presented in this paper concerns the use
of heterogeneous robots. Using different controllers and/or different sensory-motor
apparatus, it should be possible to observe coordination among the robots that does
not forcedly limit to synchronisation of the movements. Turn taking, entrainment
and other forms of coordination become possible whenever the robots may have
access to different sensory-motor experiences. Finally, we intend to investigate also
the possibility of exploiting different information theoretic measures and different
neural controllers, such as recurrent neural networks.
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Chapter 15
Evolution of Complexity and Neural Topologies

Larry S. Yaeger

15.1 Introduction

One of the grandest and most intriguing self-organizing systems is nature itself.
Whether couched in terms of evolutionary theory (Darwin 1859), information theory
(Avery 2003), or thermodynamics and maximum physical entropy (Jaynes 1957a,b;
Swenson 1989) natural processes have yielded a remarkable diversity of behavioral
and organizational levels of complexity ranging from microbes to man.

Though one could reasonably argue that single-celled organisms are as suited to
their ecological niches as human beings are to theirs, no one would argue that mi-
croorganisms are as complex as humans. And looking at the fossil record, it is clear
that complexity, by any metric, has increased over geological time scales (Carroll
2001), from algae to plants, from ediacarans to arthropods to insects to mammals.
Understanding the nature and sources of that complexity will yield insights into all
of biology, including ourselves.

The fundamental, causal forces that give rise to the observed trends in organi-
zational and behavioral complexity are much debated. Darwin (1871) argued for
a gradualist interpretation of the emergence and evolution of intelligence that sug-
gests an increasing arrow of complexity, and many since have offered theoretical
support for this idea and even some limited physical evidence from the paleobio-
logical record (Rensch 1960a,b; Waddington 1969; Saunders and Ho 1976; Kimura
1983; Katz 1987; Bonner 1988; Arthur 1994; Huynen 1996; Newman and Engel-
hardt 1998). However others have argued that complexity growth has been nothing
more than the result of a random walk away from a brick wall of minimum com-
plexity (Raup et al. 1973; Gould 1989, 1994, 1996; McShea and Brandon 2010).

In order to understand the mechanisms that give rise to complexity, one must first
define exactly what is meant by complexity. However, finding a way to assess com-
plexity in a formal, quantitative fashion has proved to be problematic. Humans have,
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at times, demonstrated an anthropocentric chauvinism in defining degree of com-
plexity, very loosely, as little more than similarity to humans below and a human-
like deity above, as in the “Great Chain of Being”. More scientifically, physiological
characteristics, such as size, number of distinct cell types, and morphological mea-
surements, have been used as proxies for complexity in the field of evolutionary
biology.

Recently, information theory has been used to define a more rigorous measure
of complexity specifically for neural systems (Tononi et al. 1994; Lungarella et al.
2005), though the mathematics apply equally to an arbitrary collection of processes.
This “TSE Complexity” metric, to be discussed in some detail later, provides a rig-
orous measure of the complexity of the dynamics of a neural network. However,
there currently is no way to apply such a metric to biological organisms, simply
because it is impossible to make the detailed measurements of the states of many
neurons that would be required.

By contrast, it is relatively straightforward to record the activations of the units
in an artificial neural network (ANN). And artificial life simulations offer the pos-
sibility of evolving such ANNs while they serve as artificial brains controlling the
behaviors of agents in a computational ecosystem. We are thus able to carry out
repeated evolutionary experiments, varying only the random elements of a system
or carrying out careful parameter sweeps, to begin to dissect the structures and pro-
cesses that give rise to complexity and guide its evolution.

Once we are able to make these kinds of assessments of neural complexity, it
is natural to ask what kinds of network topologies give rise to dynamical complex-
ity—what network structures foster complex network functionality. It turns out that
normal evolutionary pressures on behavioral adaptation to an environment induce
pressures on complexity and on network topologies that are consistent with observa-
tions of biological systems and that work in concert with purely physical constraints,
such as brain volume and wiring length, to shape the design of our brains.

In this chapter we review work carried out primarily between 2004 and 2013,
though the artificial life simulator used to perform the work, Polyworld, was origi-
nally designed and built between 1990 and 1992, was first presented at the Artificial
Life III conference in Santa Fe, NM in 1992, and first saw publication in the pro-
ceedings of that conference in 1994 (Yaeger 1994). More background and detail on
the work reported here may be found in a series of articles published in Artificial
Life, ECAL (European Conference on Artificial Life), and GECCO (Genetic and
Evolutionary Computation Conference) proceedings, and the HFSP and Advances
in Complex Systems journals (Yaeger and Sporns 2006; Griffith and Yaeger 2006;
Yaeger et al. 2008; Lizier et al. 2009; Yaeger 2009; Yaeger et al. 2010; Murdock and
Yaeger 2011b,a; Yaeger 2013).

15.2 Complexity

To be useful scientifically, complexity must be quantifiable. Complexity for the pur-
poses of evolutionary biology has taken many definitions and forms over the years,
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from organism size (Cope 1871) to distinct cell types (Bonner 1988; Valentine et al.
1994) to morphology (Thomas and Reif 1993; McShea 1993) to ecological webs
of interaction (Knoll and Bambach 2000). Though somewhat subjective, McShea
(1996) has defined four types of complexity that may be fairly broadly applicable:
(1) the number of different parts (such as cell types), (2) the number of different
interactions among those parts, (3) the number of levels to be found in a causal,
hierarchical description of a system or organism, and (4) the number of parts or
interactions between those parts at different spatial and temporal scales.

Information theory (Shannon 1948) has produced various methods for defin-
ing and quantifying complexity that might be suitable for the study of biological
and evolutionary processes, but most such measures share an undesirable trait with
Shannon entropy, which is that they are maximized by random processes in which
all states are equiprobable. By contrast, biological complexity corresponds to nei-
ther minimal nor maximal entropy, but something in between.

The fourth of McShea’s complexity types mentioned previously shares an insight
with Chaitin (1979): The way information flows across multiple scales relates di-
rectly to the internal structure of a system and thence to its structural and functional
complexity. Chaitin also defined a “measure of mutual information for n-tuples” that
presages a key component of the TSE complexity measure discussed below (inte-
gration, aka multi-information), however he stopped short of applying these insights
to his algorithmic entropy measure of complexity which, like Shannon entropy, is
maximized by random processes.

Tononi et al. (1994) proposed an information-theoretic measure for quantify-
ing the complexity of neural dynamics which avoids maximization by randomness,
instead capturing quantitatively the manner in which information is processed at mul-
tiple scales. Acknowledged as an important conceptual milestone in the measure-
ment and understanding of complexity, the Tononi-Sporns-Edelmanmeasure is often
referred to as “TSE complexity” (for the authors’ initials). A simpler, more com-
putationally efficient measure was subsequently proposed in (Tononi et al. 1998),
explored computationally in (Sporns et al. 2000), and refined in (Lungarella et al.
2005). Implementations of both the full TSE “neural complexity” and the simpli-
fied TSE “description complexity” are publicly available in a MATLAB Complex-
ity Toolbox at http://www.indiana.edu/~cortex/complexity.htm.
In order to be able to process the neural dynamics for hundreds of time steps from
hundreds of neurons in thousands of agents, from each of many simulations, the sim-
plified TSE complexity measure was re-implemented in C++ and is what we use and
refer to throughout the bulk of this chapter as “complexity” or C. This software is
available with the simulation software; see below.

Though non-trivial to derive and implement, the intuition behind TSE complexity
is straightforward: Cooperation amongst various elements of a network, called inte-
gration and measured by a multivariate extension to mutual information, increases
network complexity, to a point. But specialization of network subunits, called seg-
regation, also increases network complexity. Complex network dynamics, then, re-
quire both cooperation and specialization—integration and segregation—amongst
the nodes of the network.

http://www.indiana.edu/~cortex/complexity.htm
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Specialization at multiple scales (subsets of units) means that the integration one
measures at these different scales varies non-linearly, and differs from what would
be measured in a system where integration was distributed uniformly at all scales.
It is the area between the actual integration curve as a function of scale and a line
that corresponds to the uniform distribution of integration over all scales that defines
TSE complexity. Thus, maximal complexity is achieved in networks that simultane-
ously maximize the opposing tensions of integration and segregation to the extent
possible.

The original TSE complexity is given by:

CN(X) =
n

∑
k=1

[ (k/n)I(X)−〈I(Xk)〉 ] (15.1)

where X is a system of n variables, I(X) is defined as the integration over the full
system of variables, I(Xk) is the integration over a subset of variables of size k, and
〈·〉 denotes an ensemble average over all subsets of size k.

Integration is a multivariate form of mutual information that captures the degree
to which nodes in the system share information and may be computed as:

I(X) =
n

∑
i=1

H(Xi)−H(X) (15.2)

where H(Xi) is the Shannon entropy (Shannon 1948) of the ith variable and H(X)
is the entropy of the entire system of variables.

Cast in terms of entropy, TSE complexity may also be written as:

CN(X) =
n

∑
k=1

[ 〈H(Xk
n )〉−

k
n

H(X) ] (15.3)

where H(X) is again the Shannon entropy of the entire system of n variables, k is
again the size of a subset of variables, and the ensemble average 〈H(Xk

n )〉 is to be
taken over all n!/(k!(n− k)!) subsets of size k.

The simplified approximation looks only at a single subset term, involving mutual
information between individual variables and the rest of the system, or cast in terms
of entropies:

C(X) = H(X)−
n

∑
i=1

H(xi|X − xi) (15.4)

where H(X) is again the entropy of the entire system and the H(xi|X −xi) terms are
the conditional entropy of each of the variables xi given the entropy of the rest of
the system (excluding xi).

As discussed in (Ay et al. 2006), modulo a constant the simplified version of TSE
complexity is equivalent to excess entropy (Crutchfield and Feldman 2003) (aka
effective measure complexity (Grassberger 1986) and dual total correlation (Han
1978)).
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15.3 Simulation Software

The simulation software used for these studies is Polyworld (Yaeger 1994), an evo-
lutionary model of a computational ecosystem, populated by haploid agents with a
suite of primitive, neurally controlled behaviors (move, turn, eat, mate, attack, light,
focus). The Artificial Neural Networks (ANNs) that control these agents use “sum-
ming and squashing” (aka “firing rate”) neurons and perform Hebbian learning at
the synapses.

The topologies of the ANNs are derived from the agents’ genomes, expressed as a
number of neural groups of arbitrary excitatory and inhibitory neuron counts, along
with connection density, “topological distortion” (degree of disorderdness between
sequentially indexed neurons of two groups), and learning rate between each of the
neural groups and types. Acting as a generative model, a given genetic encoding
produces a family of related topologies sharing the same statistics. Thus evolution
is forced to select for statistics of connectivity, rather than specific topologies.

It may also be worth noting that the network’s weights (synaptic efficacies) are
not encoded in the genome. Rather, they are initialized randomly within a geneti-
cally determined range at the time of an agent’s birth. Since these synaptic strengths
are updated using a Hebbian learning rule, they vary over the course of an agent’s
life. So while the underlying, binary topology of these brain graphs does not change
during an agent’s life, the weighted graphs do. All graph theoretical analyses pre-
sented here are carried out on the final state of an agent’s neural network, as it
existed at the time of the agent’s death. All information theoretic complexity anal-
yses here are calculated from the temporal histories of an agent’s neurons over its
full lifespan.

Input to the ANN consists of a row of pixels from a rendering of the scene from
each agent’s point of view, like light falling on a retina. Though agent morpholo-
gies are simple and static, agents interact with the world and each other in fairly
complex ways. Their body color varies continuously and is determined by mapping
the activation level of the fight neuron to the red color component, the activation of
the mate neuron to the blue color component, and a specific ID gene to the green
color component. Since they can “see” each other in the same color spectrum that
we observe, they are thus, in principle, able to observe and respond to both a couple
of key, behavioral neural states and a limited measure of the genetic identity of other
agents. They reproduce through the simultaneous expression of a mating behavior
by two collocated agents.

Agents’ energy stores are normally depleted by all actions, including neural ac-
tivity, with stronger actions (higher behavioral neuron activations) and larger neuron
and synapse counts depleting more energy. To simplify the analysis and to remove
all pseudo-physical constraints on the evolution of network topologies, per-neuron
and per-synapse neural costs have been eliminated for this series of experiments;
behavior-based costs have been retained. Energy is also depleted when one agent
is attacked by another, and agents die when their energy level reaches zero. Nor-
mally dying agents leave a carcass that becomes a food object containing a suitable
amount of energy (for details see (Yaeger 1994)), however for these simulations
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dying agents are simply removed from the simulation. Energy must therefore be re-
plenished by seeking out and consuming food in the environment. (Normally, killing
and eating other agents would also be an option.) Population size is controlled by
proportionately decreasing energy costs as the population dwindles and increasing
energy costs as the population swells.

In its normal mode of operation all evolutionary pressures emerge from a process
of natural selection—the survival and reproduction of the agents—and there is no
influence of any kind from a fitness function (though an ad hoc heuristic fitness
function is typically computed for purely informational purposes). Polyworld can
be run, however, in a steady-state Genetic Algorithm mode, as has been done for
a subset of the simulations discussed here using neural complexity as the fitness
function. There is also a “passive” mode in which a new simulation can be forced
to run in lockstep with a previous normal simulation but with reproduction, births,
and deaths controlled randomly (rather than behaviorally by the agents) to produce
a kind of null model. More on these alternative simulation modes later.

Polyworld was originally designed to explore the possibility of open-ended evo-
lution of artificially intelligent agents. Figure 15.1 shows the Polyworld evolutionary
ecosystem and various attendant graphical elements. More detailed information may
be found in (Yaeger 1994). The software is open source and the latest version may
be downloaded at http://sourceforge.net/projects/polyworld/.
The information theoretic tools used to carry out the complexity analyses are
included in the Polyworld source. The graph theoretical tools used to perform
the network topology data analyses are open source and may be downloaded at
http://code.google.com/p/bct-cpp/.

15.4 Natural Selection vs. Random Drift

Many good arguments have been put forward in support of the popular view that
evolution is biased towards increasing complexity. Rensch (1960a,b) and Bonner
(1988) argued that more parts will allow a greater division of labor among parts,
and since this greater division of labor will confer an evolutionary advantage, evo-
lution naturally favors a continuing increase in complexity as measured by a count of
distinct components. Waddington (1969) and Arthur (1994) have suggested that due
to increasing diversity, niches become more complex, and are thus filled with more
complex organisms. Knoll and Bambach (2000) echo and expand on this argument,
arguing that evolution into an ever-increasing “ecospace” will confer a continual
growth in complexity. Saunders and Ho (1976) and Katz (1987) suggest that com-
ponent additions are more likely than deletions, because additions are less likely to
disrupt normal function, again resulting in an evolutionary increase in complexity
as measured by parts. Kimura (1983), Huynen (1996), and Newman and Engelhardt
(1998) have demonstrated the value of neutral mutations in bridging gulfs in fitness
landscapes, allowing evolution to select for novel functions in previously neutral
changes. These neutral mutations frequently take the form of gene duplications—a
common and straightforward mechanism for increasing genetic complexity.

http://sourceforge.net/projects/polyworld/
http://code.google.com/p/bct-cpp/
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However, Maynard Smith (1970), Raup et al. (1973), Gould (1989, 1994, 1996),
McShea (1994) and others have questioned whether the observed growth in com-
plexity has been the outcome of natural selection or simply, in Maynard Smith’s
words, the “obvious and uninteresting explanation” of a sort of random walk away
from an immutable barrier of simplicity at the lower extreme—a growth in variance
relative to the necessarily low complexity at the origin of life. Gould, in particular,
has argued extensively that random chance not only plays a greater role in evolution
than previously understood, but also is entirely sufficient to explain the observed
increases in biological complexity over geological time scales. McShea and Bran-
don (2010) have proposed a “Zero Force Evolutionary Law (ZFEL)” that predicts
a strong drive toward complexity, but based solely on random genetic drift (selec-
tion may play a role, but only for the specialization of parts, not for complexity
per se). As part of an extended debate with Gould, Dawkins (1997) counter-argued
that evolution must be progressive and biased, even if that bias is not always in the
same direction at the micro-evolutionary scale (which turns out to be very much in
keeping with our experimental results).

Bedau et al. (1997) and Rechsteiner and Bedau (1999) have provided evidence of
an increasing and accelerating “evolutionary activity” in biological systems that un-
til Channon (2001) had not been observed in an artificial system. However, attempts
to characterize complexity trends in the paleontological record have produced mixed
results at best (McShea 1996; Heylighen 2000; Carroll 2001), leaving us with a less
than clear picture of the influence of natural selection on complexity. McShea (1994,
1996, 2001, 2005) has, for almost two decades, attempted to clarify and, where pos-
sible, empirically address the debate, by identifying distinct classes of complexity
and, importantly, by distinguishing between “driven” trends, in which evolution ac-
tively selects for complexity, and “passive” trends, in which increases in complexity
are due simply to Gould’s asymmetric random walk.

A number of researchers have used simple computational models of branching
clade lineages to study driven vs. passive trends in the evolution of complexity. Raup
et al. (1973) looked exclusively at branching patterns. Raup and Gould (1974) ex-
tended that work using a 10-parameter vector to represent morphological characters.
In McShea’s 1994 model, a single numerical parameter takes the place of complex-
ity, and biased or unbiased anagenetic (intra-species) and cladogenetic (branching)
random variation produces different populations. In all of these efforts, the distribu-
tion and statistics of the resulting populations are then at least roughly compared to
the distribution and statistics of biological species over time in order to try to discern
the presence or absence of any inherent bias in biological evolution. They largely
conclude there is reason to doubt any systematic bias towards increasing complex-
ity. Raup and Gould go so far as to suggest that “undirected selection may be the
rule rather than the exception in nature.” However, they base their arguments on the
ability of random systems such as theirs to produce clade histories and temporal
lengths of continuously changing characters that are only vaguely similar to bio-
logical systems. They acknowledge that directional selection exists, but emphasize
that since the temporal geometry of evolutionary phenomena can also be produced
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within purely random systems, such geometric patterns are insufficient to unequiv-
ocally imply directed (or undirected) causes.

McShea uses his model to conclude that a biased system will necessarily exhibit
an increase in the minimum complexity present in the system, and this observation
has become common wisdom (Wagner 1996; McShea 2001; Carroll 2001). The
presence of a multitude of minimum-complexity, single-celled organisms today is
then taken as evidence against a biased evolutionary trend in complexity. However,
even though an increase in the minimum is evidenced in the most commonly re-
ported version of his model, McShea notes that it is not always possible to use this
observation to distinguish a passive system from a weakly driven one. Also, in a
more realistic evolutionary system, in which fitness at smaller, less complex scales
is relatively independent of fitness at larger, more complex scales, the system could
possess a substantial positive bias at larger scales without eliminating or even dis-
advantaging organisms at the lower end of the spectrum. Indeed, in real biology,
the largest, most complex organisms are themselves extremely hospitable niches for
single-celled organisms, and, as opposed to competing with microorganisms in any
way, significantly increase their available resources.

There are some specific details and assumptions in McShea’s model that make
conclusions drawn from it suspect, yet which could mostly be easily addressed. One
is the presence of anagenetic (within lineage) change with the same magnitude and
likelihood as the model’s cladogenetic (between lineages) change. While anagenetic
change—fine-tuning some morphological or behavioral character in a species—is
certainly observable in nature, substantive complexity changes are more likely to be
associated with speciation events—cladogenetic change. Thus anagenetic complex-
ity changes should be of a smaller magnitude than cladogenetic changes, but are not.
Perhaps of greater concern, this kind of anagenetic change is formally equivalent to
a cladogenetic branch followed by an immediate extinction event of the ancestor lin-
eage. It is as if half of all speciation events resulted in fierce competition for the same
resources and the parent lineage always lost. But speciation is usually associated
with adaption to a different niche and need not imply the extinction of the ancestral
species, so this equal magnitude, equal probability anagenetic change component of
the model is guaranteed to produce unrealistic trends in population statistics. Sig-
nificantly, McShea (1994) acknowledges a much lower, nearly unmeasurable rate
of growth in the observed minimum complexity in a purely cladogenetic model as
compared to the widely reported, mixed anagenetic plus cladogenetic model. Thus it
is clear that reducing or eliminating this anagenetic component would significantly
reduce the observed growth in the minimum for a positively biased system.

Another key aspect of McShea’s model that is likely to skew his results is his
choice of extinction rates. He makes what seems an unbiased choice—a small, con-
stant extinction rate that applies equally to all lineages. But, intuitively, one might
expect complex systems to break down more easily than simple ones. Farmer and
Griffith (2007) studied the robustness of self-reproducing machines and derived an
intriguing functional relationship between viability and complexity that is consistent
with that intuition. Separately, population sizes are likely to have an even greater ef-
fect on extinction rates. A small population is obviously more easily extinguished
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than a large one. McShea does not model lineage populations, but integrating any
reasonable growth rate (linear?, exponential?, varying with complexity?) over time
since its inception would provide such an estimate which could then be used to mod-
ulate the extinction rate of species. We strongly suspect that modification of extinc-
tion rates according to these viability and population principles would substantially
reduce any growth in the minimum for driven systems in McShea’s model. Taken in
combination with the problematic anagenetic change discussed previously, it raises
considerable doubt about the common wisdom derived from such models.

Given the shortcomings of these simple models and the difficulties and ambigu-
ities one finds when studying the paleontological record, it makes sense to turn to
computer models that actually employ evolution to investigate the question of evo-
lutionary trends in complexity. Turney (1999, 2000) has used a simple evolutionary
model to suggest that increasing evolvability is central to progress in evolution and
predicts an accelerating increase in biological systems that may correlate with com-
plexity growth. Adami (Adami et al. 2000; Adami 2002) has defined complexity
as the information that an organism’s genome encodes about its environment, and
calculates a complexity metric that is inversely proportional to the entropy of its
genetic elements (bits in simulation, base pairs in biological genomes). He has used
the Avida software to show that asexual agents in a fixed, single niche always evolve
toward greater complexity of this uniquely defined type. Though we believe there
is little doubt that Adami’s observation regarding genes encoding information about
the environment is both true and important, we suspect that his “complexity” metric
is better viewed as a measure of a species’ adaptation to its environment and is ul-
timately just a measure of genetic consistency in the population. Its inapplicability
to multiple species, multiple and variable niches, or niche creation, limits its value
as a measure of complexity. Adami’s measure also suffers the inverse malady of
Shannon entropy: Whereas entropy is maximized by randomness, Adami’s measure
is maximized by perfect uniformity. This assignment of zero value to biodiversity
probably rules it out as a useful measure of complexity.

In (Yaeger and Sporns 2006) we used our computational ecosystem software,
Polyworld, together with our information-theoretic measure of neural complexity
to demonstrate that complexity of this particular type increases over evolutionary
time scales. That early work, however, did not distinguish contributions from natural
selection versus contributions from Gould’s random walk. Basically, there was no
“null model” to compare with, and since the seed population used to initialize those
simulations consisted of very low-complexity agents, we could not rule out Maynard
Smith’s obvious and uninteresting explanation.

Though it would be difficult, if not impossible, to eliminate natural selection from
a biological ecosystem, artificial life software is more manipulable. In order to dis-
tinguish between driven trends in complexity due to natural selection vs. passive
trends due to random genetic drift, we implemented a “lockstep” mode of opera-
tion for Polyworld, in which a passive run, where natural selection is disabled, is
tied to a driven run, where natural selection operates like normal. First the nor-
mal, driven simulation is carried out, during which all agent births and deaths are
recorded (along with all relevant neural data). Then the lockstep, passive simulation
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is carried out, during which agent births and deaths are forced to mirror those in the
normal, driven run. In the passive run, agents cannot reproduce or die as a result of
their own behaviors. Instead, at each moment in time that an agent died in the driven
run, a randomly selected agent in the passive run is killed. Similarly, any time two
agents reproduced in the driven run, two randomly selected agents in the passive
run are bred and their offspring placed at a random location. We thus allow genetic
changes (and resulting neural topologies) to follow their own separate courses in the
two simulations while synchronizing key reproductive and population aspects of the
simulations at every time step.

Using this method, population statistics between the driven and passive runs are
held identical. As a result, the statistics of the genetic operations—crossover and
mutation—are comparable between the paired runs. The number of crossover points
and mutation rates are themselves embedded in the genome (Yaeger 1994), so the
genetic operations are the same statistically, but not in detail. Similarly, the “life ex-
periences” of a given agent—its trajectory through the world and the inputs to its vi-
sual system—are comparable statistically between paired runs, though not identical.
Due to the resulting consistency in visual environment, contributing statistics, such
as the entropy and mutual information in the visual inputs, should have comparable
influences on neural complexity in the two simulation modes. Because complexity
is affected by agent behaviors and their resulting sensory inputs, agents in lock-
step runs must be allowed to control their own actions in order to obtain sensible
measures of their neural complexity. Even though we expect observed complexity
differences to be primarily the result of differences in neural topology, subtle dif-
ferences due to agent behaviors and resulting life experiences will then naturally be
included in the calculations.

The effective result is that natural selection is “turned on” in the driven runs, and
“turned off” in the passive runs. That is, gene states are subject to natural selection,
based on the evolutionary viability—the fitness—of the agents’ behaviors, in the
driven runs, while gene states are subject only to the same degree of variation, with
no evolutionary fitness consequences or effects, in the passive runs. The passive run
serves as our null model, thus allowing us to distinguish between complexity growth
due to natural selection vs. that due to a random walk in gene (and neural topology)
space.

Note that while genetic changes in both the driven and passive cases produce
different neural topologies, neural dynamics, and agent behaviors, in the passive
case (only) these changes have absolutely no impact on the reproductive success
of agents. Thus this random walk in gene space produces a random walk in neural
topology space and in complexity space as measured by neural dynamics, with-
out regard for the evolutionary value of that complexity or the corresponding agent
behaviors. By contrast, in the driven case the variations in neural structure and func-
tion and resulting behavioral adaptations produced by these genetic changes directly
affect the agents’ reproductive success, hence any sensible measure of their fitness.
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15.5 Data Generation and Acquisition

A simple world was set up in Polyworld that accommodated between 90 and 300
agents, grew food uniformly and randomly in two patches at opposite ends of the
world (80% at one end, 20% at the other), and positioned two barriers that ran 90%
of the depth of the world and divided the world into thirds across its width. (See Fig-
ure 15.1.) The agents were allowed to evolve between zero and five internal neural
groups, with up to 16 excitatory and 16 inhibitory neurons per group. Input neural
groups, internal neural groups, and output/behavior neural groups were connected
according to evolved connection densities specified in the agents’ genomes. This
allows up to 217 neurons and 45,584 synapses. Each simulation was allowed to run
for 30,000 time steps, which corresponds to about 400 generations. For each run,
the neural topologies at birth and death plus the neural activations of every neu-
ron, at every time step, for every agent are recorded to disk, yielding approximately
10 GB of data. It is this data to which we subsequently apply our complexity and
graph theoretical calculations, thus allowing us to determine the neural complexity
of each individual agent and the characteristics of the network graph that produced
that complexity. Note that an agent’s complexity is only fully determinable upon its
death—when its neural activation time series are complete. We therefore examine
mean trends in the population’s complexity for all agents that have died during a
particular time interval—typically every 1,000 time steps. And, as mentioned previ-
ously, due to Hebbian learning in the network during an agent’s life and the resulting
ongoing synaptic weight changes, we carry out our graph theoretical analyses on the
state of the network graph at the time of the agent’s death.

Ten driven runs were carried out, in which natural selection operated normally,
varying only the initial seed to the random number generator. A corresponding pas-
sive “lockstep” run, in which natural selection was disabled, was carried out for each
of the driven runs, yielding 20 simulations in all.

The runs were all seeded with a population of agents based on a uniform genome.
This seed genome was designed to produce modest dispositions towards potentially
useful behaviors, such as running towards green (food) and away from red (attack-
ing agents). However, these seed agents are not a viable species. That is, test runs
have demonstrated that, without the ability to evolve, the seed agents will fail to sur-
vive and reproduce in numbers sufficient to sustain their population, as a result of
which their population will dwindle and become extinct. There must therefore be a
significant evolutionary value to some kind of rewiring of the genome and resulting
neural network architectures as a result of natural selection, at least until such point
as the agents’ behaviors are sufficiently adapted to the environment to sustain their
numbers through their foraging and mating behaviors. The genome used in this seed
population produces neural architectures that are nearly minimal in size and com-
plexity, so one should expect the random variations in gene space associated with
the passive, lockstep runs to also yield increases in complexity, as indeed they do.
It is primarily the differences in the rate of change of complexity between driven
and passive runs that are used to assess the role of natural selection in complexity
increase.
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Complexity may be calculated for various subsets of neurons—all neurons, just
the input neurons, just the behavior neurons, or the “processing” neurons (all neu-
rons except inputs). As the state of the input neurons are determined entirely by
the environment and agent, rather than the dynamics of the network, all complexi-
ties presented here are based on the processing neurons only. Although, in general,
there are few differences in complexity trends between all neurons and processing
neurons. As evolution progresses, changes to the parts of the genome that specify
neural topology produce different network graphs, which produce different internal
neural dynamics and agent behaviors, which yield different complexities.

Both complexity and graph theoretical metrics were calculated for each agent
and averaged to produce a population mean in each temporal bin, for each driven
and passive run. In addition, for each agent’s actual neural network, 10 graphs with
an identical node count, edge count, and distribution of weights were generated
randomly, and the means of the graph theoretical measures for these networks were
used to characterize the structure of a random graph corresponding to each actual
graph.

As mentioned, as configured for these runs, a maximum of 217 neurons and
45,584 edges were possible. Actual, evolved neuron counts ranged from 12 to 187,
with a mean of 56. Evolved edge counts ranged from 33 to 13,081, with a mean of
1,077. In all, over half a million evolved graphs were analyzed using 42 different
metrics (counting metrics for different neuron subsets and graph types as distinct),
and in excess of five million random graphs were analyzed using 24 of those metrics.

The data shown and discussed here are from a set of runs first presented in
(Yaeger 2013), and are based on the world structure and general methodology ap-
pearing in (Yaeger et al. 2008) and (Yaeger et al. 2010).

15.6 Complexity As a Fitness Function

Given a system such as Polyworld that is capable of evolving a wide range of neural
topologies and using them to control a fairly broad range of agent behaviors, and
given the ability to then calculate an information-theoretic measure of complexity
for these agents’ neural networks, an intriguing possibility presents itself: Why not
dispense with natural selection altogether and, instead, directly employ neural com-
plexity as a fitness function, in the traditional genetic algorithm (GA) sense? To
investigate the fruitfulness of such an approach, in addition to the paired driven vs.
passive runs just described, we carried out a suite of simulations using neural com-
plexity as a fitness function. This required us to run Polyworld in a special steady-
state GA mode. In this mode the simulator retains a list of the N (typically 30) best
agents that have ever lived, according to a specified fitness function. For these runs
we computed neural complexity of the processing units for each agent upon its death
and used this complexity directly as a measure of the agent’s fitness. Then, only in
this steady-state GA mode, upon the death of each agent the software uses one of
a couple of different selection and reproduction strategies. One strategy selects the
parents by taking an incremental step through the list of N best agents, using a pair
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of indexes, one of which only increments when the other index finishes its run and
wraps around. The other strategy uses tournament selection from amongst the N
fittest with a small tournament size, typically 3. Offspring are then produced from
the selected parents employing the usual mechanisms of crossover and mutation.
A simple experiment using a fitness function of 1 / (velocity + 1), in which agents
were successfully evolved to slow to a near stand-still population-wide, was used to
validate these techniques. Results of these simulations will be discussed below.

15.7 Evolutionary Trends of Complexity

The resulting population-mean complexities for all 20 simulations are shown with
light lines (solid for driven, dashed for passive) in Figure 15.2, along with addi-
tional, bold lines corresponding to the means of the two classes of runs (driven vs.
passive). In addition to the simulation results, a measure of statistical significance
is shown at the bottom of the graph. The fine dotted line shows 1−p-value for the
dependent Student’s T-test. The horizontal dashed line at 0.95 thus corresponds to
a p>0.05 critical threshold. Where the dotted line rises above the dashed line, the
difference between the driven and passive runs may be considered statistically sig-
nificant; where it falls below, the difference is not significant. Where the driven and
passive mean complexity values cross (t=7000) significance drops almost to chance
(0.5), as one would expect, but values below 0.8 have been cropped for clarity.

The first thing to note is that during the early stages of the simulation evolution is
actively selecting for increased complexity. This is consistent with our observation
that the seed population is too simple to sustain its numbers, and must evolve or
become extinct. As long as increasing complexity offers an evolutionary advantage,
natural selection will behave in this biased, driven fashion with regard to complexity.

However, note that any statistical significance has disappeared by about t=5000,
and, indeed, the mean passive complexity reaches the same level as the mean driven
complexity by about t=7000. At roughly the point that statistically significant dif-
ferences disappear, the driven complexities produced by natural selection begin to
plateau. By this stage, a “good enough” solution has emerged and begun to spread
throughout the population, as evidenced by the peakedness of the temporal his-
togram of complexity in Figure 15.3a at later times. From this time forward, in
the majority of the simulations, natural selection tends to act as a weakly stabilizing
force, maintaining a nearly constant mean level of fitness in the population. Since
most genetic variation at this point is likely to be of a deleterious nature, evolution
acts to weakly maintain this good-enough solution. Meanwhile, the random walk
continues in the passive runs, thus increasing variance in the genes and in complex-
ity, as evidenced by the flat and broad complexity distributions of Figure 15.3b. The
growing variance produces networks of greater and greater complexity—now sig-
nificantly exceeding that of the driven runs, on average—but this complexity was
not produced by natural selection and confers no behaviorally adaptive advantage
on the agents.
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Fig. 15.2 Driven and passive complexity vs. time. Light solid lines show population mean
complexity for individual driven, natural selection runs. Light dashed lines show population
mean complexity for individual passive, lockstep runs. Heavy lines show means of all ten runs
for corresponding line style. Light dotted line at bottom shows 1−p-value for a dependent
Student’s T-test, with a horizontal p>0.05 T-critical dashed line at 0.95.

The stabilization effect consistently observed in driven runs is, however, only
a weak effect. In similar experiments not shown here, including those reported in
(Yaeger et al. 2008), attention to the individual driven runs reveals a kind of punc-
tuated equilibrium in some of them, where genetic variation eventually produces a
network that is sufficiently better adapted to the environment that its genes spread
throughout the population causing the mean level of complexity in the population to
rise again. These new driven solutions reach approximately the same level of com-
plexity as the passive runs and then plateau again at this new, higher level. With
more evolutionary time it is possible that additional driven runs would make a sec-
ondary leap in complexity, bringing the overall mean driven level of complexity up
to the level of complexity seen in the passive runs or higher.

In runs that do not exhibit these secondary leaps in complexity, such as the ones
seen here, there often appears to be a slow and modest reduction in complexity after
the initial growth spurt and plateauing. We speculate that this may result from a
selection for robustness to mutation, causing networks to give up any complexity not
absolutely required to sustain the agents’ evolutionarily useful behaviors. However,
we are not sure how robust this effect is and have not yet devised a method to confirm
the source of this gradual reduction in complexity.
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Fig. 15.3 Population histograms of complexity over time, for a driven run (a) and a passive
run (b)

In other work not presented here, we used a clustering algorithm developed for
studying biological genes to analyze genetic clustering of Polyworld agents in runs
similar to these and both confirmed and extended this “good enough” interpretation
of events (Murdock and Yaeger 2011b). Those results made it clear that alternative
genetic “solutions to the world” were emerging, spreading briefly, and either failing
or, rarely, succeeding in displacing the dominant population. Such branching and
extinction of sub-populations, that might reasonably be considered species, corre-
lated well with subtle bumps and dips in the whole-population means as presented
here.

The passive complexity also plateaus in these runs, but for a much less interesting
reason. By about t=10000 the bits of the agent genomes have been fully randomized
to roughly 50% on and 50% off. At this point, genetic variance is at a maximum
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in the model, and further randomization merely shuffles bits around without any
change in the mean values of the genes that control the topology of the neural net-
works. It is due to the fixed size genome and fundamentally linear interpretation of
genes in Polyworld that such an upper bound on variance exists, and once maxi-
mum variance is reached the passive runs cease to characterize a truly random walk.
Complexity would most likely continue to increase in an unbounded random walk,
at least until a maximum complexity for the given parameter regime was achieved,
which would only increase any statistical significance of differences between pas-
sive and driven trends at later times.

Note that final complexities range from about 0.44 to 0.56. Compare this to the
approximately 1.0 level of complexity achieved in a suite of 10 steady-state GA sim-
ulations using complexity as a fitness function, as shown in Figure 15.4. The factor
of two multiplier shows that the random walk was indeed limited by bit randomiza-
tion rather than any limit imposed by the simulation parameters. It also demonstrates
that this method for evolving larger values of complexity is quite effective. However,
the behaviors of the agents in this complexity-as-fitness run are not well suited to
the normal evolutionary constraints of life in Polyworld. The agents do not forage
for food. There is no indication that they seek out other agents for reproduction.
This run was seeded with agents based on the same seed genome as the driven and
passive runs, so initially they are not particularly well suited to their environment.
After about 6,000 or so time steps, at a moderate level of complexity (around 0.75),
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Fig. 15.4 Neural complexity as a function of time for 10 driven, passive, and fitness (PFit)
runs
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most of the agents have adopted a stereotypical tight turning behavior, all spinning in
small loops, and ignoring food and other agents. We note that this behavior produces
fairly high entropy while maintaining a significant degree of mutual information in
the sensory units (due to adjacent pixels being correlated and some degree of frame-
to-frame coherency), thus producing a fairly high degree of complexity throughout
the network. Later, near peak complexity the agents’ behaviors have become more
interesting and more varied, but they still do not explicitly seek food, and there is
still no evidence of any substantial degree of agent-agent interactions, such as would
be required for reproduction.

The driven vs. passive simulation results clearly demonstrate that during the time
the agents are behaviorally adapting to their environment natural selection is ac-
tively driving complexity increases, in what McShea would refer to as a “biased”
fashion (McShea 1994). This makes sense intuitively, because this period of be-
havioral adaptation is precisely the period of time when increases in complexity
are likely to confer an evolutionary advantage. While the driven results show that
TSE complexity is well correlated with the evolution of adaptive behaviors in an
ecosystem subject to natural selection, the fact that complexity in the passive case
ultimately surpasses that in the driven case demonstrates that such a correlation does
not exist when natural selection is absent. This is consistent with the complexity-as-
fitness-function results, where, again, complexity growth in the absence of natural
selection is shown to be uncorrelated with evolutionarily useful behaviors.
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Fig. 15.5 Distribution of agents to heterogeneous resources. In the driven case (solid lines)
agents approach an Ideal Free Distribution (IFD), over the same time period that evolution
actively selects for complexity growth. In the passive case (dashed lines) they do not.
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Prior work (Griffith and Yaeger 2006) demonstrated that Polyworld agents evolve
a near Ideal Free Distribution (IFD) (Fretwell and Lucas 1970; Fretwell 1972) of
agents to resources, for a variety of different distributions of food in patches. In these
simulations agents have evolved to mostly inhabit the food patches, in IFD propor-
tions, by approximately t=5000 and exhibit little change in food patch occupation
beyond about t=7000. (See Figure 15.5.) These times correspond to the period when
driven complexity reaches its peak and plateaus, and after which passive complexity
surpasses driven complexity. The period of behavioral adaptation is made evident by
this approach to IFD conditions and corresponds directly to the period of increasing
neural complexity when natural selection drives genetic change. When genetic and
neural changes are random, however, as in the passive runs, agents never adopt an
IFD, further illuminating the disconnect between neural complexity and behavioral
adaptation in the absence of natural selection.

15.8 Evolutionary Trends of Network Topology

The dynamics of a neural network depend upon its neural activation functions,
the inputs to the network, and the topological graph of connections between neu-
rons. The previously discussed neural complexity analysis was based on those
dynamics—on the time series of the neural activations of each agent’s neural net-
work over the course of its life. In (Lizier et al. 2009; Yaeger et al. 2010; Yaeger
2013) we turned to the topology of the graphs underlying and carrying out the cal-
culations that produced those dynamics. Our intention was to illuminate the rela-
tionship between neural structure and function, asking what network designs give
rise to complexity and which do not.

The inputs to these neural networks are the agents’ visual inputs, their current
health (level of their internal energy store), and a randomly firing neuron. Since all
of these inputs are determined by the state of the world and the agent, indepen-
dent of the other neurons and network dynamics, we left them out of our complex-
ity analysis. Topologically they also have an unusual, zero in-degree constraint. In
recognition of that and for consistency with our complexity analysis we also leave
them out of our graph theoretical analysis, using graphs defined by the non-sensory
or “processing” neurons only—the internal and output/behavior neurons, but not the
input neurons.

In general, graphs may be treated as undirected or directed, and binary or
weighted. As neural networks are normally directed and synaptic strengths act as
a kind of edge weight, we carry out these network analyses using weighted, directed
graphs. Since edge weights are treated as distances when calculating some of these
metrics, synaptic strength is inverted to provide our graphs’ edge weights, so that
a large synaptic weight corresponds to a short distance, consistent with its strong
influence. Neural network synaptic strengths are also typically signed—positive for
excitatory connections, negative for inhibitory connections. Since few graph theo-
retical metrics extend well to signed graphs, we have made the less than desirable,
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but simple and common approximation of using the absolute values of the network
weights on the graph edges.

We start by examining the evolutionary histories of several key graph theoretical
metrics, calculated for each agent’s neural network topology and averaged over the
full population. As discussed previously, we use the state of the network graph at
the end of each agent’s life for our analyses. We examine these population means
in multiple pairs of driven versus passive simulations, as we did for complexity, to
see which, if any, of the graph metrics appear to be subject to natural selection dur-
ing the period of behavioral adaptation and which, if any, correspond to high and
low complexity neural dynamics. Specifically, given prior evidence for a connec-
tion between small-world networks and complexity (Sporns et al. 2000), we will
look at four metrics known to be associated with small-world networks in gen-
eral (Watts and Strogatz 1998) and biological brains in particular (Bullmore and
Sporns 2009)—clustering coefficient, characteristic path length, global efficiency,
and small-world index.

15.8.1 Clustering Coefficient

One of the most common metrics for characterizing graph structure is clustering
coefficient (CC). Watts and Strogatz (1998) cited large values of CC as one of the
two defining characteristics of a small-world network (short path length being the
other). CC measures cliquishness in a graph—the degree to which one’s friends are
also friends of each other. It may be calculated by taking the ratio of the number of
edges actually present between neighbors of a given node to the maximum possible
number of edges between those neighbors, and averaging over all nodes.1 Conceptu-
ally it corresponds to identifying clusters of neurons that function as a group, likely
engaging in coordinated, specialized activities. As such we expect it to be corre-
lated with the segregation component of neural complexity. Thus we expect high
CC to correspond to high complexity, at least to a point, and hypothesize that nat-
ural selection will favor larger values of CC during the early period of behavioral
adaptation.

Figure 15.6 shows the evolutionary trajectory of CC for 10 natural selection
(driven) and 10 null model (passive) runs. The relationship between driven and pas-
sive CC trajectories is similar to that seen for neural complexity (Figure 15.2), with
the values in the driven case rising significantly more rapidly than in the passive
case initially, but with the passive values eventually overtaking and surpassing the
driven values. Thus, as hypothesized, higher values of CC appear to confer an evo-
lutionary advantage during periods of behavioral adaptation to the environment and
neural complexity growth. The time to overtake is substantially longer for CC than
it is for complexity, with significance not dropping below 0.95 until about t=16000,

1 Actual and maximum edge counts vary depending upon whether edges are treated as di-
rected or undirected. All analyses here are based on directed edges. For weighted graphs,
such as these, the adjacency matrix is replaced with the weights matrixˆ1/3.
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Fig. 15.6 Clustering coefficient as a function of time for 10 paired driven and passive
simulations

compared to t=5000 for complexity. We suspect this is due, at least in part, to com-
plexity’s dependence on both clustering and our next metric.

15.8.2 Characteristic Path Length

Another widely used metric for characterizing the structure of a graph is its charac-
teristic path length (CPL). A low value of CPL is the other defining characteristic of
a small-world network (Watts and Strogatz 1998). CPL quantifies the distance be-
tween nodes in a graph. It can be calculated by determining the shortest path from a
given node to all other nodes, averaging those lengths to produce a mean path length
for that node, and then averaging these mean path lengths over all nodes.2 Conceptu-
ally it corresponds to the ease or difficulty with which a signal may propagate from
one part of a graph to another, and, therefore, the likelihood of cooperation amongst
nodes. As such we expect it to be correlated with the integration component of neu-
ral complexity, only inversely, since smaller values of CPL should correspond to
higher integration. Thus we expect low CPL to correspond to high complexity, to a

2 The presence or absence of paths is significantly affected by whether edges are treated
as directed or undirected; again, we use directed edges in our analyses. Edge length is
obtained by inverting synaptic weight, so high efficacy corresponds to a short distance,
consistent with such a synapse’s strong influence.
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Fig. 15.7 Characteristic Path Length as a function of time for 10 paired driven and passive
simulations

point, and hypothesize that lower values of CPL will be evolutionarily selected for
during the early period of behavioral adaptation.

Figure 15.7 shows the evolutionary trajectory of CPL for 10 natural selection
(driven) and 10 null model (passive) runs. The relationship between driven and pas-
sive CPL trajectories mirrors that seen in neural complexity and CC, only inverted—
with shorter path lengths proving to be of an evolutionary advantage during the pe-
riod of behavioral adaptation and complexity growth, as hypothesized. Passive runs
overtake driven runs (1 – p-value drops below 0.95) at about t=8000, slightly later
than neural complexity, but substantially earlier than CC. The brief excursion of
driven over passive around t=2000 is due to problems intrinsic to calculating CPL
for graphs that are allowed to contain disjoint subgraphs and even disconnected
nodes. In fact, CPL is typically only calculated for the largest connected subgraph.
In earlier work (Yaeger et al. 2010) we examine alternative measures of path length
that are more well-behaved in this regard, none of which exhibit this behavior. For
this investigation, however, we chose to stick to a “community standard” metric.

15.8.3 Global Efficiency

A commonly used measure of graph structure in biological neural networks is global
efficiency (E) (Latora and Marchiori 2001; Bullmore and Sporns 2009). Just as CPL
is the mean minimum path length, E is the mean inverse minimum path length.
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Fig. 15.8 Efficiency as a function of time for 10 paired driven and passive simulations

A benefit of using efficiency is that it applies naturally to sparse and disjoint graphs,
since nodes that are disconnected have zero inverse distances between them, rather
than the infinite distances that prevent their graceful accommodation in CPL. When
applied to the whole graph it conceptually captures the efficiency with which com-
munication between nodes in the graph is achieved globally, like an inverse of CPL.3

As such, we expect global efficiency to be correlated with the integration component
of neural complexity.4 Thus we expect high E to correspond to high complexity, at
least to a point, and hypothesize that evolution will select for larger values of E
during the early period of behavioral adaptation.

Figure 15.8 shows the evolutionary trajectory of E for 10 natural selection
(driven) and 10 null model (passive) runs. The relationship between driven and pas-
sive E trajectories is again similar to that seen for neural complexity, as greater effi-
ciency proves to be of an evolutionary advantage and is correlated with complexity
growth. Passive runs overtake driven runs at about t=10500. Note that, unlike CPL,
there is no temporary inverted relationship between driven and passive data around
t=2000, due to E’s better handling of nodes lacking connective paths.

3 When calculated for neighboring nodes only, it captures the local efficiency with which
neighbors communicate, and quantifies the fault tolerance of neighbors of a node to the
removal of that node (Latora and Marchiori 2003), but we will focus only on global effi-
ciency.

4 Local efficiency would be correlated with segregation.
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15.8.4 Small-World Index

Humphries et al. (2006) proposed what has come to be called a graph’s small-world
index (SWI), that simultaneously captures the two characteristics of small-world
networks identified by Watts and Strogatz (1998). It is a ratio of ratios, with a nu-
merator that is the ratio of the CC of the graph in question to the CC of a comparable
random graph (typically with the same number of nodes, number of edges, and de-
gree distribution) and a denominator that is the ratio of the CPL of the actual graph
to a comparable random graph. Humphries’ original definition involved dividing
by the statistic of a single random graph. Recognizing the variability inherent in
graph randomization, we used the mean statistic of 10 comparable random graphs,
resulting in the following definition:

γ =CC/〈CCr〉 (15.5)

λ =CPL/〈CPLr〉 (15.6)

s = γ/λ (15.7)

where 〈CCr〉 and 〈CPLr〉 are the ensemble averages of CC and CPL over some
number of comparable random graphs, and s is the desired SWI.

By definition, then, a small-world network will normally have a numerator
greater than one and a denominator less than or near to one.5 Hence, small-world
networks may be identified by values of SWI near to or greater than one. Since SWI
captures both increased segregation (in the numerator) and increased integration (in
the denominator), we hypothesized a strong, possibly even monotonic, correlation
between SWI and TSE neural complexity. As we will discuss later, a strong corre-
lation between the two measures proved to be correct, but monotonicity was very
much not the case.

Figure 15.9 shows the evolutionary trajectory of SWI for 10 natural selection
(driven) and 10 null model (passive) runs. Despite a period of statistically signifi-
cant difference between driven and passive data comparable to that seen in complex-
ity and the other graph metrics, we find that the expected relationship is reversed.
SWI grows more slowly and maintains a lower value in the driven runs than in the
passive runs. Thus over this important period of behavioral adaptation and neural
complexity growth, SWI appears to be inversely related to complexity, contrary to
expectations. We will discuss this further and get at some of the underlying reasons

5 The ratio of path lengths in the denominator can be greater than one, even for small-
world networks, because the randomized version of a graph can have a smaller path length
than even a small-world graph. Random graphs generally have very short path lengths,
approaching that of a fully connected graph—1.0. Thus even for graphs with relatively
short path lengths, the randomized versions of those graphs may have even shorter path
lengths, just not very much shorter. Hence the denominator may be greater than one, just
not very much greater. As a result, SW I for a small-world network may be less than one,
just not very much less.
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for this discrepancy when we analyze the relationship between complexity and these
graph metrics in more detail later. Though the expected relationship is inverted, of
the metrics analyzed, SWI’s period of statistical significance is most similar to that
of complexity, likely because the two measures share a dependency on both CC and
CPL.
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Fig. 15.9 Small-world index as a function of time for 10 paired driven and passive
simulations

15.9 Relating Neural Complexity to Network Topology

The evolutionary trends observed in the aforementioned graph theoretical metrics
mostly align with our expectations about their relationship to neural complexity.
However, the behavior of SWI runs counter to those expectations, and variations in
the period of statistical significance of driven-versus-passive differences suggests
these relationships may be somewhat complicated. So we will now turn to detailed,
individual (per-agent) distributions of complexity as a function of the various graph
metrics (rather than population means as in the previous results) to try to tease apart
these relationships more carefully.

Studying the kinds of results presented and discussed below for individual sim-
ulations (not shown here) reveals that there is variation from run to run, as might
reasonably be expected, in terms of the range of values explored and details of the
relationships between the metrics being examined. So in order to identify more uni-
versal regularities, a sampling—20% of the data points chosen at random—from
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the results of all 10 driven runs, all 10 passive runs, and all 10 fitness runs are com-
bined in each of the following figures. This yielded 182,292 data points in each
graph (51,903 driven, 51,869 passive, and 78,520 fitness) for these results. The data
from each run are given a subtly different, but unique color within a given part of
the spectrum—driven data are various shades of green, passive data are blue, and
fitness data are red. If viewed in grayscale, the driven data are lighter shades, gen-
erally towards the bottom; the passive data are medium gray, typically ringing the
driven data and sometimes difficult to distinguish; the fitness data are darker shades
that extend to much higher complexity values.

15.9.1 Clustering Coefficient

Figure 15.10 shows neural complexity as a function of clustering coefficient. For
all sources of data—driven, passive, and fitness—higher values of complexity are
mostly (though not entirely, see below) found within a limited band of values of
CC, and exhibit a peaked distribution. All 10 driven simulations explored roughly
the same part of complexity space, exhibiting a peak around CC = 0.065. The passive
runs explore much the same part of the space as each other, and though they extend
to slightly broader ranges of both complexity and CC than the driven runs (easier
to see if viewed in color), peak complexity occurs at about the same value of CC.
The fitness runs extend to a much higher range of complexity values, but occupy a
generally narrower range of CC values. Most of them exhibit distributions that are
similar to the driven and passive results, including peaking at about the same value
of CC, however, a single fitness run got stuck in a low-CC regime (to the left, at
about 0.025), and another single fitness run showed a huge variability over larger
values of CC (the sparse data points to the right, generally between 0.1 and 0.25).

Though high complexity is not entirely restricted to the vicinity of the obvious
peak at about 0.065, the vast majority of networks exhibiting high complexity are
found in a modest band around it. Despite that fact, possession of a value of CC near
the optimum is not sufficient to guarantee high complexity, as evidenced by the full
range of complexity values being found in that band.

As evidenced by the lack of very high-CC points in the PFit data, these fitness
runs are so quickly pushed towards high complexity by their steady-state GA that
they never explore many high-CC parts of the space. (Refer back to Fig. 15.4 to
see how rapidly complexity increases in these fitness runs.) Though difficult to see
because of obscuring driven and passive data, the PFit runs also do not explore much
of the lower complexity parts of the space. However, they clearly do explore higher
complexity parts of the space not visited by the other simulations.

15.9.2 Characteristic Path Length

Figure 15.11 shows neural complexity as a function of characteristic path length.
Except for a single fitness simulation, there is a clear optimal range of CPL values,
centered around 6.5 or 7. Interestingly, that unique fitness run, peaking around a
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Fig. 15.10 Neural complexity as a function of clustering coefficient. (For a discussion of
color-coding of this data, see Section 15.9 of the text.)

very low CPL of about 3 to 3.5, is the same run that exhibits the extremely variable
set of unusually large values of CC. So that one fitness run evolved graphs exhibiting
very tight clusters, possibly including disjoint subgraphs, which would explain both
the high CC and the low CPL, since CPL will only be calculated for the largest
connected subgraph. By contrast, the other unusual fitness run, that peaked at a
lower value of CC, exhibits the largest values of CPL, explained at least in part by
the fact that this simulation exhibited normal node counts, but the lowest number of
edges seen in any of the fitness runs (data not shown).

Here again, though high complexity is largely confined to a modest range of CPL
values, an optimal value of CPL is insufficient to guarantee high complexity. Also as
before, the complexity-as-fitness data never extends to very large values of CPL (and
correspondingly low values of complexity) because the GA accelerates so rapidly
to high values of complexity and stays there.

15.9.3 Global Efficiency

Figure 15.12 shows neural complexity as a function of global efficiency. Efficiency
exhibits a relatively gentle peak in the main body of data, and displays one of the
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Fig. 15.11 Neural complexity as a function of characteristic path length. (For a discussion of
color-coding of this data, see Section 15.9 of the text.)

outlier fitness run’s high-CC, low-CPL cloud of points at larger values of E . Given
what we have observed in the other graph metrics, there are no surprises here.

15.9.4 Small-World Index

Figure 15.13 shows neural complexity as a function of small-world index. Prior
to these experiments we hypothesized that complexity might be highly correlated
with SWI, possibly even monotonically so, due to the well documented relationship
between complexity and small-world-ness. Interestingly, however, SWI exhibits by
far the most peaked distribution of any of the graph theoretical metrics we analyzed.
Driven, passive, and fitness runs all exhibit a sharp peak in complexity around an
SWI of 1.0. Even the outlier fitness runs, that showed up as exploring particularly
high or low values of CC and CPL, when normalized by equivalent random graphs
and taken as a ratio, as here, show up as just another part of the main distribution.

We believe the extreme sharpness of this peak explains the unexpected relation-
ship between driven and passive evolutionary trends in SWI seen in Fig. 15.9. Even
though the full spectrum of complexity appears to be possible near an SWI value of
1.0, high values of complexity are almost never found for much larger (or smaller)
values of SWI. Thus during the period of behavioral adaptation and strong pressure
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Fig. 15.12 Neural complexity as a function of global efficiency. (For a discussion of color-
coding of this data, see Section 15.9 of the text.)

towards high complexity, any agent whose genome produces a network topology
with a large value of SWI is unlikely to exhibit sufficient complexity and will thus
be at an evolutionary disadvantage. This produces an indirect, but strong evolution-
ary pressure on SWI towards 1.0 in the driven runs. In contrast, the random walk
is under no such pressure and quickly produces high values of SWI (with corre-
spondingly low values of complexity). Thus SWI grows more rapidly, at first, in the
passive runs. Over time, an evolutionary pressure towards higher complexity in the
driven runs produces values of SWI that are still close to 1.0, while the passive runs
merely drift thus producing large numbers of random connections that yield low
values of CC and SWI, thus inverting the relationship between driven and passive
trends.

As for why complexity is tied so tightly to values of SWI near 1.0, we can only
speculate at this stage, but there are reasons to think this is reasonable. For SWI
to adopt a value much larger than one, either CC/CCrand must grow substantially
larger than one or CPL/CPLrand must fall to values substantially smaller than one,
or both. But in the case of extremely high levels of clustering, integration is likely
to suffer, as clusters begin to behave almost or entirely independently. At the op-
posite extreme, shortest possible path lengths will likely imply extreme levels of
integration, at the expense of segregation, as networks work essentially in lockstep.
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Fig. 15.13 Neural complexity as a function of small-world index. (For a discussion of color-
coding of this data, see Section 15.9 of the text.)

So neither extreme exhibits the balance of integration and segregation that is neces-
sary for high complexity. Also, since small-world graphs already exhibit low values
of CPL, by definition, it is unlikely that CPL/CPLrand can grow very much smaller
than one. Accordingly, in retrospect, it seems reasonable to expect complexity to
peak for small values of SWI, though, absent data, we might have expected a value
somewhat larger than 1.0.

Given this tight correlation between complexity and SWI, one might expect the
closest parallel to complexity’s period of statistical significance (between driven and
passive), which, as we saw in Fig. 15.9, proves to be the case.

Despite the sharpness of this SWI peak, here again, possession of an optimal
value of the graph metric is no guarantor of high complexity. However, it appears
unlikely that a network of high complexity will be found with an SWI outside of a
modest range around 1.0.

15.10 Broader Applicability

It is reasonable to ask how these results are impacted by the nature of the simulations
used to produce them. Are there specific or general constraints on the underlying
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mechanisms of the simulator that might constrain network structure or function and
thus produce the observed effects?

For some graph metrics, the actual numerical values of these optimal ranges may
be scaled by the magnitude of the weights in our simulations, since distances be-
tween nodes are interpreted as the inverse of the synaptic strength between those
nodes. However, it seems unlikely that varying the maximum weight—the only free
parameter in this regard—would eliminate this ubiquitous “optimal-range” behav-
ior, since this weight only establishes an upper bound on synaptic strength, and thus
a lower bound on edge length.

These numerical values may also depend on simple network scaling parameters,
such as the maximum number of neural groups and the maximum number of neu-
rons per group, but, here again, we expect variations in these parameters to, at most,
shift the optimal ranges, not eliminate them. We also expect that a more normalized
metric such as SWI will be largely insensitive to these kinds of maximum weight and
node count parameters, since what is being measured is a deviation from a compa-
rable random graph of equal weight distributions, node counts, and edge counts. In
fact, we suspect that normalizing all of the graph metrics by their values in compara-
ble random graphs, a common practice in network science, may pull in the outliers
and tighten the distributions of the other metrics.

We have seen a degree of variation in structure/function relationships from run to
run for some graph metrics. Of course, varied outcomes from natural selection or a
genetic algorithm in a complex, chaotic system are to be expected. But by examin-
ing not only multiple runs with different seeds, but multiple types of runs—driven,
passive, and fitness—in which the evolutionary pressures on structure and function
are very different (and basically non-existent for passive runs), we have some con-
fidence that we have captured the majority of the space of possible dynamics, given
the neural model and genetic encoding of network structure we utilize.

And that genetic encoding is, deliberately, extremely general. As discussed ear-
lier, specific architectures are not specified or selected for. Rather, the scale of the
network and the statistics of connectivity are all that evolution has available to op-
erate upon. Internal neural group counts simply range from zero to some maximum
number (five, plus some fixed input and output/behavior neural groups, in these
experiments). Neuron counts within each group simply vary between one and 16.
The number of synaptic connections between neurons is determined by a genetically
specified connection density, and specific connections are determined stochastically,
in a more or less ordered sequence, depending on a genetically determined “topo-
logical disorder” gene. Only self-terminations are disallowed. So essentially any
network topology is possible, within the limits of group and neuron counts.

Given that all graph topologies are possible and we have explored their structure
and function in multiple settings under very different selection pressures (including
non-existent), there is reason to think these results may be robust.

We cannot rule out the possibility that an alternative neural activation model—
continuous-time or spiking, for example—might produce sufficiently different dy-
namics that the current results do not apply. However, a small degree of experimen-
tation with continuous-time and Izhikevich spiking models (Izhikevich 2003, 2004)
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in our system has produced mostly comparable evolutionary outcomes in agent be-
haviors, so there is at least some hope that these results will extend even to different
models of neural activation.

15.11 Discussion and Conclusions

Four key components—a computational ecosystem capable of carrying out syn-
chronized natural-selection and null-model simulations, a resulting wide array of
evolved neural network topologies and time series, an information-theoretic met-
ric for measuring neural complexity, and a collection of powerful graph theoretical
tools—have allowed us to ask questions and observe trends that are difficult to pose
and assess by any other means.

By “replaying the tape of life” (Gould 1989) in these novel ways, we have been
able to investigate evolutionary trends in complexity, a subject much discussed and
debated since Darwin. Our results demonstrate a clear natural selection for complex-
ity, in a driven, biased fashion. But they also show a tendency to weakly stabilize
complexity at a “just good enough” level. Though our work does not specifically ad-
dress it, there is little doubt that evolution will, under the right circumstances, select,
in a driven sense, to reduce complexity, such as when dark-dwelling organisms in
a cave give up their eyes to avoid wasting metabolic energy. All of which suggests,
then, that at the scale of individuals and species evolution always guides trends in
complexity.

But the scale of the discussion very much matters. Gould (1996) and Dawkins
(1997) have argued strongly for passive and driven evolutionary trends, respectively.
However, much of their disagreement seems to stem from an issue of scale. Our
work agrees with Dawkins’s claim that evolution is always driven—at the level of
individuals comprising a species. But integrating over an entire biome’s collection
of increasing, decreasing, and stabilized trends in complexity is likely to produce
a process that at least appears random, at the larger scale. In one of the earliest at-
tempts to model evolution computationally in order to address these kinds of ques-
tions, Raup et al. (1973) observed that fully deterministic trends at small scales may
very well be at the base of larger scale trends, even if those larger scale trends appear
to be passive. Our current simulations reinforce this notion of natural selection driv-
ing the evolution of complexity at small scales, but driving it in all directions—up,
down, and stable. So larger scale trends are likely to be obfuscated by these oppos-
ing trends at the smaller scale, and the often conflicting and inconclusive evidence
for trends in the paleobiological record is unavoidable and to be expected.

By looking at a specific adaptation—the evolution towards behaviors resulting
in an Ideal Free Distribution—we were able to demonstrate a correlation between
behavioral adaptation and our measures of neural complexity and graph topology.
But results from the passive and complexity-as-fitness runs make it clear that this
correlation only applies when complexity gains are the result of natural selection.

There is an implicit assumption in all this work that neural complexity is a
valuable commodity—something worth identifying and fostering. Indirect evidence
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from biology and simulation exists for this opinion, in which the kinds of small-
world networks found in biological brains are produced by evolutionary selection
for complex neural dynamics (Sporns et al. 2000). We believe our results indicate
that the need to produce viable, adaptable behavioral strategies in the face of com-
plex, changing environments is sufficient to require complex neural dynamics and
to produce them, given sufficient time for evolution to work its course.

In many ways our experiments with the use of an information theoretic measure
of neural complexity to guide agent evolution and behavior, using complexity as a
fitness function in a standard genetic algorithm (GA) sense, is closest in spirit to
some of the staples of the field of Guided Self-Organization, such as homeokinesis
(Der et al. 1999, 2001), predictive information (Der et al. 2008), and empowerment
(Klyubin et al. 2005). In some unpublished work we have attempted to guide these
complexity-as-fitness evolutionary trajectories towards behaviors more traditionally
associated with biological evolutionary fitness, such as foraging and reproduction.
To this end we have tried applying filters to the neural activation time series used to
compute complexity, suppressing their contribution to complexity outside of tem-
poral windows around behaviorally meaningful events, such as the consumption of
food and successful (virtual6) reproduction. There have been some hints that this ap-
proach might help guide the GA in the desired directions, but so far the results are
inconclusive. We have considered other methods for combining traditional evolu-
tionary fitness with complexity as fitness, but not yet had the opportunity to explore
them. So we have yet to reliably join complexity as a fitness function with evolu-
tionarily useful behaviors.

This disconnect between complexity and behavioral fitness is at odds with the
very direct coupling of behavior and complexity found in a task discussed by Sporns
and Lungarella (2006), in which a robotic arm attempts to grasp a randomly mov-
ing block. We believe the discrepancy is due to significant differences in the range
of possible behaviors, environments, and sensory inputs in these two experiments.
In the work by Sporns and Lungarella, evolving the robot for maximum complex-
ity produced block-grasping behaviors as efficient as when the robot was evolved
to perform the block-grasping task directly. But in their experiment, aside from
the block, the environment was empty or consisted of random noise, and the only
way to provide non-random sensory input to the controlling network, and thus in-
crease the complexity metric, was to attend to that block. By contrast, in Polyworld
the environment contains appearing (growing) and disappearing (eaten) food, other
structural artifacts (the barriers), and, most significantly, many other agents behav-
ing according to their own network dynamics, providing a rich and varied source
of visual complexity. Each Polyworld agent also expresses control over a suite of
seven primitive behaviors, most of which directly affect that agent’s experience of
the world. All these additional sensory inputs and multiple low-level behaviors pro-
duce a complicated, non-unique relationship between the complexity of the agent’s

6 In GA mode reproduction is handled by the algorithm, not agent behaviors, so we devised
a method of recognizing events corresponding to the activations of mating behaviors by
collocated agents that would normally have produced an offspring, and recording these as
“virtual births”.
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neural dynamics and any resulting higher order behaviors. It is the extreme differ-
ence between the agents’ sensoria and possible sources of complexity in the two
works that we believe accounts for the marked difference in observed correlation
between complexity and behavior.

One curious, but sweeping conclusion one might draw from the contrasting rela-
tionship between neural complexity and behavior when natural selection is present
and when it is not (in the null-model and complexity-as-fitness runs) is that it
may only be possible to study biologically meaningful neural complexity in what
are typically thought of as “artificial life” models. That is, absent a computational
ecosystem in which neurally controlled behaviors dictate survival and reproduction
there appears to be no correlation between complexity and evolutionarily useful
behaviors or what is generally deemed evolutionary fitness, despite clear evidence
of such a correlation when natural selection of neurally controlled behaviors is at
work in our model. It remains to be seen whether such a correlation exists in bi-
ological organisms and, unfortunately, rigorously establishing such a link is likely
to remain difficult for the foreseeable future. Techniques do not currently exist to
quantitatively assess neural complexity in biological organisms and, of course, all
extant biological organisms have been subject to natural selection. However, struc-
tural information about biological neural systems is accruing and increasing in detail
rapidly, and it may be possible to relate structural complexity to the richness of be-
havioral repertoires before too much longer. We may consider it a prediction and
partial confirmation of our model if indicators of behavioral complexity prove to be
correlated with neural topologies approaching those we have identified here as most
correlated with neural complexity and evolutionarily adaptive behavior.

Our model also demonstrates and predicts evolutionary selection for neural com-
plexity during behavioral adaptation of a species to a complex environment. We
suggest that it is reasonable to expect results from the model to apply to biological
systems, since, even though Polyworld provides only an abstract model of biological
evolution, the principle in action is, at its base, simply natural selection—an amplifi-
cation of advantageous traits. The mechanisms of action and behavior clearly differ
between model and biology, and there will be differences in the specific costs and
benefits between any biological agents and artificial agents, but such differences
exist between any one biological agent or niche and another. There will always
be cost/benefit trade-offs in competition and niche exploitation for any evolutionary
ecosystem, real or artificial, and it is these trade-offs that evolution explores. As long
as increases in complexity improve the ability to survive and reproduce by agents so
advantaged, evolution will actively select for those complexity increases. The sub-
sequent plateau in driven complexity seen here, due to the widespread adoption of
a “good enough” strategy, that acts as a kind of local optimum, demonstrates how
evolution can act to serve as a weak stabilizing force for complexity, in accord with
Dennett’s (1996) observation, “The cheapest, least intensively designed system will
be ‘discovered’ first by Mother Nature, and myopically selected.” Yet when varia-
tion produces a sufficiently improved network and corresponding set of behaviors,
our system exhibits a punctuated equilibrium, as so often observed in nature.
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Of course one expects neural function to be heavily dependent upon neural struc-
ture. Indeed, prior work has demonstrated a correlation between neural complexity
and network small-world-ness (Sporns et al. 2000). However, our results show that
at least when small-world-ness is assessed by SWI, that correlation is decidedly non-
monotonic. Indeed, all our data suggest that the complexity of a neural network’s
function is maximized within a fairly modest range of optimal graph theoretical
measures of the network.

It has been suggested that evolution may strongly select for a combination of
maximum efficiency and minimum communication cost in biological brains (Bull-
more and Sporns 2009), and there is evidence for a genetic component to this kind of
cost-efficiency in the organization of human cortical networks (Fornito et al. 2011).
In biological systems, evolutionary pressures due to physical constraints, such as
wiring length (Mitchison 1991), brain volume (Murre and Engelhardt 1995), and
fast response time (Lago-Fernández et al. 2000), naturally lead to reduced commu-
nication costs. Combined with a need for efficiency, it is reasonable to speculate that
brains have long been under an evolutionary pressure towards small-world graph
structures (Sporns et al. 2000; Bullmore and Sporns 2009).

Here we see evidence for an evolutionary pressure towards network efficiency
and small-world structures—exhibiting high clustering and short path lengths7—
based purely on network functionality, absent all physical constraints. This bolsters
the argument for evolutionary pressures on efficiency and suggests that low-cost,
small-world structures provide a purely functional benefit, independent of physical
constraints. Indeed, though physical and functional constraints could, in principle,
have produced evolutionary pressures that were independent or even conflicting, our
work shows that they are aligned and convergent, working in combination to pro-
duce the kinds of network structures that foster complex, adaptive behavior. We sug-
gest that humans and all biological organisms with even modestly complex nervous
systems are the fortunate beneficiaries of these convergent and synergistic physical
and functional constraints.

We have also identified limited ranges amongst several graph theoretical metrics
within which high-complexity networks are to be found. It is not currently possible
to predict network function purely from structure—each of these limited ranges of
metrics may be seen as necessary but not sufficient to guarantee complexity. How-
ever, one wonders if perhaps the addition of more refined graph theoretical metrics,
such as (signed) motif distributions, modularity, w-cores (weighted k-cores), excess
entropy of graph links, and so on, might enable such a feat. Regardless, knowledge
of the parameter regimes in which neural networks are most capable of produc-
ing complex dynamics can be used to guide evolutionary search for the most capa-
ble networks. Armed with a successful characterization of those network structures
most likely to confer dynamical complexity, we may be able to close the loop on

7 Technically, the evidence is for moderately high clustering and moderately short path
lengths, but the requirement that both integration and segregation be present to achieve
high complexity, together with the fundamentally opposing tension between integration
and segregation, is exactly mirrored and driven by this trade-off between path length and
clustering, meaning neither can be so extreme that the other is degraded overly much.
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guided self-organization and apply our learned structural constraints to the more
rapid, more far-reaching evolution of artificially intelligent agents.
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Chapter 16
Clustering and Modularity in Self-Organized
Networks

Somwrita Sarkar and Peter A. Robinson

16.1 Introduction

Many biological, artificial, and social systems are self-organized. Though an over-
arching, exhaustive definition of self-organization is elusive, there is general agree-
ment on many of the properties that self-organized systems can be characterized
by: they are global systems, composed of many, usually identical, micro level com-
ponents. These components interact locally, while the system shows emergence of
global dynamics not directly observable, measurable, quantified, or defined at the
local level (Prokopenko 2009).

The dynamics of self-organizing processes can be guided, either by design, or
as a result of factors in the environment that affect the system. For example, the
human brain can be considered as an example of a guided self-organized sys-
tem, because while the brain grows from infancy to adulthood in a self-organized
manner, the interaction of the organism with its external environment guides this
self-organization (Sporns 2011). In artificial systems, guided self-organization can
occur through design. For example, in artificial life, evolutionary dynamics, and
game theoretic experiments, explicitly altering the variables, constraints, or sets of
rules for an evolutionary process can result in the emergence of different forms of
self-organization (Prokopenko 2009). In the design and engineering domain, the de-
sign of complex engineered systems (consider examples such as aircraft, spaceships,
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and aero-engines) is frequently thought of as centrally planned (as opposed to self-
organized). However, it is worth noting that the process of designing itself is, on
the one hand, driven by the system or project objectives and constraints, and on the
other hand the organization’s internal and external environments (Sosa et al. 2003,
2004). This “guiding process" results in a guided self-organized system of teams of
human designers and engineers working together to achieve the design (Sosa et al.
2003, 2004; Sarkar et al. 2013a). Thus, looked at in one way, every self-organized
system would be guided, either partially or fully, by the environment in which the
system is situated, either by design or by other contextual factors.

16.2 Modularity of Self-Organized Systems

In studying the evolution of such systems, one fundamental organizational property
is modularity, community formation, or cluster formation. Modularity is defined as
the organization of system elements in clusters or tightly interacting modules, with
elements of the same cluster densely connected to each other, and comparatively
sparsely connected with elements from other clusters (Fortunato 2010; Newman
2010). Further, it has been shown that many real world systems show hierarchi-
cal modularity: the presence of nested smaller modules in larger modules, at many
levels of organization.

Why modularity or hierarchical modularity is observed in systems is an open re-
search question, and is not particularly well-understood. One possibility is that the
clusters are functionally formed: the elements of a system that all perform similar
functions, as a group, are densely connected together. From this perspective, mod-
ularity is a functional phenomenon, and modules are a measure of the functional
or behavioral complexity of the system. For example, the human cortex has visual
or auditory or somatosensory areas, and engineered systems have sub-systems and
components that are connected based on specific functions such as heat or material
transfer.

Another possibility discussed in the literature is that the modularity in the system
can be a result of optimizing factors such as path lengths for information com-
munication, total wiring length for volume optimization, or any other such global
optimization factor (Sporns 2011; Fortunato 2010).

The question of modular and hierarchical organization is especially important
for guided self-organized systems. Some studies have shown that guiding the self-
organization process towards optimizing certain definite sets of behaviors results
in modular architectures (Kashtan and Alon 2005). This has particular implications
for the evolutionary design of engineered systems, as well as understanding under
what conditions in a guided self-organization process can modularity emerge, for
biological and natural systems. In other words, the presence or absence of modular-
ity can signal the types of guided self-organization or self-organization occurring in
a system.

Modularity appears to be a fundamental organizational property of self-organized
systems. Therefore, methods for its detection become important: Given a system,
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and its description in terms of its elements and their inter-relationships, can we
detect the naturally occurring (not artificially defined) modules? Answering this de-
tection question can help to answer the deeper questions discussed above: why do
self-organized systems organize themselves into modules? If we detect the mod-
ules of a certain system, can we then predict the “guiding" process or principle that
results in the formation of these modules?

Detecting and characterizing modularity or communities in real world systems
has proved to be difficult. Despite being a significant research focus in multiple
disciplines, the answer to how to detect and optimally describe the modular structure
of a system remains elusive.

Self-organized complex systems can be represented as graphs or networks of in-
teraction between its component elements: nodes represent system components and
links represent the interaction between these components (Newman 2010; Fortunato
2010). In various domains, the nodes and links can have various representations. The
study of complex systems as networks has attracted widespread attention in physics,
computer science, biology and many other disciplines, with networks representing
a wide array of social, biological, technological, or economic systems.

16.3 Chapter Summary

In this Chapter, we focus on spectral methods of modularity finding in net-
works (Fortunato 2010; Newman 2010; Sarkar and Dong 2011b; Sarkar et al.
2013b). Spectral methods involve studying the eigenvalue spectra of classes of ma-
trices related to the networks. In general, they provide a powerful lens to study
modularity, in comparison with other methods of modularity finding, for two main
reasons. First, many methods focus on the local properties of nodes and their con-
nected neighbors, to produce locally greedy algorithms to detect modules (for a
review of methods see (Fortunato 2010)). As opposed to local methods, spectra pro-
vide a powerful global method of looking at the connectivity structure, without los-
ing the local information. Second, eigenvalue spectra of connectivity matrices and
graphs are also often used to understand the dynamics of a system, specifically with
regards to properties such as stability and instability of system dynamics (Rajan and
Abbott 2006; Gray et al. 2009; Robinson et al. 2009; Arenas et al. 2006). Relat-
ing the dynamical systems view to the network modularity can therefore provide
a powerful mechanism to understand how system structure and system dynamics
are co-dependent. The relationships between eigenvalues and the system dynamics
arises from underlying behavioral models, and are therefore, subject to model as-
sumptions. But they still provide an insight into the structure-behavior connection.
However, methods that look for only structural modularity, on the other hand, will
fail to make this structure-behavior connection.

In Sec. 16.4, we first review some background on the use of spectral methods
for understanding network modularity. In our previous work, we have shown that
eigenvalue spectra of graph adjacency matrices can help to fingerprint the modular
structure of networks (Sarkar et al. 2009; Sarkar and Dong 2011b,a; Sarkar et al.
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2013b,a). In this work, we show how the adjacency matrix provides a powerful
mechanism to study hierarchical modularity and modular overlaps. In particular, we
review how traditional spectral clustering methods dependent on using the Lapla-
cian matrix have, in general, not captured hierarchical organization and modular
overlaps. In Sec. 16.5, we then present a generalized algorithm for modularity de-
tection, developing on the specific methods presented in our recent work (Sarkar
and Dong 2011b; Sarkar et al. 2013b). We demonstrate the efficiency of the algo-
rithm on synthetic networks generated using stochastic block model type network
models (Sarkar et al. 2013b,a).

16.4 Background

In this section, we present a critical review of the prevalent approaches to spectral
modularity detection in graphs, and some of their limitations that we address in our
work.

16.4.1 Spectra and Graph Structure

One research direction involving the use of network spectra to make inferences
about network structure stems from a long history in graph theory, random ma-
trix theory and quantum mechanics. In graph theory, a general problem is to infer
relations between the spectral and structural properties of a graph by studying the
eigenvalues and eigenvectors of a matrix associated with the graph (Biggs 1993;
Cvetkovic et al. 1995, 1997, 2010). An unweighted network of n nodes is repre-
sented by its symmetric square adjacency matrix A, where

Ai j =

{
1 if an edge exists between nodes i and j,
0 otherwise.

(16.1)

The spectrum of the network (Biggs 1993) is the set of eigenvalues of A together
with their multiplicities. If A has distinct eigenvalues λ0 > λ1 > .. . > λn−1 with
respective multiplicities m(λ0),m(λ1), . . . ,m(λn−1), the spectrum is

S =

[
λ0 λ1 . . . λn−1

m(λ0) m(λ1) . . . m(λn−1)

]
. (16.2)

Starting with the work of Wigner (Wigner 1955, 1957, 1958), random matrix the-
ory (Mehta 2004) and the spectral density of a network have been used to classify
complex network types (Farkas et al. 2001; Goh et al. 2001). The spectral density
of a network is defined to be the density of the eigenvalues of its adjacency ma-
trix. When the number of nodes n is finite, this is expressed as a sum of Dirac δ
functions:

ρ(λ ) =
1
n

n−1

∑
j=0

δ (λ −λ j), (16.3)
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where λ is the eigenvalue at which the spectral density ρ is computed. It has been
shown (Farkas et al. 2001) that random, non-modular small world, and scale-free
models have distinct spectra. When the spectral density ρ(λi) is plotted against the
eigenvalues λ j, i = 0 . . .n− 1, [see Figs. 1-4 in (Farkas et al. 2001)], as n grows
large, the spectral density for an ER random graph approaches a semi-circular form,
the spectral density of a Watts-Strogatz (WS) small world network shows multiple
sharp peaks, and the spectral density of a Barabasi-Albert scale free network shows
a triangular form. The spectral density approach was then extended to study mod-
ularity, hierarchy, and dynamics (de Aguiar and Bar-Yam 2005) using a scale-free
hierarchical modular network as defined by (Ravasz et al. 2002). However, this fin-
gerprinting of network types was not extended to determine the number of modules,
the number of hierarchical levels, and the exact modular composition.

16.4.2 Spectral Clustering and Partitioning Approaches

A second principal direction in the use of spectra to infer network structure,
and specifically look at graph partitioning and finding network modularity stems
from work in computer science and mathematics (Chung 1997; Mieghem 2011;
Cvetkovic et al. 1995, 1997; Newman 2010). In general called spectral clustering
or graph partitioning, these approaches use the information contained in the eigen-
vectors and eigenvalues of a suitable matrix representation of a graph. Most used
is the graph Laplacian (Pothen et al. 1990), that we now define. We have defined
earlier that A represents the adjacency matrix of a graph G with n nodes. Further,
let D be the degree matrix, where

Di j =

{
di degree of node i when i = j,
0 when i �= j.

(16.4)

Then the Laplacian matrix is
L = D−A (16.5)

with

Li j =

⎧⎨
⎩

di when i = j,
−1 when i �= j and i is adjacent to j,

0 otherwise.
(16.6)

Almost all spectral clustering or partitioning approaches operate on L (or its
other variants) to partition the graph recursively, each time finding an optimal bi-
section (Newman 2010; Pothen et al. 1990). The basic approach followed is that
first an optimization function is defined with respect to the graph properties, such
as minimizing the number of cuts needed to partition the graph, or minimizing the
distance needed to travel across the graph. Usually, the graph is initially partitioned
into two modules with respect to an optimization function, followed by a recursive
reapplication of the bisection step to find more modules.

As we have discussed in (Sarkar and Dong 2011b), and now demonstrate more
extensively in this work, this approach fails to capture many of the important
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characteristics important for modularity detection in real world networks. We specif-
ically show that the strict partitioning assumption, (the assumption that the graph be
partitioned into two disjointed parts), is a cornerstone of the methods and rests on
the specific use of the second leading eigenvector of the Laplacian. However, this
same assumption renders the method incapable of identifying other natural patterns
fundamental to modularity detection, such as modular overlaps and hierarchical or-
ganization, unless the algorithms are specifically modified. One way of doing this is
presented in this chapter.

The original spectral bi-partitioning algorithm (Pothen et al. 1990) defines and
minimizes the cut size R, defined as the number of edges running between two
groups of vertices into which a cut partitions a graph. Following (Newman 2010),
an index vector is defined, s = {s1,s2, ...,sn}, with each si = +1 or -1 depending on
which of the two modules vertex i is assigned to, with the normalization condition
sT s = 1. The cut size R can then be defined in terms of the index vector s and the
Laplacian L follows, and this becomes the function to be minimized:

Min R =
1
4

sT Ls. (16.7)

Following a parallel formulation, Newman’s spectral approach (Newman 2010)
presents a modularity function Q that is maximized to find a partition that optimally
divides the network into two modules. A modularity matrix B is defined that mea-
sures the difference between the actual number of edges existing between a pair of
vertices and an expected number derived from an equivalent random graph with the
same number of vertices and the same degree distribution but with no community
structure (Newman 2010). Then, the modularity function that is to be maximized is
defined in terms of the modularity matrix B, the partition vector s as in Eq. (16.7),
and the number of edges m in the network:

Max Q =
1

4m
sT Bs. (16.8)

We note here the equivalence between the forms of the two optimization functions
in (16.7) and (16.8). Usually, solving these optimization problems, (minimizing
Eq. (16.7) or maximizing Eq. (16.8)), are NP-hard (Newman 2010). However, it
can be shown (Pothen et al. 1990; Newman 2010) that an approximate solution can
be found if s is chosen proportional to the eigenvector corresponding to the sec-
ond smallest eigenvalue of L or the leading eigenvector of B. Thus, both these ap-
proaches represent s as a linear combination of the eigenvectors vi of the Laplacian
matrix L in Eq. (16.7) or the modularity matrix B in Eq. (16.8), as

s =
n

∑
i=1

aivi. (16.9)

However, since s is, by definition, constrained to take on discrete +1 or −1 values,
an approximate solution is resorted to in both cases, with si = +1 if the ith element
of the corresponding eigenvector is positive and −1 if negative. This corresponds to
the strict partition and bisection assumption: vertices can belong to only one of two
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communities. For more than two communities, the vector s is replaced by an n× k
matrix S with k communities, with i = 1 to n and j = 1 to k, such that:

Si j =

{
1 when vertex i belongs to community j,
0 otherwise.

(16.10)

The strict partitioning assumption still holds. Thus, a priori assumptions built into
the definition of a community do not permit identification of overlapping com-
munities, even when the eigenvectors and eigenvalues may implicitly contain this
information.
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Fig. 16.1 Studying the components of the second Laplacian eigenvector: (a) Adjacency Ma-
trix of network with two modules and overlapping nodes (numbers 16 and 17). (b) Laplacian
Matrix. (c) Components of the second Laplacian eigenvector puts node 16 into module 1 and
node 17 into module 2. The inset shows the results of applying the algorithm in Sec. 16.5 to
this network, the overlap nodes are clearly revealed by the algorithm and are shown here as
the “grey bands" shared by both the modules.

We show a detailed example to demonstrate the above claim. Figure 16.1 shows
an example 32 node network with two modules with node numbers 16 and 17 de-
liberately connected with both modules; i.e., they share dense interactions with both
modules, and are therefore, overlapping nodes. It would be incorrect to assign them
into independent modules, because they connect equally strongly with both mod-
ules. With the algorithm described above, however, we see that the relevant eigen-
vector component for node 16 is negative and node 16 is therefore placed in module
1 by the algorithm. Similarly, the relevant eigenvector component for node 17 is
positive, and is therefore placed in module 2 by the algorithm. Clearly, forcing an
approximate solution may throw away useful information contained in the eigen-
vectors and eigenvalues that can potentially be used to shed more light onto the
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community structure existing in the the graph: the approach we demonstrate later
in this work. The inset in Fig. 16.1(c) shows the results of applying the algorithm
presented in this paper in Sec. 16.5 to identify the modules. The white portions of
the matrix show the two principal modules, and the overlap nodes clearly emerge as
gray bands that are “shared" between the two modules.

Further, the spectral bi-partitioning algorithm (Pothen et al. 1990) asks the user
to choose the number and relative sizes of communities beforehand, and always
provides a solution, whether or not a clear community structure exists in the graph.
Newman’s modified approach (Newman 2010) addresses most of these limitations
by using the modularity matrix instead of the Laplacian. However, his approach
maintains the strict partitioning assumption. Thus, overlapping modules are not
revealed. The calculation of the modularity metric also requires a solution to be
worked out, and nodes to be assigned to communities, before the metric may be
calculated. Other studies have also shown that that Newman’s approach has a res-
olution limit problem (Fortunato and Barthelemy 2006): it cannot detect smaller
hidden sub structures inside larger communities.

16.4.3 Spectral Fingerprints of Modularity and Hierarchical
Modularity: Adjacency Matrix

In this section, we show, using our past work, the second major gap: that of detecting
hierarchical organization of modules in networks.

In recent work, we have shown that network modularity, and specifically hierar-
chical modularity, can be fingerprinted using the largest eigenvalues of the adjacency
matrix of a network (Sarkar et al. 2013b). Gaps between clusters of closely spaced
large eigenvalues that are well separated from the bulk distribution of eigenvalues
around the origin reveal the number of hierarchical levels and the number of mod-
ules at each hierarchical level. We derived analytical expressions for the mean values
of these largest eigenvalues, thereby relating the hierarchical structure of typical hi-
erarchical stochastic block model type networks and matrices to their eigenvalue
distributions. This provided an algorithm-independent manner of characterizing the
hierarchical modularity of networks.

Hierarchical modular graphs have “modules nested inside modules". The proba-
bility of an edge inside the lowest level (smallest) module is the highest, and progres-
sively decreases as the level of hierarchy increases. We follow the typical stochastic
block model form for constructing a hierarchical network (Sarkar et al. 2013b). A
hierarchical modular network is constructed by recursively placing random matrix
blocks with decreasing levels of connectivity between nodes in hierarchical levels
in a block diagonal form. We consider the matrix

A′ =
[

A P
P A

]
, (16.11)
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where A is a binary random network of size s and edge probability p, and P is a
random network of size s and edge probability pq. Here, the parameter q sets the
level of decrease in connectivity between the various levels of hierarchy. That is,
q is a numeric parameter that is varied to define the connectivity of the first level
hierarchy of off-diagonal networks or embedded modules represented by P. Thus,
the lower the value of q, the stronger the hierarchical modular structure, and higher
the value of q (to 1), the weaker the hierarchical modular structure.

We now define the second level of perturbation A′′ as

A′′ =
[

A′ P
P A′

]
, (16.12)

where A′ is the matrix defined in Eq. (16.11) and P is a random network or matrix
of size 2s and edge probability pq2. Note here the second hierarchical level: A′

already has the first level of hierarchy built in as described previously, with the first
level off-diagonal blocks having connectivity pq and the diagonal blocks having
connectivity p, with pq < p. Now, the second level off-diagonal blocks, represented
by matrix P, have connectivity pq2 with pq2 < pq < p. In general, the matrix P
defines each successive level L of perturbations of increasing size (s,2s,4s, . . . ,N/2)
and decreasing probability of connection (pq, pq2, . . . , pqL−1), producing an extra
level of hierarchical modular structure with each perturbation level. Figure 16.2
[inset] shows an example 1024 node hierarchical network adjacency matrix with 5
hierarchical levels.
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Fig. 16.2 Hierarchical networks and their adjacency matrix spectra clearly bring out the
hierarchical organization; (a) the adjacency matrix for a hierarchical network (b) plot shows
eigenvalues arranged in decreasing order. Clusters of eigenvalues indicate the hierarchical
structure.
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We have proved in (Sarkar et al. 2013b), that for L hierarchical levels, the ex-
pected values of the largest eigenvalues (those separated from the bulk of the eigen-
values) of a hierarchical network AL, along with their algebraic multiples, are:

Sp(AL) =

⎡
⎢⎢⎢⎢⎣

s
[
p+ pq∑L−1

i=0 (2q)i
]

1
s
[
p+ pq

{[
∑L−2

i=0 (2q)i
]
− (2q)L−1

}]
1

. . . . . .
s [p+ pq(1− 2q)] 2L−2

s [p− pq] 2L−1

⎤
⎥⎥⎥⎥⎦ . (16.13)

Figure 16.2 shows the spectrum correctly predicting the hierarchical structure: the
coarsest network module of 1024 nodes, 2 modules of 512 nodes each, 4 modules
of 256 nodes each, 8 modules of 128 nodes each, and 16 modules of 64 nodes each.
Note the gaps in eigenvalues after the 2nd, 4th, 8th, and 16th eigenvalues.

These findings tell us that considering other eigenvalues and eigenvectors may
tell us more about the structure of the graph, and therefore, must be explored fur-
ther in a systematic way. In the next section, we present a generalized algorithm for
detecting the modular organization at multiple hierarchical levels, using the infor-
mation contained in the eigenvalues and eigenvectors of the adjacency matrix.

16.5 Detecting the Modular Structure

In this section, we present a generalized algorithm based on work presented (Sarkar
et al. 2009; Sarkar and Dong 2011b; Sarkar et al. 2013a), and briefly review the
main steps of the algorithm. The main difference between the approach we present
and the optimization approaches discussed in relation to the Laplacian and mod-
ularity matrices in Sec. 16.4.2 is that instead of stating the modularity detection
problem as an optimization problem, we state it as a pattern recognition based unsu-
pervised clustering problem. We have already seen that eigenvalues and correspond-
ing eigenvectors beyond the second ones have important information encoded about
the structure of the system.

The method contains three aspects. First, the eigenvalue decomposition (EVD)
of the adjacency matrix is computed as A = VDVT . If A has n nodes, then V is
the n× n orthonormal matrix of its eigenvectors and D is an n× n diagonal matrix
of its eigenvalues. The eigenvalues are arranged in a decreasing order, along with
the corresponding eigenvectors. The main idea is to now express the connectivity
of each node with other nodes as a vector in space, as a linear combination of an
eigenvector component times the corresponding eigenvalue as

ai = [vi1λ0,vi2λ1, . . .vinλn−1], (16.14)

as in (Sarkar and Dong 2011b). Thus, connectivity is now expressed as a function
of position in space.
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Second, we perform a dimensionality reduction on the original adjacency ma-
trix by preserving the k largest eigenvectors and eigenvalues to produce a reduced
approximation of the node vectors as

a(k)i = [vi1λ0,vi2λ1, . . .vikλk]. (16.15)

The heuristic choice on k is guided by the findings in the previous section: we
identify the largest gaps in the spectrum between successive eigenvalues, and then
choose k (or k+ 1) based on the these largest gaps. If the graph has a hierarchical
modular structure, there will be many such gaps. Using different k values (corre-
sponding to each of the large eigengaps) will bring out the modularity structure at
different hierarchical levels, since each k value corresponds to the number of mod-
ules at a specific hierarchical level in the system. Usually, the more pronounced
the modularity structure in the network, the sharper the gaps, and the weaker the
modularity structure in the network or higher the noise, the smaller the gaps.

The dimensionality reduction step identifies data redundancy in the adjacency
matrix. Each of the n nodes can be thought of as a separate dimension. However, the
pattern in the data is the number of modules, which are always going to be lesser
than n. Therefore, all the n dimensions are not needed to capture the pattern: the
number of needed dimensions corresponds to the number of modules. In a module,
two nodes with many common neighbors or the same set of neighbors are likely
to fall in the same module, while two nodes that do not share common neighbors
are likely to fall in separate modules. If two nodes have exactly the same set of
neighbors, then there are dependent rows and columns in the matrix. If they share
many common neighbors, then their vertex vector representations will share high
dot products. In either case, this redundancy in the matrix means that there is a
lower number of dimensions that can be used to represent the modular organization
of the system. This redundancy in the graph matrix is used to compute a linear least
squares, optimal, lower dimensional approximation of the original matrix by retain-
ing the k largest eigenvectors and eigenvalues. These, when arranged in decreasing
order, capture the relative information content that each orthogonal dimension con-
tains about modular organization.

Finally, to find the modules, dot products are computed between all the k reduced
vector representations of nodes, resulting in a dot product or cosine matrix. The
higher the cosine between two node vectors, the higher the probability that they
belong to the same module. The lower the cosine, the higher the probability that
they belong to different modules. With the cosine matrix suitably reordered to reveal
the highly connected groups of nodes along the block diagonal. We have previously
provided an algorithm for reordering (Sarkar and Dong 2011b), we can identify
the modular hierarchical-overlapping organization in the network, as well as the
overlap nodes. The overlap nodes appear in the cosine matrix as “bands" of high
dot products: nodes that fall in an overlap between multiple modules share high dot
products with nodes of all those respective modules. In Fig. 16.1(c), the inset shows
that the two overlap nodes in the network are clearly revealed as “white-grey" bands
(high cosine similarity) values, shared by both the modules (shown in white).
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Fig. 16.3 Using the algorithm to bring out hierarchical structure. Dot product matrices com-
puted to reveal the modules for 1024 node hierarchical network of Fig. 16.2 using: (a) k = 2,
(b) k = 4, (c) k = 8, and (d) k = 16. Modules at separate hierarchical levels are clearly brought
out.

Fig.16.3 shows the dot product matrices after performing the modularity identi-
fication using k = 2,4,8,16, respectively for the 1024 hierarchical network shown
in Fig. 16.2. Note that when k = 2, the coarsest hierarchical arrangement is visible,
when k = 4,8, the second and third hierarchical levels are visible, and when k = 16
the finest hierarchical level is visible.

16.6 Discussion and Conclusion

We have presented spectral methods for modularity and hierarchy detection in com-
plex self-organized systems represented as graphs or networks. The area of modu-
larity detection is a very important one, as it has been shown to be deeply connected
with self-organizing processes in systems. We reviewed the traditional spectral clus-
tering approaches from the literature, and then showed how incorporating the infor-
mation in the full spectrum and reformulating the manner of modularity detection
can lead to the detection of modular overlaps and hierarchical organization. Our
main aim in this chapter was to demonstrate the methods and their comparison with
previous methods in the literature. Elsewhere, we have also tested these methods on
large classes of synthetic, benchmark, and real world networks, with very accurate
modularity detection results (Sarkar and Dong 2011b; Sarkar et al. 2013b,a).

This work is at the preliminary stages, and can be extended in a number of
other directions, especially with regard to deepening our understanding of self-
organizing processes in systems. We can use the spectra to chart the evolution of
self-organizing systems, both for studying emergence of modularity in naturally
self-organizing systems, or those that are being guided by design. In evolving sys-
tems, we can study the spectra of temporal snapshots of a system. If modularity
emerges at any stage, this will be clearly indicated and can be studied using the
spectra.

Second, we can use the spectra to understand, explore, and map the relationships
between the self-organization processes and the system structure. For example, in
designed systems, several versions of self-organizing, optimization or evolutionary
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rules can be specified, and charting the evolution of the system under the effect of
these various sets of generative rules can be performed using the spectra. If modular-
ity or hierarchical organization emerges, the spectra can be used as a classification
tool to understand which processes lead to emergence of modularity.

Finally, there are a number of methodological directions. The literature shows
various types of matrices used for modularity detection and classification, ad we
have explored preliminary relationships between them, as reported in this paper.
The work here can be extended to better understand the relationships between the
various matrix classes, and to explore what type of information on modularity is
captured (or not captured) in specific matrix forms.
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