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Abstract. In this work, the variational iteration method is used for analytic 
treatment of differential equations with piecewise constant arguments of alternately 
advanced and retarded type. In order to prove the precision of the results, some 
comparisons are also made between the exact solutions and the results of the 
numerical method and the variational iteration method. The obtained results reveal 
that the method is very effective and convenient for constructing differential 
equations with piecewise constant arguments.  
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1 Introduction 

Differential equations with piecewise constant arguments (EPCA) have received 
extensive investigations [1-5]. In EPCA, the derivatives of the unknown functions 
depend on not just the time  at which they are determined, but on constant values of 
the unknown functions in certain intervals of the time  before . These equations 
have the structure of continuous dynamical systems in intervals of unit length. 
Continuity of a solution at a point joining any two consecutive intervals implies a 
recursion relation for the values of the solution at such points. Therefore, they 
combine the properties of differential equations and difference equations. 

EPCA has been under intensive investigation for the last twenty years. The theory 
of EPCA was initiated in [6, 7] and developed by many authors. The general theory 
and basic results for EPCA have been thoroughly investigated in the book of Wiener 
[8]. For more detailed information about analytical solution and numerical treatment 
of EPCA, the reader is referred to [9-15] and the references therein. 

In this paper, we will apply the analytical approximation technique: the 
variational iteration method to the following EPCA: 
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               (1) 

where  and  denotes the greatest integer function. Since the argument 

deviation  is negative in  and positive in , (1) 

is said to be of alternately advanced and retarded type. The main purpose of this paper 
is to extend the variational iteration method to find the approximate solution of (1). 

Many different methods have recently introduced to solve nonlinear problems, 
such as the homotopy analysis method (HAM) [16, 17], the variational iteration 
method (VIM) [18, 19], the AdomianÊs decomposition method (ADM) [20], and 
homotopy perturbation method (HPM) [21]. The VIM is strongly and simply capable 
of solving a large class of linear or nonlinear differential equations without 
linearization or small perturbation and also it reduces the size of calculations. The 
variational iteration method, which proposed by He [22-24], was successfully applied 
to autonomous ordinary and partial differential equations [25-27]. Recently, it has 
been used to solve effectively, easily and accurately a large class of linear and 
nonlinear differential equations. 

2 Preliminaries 

In this section, we will introduce some definitions and results which will be used 
later. 

2.1 EPCA of Alternately Advanced and Retarded Type  

Definition 1 (see [8]). A solution of (1) on  is a function  that satisfies 

the conditions 
(i)  is continuous on ; 

(ii) The derivative  exists at each point , with the possible 

exception of the point , , where one-sided derivatives exist; 

(iii) Eq. (1) is satisfied on  and each interval . 

Theorem 1 (see [8]). If , then (1) has on  a unique solution 

 

where  

 

Theorem 2 (see [8]). The zero solution of (1) is asymptotically stable for any given 
 if and only if  
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, for , 

 or , for , 

 for . 

2.2 Variational Iteration Method 

The VIM is the general Lagrange method, in which an extremely accurate 
approximation at some special point can be obtained. Next, we will present the 
essential steps for using the VIM and the determination of the Lagrange multipliers.    

Consider the following differential equation 

,                             (2) 

where  and  are linear and nonlinear operator, respectively, and  is the 

inhomogeneous term. According to VIM, we can write a correction functional as: 

           ,             (3) 

where  is a general Lagrangian multiplier which can be identified optimally via 
integration by parts and the variational theory, and  as a restricted variation which 

means . Having  determined, an iteration formula, without restricted 

variation, should be used for the determination of the successive approximations 
 of the solution . The zero-th approximation  can be any selective 

function. Consequently, the solution is given by 

.                           (4) 

3 Applications 

In this section, the VIM is successfully applied for solving a linear EPCA of 
alternately advanced and retarded type. 

For (1), the correction functional reads 

          .     (5) 

Taking variational on both sides of (5), we have 
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, 

this yields the stationary conditions: 

                        (6) 

Thus  
,                              (7) 

so we obtain the following iteration formula 

,      (8) 

and the following initial approximation is chosen 

 

so we have 
 

 

 

 

                                ……………. 

.                            (9) 

During the process of computation, we find that the greatest integer function  
brings us much trouble. To overcome it, we introduce a method: consider the above 
iteration formula in a series of intervals:  

,   

Following this way, each integral in iteration formulas can be easily computed. 
Therefore, the following theorem is obtained. 

Theorem 3. The VIM solution of (1) can be determined by (9) with the iteration (8). 
Thus, the discussion is as follows.  
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Follow this way, we can obtain  

 

When , 
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……………. 
In a word, in the interval ,  we have the following 

iteration formulas: 

 

 

 

In view of (9), we can obtain the analytical approximation solution. Usually, the 
th approximation is used for numerical purposes. 

4 Numerical Simulation 

In this part, we will present some examples to test the effectiveness of VIM and the 
correctness of our conclusions. The software we use is Matlab R2012a. All the figures 
are produced on it. 

Let  and  in (1). In Fig. 1 we compare the 7th VIM solution 

with the numerical solution of the -method [14] using  and . 
The graphs of the true solution and 8th approximate solution are shown in Fig. 2. 
Moreover, we also plot the 9th approximate solution and the numerical solution of the 

-method with and in Fig.3, the 10th approximate solution and 

the numerical solution of the -method with  and in Fig.4. 
From these figures we can see that the higher approximation has better property than 
the lower approximation. Therefore, the VIM is useful for seeking the approximation 
solution of EPCA. 
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Fig. 1. A comparison between the 7th VIM solution (upper) and the numerical solution (lower) 

 

Fig. 2. A comparison between the 8th VIM solution (upper) and the true solution (lower) 

 

 

Fig. 3. A comparison between the 9th VIM solution (upper) and the true solution (lower) 
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Fig. 4. A comparison between the 10th VIM solution (upper) and the true solution (lower) 

5 Conclusions 

The VIM has been successfully applied for solving linear EPCA of alternately 
advanced and retarded type. An illustrative example is solved exactly. The results 
reveal that the VIM is very effective and simple.  
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