

Y. Yang, M. Ma, and B. Liu (Eds.): ICICA 2013, Part II, CCIS 392, pp. 430–439, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Model-Driven Interactive System

Hao Wu and Qing-yi Hua

School of Information Science and Technology Northwest University,
710069 Xi’an, China

{wh,huaqy}@nwu.edu.cn

Abstract. Model-driven interactive system development mainly solves the user
interface development problems of the diverse and heterogeneous client devices
in the new computing model such as pervasive computing and cloud
computing. This paper analyzed the problems that existed in this development
approach, and put forward an architecture pattern ALV+. This pattern was
integrated with CAMELOAN reference framework. So a novel model-driven
interactive system development approach was designed. This approach divided
the user interface into several models: abstract interface, concrete interface,
device interface and event description, which made the presentation and
transformation of the models simple, and decreased the redundancy among the
models. Then a case study was used to verify the effectiveness of the approach,
and confirmed that this method could solve the problems of the model-driven
approach to some extent.

Keywords: new computing model, model-driven, architecture pattern,
CAMELOAN reference framework.

1 Introduction

Model-driven interactive system development is considered to come to the third stage
of its evolution process [1]. In this stage it mainly solves the user interface
development problems of the diverse and heterogeneous clients in the new computing
model such as pervasive computing and cloud computing. These development methods
have obtained some achievements, but there are some problems in these methods: 1) A
weakness of model-driven development approaches is that it seldom uses the
technology of the mature architecture pattern, so it is difficult to apply the research
results of architecture pattern in recent 30 years, so as to bring so many problems about
the design, development, test, evaluation, deployment and evolvement of systems [2].
2) In the model-driven development approaches, the presentation and transformation of
models are complex and difficult to master. These approaches produce the limited user
interface that the development tools are supported [3]. 3) In quite a few model-driven
system development methods, the models are divided into interactive models,
presentation models, platform models and so on. Although the complex sorts can
definitely describe the properties of use interface from different views, there is
redundancy that is difficult to erase among many models. The redundancy leads to the

 A Model-Driven Interactive System 431

cumbersome use interface generation process. 4) Model-driven development approach
is a step wise refinement approach to address the static appearance of user interface,
but there are weaknesses in solving the dynamic behavior and control problems,
because the response and disposal of events and the data transformation between user
interface and the application computation are often closely interrelated with final
interface, resolving these problems at the abstract level often leads to interweave the
user interface and the application computation.

This paper puts forward a model-driven development approach for interactive
system, which supports the auto-production of user interface for multi-devices, and
aims to do some exploratory research for the aforementioned problems.

2 Related Works

2.1 Interactive System Architecture Pattern ALV

Interactive system architecture pattern ALV shows as Figure 1 [4]. In this pattern,
shared abstract denotes the application computation of system, view denotes the user
interface of system, and link links the abstract with view by the constrains-based
ways. ALV pattern has a good effect in supporting CSCW. The front devices in
CSCW environment resemble client devices in new computation mode: there is a
share application service in back end. But in ALV-based CSCW environment, front
devices are fat client that have the strong interface presentation and computation
power. They have the same interactive modalities; all are the standard configuration
of PC. Whereas in the new computation mode, the presentation and computation
power of front devices have the remarkable differences. They may be fat client, but
they may be the thin clients that have the weak presentation and computation power
and have the different modalities. So ALV pattern couldn’t apply to the new
computation mode directly, it needs some expansions and improvements.

Fig. 1. This Figure shows architecture pattern ALV

432 H. Wu and Q.-y. Hua

2.2 CAMELEON Reference Framework

CAMELEON reference framework [5] shows as figure 2. In this framework, the
development of interactive system begins with building concept and task models.
Then the framework produces the abstract models from these models. The abstract
models transforms into the concrete models by the models mapping. In the last, the
final user interface is produced by the concrete models. CAMELEON reference
framework doesn’t give the specific models; it just refers to the four stages of the life
periods of the user interface development. Many a model-driven user interface
development works were based this framework [1] [6]. This framework is a top-down
development mode for the new system development. The problems that this
framework exists have been explained in the preceding part of the text. This paper
presents a method that doesn’t preclude this approach, but it only limits to the
building of static user interface. For the dynamic parts of user interface, it adopts the
down-top design ways, it makes a clear separation between user interface and
application computation.

Fig. 2. This Figure shows the CAMELOAN reference framework

3 Architecture Pattern ALV+

For using ALV pattern in the new computation mode, it has to be extended
and evolved. This paper names the pattern extended as ALV+ to illuminate it
was extended by the ALV, showing as figure 3. Shared abstract still denotes
the application computation, view denotes the user interface of the client also. The
difference with ALV mainly lies in that the function of the link doesn’t link the
abstract and the view by the constrains-based manner no more, and the transverse
lines between the links is added to support the dynamic switch user interface between
the devices.

In the new computation mode, the client devices that have the different
computation, presentation power and interactive modalities access the same service.

 A Model-Driven Interactive System 433

Fig. 3. This figure shows the ALV+ pattern

The problems that ALV+ solves are that the same application service needs to
develop the different user interface for these devices that have the large differences,
and the user interface may be switched between the devices. So, the function of the
link unit is modified as having the function of “the application service transformer”.
Like that the transformer transforms the high voltage electrical current that is carried
from power plant into different low voltage electrical current according to the devices’
needs, the application transformer (link) reifies the abstract interface that is passed by
application service with the concrete interface that exists link unit for the different
client devices, so the final interfaces for these devices are built. At the same time,
while the user interface of one device need to switch to the user interface of another
device at running time, it saves the states data of the former, and transmits to the latter
to dynamically produce corresponding user interface(show as the transverse line of
figure 3). While deploying the components of ALV+, the abstract, link and view can
locate at the different devices like ALV, they link together by the network. Also
according to reality needs, the abstract and link, or link and view could be located at
the same machine.

4 Model-Driven User Interface Development Approach

Our model-driven user interface development approach shows as figure 4. In this
figure, application service sends the abstract interface to the link unit by needs.
Abstract interface is the logic description of the final interface (a window or a HTML
page) that is independent of platform and program language. After the link unit
receives this abstract interface, it finds out the concrete interface that reifies this
abstract interface in link unit. The concrete interface is dependent on the platform and
program language. In the C/S architecture, after abstract interface combines with
concrete interface, device interface is produced. Device interface is the accurate
description of the final interface. Device interface is distributed to view unit. It could
make network transform easy. View unit automatically generates final interface by
the device interface. In the B/s architecture, after abstract interface combines with
concrete interface, the HTML page is automatically generated. The events that the
final interfaces give birth to are defined by the event description. Event description.

434 H. Wu and Q.-y. Hua

Fig. 4. This figure shows model-driven user interface development approach

Application service. After these data are handled by application service, they may
return a new abstract interface to the link unit. While the interface needs to switch
between the devices, the link unit of the source device collects state data and
generates the abstract interface. The abstract interface is sent to the link unit of the
target device. The target device then transforms the abstract interface into the final
interface in the target device.

This approach uses the ALV+ architecture pattern: the application service in the
top of the figure is the shared abstract of the ALV+. The concrete interface, device
interface and event description in the middle of the figure is the link of the ALV+.
The final interface in the bottom of the figure is the view of the ALV+. The abstract
interface between the two concrete interfaces is the carrier of the data that the link
levels of the two devices need to transform while the interface of the one device needs
to switch to the other device at run time. In this approach ALV+ works as the
organization of the system components and the guidance of the components
deployment. This is the embodiment that architecture pattern in the model-driven
interactive system development exert influence.

This approach also uses the CAMELOAN reference framework: the approach
includes the task, conception model, abstract model, concrete model, and final
interface. The differences with the conventional CAMELOAN reference framework
use are: 1) In this approach two components, device interface and event description,
are introduced by the needs. 2) This method combines the top-down development way
with down-top development way. Task and conception model leads to abstract
interface. The foundation that the abstract interface is produced is the needs of the
interaction between application service and final interface [7-9]. This is a top-down
ways. The task model guides the design of the event description. The event
description could clearly define its contents after the concrete interface confirms the
component type that produces the event. This is a down-top ways. In this process,
although the final interface doesn’t clearly present, it should be assumed in the

 A Model-Driven Interactive System 435

design’s brain while designing the concrete interface. 3) CAMELAON reference
framework gives a development process [10], this approach adopts its basic
conception. But our approach is a flow. This flow mainly uses the undertone arrows
to link together in the figure. The fuscous arrows show the leading relation.

This approach has these advantages: 1) because the most application computation
works have finished by the application service, and the final interface just has the
function of data transform that the application computation needs, the requirement for
computation power of devices is furthest lowered, the difference among client devices
computation power in multi-device environment is shielded [11]. 2) Because
introduction of interactive requirement leads to the abstract interface model, every
abstract interface corresponds to a frame/page interface, which makes the presentation
of the interface straightforward. At the same time, the concrete interface straight
depicts the abstract interface, there needn’t complex model transform arithmetic. The
express of the abstract interface and the concrete interface doesn’t have redundancy. 3)
The abstract interface is independent of the platform and the program language, in the
event description of the different devices the data format is uniform, so the application
service is independent of the specific platforms and languages. The works that the
system supports new devices are simple, the only need is to add the new link unit to the
system [12]. 4) The programmers that have different duty write the different parts of
the interface description, which makes the work assignment clear. For example,
application programmers write abstract interface, interface designers write concrete
interface. 5) The building of concrete interface could aim at the different presentation
power and modality of devices, so the requirements of multi-device environment
are meet.

The description of the abstract interface, the concrete interface, the event
description and the device interface uses XML language to express.

4.1 Abstract Interface

Abstract interface is the logic level of the interface, which has the independency on
platforms and languages. It gives out the type of interaction (ToI), the content of the
interaction, and the correlative attributes of interaction, and so on. By analyzing the
existing services and correlative papers, we define eight kinds of ToI: input, output,
select, modify, create, destroy, start and end. In the work of this paper, we assume that
these ToIs could cover all the possible interaction between application services and
user interface.

Abstract interface is usually composed by the forest which makes of groups and
ToIs. The child nodes of the group may be groups or ToIs, but ToI doesn’t have child
nodes no more. Group shows the construction and organization relations between
ToIs. A ToI denotes a interaction behavior that could happen between application
service and user interface, which presents one or more interface components while
being implemented.

436 H. Wu and Q.-y. Hua

4.2 Concrete Interface

Concrete interface is the physical level of interface, which mainly presents the static
appearance that is special to some type of device interface. It is closely correlative to
the interface language (Such as Java, html).

Concrete interface describes the ToIs and groups of the abstract interface.
In concrete interface, the description for the elements of abstract interface divides
into three levels: group, type and name. The description for the group would work on
all the nodes that belongs the tree or sub-tree whose root node is the group;
The description for the type makes the ToI that is the type have same characters;
The description for the name aims to the ToI that has the given name.

Concrete interface could be sorted as basal and specific interface. Basal concrete
interface includes the default description for every type of ToI, which could be reused
by several services. Specific concrete interface is designed for the specific demands of
one or more service, which has high priority in the interface combination. If a ToI or a
group of a abstract interface doesn’t have name mapping, then basal concrete
interface is used to achieve the specification for them.

From the definition of the abstract interface and the concrete interface and their
interrelation we can see that abstract interface and concrete interface don’t have
complex model presentation, mapping and transformation arithmetic, but the
description ability doesn’t be lowered.

4.3 Device Interface

Device interface only appears in the application of C/S architecture, which is the
whole description of final interface, and combined by the abstract interface and
concrete interface. But the combination isn’t the simple combination. We throw off
the redundant components of the interface description in the combination process.
Device interface is automatic produced by the generation engine. The generation
engine checks the solecism and semantic error of the description languages. Device
connection unit would transfer the device interface to the client, which is more simple
and convenient than transferring the source codes or binary codes of the interface.

4.4 Event Description

Event description describes the dynamic sides of interface, which describes the
communication and control between interface and service. Event description
describes the data format that needs by the semantic computation that interface
transfers to the application service. The consistency of interface feedback data format
could assure the device independence of the application service, improve the dialog
independence of interface and application service. The absolute separation of
interface and application service is often unpractical. For the data handle that needn’t
the interaction between interface and application, we provide a callback function lib.
While interface is running, the functions in the callback function lib are called so as to
fasten the speed of the interface feedback. For example, the local date function is
called so as to acquire the client time.

 A Model-Driven Interactive System 437

In the event description, the description of the events base on the events that could
be supported by the implement language, such as the events in the Java language.

By the method of the event handle we can see that in this method the application
computation and interface presentation and the communication and control between
the two are clearly defined. The description of the event handle and the final interface
handle for the event has the one by one corresponding relation. So the user interface
automatic generation process is predigested ulteriorly.

Fig. 5. This figure shows smart phone version user interface

5 Case Studies

To verify that this approach can effectively support multi-device user interface
development, we used this approach to build calendar service software that can add,
edit, query, and show calendar. The core functions of the service and the link units
located in a windows server respectively. The service communicated with the link
units by the socket. We respectively developed concrete interface and event
description for PC version and mobile phone version interface which used Java Swing
and HTML version interface. One can access the service by the PCs and smart phones
that support Java language. Figure 5, figure 6 and figure 7 are respectively the
screenshot of the calendar presentation function for Java phone version, PC version
and HTML version, which illuminate that the same abstract interface could realize
different interface for different devices and languages. By the practically developing
to verify, this approach could automatically produce the elaborate user interface for
the different devices, and it is easy to study and use.

438 H. Wu and Q.-y. Hua

Fig. 6. This figure shows the Java Swing version user interface

6 Conclusions

This paper puts forward a model-driven interactive system development approach.
This approach has these advantages: 1) the classic model-driven method
CAMELOAN reference framework combined with the architecture pattern, which not
only make use of all advantages of user interface development that model-driven

Fig. 7. This figure shows the HTML version user interface

Approach brings, but also the use of the architecture pattern makes the
organization structure of system function components clear, deployment convenient,
and is convenient to system test and evolution at the later stage. 2) In this approach
the presentation and transformation of the models are straightforward and suit for all
kinds of devices user interface development. 3) In this approach there isn’t
redundancy among the models. 4) This approach used top-down and down-top
development way, which make static interface development a step wise refinement
process, and in the dynamic parts of the interface application computation could better
separate with the presentation of the interface. 5) This approach supports the dynamic
switch interface between devices. The next work is to make this approach support

 A Model-Driven Interactive System 439

more devices and languages, and to get the experience that use the approach for the
large application system, so we could improve this approach.

Acknowledgments. The research is supported by the National Natural Science
Foundation of China (Granted No. 61272286) and the Specialized Research Fund for
the Doctoral Program of Higher Education of China (Granted No. 20126101110006).

References

1. Paterno, F., Santoro, C., Spano, L.D.: MARIA: A universal, declarative, multiple
abstraction-level language for srvice-oriented applications in ubiquitous environments.
ACM Transactions on Computer-Human Interaction 16(4), 19–30 (2009)

2. López-Sanz, M., Vara, J.M., Marcos, E., et al.: A Model-Driven Approach to Weave
Architectural Styles into Service-Oriented Architectures. In: Proceeding MoSE+DQS
2009, pp. 53–60. ACM, New York (2011)

3. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of
Information Systems. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 16–31. Springer, Heidelberg (2005)

4. Ralph, D.H.: The abstraction—Hnk—view paradigm: using constraints to connect user
interface to applications. In: Proceedings of the Conference on Human Factors in
Computing Systems, California, pp. 335–342 (1992)

5. Calvary, G., et al.: A Unifying Reference Framework for multi-target user interfaces.
Interacting with Computers 15(3), 289–308 (2003)

6. Saleh, E., Kamel, A.M.R., Fahmy, A.: A model driven engineering design approach for
developing multi-platform user interfaces. WSEAS Transactions on Computers 9(5), 536–545
(2010)

7. Lorenz, A.: Research Directions for the Application of MVC in Ambient Computing
Environments. In: Workshop on Pattern-Driven Engineering of Interactive Computing
Systems (PEICS), pp. 336–348. ACM, New York (2010)

8. Ahmed, S., Ashraf, G.: Model-based user interface engineering with design patterns. The
Journal of Systems and Software 80(8), 1408–1422 (2007)

9. Vara, J.M., Marcos, E.: A framework for model-driven development of information systems:
Technical decisions and lessons learned. Journal of Systems and Software, 2368–2384 (2012)

10. Ameedeen, M.A., Bordbar, B., Anane, R.: Model interoperability via Model Driven
Development. Journal of Computer and System Sciences 77(2), 332–347 (2011)

11. Izquierdo, A.L.C., Jouault, F., Cabot, J., Molina, J.G.: API2MoL: Automating the building
of bridges between APIs and Model-Driven Engineering. Information and Software
Technology 54(3), 257–273 (2012)

12. Agner, L.T.W., Soares, I.W., Stadzisz, P.C., Simão, J.M.: A Brazilian survey on UML and
model-driven practices for embedded software development. Journal of Systems and
Software 86(4), 997–1005 (2012)

	A Model-Driven Interactive System
	1 Introduction
	2 Related Works
	2.1 Interactive System Architecture Pattern ALV
	2.2 CAMELEON Reference Framework

	3 Architecture Pattern ALV+
	4 Model-Driven User Interface Development Approach
	4.1 Abstract Interface
	4.2 Concrete Interface
	4.3 Device Interface
	4.4 Event Description

	5 Case Studies
	6 Conclusions
	References

