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Gheorghe Păun, Romanian Academy, Bucharest, Romania
Hendrik Richter, HTWK Leipzig University of Applied Sciences, Germany
Juan A. Rodriguez-Aguilar, IIIA-CSIC, Spain
Otto Rössler, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Vaclav Snasel, Technical University of Ostrava, Czech Republic
Ivo Vondrák, Technical University of Ostrava, Czech Republic
Hector Zenil, Karolinska Institute, Sweden

For further volumes:
http://www.springer.com/series/10624

http://www.springer.com/series/10624


About this Series

The Emergence, Complexity and Computation (ECC) series publishes new
developments, advancements and selected topics in the fields of complexity, com-
putation and emergence. The series focuses on all aspects of reality-based compu-
tation approaches from an interdisciplinary point of view especially from applied
sciences, biology, physics, or Chemistry. It presents new ideas and interdisciplinary
insight on the mutual intersection of subareas of computation, complexity and
emergence and its impact and limits to any computing based on physical limits
(thermodynamic and quantum limits, Bremermann’s limit, Seth Lloyd limits…)
as well as algorithmic limits (Gödel’s proof and its impact on calculation, algorithmic
complexity, the Chaitin’s Omega number and Kolmogorov complexity,
non-traditional calculations like Turing machine process and its consequences,…)
and limitations arising in artificial intelligence field. The topics are (but not limited
to) membrane computing, DNA computing, immune computing, quantum com-
puting, swarm computing, analogic computing, chaos computing and computing on
the edge of chaos, computational aspects of dynamics of complex systems (systems
with self-organization, multiagent systems, cellular automata, artificial life,…),
emergence of complex systems and its computational aspects, and agent based
computation. The main aim of this series it to discuss the above mentioned topics
from an interdisciplinary point of view and present new ideas coming from mutual
intersection of classical as well as modern methods of computation. Within the scope
of the series are monographs, lecture notes, selected contributions from specialized
conferences and workshops, special contribution from international experts.



Ali Sanayei • Ivan Zelinka
Otto E. Rössler
Editors

ISCS 2013: Interdisciplinary
Symposium on Complex
Systems

123



Editors
Ali Sanayei
University of Tübingen
Tübingen
Germany

Ivan Zelinka
Department of Computer Science
VŠB-Technical University of Ostrava
Ostrava
Czech Republic

Otto E. Rössler
Institute of Physical and Theoretical

Chemistry
University of Tübingen
Tübingen
Germany

ISSN 2194-7287 ISSN 2194-7295 (electronic)
ISBN 978-3-642-45437-0 ISBN 978-3-642-45438-7 (eBook)
DOI 10.1007/978-3-642-45438-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014931496

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The book you hold in your hands is the outcome of the ‘‘2013 Interdisciplinary
Symposium on Complex Systems’’ held at the historical capital of Bohemia as a
continuation of our series of symposia in the science of complex systems. Prague,
one of the most beautiful European cities, has its own beautiful genius loci. Here, a
great number of important discoveries were made and many important scientists
spent fruitful and creative years to leave unforgettable traces. The perhaps most
significant period was the time of Rudolf II who was a great supporter of the art
and the science and attracted a great number of prominent minds to Prague. This
trend would continue. Tycho Brahe, Niels Henrik Abel, Johannes Kepler, Bernard
Bolzano, August Cauchy Christian Doppler, Ernst Mach, Albert Einstein and
many others followed developing fundamental mathematical and physical theories
or expanding them. Thus in the beginning of the seventeenth century, Kepler
formulated here the first two of his three laws of planetary motion on the basis of
Tycho Brahe’s observations. In the nineteenth century, nowhere differentiable
continuous functions (of a fractal character) were constructed here by Bolzano
along with a treatise on infinite sets, titled ‘Paradoxes of Infinity’ (1851). Wei-
erstrass would later publish a similar function in 1872. In 1842, Doppler as a
professor of mathematics at the Technical University of Prague here first lectured
about a physical effect to bear his name later. And the epoch-making physicist
Albert Einstein—while being a chaired professor of theoretical physics at the
German University of Prague—arrived at the decisive steps of his later finished
theory of general relativity during the years 1911–1912. In Prague, also many
famous philosophers and writers accomplished their works; for instance, play-
wright Karel Čapek coined the word ‘‘robot’’ in Prague (‘robot’ comes from the
Czech word ‘robota’ which means ‘forced labor’).

We believe that the Prague genius loci will vibe fruitfully with the conference’s
topic. Especially since the paradigm itself—the ‘‘Science of Complex Systems’’—
does not have a unique meaning so far since there still does not exist a canonical
definition of the word complexity given the ongoing presence of divergent points
of view. In the face of this fact we hear the reader asking us: What is the reason
that we push on with our series of symposia with its amalgamation of different
fields and viewpoints which sometimes do not appear consonant with each other?
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We would reply with a single word: ‘‘Creation’’. This answer we take from Paul
Dirac who was once asked by Michael Noakes—a portrait painter of the British
royal family—‘‘Can you put into layman’s terms what you are working on,
Professor?’’ ‘‘Creation’’, was the reply he got. When Noakes, deeply amazed by
such a short profound answer, asked for more explanation, he heard: ‘‘Creation
was one vast bang. Talk of a steady state is nonsense.’’ When he tried to throw-in
that if nothing had existed beforehand, what was there to bang, he would meet with
an elegant evasion: ‘‘That is not a meaningful question!’’

In this spirit of an anticipated but not yet existing elegance, the reader—student
or professional scientist—will in the following encounter four general categories
of papers in the following: Fundamental and theoretical, systemic modeling,
systemic networking, and applications of various kinds. All papers represent
innovative ideas, philosophical overviews or state-of-the-art applications in
miscellaneous fields. At this point we would like to express our gratitude to our
participants, our program committee members, and all our friends at the Czech
Technical University in Prague who helped us continue our symposia at a
progressive rather than ‘‘steady state’’ rate. We also acknowledge our keynote
speakers in this year’s symposium for sharing their results: Yaneer Bar-Yam,
Florentino Borondo, Robert Devaney and Stefan Thurner.

As a token of appreciation we dedicate the book to Graham Farmelo who
revived Dirac’s attitude in science—‘‘Physical laws should have mathematical
beauty’’ and ‘‘creation means not to get locked up in a steady state’’—in his
penetrating 2009 biography which opens up a new way to look at the world as a
single complex system.

August 2013 Ali Sanayei
Ivan Zelinka

Otto E. Rössler
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Complex Systems Science



The Complex Geometry of the Mandelbrot Set

Robert L. Devaney

Abstract In this paper, we give a brief overview of the geometry of the Mandelbrot
set. We show how to distinguish each of the principal bulbs hanging off the main
cardioid of this set by counting the spokes of the antennas attached to each bulb. We
also use these antennas to attach a fraction to each such bulb, and this then indicates
how these bulbs are arranged around the boundary of the main cardioid.

Keywords Mandelbrot set · Julia set · Fatou set · Complex dynamics · Fractal ·
Farey addition · Quadratic dynamics

The Mandelbrot set M is one of the most interesting and beautiful objects in all
of mathematics. It is also one of the most intricate planar sets. Contrary to the fact
that it is named after Benoit Mandelbrot, the father of fractal geometry, this set
is the antithesis of a fractal in that almost every tiny area of the boundary has its
own “identity.” That is, using some tools from geometry, we can read off exactly
where this boundary point is and, more importantly, exactly what the corresponding
dynamical behavior is.

Amazingly, the Mandelbrot set arises as the parameter plane for the seemingly
simple quadratic family Pc(z) = z2 + c. See Fig. 1. This is a picture in the c-plane
(the parameter plane) that describes the fate of the orbit of the only critical point for
this family, namely 0. If the orbit of 0 does not tend to ∞, then the corresponding
parameter c lies in M and we color this point black. If the orbit does escape to ∞,
then c is not in M and we color c according to how quickly the orbit of 0 reaches
the exterior of a large disk surrounding the origin (with red points escaping fastest,
followed in order by orange, yellow, green, blue, and violet).

2000 MSC number: Primary 37F10; Secondary 37F45
This work was partially supported by grant #208780 from the Simons Foundation.

R. L. Devaney (B)

Department of Mathematics, Boston University, 111 Cummington Mall,
Boston, MA 02215, USA
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Emergence, Complexity and Computation 8, DOI: 10.1007/978-3-642-45438-7_1,
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4 R. L. Devaney

Fig. 1 The Mandelbrot set.
Colored points are c-values
for which the orbits of 0
escape to ∞; black points are
c-values for which this does
not happen. So the Mandelbrot
set is the black region in this
image

In complex dynamics, the object of central interest in the dynamical plane is the
Julia set. For the family Pc, there is an open neighborhood of ∞ in the Riemann
sphere consisting of points whose orbits tend to ∞. The set of all points whose orbits
tend to ∞ is called the basin of ∞. Then the Julia set, denoted by J (Pc) is the
boundary of this basin. Given any point in the Julia set, then any open neighborhood
of this point, no matter how small, is eventually mapped over the entire complex
plane, minus at most one point. So the family of iterates of Pc on the Julia set is very
chaotic.

The natural question is: Why are we interested in the fate of the orbit of the
critical point? Well, in short, the critical orbit “knows it all” in complex dynamics.
In particular, for the family Pc, if the orbit of 0 tends to ∞, then the Julia set of Pc

is a Cantor set, i.e., a scatter of infinitely many points, or “fractal dust.” If the orbit
of 0 does not escape to ∞, then J (Pc) is a connected set, i.e., just one piece.

The large black open regions (called hyperbolic components) visible in the
Mandelbrot set are regions for which Pc has an attracting cycle of some given period.
It is known that, if Pc has an attracting cycle, then the orbit of the critical point must
tend to this cycle. Hence there can be at most one attracting cycle for a quadratic
polynomial. For example, any c-value drawn from the central cardioid has an attract-
ing fixed point. For c in the large open disk just to the left of this cardioid, Pc has an
attracting 2-cycle. We therefore call this the period 2-bulb. And, for c in the north-
ernmost and southernmost bulbs off the main cardioid, Pc has an attracting cycle of
period 3, so these are the period 3-bulbs.

As c moves from one hyperbolic component to another, the map undergoes a
bifurcation. The simplest part of this bifurcation is the fact that we move from having
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Fig. 2 The Julia sets for z2 − 1 (the basilica) and z2 − 0.12 + .75i (the Douady rabbit). The filled
Julia sets are the black regions, so the Julia sets here are the boundaries between the black and
colored regions

an attracting cycle of some period when we are in one hyperbolic component to having
an attracting cycle of some other period in the subsequent hyperbolic component.
But, in fact, much more happens: the topology of the Julia sets changes dramatically.
For example, if we move from the main cardioid to the period-2 bulb, the Julia
set, which is just a simple closed curve when c is in the main cardioid, becomes a
“basilica” when c is in the period 2-bulb. What happens is a repelling 2-cycle that lies
in J (Pc)when c is in the cardioid suddenly merges with the attracting fixed point and
thereby makes it neutral when the parameter reaches the boundary of the cardioid.
So two points in J (Pc) become identified to one point. Meanwhile, infinitely many
pairs of preimages of this point also become identified. This is what accounts for the
infinitely many “pinch-points” visible in the basilica. Or, as we move from the main
cardioid to the period 3-bulbs, a period 3-cycle becomes identified and the Julia set
transforms into the “Douady rabbit”. See Fig. 2.

A natural question is how do we understand how all of the bulbs and other smaller
Mandelbrot sets are arranged in M. Amazingly, if we zoom in to any portion of the
boundary of the Mandelbrot set, it turns out that this zoom is very different from any
other zoom that is non-symmetric with respect to c ≥→ c. More importantly, with
a keen eye for geometry, one can deduce exactly where in the boundary of M this
zoom is, and, more importantly, what the corresponding dynamical behavior in the
associated bulb is. It turns out that there are several different geometric and dynamical
ways to understand the structure of these bulbs. We will look at this geometrically,
but the real way to understand this uses techniques from complex analysis.

For simplicity, let’s concentrate on the bulbs attached to the main cardioid. How
do we know what their period is? One way is easy: look at the bulb. There is an
antenna attached to this bulb. This antenna has a junction point from which a certain
number of spokes emanate. The number of these spokes tells us exactly what the
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Fig. 3 Period 5 and 7 bulbs hanging off the main cardioid

Fig. 4 Julia sets drawn from the above period 5 and 7 bulbs hanging off the main cardioid. Note
that there are 4 and 6 “ears” hanging off the central disks of these filled Julia sets

period is. For example, in Fig. 3, we display two bulbs having periods 5 and 7. Note
that this is the exact number of antennas hanging off the junction point in the antenna
of each bulb.

There is another way to read off the periods of these bulbs. Choose a parameter
from the interior of a period n bulb and plot the corresponding filled Julia set. There
is a central disk in these filled Julia sets that surrounds the origin. Then there are
exactly n − 1 smaller disks that join this main disk at certain junction points. For
example, in Fig. 2, we see that the rabbit has two “ears” attached to the central disk
and the period of this bulb is 2 + 1 = 3. Similarly, the basilica has just 1 ear and the
period here is 1 + 1 = 2. In Fig. 4, we display Julia sets from the above period 5 and
period 7 bulbs, and we see the same phenomenon.
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Now let us turn to the arrangement of the bulbs around the main cardioid. To
do this, we assign a fraction p/q to each of these bulbs. Here q is the period of
the bulb, so the question is: what is p? There are several geometric and dynamical
ways to determine p. Look at the period five bulb in Fig. 3. We call the spoke of the
antenna that extends down to the bulb from the junction point the principal spoke.
Note that the “shortest” spoke (that is not the principal spoke) is located 2/5 of a
turn in the counter-clockwise direction from the principal spoke. And this bulb is
then the 2/5-bulb. In that same figure, we also see that the period 7-bulb is, in fact,
the 3/7-bulb.

A second way to see this is to turn to the filled Julia set. In Fig. 4, each of the filled
Julia sets has a main component that surrounds the origin together with q − 1 ears
attached at one point. Note where the “smallest” ear is located; it is exactly p/q of
a turn in the counterclockwise direction from main component.

And then there is a third way to read off p/q. Simply plot the points on the
attracting cycle of period q in the Fatou set. What you see is that this cycle moves
around the ears and the main component, rotating by p/q of a turn at each stage. So
there is a very nice connection between the geometry of the Mandelbrot set and Julia
sets and the dynamics of Pc.

One curious fact that relates to the Farey tree involves the size of the bulbs hanging
off the main cardioid. To begin, we think of the root point of the main cardioid as
being the cusp at c = 1/4. Then we call the main cardioid the 0/1-bulb. The root point
of any other bulb is just the point where this bulb is attached to the main cardioid.
Now which is the largest bulb between the root points of the 0/1 and 1/2-bulbs (in,
say, the upper portion of M)? It is clearly the 1/3-bulb. And note that 1/3 is obtained
from the previous two fractions by Farey addition, i.e., adding the numerators and
adding the denominators

0

1
“ + ”

1

2
= 1

3
.

Similarly, the largest bulb between the 1/3 and 1/2-bulbs is the 2/5-bulb, again given
by Farey addition.

1

3
“ + ”

1

2
= 2

5
.

And the largest bulb between the 2/5 and 1/2-bulb is the 3/7-bulb while the largest
bulb between the 2/5 and 1/3-bulbs is the 3/8-bulb and so on along the “Farey tree”.

Then it follows that these bulbs are arranged around the boundary of the main
cardioid in the exact order of the rational numbers in the unit interval. Actually,
techniques from calculus can be used to prove this fairly easily. For more details, see
[1–3]. An online, interactive discussion of this (with plenty of animations) called the
Mandelbrot Set Explorer is available at http://math.bu.edu/DYSYS/explorer.

Using similar techniques from geometry, one can identify the other sub-bulbs in
the Mandelbrot set. Unfortunately, there are many other points in the Mandelbrot set
that this approach does not apply to; indeed, despite the simplicity of the function
z2+c, there are still many c-values inM for which we have no idea what is happening

http://math.bu.edu/DYSYS/explorer
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in the corresponding Julia set and what is the nearby structure in the Mandelbrot
set. For example, along the boundary of the main cardioid we have only looked
at the parameters corresponding to “rational” root points as discussed above. But
there are uncountably many other points along the boundary of the cardioid. These
correspond to “irrational” points. We understand the behavior of Pc at the so-called
“highly” irrational points, but the parameters at the “not-so-irrational” points have
behavior that is still not understood. This is one of the major open problems in this
area of mathematics. For a basic introduction to complex dynamics, see [4]. A more
advanced survey of this field is John Milnor’s book [5].
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Abstract In their seminal works, Shannon and Khinchin showed that assuming
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S = −∑

i pi log pi . In many physical systems one of these axioms may be vio-
lated. For non-ergodic systems the so called separation axiom (Shannon-Khinchin
axiom 4) is not valid. We show that whenever this axiom is violated the entropy takes
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is possible because of two newly discovered scaling laws which any entropic form
has to fulfill, if the first three Shannon-Khinchin axioms hold [1]. (c, d) can be used
to define equivalence classes of statistical systems. A series of known entropies can
be classified in terms of these equivalence classes. We show that the corresponding
distribution functions are special forms of Lambert-W exponentials containing—as
special cases—Boltzmann, stretched exponential, and Tsallis distributions (power-
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give a concise criterion when this entropy is not of Boltzmann-Gibbs type but has
to assume a generalized (non-additive) form. We showed that generalized entropies
can only exist when the dynamically (statistically) relevant fraction of degrees of
freedom in the system vanishes in the thermodynamic limit [2]. These are systems
where the bulk of the degrees of freedom is frozen and is practically statistically inac-
tive. Systems governed by generalized entropies are therefore systems whose phase
space volume effectively collapses to a lower-dimensional ‘surface’. We explicitly
illustrated the situation for binomial processes and argue that generalized entropies
could be relevant for self organized critical systems such as sand piles, for spin sys-
tems which form meta-structures such as vortices, domains, instantons, etc., and for
problems associated with anomalous diffusion [2]. In this contribution we largely
follow the lines of thought presented in [1–3].

Keywords Scaling of entropy · (c, d) entropy · Axiomatic derivation of entropy ·
Extensivity · Non-ergodic systems · Entropy for non-Markovian processes

1 Introduction

In their seminal works, Shannon and Khinchin showed that assuming four informa-
tion theoretic axioms the entropy must be of Boltzmann-Gibbs type,
S = −∑

i pi log pi . In many physical systems one of these axioms may be vio-
lated. For non-ergodic systems the so called separation axiom (Shannon-Khinchin
axiom 4) is not valid. We show that whenever this axiom is violated the entropy takes
a more general form, Sc,d ∞ ∑W

i α(d + 1, 1 − c log pi ), where c and d are scaling
exponents and α(a, b) is the incomplete gamma function. These exponents (c, d)

define equivalence classes for all!, interacting and non interacting, systems and unam-
biguously characterize any statistical system in its thermodynamic limit. The proof
is possible because of two newly discovered scaling laws which any entropic form
has to fulfill, if the first three Shannon-Khinchin axioms hold [1]. (c, d) can be used
to define equivalence classes of statistical systems. A series of known entropies can
be classified in terms of these equivalence classes. We show that the corresponding
distribution functions are special forms of Lambert-W exponentials containing—as
special cases—Boltzmann, stretched exponential, and Tsallis distributions (power-
laws). We go on by showing how the dependence of phase space volume W (N )

of a classical system on its size N , uniquely determines its extensive entropy, and
in particular that the requirement of extensivity fixes the exponents (c, d), [2]. We
give a concise criterion when this entropy is not of Boltzmann-Gibbs type but has
to assume a generalized (non-additive) form. We showed that generalized entropies
can only exist when the dynamically (statistically) relevant fraction of degrees of
freedom in the system vanishes in the thermodynamic limit [2]. These are systems
where the bulk of the degrees of freedom is frozen and is practically statistically inac-
tive. Systems governed by generalized entropies are therefore systems whose phase
space volume effectively collapses to a lower-dimensional ‘surface’. We explicitly
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illustrated the situation for binomial processes and argue that generalized entropies
could be relevant for self organized critical systems such as sand piles, for spin sys-
tems which form meta-structures such as vortices, domains, instantons, etc., and for
problems associated with anomalous diffusion [2]. In this contribution we largely
follow the lines of thought presented in [1–3].

Theorem number 2 in the seminal 1948 paper, The Mathematical Theory of
Communication [4], by Claude Shannon, proves the existence of the one and only
form of entropy, given that three fundamental requirements hold. A few years later
A.I. Khinchin remarked in his Mathematical Foundations of Information Theory [5]:
“However, Shannon’s treatment is not always sufficiently complete and mathemati-
cally correct so that, besides having to free the theory from practical details, in many
instances I have amplified and changed both the statement of definitions and the state-
ment of proofs of theorems.” Khinchin adds a fourth axiom. The three fundamental
requirements of Shannon, in the ‘amplified’ version of Khinchin, are known as the
Shannon-Khinchin (SK) axioms. These axioms list the requirements needed for an
entropy to be a reasonable measure of the ‘uncertainty’ about a finite probabilistic
system. Khinchin further suggests to also use entropy as a measure of the information
gained about a system when making an ‘experiment’, i.e. by observing a realization
of the probabilistic system.

Khinchin’s first axiom states that for a system with W potential outcomes (states)
each of which is given by a probability pi ≥ 0, with

∑W
i=1 pi = 1, the entropy

S(p1, . . . , pW ) as a measure of uncertainty about the system must take its maximum
for the equi-distribution pi = 1/W , for all i .

Khinchin’s second axiom (missing in [4]) states that any entropy should remain
invariant under adding zero-probability states to the system, i.e. S(p1, . . . , pW ) =
S(p1, . . . , pW , 0).

Khinchin’s third axiom (separability axiom) finally makes a statement of the com-
position of two finite probabilistic systems A and B. If the systems are independent
of each other, entropy should be additive, meaning that the entropy of the combined
system A+B should be the sum of the individual systems, S(A + B) = S(A)+S(B).
If the two systems are dependent on each other, the entropy of the combined sys-
tem, i.e. the information given by the realization of the two finite schemes A and B,
S(A + B), is equal to the information gained by a realization of system A, S(A),
plus the mathematical expectation of information gained by a realization of system
B, after the realization of system A, S(A + B) = S(A) + S|A(B).

Khinchin’s fourth axiom is the requirement that entropy is a continuous function
of all its arguments pi and does not depend on anything else.

Given these axioms, the Uniqueness theorem [5] states that the one and only
possible entropy is

S(p1, . . . , pW ) = −k
W∑

i=1

pi log pi , (1)

where k is an arbitrary positive constant. The result is of course the same as Shannon’s.
We call the combination of 4 axioms the Shannon-Khinchin (SK) axioms.
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From information theory now to physics, where systems may exist that violate
the separability axiom. This might especially be the case for non-ergodic, complex
systems exhibiting long-range and strong interactions. Such complex systems may
show extremely rich behavior in contrast to simple ones, such as gases. There exists
some hope that it should be possible to understand such systems also on a ther-
modynamical basis, meaning that a few measurable quantities would be sufficient
to understand their macroscopic phenomena. If this would be possible, through an
equivalent to the second law of thermodynamics, some appropriate entropy would
enter as a fundamental concept relating the number of microstates in the system to
its macroscopic properties. Guided by this hope, a series of so called generalized
entropies have been suggested over the past decades, see [6–11] and Table 1. These
entropies have been designed for different purposes and have not been related to
a fundamental origin. Here we ask how generalized entropies can look like if they
fulfill some of the Shannon-Khinchin axioms, but explicitly violate the separability
axiom. We do this axiomatically as first presented in [1]. By doing so we can relate
a large class of generalized entropies to a single fundamental origin.

The reason why this axiom is violated in some physical, biological or social sys-
tems is broken ergodicity, i.e. that not all regions in phase space are visited and
many micro states are effectively ‘forbidden’. Entropy relates the number of micro
states of a system to an extensive quantity, which plays the fundamental role in the
systems thermodynamical description. Extensive means that if two initially isolated,
i.e. sufficiently separated systems, A and B, with WA and WB the respective num-
bers of states, are brought together, the entropy of the combined system A + B is
S(WA+B) = S(WA) + S(WB). WA+B is the number of states in the combined sys-
tem A + B. This is not to be confused with additivity which is the property that
S(WAWB) = S(WA) + S(WB). Both, extensivity and additivity coincide if number
of states in the combined system is WA+B = WAWB . Clearly, for a non-interacting
system Boltzmann-Gibbs-Shannon entropy, SBG[p] = −∑W

i pi ln pi , is exten-
sive and additive. By ‘non-interacting’ (short-range, ergodic, sufficiently mixing,
Markovian, ...) systems we mean WA+B = WAWB . For interacting statistical systems
the latter is in general not true; phase space is only partly visited and WA+B < WAWB .
In this case, an additive entropy such as Boltzmann-Gibbs-Shannon can no longer be
extensive and vice versa. To ensure extensivity of entropy, an entropic form should be
found for the particular interacting statistical systems at hand. These entropic forms
are called generalized entropies and usually assume trace form [6–11]

Sg[p] =
W∑

i=1

g(pi ), (2)

W being the number of states. Obviously not all generalized entropic forms are of this
type. Rényi entropy e.g. is of the form G(

∑W
i g(pi )), with G a monotonic function.

We use trace forms Eq. (2) for simplicity. Rényi forms can be studied in exactly the
same way as will be shown, however at more technical cost.
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Table 1 Order in the zoo of recently introduced entropies for which SK1-SK3 hold. All of them are
special cases of the entropy given in Eq. (3) and their asymptotic behavior is uniquely determined
by c and d. It can be seen immediately that Sq>1, Sb and SE are asymptotically identical; so are
Sq<1 and Sκ, as well as Sη and Sγ

Entropy c d Reference

Sc,d =
er

∑
i α(d +1, 1−c ln pi )−cr

(r = (1 − c +
cd)−1)

c d

SBG = ∑
i pi ln(1/pi ) 1 1 [5]

Sq<1(p) = 1−∑
pq

i
q−1 (q < 1) c = q < 1 0 [6]

Sκ(p) = − ∑
i pi

pκ
i −p−κ

i
2κ (0 < κ → 1) c = 1 − κ 0 [8]

Sq>1(p) = 1−∑
pq

i
q−1 (q > 1) 1 0 [6]

Sb(p) = ∑
i (1 − e−bpi ) + e−b − 1 (b > 0) 1 0 [9]

SE (p) = ∑
i pi (1 − e

pi −1
pi ) 1 0 [10]

Sη(p) = ∑
i α(

η+1
η ,− ln pi ) −

pi α(
η+1
η )

(η > 0) 1 d = 1
η [7]

Sγ(p) = ∑
i pi ln1/γ(1/pi ) 1 d = 1/γ [14], footnote 11,

page 60

Sβ(p) = ∑
i pβ

i ln(1/pi ) c = β 1 [15]

Let us revisit the Shannon-Khinchin axioms in the light of generalized entropies of
trace form Eq. (2). Specifically axioms SK1-SK3 (now re-ordered) have implications
on the functional form of g

• SK1: The requirement that S depends continuously on p implies that g is a
continuous function.

• SK2: The requirement that the entropy is maximal for the equi-distribution
pi = 1/W (for all i) implies that g is a concave function.

• SK3: The requirement that adding a zero-probability state to a system, W +1 with
pW+1 = 0, does not change the entropy, implies that g(0) = 0.

• SK4 (separability axiom): The entropy of a system—composed of sub-systems A
and B—equals the entropy of A plus the expectation value of the entropy of B,
conditional on A. Note that this also corresponds exactly to Markovian processes.

As mentioned, if SK1 to SK4 hold, the only possible entropy is the Boltzmann-
Gibbs-Shannon entropy. We are now going to derive the extensive entropy when the
separability axiom SK4 is violated. Obviously this entropy will be more general and
should contain BG entropy as a special case.

We now assume that axioms SK1, SK2, SK3 hold, i.e. we restrict ourselves to
trace form entropies with g continuous, concave and g(0) = 0. These systems we call
admissible systems. Admissible systems when combined with a maximum entropy
principle show remarkably simple mathematical properties [12, 13].
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Fig. 1 Entropies parametrized in the (c, d)-plane, with their associated distribution functions. BG
entropy corresponds to (1, 1), Tsallis entropy to (c, 0), and entropies for stretched exponentials to
(1, d > 0). Entropies leading to distribution functions with compact support, belong to equivalence
class (1, 0). Figure from [3]

This generalized entropy for (large) admissible statistical systems (SK1-SK3
hold) is derived from two hitherto unexplored fundamental scaling laws of extensive
entropies [1]. Both scaling laws are characterized by exponents c and d, respectively,
which allow to uniquely define equivalence classes of entropies, meaning that two
entropies are equivalent in the thermodynamic limit if their exponents (c, d) coin-
cide. Each admissible system belongs to one of these equivalence classes (c, d),
[1].

In terms of the exponents (c, d) we showed in [1] that all generalized entropies
have the form

Sc,d ∞
W∑

i

α(d + 1, 1 − c log pi ) (3)

with α(a, b) = ∫ ∀
b dt ta−1 exp(−t) the incomplete Gamma-function.

1.1 Special Cases of Entropic Equivalence Classes

Let us look at some specific equivalence classes (c, d)

• Boltzmann-Gibbs entropy belongs to the (c, d) = (1, 1) class. One gets from
Eq. (3)

S1,1[p] =
∑

i

g1,1(pi ) = −
∑

i

pi ln pi + 1 . (4)

• Tsallis entropy belongs to the (c, d) = (c, 0) class. From Eq. (3) and the choice
r = 1/(1 − c) (see below) we get
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Sc,0[p] = ∑
i gc,0(pi ) = 1−∑

i pc
i

c−1 + 1 . (5)

Note, that although the pointwise limit c ♥ 1 of Tsallis entropy yields BG entropy,
the asymptotic properties (c, 0) do not change continuously to (1, 1) in this limit!
In other words the thermodynamic limit and the limit c ♥ 1 do not commute.

• The entropy related to stretched exponentials [7] belongs to the (c, d) = (1, d)

classes, see Table 1. As a specific example we compute the (c, d) = (1, 2) case,

S1,2[p] = 2

(

1 −
∑

i

pi ln pi

)

+ 1

2

∑

i

pi (ln pi )
2 , (6)

leading to a superposition of two entropy terms, the asymptotic behavior being
dominated by the second.

Other entropies which are special cases of our scheme are found in Table 1.
Inversely, for any given entropy we are now in the remarkable position to charac-

terize all large SK1-SK3 systems by a pair of two exponents (c, d), see Fig. 1. For
example, for gBG(x) = −x ln(x) we have c = 1, and d = 1. SBG therefore belongs
to the universality class (c, d) = (1, 1). For gq(x) = (x − xq)/(1 − q) (Tsallis
entropy) and 0 < q < 1 one finds c = q and d = 0, and Tsallis entropy, Sq , belongs
to the universality class (c, d) = (q, 0). Other examples are listed in Table 1.

The universality classes (c, d) are equivalence classes with the equivalence rela-
tion given by: gα ≡ gβ ⇔ cα = cβ and dα = dβ . This relation partitions the space
of all admissible g into equivalence classes completely specified by the pair (c, d).

2 Distribution Functions

Distribution functions associated with our α-entropy, Eq. (3), can be derived from so-
called generalized logarithms of the entropy. Under the maximum entropy principle
(given ordinary constraints) the inverse functions of these logarithms, E = β−1, are
the distribution functions, p(ϑ) = Ec,d,r (−ϑ), where for example r can be chosen
r = (1 − c + cd)−1. One finds [1]

Ec,d,r (x) = e
− d

1−c

[

Wk

(

B(1−x/r)
1
d

)

−Wk (B)

]

, (7)

with the constant B ≡ (1−c)r
1−(1−c)r exp

(
(1−c)r

1−(1−c)r

)
. The function Wk is the k’th

branch of the Lambert-W function which—as a solution to the equation x =
W(x) exp(W(x))—has only two real solutions Wk , the branch k = 0 and branch
k = −1. Branch k = 0 covers the classes for d ≥ 0, branch k = −1 those for d < 0.
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2.1 Special Cases of Distribution Functions

It is easy to verify that the class (c, d) = (1, 1) leads to Boltzmann distributions, and
the class (c, d) = (c, 0) yields power-laws, or more precisely, Tsallis distributions
i.e. q-exponentials. All classes associated with (c, d) = (1, d), for d > 0 are asso-
ciated with stretched exponential distributions. Expanding the k = 0 branch of the
Lambert-W function W0(x) ∼ x − x2 + · · · for 1 
 |x |, the limit c ♥ 1 is shown
to be a stretched exponential. It was shown that r does not effect its asymptotic prop-
erties (tail of the distributions), but can be used to incorporate finite size properties
of the distribution function for small x .

3 How to Determine the Exponents c and d?

In [2] we have shown that the requirement of extensivity determines uniquely both
exponents c and d. What does extensivity mean? Consider a system with N elements.
The number of system configurations (microstates) as a function of N are denoted
by W (N ). Starting with SK2, pi = 1/W (for all i), we have Sg = ∑W

i=1 g(pi ) =
Wg(1/W ). As mentioned above extensivity for two subsystems A and B means that

WA+Bg (1/WA+B) = WAg (1/WA) + WBg (1/WB). (8)

Using this equation one can straight forwardly derive the formulas (for details see
[2])

1

1 − c
= lim

N♥∀ N
W ′(N )

W (N )
. (9)

d = lim
N♥∀ log W

(
1

N

W

W ′ + c − 1

)

. (10)

Here W ′ means the derivative with respect to N .

3.1 A Note on Rényi-Type Entropies

Rényi entropy is obtained by relaxing SK4 to the unconditional additivity condition.
Following the same scaling idea for Rényi-type entropies, S = G(

∑W
i=1 g(pi )), with

G and g some functions, one gets

lim
W♥∀

S(λW )

S(W )
= lim

s♥∀
G

(
λ fg(λ−1)s

)

G(s)
, (11)
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where fg(z) = limx♥0 g(zx)/g(x). The expression fG(s) ≡ lims G(sy)/G(s),
provides the starting point for deeper analysis which now gets more involved. In
particular, for Rényi entropy with G(x) ≡ ln(x)/(1 − α) and g(x) ≡ xα, the
asymptotic properties yield the class (c, d) = (1, 1), (BG entropy) meaning that
Rényi entropy is additive. However, in contrast to the trace form entropies used
above, Rényi entropy can be shown to be not Lesche stable, as was observed before
[16–20]. All of the S = ∑W

i g(pi ) entropies can be shown to be Lesche stable,
see [3].

4 Discussion

We discuss recently discovered scaling laws for trace form entropies for systems that
fulfill the first three Shannon-Khinchin axioms. In analogy to critical exponents these
laws are characterized by two scaling exponents (c, d), which define generalized
entropies. We showed that a particular entropic form—parametrized by these two
exponents—covers all admissible systems (Shannon-Khinchin axioms 1–3 hold, 4 is
violated). In other words every statistical system has its pair of unique exponents in
the large size limit, its entropy is then given by Sc,d ∼ ∑W

i α (1 + d , 1 − c ln pi ).
The requirement of extensivity uniquely determines the scaling exponents c and d
in terms of the growth of phase space as a function of system size.

The exponents for BG systems are (c, d) = (1, 1), systems characterized by
stretched exponentials belong to the class (c, d) = (1, d), and Tsallis systems have
(c, d) = (q, 0). In the context of a maximum entropy principle, the associated distri-
bution functions of all systems (c, d) are shown to belong to a class of exponentials
involving Lambert-W functions, given in Eq. (7). There are no other options for tails
in distribution functions other than these.

The equivalence classes characterized by the exponents (c, d) form basins of
asymptotic equivalence. In general these basins characterize interacting statistical
(non-additive) systems. There exists an analogy between these basins of asymptotic
equivalence and the basin of attraction of weakly interacting, uncorrelated systems
subject to the law of large numbers, i.e. the central limit theorem. Any system within
a given equivalence class may show individual characteristics as long as it is small.
Systems belonging to the same class will start behaving similarly as they become
larger, and in the thermodynamic limit they become identical. Distribution functions
converge to those uniquely determined by (c, d). A further interesting feature of all
admissible systems is that they all are Lesche stable. The proof is found in [3].

Finally, the classification scheme for generalized entropies of type S = ∑
i g(pi )

can be extended to entropies of e.g. Rényi type, i.e. S = G(
∑

i g(pi )), see [3].
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Complex Systems Science: From Cell Regulation
to the Global Food Crisis

Yaneer Bar-Yam

Abstract Insights and methods of complex systems science are transforming
science and providing clarity about the impact of policies to address major societal
problems. These conceptual and mathematical advances allow us to study interde-
pendence, patterns, networks, multiscale behaviors, and “big data.” Here I focus
on the application of these advances to real-world concerns. I discuss case studies
from global socioeconomic systems and immune cell regulation. Our analysis of the
global food crisis exposes the causes and consequences of rapidly increasing and
volatile food prices. Food price spikes in 2007–2008 and 2010–2011 triggered food
riots across the world and precipitated the Arab Spring. Our quantitative models of
nonequilibrium markets show that the food price increases are due to (1) US biofuel
quotas increasing the amount of corn to ethanol conversion and (2) deregulation of
commodity trading enabling speculator trend-following to cause bubbles and crashes.
Policy action by the US and the European Union could alleviate or even resolve these
problems. Our analysis of cell regulation makes use of gene expression data to obtain
whole-cell regulatory models describing the response of immune cells to dynamic
perturbations. Moreover, we have shown that cell dynamics are controlled by attrac-
tor states with implications for understanding biological development and treating
cancer. Our analyses demonstrate the opportunity for complex systems science to
inform both social policy decisions and medical advances.

Keywords Complex systems, Economic crisis, Cell regulation
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1 Vulnerability of Financial Systems

When an economic system is robust it can function under a variety of stresses,
and when it is not robust even minor perturbations cause cascading failures and
dislocation of its essential function. We have seen evidence of such dislocation in
the failures of the US financial system since 2007 and in government financial and
economic rescue actions that only provide temporary and insufficient results.

Our results show that government policy decisions, often in deregulation but also
in regulation, have undermined the ability of our economic system to function and
made it highly susceptible to crises. The economic system is an essential part of the
functioning of our society. When functioning properly its action enables both basic
survival and many other opportunities for us, individually and collectively. The need
for its functional reliability should be apparent, and should not be assumed. Similar to
other systems with emergent behaviors, economic activity depends on a framework
in which it can function successfully. Our analysis is designed to identify key aspects
of the framework that enable economic activity, and without which systemic failure
is likely. In each case we identify the nature of the systemic dysfunction associated
with regulatory changes.

Our research has identified three areas of regulatory activity that have played a
major role in the global financial, economic and food crises.

1.1 Banking Deregulation

The repeal of the Glass-Steagall Act of 1934 by the Gramm-Leach-Bliley Act in 1999
allowed the creation of the “too big to fail” banks. A lobbying effort by Citigroup to
achieve this legislation is a matter of public record. The increased vulnerability of
the economy due to this deregulation has been widely discussed and is analyzed in
our paper “Networks of Economic Market Interdependence and Systemic Risk” [1].
In particular, the banks facilitated the propagation of the mortgage crisis to the econ-
omy as a whole (Fig. 1). We conclude that reinstating banking regulation that sep-
arates domains of banking activity would inhibit cascading economic failures and
play an important role in restoring economic stability.

1.2 Commodity Futures Deregulation

Our research shows that rapid increases in food and other commodity prices dur-
ing this past decade have their basis in deregulation of the commodities mar-
kets. This is described in our paper “The Food Crises: A Quantitative Model of
Food Prices Including Speculators and Ethanol Conversion” [2]. The repeal of the
Commodity Exchange Act of 1936 by the Commodity Futures Modernization Act
of 2000 removed limits on trading. These trading limits were established in order
to limit the impact of speculation. Their repeal enabled rapid growth in commodity
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2003 2004 2005

200820072006

Fig. 1 Network of correlations of market daily returns for years indicated. Dots represent individual
corporations colored according to economic sector: technology (blue), basic materials including oil
companies (light grey) and others (dark grey), and finance including real-estate (dark green) and
other (light green). Links are shown for pairs of stocks with correlation above a certain level. The
network exhibits increasing integration across sectors over time. The banking sector links parts of
the economy, transmitting the collapse of the real-estate market to the rest

index funds and contributed to the volume of speculative activity that resulted in
bubbles and crashes that disrupt supply and demand economics in these systems (see
Fig. 2). When supply and demand are not in equilibrium, the effectiveness and even
stability of the economic system are undermined. The increases in food prices have
resulted in a global food crisis, causing widespread suffering and major food riots. The
Commodity Futures Trading Commission is currently in process of reinstating posi-
tion limits, and the primary corporation meeting with them is Goldman Sachs, which
also manages the largest commodity index fund.

1.3 Stock Market Deregulation

The repeal by the SEC in July 2007 of the “uptick rule” of 1938 eliminated its intended
role in stabilizing the stock markets against the rapid selling of borrowed shares,
whether for illegal intentional manipulation or otherwise. Our research provided
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Fig. 2 Actual food prices and
quantitative dynamic model
of commodity speculation
and mandated use of corn
in ethanol production. The
corn to ethanol conversion
causes price increases due
to its large impact on supply
and demand, and speculation
causes bubbles in 2007–2008,
and 2010–2011

a scientific analysis of the impact of the uptick rule [3] (see also Fig. 3). Despite
overwhelming public and professional support for reinstatement of the uptick rule,
the SEC listened to industry advocates, especially hedge funds, who claimed that the
uptick rule was not beneficial. In March of 2011 the SEC implemented a rule that is
only in effect if a stock’s price decreases by 10 % in a single day. Our analysis shows
that this rule does not have the same stabilizing effect as the original uptick rule. The
“flash crash” on May 6, 2010 and mini flash crashes manifest market dysfunction,
and they are consistent with our analysis of the consequences of this deregulation.

2 Complexity in Biological Systems

2.1 Attractors and Democratic Dynamics

The functional identity of a cell is largely determined by the regulated expression
(transcription) of thousands of genes, so how it maintains a particular transcriptional
state is of critical importance. Developmental biologists study how embryonic cells
navigate a series of intermediate transcriptional states before settling into a final
adult state; microbiologists identify the mechanisms by which transcription is altered
by environmental perturbation; and oncologists seek to identify how cells switch
from benign to cancerous. Consider two concepts of transcriptional regulation. In
a “molecular autocracy” master genes respond to environmental or developmental
stimuli by regulating thousands of genes, either directly or through other transcription
factors. In a “molecular democracy” all genes exert a regulatory influence on all
other genes, and phenotypic change (altered cell behavior) is brought about through
the concerted action of thousands of genes. These scenarios are extreme and cells
operate under a condition that is somewhere intermediate (see Fig. 4). But the choice
of concept affects how regulation is studied.
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Fig. 3 Probability distribution of the effect on changes in a stock’s return over six months of
removing the “uptick rule.” Vertical lines indicate a change in the average return of a given magnitude
(and therefore its probability). The impact is large and surely economically significant as it would
with high probability eliminate a major proportion of the average increase in stock returns. The
small change between SEC analysis and the improved analysis we performed makes the tail of the
distribution to the right of the zero have less than 5 %, and thus the impact of the uptick rule repeal
is statistically significant at the 95 % level. The original SEC paper dismissed the importance of the
uptick rule based upon the lack of statistical significance in their analysis—making the classic error
of confounding significance and statistical significance, and also making an error in the evaluation
of statistical significance

The autocratic framework can be directly investigated by studies of individual
molecular mechanisms and has been the starting point for discussions of biological
processes. But a broader understanding of regulatory mechanisms is needed that
incorporates essential features of both extreme views. The democratic framework
relies on mutual regulation, which tends toward a self-consistent gene expression state
that is stable in the face of fluctuations. In other words, this view has its roots in the
conceptual understanding of stability and homeostasis of cell types. The democratic
view has only recently gained empirical support, perhaps because its characterization
involves studies of genome-wide dynamical processes.

What framework should be used to study collective state control? The difficulty
is that for individual gene effects, individual transcription levels are important. For
attractors, collective dynamics of the transcriptome within a cell type, rather than
specific gene expression signatures, characterize cell behavior (not just cell type
differences). What is needed are control coefficients that measure change in collective
states relative to archetypes [4], and in relation to individual gene transcription level
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Fig. 4 Transcription regula-
tory architecture. In autocratic
regulatory networks (top),
individual master regula-
tor genes (pointed squares)
are stimulated by external
signals and control many
other genes (circles). As
shown by the energy land-
scape, the transcriptional
states (spheres) may have no
preferences (black arrows rep-
resent changes in expression
of genes 1 and 2). In demo-
cratic networks (bottom), all
genes act as mutual regu-
lators. A few specific gene
expression patterns become
stable, shown as basins of
attraction (cell types) in the
landscape. Once a cell reaches
one of these states, changing
the expression of one gene
is unlikely to switch the cell
type (black arrows). Interme-
diate networks (middle) have
mutual regulation, but certain
genes (blue circle) are major
controllers. For details see [4]

changes. Relating the variation of small sets of gene expression values to deviation or
conformity to archetypes can provide a framework to study the interplay of attractors
and master regulators. Such observations, best taken from unaveraged data, should



Complex Systems Science: From Cell Regulation to the Global Food Crisis 25

identify the dispersal and convergence of cells near an attractor, and the mechanisms
of homeostatic control. Using multiple archetypes also should enable the study of
cell fate trajectories.

2.2 Empirical Multiscale Networks of Cellular Regulation

In a eukaryotic organism such as the mouse, the complete transcriptional network
contains ≈15,000 genes and up to 225 million regulatory relationships between pairs
of genes. Determining all of these relationships is currently intractable using tradi-
tional experimental techniques, and, thus, a comprehensive description of the entire
mouse transcriptional network is elusive. Alternatively, one can apply the limited
amount of experimental data to determine the entire transcriptional network at a less
detailed, higher level. This is analogous to considering a map of the world resolved
to the kilometer rather than to the millimeter. We derived from mouse microarray
data several high-scale transcriptional networks by determining the mutual effec-
tive regulatory influences of large modules of genes (see Fig. 5). In particular, global
transcriptional networks containing 12–72 modules are derived, and analysis of these
multiscale networks reveals properties of the transcriptional network that are uni-
versal at all scales (e.g., maintenance of homeostasis) and properties that vary as a
function of scale (e.g., the fractions of module pairs that exert mutual regulation). In
addition, we describe how cellular functions associated with large modules (those
containing many genes) are composed of more specific functions associated with
smaller modules.

Notice that a multiscale approach is conceptually essential given the organi-
zation of living systems into structures at many scales, and is critical given the
staggering challenge of obtaining a complete description of pairwise gene inter-
actions. Still, in view of the complexity of biological function, there is a large
amount of information that arises from a multiscale analysis. In [5] we performed
an analysis that can be considered as foundational to the development of many other
results. It was a high- throughput analysis methodology analogous to high-throughput
experimental methods of genome sequencing or gene expression data collection;
through our approach, a seemingly overwhelming amount of data is generated by
analysis of the large number of regulatory interactions of modules across multiple
scales. Our analysis of these results has been correspondingly multiscale. First, we
identified global principles, such as the many facets of homeostasis and universality
of regulatory effects at larger scales. Second, we found new patterns of multiscale
organization, such as the dichotomous distributions of the number of regulatory
inputs and outputs at various scales, theincreased target specificity and speed of
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Fig. 5 Effective Regulatory Influences at Many Scales (Top to Bottom) over a 1.5-h Interval.
(A, E, I, M): Regulatory influence network. (B-C, F-G, J-K, N-O): Average magnitudes of outputs
(B, F, J, N) and inputs (C, G, K, O) of modules arranged in self-organizing map array order.
Stronger inhibition, activation, or neither are indicated by brighter red, green, or gray, respectively.
(D, H, L, P) Complete unthresholded regulatory transition matrices. Rows are sorted by similarity
in functional inputs, and columns are sorted by similarity in functional outputs. For details see [5]
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regulation at finer scales, and the aggregation of sub-module functions into
collective larger-scale functions. Last, we provided a detailed discussion of many
specific regulatory relationships. The diversity of analysis points the way to many
new lines of investigation, in particular experimentally testable hypotheses at large
scales of cellular organization.

2.3 Dynamics of Cellular Level Function

A major open question of systems biology is how genetic and molecular components
interact to create phenotypes at the cellular level. Although much recent effort has
been dedicated to inferring effective regulatory influences within small networks
of genes, the power of microarray bioinformatics has yet to be used to determine
functional influences at the cellular level. In all cases of data-driven parameter esti-
mation, the number of model parameters estimable from a set of data is strictly
limited by the size of that set. Rather than infer parameters describing the detailed
interactions of just a few genes, we chose a larger-scale investigation so that the cumu-
lative effects of all gene interactions could be analyzed to identify the dynamics of
cellular-level function. By aggregating genes into large groups with related behaviors
(megamodules), we were able to determine the effective aggregate regulatory influ-
ences among 12 major gene groups in murine B lymphocytes over a variety of time
steps. Intriguing observations about the behavior of cells at this high level of abstrac-
tion include: (i) a medium-term critical global transcriptional dependence on ATP-
generating genes in the mitochondria, (ii) a longer-term dependence on glycolytic
genes, (iii) the dual role of chromatin-reorganizing genes in transcriptional activa-
tion and repression, (iv) homeostasis-favoring influences, (v) the indication that, as
a group, G protein-mediated signals are not concentration-dependent in their influ-
ence on target gene expression, and (vi) short-term-activating long-term-repressing
behavior of the cell-cycle system that reflects its oscillatory behavior (Fig. 6).

This model is unique, because it is comprehensive in describing all major cellular
regulatory influences that occur over a 1.5-h time step, and because it sets forth
dozens of experimentally falsifiable hypotheses. Although this analysis has been
performed at the megamodule level, this technique can conceptually be used to
infer all transcriptional interactions, because its resolution is limited only by the
number of time-step experiments. Practically, however, to infer strictly linear effects
of every gene, given the levels of experimental noise in microarray data would require
≈90,000 observations in mammalian systems or 18,000 observations in yeast. While
higher levels of detail can be achieved as described in the previous section, the
analysis of the largest scale cell behavior provides key insights into cell function and
regulation.
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Fig. 6 A global comprehensive cellular influence network for the 1.5-h transition. Each gene group
is represented by its number, along with those ontology labels that are overrepresented in that gene
group. Underlined labels are given when an entire function category is overrepresented, and grayed
labels when several individually related functions are each overrepresented, but the category is not.
A green arrow connecting one gene group to another indicates activation over 1.5 h, red arrows
indicates repression, with brighter arrows indicating stronger effects. For details see [6]
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Hidden Complexity of Evolutionary
Dynamics: Analysis

Ivan Zelinka, Lenka Skanderova, Petr Saloun, Roman Senkerik
and Michal Pluhacek

Abstract This chapter presents a method for visualization of the dynamics of evo-
lutionary algorithms in the form of complex networks and is continuation of our
previous research. The analogy between individuals of populations in an arbitrary
evolutionary algorithm and vertices of a complex network is mentioned, as well
as between edges in a complex network and communication between individuals
in a population. Visualization of various attributes of network based on differential
algorithm is presented here.

Keywords Differential evolution · Complex network · Evolutionary dynamics

1 Introduction

Our previous research in the [1–3] shows that evolutionary algorithm dynamics can
convert to the complex network that exhibits similar or the same structural prop-
erties as social networks, like Facebook etc. In this chapter we try to propose our
interpretations of complex networks analysis tools on complex networks that are
given by evolutionary dynamics, see [1–3]. Large-scale networks, exhibiting com-
plex patterns of interaction amongst vertices exist in both nature and in man-made
systems (i.e., communication networks, genetic pathways, ecological or economi-
cal networks, social networks, networks of various scientific collaboration, Internet,
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World Wide Web, power grid etc.). The structure of complex networks thus can
be observed in many systems. The word complex networks [4, 5] comes from the
fact that they exhibit substantial and non-trivial topological features with patterns
of connection between vertices that are neither purely regular nor purely random.
Such features amongst other include a heavy tail in the degree distribution, a high
clustering coefficient, hierarchical structure. In the case of directed networks, these
features also include reciprocity, triad significance profile and other features.

Amongst many studies, two well-known and much studied classes of complex
networks are the scale-free networks and small-world networks (see example in
Fig. 1), whose discovery and definition are vitally important in the scope of this
research. Specific structural features can be observed in both classes i.e. so called
power-law degree distributions for the scale-free networks and short path lengths
with high clustering for the small-world networks. Research in the field of complex
networks has joined together researchers from many fields such as mathematics,
physics, biology, chemistry computer science, epidemiology etc. Social network
researchers have acquired data for their studies using various methods. In the past
these studies were only based on questionnaire data which typically reached the
amount of hundreds individuals [6]. In the late 1990s new technologies such as
internet and cellular phones enabled researchers to construct large scale networks
using emails [7], phone records [8] or web search engines [9].

Many researchers focus on identifying and analyzing community structures in
networks growing from web users. Analysis of topological characteristics of the
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tripartite hyper graph of queries, users and bookmarks on a large snapshot of web
site and on query logs of two large search engines is described in [10]. The extensive
analysis of characteristics of large online social network MySpace was published in
[11]. Study was oriented to the sociability of users based on relationship, messaging,
and group participation, on the demographic characteristics of users with emphasis
on correlation with their privacy references and on text analysis with intention to
construct language models used by MySpace users. In [12] researchers analyzed
70 large sparse real-world networks and defined network community profile plot
which characterizes the “best” profile community. They compare and contrast several
methods to approximately optimize metric, based on conductance measure.

Structure analysis of social networks provide large amount of worthy information
about interactions between nodes (users) in the network. Understanding the evolu-
tion of obtained network can serve more additional information of network behavior
in progress. These findings can help to protect such networks from various attacks
or can contribute in research of data distribution throughout the network. Several
models of network evolution were proposed. In [13] analysis of large social web
networks like Flickr and Yahoo is presented. Authors analyzed the network evolu-
tion and defined three types of network components on the basis of their activity
- singletons, giant components and middle region. Approaches to link prediction
of new interactions amongst members in a social network based on measures for
analyzing the proximity of nodes were developed in [14]. Theoretical model which
explains evolution of communities in social networks where new friends are formed
by looking at friends of friends was published in [15]. Group analysis of information
in large social networks like Live Journal in relation to its growth and evolution is
mentioned in [16], DBLP database is studied in [17]. Authors claim that network
cannot be analyzed independently, but need to be studied in the context of other
networks.

1.1 Evolutionary Dynamics and Complexity

Motivation of this research is quite simple. As mentioned in the introduction and
reported in [3], evolutionary algorithms are capable of hard problem solving. A
number of examples on evolutionary algorithms can be easily found. Evolutionary
algorithms (EA) use with chaotic systems is done for example in [18] where EAs
has been used on local optimization of chaos, [19] for chaos control with use of the
multi-objective cost function or in [20] and [21], where evolutionary algorithms have
been studied on chaotic landscapes. Slightly different approach with evolutionary
algorithms is presented in [22] where selected algorithms were used to synthesize
artificial chaotic systems. In [23, 24] EAs has been successfully used for real-time
chaos control and in [25] EAs was used for optimization of Chaos Control.

On the other hand, complex networks widely studied across many branches of
science are promising and they are intiating a modern interdisciplinary research.
Evolutionary algorithms, based on its canonical central dogma (following darwinian
ideas) clearly demonstrate intensive interaction amongst individual in the population,
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which is, in general, one of the important attributes of complex networks (intensive
interaction amongst the vertices).

The main ambition of this chapter is to interpret tools of complex networks analysis
on complex networks that are given by evolutionary dynamics. Reason for this is
that today various techniques for analysis and control of complex networks exist. If
complex network structure is hidden behind EA dynamics, then we believe, that for
example above mentioned control techniques could be used to improve dynamics of
EAs. The first steps (i.e. conversion of the EA dynamics to the complex network and
to CML system) have been done in the [1–3]. Now we propose how standard tools
of complex networks analysis can be understood for EAs dynamics purposes.

1.2 Experiment Design

1.2.1 Used Algorithm

For the experiments described here, stochastic optimization algorithms, such as DE
[26] have been used in order to get sample data, that were used for visualization
of DE complex network (multiple edges are not visualized) and further analysis,
see Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15. The low number of
generations has been set (30) to get network that will be suitable for simple and
clear visualization. Analysis has been done in Mathematica version 9. Differen-
tial Evolution [26] is a population-based optimization method that works on real-
number-coded individuals. For each individual xi,G in the current generation G, DE
generates a new trial individual x∞

i,G by adding the weighted difference between two
randomly selected individuals xr1,G and xr2,G to a randomly selected third individual
xr3,G . The resulting individual x∞

i,G is crossed-over with the original individual xi,G .
The fitness of the resulting individual, referred to as a perturbed vector ui,G+1, is then
compared with the fitness of xi,G . If the fitness of ui,G+1 is greater than the fitness
of xi,G , then xi,G is replaced with ui,G+1; otherwise, xi,G remains in the population
as xi,G+1. DE is quite robust, fast, and effective, with a global optimization ability.
It does not require the objective function to be differentiable, and it works well even
with noisy, epistatic and time-dependent objective functions. Scheme of DE is given
as a pseudocode by Eq. 1, see also [3]. DE parameters are in the Table 1.
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Fig. 3 Minimum cut
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Fig. 4 Degree centrality
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Fig. 5 Closeness centrality
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Fig. 6 Betweenness
centrality
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Fig. 7 Page rank centrality
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Fig. 8 Mean neighbor degree
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Fig. 9 K core components
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Fig. 10 K plex
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Fig. 11 K club
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Fig. 12 K clan
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Fig. 13 K clique
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Fig. 14 Clique
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Fig. 15 Community graph
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Table 1 DE setting NP 24
F 0.9
Cr 0.3
Generations 30
Individual length 50

1.Input :D, Gmax, N P ≥ 4, F → (0, 1+) , C R → [0, 1], and initial bounds :x(lo), x(hi).

2.Initialize :
{

∀i ♥ N P ≡ ∀ j ♥ D : xi, j,G=0 = x (lo)
j + rand j [0, 1] •

(
x (hi)

j − x (lo)
j

)

i = {1, 2, . . . , N P}, j = {1, 2, . . . , D}, G = 0, rand j [0, 1] → [0, 1]
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.While G < Gmax

∀i ♥ N P

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.Mutate and recombine :
4.1r1, r2, r3 → {1, 2, . . . , N P}, randomly selected, except :r1 ⇔= r2 ⇔= r3 ⇔= i
4.2 jrand → {1, 2, . . . , D}, randomly selected once each i

4.3∀ j ♥ D, u j,i,G+1 =
⎧
⎨

⎩

x j,r3,G + F · (x j,r1,G − x j,r2,G)

if(rand j [0, 1] < C R ∼ j = jrand )

x j,i,Gotherwise
5.Select

xi,G+1 =
⎜

ui,G+1 if f (ui,G+1) ♥ f (xi,G)

xi,G otherwise
G = G + 1

(1)

1.2.2 Selected Test Functions and Its Dimensionality

The test function applied in this experimentation was selected from the test bed of 17
test functions—Schwefels function (2). Evolution was searching for global extreme
in 50 dimensions, i.e. individual has 50 parameters. Dimension is in the formula
(2) represented by variable D, so as one can see, it is easy to calculate selected
functions for an arbitrary dimension. Schwefels function has been selected due to
their various complexity and mainly for the fact that these functions are widely used
by researchers working with evolutionary algorithms. Another reason was that speed
of convergence and thus evolutionary dynamics itself is different on that function,
compared to simple test functions.

D⎝

i=1

−xi sin(
√|xi |) (2)

1.2.3 Data for Complex Network Visualization

The most critical point of this research and related simulations was to which data
and relations should be selected and consequently visualized. Based on investigated
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algorithms, we believe that there is no universal approach, but rather a personal
one, based on the knowledge of algorithm principle. In the case of the DE, e.g.
DERand1Bin in which each individual is selected in each generation to be a parent.
Thus in DE, we have recorded only those individuals-parents, that has been replaced
by better offspring (like vertex with added connections). In the DE class of algorithms
we have omitted the philosophy that a bad parent is replaced by a better offspring,
but accepted philosophical interpretation, that individual (worse parent) is moving
to the better position (better offspring in original DE philosophy). Thus no vertex
(individual) has to be either destroyed or replaced in the philosophical point of
view. If, for example, DERand1Bin has a parent replaced by offspring, then it was
considered as an activation (new additional links, edges) of vertex-worse parent from
three another vertices (randomly selected individuals, see [1–3, 26]).

1.2.4 Visualization Methods

Experimental data are visualized in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
and 15. Interactions between individuals in the population during entire evolution
are described like edges, vertices in graph are individuals that are activated by other
individuals, incrementally from generation to generation.

1.3 Interpretation of the Example Network

As reported above DE algorithms were set according to Table 1 and have been
tested on Schwefel’s 2 test function (to reveal its complex networks dynamics) with
constant level of test function dimensionality (i.e. individual length). All data have
been processed graphically. Visual emergence of complex network structure behind
evolutionary dynamics depends on many factors. However some special versions of
used algorithms did not show complex network structure despite the fact that the
number of generations was quite large, see [1–3]. The main tools of Mathematica
software were used on basic analysis and are proposed here. We would like to remark
that graphs on following figures depend usually on command setting that generate
graph. We have used basic setting of used Mathematic commands. Visualized and
analyzed graphs have multiple edges that can be understand like weight of single
edge. Attributes of proposed analysis are represented by subgraph colors and vertice
sizes in graphs. Our proposed interpretation, based on terms and command from
Wolfram Mathematica used for all of our experiments is following:

1. Adjacency graph, see Fig. 1.
Meaning: Graph with vertices and oriented edges.
Interpretation: Visualization of evolutionary dynamics in the form of so
called graph. Each vertex represent one individual in the population and each
edge (oriented of course) represent successful offspring creation (i.e. fitness
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improvement of active parent in this philosophy) between parents connected by
that edge.

2. Graph partition, see Fig. 2.
Meaning: Graph partition finds a partition of vertices such that the number of
edges having endpoints in different parts is minimized. For a weighted graph,
graph partition finds a partition such that the sum of edge weights for edges
having endpoints in different parts is minimized.
Interpretation: Individuals in population are separated into “groups” according
to their interactions with another individuals, based on their success in active
individual fitness improvements. “Endpoints” can be understood like successful
participation of selected individuals in active individual fitness. On Fig. 2 is
partition visualized by colors. This analysis gives view on population structure
and shows the set of individuals that got or donate oriented edges (support from
/ to) the same group of individuals. Based on number of connections or weights
(if multiple edges are understood like integer weights) of edge, it can be analyzed
what part of population was the most important in the evolutionary dynamics
for given case.

3. Minimum cut, see Fig. 3.
Meaning: A minimum k-cut of a graph g is a partition of vertices of g into k
disjoint subsets with the smallest number of edges between them. For weighted
graphs, minimal cut gives a partition c1, c2,... with the smallest sum of edge
weights possible between the sets ci .
Interpretation: It is quite similar to previous item, population is separated into
disjoint subsets with the smallest number of interactions between individuals.
The expression “disjoint subsets with the smallest number of edges between
them” say that minimal cut gives set of individuals that has the lowest impact on
evolutionary dynamics. It allows to study impact of evolutionary dynamics on
population structure from interaction point of view.

4. Degree centrality, see Fig. 4.
Meaning: Degree centrality of g gives a list of vertex degrees for the vertices
in the underlying simple graph of g. Degree centrality will give high centralities
to vertices that have high vertex degrees. The vertex degree for a vertex v is the
number of edges incident to v. For a directed graph, the in-degree is the number
of incoming edges and the out-degree is the number of outgoing edges. For an
undirected graph, in-degree and out-degree coincide.
Interpretation: Degree centrality shows how many in-coming (support from
individuals) or out-coming (support to individuals) edges vertex - individual
under study has. This quantity can be related to progress of the evolutionary
search and used to made conclusion of what set of individuals has maximally
contribute to that. On Fig. 4 are individuals sized according to that degree.

5. Closeness centrality, see Fig. 5.
Meaning: Closeness centrality will give high centralities to vertices that are at a
short average distance to every other reachable vertex. ClosenessCentrality for

a graph is given by
(

1
l1

, 1
l2

, . . .
)

, where li is the average distance from vertex i
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to all other vertices connected to i . If d is the distance matrix, then the average

distance li from vertex i to all connected vertices is given by

∑

j
di, j

k , where the
sum is taken over all finite di, j and k is the number of vertices connected to i .
The closeness centrality for isolated vertices is taken to be zero.
Interpretation: Closeness centrality shows which of individuals has the short
average distance to every of the other individuals. In fact such individual has
shortest path to the most other individuals and thus information about its fitness
and its genome is easily spread throughout the population (graph vertices), see
Fig. 5.

6. Betweenness centrality, see Fig. 6.
Meaning: Betweenness centrality will give high centralities to vertices that are
on many shortest paths of other vertex pairs. Betweenness centrality for a vertex

i in a connected graph is given by
∑

s,t→v≡s ⇔=i≡t ⇔=i
ni

s,t
ns,t

, where ns,t is the number

of shortest paths from s to t and ni
s,t i is the number of shortest paths from s to

t passing through i . The ratio
ni

s,t
ns,t

is taken to be zero when there is no path from
s to t .
Interpretation: Betweenness centrality shows individuals with high centrality,
that are on the shortest paths-connections with other individuals. In fact, it shows
individuals, through which is information about fitness (or influence of the most
successful individuals) spread the most intensively through the population.

7. Page rank centrality, see Fig. 7.
Meaning: Page rank centrality gives a list of centralities that are solutions to
c = αaT .d.c + β, where a is the adjacency matrix of g and d is the diagonal
matrix consisting of 1/ max

(
1, dout

i

⎞
, where dout

i is the out-degree of the i th

vertex.
Interpretation: Page rank centrality is another view on usability of given
individual and can be interpreted like higher page rank centrality - higher and
more frequent use of individual in evolutionary search and that has very intensive
impact on population development.

8. Mean neighbor degree, see Fig. 8.
Meaning: The mean neighbor degree is also known as the average neighbor
degree. The mean neighbor degree of the vertex v is the mean of vertex degrees
of neighbors of v. For weighted graphs, the mean neighbor degree of the vertex

v is given by

∑

u
duwuv

s over all neighbors u of v with edge weight wuv between u

and v. Variable du is the degree of the vertex u and s is the total of weights wuv .
Interpretation: The mean neighbor degree gives the average neighbor degree
of surrounding (in the network connection sense) individuals and can be used
like statistical information how population neighbour of individual is formed,
based on information that is spread through population. In fact, the mean neigh-
bor degree can give the map over the whole population showing “density” of
importance of individuals collections/sets.
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9. K core components, see Fig. 9.
Meaning: A k-core component is a maximal weakly connected subgraph in
which all vertices have degree at least k and can be formed like a list of com-
ponents c1, c2,…, where each component ci is given as a list of vertices. For a
directed graph g, KCoreComponents gives the k-core components of the under-
lying undirected simple graph of g.
Interpretation: A k-core component show a set of individuals with degree at
least k, so individuals in the population can be grouped under this “filter” for
further analysis.

10. K-plex, see Fig. 10.
Meaning: A k-plex is a maximal set of vertices such that each vertex is adjacent
to all except “k” others. For a directed graph, the outgoing edges for each vertex
connect to all except “k” others.
Interpretation: Show individuals that have at least connections with other
excluding “k” others. It allows filter out of population individuals for further
analysis.

11. K-club, see Fig. 11.
Meaning: A k-club is a maximal set of vertices where the diameter of the cor-
responding subgraph is at most k.
Interpretation: Shows a set of individuals, whose interaction (vizualized in
graph like edges) is mutually through k individuals. This can be used to study
spread of information throughout the population.

12. K-clan, see Fig. 12.
Meaning: A k-clan is a k-clique where the diameter of the corresponding sub-
graph is at most k.
Interpretation: Individuals subgraph that has diameter k. This is another view
on patters structure formatting in the population.

13. K clique, see Fig. 13.
Meaning: A k-clique is a maximal set of vertices that are at a distance no greater
than k from each other.
Interpretation: A maximal set of individuals that are at a interaction distance
no greater than k from each other individuals.

14. Clique, see Fig. 14.
Meaning: A clique is a maximal set of vertices where the corresponding sub-
graph is a complete graph.
Interpretation: Limit case of k-clique, a maximal set of individuals where the
corresponding subgraph is a complete graph - i.e. all individuals are in connection
with other from that sub-graph.

15. Community, see Fig. 15.
Meaning: Community graph plot attempts to draw the vertices grouped into
communities.
Interpretation: Community graph plot showing the individuals grouped into
communities. Communities (with border are individuals that communicate
amongst themselves (higher density of edges in community, multi edges are
not visualized here, rather than between communities) and community are then
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joined by connections that are “one-way” and shows flow of information between
communities). This kind of visualization can be interesting also in the case of
parallel EAs, where islands of subpopulations are formed.

1.4 Conclusion

In this chapter we have suggested possible interpretation of selected well known tools
and terminology from complex networks analysis to the evolutionary algorithms
dynamics converted to the complex network structures. The volume of this article
is too small to mention and explain all the possible interpretations and tools. This is
only a mid-step in our research presented in [1–3], where we proposed all necessary
steps joining evolutionary dynamics, complex networks and CML systems.

This chapter is not focused on mathematics itself or on numerical simulations,
as in the previous chapters, [1–3], but rather on “philosophical” interpretation of
proposed terms used in Wolfram Mathematica and in all our past and also future
experiments. The next step is to use all previous results to create case study and
demonstrate usefulness of proposed ideas in this way. All results will be published
in further research papers.
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The Brain Equation

Otto E. Rössler

Abstract The brain equation is a solution to the “second survival problem.” The
latter is called “positional adaptation.” It unlike Darwin’s first (“metabolic adapta-
tion”) is history-independent. As such it is mathematically well posed. The equation
applies to all life forms in the cosmos that live in a structured environment in which
survival depends on position in space in a short-term fashion. An eusocial version
does not exist. The equation solves, in conjunction with the necessarily attached VR
machine, the famous NP-complete “decision-type travelling salesman problem” for
finite times. The resulting autonomous optimizer with cognition is susceptible to a
“function change” in the sense of Bob Rosen which so far is known empirically only
from the human brain.

Keywords Brain equation · Second darwinism · Decision-type travelling-salesman
problem · Deductive biology · A.I. · Epigenetic personogenetic function change ·
Robert Rosen · Gödel incompleteness.

1 Introduction

An equation presented in a talk in 1973 and published in the pertinent proceedings
[1] carries this name, first given to it as the title of an unpublished 1973 paper.

The explanation of why the equation is not well known seems to lie in the fact that it
was derived in an arcane mathematical context—the so-called “travelling salesman
problem” which is “NP-complete.” The term “Non-Polynomial complete” means
that the solution involves an exponential (“nonpolynomial”) factor while the word
“complete” refers to the fact that very many applied problems belong into the same
class. It also means that if one member of the class can be solved in polynomial time,
all can. Even an influential physicist, John Archibald Wheeler, gave the problem

O. E. Rössler (B)

Faculty of Science, University of Tubingen, Auf der Morgenstelle 8,
72076 Tubingen, Federal Republic of Germany
e-mail: oeross00@yahoo.com

A. Sanayei et al. (eds.), ISCS 2013: Interdisciplinary Symposium on Complex Systems, 47
Emergence, Complexity and Computation 8, DOI: 10.1007/978-3-642-45438-7_5,
© Springer-Verlag Berlin Heidelberg 2014



48 O. E. Rössler

a stab. Its mathematical depth is illustrated by the fact that the limiting solution
is “Gödel complete” in the sense that it represents a fictitious but mathematically
existing example of a Gödel-incomplete solution [2], which is very paradoxical and
futuristic.

In spite of its arcane origin, the new “travelling-salesman-with-alarmclocks
problem” [1], or synonymously “decision-type travelling salesman problem” (as
the authors of the influential book of ref. [3] would later independently call it), is
of a maximum applied interest. And so is its solution based on the brain equation.
The brain equation enables intelligent autonomous robots and spacecraft to be built.
More importantly, it allows for an understanding of the difference between autistic
intelligent behavior on the one hand and person-controlled intelligent behavior on the
other, no matter whether shown by intelligent machines or living beings. The com-
puter “HAL” in the “Space Odyssey” movie of 1968 illustrates the point. In biology,
the “second travelling-salesman problem” (as it can be called for short) complements
Darwinism by a purely mathematical sister discipline called “deductive biology” [4].
In other words, the brain equation is a mathematician’s dream if it is correct.

The equation, condensed into the short Eq. (13) of ref. [1], comprises several
antecedent equations there. It was re-published in ref. [5]. It will not be repeated in
the following (unless the reader jumps to the Appendix). Nevertheless all features of
the brain equation will be attempted to be made transparent in the following.

2 What the Brain Equation Cannot Do

The brain equation, while representing desires—and in conjunction with the attached
universal simulator (or VR machine) presumably all possible thoughts—, cannot
describe or even predict the existence of color and other qualia. The latter miracu-
lously step in when the biologically implemented brain equation says “force number
N” has this or that strength. For numbers cannot refer to themselves by definition.
So the brain equation—like all of science—belongs to the “Hades world” of Greek
mythology which obeyed the same laws with its “shadows” as the upper world does
but lacked color and “blood” and everything that makes life valuable. Nonetheless
the brain equation is maximally efficient. There can be little doubt that, if real brains
are miraculously endowed with color and a Now as we cannot deny, an analogous
“completion” is granted to the brain equation when it is implemented in a particular
hardware.

3 Deductive Darwinism: Part 2

Part one—ordinary Darwinism—describes as is well known the necessary endoge-
nous changes (or changeability) of a population of living systems in case the
physical environment changes slowly over time as unavoidable. The theory of the
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“brain in the genome” (Michael Conrad’s term, personal communication 1979), or
synonymously “recursive evolution” [6] which goes back to John Holland and John
von Neumann, pays tribute to this fact. This theory is much more complicated and
harder to solve than the travelling-salesman-with-alarmclocks problem because it
cannot help include unpredictable historical accidents. This fact makes the mathe-
matics of the traditional “temporal Darwinism” far more difficult than that of the
new “spatial Darwinism” with its brain equation. Temporal Darwinism is progress-
ing quite slowly as is well known despite the large number of new empirical data
that come in every week on many levels.

Traditional temporal Darwinism is non-predictive in very many respects as men-
tioned. George Kampis (personal communication1991) insists that the shape of an
elephant represents a non-predictable biological phenomenon, notwithstanding its
intrinsic beauty. The same holds true for the human body and its beauty. The brain
equation, by contrast, is thoroughly predictable because the travelling-salesman-
with-alarmclocks problem is the same in all biologies, terrestrial and Jovian (the
latter likely based on BNBN-chains and liquid ammonia rather than on carbon-
chains and liquid water [7]; similarly Georg Graf in a 2010 blog). “Mantis shrimps,”
mollusks and vertebrates all implement the same brain equation while using different
structural means, a fact which automatically makes for a comparative discipline of
its own. Only the class of eusocial animals appears to lack a unique brain equation.
There is much room for surprises.

The reason for the “divide” between chemical and spatial Darwinism lies in a sim-
ple observation. If survival depends acutely on position in space and/or time, the ge-
netic information supplied by the genome is provably incapable of securing survival.
The temporal subcase—regarding creatures living in the tidal zone—was actually
the trigger which enabled this qualitative difference to be spotted in a discussion with
Konrad Lorenz in 1966, as he immediately acknowledged. Darwin’s metabolic adap-
tation is intrinsically unable to foster survival in such short-term cases. Genetically
unpredictable spatiotemporal information needs to be recruited here. The resulting
Second Darwinism of “positional adaptation” is—unlike the First Darwinism of
“metabolic adaptation”—fully predictive. This is because it represents a well-posed
mathematical optimization problem as mentioned—the travelling-salesman-with-
alarmclocks problem (or synonymously the decision-type travelling salesman prob-
lem).

Eric Charnov [8] came very close to the same insight in his theory of “optimal
foraging.” This second Darwinism unlike the first turns out to be totally deductive.
A branch from an arcane mathematical discipline called NP-completeness theory is
suddenly in charge.

4 Brief Summary of the Equation

The brain equation when physically embodied yields only a suboptimal—a “local”—
solution to the travelling-salesman-with-alarmclocks problem of mathematics.
Picture in your mind a landscape with many filling stations of several colors
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(yellow, green, red, say) distributed at random, and then picture an autonomous
vehicle equipped with equally many on-board fuel tanks of matching color, each
requiring to be filled-up independently. No onboard fuel tank of any color must go
empty before the next filling station of the same color is reached.

This mathematical optimality problem is virtually trivial if one tank filling carries
much farther than the mean distance between filling stations of the same color. Lorenz
describes the corresponding series of adaptations in his book, originally titled “The
Flip-side of the Mirror” [9]. Yet the same problem becomes insoluble if the two
numbers approach each other. As the two numbers are allowed to get closer, an
intermediary threshold is reached when a “local solution” no longer suffices and
instead a “supra-local solution,” chosen as the best among several simulationally
calculated possible paths, becomes mandatory. This is the threshold from “direction
optimization” towards “path optimization.”

The brain equation yields the locally optimal direction, obtained by one’s using
only the locally available information about the closest-lying source of every color
and the momentary filling status of each colored fuel tank. It is only an autonomous
“direction optimizer.” It is a compromise and as such appears not to deserve much
interest at first sight. This local solution—determined from locally evaluated direc-
tional weights—is described by the brain equation which proves maximally valuable
as we shall see.

The brain equation is a potential-type (more properly speaking: gradient type)
equation yielding solutions orthogonal to those of a Newtonian potential equation.
It involves 2N additive, nonlinear, positive and negative (that is, attractive and repul-
sive), position-in-space dependent (as well as time-dependent) sub-potentials—two
for each color, one positive, one negative. Some of the explicit nonlinear additive
functions that enter can approach infinity—for example, when one fuel tank is almost
empty and the closest source of the same color can only be reached by a one hundred
percent direct “collision course.”

The explicitly written-down equation (Eq. 13 of [1]) contains several idealizations
compared to the real-life situation of a human car-driver seeking a specific type of
repair shop or filling station: no reserve fuel tanks, equal filling volumes, instanta-
neous fill-ups when reaching a matching filling station, equal depletion rates of all
fuel tanks, and constant travelling speed. However, these assumptions do not make
for an appreciable difference as far as the mathematical difficulty of the problem is
concerned.

Even though the brain equation only yields a suboptimal, “local” solution as we
saw, hardware-wise addition of a “universal simulator” (or synonymously Virtual-
Reality—VR—machine or cognitive-map system [10]) renders it effectively optimal
in the combination. While the brain equation remains in charge in this combination,
other path optimizers (being more chess-like) appear eligible at first sight, too. How-
ever, if simulation takes time in proportion to its complexity as unavoidable, then the
brain equation is the only remaining alternative—as a “first shot” emergency routine.
Therefore, the brain equation turns out to be fundamental. If the environment con-
tains contingencies (not considered so far), then the short-term memory implicit in
the universal simulator needs to be complemented by long-term storage devices [1].
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By the way, the amount of hardware required for the simulator is bound to approach
infinity for the limiting problem of an infinitely long survival. The fictitious pertinent
solution then is “Gödel-complete,” cf. [2].

It is now almost possible to write the brain equation down explicitly [1, 5]: it
describes a directional weight given to every direction in space. This weight has
additive contributions from every color, i.e. from every color-specific sub-potential
contributing to the attractiveness or repulsiveness of the direction in question. This is
because every local direction, if followed, contributes to coming closer or less close
to the nearest source of each color (filling station). This weight is either positive or
negative-in-the-opposite-direction, or else both weights apply simultaneously. The
positive and the negative space dependencies are hereby different (circle-of-Thales
vs. cardioid shape). The time dependencies are simple nonlinear functions of the
distances and the times left for the respective fuel tank to run out. Moreover, there
is a multiplicative global term called “friskiness” present in the equation which is
put suppressed (goes to unity) in case there are strong negative contributions. This is
all. The resulting equation is a sum of 2N nonlinear terms, partially weighted by the
mentioned multiplicative factor greater than unity. The generated directional weights
can approach negative or positive infinity.

5 Remark on Social Animals

While the brains of eusocial animals (like ants and naked moles) are not bound to
use the brain equation as mentioned, social animals are not exempt from it. In social
animals, an obligatory sub-potential of their brain equation is “bonding.” Hereby a
“mother car” tries to aid a “child car” or “partner car” by being rewarded (increased
in its sum functional) by a displayed high level of the parner’s sum functional. In
vertebrates, the bonding potential is controlled by the hormone oxytocin as is well
known empirically (compare Ernst Fehr’s game-theoretic studies with human volun-
teers [11]). The hormone’s release is triggered by, among other things, the partner’s
signaled momentary state of well-being (the value of his or her sum-potential called
“happiness”). The book “Neosentience” [12] offers some further details.

6 Discussion

The brain equation has an unusual name. It is not an inductive result, as most findings
in science are, but a deductive one. It is “top-down,” not “bottom-up.” It shares this
feature with Darwinism. It belongs into “evolutionary mathematical biology,” part
of which is deductive as we saw.

The brain equation got largely neglected for four decades despite a few follow-up
publications written to draw attention to it (like [13]). This fact is not astounding as
the related paradigm of classical Darwinism can teach: the incredible intelligence
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hidden in the genome [6] goes unappreciated as a both theoretical and practical
treasure trove as mentioned.

At this point it is perhaps worth emphasizing the practical and economic advan-
tages of the brain equation—for example, regarding intelligent robots as needed in
the automated care for the elderly in youth-deprived countries. But the brain equation
is also not aloof from being applied to real brains. Its complexity after all touches
on Gödel incompleteness as we saw. Most importantly, the brain equation, although
deterministic of a hyperchaotic type, like many nonlinear systems admits more than
one qualitatively different functional regime. More specifically, it can be used not
only in the usual “autistic mode” (since its design yields a deterministic—that is, by
definition autistic—force field). It can also function in a non-autistic, “person-type”
mode. This mathematical implication is an example of the “principle of function
change” described by Robert Rosen (cf. his book “Anticipatory Systems” [14]).

This unexpected dynamical implication makes the brain equation relevant for
human life not just on the level of industrial gadgets. It teaches us something about
ourselves as persons. Let me dwell a little on this in my opinion important point.
Two coupled brain-equation carriers are potentially susceptible to a “hard function
change” in the sense of exhibiting a radically new mode of functioning that arises
suddenly and effectively irreversibly. This mathematical phenomenon predictably
occurs between two brain-equation carriers if they are functionally coupled in a
certain simple fashion. Specifically, it occurs when in two brain-equation carriers
that are in visual contact, two different social displays—that of the bonding sub-
potential (“affection”) and that of the sum-potential (“happiness”)—are sufficiently
similar to both act as a bonding reward.

This constellation can be arranged-for artificially between artificial or natural
brain-equation carriers, but it can also occur spontaneously through an evolutionary
accident called “Huxley ritualization” [13]. The only further precondition is that the
two added universal simulators (VR-machines) are sufficiently powerful to allow for
“mirror competence” (as the capability in question is called in biology following
Wolfgang Kohler and Gordon Gallup). Then, the two autonomous optimizers with
cognition will predictably start “cross-optimizing.” The positive feedback which
occurs in this case does not end in an ordinary “bonding bout” (as in the absence
of mirror competence) but spreads to all sources of potential reward for both in a
creative fashion.

The consequence is an “interactional function change”: Either autonomous
optimizer is confronted with the phenomenon of “benevolence” encountered and,
in response, begins to attempt to act benevolently, too. This at first only budding
but then suddenly taking-over simulational mode (functional attractor) leads to an
autocatalytic bonding bout of maximum strength on either side that comprises all
momentarily possible acts and objects as tokens. This epigenetic transformation is
the “personogenetic function change” (cf. [13, 15]). It implies the sudden compe-
tence to invent and/or muster a language and to speak in a universe of speaking
persons. This renders the predicted dynamical phenomenon—the “person attractor”
as Detlev Linke called it—of great interest to the humanities. Niklas Luhmann wrote
on this [16]. Noam Chomsky participated in a long telephone conversation on this
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question in 1975. Gregory Bateson accepted the function-change result right after
its first publication in the San Diego Biomedical Symposium [17]. Of course, it
must be kept in mind that computer technology was far from being up to the task of
implementing the brain equation along with its universal simulator at the time. To
date, this level ought to be available, as predicted in [5].

Let me also point to the therapeutic potential of the two-coupled-brain-equations
paradigm. A straightforward therapy for early childhood autism is implicit in the
mathematical picture of two coupled brain equations [7]. The therapy consists in
the bonding caretaker adopting a simple—if not easy to maintain—rule: to deliber-
ately produce an acoustic (say) bonding signal whenever momentarily happy in the
interaction. This proposed therapy is not confined to the playroom. It is so general
it can be extended towards other—terrestrial or non-terrestrial, biological or non-
biological—bonding mirror-competent brain-equation carriers. Steven Spielberg’s
“A.I.” of 2001 represents a fictional anticipation.

A second applied implication of the brain equation is not therapeutic but preventive
in kind. It enables a rational understanding of René Spitz’s and Mary Ainsworth’s
independent 1945 discoveries of the often lethal disease in young children called
“hospitalism.” The latter occurs when they are deprived of a bonding partner. Knowl-
edge about the epigenetic personogenetic function change and its transformative
power thus can help the weakest of all creatures—illiterate infants—avoid despair
where it is the most vital to be spared. Young children in this way suddenly become
objects of scientific attention in a mathematics-borne context. The function-change
model implies that they are even bigger in their mental stature than adults. The
brain equation enables this insight. It elevates the previously ill-defined phenom-
enon of personogenesis to the status of a whole new field of science—that is, to being
accessible to empirical investigation, prevention and therapy. The first documentary
recording of the predicted personogenetic transformation of a young human being
will be a tear-jerker on Youtube. On the other hand, the fact that this document of a
predicted bifurcation has been lacking up until now can also be understood: it attests
to the tactfulness of human mothers and fathers—that they sensed that this “holy
of holies” of humanity is not a thing for the public eye. It indeed belongs into the
sanctuary of the medical profession. But it at the same time also belongs into the tra-
dition of the enlightenment since everyone is a part of the caring—responsible—side
of humanity. Only the rational framework enabling this “jump” in public awareness
was lacking so far in the absence of the brain equation and its correct understanding.

May I add one more step in the direction of applications? I am referring to cribs.
We live in an age in which women have been discovered to be perfectly able to fulfill
all male roles—the “second American pioneer age” is a global achievement. What is
still lacking in this context is the insight into the deficient competence of the male part
of humanity in those fields in which the female part is endowed with a superhuman
strength—such as needed already in child birth. While some males also have a strong
tendency to “wipe buttoms” as Lorenz said, the power of this almost masochistic trait,
present in female nature under the onslaught of the bonding hormone oxytocin (which
also controls labor) is totally underrated in public consciousness. “Mothers are the
better mothers” for feeling less burdened by a heavy workload due to a stronger
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bonding reward obtained by them. Young women are not being informed about this
fact any more. Think of the incredibly uncomfortable bodily positions adopted for
incredibly long periods on a stretch by nursing mice and cats (if this comparison can
be understood in the right way). This trait of an almost superhuman strength, given
free of charge to the second human subspecies (the third being children) is unknown
to society at large. Females can replace males almost everywhere but the opposite
is not true: the males have their deficiencies. In particular, the gentle females cannot
imagine that males almost totally lack this pseudo-masochistic trait, as they would
tend to call it.

Cribs—even day-care cribs—are not just substitutes for maternal and paternal
supervision and handling as an industrialized way to rationalize childcare (which
is legitimate in principle). They also have the potential to interfere with an “event”
that society does not yet know exists: the Personogenetic Function Change, a mathe-
matical phenomenon belonging into bifurcation theory. Without the brain equation,
this unique example of a dynamical function change could not have been spotted by
the eye of science. Cribs can harm young children in the core of their prospective
personalities by interfering with the P.F.C. Following in the footsteps of Friedrich
Frobel, inventor of the “Kindergarten” in the early 19th century, a scientific theory
of motherhood and parenthood and brotherhood can be formulated based on the
mathematical theory of the brain equation.

7 Conclusion

The brain equation is a surprise finding in mathematics where it occupies a fairly high
(“pure”) status. Nevertheless it enables a return by society to a responsible dealing
with children. At the same time it enables (via the mathematical notion of optimality
theory in the sense of the Rashevsky-Rosen school [17]) a rational understanding
of benevolence and of what it means to be a person. In this way, the notion of
benevolence (“intentional cross-optimization”) enters science. It also—if I may add
this here since it is so rare that so delicate a topic comes up—offers an occasion in the
course of modern enlightenment to appreciate or even see the benevolent character
of the two manifest miracles in physics, color and the Now. Of these two, only the
latter can be reproduced in artificial implementations of the brain equation. Both
“assignment conditions” (added to Newton’s “laws” and “initial conditions” [18])
represent provable gifts from without. Mathematics thereby re-gains its place in the
humanities. After beauty got re-claimed on the basis of mathematics by my friend
Benoit Mandelbrot, now also the good appears to be transportable back into society
by mathematics.
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Appendix A

The brain equation, taken from [5]:

s(β) = α
∑

i

f +(piclos) −
∑

i

f −(piclos) (A1)

with
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α =
(

a + b
∑

i

f −
)−1

(A4)

Here, s is the direction-specific weight (sum force), β is a polar angle from zero to
360∞, piclos is the closest source of type i,φi is the momentary angular difference
between β and the direction of piclos, g is the circle-of-Thales function (β = cos φi if
φi < 90∞ in either direction, and zero outside), the x ≥

i s are the momentary distances
between the (constant-speed) traveler and the piclos, ti is the remaining time until
alarmclock i goes off; and a = b = 1/4, K = 0.001, γ = 3 (e.g.).
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Nature Versus Nurture in Complex
and Not-So-Complex Systems

D. L. Stein and C. M. Newman

Abstract Understanding the dynamical behavior of many-particle systems both in
and out of equilibrium is a central issue in both statistical mechanics and complex
systems theory. One question involves “nature versus nurture”: given a system with
a random initial state evolving through a well-defined stochastic dynamics, how
much of the information contained in the state at future times depends on the initial
condition (“nature”) and how much on the dynamical realization (“nurture”)? We
discuss this question and present both old and new results for low-dimensional Ising
spin systems.

Keywords Heritability · Persistence · Aging · Damage spreading · Ising spin
dynamics

1 Introduction

The nonequilibrium dynamics of both thermodynamic and complex systems (the
intersection of these two sets is nonempty) remains an area of intensive research,
and a host of open problems remains. The most extreme case of nonequilibrium
dynamics occurs after a deep quench, in which a system in equilibrium at a very
high temperature is instantaneously cooled to a very low temperature, after which it
evolves according to a well-defined dynamics corresponding to that low temperature.
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The extreme case of a deep quench is the instantaneous cooling of a system from
infinite to zero temperature. The subsequent zero-temperature dynamics consists of
the system’s running “downhill” in energy (or uphill in survival probability, if one is
dealing with a biological system) to some local or global minimum (or maximum).

Determining the state of such a system at long times, given both the initial state and
the subsequent dynamics, is a difficult—and generally unsolved—problem, even for
relatively simple systems. In this paper, we will review progress on this question for
Ising spin systems, both homogeneous and disordered, in one and two dimensions. We
will see that even in 2D the problem is far from simple, with open questions remaining
even for—in fact, especially for—the uniform ferromagnet. However, recent progress
has been made, and the insights gained may be useful in understanding dynamical
properties of more interesting—and possibly complex—systems.

2 Types of Long-Time Behavior

For concreteness we consider an Ising spin system on the infinite lattice Zd ; that is,
at each site x ∞ Zd we assign a binary variable σx = ±1. We restrict our attention
to models in which the spin-spin couplings are nearest-neighbor. The most basic
question one might ask is whether, after a deep quench, the dynamics eventually
settles down to a fixed state, or whether some or all spins continue to flip forever.

The notion of equilibration of an infinite system after a finite time contains some
subtleties, which we will address in the next section. But without addressing these
subtleties, we can pose the question in a precise way: does the spin configuration
have a limit as t ≥ →? Equivalently, for every x , does σx flip infinitely often or
only finitely many times? (Note that even for those systems in which the latter is
true, it will generally not be the case that there exists some finite time T0 after which
every spin has stopped flipping. This is discussed further in the next section.) From
this perspective, it is useful to distinguish among three classes of dynamical system:
a system is type F if every spin flips only finitely many times; type I if every spin
flips infinitely often; and type M (for “mixed”) if some spins flip infinitely often
and others do not [1]. The overall spin configuration has a limit only of the system
is type F .

Determining which class a system belongs to is generally a nontrivial prob-
lem; in fact, the answer remains unknown even for uniform ferromagnets (and
antiferromagnets) in Zd for d ∀ 3. There does exist some numerical work, how-
ever, suggesting that these might be type I for d = 3 and 4, but type F—or possibly
M—for d ∀ 5 [2].

However, some progress has been made. There exist proofs that uniform ferro-
magnets or antiferromagnets in one dimension (on Z) and in two dimensions (on
Z2) are type I. Moreover, in any dimension on a lattice where each site has an odd
number of nearest neighbors, they are type F [3]. Work has also been done on two-
dimensional “slabs”: that is, systems that are infinite in two dimensions but consist
of a finite number of layers in the third. Here the system can be either type F or M,
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depending both on the number of layers and on the boundary conditions (free or
periodic) in the third (finite) direction. For details, see [4].

It was further proved in [3] that all models with continuous disorder, in which
the spin-spin couplings are chosen from a common distribution with finite mean,
belong to class F in all dimensions and on all types of lattice. These include ordi-
nary Edwards-Anderson spin glasses [5] and random ferromagnets. We ignore here
systems with continuous disorder in which the distribution has infinite mean, and
refer the interested reader to [1, 6].

Another class of systems comprises the so-called ±J spin glass models, where
each coupling independently takes on the value +J or −J with equal probability. It
was shown that in one dimension these are type I, and in two dimensions (again on
Z2) type M [7]. And once again, on any lattice regardless of dimension where each
site has an odd number of neighbors, they are type F .

Results exist also for systems with more exotic coupling distributions; we refer
the interested reader to [1]. We now turn to the next question, which is our main
interest here: what can be learned about the state of a system at a finite time t after
a deep quench. The answer, not surprisingly, depends on which class the system
belongs to, but as we shall see, in most cases one is forced to undertake numerical
simulations to gain insight.

3 Local Equilibration, Local Non-Equilibration,
and Chaotic Size Dependence

How might one think about equilibration in an infinite system, even one of type-F ,
given that at any finite time some spins still not have reached their final state? It
was proposed in [8] that this problem could be understood in the sense of local
equilibration: choose a region of fixed size surrounding the origin, and ask whether,
after a finite time, domain walls cease to sweep across the region, overturning the
spins within. This timescale τ (L) is expected to increase without bound as L goes to
infinity (and in general will also depend on the choice of initial condition, dynamics,
lattice type and dimensionality, and possibly other factors); but the idea is that as
long as τ (L) < → for any L < →, no matter how large, then we can say that the
system undergoes local equilibration. Any system of type-F obviously undergoes
local equilibration. Types I and M do not, and we say that these systems experience
local nonequilibration (LNE) [8].

LNE can be of two types. Even though the configuration in a given finite region
never settles down, one can still ask whether, if one averages over all dynamical
realizations, the dynamically averaged configuration settle down to a limit at large
times. Or does even this averaged configuration not settle down?

The first possibility (a limit of the dynamically averaged configuration) can be
thought of as “weak LNE”, while the second (no limit) is referred to as chaotic
time dependence (CTD) [8]. As shown in [8], weak LNE implies a complete lack of
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predictability (nurture “wins”—after some time, the dynamics wipes out information
about the initial state), while CTD implies that some amount (which can be quantified)
of predictability remains (nature wins).

So a study of nature versus nurture provides a great deal of information on a
number of central dynamical issues concerning classes of dynamical systems. We
now review both older and more recent results for different Ising-like spin systems,
both homogeneous and disordered.

4 Nature Versus Nurture in 1D Random Ferromagnets
and Spin Glasses

Because type-F models always equilibrate locally, one can simply compare the final
state of a spin with its initial state over many dynamical trials to determine whether
initial information has been fully retained, partially retained, or completely lost. This
can be quantified by introducing [3] a type of dynamical order parameter, denoted
qD , that in some ways serves an analogue of the (equilibrium) Edwards-Anderson
order parameter qE A [5].

Let σt denote the (infinite-volume) spin configuration at time t given a specific
initial configuration σ0 and dynamical realization ω (for notational convenience,
the dependence of σt on σ0 and ω is suppressed). We want to study, for fixed σ0

(and, if the model is disordered, fixed coupling realization J ), this quantity averaged
over all dynamical realizations up to time t ; denote such an average by by ♥·≡t . One
then needs to study the resulting quantity averaged over all initial configurations
and coupling realizations. Denoting the latter averages (with respect to the joint
distribution PJ ,σ0 = PJ × Pσ0 ) by EJ ,σ0 , we define qD = limt≥→ qt (providing
the limit exists), where

qt = lim
L≥→ |ΛL |−1

∑

x∞ΛL

(♥σx ≡t )
2 = EJ ,σ0(♥σx ≡ 2

t ) (1)

and ΛL is a d-dimensional cube of side L centered at the origin. The equivalence of
the two formulas for qt follows from translation-ergodicity [3].

The order parameter qD measures the extent to which σ→ is determined by σ0

rather than by ω. It was proved in [3] that for the 1D random ferromagnet and/or
spin glass with continuous disorder, qD = 1/2. What this means is that, for a.e. J
and σ0, precisely half of the x’s in Z have σ→

x completely determined by σ0 with the
other σ→

x ’s completely undetermined by σ0.
We turn now to the more difficult case of type-I systems. It seems somewhat coun-

terintuitive that models with continuous disorder, in particular random ferromagnets
and spin glasses, whose equilibrium thermodynamics are much more difficult to
ascertain than those of uniform ferromagnets, are (at least in some cases) easier to
analyze in the context of nature versus nurture.
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5 Persistence and Heritability in Low-Dimensional
Uniform Ferromagnets

The nature versus nurture question is intimately related to older notions of
persistence [9], defined as the fraction of spins that are unchanged from their initial
values at time t . This was found to decay as a power law in a number of systems,
in particular uniform ferromagnets and Potts models in low dimensions, and the
associated decay exponent θp is known as the “persistence exponent”.

In a similar manner, one can define a “heritability exponent” [10] as follows:
prepare two Ising systems with the same initial configuration but then allow them
to evolve independently using zero-temperature Glauber dynamics. The spin over-
lap between these “twin” copies, with the same initial condition but two different
dynamical realizations, was found (after averaging over many trials and different
initial conditions) to decay as a power law in time [10]. This spin overlap, which we
refer to as the “heritability”, is essentially the same as qt . The exponent θh associated
with the power-law decay of heritability is the “heritability exponent”.

Heritability defined in this way is in some sense the opposite of “damage spread-
ing” [11–13]; the latter involves starting with two slightly different initial configu-
rations and letting them evolve with the same dynamical realization. The extent of
the spread of the initial difference throughout the system is then measured.

The persistence and heritability exponents can be computed exactly in the 1D
uniform Ising ferromagnet. It was shown in [14, 15] that θp = 3/8 for this system.
On the other hand, it can be shown that θh = 1/2, as discussed in [10], by using the
mapping to the voter model and coalescing random walks (see, e.g., [15, 16]).

While the persistence and heritability exponents differ in one dimension, they
may be identical in the 2D uniform ferromagnet, where numerical simulations yield
θp = 0.21 ± 0.02 [2, 17] and θh = 0.22 ± 0.02 [10]. Whether the two exponents
are exactly the same, or simply close but not identical, remains to be understood.

6 Positive Temperature

Does the preceding discussion have anything to say about what happens at nonzero
temperature? Here one needs to study the behavior of positive temperature Gibbs
states and the local order parameter, rather than that of single spin configurations.
Construction of the appropriate dynamical measures, analysis of their evolution, and
relation to pure state structure are extensively discussed in [8]. Here we mention only
a few relevant results.

The categorization into types I, F , and M is specifically tailored to zero tem-
perature and needs to be modified at positive temperature. In the latter case, one can
still define local equilibration, in the sense that, on any finite lengthscale, the system
equilibrates into a pure state after a finite time (depending on all of the usual cul-
prits), in the sense that interfaces cease to move across the region after that time. If
finite regions exist without a corresponding finite equilibration timescale, then LNE
occurs.
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A main result of [8] is relevant to spin glasses in particular: if only a single pair, or
countably many pairs (including a countable infinity) of pure states exists (with fixed
J ), and these all have nonzero Edwards-Anderson (EA) order parameter [5], then
LNE occurs. A corollary is that if LNE does not occur, and the limiting pure states
have nonzero EA order parameter, then there must exist an uncountable infinity of
pure states, with almost every pair having overlap zero.

One consequence of these results is that LNE occurs at positive temperature
(with T < Tc) in the 2D uniform ferromagnet and (presumably) random Ising
ferromagnets for d < 5. Because the number and structure of pure states at positive
temperature in Ising spin glasses is unknown for d ∀ 3 (and, from a rigorous point of
view, unproved even for d = 2), occurrence of LNE there remains an open question.

7 Open Problems

The behavior of homogeneous and disordered Ising spin systems in one and two
dimensions is now relatively well understood. Beyond that, however, most questions
remain open. Do uniform ferromagnets belong to class F , I, or M in dimension
three and higher? IfF , what is the value of qD? If not, is weak LNE or CTD displayed,
and what is the value of the heritability exponent?

The relationships among heritability, persistence, and damage spreading form
an interesting set of open problems as well. Are the heritability and persistence
exponents the same in the 2D ferromagnet on a square lattice, and if so, why? What
about higher dimensions and other models? It would be interesting to study these
relations in two and higher dimensions and work out the connections between these
different but related quantities.
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Complex Self-Reproducing Systems

Roderick Edwards and Aude Maignan

Abstract Cellular automata and L-Systems are well-known formal models to
describe the behaviour of biological processes. They are discrete dynamical sys-
tems, each of which can have complex and varied behaviour. Here, we study a
class of substitutive systems incorporating properties of both cellular automata and
L-systems, that exhibits self-reproducing behaviour. A one-dimensional array of
cells is considered, each cell has a set of modes or states which are determined by a
number from Z/nZ∞ (n prime). The behaviour of a cell depends on the states of its
neighbours and obeys an additive rule. It has also a cell-division mode, which allows
the line of cells to grow. The behaviour of such a model can be complex, but, using
algebraic techniques, we prove that it can describe a reproducing system.

Keywords Self-reproducing systems ·Self-organizing systems ·Cellular automata ·
Substitution systems · L-systems

1 Introduction

Biological processes [3, 7] are often modelled by a continuous formalism in which the
behaviour of the system is described by differential equations. The smooth variation
of each variable is described as a function of others [4, 9, 14]. Another type of
modelling uses a discrete formalism called multi-agent formalism. Cellular Automata
(CA) and L-Systems are parts of multi-agent systems that are homogeneous (all
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cells are identical). CA are defined by a lattice of sites, an alphabet of symbols
and an evolution rule. Each cell evolves in discrete time steps according to some
deterministic rules that depend only on local neighbours. In the configuration space,
CA trajectories are likely to merge with time, and after many time steps, trajectories
starting from almost all initial states become concentrated onto attractors. In these
cases, completely disordered starting states evolve to more structured states by a
process of self-organisation. In other cases, complex behaviour can appear. In his
well-known papers [11, 12], Stephen Wolfram proposed a classification of cellular
automaton rules into four classes.

1. Class I: Evolution leads to a homogeneous state.
2. Class II: Evolution leads to a set of separated simple stable or periodic structures.
3. Class III: Evolution leads to a chaotic pattern.
4. Class IV: Evolution leads to complex localised structures, sometimes long-lived.

This classification is based on observations of typical behaviours. Sutner [8], but also
Bagnoli [2] and Baetens [1] give a formalisation of those classes. For instance, the
elementary rule 30 of Wolfram exhibits many different behaviours of class I, II, III
and IV. On the other hand, additive CA with fixed and periodic boundary conditions
over a finite field Zn are more often of class I and II. This problem of determining
dynamical possibilities for additive CA has been studied by Wolfram [10], who has
obtained some powerful theoretical results thanks to algebraic tools.

Wolfram has also studied substitution systems [13], discrete dynamical sys-
tems such that, at every step, each site is replaced by a fixed block of new sites.
Substitution systems are clearly designed so that the number of sites can change.
The theory of such systems was first developed by Aristid Lindenmayer and
Przemyslaw Prusinkiewicz for modelling plant growth [5, 6], using a framework
called L-systems. An L-system is defined as a t-tuple G = (V,ω, P) where V is an
alphabet, ω is the initial state of the system and P is a set of production rules. One of
the simplest and best-known examples is the modelling of the anabaena algae. The
alphabet is reduced to two states V = {A, B} and only two rules are required:

A ≥ AB B ≥ A

At each step, each letter A is transformed to the two letter sequence AB and
each letter B is transformed to A. If the initial state is A, for example, we obtain
the sequence AB AAB AB AAB AAB AB AAAB AB A after 6 steps. The family of
possible transformation rules is huge and the study of the behaviours of L-systems
is done on a case-by-case basis.

The aim of this chapter is to combine properties of L-systems and additive CA
in order to create a simple model which describes a self-reproducing “organism”.
The algebraic properties of this new model allow one to describe theoretically its
behaviour, particularly its reproducing behaviour.

The model is described in Sect. 2. In Sect. 3 we present our analysis of its
behaviour.
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2 Model Description

We consider a one dimensional structure in which the evolution of a particular site
depends on its own value and those of its nearest neighbours. Sites are arranged
around a circle (so as to give periodic boundary conditions). This structure is named
a sequence. The number of sites of a sequence depends on time and is denoted by
N (t). The values of the sites of a sequence denoted a also depend on time and are
denoted by a(t)

0 , . . . , a(t)
N (t)−1. The possible site values are elements of a finite set

Z
∞
n = {1, 2, ..., n − 1} (n prime). The value of a site of the neighbour-dependent

substitution system we consider is computed by an operator Φ(α,β), which depends
on two parameters (α,β) → Z

2
n and is defined by

• a simple additive rule of the form (taking the site index i modulo N (t)): a(t+1)
i =

αa(t)
i−1 + βa(t)

i + αa(t)
i+1 [mod n] if αa(t)

i−1 + βa(t)
i + αa(t)

i+1 [mod n] ∀= 0,

• and an expansive rule such that a(t+1)
i is divided into two sites of value 1 if

αa(t)
i−1 + βa(t)

i + αa(t)
i+1 [mod n] = 0 (i.e., 0 ≥ 11).

We call such a system a Della Dora system, because it was first proposed to us by
Jean Della Dora. The family of Della Dora systems is parameterised by α,β and n.

Subsequences are open in the sense that, by themselves, they carry no information
about what is to either side. Thus we allow the possibility that a subsequence may
be a full sequence, with periodic repetitions on either side, though it may, of course,
be surrounded by something else.

Because of the expansive rule, the index of a site can change over time. But at a
given step, a sequence may be represented by a characteristic polynomial A(t)(x) =
∑N (t)−1

i=0 a(t)
i x i , and the additive rule can be represented by multiplication of the

characteristic polynomial by a fixed Di-polynomial in x , namely T (x) = αx +
β + αx−1, according to A(t+1)(x) = T (x)A(t)(x) mod(x N (t) − 1). This approach
has been developed by Wolfram [10] for a pure additive CA. The new expansive
rule modifies (but does not destroy) the algebraic properties of reference [10]. For
instance, let us consider the commutative ring Z3. The sequences built on Z

∞
3 are

composed of sites of value 1 or 2. Six different dynamics can be defined by the six
Di-polynomials x + x−1, 2x + 2x−1, x + 1 + x−1, x + 2 + x−1, 2x + 1 + 2x−1, and
2x + 2 + 2x−1. We present 3 examples which correspond to 3 different behaviours.

Example 1 First, consider the Di-polynomial T (x) = x + 2 + x−1 on Z
∞
3. The sites

evolve such that, at each time step, the value of a site a(t+1)
i

• takes the value a(t)
i−1 + 2a(t)

i + a(t)
i+1[mod 3] if this value is not equal to 0;

• else, splits into two sites, both of which take the value 1.

This is a specific L-system and can be defined using this following transformation
rules, where the site in brackets is modified according to the rule defined by the
arrow.
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Fig. 1 Example of synchro-
nisation: T (x) = x + 2 + x−1

over Z∞
3 with substitution rule

0 ≥ 11

1♥1≡1 ≥ 1 1♥1≡2 ≥ 2 1♥2≡1 ≥ 11
1♥2≡2 ≥ 1 2♥1≡1 ≥ 2 2♥1≡2 ≥ 11
2♥2≡1 ≥ 1 2♥2≡2 ≥ 2

The evolution of this system can be represented graphically at successive time
steps by successive lines. Sites with value one are represented by a light colour; sites
with value two are dark.

Figure 1 shows the system’s behaviour when the initial configuration is (1112).
For every initial configuration, N (t) is bounded and the system converges to a fixed
point or a cycle.

This example thus belongs to Wolfram’s class I I and describes a synchronisation
phenomenon. This synchronisation is a strong case of a self-organizing process where
a global coordination arises out of an initially disordered system.

The behaviour of the second example is more complex.

Example 2 Consider the system with Di-polynomial T (x) = 2x + 1 + 2x−1 on Z
∞
3

and the 0 ≥ 11 rule.

This is defined in detail by the following L-system :

1♥1≡1 ≥ 2 1♥1≡2 ≥ 1 1♥2≡1 ≥ 11
1♥2≡2 ≥ 2 2♥1≡1 ≥ 1 2♥1≡2 ≥ 11
2♥2≡1 ≥ 2 2♥2≡2 ≥ 1
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Fig. 2 Example of chaotic behaviour : T (x) = 2x + 1 + 2x−1 over Z
∞
3, with substitution rule

0 ≥ 11

Fig. 3 Example of self replication: T (x) = 2x +2 +2x−1 over Z∞
3, with substitution rule 0 ≥ 11

Figure 2 shows the system’s behaviour when the initial configuration is (1112111).
The behaviour is complicated and there is no obvious nested structure, so it belongs
to Wolfram’s class I I I .

Between the above examples, there exists a class of dynamics where the behaviour
is both rich and predictable.

Example 3 Consider the system with Di-polynomial T (x) = 2x + 2 + 2x−1on Z
∞
3,

again with the rule 0 ≥ 11.

The transformation rule is described in the following table:

1♥2≡1 ≥ 2 1♥2≡2 ≥ 1 1♥1≡1 ≥ 11
1♥1≡2 ≥ 2 2♥2≡1 ≥ 1 2♥2≡2 ≥ 11
2♥1≡1 ≥ 2 2♥1≡2 ≥ 1

The behaviour is complicated but nested structure can be identified. Moreover
nested structures give birth to new nested structures. This belongs to Wolfram’s
class I V . Figure 3 shows the behaviour from inital configuration (1122121211211).
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More generally, the discrete phase portrait of such systems is difficult to analyse
because the dimension of the phase space evolves over time. Nevertheless, algebraic
tools bring powerful results. In Example 3 above, the open subsequences 11...11 = 1k

with k ⇔ 4 always produce a subsequence of 1s of at least the same length after each
time step (when k is exactly 4, the subsequence of 1s remains the same length: the
open subsequence 2142 produces another sequence containing 2142). This property
is at the root of a very interesting type of behaviour: self-replication. We have, in
fact, that

Proposition 1 a(t)
i−1 = a(t)

i = a(t)
i+1 = 1 implies that a(t+1)

i is transformed into two
sites of value 1 if and only if 1 is a root of its Di-polynomial.

So in Zn (n > 2), Φ(α,β) gives behaviours of Wolfram class I V if (x − 1)|x(αx +
β + αx−1). Equivalently, Φ(α,β) gives behaviours of Wolfram class I V if 2α + β =
0 [mod n]. We call systems with this property, 2α + β = 0 [mod n], Della Dora
systems of type 1.

Every configuration in a Della Dora systems of type 1 has a unique successor at
every time step. However, a configuration may have several distinct predecessors.
αx2+βx+α is not prime andΦ(α,β) is not injective so these dynamics are irreversible.

Section 3 describes the properties of Della Dora systems of type 1. We will see how
the behaviours of these systems can be described by a finite number of subsequences.
This corresponds to a self-organizing phenomenon. We will also see that over time,
specific subsequences give birth to a copy of themselves. This corresponds to a
self-reproducing phenomenon.

3 Analysis of Della Dora Systems of Type 1

3.1 First Definitions

Cycles in phase space can be determined by a polynomial approach. A P-periodic
cycle of an additive CA is a list of P sequences, each of length N ,

(a(t), a(t+1), ..., a(t+P−1)) ,

such that their corresponding characteristic polynomials, A(t+i), (i → {0, 1, ...P−1})
obey

A(t+i+1)(x) = T (x)A(t+i)(x) mod(x N − 1)

and
A(t+i)(x) = T (x)P A(t+i)(x) mod(x N − 1) .

The cycles of the dynamical system Φ(α,β) are the cycles of the additive dynamics
defined by the Di-polynomial T(α,β), such that every sequence occurring in the cycle
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has no null sites (a 0 site would lead to a splitting 0 ≥ 11 and thus could not be part
of a cycle).

For Example 3, it is possible to give a formal proof showing that there are only
two types of cycles, one of periodicity P = 1 and another of periodicity P = 2. The
cycles of periodicity 2 can be denoted by ((2211)k , (1122)k) where k is an integer and
(2211)k and (1122)k are the successive states of the cycle (i.e., Φ(2,2)((2211)k) =
(1122)k and Φ(2,2)((1122)k) = (2211)k).

Here, (2211)k denotes a sequence of length 4k such that (2211)k = 22112211...

2211. With the same notation, the cycles of periodicity 1 can be denoted by ((21)k).
All these cycles are reached only by themselves. In general, it is possible also to have
transient approaches to cycles. An example in the system with α = 2,β = 1 and
n = 5 (a Della Dora system of type 1) is the sequence (141) for which Φ(2,1)(141) =
(131) which is then part of the cycle ((131), (424)).

Over time, an open subsequence 11...11 = 1k (k ⇔ 4) produces a subsequence of
1s with length that grows (exponentially) without bound when k > 4, and with length
that may remain fixed or may grow when k = 4, with no further variation in behaviour.
If we consider these as sites in a ‘base state,’ then information resides in regions in
which some ‘not-1’ sites occur. The characteristic sequences of a sequence a are
maximal open subsequences of sites of Zn which do not contain 1k with k ⇔ 4 and
neither begin nor end with a 1. In effect, the occurrence of expanding subsequences of
1s separate the characteristic sequences, and the subsequence 1111 can be considered
a separator: if b and c are two characteristic sequences of a sequence a, changing the
values of any sites of b will never affect values of sites of c. Characteristic sequences
b and c evolve independently. They can have periodic behaviour, they can vanish,
and they can also grow. If 1111 appears at some time step from the interior of a
characteristic sequence, it creates new independent subsequences. This is, in that
case, a reproduction process.

A sequence containing the subsequence 1111 we call a broken sequence; oth-
erwise it is unbroken. Broken sequences consist of one or more characteristic
sequences separated by separators of the form 1k with k ⇔ 4. Unbroken sequences
cannot be considered characteristic sequences, since they do not have 1111 to
either side.

3.2 Dynamics of Characteristic Sequences

The dynamics of a characteristic sequence (which is open) is sightly different from
the dynamics of a (closed) sequence. Let Φo denote this new dynamics applied to an
open sequence s = s0...sN−1 surrounded by multiple sites with value 1. Then,

Φo(s) = α + β + αs0,α + βs0 + αs1, . . . ,αsi−1 + βsi + αsi+1, . . . ,αsN−2

+ βsN−1 + α,αsN−1 + β + α ,
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2 222 2 222 2 222

Fig. 4 Petri net of the characteristic sequence (2) at time t , t + 1 and t + 2 under the dynamics of
the system with Di-polynomial T = 2x2 + 2x + 2 over Z∞

3

where, as before, we apply the expansive rule 0 ≥ 11 where applicable. The
new computation of the extremal sites is a consequence of the fact that s is bor-
dered by sites of value 1. The independent evolution of characteristic sequences
can now be expressed by Φ(b1∞c1∞) = Φo(b)1∞Φo(c)1∞ where (b1∞c1∞) is a closed
sequence constituted by two characteristic sequences, and * is a non specified integer
greater than or equal to 4. It is convenient to introduce a more compressed notation:
Φo(b; c) = Φo(b);Φo(c). This notation can easily be extended to more than two
characteristic sequences.

For Example 3, using this new notation, Φ2
o (2) = Φo(222) = 2; 2. So, when the

characteristic sequence (2) appears, after two steps it splits into two characteristic
sequences (2). The periodicity of reproduction of the characteristic sequence (2) is
therefore 2.

Figure 4 represents the Petri net of this simple example of behaviour. More com-
plex examples can be represented in this way. For instance, let us consider again the
dynamics Φ(2,1) over Z∞

5. Figure 5 shows the Petri net associated with the character-
istic sequence 233213.

The same characteristic sequences can appear several times in a sequence. Let
Sa denotes the set of distinct characteristic sequences that are contained in the
sequence a.

For Example 3, it is easy to show that 1k (k → N and k ⇔ 4) are the unique
separators. We can consider 1111 a weak separator, i.e., a separator that persists
but whose length does not increase. Two characteristic sequences that are separated
by a weak separator correspond to independent entities which stay linked geograph-
ically. For example, Φ(2,2)(2142) = (121421) and the sequence of 1’s does not grow
longer. On the other hand, if the separator is not weak, the characteristic sequences
move apart.

3.3 Behaviour Analysis

For all Della Dora systems of type 1 we have studied, with various choices of α,β
and n, we have proven that the behaviour of any sequence that does not belong to a
cycle, and is not on a transient leading to a cycle, can be described by a finite number
of characteristic sequences.

More precisely, let a be the initial state. Even if the sequence continually grows,
there exists a finite set of characteristic sequences S depending on a, such that for
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Fig. 5 Petri net for the char-
acteristic sequence (233213)

under the dynamics of the
system with Di-polynomial
T = 2x2 + x + 2 over Z∞

5

233213
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3412

2143

44 2

3412

2142

all integers l, SΦl (a) ∼ S. In order to prove this strong property, new terms have to
be defined.

Broken sequences grow without bound: limt≥∞ N (t) = ∞. This is true even
if there is only one separator and it is weak, because, even though the length of
the separating sequence may remain fixed, it feeds new sites into the characteristic
sequence at either side. Unbroken sequences may break and then grow without bound,
or may not, such as is the case when they fall into a cycle, possibly after a transient. Of
course, if a sequence grows without bound, it cannot be part of a cycle or a transient
leading to a cycle, and if a sequence does not grow without bound, it must reach
a cycle because the accessible state space is then finite. This still leaves open the
possibility, a priori, of an unbroken sequence that never breaks but grows without
bound. In order to deal with both unbroken sequences and characteristic sequences,
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and in particular to investigate whether or not they eventually split, we consider the
internal dynamics of an arbitrary subsequence.

Let Φr denote the partial evaluation of an open sequence s such that:

Φr (s) = αs0 +βs1 +αs2, . . . ,αsi−1 +βsi +αsi+1, . . . ,αsN−3 +βsN−2 +αsN−1

where the expansive rule 0 ≥ 11 is once again applied. Note that Φr (s) does not
transform the end sites of the open sequence s, because that would require information
on sites outside of s.

We say that a subsequence s intrinsically separates if there exists a number of
steps k such that Φk

r (s) contains a separator. When a subsequence separates intrin-
sically, the value of the first site is never influenced by the value of the site which is
just after the subsequence.

Unbroken sequences that eventually cycle clearly do not separate (break). Char-
acteristic sequences can also cycle in the sense that, using our condensed notation,
Φ P

o (s) = s and these also clearly do not separate. An example, in the system with
α = 2,β = 1 and n = 5, is s = 3 for which Φ2

o (3) = Φo(424) = 3. Characteristic
sequences can also be on transients leading to cycles, such as s = 4 in the above exam-
ple, for which Φo(4) = 3. If the characteristic sequence s cycles, there exists an inte-
ger is ( 0 ≤ is ≤ 3) such that (s1is )k also cycles, but γ(s1is )k (γ → Zn) does not neces-
sary cycle any more. For instance (424)10 cycles but 4(424)10 does not cycle and does
not separate intrinsically. The cyclic part of Φ t

o(4(424)10) decreases when t increases
and Φ10

o (4(424)10) = 31124333114; 3; (424)8. In other examples, the cyclic part
can also totally disappear. We call a disturbed cycle a characteristic sequence of the
form ∞(s1is )k∞ where s is a cycle and ∞ represents any subsequence of Zn that does
not contain a separator, and is small enough such that ∞(s1is )k∞ does not separate
intrinsically. ∞ can also be the empty set, for instance, s = 11211211324434434423
is such that Φ5

(2,1)(s) = s but Φ5
o (s) = 3; 212111221112113244344343112 and s is

already a disturbed cycle.
Our objective, then, is to show that every subsequence above a certain size either

separates intrinsically or is a transient to a disturbed cycle, or eventually cycles,
whether considered as an unbroken sequence or as a characteristic sequence. In the
case of intrinsically separable subsequences, even if, over the k steps required to
guarantee separation, some of the resulting characteristic sequences became longer,
there is still a finite size to which they can grow in k steps. In the case of disturbed
cycles, we have observed that, there exists a finite small integer λ such that, for
all integers l > λ, the number of attached cycles s of Φl

o(∞(s1is )k∞) decreases or

remains constant and there exists an integer l̂ such that Φ l̂
o(∞(s1is )k∞) is composed

of intrinsically separable subsequences and cycles. Thus, over time, a disturbed
cycle disappears and generates a set of characteristic sequences. The size of those
characteristic sequences is bounded and the set is finite.

This will provide a proof that the number of characteristic sequences generated by
any initial sequence is bounded. Consequently, for any given initial broken sequence,
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the entire future behaviour can be described by a finite number of characteristic
sequences.

We have developed an R program whose arguments are n of the finite set Z∞
n, α

and β of the dynamics and a length N for subsequences. The program computes the
list of all the subsequences of length N that do not separate intrinsically using the
separator 1111.

For Example 3, running our R program shows that every subsequence of length
at least 18 either intrinsically separates or is a disturbed cycle or eventually cycles.

Thus, the behaviour of every broken sequence can be defined by a finite set of
characteristic sequences.

More generally, we conjecture that for any Della Dora system of type 1, there
exists a length N such that every characteristic sequence or unbroken sequence of
length N

• intrinsically separates
• or is a transient to a disturbed cycle or a cycle
• or eventually cycles.

This will imply that the entire future behaviour of every sequence can be described by
a finite number of unbroken sequences and a finite number of characteristic sequences
and the separators. Finally the evolution of any sequence would be representable by
a finite Petri net.

4 Conclusion

Cellular automata are capable of very complex behaviour. They model a large range
of biological phenomena. For instance, Wolfram has used them to describe natural
systems from snowflakes to mollusc shells. The class of Della-Dora systems are
less simple in construction than cellular automata and can also have very complex
behaviour. The idea is to add the possibility of modelling the important biologi-
cal process of mitosis. In this extended abstract, we have focussed on the study
of a subclass of such systems, which we call Della-Dora systems of type 1. These
are irreversible systems that give birth to very interesting self-organizing and self-
reproducing behaviours. In future work, the behaviour of Della-Dora system of type
1 will be explored as a simulation of the type of behaviour seen in algae or filaments
in a Petri dish. A formalisation for the classification of Della-Dora system of type
1 will also be explored. For Cellular Automata, quantitative measures have been
proposed to identify the Wolfram’s classes. In our case, the number of sites evolves
and these measures must be adapted.
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model and another is the way to attain a certain planned goal to be reached by our
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1 Globalization: The State-of-the-Art

Our contemporary world in general is too complex and unrecognized yet, and this is
the reason why we fight consequences or symptoms instead of dealing with the causes
and reasons of global crises, catastrophes or other similar threats [1–9]. We feel the
lack of adequate global theories and adequate tools for tackling arising problems.

In reality a lot of feedback and feed forward relations occur, and only such tools
as extended fuzzy cognitive maps (FCM) [10], extended fuzzy expert maps (FEM)
[11] as well as the approaches of different multi-agent systems (MAS) are able to
represent all possible relationships existing among these entities.

Therefore, today’s global systems science must answer several key questions:

1Q: How to describe such type of systems using the universal feedback paradigm?
2Q: How to build system models adequate to the reality?
3Q: How to use the results of simulation?

2 Global Systems Model: The Descriptive Approach

First of all, this section tries to emphasize that up to now all more or less serious
models of reality have been built using the universal feedback paradigm [12]. In the
framework of this paradigm, the Control Theory (CT), Systems Theory (ST), Multi-
Agent Systems Theory (MAST), General Fuzzy Systems Control Theory (GFSCT),
Collective Adaptive Systems Theory (CAST), Complex Systems Science Theory
(CSST) and various other approaches directed to represent formally the most impor-
tant aspects of reality’s behavior emerged as a response to the question 1Q [13, 14].

The global systems model supposedly covering the reality is presented in the
Fig. 1.

The set of entities α = {ω 1,ω 2,ω 3,ω 4,ω 5} has its own objectives and goals.
Those generalized goals can be derived (or in some cases only guessed) from a

certain potential function (known or unknown) [15].
Consequently, “the reality” α = {ω 1,ω 2,ω 3,ω 4,ω 5} under investigation as a

whole (and its entities ω) functions according to the second universal paradigm, i.e.
the paradigm of causal uncertainty. This paradigm determines an emergent behavior
of “the reality” α facing all possible risks. According to the ISO, risk is the “effect
of uncertainty on objectives” [16].

From this point of view, the main tasks of a global systems model are as follows:

(1) To reduce the uncertainty of long term stability (in “unlimited lifetime”) of “the
reality” α;

(2) To reduce the uncertainty of individual objectives and goals as well as the uncer-
tainty of the emergent α;

(3) To improve the quality of reasoning and decision making in α under uncertain
circumstances;

(4) To reduce the uncertainty of α functionality in multiple scale space-time coor-
dinate system.
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Fig. 1 “Our world”—the
reality under investigation

3 Adequacy of the Model and the Reality

In order to answer question 2Q (“How to build system models adequate to the
reality?”), everybody looks for an opportunity to compare model data with the cor-
responding data produced by the reality under investigation. In any case such a
comparison covers input (I), output (O) as well as internal state (S) variables wher-
ever they occur: in the entire α, in each entity ω, or in their smaller elements. In
Fig. 2, the corresponding differences ε (εI, εS and εO) between the reality and its
model are determined.

The object of computerized system analysis, decision making processes and
information processing shifts from raw data towards more sophisticated comput-
ing according to the following scheme [17, 18]:

Data ∞ Information ∞ Knowledge ∞ Wisdom.
As a matter of fact, each step in this transformation scheme is performed on the

basis of certain operations. For example, the transformation of raw data (DR and DM)

into information includes the procedure of data mapping on some context (CR—in
case of a reality, and CM—in case of a model) [19], as it is shown in Fig. 3.

More sophisticated operations are involved in the process when information is to
be transformed into knowledge.

The last step in this scheme (transformation of knowledge into wisdom) is still
under discussion and thorough investigation [20, 21].

Under such circumstances, the model adequacy can be evaluated using a special
operation O which performs a comparison of information INFR and information
INFM and creates a qualitative and/or quantitative measure εINF (see Fig. 3).

More reliable evaluation of model adequacy to the reality can be obtained on the
level of knowledge as shown in Fig. 4.

The reasoning on knowledge level enables us to compare existing theories with
the results KNR received from the investigation of a reality and to correct the theories.



80 R. Jasinevicius and V. Petrauskas

Fig. 2 Evaluation of ade-
quacy of the model and
the reality based on data
differences

Fig. 3 Raw data transfor-
mation into information by
mapping on a context

4 Improvement of Model: The First Control Loop

Whatever adequacy measures are obtained (ε, εINF or εKN), they all serve as a means
to improve the model. It means that in case of weak or uncertain adequacy, the
first control loop must be activated with a purpose to correct or adjust functional
organization of the model according to the algorithm CM. Figure 5 demonstrates the
case when the difference εINF_1 is used.

The most important theoretical and practical problems to be solved are as follows:
a) proposition and research of methodology to determine an operation O and b)
invention and investigation of efficient algorithms CM.
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Fig. 4 Adequacy of model
and reality evaluation based
on knowledge differences

Fig. 5 The first control loop
to correct or adjust functional
organization of a model

5 Improvement of Reality: The Second Control Loop

The global systems modeling is directed to achieve three main goals: (1) to create a
possibility to perform investigation of properties of the reality on its model; (2) to
determine a degree of certainty and predictability of its long time stability/instability;
and (3) to formulate goals to be achieved by the reality. This must be done according
to processes shown in Fig. 6.

As a matter of fact, the most important theoretical and practical problem to be
solved on this stage is the invention and investigation of efficient algorithms CR.

6 Remarks on Global Control

The Systems Theory (ST) permits us to build and to analyze a new model of a real
system, using the feedback principle, evaluating and improving its stability, efficiency
and other properties only if the real entity to be controlled ωR and its model ωM are
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Fig. 6 The second control
loop to correct or adjust “the
reality”, a certain goal to be
achieved

relatively very simple. Such generalized examples of the most popular cases are
presented in Fig. 7.

Figure 7a corresponds to the functional organization of a typical feedback (FB)
control; Fig. 7b—to the feed forward control (FFC) type correction of the output result
OR/OM and Fig. 7c—to the control functional organization which takes into account
not only the difference ε between an entity goal and its result OR/OM evaluated
through the feedback FB, but also the history of the difference (some sort of its
average) and the tendency of changes in ε (some sort of its derivative).

Systems control scientists and experts dealing with systems and entities shown
in Fig. 7 are satisfied with the theory of systems stability analysis and with practical
tools for time-dependent systems [22].

When “our world” consists of entities characterized by their Autonomy,
Heterogeneity, existence of Individual objectives and goals, Activity in multiple
scale time and space coordinate system, Intelligence, Uncertainty, Adaptability and
its Ability to evolve as well as the possible presence of a human or social factor in
those entities the classical Systems theory is powerless [3, 23].

Therefore, a new branch of general systems theory referred to as General Fuzzy
Systems Control Theory (GFSCT) is being developed [13]. The GFSCT is based on
four main doctrines.

The first doctrine: In general, our “real world”, or our highly interconnected
“socio-technical fabric” is intrinsically unstable in the “unlimited lifetime”

The second doctrine: In our “real world” and in its models, the decision making
and control processes are performed on information and knowledge level using more
qualitative than quantitative variables (words and perceptions rather than numbers
and measurements)
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Fig. 7 Generalized examples of a simple feedback (a), feed forward (b), and complex feedback
control (c)

Fig. 8 Transformations of
system’s internal states and
system’s outputs

That is the reason why we can witness machine intelligence shifting towards
the possibility of human-level performance and computing with words (CWW)
[17, 20, 24–26].

The third doctrine: The “real world” processes and events take part in a multiple
scale time and space coordinate system.

The best attempt to formalize the description of space-time dependent systems
was proposed by prof. Wunsch from Dresden University in 1975 [27]. The system
α was presented by a raw consisting of five sets of variables X, K, Y, R, T and of
two functional transformations β,∂ : α = {X, K, Y, R, T,β,∂}; here X—a set
of inputs I, K—a set of system’s internal states S, Y—a set of system’s outputs O,
R—an independent space variable, and T—an independent time variable; β: X ×
K × R × T ∞ K and ∂ : K × R × T ∞ Y are transformation of system’s internal
states and transformation of system’s outputs correspondingly (see Fig. 8).

Some significant or decisive processes and events or actions and their influence
in time scale have different consequences in case of isotropic and anisotropic spatial
relations.
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Fig. 9 Target (potential)
V-function: a general case (a);
a stable case (b)

The forth doctrine: To maintain the “real world” predictability of its behavior
and a space-time stability/instability must be accompanied by adequate decentralized
adaptive control.

The problem is so complex that it even requires new special measures of coordina-
tion and control. Indeed, “Some targeted autocratic industrial policy may yield some
seemingly spectacular economic success at some transitional state of development
(in a catch-up phase) but at a huge price of externalities and human costs and thus
may not be sustainable in the very long run unless they switch to a democratic regime
with comprehensive economic and political freedom” (Gottinger in his internet letter
to BISC Group members, 16 Dec. 2011).

7 Target (Potential) V-function

Nowadays it is widely agreed that the minimization of a certain target or potential
V-function is a universal principle of existence of each system in the real world
[15, 22, 28–30]. The latter property is symbolically shown in Fig. 9a where V(K, X)

is presented for two time moments t1 and t2 in the input space X (X1, X2).
Thus its desirable state can be symbolically represented by “a ball” in Fig. 9b; and

according to the forth doctrine, a new model of real systems’ decentralized adaptive
control principles and algorithms CM and CR must be created.
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Fig. 10 The stochastic
approximation performed
according to the space-time
gradient procedure

8 Stochastic Approximation Approach

According to [15, 31] and other researches, the branch of complex systems science—
the GFSCT—implies the possibility to organize a successful decentralized adaptive
control process aiming to improve “our reality”. The backbone of such an approach
is seen in the space-time extension of the well-known stochastic approximation pro-
cedure combined with the computerized fuzzy verbal and perceptual reasoning [32].
The idea to extend and use the stochastic approximation procedure is evoked by
the fact that the potential function V(K , X) itself in our case cannot be determined
explicitly in terms of classical mathematics. Instead, we are able to measure or eval-
uate some decisively important under investigation crisply or fuzzily. Usually it is
required to minimize or maximize the averages of those characteristics M; (here M
means a mathematical expectancy). When substituting unknown potential V-function
for the available set of characteristics Q, it is convenient to use a certain additive or
multiplicative function ≥ {→} permitting to form only one ≥ {M{Q(K, X)}} ∞ min.

The convergence of K(ρ, t) towards KC during the process of stochastic approx-
imation can be performed according to the gradient procedure

dK(ρ, t)

dρ
= Γρ(ρ, t) grad

ρ
≥ {Q(K, X)}

dK(ρ, t)

dt
= Γt (ρ, t) grad

t
≥ {Q(K, X)}

symbolically performed by the algorithm shown in Fig. 10 [33–35].
It is well known [15, 32] that such a procedure converges only probabilistically:

P

{

lim
ρ,t∞∀ [K(ρ, t) − KC ] = 0

}

= 1

9 Conclusion

The assessment of correspondence between systems and their models must be built
on the comparison of causal information and knowledge base.

Two control loops must be involved in the process of reality and its model’s
improvement.
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Four working doctrines serve as a backbone of newly born General Fuzzy Systems
Control Theory (GFSCT).

Each socio-technical fabric should be analyzed in the independent space-time
coordinate system having in mind that space is sometimes anisotropic.

Stochastic approximation procedures may serve as a tool for the minimization of
a certain potential V-function as a universal principle of existence of each system in
the real world.
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Emergent Phenomena in Natural Complex
Systems

Jiri Bila

Abstract In this chapter are described some properties of emergent phenomena
and situations that appear in natural complex systems. There are introduced three
classes of unexpected situations and two of them belong to emergent situations. For
the detecting possibility of appearance of emergent situation is used the indication
of violation of structural invariant of the complex system. Here is used only one
type of structural invariant—matroid and matroid bases. A simple calculus for the
emergent situation appearance computation is introduced. The application of the pre-
sented approach and computation method is demonstrated by three simple emergent
situations: the change of the strategy in swarm colony, traffic jam and floods.

Keywords Emergent situations · Structural invariants · Matroid bases · Ramsey
numbers

1 Introduction

After an enormous effort of physicists to discover beginnings of nature phenomena
(as some typical nature shapes) and especially of the origin of our Universe (as the
essential and largest emergence) it was formulated a vision of mathematic formalisms
for future with the following properties:

• To be more qualitative than quantitative.
• To contain some traces of emergent phenomena that lead to nature shapes [1].
• To allow the direct work with shapes as with qualitative entities, not with their

descriptions (e.g., by analytical mathematical descriptions).
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Author [2] titled such a discipline Morphomatics.
Emergent phenomena for the sake of their uniqueness form obstacles to a tradi-

tional approach in a search for solutions of a given task. It is possible to name long
file of interesting books and chapters that stroked a non perforable wall.

In this chapter we slightly shifted this wall though not too much. Application of
the approach that has been formed for emergent situations in role of natural shapes
as a consequences of violation of so called Structural invariants, e.g., in [3] and
continued, e.g., in [4], has been oriented in last years to ecosystems [5, 6] and [7].
In this chapter are introduced formal and computational tools from recent works in
more general context.

2 Some Related Works

Great interest in detecting emergent situations, understood in a general sense, has
appeared in the field of fault diagnosis [8–11]. However, emergent situations are
also of interest in other fields. There are important emergent situations in safety
engineering and in control of complex systems [12–15].
Essential knowledge sources about complex systems, emergence phenomena and
complexity are concentrated in [16–18]. Very original and ambitious seems to be,
e.g., the interpretation of complexity as a linguistic variable [17].

A great effort in specification of the essence of emergent phenomena was recog-
nized in [19, 20] but also in [4, 3] and [21]. Especially—first two works, though very
different in environments, noted relations between the nature of emergent phenomena
and the sign system in which the emergent phenomena are represented.

Comparing approaches presented in works introduced above with our approach
presented in this chapter there is possible to find a few differences (explained in
further sections). Here we preliminarily introduce only two of them:

• An emergent phenomenon in a system is indicated (detected) in our case by the
violence of Structural Invariants and is not necessarily related to some critical
quantities or limits of complexity of the system.

• The appearance of an emergent situation is represented in our case more as a
qualitative and discrete structure than as reaching of some value interval in a
preformed scale.

3 Types of Emergent Situations

Many definitions of emergence phenomena and of emergent situations were intro-
duced in past time and we do not like to contribute with another definition. In this
section will be introduced properties of so called surprising situations and two of
them will be considered as emergent situations.
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3.1 Situations that were Surprising and in a Certain Context can
be Considered as Surprising (A)

Their causes and their output forms (outputs, shapes) are known. It is possible to
recognize them and predict their appearance. Examples of processes and systems
that generate such situations are, e.g.: Belousov-Zhabotinski reaction; environments
for initiation of solitons; oregonator; brusselator. They all belong to the field of
Synergetics. Such situations are not Emergent Situations.

3.2 Situations that were Surprising and are Still Surprising (B)

Their causes are not known however their output forms are known. Such situations
are Emergent situations (EMSs) . They have the following properties:

(b1) The situation appears suddenly without explicit association with situations of
the previous relevant context in the system.

(b2) The situation appears as a discrete object, fact, shape.
(b3) The global reason of such a situation appearance is a violation of the system

structure (not of the system function).
(b4) The detailed reasons and the internal causes of the appearance of the situation

are not known (i.e., it is impossible to propose a complete model of situation
evolution and prediction).
(However the shape of situation has been recognized – i.e., is known how such
a situation looks.)

(b5) The appearance of such a situation is possible to detect.

Situations that belong to this class are, e.g.: change of strategy of behavior in a
swarm colony; appearance of floods; appearance of rough waves; traffic jams.

3.3 Situations that will be Surprising (C)

Neither their causes nor their output forms are known. Such situations are Emergent
situations (EMSs). They have the following properties:

(c1) The situation appears suddenly without explicit association with situations of
the previous relevant context in the system.

(c2) The situation is assumed and surmised as a discrete object, fact, shape.
(c3) The global reason of such a situation appearance is a violation of the system

structure (not of the system function).
(c4) No model of such a situation is available before it first operate.
(c5) The appearance of such a situation is possible to detect.



92 J. Bila

Situations that belong to this class are, e.g.: Possible instabilities in Ecosystems;
sharp growth of extents of large towns; appearance of artifacts in nano-structures;
situations of discoveries in Conceptual Design; the violation of supersymmetries in
quantum mechanics.

4 Cognitive Tools for Investigation of Conditions of Appearance
of Emergent Situations (CAEMSs)

In a classical approach to modeling we search for some measurable representative
variables and we try to determine and compute some limit values indicating Condi-
tions of Appearance of Emergent Situations (CAEMSs).

For example in case of a sudden appearance of traffic jam we find variables as
∞ the density of car file, the average velocity of cars, the average distance between

cars, the average number of braking of individual car during half of an hour, the
average number of stopping of individual car during half of an hour ≥

and we verify by simulation the variants of values of these variables—here is one
of them:

∞ the density of car file (150 cars /km), the average velocity of cars (80 km/hour),
the average distance between cars (10 m), the average number of braking of individual
car during half of an hour (15), the average number of stopping of individual car
during half of an hour (7) ≥.

This approach is very “economic” however it does not represent relations between
individuals. (It is inconvenient, e.g., for the monitoring of flights.) For rather multi-
dimensional systems we have to descend more deep into principles of modeling:

4.1 Level of the Description (LD)

There is distinguished between external and internal LD of a system.
External description

• External description is usually introduced by a set of external variables that may
characterize the system, emergent phenomena and emergent situations. Such exter-
nal variables are associated with human experience with behavior of the considered
system and emergent phenomena (in case of EMSs of the type B), e.g., the density
and velocity of cars in a traffic jam) and with type and behavior of the environment
in which we expect emergent phenomena (in case of EMSs of the type C), e.g.,
the evapotranspiration of plants or loss of biodiversity in an ecosystem).

Internal description

• Constructed internal description could allow to represent interactions between
elements (components) of the system.
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• In constructed LD can be used a few types of modeling schemes, e.g., “Model of
Reality (MR)”, “Sign Model—Interpretation Space (SM/IS)”, “Macrostructure—
Microstructure (MA/MI)”, as it was described, e.g., in [3].

• LD sharply distinguishes between model of structural features and model of func-
tional properties.

4.2 Structural Invariants (SIs)

• SIs “defend” the structure of the system against possible transformations.
• SIs represent a “constant part” of interactions between elements (components) of

the system.
• Violation of SIs indicates and detects possibility of an appearance of EMS.

In [3], there were introduced and described some essential types of SIs, e.g.,
“Matroid and its Bases”, the pair “Dulmage-Mendelsohn Decomposition, Tree
Ordering”, the pair “Hasse Diagram, Set of Associated Rules” and “Algebra of
Transformations on the Set of Situations”. In this chapter will be used only one
type structural invariant: Matroid and matroid bases.

4.2.1 Matroid and Matroid bases as a Structural Invariants of a Complex
System

Matroid has the following pleasant properties:

• It is possible to construct it for each set of elements when we have the relation of
independence or when they are given independent sets.

• There are investigated all elements with regard to relation of independence.
• The relation of independence is very adaptable (from unary, binary till n-ry rela-

tion) with necessary semantic contents.

Matroid is usually introduced as the following structure

M = ∞X, I N D, {N1, N 2, ..., N n}≥, (1)

where X is the ground set of elements (components), IND is a relation of indepen-
dence and N1, N 2, ..., N n are independent sets. Matroid bases (B1, B2, . . ., Bm) are
maximum (according to cardinality (#)) independence sets.
Matroid is considered and constructed (in our case) on a “controlled volume” of the
complex system (in the next text called “basic group of elements”). This basic group
is represented as a ground set (X ) of the matroid.

In case that relation IND is considered as a binary relation it is possible to use
following consequences:
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• The independent sets on X are discovered as perfect sub-graphs (in a perfect graph
on X).

• The cardinalities of node sets of these perfect sub-graphs have limits in [0, #X],
(where [x, y] denotes (and will denote) the interval of integers between x and y
including x,y).

• For the modeling of the discoveries of bases (B1, B2, . . ., Bm) the formalism of
Ramsey numbers—R(#Bi , #N j ), i → [1, m] and j → [1, n] is used.

Note 3.1: Till now there are precisely known only some Ramsey numbers (RNs), e.g.:
R(3, 3)=6, R(3, 4)=9, R(3, 5)=14, R(3, 6)=18, .., and for others were computed
only intervals (sometimes rather wide) R(3, 15) = [73, 78], …, R(4, 4)=18, R(4,
11)= [96, 191], …, R(6, 10)= [177, 1171], …, R(10, 10)= [798, 23 556], …, R(19,
19) ∀ 17 885. (In computations in Sect. 5 will be used only known table quantities.)
Hypothesis 3.1: Possible appearance of EMSs in a modeled complex system is
detected by violence of a structural invariant—in our case—of one of the matroid
bases. As the violence of the matroid basis is considered (in our case) the extension
of the basis by (at least) one element.
Note 3.2: The extension of a matroid basis by (at least) one element may be attained
already by extension of X by a minimum number of elements needed for the achieve-
ment of the nearest higher Ramsey number.

Example 3.1: #X = 1600. (#B = 11 for #X ∀ 1597) and for one element extension
(#B = 12 for #X ∀ 1637) it is necessary to add at least 40 elements.

Example 3.2: The extension of basis B by one element is illustrated in Fig. 1. The
perfect graph in Fig. 1 has six nodes and 15 (brown) edges. Coloring the edges by
green and blue colors, there appears at least one perfect sub-graph with 3 nodes and
3 edges (basis B) — for example the green one—R(3, 3)=6. For extension of B by
one element (into B + 1 with 4 nodes) we need to add at least 3 elements (that are
invisible here) — R(3, 4)=9.

Note 3.3: Steps of the work with matroid:

S1. The relation of independence is introduced.
S2. The matroid is constructed.
S3. The bases on the matroid are extracted.
S4. The extension of some basis is executed.

4.2.2 Reinterpretation of Some Results of Relativistic Theory of Information

One of the essential results of Relativistic theory of information [22] were the equa-
tions for the computation of the conditional entropy of a system. These equations
were invariant respect to Lorentz transformation. We use here only the structure of
those equations.
Complexity of the matroid basis extended by one element HCOM(B+1)
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Fig. 1 Extension of a matroid basis by one element

HCOM(B+1) = HCOM(B) + u HP (B), (2)

Power of the emergent phenomenon modeled by one element extension of the basis
B.

HP (B+1) = HP (B) + (u/c)HCOM(B), (3)

Contribution of the power of the emergent phenomenon

αHP (B+1) = (u/c)HCOM(B), (4)

where u is the quotient of self-organization u → ∞0, c≥, c is the limit of self-organization
(both depends on the emergent environment). HCOM(.) is approximated in our case
by number of elements of matroid basis, αHP (B+1) is the needed power of the
emergent phenomenon expressed in percentage (for example, contribution for 20 %
is calculated as (120/100) = 1.2) .

4.2.3 Computation with HCOM(B), HP(B) and ΔHP(B + 1)

C1. The quantity of αHP (B+1) for a given emergent environment is estimated.
C2. The quantity of (u/c) for a given emergent environment is determined.
C3. The number of elements of Basis B is computed.

HCOM(B) = β((c/u)αHP (B+1)) = #B, (5)

where β (x) is the nearest higher complete number (e.g.,β (2.5)=3).
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C4. The number (#X) of interacted elements needed for emergent situation appear-
ance is computed.

Example 3.3: For αHP (B+1) = 2 and (u/c)=0.5 is computed # B = 4 and Ramsey
numbers: 9, 18, 25, 41, 61, …, 282. For the extension of the basis by one element
(#(B+1)=5) we find Ramsey numbers: 14, 25, 49, 87, …, 464. Pairs of Ramsey
numbers with minimum added elements needed for induction of emergent situation
are (9♥14/5), (18♥25/7), (25♥25/0), (41♥49/8), (61♥87/26), etc.

4.2.4 Estimation ΔHP(B + 1) and Computation of (u/c)

Estimation of αHP (B+1) is done by means of quantities of external variables xi,
i=1, …, n estimated for emergent (xiem) and for nominal (xinom) situations:

αHP (B+1) = (∂(ρi(xiem − xinom)/xinom)2)1/2, for i = 1, . . ., n, (6)

where ρi are quotients of importance (computed by Saaty method [23]).
The quantity of (u/c) is computed by iteration procedure using relations derived from
the equation of information homogeneity:

Ii1
≡Ni1 = Ii2

≡Ni2 = Ii3
≡Ni3 = . . . = Iim

≡Nim = IS
≡1, (7)

where Iij for j=1, …, m are quantities of information needed for the solution of
a problem by Nij steps. IS is a super quantity of information by which is the problem
solved in one step.
The quantity of (u/c) is computed by iteration procedure (avoiding the necessity to
know quantities Iij).

(u/c) = (Iij/IS) = (1/k)(1/Nij), for some “i, j” adequate to solved problem. (8)

Where k is a normalization constant, k → ∞0, 1≥. As a solved problem is considered
the induction of connectivity between the interacted elements from the set X (the
ground set of elements of Matroid) and Nij is the number of bonds between elements
on X. Though we do not know neither #X nor the scheme of connectivity on X, the
maximum of bonds between elements on X is

Nij = (#X)(#X − 1)/2. (9)

The iteration procedure starts with the quantity αHP (B + 1) computed by external
variables and with some given quantity of (u/c)0. Then is computed the number of
elements in the matroid basis # B, from tables is selected a lowest Ramsey number
R(# B, Y), (Y is an integer from the table) and there is computed the number Nij by (9):
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Nij = (R(#B, Y ))(R(#B, Y )−1)/2. (10)

Then is computed (u/c)1 with given normalization constant k

(u/c)1 = (Iij/IS) = (1/k)(1/Nij). (11)

In case when the absolute normalized value of the difference is higher than 0.15

Γ = |((u/c)1 − (u/c)0)/(u/c)0| ∀ 0.15, (12)

the procedure is repeated with higher (u/c)0(for the case u/c)1 < (u/c)0 ) and v.v.

5 Simple Examples of Appearance of Emergent Situations

5.1 Change of the Strategy of Behavior in a Swarm Colony

The changes of termite behavior (e.g., the formation of attack patterns) are induced
by the changes of termite pheromone concentration.

There exists a basic group of termites (the Basis) that causes the higher increase of
pheromone concentration and induces the spreading of message for other termites.
Using the calculus that had been explained in Sect. 4 we may compute the number
of termites from basic group and the number of termites needed for the emergence
of other type of behavior.

For αHP (B+1) = 1.5 and f or (u/c) = 0.2 (lower self-organization)

HCOM(B) = β((c/u)αHP (B+1)) = #B = 8.

For # B = 8 there are RNs: 28, 56, 84, 127, 495, 1031, 1870.

For #( B+1)=9 (the extension by one element) there are RNs: 36, 69, 121, 316,
1713, 565, 153, 780, 6588.

Pairs of RNs for induction of an emergent situation are (28♥36/8), (56♥69/17),
(127♥153/26), (84♥115/31), (495♥565/70).

5.2 Traffic Jams

Traffic jam is an emergent result of interaction of many transport elements and factors
(cars, lights, structure of transport symbols, …, whether, hours in the day time, etc.)
and of an “self-organizing phenomenon” that forms the external performance of
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traffic jam. Some problems from this field were published in [24]. Here is considered
only the emergent phenomenon that starts in a basic group of cars.

“Self-organization” process is hard to describe but is possible to compute numbers
of elements in basic groups:

For αHP (B+1) = 2 and f or (u/c) = 0.4

HCOM(B) = β((c/u)αHP (B+1)) = #B = 5.

For # B=5 there are Ramsey Numbers: 9, 18, 25, 35, 41, 49, 61, 153, 198, 230,
242, 282, 417.

For #( B+1)=6 (the extension by one element) there are RNs: 18, 35, 41, 58, 87,
102, 165, 298, 374, 434, 495, 548, 614, 710, 780, 878, 1070, 1171.

Pairs of RNs for induction of an emergent situation are (9♥18/9), (25♥35/10),
(35♥41/6), (49♥58/9), (282♥298/16), (417♥434/17).

5.3 Floods

The floods are consequences not only of an enormous rainfall, accumulation and
motion of water but also of the changes of behavior of brooks, streams, rivers, ponds
and lakes. The induction of emergent situation “floods” (“conspiracy” of water car-
riers) starts on a basic group of components. Though a needed self-organization
process is difficult to discover and describe, the numbers of components in basic
groups is possible to estimate.

For of αHP (B+1) = 1.5 and f or (u/c) = 0.09,

HCOM(B) = β((c/u)αHP (B+1)) = #B = 17.

For # B=17 there are Ramsey Numbers: 92, 182, 284, 548, 627, 737, 8917.

For #( B+1)=18 (the extension by one element) there are RNs: 98, 614, 722, 871,
11005.

Pairs of RNs for induction of an emergent situation are (92♥98/6),
(548♥614/66), (627♥722/95), (737♥871/134).

6 Conclusions

A general conclusion that has been achieved in this chapter may by considered, from
the first sight, trivial: “By increasing the concentration of mutually interacting ele-
ments (or their properties) in a finite space may be induced an emergent phenomena.”
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However—not in every case are induced emergent phenomena as a consequence of
increasing density of interacting elements in closed space. It depends on self orga-
nization phenomenon that had to be realized and also on the secret of volume of the
basic group. This second factor we tried to catch in this chapter.

Second problem—the possibility of an emergent situation appearance is detected
however we do not know if it will look as we assume. E.g., as a result of training
of Kohonen neural network we discover some clusters that seem to be meaningful
[20]. Well—the clustering has emerged but in the semantic content of the clusters we
could be absolutely confused. In other words—the explanation and semantic descrip-
tion of the discovered EMS belong to another sophisticated process—Interpretation.
(It holds —unfortunately —also for our three examples from Sect. 5).

In this chapter has been proposed a procedure that (after tuning) could compute
something as “a distance” from appearance of a possible emergent phenomenon.
This computation has been performed in this chapter only for emergent situation for
which are known consequences and not causes (type B).

For emergent situations of the type C we have no models because these situations
are available not soon then after their first operation. Such situations are possible only
to detect by special methods. A technique of matroid bases and Ramsey numbers
implicitly explains an apparent stability of ecosystems though just in ecosystems
are expected emergent situations of the type C (and some ecological catastrophes
demonstrated it).
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Evolutionary Systems in Complex Signal
Analysis

Tomas Brandejsky

Abstract All complex systems presenting chaotic behaviour are non-linear ones and
many problems of their analysis and modelling are caused by application of linear or
pseudo-linear models which are not able to represent all aspects of signals generated
by these systems. Experiments with some natural-based signal data like e.g. EEG
ones concluded presence of typical composite periodic functions, like sin(sin(x)).
These functions have specific behaviours which will be presented. Especially, they
are non-stationar, have continuous spectrum and thus it is hard to apply usual tools
like Fourier transform. To analyse these signals, evolutionary GPA-ES system was
used.

Keywords Complex system signals · Signal analysis · Evolutionary systems ·
Generic programming algorithm

1 Introduction

Many complex systems producing chaotic behaviour are extremely complicated in
comparison to simplest deterministic chaotic systems used frequently as examples of
chaotic systems. These systems contains from hundreds (e.g. transportation systems)
to hundreds of billions of nonlinear elements (cells in the brain). There it is hard or
even impossible to model and analyse properties and behaviours of such systems
analytically and it is need to constrain our models to input—output models on the
place of state space representation. The initial analysis of EEG signals was published
in the work [1]. This work pointed out the analysis of EEG signal by GPA-ES evo-
lutionary system [2]. Used EEG data were measured during car driver micro sleep
experiments [3, 4] and they were used in raw form without any pre-processing like
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Table 1 List of the most frequent algebraic structures discovered in EEG signal models

Y(t)= (c1+ t) Sin[c2+ t] Sin[(c3+ t+ Sin[t])Sin[c4+ t]]
Y(t)= c1 t(c2+ c3 Sin[c4 t])+ c5 t Sin[c6+ c7 t]
Y(t)= (c1+ t) (c2+ t)+ c3 (c4+ t) Sin[Sin[(c5+ c6t)]]
Y(t)= (c1+ t+ c2 t) (c3+ c4 t+ c5 Sin[t]+ Sin[c6 t])
Y(t)= c1+ (c2+ t) (c3+ c4 t)+ c5 Sin[(c6+ c7t)]
Y(t)= (c1+ t+ c2 Sin[c3 t]) Sin[c4 Sin[c5+ Sin[c6 t]]]
Y(t)= Sin[c1 t] (c2+ Sin[c3+ c4 t])
Y(t)= c1+ c2 t Sin[c3 t] Sin[c4 (c5+ t)]
Y(t)= c1+ Sin[c2 t]+ Sin[c3 Sin[Sin[c4 Sin[t (c5+ t)+ c6]]]]
Y(t)= c1+ Sin[Sin[c2]Sin[c3] Sin[c4 t]] + Sin[c5 Sin[c6 t]]
Y(t)= c1+ t+ c2 (Sin[c3 t]+ Sin[t+ c4 t])+ Sin[c5+ c6 (c7+ c8 t)]
Y(t)= c1+ t2+ (c2c3 t) (c4(c5+ t)+ Sin[c6+ t]) Sin[c7 (c8+ t)]

Sin[c9 (c10+ t)]
Y(t)= c1(c2+ Sin[c3(c4+ t)])Sin[Sin[Sin[c5(c6+ t)

(t+ Sin[c7+ t])]]]
Y(t)= c1+ c2 Sin[c3 t]+ Sin[c4+ t]
Y(t)= (c1+ c2 t) (t (c3+ t)+ Sin[c4 t])+ Sin[c5 Sin[c6 t]]

especially filtering. Without any apriory information, symbolic regression by evolu-
tionary system produced local models of the signal containing algebraic structures
listed in the Table 1. On the base of these results, it is possible to form nonlinear
GPA building blocks (named user defined functions by Koza in [5]) based on the
structures frequently identified in the signal (1–3), where this list is constrained to
different forms of composite functions of two sin() functions only. The graphs of
these functions are displayed as Fig. 1. Discovered functions are periodic one, but
their properties are complex in comparison to their short algebraic form.

y = sin
(
c1∞ sin

(
c2∞t + c3

) + c4
)

(1)

y = sin
(
c1∞t + c2

)∞ sin
(
c3∞t + c4

)
(2)

y = sin
(
c1∞t + c2∞ sin

(
c3∞t + c4

) + c5
)

(3)

2 Composite Functions Behaviours

Composite functions in common, not only the above presented ones have many
specific features in contrary to simple functions. Inherited complexity of the above
discovered functions (1–3) might be easily illustrated by their Taylor series, deriva-
tions (and impossibility to integrate them symbolically—the common feature of
composite functions).

While Taylor series of sin(x) (4) and sin(sin(x)) (5) are similar except higher
significance of the next elements, the symbolic representations of Taylor series of
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Fig. 1 Examples of functions (1–3) for printed parameters

sin(c∞
1x + c2) (6) and sin(c∞

1sin(c∞
2x + c3) + c4) (7) strongly differs and the form of

the expression (7) points to extremely complicated nature of this expression.

y = x − x3

6
+ x5

120
− x7

5040
+ x9

362880
+ o(x)11 (4)

y = x − x3

3
+ x5

10
− 8x7

315
+ 13x9

2520
+ o(x)11 (5)

y = sin (c2) + c1 cos (c2) x − 1

2

(
c2

1 sin (c2)
)

x2 − 1

6

(
c3

1 cos (c2)
)

x3 + o (x)4

(6)

y = sin(c1 sin(c3) + c4) + c1c2x cos(c3) cos(c1 sin(c3) + c4)

+ x2(−1

2
c2

1c2
2 cos2(c3) sin(c1 sin(c3) + c4)

− 1

2
c1c2

2 sin(c3) cos(c1 sin(c3) + c4))

+ 1

6
x3(−c3

1c3
2 cos3(c3) cos(c1 sin(c3) + c4)

+ 3c2
1c3

2 sin(c3) cos(c3) sin(c1 sin(c3) + c4)

− c1c3
2 cos(c3) cos(c1 sin(c3) + c4))

+ o (x)4 (7)



104 T. Brandejsky

Taylor series of expressions (2) and (3) tends to even more complicated results than
(7). The complexity of composed functions projects itself into derivations too. The
complexity of many studied signals like EEG one increases with derivation degree
as well as complexity of derivations of above mentioned composed functions.

The first and second derivations of (1) are (8) or (9) respectively. Analogically
derivations of (2) are (10 and 11), derivations of (3) are (12 and 13).

y≥ = c1c2 cos(c2t + c3) cos(c1 sin(c2t + c3) + c4) (8)

y≥≥ = −c2
1c2

2 cos2(c2t + c3) sin(c1 sin(c2t + c3) + c4)

− c1c2
2 sin(c2t + c3) cos(c)1 sin(c2t + c3) + c4) (9)

y≥ = c3 sin(c1t + c2) cos(c3t + c4) + c1 cos(c1t + c2) sin(c3t + c4) (10)

y≥≥ = c2
1(− sin(c1t + c2)) sin(c3t + c4) − c2

3 sin(c1t + c2) sin(c3t + c4)

+ 2c1c3 cos(c1t + c2) cos(c3t + c4) (11)

y≥ = (c1 + c2c3 cos(c3t + c4)) cos(c1t + c2 sin(c3t + c4)) (12)

y≥≥ = −c2c2
3 sin(c3t + c4) cos(c1t + c2 sin(c3t + c4))

− sin(c1t + c2 sin(c3t + c4))(c1 + c2c3 cos(c3t + c4))
2 (13)

As expected, the complexity of derivations of composite functions (1–3) increases
in contradictory to polynomial or periodic ones. But integration brings problems too.
There does not exist algebraic way to compute indefinite integral of these functions,
there is possible to compute numerical solution of definite one. These numerical
solutions of integrals (1–3) are displayed on Figs. 2, 3 and 4 respectively.

The above presented functions discovered by evolutionary algorithm in the EEG
data are capable do describe this signal. Because they are not oriented to signal
component frequencies but also to speed of its change, they reflect different view
on signal than Fourier transform. It is also need to comment the physical sense of
identified components (1–3).

(1) represents frequency modulation,
(2) describes amplifier fading up sin(t) signal with variable reinforcement following

the other sin(t) component
(3) is similar to (1) with added constant (within the given time window) increasing

or decreasing of the signal frequency.

3 Evolutionary Algorithm in the Complex Signal Analysis

Complex signal analysis like e.g. above discussed analysis of EEG one brings specific
problems given by analysed data amount. The studied data requires processing of
data samples of EEG measured in 30 channels. The data were collected for 24 h
continuously with sampling frequency is 64 Hz. Developed models for each channel
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y
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-0.15

-0.10

-0.05
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t 

Fig. 2 Example of definite integral of y= sin(c1sin(c2t+c3)+c4) function for c1 = 10, c2 = 2,
c3 = 3 and c4 = 0

1 2 3 4 5 6
t

- 0.10

- 0.05

0.05

Fig. 3 Example of definite integral of y= sin(c1t+c2)sin(c3t)+c4) function for c1 = 10, c2 = 2,
c3 = 3 and c4 = 0

requires identification of many coefficient too, because regressed models cannot be
restricted to second order ones. Analogical situation exists in the analysis of trans-
portation data, where is the lower sampling frequency, but the number of channels
sometimes creates equal data flow.
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1 2 3 4 5 6
t

0.1

0.2

0.3

0.4

0.5

Fig. 4 Example of definite integral of y= sin(c1t + c2sin(c3t + c4)+ c5) function for c1 = 4,
c2 = 10, c3 = 2, c4 = 3 and c5 = 0

The situation tends to numerically intensive computations and requires parallel
implementation of the used algorithms. The used GPA-ES evolutionary system works
efficiently on multiprocessor computers with shared memory (UMA architecture) and
it exists in implementation using OpenMP library. The implementation in the Chapel
language was tested too [6], but the OpenMP implementation is more efficient now.

In constrained available HW resource environment, there is need to maximize
efficiency of the used algorithms. Thus, in the past time the main effort was focussed
to optimize the GPA-ES. There were studied questions of optimal population sizes
including extremely small ones [7] , the problem of optimal building block set was
studied in the work [8] from the viewpoint of chaotic system symbolic regression.

Data are divided into small series of 200–300 samples by sliding window tech-
nique. For each series, the local model is formed. This technique is applied for
observed non stationarity of the signal and it allows producing of simple models
because it is not need to form models of parameter change in the time.

The structure of the used algorithm is displayed on Fig. 5. As it was discussed
in the paper [1], there are many ways of fitness function evaluation. For the solved
problems of signal analysis, each variable is regressed independently on the others as
a function of time. Errors were measured in each time step where the prediction was
calculated from the starting point given by measured data—thus prediction horizon
was restricted to single time-step. This approach gives higher structural sensitivity
than the others discussed in [1].
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Fig. 5 The structure of hybrid
GPA-ES algorithm with
GPA (left column) individual
parameters optimization by
inherited ES (right column
of blocks)

Initial popul. 
of parameters 

Parameters 
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Termination 
condition

Intelligent 
Crossover

Evaluation              – 
selection  of  the  best 
individual  from  the 
parameters 
population 

Ending condition 

Evolutionary 
operators

Initial population 

4 Conclusions

Evolutionary system GPA-ES allowed to discover presence of composite functions
in EEG signal and in the transportation data measured in the Prague city. This algo-
rithm was used without apriory information about expected form of the data symbolic
regression and the obtained results were presented in the Table 1. These results con-
clude presence of the signals which it is hard to analyse by standard techniques like
FFT and the need of development of novel form of analysis respecting composite
functions.

Acknowledgments This work was supported by the research project of MŠMT ČR No 6840770043
“Improvement of methods of design and employment of transportation networks from optimization
viewpoint”.
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Macroscopic Description of Complex
Self-Organizing System: Belousov–Zhabotinsky
Reaction

Anna Zhyrova, Dalibor Stys and Petr Cisar

Abstract Based on the information theory of mutifractal objects was developed
the method for analysis of complex self-organized system, such as living cells. To
demonstrate some of the features of the analysis we choose the simplest system—the
Belousov–Zhabotinsky reaction (chemical clock). It is always composed of observed
sequence of states stable for certain period of time and the experimenter has full con-
trol of mechanical constraints imposed on the system. We use the Renyi information
entropy equation for calculation of information gain by which a point contributes
to the total information in the image. In this way we create characteristic vector
of the system state in phenomenological coordinates of phase space. We have also
derived related variables, the point information gain entropy and point information
gain entropy density. The later values are unique to structured information. The
ultimate goal of the method is to determine the characteristics of a system which best
characterize momentary multifractal properties of the system. The relation between
the phenomenological phase space and the internal coordinates of the system remain
unknown.

Keywords Information entropy · State trajectory · Multivariate analysis

1 Introduction

Complex macroscopic structure of self-organized systems arises from a coherent
interaction among lower level components of the system. Systems are sensitive to
initial conditions. In experimental systems there is often observed hierarchical scal-
ing which is often difficult to include into the measurement conditions where the
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resolution and precision is given by the measurement method. In the work with
image records besides optical limits [1] we have to take into account aspects asso-
ciated with image digitization (digital camera sensor imperfection; random noise;
disadvantages of the algorithms, are using for debayer transformation, demosaicing
(parser matrix) and compression of the final image, etc. [2–4]). A long list of prob-
lems of representation of the three dimensional scene by the two dimensional matrix
of image points may be prepared. To solve these problems, we propose the method
[5], which assesses the information yield from a given image while representing the
characteristic structure of the object.

Another problem for experiment data interpretation is the complex unpredictable
behavior of the examined objects, which are present self-organizing systems, which
could be consider from different point of view [6, 7]. As experimental tool for
analysis of the behavior of the self-organizing system we have chosen the Belousov-
Zhabotinsky reaction [8, 9]. The distinct feature of the BZ reaction is that although
it in fact consists of 80 chemical reactions, relatively simple patterns arise and may
be modeled by approaches such as cellular automata. Most reports on BZ reactions
come from experiments done in homogenous systems, either in mixed cuvettes or
various types of flat reactors. The analysis does not require elaborate reconstruction
of series of 3D images as in the case of bird flocks or fish schools, organ behavior or
living cells. Moreover, the experimenter in case of chemical clock has full control of
mechanical constraints imposed on the system.

2 Material and Methods

2.1 Belousov–Zhabotinsky Reaction

Experiments were performed with the oscillating bromated-ferroin-bromomalonic
acid reaction (kit were provided by Dr. Jack Cohen) [10]. The reaction mixture was
composed out of following solutions: 0.34 M sodium bromate, 0.2 M sulphuric acid,
0.057 M sodium bromide, 0.11 M malonic acid as substrate and redox indicator 0.12
M 1,10 phenantroline ferrous complex. All reagents were coherently mixed under
temperature 22 ◦C and added into Petri dish.

2.2 Image Recording Conditions

The images were captured by Nikon D90 camera [11] in regime Time lapse shooting
in interval 10 s between snapshots with Exposure compensation +1/3, ISO 200,
Aperture f/18 and Shutter speed 1/10 s. For preventing the reflection on the surface
of the reaction mixture for photographing was used diffused light. To avoid the
inevitable blurring the smallest detail of the image caused by compression using the
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JPEG algorithm all the resulting images saved in NEF format provided by camera
manufactured company with further proceeding into 12 bit TIFF format by ViewNX
(Nikon software).

2.3 Calculation of the Image Information Yield

As it were shown in the work [12], multifractal structure of the object can be expressed
in terms of Renyi information entropy through the parameter α. Inner structure of
the multifractal object, which is related to the distribution of the physical, chemical
or other quantities of system and thus provided their geometric properties, could be
expressed through their singularities [13]. According this statement, the system phase
transition could be described in term of Renyi entropy. However, we do not actually
observe value of internal orthogonal variable but their projection into observable,
phenomenological, variables. Thus, later in the text we assume that the space of
phenomenological variables is multifractal equally well as its generating chaotic
attractor.

We calculate the Renyi entropy for the data set containing the examined point and
the dataset in which the examined point was excluded. The difference between these
two values Point Information Gain (αβ(x, y)) for given entropy of the order α:

αβ (x, y) = 1

1 − β
ln

(∑n

i=1
pβ

i,x,y

)
− 1

1 − β
ln

(∑n

i=1
pβ

i

)
(1)

where ρi,x,y and ρi are probabilities of occurrence of given intensity for given point
x, y coordinate of camera pixel at given β in the image without and with the examined
point. We do not used any algorithm to optimize β values, we just use a set of values
in the range from 0,1 to 4.

∂β(i) is i-th observed value of αβ (x, y) without specification of the point position
and it is a unique characteristic for determining the system state into the terms
of entropy value (Fig. 1). The question remains how to define the dataset used for
calculation of the αβ (x, y) should be, in structured objects the context of the location
may not be overlooked.

In the next step number of points of given intensity is summed, we obtain Point
Information Gain Entropy (Hβ):

Hβ =
∑x=n

x=1

∑y=m

y=1
αβ (x, y) (2)

For given dataset, i.e. image, the ordered tuple of dimensionless β coefficient and
Hβ is a unique characteristic of the image, i.e. each two different images will have
different sets—to the extent of the precision of the digital imaging.

And on the final step of image processing were calculated Point Information Gain
Entropy Density (ρβ):
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Fig. 1 The image represents ∂β spectrum by which each particular point contributes to overall
information in the image of the reaction dynamics. The green channel carries less noise signal
than others [16] and we use it as example of the αβ(x, y) transformed image. In the left column
are depicted histograms of ∂β -occurrence at given bit level. Rising the β coefficient changes the
distribution of ∂β levels. Large areas, with low ∂β , represent the noise, medium ∂β highlights edges
of the image and finally rare, high entropy, points, represent stripes of chemically different regions
in the medium
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ρβ =
∑i=n

i=1
∂β,i (x, y) (3)

Based on the central limit theorem, we expect that the resulting dataset is a subject to
a normal distribution, we can apply the methods of multivariate analysis for drawing
state trajectory in the face space for our developing system. The assumption of normal
distribution is clearly not justified. Also, Hβ values, which we use as coordinates,
are linearly independent. Quite the contrary, they more probably are not orthogonal
for many reasons both fundamental and technical. Using statistical approaches, such
as principal component analysis (PCA) we may construct orthogonal spaces which
best fit the observed dataset. Instead of constructing the state function as (unknown)
manifold in a given coordinate system, we search coordinate system in which the
state function is a plane of multidimensional space. Also the statistical distribution is
not known and thus we replace it by the normal distribution. If we stick just with the
experimentally observed data, we may base the interpretation on the work of Zampa
[14]. In his general system theory he proposes to separate trajectory into segments
which are within the measurement limits in part Markovian. Contemporary theories
of the chaotic dynamic [15] show how the trajectory segments arise from chaotic
dynamics. This gives us a reason to separate the individual phases of the reaction
development on the next stage of multivariate analysis by means of cluster analysis.

2.4 Software Packages

For calculation of αβ(x, y), Hβ andρβ values were used software packages developed
by the Institute of Complex Systems. Stable versions of this software are available at
http://www.expertomica.eu/software.php and are constantly updated. Latest versions
are available upon request. The principal component analysis was performed using
Unscrambler software provided by CAMO Company [17].

3 Results and Discussion

The use of Hβ for describing the evolution of the system as a multifractal object
using the values as its resulted in logical sequence of clusters in the new orthogonal,
although still phenomenological, state space. The definition of point information gain
as local variable also enables to demonstrate how a specific information contribution
is distributed and how it contributes to the value of Rényi entropy, respectively Hβ and
ρβ . At the Fig. 1 it is shown that the β lower than one highlights the less probable
objects (unique points, borders of object), where β higher than one highlight the
large areas (background) and it should be chosen to emphasize just one particular
distribution contributing to overall distribution in the image. On the Fig. 2 is shown
decomposition of the system trajectory of the Belousow–Zhabotinsky reaction into

http://www.expertomica.eu/software.php
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Fig. 2 The state trajectory of the BZ reaction performed in the Petri dish. Principle component
analysis of the Hβ allows to designate different states of the system, from the point of view of the
method clusters of points in the state space. Scores differ significantly between clusters oriented
and form logical trajectory in the principal coordinates space

series of states which are for distinct period of time asymptotically stable under
current conditions. Clusters (series of images) are very well separated and consistent
in time, for each of group could find characteristic image represented the state of the
system in their developing process. Moreover, each of the clusters states should have
its own spectrum of Hβ and ρβ values which characterizes it.

Thus applying of information entropy as the basic characteristics of the image
is a promising area for further research, with the ultimate aim of which is to create the
reliable method of automated segmentation of the self-organizing system state space
obtained by non-invasive imaging method. And the trajectory segmentation may
be used despite to the fact that we do not know the proper manifold in the coordinate
space.
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Classical Invariants in the Quantum Mechanics
of Chaotic Systems

F. Borondo

Abstract The relevance of classical invariants in the quantization and dynamics of
quantum systems is discussed. Special attention is paid to the influence of periodic
orbits (“scars”) and the associated homoclinic and heteroclinic orbits. As an illustra-
tion we present some results concerning the vibrational dynamics of the LiNC/LiCN
isomerizing system.

Keywords Nonlinear dynamics · Quantum chaos · Scar theory · Vibrational
molecular dynamics

1 Introduction

The pioneering work of Poincaré on the three body problem at the turn of the twentieth
century unveiled the possibility of chaotic motion in dynamical systems, also showing
the importance of invariants such as periodic orbits (POs) and its homoclinic and hete-
roclinic connections in the hierarchical organization of the associated complex tangle
[1]. The Kolmogorov-Arnold-Moser (KAM) [2] and Poincaré-Birkhoff-Lewis (PBL)
[3] theorems completed Poincaré’s ideas on the complicated, yet understandable,
phase structure of chaotic systems. The former gives conditions under which chaos
is restricted in extent, indicating that sufficiently irrational tori resist small, smooth
perturbations in Hamiltonian systems. The latter established that in the destroyed
rational tori an even number of fixed points remain under perturbation. These fixed
points are alternately stable (elliptic) and unstable (hyperbolic). Around each elliptic
fixed point there is a simultaneous application of the PBL and KAM theorems, which
leads to a self-similar structure in phase space on all scales. In a previous paper [4],
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we showed how the stability island structure derived from the PBL theorem is also
mimicked in quantum mechanics by the zeros of the Husimi function [5, 6] of states
avoiding crossing in energy levels correlation diagram versus perturbation. This is
only one of many results pointing out to the importance of some classical invariants
to fully understand the structure of the quantum theory of classically chaotic systems.

The correlation of classical invariants with the corresponding quantum structures
became very early a topic of much interest, since it was central to the development of
the new mechanics [7]. In the case of an N-dimensional system with regular motion,
the classical dynamics is confined to invariant tori [2], and the connection with the
quantum treatment is very well understood in terms of the Einstein-Brillouin-Keller
quantization conditions [8]

∮

Cj

P · dq =
(

nj + αj

4

)
nj = 0, 1, 2, . . . , j = 1, . . . , N, (1)

where according to Einstein’s prescription [9] the action integrals have to be evalu-
ated on the N topologically independent circles, Cj, defining the tori, nj are integer
quantum numbers, and αj are the topological phases given by the Maslov indices
[10, 11]. Equation (1) represents a typical semiclassical expression, in which a quan-
tum condition is imposed into purely classical information. For each energy allowed
by (1) there exists an associated WKB (Wentzel-Kramers-Brillouin) wave function
[12]

ψWKB =
∑

j

Aj eiSj(q,I)/�, (2)

where the sum extends to all possible branches, Sj(q, I), of the Hamilton-Jacobi
equation.

In the chaotic regime, tori start to break and the condition (1) cannot, in gen-
eral, be applied. However, in 1967 Gutzwiller [13] proposed a general quantization
scheme, valid both in the chaotic and regular regimes, based in the POs and associated
magnitudes of the system as the supporting classical invariants for the semiclassi-
cal quantization. The method is based on the use of the quantum mechanical Green
function, G(q∞∞, q∞, E), giving the probability amplitude for a particle with energy E
making the path q∞ ≥ q∞∞. This (complex) function has poles at exactly the positions
of the eigenvalues in the energy axis, and the residues give the corresponding eigen-
functions. Gutzwiller made a semiclassical approximation to this function, expressed
as a sum over all classical trajectories satisfying the above mentioned conditions. This
summation is very hard to carry out, especially when the dynamics of the system
are chaotic, and then one has to resort to the trace, g(E) = ∫

dq G(q, q, E). This
simpler function gives only information on the energy levels. Using stationary phase
arguments a semiclassical expression for g was obtained as

gSC = 1

i�

∑

PO

T0

2 sinh(χ/2)
exp

[

i

(
S

�
− α

π

2

)]

, (3)
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which is the celebrated Gutzwiller’s Trace Formula, in which T0 is the period, χ the
stability exponent, and S the action integral of each PO in the summation [13].

Another dramatic influence of POs on the quantum dynamics of classically chaotic
systems was first discussed by Heller in his seminal paper of 1984 [14]. This author
coined the term “scar” to name an enhanced quantum density localization in some of
the system eigenfunctions. The origin behind this unexpected phenomenon, namely
the building up of probability due to constructive interference, are the recurrences
caused by the dynamics along an unstable PO [15], and this idea has been ever since
very fruitful [16] in the field of quantum chaos. Bogomolny later demonstrated that
this extra density can be obtained in the � ≥ 0 limit by averaging in configuration
space groups of eigenfunctions in an energy window [17], and the corresponding
phase space version was investigated by Berry [18]. Other interesting aspects of
scarring, such as the role of recurrences taking place through homoclinic and het-
eroclinic quantized circuits [19–23], the influence of bifurcations (in systems with
mixed dynamics) [24], the scarring of individual resonance eigenstates in open sys-
tems [25, 26], or relativistic scars [27] have also been considered. Scars have also
been experimentally observed [28–30], and their relevance in growing fields, such as
nanotechnology [31, 32], optical microcavitities [33–38], optical fibers [39, 40], or
graphene sheets [41], or their interest in constructing efficient basis sets for chaotic
eigenstate calculations [42] has been described in the literature.

2 Model

The system that we have chosen to study is the LiCN molecule [43], whose vibrations
can be adequately studied with the two degrees of freedom Hamiltonian

H = P2
R

2μ1
+ 1

2

(
1

μ1R2 + 1

μ2r2
e

)

P2
θ + V(R, θ), (4)

in which the NC distance is frozen at its equilibrium value of re = 2.186 a.u., R is
the distance from the NC center of mass to the Li atom, and θ is the angle between
these two vectors. PR and Pθ are the associated conjugate momenta, and μ1 and μ2
are the Li–CN and C–N reduced masses, respectively. The potential energy surface,
V(R, θ), has been taken from the literature [44], and it is shown in Fig. 1 in the form of
a contours plot. As can be seen, it presents two minima at θ = 0 and π, corresponding
to the two stable linear isomers LiCN and LiNC, respectively. The minimum energy
path, Re(θ), connecting these two isomers has also been plotted in the figure as a
dashed line.
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Fig. 1 Potential energy
surface for the LiNC/LiCN
isomerizing system. Contours
lines have been plotted every
1000 cm−1. The minimum
energy path is shown as a
dashed line

Fig. 2 Composite
Poincaré surfaces of
section for LiNC/LiCN at
E = 1500 cm−1, showing
the phase space structures
(islands and bands of sto-
chasticity) associated to reso-
nances which are relevant to
our work

3 Classical Calculations

The classical motion of the system can be monitored by means of Poincaré surfaces
of section (SOS), which are best computed in the present case by taking the minimum
energy path, Re(θ), as the sectioning plane [45]. This SOS is made an area preserving
map by defining a new set of canonical variables ϑ = θ and Pϑ = Pθ − (dRe/dθ)PR.
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The results corresponding to E = 1500 cm−1 are shown in Fig. 2. At this energy
practically all phase space corresponds to regular motion confined into invariant tori.
Chaotic dynamics are practically unnoticed, since restricted to extremely narrow
bands along broken tori or the separatrices originated from resonant tori. Taking this
into account, we have simplified the plot by including in it only the SOS associated
to the lowest order resonant trajectories symmetrical with respect to the plane θ = π
with νθ:νR = 1:n. All possible POs of this type at this vibrational energy correspond
to n = 6, 7, 8, 9, 10, and 10’ and appear located consecutively in the plot from the
center, (ϑ, Pϑ) = (π, 0) outwards [46–48]. Moreover, we have only represented in
the n even cases the separatrices, which are enough to clearly sketch the shape and
position of the chains of islands of the corresponding stable POs. For n odd we have
chosen to represent the, in this case extremely narrow, chains of islands. Notice that
here there appears a double number of islands than that indicated by index n, this
being due to the fact that we have two possible senses in which the PO can be traced.

4 Quantum Calculations

For the quantum calculation of the vibrational states of LiNC/LiCN we have used the
discrete variable representation method of Bacic and Light [49] with a final basis set
of 2000 elements, enough to obtain the lowest 900 energy levels within an accuracy
→0.01 cm−1. The corresponding eigenstates, |μ∀, in the range of energies considered
in this paper are all regular, and can be classified according to the quantum numbers
in the R and θ coordinates as (nR, nθ).

5 Quantum PBL Theorem

In this Section we will discuss the relationship existing between the PBL theorem
and quantum mechanics. More precisely how the classical PBL theorem structures,
visible for example in Fig. 2 for LiCN, can be seen in purely quantum data.

To unveil these structures in our system we use the correlation diagram for the
vibrational quantum levels of LiNC/LiCN. As the variation parameter in the diagram
we use �. We artificially varied the value of this physical constant in order to change
the number of quantum states that the regular region in the phase space energy
shell can accommodate. Indeed, this number increases as smaller values of � are
considered [50–52]. The results are shown in Fig. 3. Notice that we have chosen to
represent in the vertical axis E/� instead of E. In this representation, the (mostly)
harmonic states located in the (most stable) LiNC well render horizontal lines, while
those corresponding to the LiCN isomer appear as hyperbolas, this shape arising
due to the existence of the non-zero βELiCN-LiNC term corresponding to the energy
difference between the two stable isomers of the molecule. Eye examination clearly
reveals that below the line of circles, the levels simply interact in pairs at very sharp
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Fig. 3 Correlation diagram
of vibrational energy levels
for the LiNC/LiCN mole-
cular system versus �. Six
different series of avoided
crossings are indicated with
different symbols correspond-
ing to the quantum reso-
nances: 1:6 (hearts), 2:14
(triangles), 1:8 (diamonds),
2:18 (inverted triangles), 1:10
and 1:10’ (squares), and 1:8’
(circles)

avoided crossings (ACs). Actually, the circles were found to constitute a threshold
for the transition to (quantum) chaos, and also for the formation of scars, as discussed
in Ref. [50, 51]. In this region there are six conspicuous series of sharp ACs, which
have been marked with different symbols. Each of these series constitutes a family
in which the wavefunctions that interact at the different ACs differ in the same
number of quanta in both coordinates. For example, in the series marked with hearts,
states avoiding crossing present a difference in the quantum numbers (see Sect. 4) of
|βnR| = 1 and |βnθ| = 6. In this way, states (0, 6) and (1, 0) interact in the lowest
AC, the next AC the interaction is between states (0, 8) and (1, 2), and so on. It can
be said that they are linked by a 1:6 quantum resonance.

Finally and more important, is that a careful examination of all ACs in the corre-
lation diagram of Fig. 3 reveals the existence of a whole series of different families
characterized by different values of |βnR| and |βnθ|. The result is summarized in
Table 1. What it is extremely interesting is that all and each of the classical resonances
existing in the phase space of the LiCN (which give rise to PBL island-separatrices
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Table 1 Correspondence between classical resonances of LiCN in Fig. 2 and the series of avoided
crossings in the correlation diagram of Fig. 3

Classical resonance in Fig. 2 Symbol in Fig. 3

1:6 ♥
2:14 ≡
1:8 ⇔
2:18 ∼
1:10 �
1:8’ ©
See text for details

structures; see Fig. 2) have a quantum counterpart as a family of ACs in the correla-
tion diagram of vibrational levels of LiCN. This is, in our opinion, a very remarkable
and important result in the field of quantum chaos.

Other aspects of this classical-quantum correlation effect has been considered
elsewhere [4]. In particular, we have seen in the Harper map how the zeros of the
Husimi quasiprobability density corresponding to the wavefunctions of the states
involved in ACs mimic very precisely the shape and positions of the classical PBL
resonance structures, and their evolution with the perturbation parameter as one
sweeps along the AC, i.e. varies the value of the perturbation parameter.

6 Periodic Orbits, Homoclinic Circuits and Scars

As discussed in the Introduction, Poincaré discovered that POs were a key element
in the hierarchical organization of complexity in the chaos showed by Hamiltonian
systems. Also, much later Gutzwiller demonstrated that these orbits were also crucial
for the quantization of such systems, especially when chaotic, and Heller showed
how they influence or “scar” the quantum density of some eigenstates in this kind of
systems.

In our group we have been working extensively in the computation of wave func-
tions which are highly localized along unstable POs in classical chaotic systems.
The essence of our procedure is well illustrated in the dynamical presentation of
Ref. [53], where such functions were constructed by combining the ideas of Heller
and Bogomolny on scars. The method consists in Fourier transforming for semiclas-
sically quantized values of the energy, En, a wave packet, |φ(t)∀, initially launched
in the vicinity of the PO under study, after having being propagated for a short time
t ∼ T = O(TPO), in the following way

|γn∀ = 1

2π�

∫ ∞

∞
dt e−t2/T2

eiEnt/�|φ(t)∀. (5)
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Fig. 4 (Top) Squared scar wavefunction computed with Eq. (5) for the saddle-node periodic orbit
also represented in the plot. (Bottom left) Classical composite Poincaré surface of section for LiCN
at E =9197.3 cm−1. Regular motion takes place at the invariant tori around LiCN and LiNC. The
rest of the available phase space is left blank. Embedded in it, the fixed point (full circle) and
unstable (full line) and stable (dashed line) manifolds corresponding to the PO in the top panel are
represented. (Bottom right) Fourier spectrum of the oscillatory part (right inset) of the widths (6)
made dimensionless (left inset) corresponding to the scar wave functions similar to those shown in
the top panel for different values of n

(A more sophisticated construction of these functions can be found in Refs. [54, 55]).
One example for a saddle-node bifurcation PO of LiCN [56–58], |γ6∀, is shown in
the upper part of Fig. 4. In the bottom left part of it, we also show the corresponding
composite phase space picture at E =9197.3 cm−1, with the associated fixed point
and manifolds and the regions of regularity around the two wells; the rest of the
figure has been intentionally left blank to avoid visually complicating it. As can be
seen the wave function, |γ6∀, is highly localized along the PO and has six quanta of
excitation.

These nonstationary functions, when projected on the eigenspectrum of the sys-
tem, translate into localized bands centered at En, including the eigenstates within
the corresponding widths [17]
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σ̃n =
√∑

μ

〈μ|γn∀|2(Eμ − En)2. (6)

Surprisingly, these widths provides information on how the scarred structures are
embedded in the quantum mechanics of the system. Actually, a Fourier analysis
of their fluctuations around can be used to extract information about the relevant
classical invariants. The corresponding results for σ̃ are shown with dots in the left
inset on the right bottom panel of Fig. 4. When carefully examined, they are seen to
oscillate around a straight line mean tendency. Elimination of this linear behavior
renders the oscillatory part, σ̃osc, depicted in the right inset. Fourier transform of
these values (main body of the panel) shows the existence of only a prominent peak
in these oscillations centered at S = 17.4, value which is in very good agreement with
the magnitude of the homoclinic phase Ah = 20.1 (arrow) computed by integration
of any of the two shaded regions in the left panel of the figure. The interpretation of
this result is clear, and has been thoroughly discussed in Ref. [21–23]. The analysis
of the spectral characteristics of our scar wave functions requires, in addition, to
the semiclassical quantization condition on the action of the PO (controlling the
position of the corresponding peaks) another one consisting on the quantization of
the phase space area of the “homoclinic torus” defined by the associated manifolds.
When these two conditions are fulfilled simultaneously, scar states are best defined,
and accordingly, its width in the eigenvalues spectrum is narrower. On the contrary,
when only the first condition is fulfilled, scar states are more poorly described, and
they appear more spread in the spectrum of eigenvalues.

Other classical invariants, such as the heteroclinic connections with a given PO or
the Lazutkin invariant, have been shown by us to have an influence in the quantization
of chaotic systems [21–23, 59].
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Chaos Powered Symbolic Regression
in Be Stars Spectra Modeling

Ivan Zelinka, Lenka Skanderova, Petr Saloun, Roman Senkerik
and Michal Pluhacek

Abstract Be stars are characterized by prominent emission lines in their spectrum.
In the past research has attention been given to creation a feature extraction method
for classification of Be stars with focusing on the automated classification of Be stars
based on typical shapes of their emission lines. The aim was to design a reduced,
specific set of features characterizing and discriminating the shapes of Be lines. In this
chapter we discuss possibility to create in an evolutionary way the model of spectra
of Be stars. We focus on the evolutionary synthesis of the mathematical models of
Be stars based on typical shapes of their emission lines. Analytical programming
powered by classical random as well as chaotic random-like number generator is
used here. Experimental data are used from the archive of the Astronomical Institute
of the Academy of Sciences of the Czech Republic. Interpretation and explanation
of analysis is given and discussed in this chapter.

1 Introduction

Technological progress and growing computing power are causing data avalanche
in almost all sciences, including astronomy. The full exploitation of these massive
distributed data sets clearly requires automated methods. One of the difficulties is
the inherent size and dimensionality of the data. The efficient classification requires
that we reduce the dimensionality of the data in a way that preserves as many of the
physical correlations as possible.
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Fig. 1 Typical shapes of emission lines in spectra of Be stars

Be stars are hot, rapidly rotating B-type stars with equatorial gaseous disk pro-
ducing prominent emission lines Hα in their spectrum [1]. Be stars show a number
of different shapes of the emission lines, as we can see in Fig. 1. These variations
reflect underlying physical properties of a star.

Our work is focused on the evolutionary-automated model synthesis of Be stars
based on typical shapes of their emission lines. There has not been much work on
classification of Be stars. The only application found [2] is focused on a broader
category of variable stars including pulsating Be stars. However, the method is not
suitable for our goals, as it is applied on the whole spectrum where the local differ-
ences in the shapes of Be lines are lost. Another approach is in [3] where the to zoom
at the small part of a spectrum with the Be line is applied, specific set of features
characterizing and discriminating the shapes of Be lines. Data of Be stars spectra
come from the archive of the Astronomical Institute of the Academy of Sciences of
the Czech Republic.

2 Used Methods

For our experiments described here standard hardware and algorithms has been used.
All important information about algorithms used in our experiments are mentioned
and referred here.
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Table 1 Algorithms setting DE SOMA

NP 500 PopSize 500
Dimensions 100 Dimensions 100
Generations 500 Migrations 10
F 0.9 PRT 0.1
CR 0.5 PathLength 5

Step 0.21

2.1 Evolutionary Algorithms

Comparing to the previous method that is based on the wavelet transform and its
power spectrum, in this research is used symbolic (i this case AP) regression with
evolutionary algorithms like Self-Organising Migrating Algorithm (SOMA) and Dif-
ferential Evolution (DE). While in the [3] a resulting feature vector is composed of
two parts: 1. wavelet power spectrum, 2. value indicating the orientation of the Hα

line (this information is lost in the wavelet power spectrum), we are focused on
evolutionary model synthesis that shall create model of observed spectra. Together
with SOMA and DE has been used approach called Analytic Programming (AP) [4].
AP has been powered by chaotic number generator and compared with the same AP
powered by classical pseudorandom number generator. Used algorithms were set
according to (Table 1).

2.2 Symbolic Regression

In [4] is discussed an alternative approach for symbolic structures and solutions
synthesis, used here as well as brief well known methods. For example Genetic
Programming (GP), [5, 6] or Grammatical Evolution (GE), [7, 8]. Generally, there
are two well known methods, which can be used for symbolic structures synthesis
by means of computers. The first one is called GP and the other is GE. Another
interesting research was carried out by Artificial Immune Systems (AIS) or/and
systems, which do not use tree structures like linear GP and other similar algorithm
like Multi Expression Programming (MEP), etc. In this chapter, a different method
called Analytic Programming (AP), is presented. AP is a grammar free algorithmic
superstructure, which can be used by any programming language and also by any
arbitrary Evolutionary Algorithm (EA) or another class of numerical optimization
method. This chapter describes use and results of AP use with EA’s like Differential
Evolution (DE), Self-Organising Migrating Algorithm (SOMA) on Be-Stars spectra
model synthesis. All case studies has been carefully prepared and repeated in order
to get valid statistical data for proper conclusions (Table 2).

The initial idea of symbolic regression by means of a computer program was
proposed in GP [5, 6]. The other approach of GE was developed in [8] and AP in
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Table 2 Minimal, maximal and average fitness of synthesized models

DE PRNGs DE Chaos SOMA PRNGs SOMA Chaos

Max 0.960 0.783 0.692 0.431
Avg 0.352 0.238 0.231 0.132
Min 0.253 0.143 0.195 0.096

[9]. Another interesting investigation using symbolic regression were carried out in
[10] on AIS and Probabilistic Incremental Program Evolution (PIPE), which gener-
ates functional programs from an adaptive probability distribution over all possible
programs. Yet another new technique is the so called Transplant Evolution, see
[11–13] which is closely associated with the conceptual paradigm of AP, and modi-
fied for GE. GE was also extended to include DE by [14]. Generally speaking, it is
a process which combines, evaluates and creates more complex structures based on
some elementary and noncomplex objects, in an evolutionary way. Such elementary
objects are usually simple mathematical operators (+,−,×, . . .), simple functions
(sin, cos, And, Not, . . .), user-defined functions (simple commands for robots—
MoveLeft, TurnRight, . . .), etc. An output of symbolic regression is a more complex
“object” (formula, function, command, . . .), solving a given problem like data fitting
of the so-called Sextic and Quintic problem [15, 16], randomly synthesized function
[16], Boolean problems of parity and symmetry solution (basically logical circuits
synthesis) [9, 17], or synthesis of quite complex robot control command by [6, 18].
Examples mentioned in [4] are just a few samples from numerous repeated exper-
iments done by AP, which are used to demonstrate how complex structures can be
produced by symbolic regression in general for different problems, see [4].

2.3 Experiment Design

Our experiments has been set so that analytic programming powered by classical
pseudorandom number generator and deterministic chaos generators (see for exam-
ple [19–21]), were used. Based on the fact that numerical precision has impact on
existence of periodicity in deterministic chaos [19–21], we have selected logistic
Eq. 1, and data series generated by this equation with setting A = 4. Algorithms
selected for our experiments were SOMA [22] and differential evolution (DER and
1Bin) [23].

xn+1 = Axn (1 − xn) (1)

The cost function has been defined according to Eq. 2 and the main aim of the
used evolution was to find formula, that gives the smallest value of Eq. 2.
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Table 3 Periodicity
dependance of Eq. 1 on
various precision

Precision Maximal period

1 4
2 10
3 29
4 36
5 170
6 481
7 758
8 4514
9 11227

10 35200
11 57639
12 489154
13 518694
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Fig. 2 Typical result of evolutionary fitting of shapes of emission lines in spectra of Be stars, fitted
by formula (3)

n∑

1

|datai − synthesi zed_datai | (2)

All experiments were done in Mathematica 9, on MacBook Pro, 2.8 GHz Intel
Core 2 Duo. Test data of the Be stars spectra comes from the archive of the As-
tronomical Institute of the Academy of Sciences of the Czech Republic. Because
this is pioneering experiment, we have used one data set and repeat each experi-
ment 100 times. The aim was to find suitable model of Be star spectra and mainly
check whether more intensive experiments shall be done in this way. In total, 400
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Fig. 3 Another result of evolutionary fitting of shapes of emission lines in spectra of Be stars, fitted
by formula (4)

(2 algorithms × 100 repetitions × 2 different pseudorandom number generators—
PRNGs) evolutionary experiments has been done. In each experiment, the PRNGs
used only on the start of Eq. 1 to set initial condition xstart . Remaining use of Eq. 1
was PRNGs free, i.e. PRNGs was not further in use.

3 Results

The results of our experiments, based on AP with SOMA and DE are summarized
in the Table 2 and visualized on Figs. 2 and 3.
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Fig. 4 Time series of period 36 (precision = 4) based on Eq. 1 for A = 4, see Table 3

4 Conclusion

The main goal of this research was to test whether it is possible to use AP on Be-stars
spectra modeling. Two version of AP has been used. The first one was powered by
classical pseudorandom number generator and the second one by pseudo-chaotic
number generator, in this case by logistic equation. Ap was used with SOMA as well
as with DE algorithms. Obtained results (see Table 2 and Figs. 2 and 3) shows that
AP can be used for that kind of task and both cases, i.e. AP with PRNGS as well as
AP with chaos can be used.

Based on results from [19–21], see also Table 3, we are going to use chaotic gen-
erators with variable level of chaos in order to get more results that show dependance
of AP performance on numerical precision of chaotic generators. As was reported
in [19–21], it is possible to use deterministic chaos generators instead of pseudo-
random number and set by control parameter periodicity of obtained data series. It
is reported in [19–21], see also Table 3 and Fig. 4. More information about mutual
fusion of evolutionary algorithms and deterministic chaos can be found in [24, 25],
while about AP in [4].
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Mathematical Modeling of Heat Loss
of a Sphere in Contact with a Well Stirred Fluid

Juan Carlos Beltrán-Prieto and Karel Kolomazník

Abstract The knowledge of several transport properties is important especially
when heat transfer has to be evaluated. However, not always the data such as ther-
mal diffusivity is known or available for specific types of material. In this paper, a
study was performed to describe the equations that lead to the calculus of thermal
diffusivity, heat transfer and calculus of temperature in function of time of a sphere
particle that is immersed in a well stirred fluid. The model obtained was tested by
comparing the predicted thermal diffusivity value of an orange and the real value.

Keywords Thermal diffusivity · Heat transfer · Stirred fluid · Conductivity ·
Spherical particle

1 Introduction

This paper describes the modeling of conductive cooling of a sphere that is immersed
in a well stirred media to estimate the thermal diffusivity of the solid, the heat
transfer and the temperature of the fluid at a specific time. The study is aimed to
provide a fundamental understanding of this cooling process that can be of assistance
when it is desired to control parameters, improve the functionality and operation of
cooling, or for performance prediction. Broad applications are found, particularly at
micro and nanoscale level, where the cooling of microspheres, microchannels, micro-
cylinders or nanoparticles has recently gained attention. Additionally, conductive
cooling is of extreme importance as it is the main mechanism involved in the use of
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laser-induced incandescence technique for the determination of the size of Fe or
MnO2 nanoparticles [1] or in the characterization of the diameter of particles such as
carbon black [2]. The complete understanding of the controlling the heat transfer in a
system lies in finding effective ways to model the cooling process. In order to perform
the mathematical model, it was analyzed that a homogeneous solid sphere of radius
(R), with an initial uniform temperature (T1,) was suddenly immersed at time t=0
in a volume (Vf) of a well stirred fluid of temperature (T0) in an insulated tank. The
procedure described here aims to find the thermal diffusivity (αs = ks/ ρs cp,s) of the
solid by observing the change of the fluid temperature Tf with time. The parameter ks
represents the thermal conductivity, ρs the density and cp,s the specific heat capacity
of the solid.

2 Methodology

The approach for the modeling started from the consideration of the energy
equation and Fourier’s law of heat conduction for solids. The solid was regarded
to be a spherical particle. After introducing the dimensional variables in the equa-
tions, boundary conditions at the center of the sphere and at the surface were taken
into account. After, an energy balance for the fluid in the tank and an energy total
balance for the sphere in the tank were realized. In order to calculate the variation of
energy in the fluid, dimensional equations were obtained by substitution of the cor-
responding dimensional variables (fluid temperature, distance and time). This new
equations were solved by applying the Laplace transform solution method, followed
by the application of Bessel function. The increment in the fluid temperature allows
the determination of the thermal diffusivity of the sphere. In order to know the heat
transfer, the derivative of the equation that described the temperature in the fluid was
derived. The model was tested by analyzing mathematically the cooling of an orange
immersed in a well stirred fluid.

3 Description of the Modeling

The analysis starts by considering the energy equation combined with Fourier’s law
of heat conduction for solids, as described in (1). Equation (2) arises from stating that
thermal conductivity is independent of the temperature and position. By considering
spherical coordinates, Eq. (3) is obtained
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Introducing the dimensional variables or respective derivatives of temperature of
sphere (4), dimension (5), time (6), and thermal diffusivity (7) and simplifying, the
equation (3) takes the form of (8):

ρs = T1 − Ts

T1 − T0
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τ = αst
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Due to the fact that it is a second order balance with respect to the boundary spatial
variable, two boundary conditions are necessary, one is at the center of the sphere (9),
where symmetry conditions must be accomplished, and the other is at the particle
exterior surface (10), where the sphere surface and the fluid have the same temperature
if perfect mixing exists. Normally one condition for time is required (t = 0) and two
for the fixed spatial position (r = 0 and r = R). At time zero (t = 0), the temperature
of the sphere (Ts) corresponds to the initial temperature (T1), (Ts = T1)

r = 0
dTs

dr

⎪
⎪
⎪
⎪r=0 = 0 ≥≥ Γ = 0

∂ρs

∂Γ

⎪
⎪
⎪
⎪
r=0

(9)

r = R Tsolid = Tfluid ≥≥ Γ = 1 ρs = ρf (10)

The temperature in the sphere changes according to the time because the tank is finite;
therefore, in order to know the variation of temperature of the sphere in function of the
time it is necessary to realize an energy balance for the fluid in the tank. Introducing
the term V/V to include the mass (ms) and density of the sphere, we get (12). Q
represents the heat transfer from the sphere to the fluid
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Knowing the loss of energy, the energy total balance for the sphere in the tank is
(13):

Vfluid
dTfluid

dT
= − 3

R

ms

βs
ks

∂Ts

∂r
(13)

where Vfluid is the tank volume excluding the sphere. To be consistent with the units
it is necessary to add density (ρfluid) and specific heat (cp,fluid) of fluid. After, it would
be useful to substitute the volume and express ks in terms of density, specific heat
and thermal diffusivity of sphere as described in (14)

(Vfluid)

(
dTfluid

dt

)
(
βfluid · cp,fluid

) = − 3

R
Vsαβscps

∂Ts

∂r
(14)

In order to find the variation of energy in the fluid, it is necessary to substitute the
corresponding dimensional variables of fluid temperature (Tfluid) (15), distance (5)
and time (6), in Eq. (14) to get (16). For this last equation, the initial condition is that
at τ = 0,ρF = 1

Tfluid = T1 − ρfluid (T1 − T0) (15)

(
∂ρfluid

∂τ

)

= −3Vsβscps
(
Vfluid

) (
βfluid · cpfluid

)
∂ρs

∂Γ
(16)

The groups of Eqs. (8) and (16) can be solved by the Laplace transform solution
method. For the solution of (8), we need to consider ρs = u and τ = 0. The solution
is presented in Eq. (17).

{(
d2u

dΓ2

)

+ 2

Γ

du

dΓ

⎞

− Su = 0 (17)

Equation (17) has to be multiplied by Γ2 (22) to be solved by Bessel function as
presented in Eq. (18):

u =
⎟⎠

2

π
→

s

)(
1

Γ

)
(
C1senh

→
sΓ
)

(18)
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du

dΓ
=
⎟⎠

2

π
→

s

)

C1

[(
1

Γ

)→
s
(
cosh

→
sΓ
)− senh

→
sΓ

(
1

Γ2

)⎧

= dρs

dΓ
(19)

For the solution of (16), we consider ρfluid = ufluid and τ = s, which leads to
Eqs. (20) and (21).

S · ufluid − (ρfluid | τ = 0 |) = −3Vsβscps

(Vfluid)(βfluid · cpfluid)

∂ρs

∂Γ
(20)

S · ufluid − 1 = −3Vsβscps

(Vfluid)(βfluid · cpfluid)

∂ρs

∂Γ
(21)

Substituting (19) in (21) we get (22) to know ufluid:

ufluid =
{(

1

s

)( −3Vsβscps

(Vfluid)(βfluid · cpfluid)

)⎟⎠
2

π
→

s

)

C1

[(
1

Γ

)→
s
(
cosh

→
sΓ
)− senh

→
sΓ

(
1

Γ2

)⎧⎞

+ 1

s
(22)

For Γ = 1:

ufluid =
{(

1

s

)( −3Vsβscps

(Vfluid)(βfluid · cpfluid)

)⎟⎠
2

π
→

s

)

C1

[(
1

Γ

)→
s
(
cosh

→
s
)− senh

→
s

⎧⎞

+ 1

s
(23)

Equations (18) and (23) contains the term C1. To find the corresponding value, we
apply the second boundary condition in the sphere (Γ = 1 and ρs = ρfluid). After,
by solving simultaneously both equations, simplifying and putting in terms of, we
obtain (24)

ufluid =
[(−3

s

)(
Vsβscps

(Vfluid)(βfluid · cpfluid)

)

[→s − tanh
→

s]
⎨
(s)tanh

→
s +

⎨
3Vsβscps

(Vfluid)(βfluid ·cpfluid)

⎩
[→s − tanh

→
s]
⎩

⎤

⎦+ 1

s
(24)

Equation (24) can be transformed into (25):
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ufluid = − 3→
s

⎡

⎢
⎢
⎣

[→
s − tanh

→
s
]

([ (
Vfluid

)(
βfluid ·cpfluid

)

Vsβscps

⎧

s
→

stanh
→

s + (3)
[
s − →

s · tanh
→

s
]
)

⎤

⎥
⎥
⎦+ 1

s
(25)

Changing the signs and factorizing
→

s · tanh
→

s from the denominator, and dividing
the numerator by

→
s, Eq. (25) becomes:

ufluid = 3

⎡

⎢
⎣

[
1 − tanh

→
s→

s

]

⎨→
stanh

→
s
{[−(Vfluid)(βfluid ·cpfluid)

Vsβscps

]
s + 3

}
− (3) [s]

⎩

⎤

⎥
⎦+ 1

s
(26)

To solve this equation it is necessary to apply the Inverse Laplace transformation
(L−1) to both terms of the equation.

ufluid = 3L−1

⎡

⎢
⎣

[
1 − tanhh

→
s→

s

]

⎨→
stanh

→
s
{[−(Vfluid)(βfluid ·cpfluid)

Vsβscps

]
s + 3

}
− (3) [s]

⎩

⎤

⎥
⎦+ L−1

(
1

s

)

(27)

ufluid = 3L

⎡

⎢
⎣

[
1 − tanh

→
s→

s

]

⎨→
stanh

→
s
{[−(Vfluid)(βfluid ·cpfluid)

Vsβscps

]
s + 3

}
− (3) [s]

⎩

⎤

⎥
⎦+ 1 (28)

It is possible to transform the previous equation by using the Heaviside theorem of
partial fraction expansion. Firstly, the numerator and denominator of the first term are
divided by (1/s) leading to (29). This equation can be represented as shown in (30).

ufluid = 3L−1

⎡

⎢
⎣

[
1
s − tanh

→
s

s3/2

]

⎨
tanh

→
s→

s

{[−(Vfluid)(βfluid ·cpfluid)

Vsβscps

]
s + 3

}
− (3)

⎩

⎤

⎥
⎦+ 1 (29)

ufluid = 3L−1
[

N (s)

D (s)

⎧

+ 1 (30)
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The denominator contains one root for s = 0 and roots for
→

sk = iμk , for 1 ∀
k ∀ ♥, and sk represents the roots of tan sk = 3μk

3+
⎟(

Vfluid
) (

βfluid · cpfluid
)

Vsβscps

)

μ2
k

.

Therefore
[

N(0)
D≡(0)

]
= − B/3

1+B and
[

N(sk)
D≡(sk)

]
= 2B

9(1+B)+B2μk2
are obtained from where

−B = (Vfluid)(βfluid · cpfluid)

Vsβscps
.

To continue with the solution of Eq. (29), the Heaviside partial fraction expansion
theorem is applied to get (31):

ufluid =
[

B

1 + B
+ 6B

∑♥
k=1

eμk2s

9 (1 + B) + B2μk2

⎧

+ 1 (31)

Turning back to the variables ρfluid and τ established previously, Eq. (32) is obtained.
After, we express the equation in terms of time and temperatures as expressed in (33)

ρfluid =
[

B

1 + B
+ 6B

∑♥
k=1

eμk2τ

9(1 + B) + B2μk2

⎧

+ 1 (32)

T1 − Tfluid

T1 − T0
=
⎡

⎣ B

1 + B
+ 6B

∑♥
k=1

e
μ

k2 αst
R2

9(1 + B) + B2μk2

⎤

⎦+ 1 (33)

The increment in the fluid temperature allows the determination of the thermal dif-
fusivity of the sphere. Equation (34) is obtained to determine the temperature in the
fluid in function of time.

Tfluid = T1 + {T0 − T1}





⎡

⎣ B

1 + B
+ 6B

∑♥
k=1

eμ2
k

αst
R2

9(1 + B) + B2μk2

⎤

⎦+ 1

⎫
⎬

⎭
(34)

To calculate the heat transfer (35) we need to calculate the derivative of (36)

qr = −k
∂T

∂r
|r=R(4πR2) (35)

dT

dr
= [T0 − T1]

⎡

⎣6B
∑♥

k=1

−2tαsμk2

R3

e
μ

k2 αst
R2

9(1 + B) + B2μk2

⎤

⎦ (36)

qr = −k
⎨

4πR2
⎩

[T0 − T1]

⎡

⎣6B
∑♥

k=1

−2tαsμk2

R3

e
μ

k2 αst
R2

9(1 + B) + B2μk2

⎤

⎦ (37)
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Fig. 1 Variation of temperature of an orange when is immersed in a well stirred fluid (a) and effect
of B values on heat transfer (b)

3.1 Application

Equations (34) and (37) were used to study the cooling of an orange immersed in a
well stirred fluid. Chemical properties of orange and water were obtained from [3]
and [4]:

R = 0.045 m, T0 = 25 ⇔C, βorange = 950 kg/m3, horange = 15 W/m2 · K,

korange = 0.431 W/m2 · K, Cp,orange = 3.77 kJ/kg · K, α = 1.3 × 10−7 m2/s,

KH2O = 0.59 W/m2 · K, Cp,H2O = 4.189 kJ/kg · K

In this analysis two values of B are considering (B = 4 and B = 10), higher value
of B is an indicative, for example, of bigger tank dimensions. Figure 1a presents the
variation of temperature of the orange of radius R and at temperature T1 when it is
immersed in a well stirred fluid of temperature T0, in relation to the time. Figure 1b
shows that a greater heat interchange is achieved with a lower value of B.

It is possible to use Eq. (34) to estimate the thermal diffusivity of the orange, in this
case, it is proposed to find it by using the known values of its properties and compare
the Tf values with the estimation. By doing this process, the diffusivity value found
was 1.17 × 10−7 m2/s, a closer value to data reported (1.3 × 10−7 m2/s) [4]

4 Conclusion

The series of equations that lead to the modeling of loss of heat of a spherical
particle when it is immersed in a well stirred fluid was performed. Equations for
thermal diffusivity, heat transfer and for the calculus of temperature of the sphere in
function of time were obtained. Concordance between the value of thermal diffusivity
predicted by the model and data reported for an orange was observed.
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Concept of Dynamical Traps: Model Systems
of Human Actions and Experimental Evidence

Ihor Lubashevsky, Arkady Zgonnikov and Dmitry Parfenov

Abstract Dynamical traps as a new emergence mechanism related to the bounded
capacity of human cognition is considered. It assumes that individuals (operators)
governing the dynamics of a certain system try to follow an optimal strategy in
controlling its motion but fail to do this perfectly because similar strategies are
indistinguishable for them. This is described in terms of some neighborhood of the
equilibrium point, the region of dynamical traps, wherein each point is regarded
as an equilibrium one by the operators. So when a system enters this region and
while it is located in it, maybe for a long time, the operator control is suspended. A
simple model of oscillator with dynamical traps and the characteristic features of its
dynamics are discussed. Experiments on the balancing of a virtual pendulum were
conducted to examine the basic features of human control over unstable systems
that are expected to be affected by human fuzzy rationality. It is demonstrated that
practically only the dimensions of the phase space region wherein a given pendulum
trajectory is located depend on the subject age and skill as well as the pendulum
parameters determining the difficulty of the balancing. In contrast, the forms of
the distribution functions are the same for all the subjects. The data of the virtual
experiments are compared to the results of numerical simulation of the oscillator with
dynamical traps. The phase trajectories and the phase variable distributions are shown
to be similar for the two systems. In addition a chain of oscillators with dynamical
traps which mimics cooperative interaction of human operators is considered also.
It is, actually, demonstrated that the human fuzzy rationality can cause complex
cooperative dynamics in many-element ensembles.
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1 Introduction

Recent advances in the field of human control have given evidence to the fact that
humans do not generally operate systems under their control in a precise way. Main-
taining a system exactly at the desired position requires the ability of the human
operator to keep perfect awareness and to react immediately even to the smallest
deviations. Meanwhile, experimental studies have revealed that the considerable
response latency and the effects of noise in the sensorimotor system prevent human
operators from implementing the continuous control strategies (see, e.g., [1] and
references therein). Instead, the discontinuous (intermittent) control is found to be
efficient in the presence of time delays and random perturbations in human-controlled
processes [2].

This property of human behavior is a manifestation of the phenomenon often
referred to as human fuzzy rationality [3]. Up to now there have been a few
attempts to develop a mathematical formalism capturing the effects of human fuzzy
rationality. In particular, the basic model of human reaction threshold is commonly
used in applied studies, but still there is a lot of uncertainty about the intrinsic
mechanisms causing the anomalous behavior of systems under human control (see,
e.g., [4]). The dynamical trap model [5–7] being a certain version of the fuzzy thresh-
old concept is another alternative to the standard fixed-point attractor in complex
socio-psychological systems. Both of the two models capture the human fuzziness
in driving a system towards the desired end-state. They introduce a certain region
around the hidden equilibrium, where each state is treated as acceptable by the
operator.

In the present work we compare the results of numerical simulation of a simple
oscillator with dynamical traps and experimental data collected in balancing a virtual
pendulum to find out some general features caused by the human fuzzy rationality.
In addition a chain of such oscillators mimicking cooperative behavior of several
human operators in controlling a complex system is considered.

Dynamical Trap Model

To illustrate the dynamical trap concept, let us consider the following model of
oscillator in the phase space {x, v = ẋ}

v̇ = −Ω(v)κ2(x + ηv) + γβ(t) , (1)
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Fig. 1 The distribution functions and the phase portrait for the oscillator with dynamical traps
governed by Eq. (1), based on results of [6]. The used parameters are η = 1, Δ = 0.01, γ = 0.1,
and the space-time scales were chosen such that κ = 1 and vth = 1. The dotted lines match the
absence of dynamical traps, Δ = 1

where x is the position of the particle and v is its velocity. This model imitates the
dynamics of a system driven by a human operator to the stationary point x = 0,
v = 0 [7]. Here the ansatz

Ω(v) = Δv2
th + v2

v2
th + v2

(2)

such that Ω(0) ∞ 1 and Ω(v) ≥ 1 for |v| → vth describes the stagnation of the
operator actions in the region Qt = |v| � vth because in this case he just does not
know what to do since all the points in the region Qt ∀ {0, 0} seem equivalent to
him. Here vth may be regarded as a fuzzy threshold of the operator perception of the
system velocity. The parameter Δ ∞ 1 is the measure of dynamical trap strength,
the effective friction coefficient η > 0 and the frequency κ quantify the operator
actions at distant points {x, v} when the necessity of driving the system towards the
origin becomes well recognizable for him. The white noise β(t) with the amplitude
γ mimics the actions of uncontrollable factors.

The characteristic features of oscillations described by model (1) are demonstrated
in Fig. 1. They are: (i) the bimodal distribution P(x) of the particle position x , (ii)
the Laplace form of the velocity distribution P(v), and (iii) the form of the phase
portrait shown in Fig. 1 (right frame). Besides, the system dynamics may be treated
as a sequence of alternating fragments of motion outside the region Qt and inside
it. The action points where, in fact, the operator halts or resumes his control over
the system motion are effectively regarded as smooth transitions between the regular
and stochastic regimes [7].

2 Virtual Pendulum Balancing

We have analyzed the process of balancing an inverted virtual pendulum embedded
into viscous environment. The task of human stick balancing has been investigated
widely from various perspectives; studies based on both real-world and virtual exper-
iments are available (see, e.g., [8, 9]). However, up to now, attention was paid mainly
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to the in-depth understanding of the mechanical and psycho-motor aspects of human
control. The purpose of the present work is to elucidate some general properties of
human cognition. It regards the pendulum balancing as just a characteristic example
of dynamical processes controlled by humans. The effect of viscosity endowing the
pendulums with the over-damped dynamics allows us to appeal to the model of oscil-
lator in the two dimensional space {α, α̇}. Here the variable α is the angle between
the vertical axis and the line passing through the center of mass of the correspond-
ing pendulum, the variable α̇ is its angular velocity. It should be noted that without
human actions the dynamics of over-damped oscillators is described by the first order
differential equations and the corresponding phase space contains only one variable,
the angle α. However, the operator is able only to move the cart in controlling the
pendulum state. As a result the cart velocity becomes an additional phase variable,
which extends the system phase space and prompts us to regard the angle velocity α̇
as an independent phase variable. In other words, the system dynamics under human
control is determined not only by the stick angle but the angular velocity as well.

The motion of the analyzed virtual pendulum embedded into viscous environment
is described by the following dimensionless model:

ϑ α̇ = sin α − ϑ

l
v(t) cos α . (3)

Here ϑ is a time scale characterizing the pendulum fall without human control, l
is the characteristic pendulum size, and v is the current velocity of the cart motion
governed by the mouse movement. Equation (3) stems from the moment balance
of all the forces acting on a similar real pendulum embedded into highly viscous
liquid. It should be noted once more that the phase space of the given system has to
comprise not only angle α but also its derivative α̇. This assumption is due to the fact
that the operator controlling the system evidently perceives the angular velocity of
the stick and regulates the value of control effort λ(t) based on the current values of
both factors.

In order to conduct the virtual experiments, we developed a simple software tool
that implements the model described above. The operator has to maintain the angle
between the virtual stick and the vertical axis near the unstable equilibrium position
αeq = 0 by moving the cart via computer mouse.

Experiments

It has been found that for all the subjects the statistical properties of the pendulum
motion controlled by human actions are notably similar. Namely, the portraits formed
by irregular trajectories of the pendulum motion on the “angle–angular velocity”
plane and the distribution functions of the corresponding phase variables are of high
similarity for all the subjects.
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Fig. 2 The distribution functions of the angle α, the angular velocity α̇, and the phase portraits
obtained during balancing the inverted stick for different values of the fall time Tfall. Hear the
pendulum angel is measured with respect to the horizontal line

Let us discuss some of the found results in more details. The main parameter
of system (3) determining the pendulum behavior is the time scale ϑ that may be
interpreted as the value characterizing the fall time Tfall of the pendulum not affected
by the operator. Empirically we found the following relation between these values:
Tfall ≥ 4ϑ s. We figured out that for Tfall < 1 s all the subjects failed to perform task
most of the times. For Tfall > 4 s the subjects demonstrated perfect performance,
i.e., there were no registered failures in performing the task. In order to figure out
the dependency of the system phase portrait and the distribution functions of the
phase variables on the time scale parameter, we analyzed the data obtained during
the experiments for various values of Tfall. The results are represented in Fig. 2. It is
clearly seen that for two values of Tfall that are close to the opposite boundaries of the
feasibility domain the phase portraits and the variable distributions are self-similar in
structure. For Tfall in between these two values the results remain similar. Similar to
the oscillator with dynamical traps (i) the distribution function P(α) of the pendulum
angle α is bimodal, (ii) the distribution function P(α̇) of the angular velocity α̇ is
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Fig. 3 The chain of N beads under consideration and the structure of their individual phase space
Ri = {xi , vi } (i = 1, 2, . . . , N ). The formal initial i = 0 and terminal i = N +1 beads are assumed
to be fixed, specifying the equilibrium bead position

of the Laplace form, also (iii) the phase portraits are similar in geometry. Only the
characteristic scales are affected substantially by the value of the parameter ϑ .

3 Lazy Bead Model

As far as the cooperative interaction of human operators is concerned, the following
model captures some characteristic features of such human behavior. Let us consider
a chain of N “lazy” beads (Fig. 3). Each of these beads can move in the vertical
direction and its dynamics is described in terms of the deviation xi (t) from the
equilibrium position and the motion velocity vi (t) = dxi/dt depending on time t ,
here the bead index i runs from 1 to N . The equilibrium position xi = 0 is specified
assuming the formal initial (i = 0) and terminal (i = N + 1) beads to be fixed.
Each bead i “wishes” to get the “optimal” middle position with respect to its nearest
neighbors. So one of the stimuli for it to accelerate or decelerate is the difference

φi = xi − 1

2
(xi−1 + xi+1)

provided its relative velocity

ϑi = vi − 1

2
(vi−1 + vi+1)

with respect to the pair of the nearest beads is sufficiently low. Otherwise, especially
if bead i is currently located near the optimal position, it has to eliminate the rel-
ative velocity ϑi , representing the other stimulus for bead i to change its state of
motion. The model to be formulated below combines both of these stimuli within
one cumulative impetus ♥ (φi + ηϑi ), where η is the relative weight of the second
stimulus.
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When, however, the relative velocity ϑi becomes less then a threshold α, i.e.,
|ϑi | � α, bead i is not able to recognize its motion with respect to the nearest
neighbors. Since a bead cannot “predict” the dynamics of its neighbors, it has to
regard them as moving uniformly with the current velocities. So from its standpoint,
under such conditions the current situation cannot become worse, at least, rather fast.
In this case bead i just “allows” itself to do nothing, i.e., not to change the state of
motion and to retard the correction of its relative position. This feature is the reason
why such beads are called “lazy”. Below we will use dimensionless units in which,
in particular, the perception threshold is equal to unity α = 1.

Under these conditions the equation governing the system dynamics is written in
the following form

dvi

dt
= −Ω(ϑi )[φi + ηϑi + η0vi ] + γβi (t) . (4)

If the cofactor Ω(ϑi ) were equal to unity, the given system would be no more then a
chain of beads connected by elastic springs characterized by the friction coefficient η.
The term η0vi with the coefficient η0 ∞ 1 that can be treated as a certain viscous
friction of the beads moving via a medium into which the given system is embedded
has been introduced to prevent the beads from attaining extremely high velocities. The
factor Ω(ϑi ) is due to the effect of dynamical traps and is given again by ansatz (2).
Model (4) allows for random factors in terms of white noise βi (t) affecting the motion
of bead i with intensity γ.

Results of Simulation

In order to analyze the dynamical trap effect on its own the noise absence case
was studied first. The system dynamics was found to depend on the intensity of
“dissipation” quantified by the parameter η. When the parameter η is not too small
the system tends to get the regime of regular dynamics represented by a collection of
limit cycles of individual bead motion. It should be noted that these limit cycles could
be of complex form when the number of beads is not too large, namely, N � 10
[7]. Nevertheless for systems with large number of beads the resulting phase portrait
takes a rather universal form shown in Fig. 4 (left frame). However, the “time to
formation” TN , i.e. the mean time required for a given bead chain to get the steady
state regular dynamics grows exponentially as the number of beads increases. For
example, for beads with η = 1 this time can be approximated by the function

TN ≥ Tc · exp {N/Nc} with Tc ≡ 60 and Nc ≡ 13 (5)



158 I. Lubashevsky et al.

Fig. 4 The characteristic phase portrait of the steady state dynamics exhibited by systems without
noise and not too weak “dissipation” (left frame). The chain of 30 beads with η = 1 was used in
constructing the shown pattern where the limit cycles of each second bead are visualized. The right
frame depicts the characteristic time TN required for such a system to get the steady state dynamics
vs the number N of beads. The scatted points are the data obtained for each value of N on three
trials, η = 1 was used in simulation

(see Fig. 4 (right frame)). It enables us to pose a question about regarding the chaotic
dynamics of such systems for N ⇔ ∼ as a certain phase state.

Noise forces these systems to undergo two phase transitions as its intensity γ
increases. The first one can be categorized as the transition from the regular bead
motion to a cooperative chaotic bead motion. The latter means that the beads correlate
substantially with one another in motion but individual trajectories are rather irreg-
ular and the magnitude of this irregularity cannot be due to the present noise only.
The second transition is determined by the formation of highly irregular mutually
independent oscillations in the bead position. To illustrate the first phase transition
Fig. 5 depicts two phase portraits of the middle bead motion for different values of γ.
As seen, for γ = 0.01 the phase portrait looks like a regular limit cycle disturbed
by small noise. In contrast, when the noise intensity increases by two times, i.e.,
γ = 0.02, the corresponding phase portrait becomes rather complex in form and the
volume of the phase space layer containing the shown trajectory as a whole sharply
grows. Exactly the two features has enabled us to classify the found effect as a phase
transitions. It should be noted, that this phase transition from regular motion to sto-
chastic chaos, in contrast to the second transition to highly irregular motion, does not
manifest itself in the one-particle distributions of all the variables x , v, φ, ϑ ascribed
to the beads individually, so, it could be categorized as a “weak” phase transition.
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Fig. 5 The phase portraits of the middle bead motion of the 30-bead chain with η = 1 for two
values of the noise intensity γ = 0.01 and 0.02. In plotting these portraits bead trajectories of motion
during time interval about 2 × 104 were used

4 Conclusion

Nowadays the fact that the human control of unstable systems is characterized by
intermittency, time delay, and the effects of human prediction is well established.
However, the basic properties of human control are still rather far from being under-
stood well. The present research has been aimed at finding some universal properties
of human control by conducting experiments on balancing virtual pendulums.

The notion of dynamical traps was introduced to describe possible effects caused
by the bounded capacity of human cognition in ordering events or actions according to
their preference. Its particular implementation is that human beings as active elements
of a certain system cannot individually control all the governing parameters within
the accuracy required for stabilizing the system dynamics perfectly. Therefore one
chooses a few crucial parameters and mainly focuses attention on them. When the
equilibrium with respect to these crucial parameters is attained the human activity
slows down, retarding in turn the system dynamics as a whole.

We have dealt with a virtual pendulum whose dynamics is assumed to be over-
damped, which mimics the balancing in viscous liquid. We have found out that the
balancing difficulty, the operator age and skill affect mainly the amplitude of the
object motion only. The three features of the operator behavior remain the same;
they are (i) the general shape of both the angle and angular velocity distributions, (ii)
the two-peak structure of the angle probability density function, and (iii) the structure
of the phase portraits formed by the object motion in the phase space “angle - angular
velocity”.
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The obtained experimental data also contribute to the evidence for the inter-
mittency of human control. The most important, though, is the universality of the
distribution functions for all the subjects and all the considered models. This fact
could be possibly explained by the effects of learning how to balance a stick with
minimal efforts. This fact may enable us to pose a question about the existence of the
general laws describing human cognition near the reaction threshold, which must be
of probabilistic nature.

Moreover, one may even speculate that the obtained results give evidence to
the fact that the standard notion of fixed-point attractor may not be applicable in
dynamical systems where human role is crucial due to the phenomena of fuzzy
rationality.

By way of example, we considered emergent phenomena in chains of coupled
oscillators with dynamical traps. This system was studied numerically. As demon-
strated, without noise the system dynamics tends to the regime of regular bead motion
if the friction coefficient is not too small. However, the characteristic time required
for a given system to get this regime grows exponentially with the number N of beads.
It enables us to pose a question about regarding the chaotic transient processes as
a certain phase state in the limit N ⇔ ∼. When the friction coefficient becomes
sufficiently small the steady state dynamics of such systems can undergo transition
to chaotic bead motion even for chains with small number of beads. Depending on
its intensity noise can induce the formation of three characteristic phases, highly
irregular individual oscillations of the beads, the cooperative chaotic bead motion,
and the synchronized regular bead motion. It should be noted that the transition
between the regimes of regular and cooperative chaotic bead motion manifests itself
only the sharp growth of the volume of the phase space layer containing the bead
trajectories, whereas all the one-particle distribution functions does not change their
forms remarkably.
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Model of Cognitive Functions for Description
of the Creative Design Process with Computer
Support: Improving of the Interpretation
Method for the Computer Conceptual Re-Design

Jakub Jura and Jiří Bíla

Abstract This chapter describes model of the human cognitive functions, especially
these ones which are important for the creative process. The broad context of this
work is a development of the conceptual redesign method with computer support
(called CRDP—Computer Redesign Process). This method is based on postmodern
principles of the interpretation, on the respect to complexity of the creative process
and at the impossibility of its direct control. Psychological approaches (e.g. the mind
mapping [1] or creativity timing) are used in this interpretation method and its core
is a creating of the interpretation map. The aim of this submission is to describe the
emergent design processes for the purpose of their simulation and method’s HCI
improving. The model is made in Unify Modelling Language. The fractal approach
to the communication between user (designer) and software system (CRDP) was
outlined.

Keywords Unified modeling language (UML) · Cognitive science · Cognition ·
Interpretation · Conceptual design · Redesign · Human-Computer interaction

1 Introduction

Creative conceptual design is always nontrivial mental process—likewise its
computer support. Design can be conceived of as a purposeful, constrained, decision
making, exploration and learning activity [2]. This approach oriented us to the field of
Cognitive Science where the human factor play crucial role. The person—designer—
in his creative movements is very complex system. Authors designed the method of
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Fig. 1 Description of designing process with CRDP software and methodical support

computer support of the creative conceptual redesign process which is based on the
principles of emergence in the interpretation process [3, 4]. And here suggested
UML cognitive model facilitates a development of the mentioned method.

1.1 Computer and Methodical Support of Conceptual Design

There are many algorithms, methods and procedures (like a TRIZ/ARIZ or Morpho-
logical analysis) for the facilitating of the synthesis of the innovative concepts. One
of them is Computer ReDesign Process (CRDP), which was developed on Faculty
of Mechanical Engineering of the CTU in Prague (e.g. [5]). Inputs to the CRDP
software system (algorithm CRDP on the Fig. 1) are (1) three old solutions (vetera),
(2) criterions for a new solution and (3) formation parameters (fields of activities and
principles which form a new solution).

The output is a set of suggestions to an innovation (novum). The old and new solu-
tions are described in a specification language GLB [6, 7]. Global Context (GLB)
is a language, which conceptualizes the domain of the conceptual design and repre-
sents semantic properties of knowledge elements by means of pre-formed semantic
structures. System CRDP is equipped by the interpretation of their outputs. This
interpretation method helps user’s creative processes to find out the solution [3, 4]
(Fig. 1).

2 Knowledge Based UML Model

First step of our work was to create the part of the model, which represents selected
psychological pieces of knowledge. And they are fundament for continue modeling
of the emergent creative processes.



Model of Cognitive Functions for Description of the Creative Design Process 165

2.1 UML

Unified Modeling Language [8] is standard primarily developed for software engi-
neering, but it is possible to use them for the description of any systems in general.
UML is a graphical language and modeled subject is possible to describe by thirteen
types of diagram. We utilize only three of them: Class diagram for the description
of the structure properties, State diagram for the description of the class’s behavior
and Sequence diagram for the description of interactions between classes. Unified
Modeling Language was already used for modeling of the cognitive functions at the
field of transportation engineering by [9]. They used UML for modeling of the
driver attention and described it by the state diagram. Our approach to cognitive
modeling is not usual at the field of engineering psychology (and psychology in
general).

2.2 Lexical Analysis and Model

The skeleton of the UML model arises from the process of the lexical analysis
(e.g. [10]). Problem field of human cognition was described in nature language (e.g.
Sternberg and Sternberg 2012) and names of the classes were derived from the nouns
(and nouns phrases) used in the text after the selection (the selection rules are part
of the OMT lexical analysis). In the similar way were obtained the names of the
attributes from the adjectives. And associations and operations were obtained from
the verbs and verbal phrases.

2.3 Structure of the Knowledge: Class Diagram

The statical structure of the described system is represented by the UML class dia-
gram. This view comes out from the lexical analysis and on this basis was made the
skeleton of this model (V1).1 However this one contains uncovered logical spaces
(inconsistency) which has been resolved by the addition of the connecting pieces
of knowledge. This improved model is possible to see at Fig. 2. (And is mark as V2).

It is possible to assume that the model will be improved by its next use (e.g.
Chap. 3). Model can be enriched with the model of reality (in this case veterum,
novum, system CRDP, GLB language etc.) and its mental representation. There is
opening questions about borders of the modeled system.

1 V1 … the first version.

http://dx.doi.org/10.1007/978-3-642-45438-7_3
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Fig. 2 Structure of the cognitive functions described by the UML Class diagram V2

2.4 Behavior of the Class “Creative Process”: State Diagram

The state diagram is used for the description of the behavior of the given class. State
diagrams were made for few key classes only. One of them is the class “Creative
process phases” (see Fig. 3). Emergence of a new solution is possible to model as
a violence of the structure invariant of the common transformation (e.g. [11, 12]).

Creativity phases are here related to the arousal2 of the organism and genomic
expression. We suppose, that the arousal cycle (Fig. 4—bold line), which has a
fractal character, is possible to derive from the communication interaction (which
is also fractal—Fig. 6). For the description of the communication process is used
UML sequence diagram (Fig. 5). Description of these phases was derived from the
Deep neurobiology of E. Rossi [13].

2 Our conception of the “arousal” is different from Rossi and is comprehended as a unipolar psycho-
physiologic variable related to the Ascendant Reticular Activation System (ARAS).
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Fig. 3 State diagram of the class Creative process phases

3 Description of the CRDP Interpretation Method by the UML
Sequence Diagram

Sequence diagram notice a communication between classes. Since the UML model
of cognitive functions is oriented to the redesign process, so the sequence diagram
view the process of the communication between user (designer) and CRDP soft-
ware primarily (V1).

3.1 Incremental Improving Loop: Impact to the Model

First version of the model V0 was built on three classes only—Designer, CDRP
interface and interpretation map. This model was improved and the internal designer
structure was deeper elaborated. Also veterum and novum description was added
(see Fig. 5).

Considered next improve of the model suppose an elaboration of the psychological
processes and interconnections between the state diagram of the creative process class
and the mentioned sequence diagram. Especially the fractal communication patterns
should be considered. Unfortunately the UML standard does not support it.

4 Fractal Property of Real Communication Act

Ideal dyadic communication act is simple exchange (communication action and
reaction … as it is consider e.g. in UML sequence diagram). The basic unit of it
we can call the big exchange. But real communication act is fractal process. Big
exchange precedes smaller exchange and it precedes smaller etc. (as it is shown on
Fig. 6). It is easy to observe this phenomenon at the example of human communication
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Fig. 4 Description of the development of the creative process related to the arousal of the organism
(Source [13])

or in a nature [14]. Preceding small act prepare the communication context at the
both sides.

We have the hypothesis that the high level of the synchronization of the internal
or external communication “punctuation” (term by [15]) leads to the emergence
of novelty. This synchronization can cause effect like a resonation and can signifi-
cantly affect the human arousal process, which [13] related to the creative process
(Chap. 2.4).

http://dx.doi.org/10.1007/978-3-642-45438-7_2
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5 Meta-Concepts Background

Usually we construct theories in the way of the reduction of the complexity.
Meanwhile in the case of the description of the creative process (or divergent think-
ing) this assumption is not useful. If we want to help user in his creative task, we have
to fully respect his nature internal processes and this processes are very complex,
irreducible and has fractal character.

5.1 2nd Order Cybernetics

One of the theoretical approaches, which respects principles above is 2nd order
cybernetics—cybernetics of cybernetics [16]. We used principle of the circular
causality and suppose the autopoiesis [17] at the level of emergence of a new creative
solution.

5.2 Postmodern Approach

Following approach have very strong connections to the 2nd order cybernetics, but is
more philosophically oriented. Our approach respects the plurality of points of view,
impossibility of direct control or finally the whole process in which new solution
arises is analogy to Maturana’s “languaging” [18]. The object modeling principles
supports this approach.

6 Conclusion

The first and second version of the psychological model of the designer cognitive
process was created. The model is expressed in the graphical language UML. One of
objectives of this work is to develop mentioned design method CRDP—especially
their human-computer interface. At the base of the model is possible to fit proposed
CRDP interpretation method to their user (their psychological limits and modes
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of work). Moreover, this submission is a step to integration (or reintegration) of
psychological knowledge from the field of cognition and creativity (in a given con-
text). The submission also outlines the course for the further work on this issue.
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Dynamical Systems Approach to Atherosclerosis
Modeling

Johan L. A. Dubbeldam

Abstract Mathematical modeling of clinical systems is difficult as these usually
comprise complex systems with many interacting components. We show how it is still
possible to model these systems by making use of a dynamical systems point of view.
By calculating bifurcation diagrams, one can discriminate between different models
and clinical parameter regimes can be identified. The emphasis in this presentation
will be in particular on models of atherosclerosis, but the suggested approach is
applicabe to a much wider class of clinical models.

Keywords Dynamical systems · Modeling · Bifurcation analysis · Atherosclerosis

1 Introduction

Making mathematical models for the development of certain diseases is a tedious
effort in which contacts between people performing experiments and mathematicians
are indispensible. However, even then it turns out that many parameters in the system
are not known or vary greatly from person to person. It would therefore be a great
advantage to be able to discriminate between models without knowing the detailed
parameters. Furthermore, it would be beneficial to have a clue from the mathematical
model in what range physical parameters are supposed to take values.

We illustrate here how to obtain results from mathematics that can be helpful
in a clinical environment by giving some examples of predictions of a model that
may be verified in practice. Finally, we discuss how mathematical models consisting
of ordinary differential equations discussed here could be extended to systems of
partial differential equations in which the interaction between the many components
are much more involved.
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2 Model

The model (evolution equations) are given as:

ṁ =
(

aL

(1 + α)(1 + L)
− β − c

)

m, (1a)

Ṁ = cm − bML

1 + L
, (1b)

L̇ = dm

f + m
− eLM − L, (1c)

Ḟ = bLM

1 + L
. (1d)

The physical interpretation of this coupled system is described in [1] and we will
only give a brief explanation of the terms and parameters here. All parameters and
variables in the model are dimensionless and nonnegative. The dot denotes the time
derivative and since the equation for F (1d) decouples from the system, we only
consider the three equations for m, M and L. In this model, which is called model
A, in accordance with Ref. [1], the shear stress α is simply considered a parameter.
The systems describes how the components that constitute a plaque that resides in the
artery evolve in time. The meaning of the parameters and variables is as follows. The
monocytes are denoted by (m). They evolve due to conversion into macrophages (M)
at a rate c, diffusion out of the plaque region and they are recruited from the blood due
to signalling of oxidized LDL molecules (L). The macrophages arise from conversion
of monocytes, but are in turn converted to so-called foam cells by the ingestion of
LDL. The LDL concentration is determined by the ingestion of macrophages and
the recruitment due to oxidation of LDL molecules that migrate from the blood to
the plaque region where they are oxidized almost immediately by the monocytes. In
this model the foam cells, form a residue which remains after the macrophages have
ingested LDL and die. This model which captures a number of important aspects
of the progression of atherosclerosis for long times will next illustrate how clinical
consequences can be derived from even a qualitative model like this.

We first remark that when studying the equilibria of Eqs. (1a–1d) it can be easily
seen that the system contains two classes of equilibria. The first class is of the
following form {(0, M0, 0)|M0 > 0} and contains infinitely many equilibria. The
second class of equilibria consists of two points (m±, M±, L∗). The expressions of
m±, M±, and L∂ can easily be calculated or found in [1] and will not be reproduced
here.

We should further remark that the system (1d) does not exhibit choatic behavior
for the range of parameters that we investigated. It turns out that the saddle point has
a two-dimensional attracting manifold that extends to infinity and therefore there the
systems is approximately two-dimensional and chaos can be ruled out. For chaotic
phenomena in blood(vessels) we refer to [2, 3]
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2.1 Bifurcation Analysis

In order to obtain results about the dynamics of the system Eqs. (1a–1d) we perform a
bifurcation analysis. It turns out to be advantageous to not simple perform this analy-
sis in one parameter, but rather in two parameters. In this way we obtain that the bifur-
cation diagram is organized by a so-called Bogdanov-Takens point, which denotes
a point where the system has two eigenvalues zero. From bifurcation theory [4] is
then known that two curves, one curve of Hopf bifurcations and a curve of limit
cycle bifurcations emerge from this point. We can now illustrate the dynamics in the
system by studying the different regions of the bifurcation diagram. Of course, an
important question is which parameters should be chosen for the bifurcation diagram.
The intake of cholesterol modeled by parameter d is an obvious control parameter.
The second choice is less straightforward. We found that the choice of b leads to
some interesting results. First of all it allows curves in the bifurcation diagram to be
calculated analytically. Second, as b models the life time of the macrophages it gives
insight in the time scale of the biochemical processes in atherosclerosis. In fact we
find that atherosclerosis can be prevented by a very low intake of cholesterol and,
more surprisingly, a sufficiently long life time of the macrophages.

This can be understood as follows. If the macrophages live longer then they will
ingest more LDL particles. In this way the macrophages impede the growth of LDL
and consequently the plaque growth will settle down to a stable value. A shorter life
time of the macrophages on the other hand leads to larger production of LDL, which
in its turn make the monocyte concentration grow, leading eventually to an increased
macrophage concentration. Because of the intricate interplay of the components a full
bifurcation analysis is needed to predict the dynamical behavior. The full bifurcation
diagram is published elsewhere [5], but the dynamics of the different regions in the
bifurcation diagram are displayed in Fig. 1.

Because the full dynamics of the system is now known it is possible to compare
our results with clinical measurements to see if one of the parameter regions fits the
data and so the model can be validated. Using such a validation we can progress by
developing a partial differential equations model.

3 PDE Model for Atherosclerosis

The growth of plaque in an artery is, of course, much more complicate [6, 7] than can
be described by a simple system of ODEs. One should typically take into account
that α in Eqs. (1a–1d) is not a parameter, but depends on the flow and the shape of
the plaque. We started to construct a model for such a system in which the plaque
is actually treated as a moving boundary. This problem is complicated as it involves
many different time scales and the blood flow contains in general some recirculation
regions. We will not reproduce the Navier-Stokes equations here and the coupling to
the plaque equations. We will illustrate the consequences of the flow profile on the
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(a)

(c) (d)

(b)

Fig. 1 The four different types of dynamics that arise from varying the parameters b and d. In
the first phase diagram a there are only type I equilibria, and therefore the M-axis is a globally
attracting manifold. In b the system has gone through a saddle node bifurcation, but the type II
equilibria are unstable. In c the system exhibits bistability. There is an unstable limit cycle and a
stable equilibrium of type II. In d the unstable limit cycle has disappeared and depending on the
initial conditions, the system arrives at the invariant line (0, M0, 0) or in (m+, M+, L∗)

plaque growth by Fig. 2 in which the plaque and the flow profile is shown at different
moments in time. Of course, the model that we implement should still give the same
results as the ODE model for the limiting case of a plaque that is smeared out over
the artery wall. For different plaque shapes, however, which are usually also found
in experiments, the plaque growth can vary considerably.

4 Conclusion

We have illustrated using a simple model for atherosclerosis how bifurcation tech-
niques can help constructing models for clinical practice. Using simple ODE models,
validation is possible, after which a more elaborate (PDE) model can be constructed.
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(a) (b)

(f)

(d)

(e)

(c)

Fig. 2 The streamlines vary enormously in time due to the response of the growth of the plaque in
the artery. In a the stenosis has just started and in f an enormous recirculation zone is present. To
take this into account in the model, numerical simulation with time dependent grids are necessary
or one has to resort to asymptotic methods

Moreover, we have illustrated how bifurcation theory can help to identify parameter
ranges which are consistent with experiments.
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Deterministic Modeling Spatio-Temporal
Dynamics of Delay-Induced Circadian
Oscillations in Neurospora crassa

Dmitry Bratsun and Andrey Zakharov

Abstract We propose a spatially extended deterministic model with time delay for
the circadian oscillations in the fungal species Neurospora crassa. The temporal
behavior of the system is governed by a two variable model based on the nonlinear
interplay between the FRQ and WCC proteins which are products of transcription of
frequency and white collar genes. We show numerically that the model accounts for
various features observed in experiments. Spatio-temporal protein patterns excited
in Neurospora in complete darkness are studied for different initial conditions. It
is shown that basal activation of transcription factors has a strong effect on pattern
formation.

Keywords Time-delay · Circadian rhythms · Neurospora · Pattern formation

1 Introduction

Circadian rhythms are biological rhythms that are common to almost all living
organisms. A remarkable feature of these rhythms is that they are not simply a
response to 24 h environmental cycles imposed by the Earth’s rotation, but instead
are generated internally by cell autonomous biological clocks. After the decades of
research, the genetic mechanism of circadian oscillations has been widely recognized
as a core of this phenomenon. As it is known now, a feedback influence of protein
on its own expression can be delayed which leads to non-Markovian phenomena in
this system [1]. It is evident that the delay prevents the system from achieving equi-
librium, and results instead in the familiar limit cycle oscillations. The deterministic
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Fig. 1 Conidiation of
Neurospora growing on
solid agar medium

and stochastic properties of gene regulation taking into account the non-Markovian
character of gene transcription/translation were studied in [2, 3].

In fact, a filamentous fungus Neurospora crassa (hereinafter N.c.) is an excellent
model system for investigating the mechanism of circadian rhythmicity because
of the wealth of genetic and biochemical techniques available. N.c.’s rhythms of
asexual spore-formation produces easily assayed bands of conidia spores in cultures
growing on solid agar medium (Fig. 1). A number of mutations are available that
affect circadian rhythmicity, and molecular analyses of some of these genes have
contributed to models for the circadian oscillators that are currently thought to be
applicable to many other organisms. No wonder that since the rhythm was discovered
in the N.c. [4], this organism has become a research polygon in the declared area.

With advances in molecular biology, understanding of N.c.’s circadian clock has
improved, and main genetic components of this clock have been determined [5].

In this work, we propose the model of circadian oscillations in the N.c. which
is a further simplification of models proposed by Smolen et al. [6] and Sriram and
Gopinathan [7]. In this paper we have used the deterministic description of the system
focusing on its spatial dynamics. In the part of spatially extended delay-induced
circadian oscillations our modeling seems to be first in the literature. Perhaps this
can be explained by a prevailing tradition in the study of circadian oscillations. It is
possible also that this is due to computational difficulties that arise when studying
reaction-diffusion systems with time delay. To overcome these difficulties, we have
proposed a new method for the numerical study of such systems [8].
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Fig. 2 Network architec-
ture of the circadian rhythm
molecular components in
Neurospora

2 Two Variable Model of Circadian Rhythms in Neurospora

The simplified graphical depiction of protein network architecture responsible for
circadian rhythms is presented in Fig. 2. The primary molecular components of the
circadian oscillator are the frequency (frq) and white collar genes (wc-1 and wc-2)
which form a feedback loop comprised of both positive and negative elements [5].
The white-collar proteins WC-1 and WC-2 are transcription factors which form a
heterodimeric complex known as the WCC complex. The WCC acts as a positive
regulator of FRQ by activating its transcription in the dark, while the frequency
protein dimerizes and then acts as a negative regulatory element by binding to and
inhibiting the function of WCC. As the circadian cycle progresses the FRQ protein
is phosphorylated and degraded which allows the cycle to begin anew. Also, these
species can be removed by association with WCC to form FRQ/WCC complexes.
Furthermore the production of WC-1 and FRQ proteins are subject to a delay on the
order of several hours. The previous experimental efforts have highlighted also the
importance of degradation of the core clock components particularly that of FRQ,
plays in establishing the period of the circadian rhythm.

In our model we assume there are two primary components: the heterodimeric
WCC complex and the FRQ protein. We start our analysis from a set of biochemical
reactions constituting the mechanism of bioclock

F + F
k F

1−→ F2, W + W
kW

1−→ W2, (1)

F2
k F−1−→ F + F, W2

kW−1−→ W + W, (2)

DF
0 + W2

k F
2−→ DF

1 , DW
0 + F2

kW
2−→ DW

1 , (3)



182 D. Bratsun and A. Zakharov

DF
1

k F−2−→ DF
0 + W2, DW

1

kW−2−→ DW
0 + F2, (4)

DF
1 (t)

kF−→ DF
1 + Ft+αF , DW

1 (t)
kW−→ DW

1 + W t+αW , (5)

F
BF−→ ∅, W

BW−→ ∅, (6)

F + W
k−→ ∅, (7)

∅
AF−→ F, ∅

AW−→ W, (8)

where F and W stand for number of isolated monomers of FRQ and WCC respec-
tively. In (1)–(8) the reactions of dimerization and dedimerization are given by (1)
and (2), the transitions between operator-site states for each protein due to binding
and unbinding some dimer to the promoter of corresponding gene are reflected by
(3) and (4), the time-delayed productions of corresponding proteins is given by (5),
the linear and non-linear degradation are described by (6) and (7), the basal tran-
scriptions are given by (8) respectively. By supposing that reactions of dimerization
(1)–(2) and binding/unbinding (3)–(4) are fast in comparison with the processes
of production/degradation of proteins (5)–(8), we can conclude that their dynamics
quickly enters into a local equilibrium and arrive finally to the following two-variable
spatially extended system (the procedure for derivation of the equations is not pre-
sented here, see [9] for more details):

β F

βt
= 1

1 + 4K F
1 F

(

AF + kF
K W

1 K F
2 W 2(t − α)

1 + K W
1 K F

2 W 2(t − α)
− BF F − k FW

)

+ D

(
β2 F

βx2 + β2 F

βy2

)

, (9)

βW

βt
= 1

1 + 4K W
1 W

(

AW + kW
K F

1 K W
2 F2(t − α)

1 + K F
1 K W

2 F2(t − α)
− BW W − k FW

)

+ D

(
β2W

βx2 + β2W

βy2

)

.

(10)
Here D is the coefficient of protein diffusion in the cell. For simplicity, we assume
that the diffusion coefficients of FRQ and WCC proteins are equal. Even supposing
that the delay is defined by the length of the path traveled by RNA polymerase
along the gene, one obtains different values since the wc-1 gene (it is part of the
locus NCU02356.5) is a one and a half times longer than the frq gene (it is in the
locus NCU02265). But the exact values of the delays are currently unknown, and
for simplicity we assume that time delays are equal to the same value α . As one
can see, the model (9)–(10) includes a positive feedback loop in which activation of
FRQ production by WCC increases the level of FRQ, leading to an increase in the
level of WCC itself. The negative feedback loop in which FRQ represses the frq gene
transcription by binding to the WCC is also modeled. Generally, the temporal part of
model (9)–(10) is a further simplification of models proposed by Smolen et al. [6]
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and Sriram and Gopinathan [7]. Despite of its simplicity, the equations (9)–(10) still
reflect all the characteristic features of circadian rhythms in N.c.

In (9)–(10) we also have taken into account a basal transcription governed by
rates A (8). In eukaryotes, an important class of transcription factors called basal or
general transcription factors (GTFs) are necessary for transcription to occur. Many
of these GTFs do not actually bind DNA but are a part of the large transcription
preinitiation complex that interacts with RNA polymerase directly.

As it is known, the N.c. not only has the advantage that powerful genetics and
molecular techniques are able to be performed on it, but it has another advantage—
the circadian rhythms of conidiation are easily monitored on Petri dishes. To observe
the phenotypic expression of the clock, conidia are inoculated at some place of a
Petri dish. After growth for a day in a constant light, the position of the growth
front is marked and the culture is transferred to constant dark. The light-dark transfer
synchronizes the cells in the culture and sets the clock running from subjective dusk.
Following transfer, the growth front is marked every 24 hours with the aid of the red
light, which has no effect on the clock. The growth rate is constant and the positions of
the readily visualized orange conidial bands (separated by undifferentiated mycelia)
allow determination of both period and phase of the rhythm. Thus, the computational
domain ∂ ∈ (x, y) where the protein fields are solved numerically can be interpreted
as a flat area of two-dimensional physical space of a Petri dish occupied by the
mycelium of N.c. In fact, N.c. is a multicellular organism, and the translation of
proteins occurs within individual cells. But we can consider the mycelium of the
fungus as a whole due to the important feature of N.c.: the mycelium of the organism
consists of branched hyphae which show apical polar growth. The fungal hyphae are
typically composed of multiple cells or compartments demarcated by septa with the
central pore sometimes up to 0.5µm in diameter. Thus, the protein produced in the
separate cells of N.c. seems to be able to cross the intercellular walls, and we can
assume an existence of joint molecular cloud of protein inside a whole organism.

In order to perform two-dimensional simulations of circadian oscillations gov-
erned by Eqs. (9) and (10), we define the domain ∂:(0 < x < 200, 0 < y < 200)

with zero-flux boundary conditions for concentrations of FRQ and WCC proteins.
The initial-boundary value problem (9)–(10) has been solved by a finite difference
method was described in detail in [8]. The explicit scheme was adopted to discretize
equations. The equations have been approximated on a rectangular uniform mesh
400 × 400 using a second order approximation for the spatial coordinates.

3 Spatio-Temporal Nonlinear Dynamics

In the numerical calculations we have used the following fixed values of parameters:
K F

1 = 5, kF = 8 nM/h, K W
1 = 5, kW = 4 nM/h, K F

2 = 5, BF = 0.3 h−1, K W
2 = 5,

BW = 0.4 h−1, k = 30 nM−1 h−1, α = 6 h, D = 0.01 m2 s−1. These values have
been taken from [6], plus we add some our own, e.g. for dimerization and diffusion.
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Fig. 3 The time series and
phase portrait (inset) of FRQ
(solid line) and WCC (dashed
line)
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In Fig. 3, we plot the time series and phase portrait of the total number of FRQ
and WCC proteins obtained by solving nonlinear equations (9)–(10) for zero basal
transcription. The period of oscillations is about 22.65 h. Above the Hopf bifurcation
point, in the phase space there is an unstable stationary point bounded by a stable
limit cycle (Fig. 3, inset). All trajectories are attracted to the periodic solution. No
subcritical oscillations have been found, and the transition seems to occur smoothly.

Let us discuss now the results of numerical simulation of spatially extended model
(9)–(10). Two different cases of initial conditions will be considered. In the first case
shown in Fig. 4, the initial state of the system was the random distribution of the FRQ
and WCC proteins over the entire area of integration. It corresponds to a situation
where each node initially has its own phase of oscillations. At time t = 0, all these
rhythms are independent, but in the process of evolution they enter into the nonlinear
interaction, which results in different types of spatio-temporal behavior. From the
point of view of biology, a random distribution of initial phases is somewhat artificial,
since a synchronization of biorhythms in cells occurs at the stage of embryonic
development of the organism. Nevertheless, the numerical study of the system with
random initial conditions allows developing a deeper understanding of the potential
of the system to self-organize and to evaluate its probable forms of pattern formation.

Since FRQ and WCC are always in anti-phase, we can choose only one of them
to illustrate the system dynamics. Figure 4 presents the patterns formed by the con-
centration of FRQ protein shown for four consecutive points of time. As it can be
seen from figure, the nonlinear dynamics of spatially extended system consists of
two distinct oscillatory modes. One is the oscillations occurring in spatially ordered
interacting cells (Fig. 4, t = 500). The characteristic size of the cells increases slowly
as time goes on. Thus, this is a typical quasi-standing wave pattern. The second oscil-
latory mode is a spiral traveling-wave pattern (Fig. 4, t = 3000). These waves arise
from selected initial disturbances (Fig. 4, t = 500). Each spiral wave travels outward
in all directions from its source. It continues until the spiral wave pattern occupies
the entire domain ∂. Note that if the front of wave looks more or less orderly, by
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entering deeply inside the secondary instability area there have appeared numerous
secondary centers of the excitation of the spiral waves. The nonlinear interaction
between them leads to the formation of chaotic pattern (Fig. 4, t = 4100).

Thus, the evolution of the system passes through two stages: first, a slowly time-
varying cellular structure has appeared, which synchronizes the oscillations of dif-
ferent nodes. Since the system is far away from equilibrium, the fluctuations give rise
to several spiral traveling waves which immediately break up in the core inducing
the spatiotemporal chaos. Even though the level of the protein oscillates randomly
in space, the system is in standby mode. We will show below that some external or
internal stimuli can synchronize the system in space and time.

Let us consider the second case of initial conditions, when evolution of the system
starts from a small local perturbation of FRQ (or WCC) against zero field in the
remaining part of the domain ∂. It was established experimentally that the front of
mycelium propagates radially in all directions with the constant velocity starting from
the location where it was placed initially. It should be emphasized that the local phase
of the oscillations caused by the regular concentric traveling wave is determined by
the phase of the initial perturbation in the bud, and the spatio-temporal pattern as a
whole is formed during the morphogenesis of the organism.

Thus, the oscillations in the bud can be referred to as a “global clock” of Neu-
rospora. Figure 5 presents the pattern after 125 hours of the evolution (left) and the
one-dimensional cross-section of the protein field (right). We see that N.c.’s conidia
have formed six bands that correspond to the period of oscillations about 22.65 h
(compare with spatial pattern shown in Fig. 1).

4 Effect of Basal Transcription on Pattern Formation

The interesting properties of the circadian rhythms reflected in our model, are the
synchronization and disappearance of oscillations with an increase of the basal pro-
duction rate of FRQ or WCC, which occur, for example, under constant light condi-
tions. Figure 6 shows the various dynamic regimes in the parameter plane spanned
by two rates of basal transcription. The Hopf bifurcation curve divides the parameter
plane into the part where the stable periodic solution exists (inside the balloon), and
the part where there is stable steady state (outside the balloon). One can see that
when the rate exceeds some critical value, the amplitude of oscillations becomes
zero (Fig. 6, inset).

It should be noted that our model predicts that the period of oscillations remains
robust to increases in A while the amplitude of oscillations evidently does not. It
is interesting to note that this behavior directly contradicts the predictions made
by some conceptual models directly correlating period length to the amplitude of
oscillations in the core molecular clock components. This fact could be crucial for
the experimental proof which of mechanisms is really responsible for oscillations in
the N.c.
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Fig. 4 The evolution of FRQ concentration without the basal transcription. The frames from left
to right and from up to down correspond to times t = 500, 1200, 3000, 4100 respectively

The spatial phase synchronization is the process when spatially distributed cyclic
signals tend to oscillate with a repeating sequence of relative phase angles. We
have noticed above that some external stimuli can synchronize the spatio-temporal
behavior of the system. The external control of this active medium can be performed,
for example, via the basal transcription factors. We found that system dynamics is
particularly sensitive to the basal transcription of the WCC protein. Figure 7 presents
the density plots of FRQ concentration at time t = 5000 for four different values
of AW and AF = 0. With increase of WCC produced via the basal transcription
machinery, the spatio-temporal structure of the system becomes more ordered. In
contrast to the distinct chaotic pattern at AF = AW = 0 (Fig. 7a) formed due to
break up of spiral waves, the structures shown in Fig. 7b–d for AW = 1; 2; 2.8
respectively are frozen in space, i.e. each point oscillates periodically in accordance
with its phase imposed by spatial pattern. The period of oscillations increases slightly
with growth of the rate of basal transcription AW . We found that further increase
of AW causes a sharp rise in FRQ synthesis and the termination of oscillations. It
corresponds to a crossing of the Hopf bifurcation curve indicated in Fig. 6.
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Fig. 5 The density plot of FRQ protein after 125 h of evolution developed from the initial dis-
turbance in the center (left); transverse profiles of FRQ (open squares) and WCC (black squares)
proteins at time t = 125 (right)

Fig. 6 The neutral curve for
the Hopf bifurcation (solid
line) shown in the parameter
plane spanned by two rates
of basal transcription. The
bifurcation diagram showing
the amplitude of oscillations
of FRQ versus AW for AF = 0
is plotted in the inset
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5 Conclusions

The spatially extended deterministic model for delay-induced circadian oscillations
in the fungal species Neurospora crassa has been proposed in the paper. The model
is suitable to analyze both temporal and spatial dynamics of this organism. The
core of the model describing the temporal behavior of the system is based on the
interplay between two dynamical variables, concentrations of the FRQ and WCC
proteins. Time delay in the processes of transcription/translation is, perhaps, the
easiest source of oscillations in the genetic systems. It exists, apparently, because of
the slow movement of RNA polymerase along the gene. It is important to note also
that the gene processes are not just slow but also are compound multistage reactions
involving the sequential assembly of long molecules. Thus, these processes should
obey Gaussian statistics with a certain characteristic mean delay time.

We have shown that our model of circadian oscillations based on the time delay
mechanism in transcriptional regulation accounts for various features observed in
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Fig. 7 Density plots of the concentration of the FRQ protein at time t = 5000 for AF = 0 and
different values of AW : a 0; b 1; c 2; d 2.8

experiments such as effect of basal transcription factors, spatio-temporal synchro-
nization and robustness to parameter variation.
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Adaptive Numerical Simulations
of Reaction-Diffusion Systems
with Time-Delayed Feedback

Dmitry Bratsun and Andrey Zakharov

Abstract A new algorithm for calculating the dynamics of spatially-extended
reaction-diffusion systems where the current state depends on the whole or par-
tial previous evolution of the system is proposed. The algorithm is based on a finite
difference method and involves an adaptive optimization of data storage by stor-
ing in a computer memory not all previous nodal data, but only some selected of
them, called the base states. The intermediate states are restored by interpolation
between the base states. The use of this technique allows the numerical calculations
to be implemented on computer systems without large RAM memory. The algorithm
efficiency is shown in three numerical examples.

Keywords Time-delay · Finite difference method · Adaptive algorithm for data
storage · Reaction-diffusion systems

1 Introduction

Dynamical systems with delay are abundant in nature. They occur in a wide variety of
physical, chemical, engineering, economic and biological systems and their networks
[1]. The mathematical description of delay dynamical systems will naturally involve
the delay parameter in some specified way. This can be in the form of differential
equations with delay or difference equations with delay or even might include integral
forms. A differential equation with delay describing a dynamical system belongs to
the class of retarded functional differential equations [2]. In the present chapter we
are focusing on a numerical solution of spatially extended dynamical systems with a
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constant discrete delay or history term. Such problems arise in many areas of science
ranging from fluid mechanics [3] to complex systems of biological nature [4].

Among the methods of solving delay partial differential equations the method
of lines is the most common [5]. These numerical techniques are composed of two
consecutive steps. In the first step, the partial derivatives with respect to the spa-
tial direction are replaced by some approximations. At this stage one can apply
the finite difference methods [6], the Galerkin finite elements method [7] or some
pseudo-spectral method [8]. In the second step, the resulting semi-discrete systems
are integrated in time. These systems are composed of stiff ordinary delay differential
equations.

It should be noted that the method of lines works well only for one-dimensional
equations. If one needs to simulate the equations in more than one spatial direc-
tion, one has to use more sophisticated numerical methods (see, for example, [9]).
Moreover, if there are non-local terms in the system, this method also cannot be
applied.

Generally speaking, the most common numerical method for spatially extended
systems is a finite difference method. The explicit finite difference scheme allows it
to be implemented as a time recursion which computes a solution at current time from
solution samples at earlier times. The simplest explicit scheme requires knowledge
of data fields at only one previous time step. However, in order to find the solution
at current time to spatially extended system with delay it is necessary to store the
data of all nodal data within the range of delay time. In practice, the implementation
of this approach makes sense only for low dimensional systems with small delays.
Otherwise, the amount of operated data, and hence the calculation time, become so
large that it is impossible to carry out a complete numerical study of the system.

In this paper we propose the adaptive finite-difference method for evolutionary
reaction-diffusion problems which involves an optimization of data storage.

2 Numerical Method for Evolutionary Reaction-Diffusion
Problems with Time Delay

Let us consider the system of nonlinear kinetic equations of diffusion type:

αU
αt

= f (U(t), U(t − β)) + D∂U, (1)

where U(x, y, z) is the set of physical (or chemical) variables that define the non-
linear kinetics in the absence of diffusion, ∂ is the Laplacian operator in Cartesian
coordinates x , y and z. The nonlinear function f in (1) consists of both conven-
tional and time-delay terms. For simplicity, we assume that the time delay β is fixed,
although it is not principal for what follows. The system (1) must be supplemented
by initial and boundary conditions for U. Several dynamical systems in biology,
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optics, economics, ecology, etc., can be described by delay differential equations of
the form (1).

The numerical study of spatially extended dynamical system is usually performed
using the finite difference method. This method is conventionally considered to be
the simplest numerical method for solving partial differential equations. The explicit
scheme has a distinct advantage, since it is the easiest to implement and the least nu-
merically intensive coupled with its reliability. Unfortunately, it has one significant
drawback: there is a strict limitation on the time step to ensure the numerical stability.
Nevertheless, the popularity of the explicit scheme to researchers only grows with
time, as the modern analysis of nonlinear dynamical systems is increasingly becom-
ing not just a search for the stationary solution of the system, but also the study of its
nonlinear dynamics. In addition, the high-performance computing systems can com-
pensate for the disadvantages of the explicit method. Yet, two of the key issues that
arises in computer simulations, are delays in transmitting data between processor to
memory and small processor cache memory. These architecture problems manifest
themselves clearly in the numerical solution of delay differential equations.

Let the spatial domain ρ be discretized by three orthogonal regular grids based
on cubes with spatial subdivisions of h:

xi = ih, i = 0, Nx ; y j = jh, j = 0, Ny; zk = kh, k = 0, Nz, (2)

whereas time is subdivided into intervals of Γ . Each node of the grid (2) represents
a certain region, and its value of U is a measure of the average value of the region.
The aggregate of nodal points at fixed time we refer as a time slice. If the system (1)
is characterized in terms of a nodal network, one needs to work with an approximate
form of the equations. We rewrite the system (1) in the finite difference form using
central differences for spatial derivatives and forward difference for time derivative:

Un+1
i, j,k = Un

i, j,k + Γ( f (Un
i, j,k, Un−L

i, j,k )+

+ D

h2 (Un
i+1, j,k +Un

i−1, j,k +Un
i, j+1,k +Un

i, j−1,k +Un
i, j,k+1+Un

i, j,k−1−6Un
i, j,k)), (3)

where L is the number of time steps performed within the range of time delay β . As it
can be seen from (3), to calculate the field at time n+1 one needs to know the data not
only in the previous moment of time n, but also at time n − L in the past. If the time
lag β is large, the number L is also large. For example, for the numerical integration
of delay differential equations in [10] authors have used the forward-Euler method
with storage of all delayed quantities for later calculations. They have noticed that
integration time steps were reduced until no significant difference was seen after
further reduction. The final step size was about 10−5. By taking into account large
value of delays (5–10), one can conclude that they were forced to store the data
for about a million time steps! It is obvious that such a straightforward approach
can not be applied to spatially extended systems with delay since it would demand
unrealistically large computer resources.
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The explicit method is known to be numerically stable and convergent whenever

Γ <
h2

2 max |U| . (4)

If the integer number of time steps does not fit into the time delay, then the field at
current time cannot be constructed. In this case, one must either generate the missing
field by interpolating the two nearest neighbors, or fix the time step to a predefined
value. In the latter case, the delay should be a multiple of time step (as in [9]).

To resolve all these difficulties, we propose to store the nodal data of not all time
slices, but only some of them, which we call as base slices (Fig. 1). The values of
variables for the intermediate time slices are restored then by interpolating the data
of the base slices, stored in the computer memory. Depending on the smoothness
of U and the grid dimension, the various types of interpolation can be used. The
second idea of the algorithm is a usage of the optimal number of base time slices. It
is assumed that their allocation density within the range of time delay β may vary
(Fig. 1). This density supposed to be determined by the smoothness of the function
U that allows controlling the accuracy of calculations. This approach also reduces
error when a variable-step solver dynamically adjusts the time step size.

Let us define the function

G(t + Γ) = max

( |U (t + Γ, x, y, z) − U (t, x, y, z)|
U (t, x, y, z)

)

,

(x = 0, Nx ), (y = 0, Ny), (z = 0, Nz), (5)

which characterizes the relative rate of change of U. Then we introduce the impor-
tant parameter K , which means that each K -th time slice in the data stream within
delay interval should be considered as a base slice. When the function U changes its
value rapidly, one should use all the data within interval of delay: K = 1. In fact, it
corresponds to the storage of the entire data stream. For reaction-diffusion problems
considered in the present work, we have determined empirically that this case occurs
at G > 0.1. For smaller values of G(t) the algorithm can be used without significant
loss of accuracy. In order to minimize the interpolation error and to provide a suffi-
ciently high rate of calculations, the parameter K should take value from the interval
[1, 20].

The greatest positive effect of the method is found to manifest itself if the function
(5) changes very slowly (G < 0.01). In this case, we can store just only every 20th
time slice. For larger values of K one cannot meet the specified accuracy of the
calculations. Thus, one can use the empirical rule

K = β

Γ(1 + exp(2−50G))
, (6)

for finding the optimal number of base slices. It allows to specify the allocation
density of base time slices depending on time-varying function G(t) (Fig. 1).
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Fig. 1 Schematic diagram of the adaptive method of data storage. Each time slice represents a
nodal network at the corresponding time step. The base time slices are indicated by B

Fig. 2 Data interpolation
scheme for non-base time
slice (white plane) using data
of base time slices stored in
RAM

It is obvious that the main problem in the proposed method is restoring the nodal
values for all non-base time slices. By taking into account that the number of base
slices is time-dependent, we have used Newton’s interpolation polynomial:

PN (t − β, x, y, z) = R(UBL1(x, y, z)) + (t − β − tBL1)

R(UBL1(x, y, z), UBL2(x, y, z)) + · · ·
+ (t − β − tBL1)(t − β − tBL2) . . . (t − β − tBL N )

R(UBL1(x, y, z), . . . , UBL N (x, y, z)), (7)

where R are the divided differences of the corresponding order N , UBL N (x, y, z)
and tBL N are the function value and time for N -th base time slice respectively. The
procedure (7) is performed for each grid node, where the values of base slices play
the role of interpolation nodes. If the function U is sufficiently smooth, one can
construct the polynomial using only two neighboring base layer, which significantly
reduces the computation time (Fig. 2).

Finally, note that if the problem has a term depending on entire evolution of the
system (history term), the technique described above does not change significantly.
In this case one needs to keep the base time slices throughout the entire evolution of
the system. Thus, the method can be easily generalized to more complex cases.
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3 Numerical Examples

In this section we present three numerical examples of the application of the data
storage optimization technique described above. We demonstrate that this procedure
can be applied to the equations which include functional equations with a constant or
variable time delay in one or more spatial dimensions, differential integral equations
with a spatially non-local delay term and partial delay differential equations with
complex spatio-temporal dynamics.

3.1 Partial Differential Equation with Constant Delay Admitting
Exact Solution

The first example was taken from the paper by Zubik-Kowal and Vandewalle [11].
We consider a linear partial differential equation with a constant delay argument

αU (t, x)

αt
= 1

10 + 40t2

α2U (t, x)

αx2 + e−4t2
U (t − 1, x) + g(t, x), (8)

for t ∞ [0, 20], x ∞ [−5, 5]. The function g(t, x) is selected in the form

g(t, x) = e−x2
(

1 + t
1 − 2x2

5 + 20t2 + (1 − t)e−4t2
)

(9)

in such a way that the exact solution of the problem (8, 9) becomes

U (t, x) = te−x2
.

In fact, the equation (8, 9) can be classified as a delay partial differential equation
in the one spatial dimension with a constant time delay. We define the numerical
error as

E(t) = max
∣
∣U num(t, ih) − U (t, ih)

∣
∣ . (10)

The evolution of the error (10) as function of time for t ∞ [0, 20] and h = 0.05 for
different values of the parameter K is shown in Fig. 3. One can see that since the
function is changing slowly, the adaptive method saves roughly each 20th time slice.
In [11] the problem (8, 9) has been solved by the method of lines with the waveform
relaxation technique. Comparing the accuracy of their method one can conclude that
our adaptive method is approximately equal to Jacobi/Pickard waveform relaxation
scheme with about 20 iterations at each time step.
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Fig. 3 Errors as a function
of time for t ∞ [0, 20] for
Example #1 (8, 9)
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3.2 Model of Spatial Spread of Infection: System
of Reaction-Diffusion Equations Accounting
for a Spatially Non-Local Term with a Discrete Delay

The second example is based on the model of spatial spread of infectious diseases
with a fixed latent period suggested by Li and Zou [9]. It is assumed in the model
that an infectious disease in a population has a fixed latent period and the latent
individuals of the population may diffuse in the one spatial dimension. The model
is given by the following system of non-linear reaction-diffusion equations with a
discrete delay accounting for the latency and a spatially non-local term caused by
the mobility of the individuals during the latent period:

αS(t, x)

αt
= μ + DS

α2S(t, x)

αx2 − d S(t, x) − r I (t, x)S(t, x), (11)

α I (t, x)

αt
= DI

α2 I (t, x)

αx2 − τ I (t, x) + π

≥∫

−≥
r I (t − β, y)S(t − β, y) fα(x − y)dy,

(12)
where t > 0, x ∞ →. Here S(t, x) stands the susceptible part of the total population
that consists of those individuals that can be infected; I (t, x) denotes the individuals
that capable of infecting others. In was found in [9] that the problem (11, 12) has
the traveling wave solutions in some ranges of parameters. In that work the initial-
boundary problem has been solved by the method of lines. However, authors have
noted that the method of lines is very useful in solving a reaction diffusion system in
the absence of time delay and spatial non-locality. But their model (11, 12) contains
a time delay representing latent period as well as a non-local term resulted from the
mobility of the latent individuals, and the method cannot be applied directly. So, they
were forced to develop special technique in order to transform this system into one
without non-locality and to apply the method of lines [9]. It is clear that the authors
developed the technique for a concrete problem and this technique cannot be easily
applied to other problems.
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Fig. 4 Delay induced trav-
eling wave observed in the
system (11, 12) with para-
meters: μ = 5, d = 0.5,
r = 0.5, DS = 10, DI = 10,
τ = 1, β = 1.005
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Our method is free from such disadvantages. It can be easily applied to the problem
(11, 12). Figure 4 presents the traveling wave solution developing from step-function
taken as the initial condition. It is found that the wave spreads at a speed C = 4.96
which is very close to the value C = 4.9974 obtained in [9].

3.3 Model of Spatially Extended Delay-Induced Circadian
Rhythms

Finally, we show that our method can be applied to the problem in more than one
spatial dimension. Let us consider the model of the circadian oscillations in Neu-
rospora crassa developed by authors in [12]:

α F

αt
= 1

1 + 4K F
1 F

(

AF + kF
K W

1 K F
2 W 2(t − β)

1 + K W
1 K F

2 W 2(t − β)
− BF F − k FW

)

+ D

(
α2 F

αx2 + α2 F

αy2

)

, (13)

αW

αt
= 1

1 + 4K W
1 W

(

AW + kW
K F

1 K W
2 F2(t − β)

1 + K F
1 K W

2 F2(t − β)
− BW W − k FW

)

+ D

(
α2W

αx2 + α2W

αy2

)

. (14)

Here F and W stand for concentrations of proteins and D is the coefficient of protein
diffusion in the cell. We define a two-dimensional domain ρ: (0 < x < 200,
0 < y < 200) with zero-flux conditions for protein concentrations imposed at the
boundary of the domain. The initial condition was a random distribution of the protein
concentrations. In the very beginning of the simulation when one needs to know
the spatial fields within the interval of delay, it was approximated by the harmonic
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Table 1 The speedup of calculations using proposed algorithm of data storage. Each numerical
integration was performed over range 0 < t < 1000 starting from the same initial conditions

K 1 2 5 10 20 Adaptive algorithm

Time, s 7012 2320 913 720 665 909
Speedup, times 1 3.02 7.68 9.74 10.54 7.71

functions with random amplitude, phase and frequency. The initial-boundary value
problem (13, 14) has been solved by finite difference method described in the previous
section. The explicit scheme (3) was adopted to discretize equations. The equations
and boundary conditions have been approximated on a rectangular uniform mesh
400 × 400 using a second order approximation for the spatial coordinates.

Our results have been tested to be robust with regard to time and space mesh
refinements. All models were programmed in Delphi and simulated on AMD Athlon
64 3800+(2.41hHz) computer.

In the numerical calculations we have used the following fixed values of para-
meters: K F,W

1 = 5, kF = 8 nM/h, kW = 4 nM/h, K F,W
2 = 5, BF = 0.3 h−1,

BW = 0.4 h−1, k = 30 nM−1h−1, β = 6 h, D = 0.01 m2s−1.
We have carried out the numerical experiments to see how the proposed method

saves the computer resources (see Table 1). It is found that when K = 2 (each 2nd
time slice is base), the calculation is about 3 times faster, but for K = 20 it is just 10.5
time faster. The reason for such nonlinear dependence is the growth of calculations
related with the interpolation of the spatial fields.

The main question is how does the change of parameter K affect the accuracy
of the resolution of spatio-temporal structures? Due to the strong nonlinearity of the
system (13, 14), even small deviations of the period, amplitude and phase of spatially
extended oscillations could lead to significant changes in the structure. Figure 5
presents the density plots of protein F concentration after 1000 h of evolution for the
different numerical schemes. The first figure (Fig. 5a) corresponds to the standard
approach when all the nodal data is stored in the computer memory (K = 1). If
we store only half of the data (K = 2), the spatial distribution of reactant shown in
Fig. 5b seems to be almost unchanged. In the case K = 20 the result of the evolution
depicted in Fig. 5c changes qualitatively. It becomes evident when comparing the
selected areas of the field with the reference field shown in Fig. 3a. For example, if
K = 20 there is no any spiral wave in the selected area indicated in Fig. 5c. In contrast
with it the spiral wave is clearly observed in Fig. 5a. The numerical scheme with the
adaptive algorithm demonstrates an excellent result, since the final spatio-temporal
structure shown in Fig. 5d coincides with the reference one. On average, the adaptive
numerical scheme speeds up the calculation in 7.7 times.
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Fig. 5 Density plots of the concentration of the F protein at time t = 1000 for the different
numerical schemes: a K = 1; b K = 2; c K = 20; d the adaptive algorithm

4 Conclusions

In order to study spatio-temporal dynamics of reaction-diffusion systems with time-
delayed feedback, a novel adaptive algorithm of the numerical simulation of such
systems has been proposed. The algorithm based on a finite difference method in-
volves storing in a computer memory not all, but some selected nodal data, and the
subsequent interpolation to determine intermediate values. The algorithm has been
applied to simulate three different initial-boundary problems. It is shown that the
adaptive numerical scheme can speed up the calculation in 7.7 times without visible
changes in the amplitude and phase of spatially extended oscillations.

The work was supported by the Department of Science and Education of Perm
region (project C26/244), the Ministry of Science and Education of Russia (project
1.3103.2011) and Perm State Pedagogical University (project 031-F).
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Extracting the QRS Complexity and R Beats
in Electrocardiogram Signals Using
the Hilbert Transform

Ricardo Rodríguez, Adriana Mexicano, Salvador Cervantes, Jiri Bila
and Rafael Ponce

Abstract This paper presents a novel approach for the problem of detecting and
extracting the QRS complex of electrocardiogram signals for different kinds of
arrhythmias. First, an autocorrelation function is used in order to obtain the period
of an electrocardiagram signal and then the Hilbert transform is applied to obtain R-
peaks and beats. Twenty three different records extracted from the MIT-BIH arrhyth-
mia database were used to validate the proposed approach. In this testing has been
observed a 99.9 % of accuracy in detecting the QRS complexity, being a positive
result in comparison with other recent researches.

Keywords Hilbert transform · Electrocardiogram signals · Autocorrelation

1 Introduction

The processing of Electrocardiogram (ECG) signals has become an important area
in medicine [1]. It helps to detect and predict the majority of heart ailments [2].
A medical doctor is able to interpret ECG signals according to the knowledge and
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experiences obtained overtime. However, some human mistakes can appear while
interpreting the signal, mainly due to recorded vibrations or the scale of the waveform
[2, 3]. ECG records are obtained by sampling bioelectric currents and are composed
of a P wave, a QRS complex and a T wave; the QRS represents ventricular depolar-
ization and is the most important part of the ECG signal [4], from this is obtained
the R wave and the maximum amplitude in the R wave is known as the R-peak.
ECG processing presents many challenges for signal analysis and pattern recogni-
tion because the ECG signal extracting process can produce unwanted changes and
variations in the signal recording and reduce the reliability of some sensitive para-
meters of QRS complex [5, 6]. Goya et al. in [2] claimed that it is necessary the use
of an adequate signal processing to yield reliable diagnostic parameters for clinical
diagnostics. In this sense, several signal processing algorithms [4, 7–18] have been
developed to noise removal, data compression and parameter extraction [19].

For example in [4] an EMD algorithm (empirical mode decomposition method)
has been used for QRS complex detection; similarly, in [7] an ensemble empirical
mode decomposition (EEMD) and the K-nearest neighbors (K-NN) classifier were
used. In [8] classification with support vector machine were used for ventricular
fibrillation detection on ECG signals. In [9] to improve the classification, different
wides were applied to remove P and T waves using the spectral entropy, heartbeat
interval features and the RR-interval. In [10] the Hilbert transform is reported to
be used for R-peak and QRS onset and offset detection, in [11] is used the first
differential of the ECG signal and its Hilbert transformed data to locate R wave
peaks.

In [12] wavelets were used to reduce the training time and to denoise the ECG
signal in combination with Savitsky-Golay filter [13] or with a low-pass-filter [14].
In [15] the use of autocorrelation function is reported to improve the noisy immunity
on heart rate estimation over fetal electrocardiography (FECG). In [16] and [17]
adaptive low-pass filters and Hilbert transform respectively were used to remove
noise peaks from the ECG signal. In [18] powerline interference was reduced with a
notch filter and high frequency noise was suppressed with a 40 Hz lowpass filter.

This chapter is focused on the analysis of ECG signals by means of applying the
autocorrelation function to obtain the period of a cardiac cycle and the application
of the Hilbert transform to detect the real R-peaks from an ECG. Obtained results
shows that the performance of the proposed method reported a sensitivity of 99.94 %
and a 99.73 % of accuracy in QRS complex detection.

The rest of the paper is organized as follows: Sect. 2 presents a brief description of
electrocardiograms signals, the band pass filter, the autocorrelation function and the
Hilbert transform used in this work for detecting the QRS complex from an ECG.
Section 3 shows the obtained results after applying the proposed method. Finally,
Sect. 4 presents conclusions and future work.
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Fig. 1 Band pass filter output of the ECG signal of record 103 in MIT-BIH database [20]

2 Extracting the QRS Complexity Using Autocorrelation
and the Hilbert Transform

ECG signals allow to represent the cyclical contraction and relaxation of human
heart muscles. Heart muscle activity is controlled by electrical pulses which are
transmitted through a nerve network; such electrical pulses are enough strong to be
sensed by electrodes placed on the human skin [2, 21]. In general, the complex of
an ECG signal is represented by the QRS variables as shown in Fig. 1. In order to
emphasize the QRS complex, a band pass filter with pass band frequencies can be
used. This filter is used to remove high frequency and power-line noise from the
original signal. The band pass filter is given by the convolution of the original signal
with the low-pass filter and high-pass filter. In time-domain the pass-band filter is
given by (1)

r(α) = ((x(α) ∗ h1(α)) ∗ h2(α)) (1)

where x(α) stands for the raw ECG signal, h1(α) is the low pass filter, h2(α) is the
high pass filter, and r(α) is the band pass filtered of the ECG output. In this work, a
band pass filter of (5–15) Hz was used; the band pass filter output of the channel-1 is
presented in Fig. 1 The derivative output of the ECG signal allows to remove baseline
drifts and motion artifacts. The derivative of the filtered ECG signal was calculated
to obtain the fall from the R peak to S (see Fig. 2 which indicates the minimum
slope of the filtered ECG signal). The derivative output also presents the high slope
points which indicate that the rise of the signal from Q to R corresponds to the max-
imum slope [22]. The first order differentiation of the filtered ECG can be obtained
using (2)

r(α) = r(α) − r(α − 1), α = 0, 1, . . . , n − 1 (2)

where n is the total number of samples. Figure 2 shows the first order differentiation
of the filtered ECG. The autocorrelation function of the ECG time series is calculated
by the analysis of the filtered ECG signal dynamics. Autocorrelation is used to detect
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Fig. 2 Derivative output of ECG filtered signal of record 103 in MIT-BIH database, window of 2 s
length

Fig. 3 Autocorrelation function of the filtered ECG signal dynamics for one instance of a window
of 2 s=720 steps. a represents the filtered ECG signal. b represents the autocorrelation function of
the above filtered ECG signal

the similarities between the signals r(α) and r(α + h) with a time-lag of factor h. In
the proposed calculation a duration of 2 s for the filtered ECG is considered in order
to find the exact duration of one cardiac cycle (for this signal). The autocorrelation
function used in this work is calculated by (3)
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Λh = E [
(rα − μα)(rα+h − μα+h)

]

σασα+h
(3)

where the time-lag of h = 1, . . . , n. Figure 3 shows a 2 s window of the filtered ECG
signal from the MIT-BIT record 103. In Fig. 3a, the filtered ECG signal is shown. In
Fig. 3b, autocorrelation function of the filtered signal is presented. The approximate
interval between two cardiac cycles according to the autocorrelation function is
around 290 samples, it means around 0.8 s. According to [22] the approximate R-R
interval between two cardiac cycles is from 0.4 to 1.2 s. In Fig. 3b, it is shown that the
maximum amplitude shows a three cycle duration of the filtered signal, which was
obtained from the output of the autocorrelation. For the time varying ECG signal,
the Hilbert transform is used for envelope detection. The detector is based on the
envelope of the Hilbert transform as can be seen in Fig. 3. In Fig. 3a, the envelope
of the Hilbert transform is shown superimposed alongside the differentiation output.
Figure 3b, shows the Hilbert transform of the filtered ECG time series. The maximum
peak obtained in the envelope of the Hilbert transform output is the zero crossing
point of the differentiation output. The Hilbert transform of r(α) is given by (4).

r̂(α) = H(α) = FFT −1(x(α) ∗ h(α)) (4)

where FFT −1 stands for the Inverse Fast Fourier Transform, the vector h is created
with the values in (5)

1 for i = 1, n/2 + 1
2 for i = 2, 3, . . . , n/2
0 for i = n/2 + 2, . . . , n

(5)

and the vector x stores the Fast Fourier Transform (FFT ) of the ECG signal r(α).
The FFT is given by (6)

x(α) =
n∑

i=1

r(i) • ω(i−1)(α−1)
n (6)

where n is the length of ECG signal r(i), and ωn = e(−2π i)/n is an nth root of unity.
The Hilbert transform, as shown in (4), is obtained by solving the inverse FFT

of the convolution of the vectors x(α) and h(α) using (7)

H(α) = (1/n)

n∑

α=1

(x(α) ∗ h(α))ω−(i−1)(α−1)
n (7)

The analytic signal is expressed as in (8)

ra = r(α) + îr(α) (8)

And its instantaneous phase angle in the complex plane can be defined as (9)
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Fig. 4 Hilbert transform of the differentiation output of the ECG signal dynamics for one instance
of a window of 720 samples (i.e., 2 s). a shows the differentiation output of the ECG signal, and the
envelope of the Hilbert transform superimposed on its differentiation output. b the Hilbert transform
of the above ECG signal is shown

Θ(α) = tan−1
(

r̂(α)

r(α)

)

(9)

The envelope B of Θ(α) is presented by (10)

B =
√

r2(α) + r̂2(α) (10)

The envelope B is always positive, and it will have the same magnitude and slope of
the original signal r(α) at or in the vicinity of its local maxima.

The maximum point of the Hilbert transform envelope represents the R-peak point
in the QRS signal. However, it is an approximation of the current R-peak of the ECG
signal (see Fig. 4). To identify the real R-peak point, the maximum point is searched
within a fixed window of 74 samples from the position of the R-peak.

After that, the Q point is located by means of a search of the minimum point in
a window of -13 samples back from the R-peak position. In a similar way, the S
point is located by searching the minimum inside a window of +13 samples from
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Fig. 5 Detection of the QRS points of filtered ECG signal

the R-peak position. Figure 5 shows the detected QRS points in the ECG signal using
the methodology presented in this paper. Once we obtain the QRS points of the
filtered ECG signal we determine the number of beats per minute of the ECG signal.
In order to perform this, the number of R-peaks detected by the Hilbert transform
were counted. Then, the duration in seconds was obtained by dividing the duration
in minutes over 60. Finally, the number of beats per minute (bpm) was obtained by
dividing the number of R-peaks (beatcounts) over the duration in minutes, as can be
seen in (11)

bpm = beatcounts

duration_in_minutes
(11)

3 Computational Results

In order to validate our approach, 23 different records (100–124) of the MIT-BIH
arrhythmia database [20] were used. The records were sampled at 360 Hz, with 11-bit
resolution over ±5 mV range. Each record has 30 min and 5.556 s of two channel
long. The performance was analyzed using the following parameters:

a) Sensitivity: Se(%) calculated as shown in (12) indicates the percentage of cor-
rectly classified beats among all beats.
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Se(%) = TP

TP + FN
∗ 100 (12)

b) Positive predictivity: +P(%) calculated as shown in (13) indicates the percentage
of the correctly detected beats from the total number of beats.

+ P(%) = TP

TP + FP
∗ 100 (13)

c) Detection error rate: e(%) calculated as shown in (14) corresponds to the per-
centage of false detections over the total number of detected heartbeats.

e(%) = FP + FN

TP + FN
∗ 100 (14)

where, True Positives(TP) represent the number of positive detections that corre-
sponds to the annotations of the specialist, False Positives(FP) stand for the number
of detections that do not correspond with the annotations of the specialist and False
Negatives (FN) correspond to the number of heart beats that were annotated by the
specialists, that were not detected. The performance of our method using the MIT-
BIH database is shown in Table 1. On average, the proposed method for detecting
the QRS complex presents a 0.10 % of detection error rate, a positive prediction of
99.73 % and a sensitivity of 99.94 %.

In comparison with other similar researches, [4] using an EMD algorithm reported
a positive predictivity of 99.97 % and sensitivity of 99.97 % for the R-Peak detection,
using records from Fantasia database. Benitez [11] using the Hilbert transform on
the MIT-BIH database had a positive prediction of 99.93 %, a detection error rate
less than 0.8 % and sensitivity of 99.94 % meanwhile in [23] is reported a sensitivity
of 99.95 %, a positive predictivity of 99.94 % and a detection error rate of 0.12 %
(see Table 2)

From this comparison, it can be observed that the proposed approach using auto-
correlation function and Hilbert transform produces competitive results against other
approaches, and in this case, with a better detection error rate. Future testing of this
approach with Fantasia database could compare the results obtained against the
reported ones in [4].

4 Conclusions

This paper has presented a method for detecting the QRS complex of ECG signal,
using autocorrelation function and the Hilbert transform techniques. Results show
that applying our method we obtain an average positive predictive value of 99.73 %,
Sensitivity of 99.94 % and detection error rate of 0.10 % in the QRS complex for
the (100–124) records of MIT-BIT arrhythmia database. Because of the complicated



Extracting the QRS Complexity and R Beats in Electrocardiogram 211

Table 1 Results of the proposed method in terms of Sensitivity, Positive predictive, and Detection
error rate for the records (100–124) in MIT-BIH arrhythmia database

MIT-BIH record Se(%) +P(%) e(%)

100 100.00 100.00 0.00
101 100.00 94.95 0.05
102 99.86 100.00 0.13
103 100.00 100.00 0.00
104 99.82 99.77 0.44
105 99.76 99.76 0.46
106 99.90 99.95 0.15
107 99.95 99.85 0.18
108 99.88 100.00 0.11
109 100.00 99.80 0.19
111 99.90 99.95 0.14
112 100.00 100.00 0.00
113 100.00 100.00 0.00
114 99.80 99.78 0.31
115 100.00 100.00 0.00
116 99.95 100.00 0.04
117 99.93 100.00 0.06
118 100.00 100.00 0.00
119 100.00 99.89 0.10
121 99.94 100.00 0.05
122 100.00 100.00 0.00
123 100.00 100.00 0.00
124 100.00 100.00 0.00
Average 99.94 99.73 0.10

Table 2 Comparative of the
proposed work against related
work

Work Se(%) +P(%) e(%)

Proposed 99.94 99.73 0.10
[11] 99.94 99.93 0.80
[23] 99.95 99.94 0.12

dynamics of the ECG signals, and its time-variant nature, we consider that, obtained
results are promising for extracting the QRS complexity and R beats in electrocar-
diogram signals.

As a future work we propose the feature extraction of each heart beat and automate
the classification of cardiac arrhythmias using multilayer perceptron neural network
with backpropagation learning technique.
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Analyses of the Chaotic Behavior
of the Electricity Price Series

Radko Kříž and Štěpán Kratochvíl

Abstract Electricity price is by its features like mean-reversion, high volatility rate
and frequent occurrence of jumps different from other commodities. These differ-
ences are mainly caused by non-storability of the electricity, which need to balance
supply and demand in real time. Due to these features, electricity price behavior
seems somewhat chaotic. In this chapter we will introduce methods for investigating
whether or not electricity spot prices can be described by usual time series, stochastic
models. For this reason we will estimate the largest Lyapunov exponent and the 0–1
test for chaos. We will do a case study on the EPEX Phelix spot index.

Keywords Chaos theory ·Electricity spot price ·Time series analysis · Phase space
reconstruction · Hurst exponent · Lyapunov exponents · 0–1 test for chaos

1 Introduction

Forecasting electricity energy prices began in the 1990s, at the beginning of the
liberalization process. It is very important for electricity traders to forecast electricity
prices with the highest possible precision as the precision of the forecast is connected
to the trading strategy and thus with profit or lost.

The price depends on the demand and supply and on the costs of transportation
in the grid. The first two features are strongly dependent on the weather, economic
situation, government interventions etc. These dependencies result in a very complex
fluctuation of electricity prices, which may seem to be slightly chaotic. The price is
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set by an interaction between supply and demand and in set in auction at a single
time for the whole 24 h of the following day. This approach is unlike the usage of
time series models (autoregressive type models like AR, ARMA or ARIMA) as it
goes against the assumption, that with another value (another hour), the information
set would be extended.

The electricity spot prices can also be split up into deterministic and stochastic
parts. The deterministic part describes the seasonality and all the periodic patterns
(intra-day, intra-weak, peak, weekend patterns). This part is easily observable and
we can describe it simply. The stochastic part (also called volatility), on the contrary,
is unobservable and seems chaotic. GARCH type models can be used in applying
the stochastic approach for modeling volatility. Unfortunately these models can be
applied untill chaotic behavior is proved.

As was noted above, if the need for chaotic description is proven, it will not be
possible to use the usual stochastic and time series methods such as the autoregressive
and stochastic models and the regime switching model. In this case, the methods
which were developed specially to describe time series with chaotic behavior should
be used.

There are some techniques currently used for forecasting electricity prices under
chaotic description. The most frequently used is the NN (Neural Network) which
detects patterns in the previous samples and is able to forecast new samples thanks
to the Learning Phase Geva [1]. On the basis of NN, the RNN (Recurrent Neural
Network), which is an autoregressive nonlinear dynamic model capable of repre-
senting arbitrary nonlinear dynamic systems, was developed. This model is unique
with its feedback loop, which makes it possible to retain a memory of previous states
Mirikitani and Nikolaev [2].

Another approach is to use wavelet transformation, where signals are decomposed
and then reconstructed in the given phase space. Reconstruction based on the Phase
Space is the basic method for forecasting new data. However, with a higher embed-
ding dimension (see below), it becomes very difficult to obtain a description. The
graphical solution can be found when the embedding dimension equals two or three,
but with a higher embedding dimension numerical analysis has to be done.

To be able to use these methods and models we will have to prove first that
electricity spot prices behave chaotically and that it is adequate to use a chaotic
description. The basic question is therefore the existence of chaotic behavior. If
the system behaves chaotically, we are forced to accept only limited predictions.
Nevertheless chaotic behavior is much better than random processes.

Thus we will focus in this chapter on the existence of chaotic behavior in the
hourly EPEX Phelix spot index.

This chapter is organized as follows. Section 2 presents the theoretical introduction
and method for computing. The Analysis of electricity price series is in Sect. 3. Input
data are described in Sect. 3.1. The following subsections show the calculation of
time delay, embedding dimension, the largest Lyapunov exponent, 0–1 Test, Hurst
exponent and fractal dimensions. The conclusion is in Sect. 4.
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2 Analysis Methodology

In short, we will describe the basic definitions and the basic methods for examining
the input data.

2.1 Phase Space Reconstruction

For the description of the data under chaotic behavior (nonlinear time series), we
need to estimate phase space, which specifies whether or not a given time series is
of a deterministic nature. For construction of the phase space we need to define the
dimension of the data and the time delay, which specifies the size of phase space [3].

The key to answering the question of whether the data set is chaotic, is embodied
in the method of phase space reconstruction, which has been rigorously proven by the
embedding theorems of Takens [4]. Takens’ theorem was independently suggested
for example by Packard [5]. Takens’ theorem transforms the prediction problem from
time extrapolation to phase space interpolation.

Let us take a given time series x1, x2, . . ., xN which is embedded into the
m-dimensional phase space by the time delay vectors. A point in the phase space is
given as:

Yn = xn, xn−α , . . . , xn−(m−1)α n = 1, 2, ..., N − (m − 1)α (1)

where α is the time delay and m is the embedding dimension. Different choices of
α and m yield different reconstructed trajectories. How can we determine optimal α

and m?

2.2 Optimal Time Delay

A one-to-one embedding can be obtained for any positive value of the time delay
α > 0. However, very small time delays will result in near-linear reconstructions with
high correlations between consecutive phase space points, and very large delays
might obscure the deterministic structure linking points along a single degree of
freedom [6].

In order to estimate α , two criteria are important according to Kodba [7]. First, α

has to be large enough so that the information we get from measuring the value of x at
time n+α is significantly different from the information we already have by knowing
the value of x at time n. Only then will it be possible to gather enough information
about all other system variables that influence the value of x to reconstruct the whole
attractor. Second, α should not be larger than the typical time in which the system
loses memory of its initial state. This is particularly important for chaotic systems,
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which are intrinsically unpredictable and hence lose memory of the initial state as
time progresses.

Following this reasoning, Fraser and Swinney [8] introduced the mutual infor-
mation between xn and xn+α as a suitable quantity for determining α . The mutual
information between xn and xn+α quantifies the amount of information we have
about the state xn+α presuming we know the state xn . Now we can define the mutual
information function:

I (α ) = −
j∑

h=1

j∑

k=1

Ph,k(α ) ln
Ph,k(α )

Ph Pk
(2)

where Ph and Pk denote the probabilities that the variable assumes a value inside the
hth and kth bins, respectively, and Ph,k(α ) is the joint probability that xn is in bin h
and xn+α is in bin k. Hence, the first minimum of I (α ) marks the optimal choice for
the time delay.

2.3 Optimal Embedding Dimension

The embedding dimension m is conventionally chosen using the “false nearest
neighbors” method. The minimum embedding dimension capable of containing the
reconstructed attractor is that for which the percentage of false nearest neighbors
drops to zero for a given tolerance level β [6].

In order to calculate the fraction of false nearest neighbors, the following algorithm
is used according to Kennel [9]. Given a point p(i) in the m-dimensional embedding
space, one first has to find a neighbour p( j), so that:

∞p(i) − p( j)∞ ≥ β (3)

We then calculate the normalized distance Ri between the (m + 1)th embedding
coordinate of points p(i) and p( j) according to the equation:

Ri =
∣
∣xi+mα − x j+mα

∣
∣

∞p(i) − p( j)∞ (4)

If Ri is larger than a given threshold Rtr , then p(i) is marked as having a false nearest
neighbor. Equation (4) has to be applied for the whole time series and for various
m = 1, 2, . . . until the fraction of points for which Ri > Rtr is negligible [7].
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2.4 Lyapunov Exponents

Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is
a quantity that characterizes the rate of separation of infinitesimally close trajec-
tories. Quantitatively, two trajectories in phase space with initial separation ∂Z0
diverge (provided that the divergence can be treated within the linearized approxi-
mation) [10].

∂Z(t) → eρt |∂Z0| (5)

where ρ is the Lyapunov exponent.
The largest Lyapunov exponent can be defined as follows:

ρ = lim
∂Z0 ∀ 0
t ∀ ♥

1

t
ln

|∂Z(t)|
|∂Z0| (6)

The limit ∂Z0 ∀ 0 ensures the validity of the linear approximation at any time.
Largest Lyapunov exponent determines a notion of predictability for a dynamical

system. A positive largest Lyapunov exponent is usually taken as an indication that
the system is chaotic (provided some other conditions are met, e.g., phase space
compactness).

In our work we have used the Rosenstein algorithm, which calculates the largest
Lyapunov exponent as follows:

ρ1(i) = 1

iΓt
.

1

(M − i)

∑M−i

j=1
ln

d j (i)

d j (0)
(7)

where d j (i) is distance from the j point to its nearest neighbor after i time steps and
M is the number of reconstructed points. For more information see [11, 12].

2.5 The 0–1 Test for Chaos

A new test for the presence of deterministic chaos was developed by Gottwald and
Melbourne [13]. Their ‘0–1’ test for chaos takes as input a time series of measure-
ments, and returns a single scalar value usually in the range 0–1. The 0–1 test does
not depend on phase space reconstruction but rather works directly with the time
series given. The input is the time-series data and the output is 0 or 1, depending on
whether the dynamics are non-chaotic or chaotic [6].

Briefly, the 0–1 test takes as input a scalar time series of observations τ1, . . . , τN .
We have used the algorithm according to Dawes and Freeland [14]. First, we must
fix a real parameter c and construct the Fourier transformed series:
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zn =
n∑

j=1

π j e
i jc, n = 1, . . . , N (8)

Then we have computed the smoothed mean square displacement:

Mc(n) = 1

N − p

N−p∑

j=1

∣
∣z j+n − z j

∣
∣2 −

(
N∑

k=1

πk

N

⎧2
1 − cos nc

1 − cos c
(9)

Finally, we have estimated the correlation coefficient to evaluate the strength of the
linear growth

rc = cov(n, Mc(n))≡
cov(n, n) cov(Mc(n), Mc(n))

(10)

2.6 Hurst Exponent

Real processes in nature, according to the expectation of Benoit Mandelbrot, lie
somewhere between pure deterministic process and white noise. This is why we can
describe reality either by a stochastic or deterministic model. The Hurst coefficient
can give us an answer to this. The values of the Hurst exponent vary between 0 and
1, with higher values indicating a smoother trend, less volatility, and less roughness.
Random walk has a Hurst exponent of 0.5. When the values of the Hurst exponent
lie close to 1.0, the system has long-memory dependence. The larger the H value is,
the stronger the trend.

The Hurst exponent is a measure that has been widely used to evaluate the self-
similarity and correlation properties of fractional Brownian noise, the time-series pro-
duced by a fractional (fractal) Gaussian process. We can describe the self-similarity
process by the following equation:

X (at) = aH X (t) (11)

where a is a positive constant, and H is the self-similarity parameter, for 0 < H < 1.
As originally defined by Mandelbrot [15], the Hurst exponent H describes (among

other things) the scaling of the variance of a stochastic process y(t),

σ 2 =
+♥⎪

−♥
y2 f (y, t)dy = ct2H (12)

where c is constant.
The Hurst exponent is used to evaluate the presence or absence of long-range

dependence and its degree in a time-series. For more information see [16].
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The Hurst exponent (H) is defined in terms of the asymptotic behavior of the
rescaled range as a function of the time span of a time series as follows

E

⎨
R(n)

S(n)

⎩

= CnH as n ∀ ♥ (13)

where [R(n)/S(n)] is the rescaled range; E[y] is the expected value; n is the number
of data points in a time series, C is a constant. We have used a methodology known
as Rescaled Range analysis or R/S analysis. For more information see [17].

2.7 Fractal Dimension

The term “fractal” was first introduced by Mandelbrot [15]. A fractal is a complicated
geometric figure that, unlike a conventional complicated figure, does not simplify it is
magnified. In the way that Euclidean geometry has served as a descriptive language
for classical mechanics of motion, fractal geometry is being used for the patterns
produced by chaos [10].

Everybody suspects what is dimension, that is Euclidean dimension. Briefly,
Euclidian dimension is given by the number of phase variables. However, for a deeper
understanding of behavior of dynamical systems we must define fractal dimension.
There are many specific definitions of fractal dimension. Generally, the fractal dimen-
sion, D, is a statistical quantity that gives an indication of how completely a fractal
appears to fill space, as one zooms down to finer and finer scales. Let S be a set of
points in a space of Euclidean dimension d. We now consider certain hypercubes of
side β, and calculate the minimum number of such cells, N (β), necessary to “cover”
S. Let definite capacity dimension (Kolmogorov dimension), which is typical and
common, be an example of fractal dimension:

D = lim
β∀0

ln(N (β))

ln β−1 (14)

Notice that fractal dimension is a real number. A non-integer dimension does not
imply chaotic dynamic, but all strange attractors must have non-integer fractal dimen-
sions [17].

The Hurst exponent H is directly related to fractal dimension D, because maxi-
mum fractal dimension for a planar tracing is 2:

D + H = 2 (15)
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2.8 Correlation Dimension

In practice, capacity dimension cannot be computed easily. A different approach
has been designed by Grassberger and Procaccia [18]. The method is based on the
concept of correlation dimension suggested by Grassberger and Procaccia [18].

Correlation dimension (DC ) describes the dimensionality of the underlying
process in relation to its geometrical reconstruction in phase space. Correlation
dimension is calculated using the fundamental definition. Define the correlation inte-
gral for set of data M:

C(r) = 1

M(M − 1)

M∑

i, j = 1
i ⇔= j

H(r − ⎜
⎜yi − y j

⎜
⎜) (16)

where H is the Heaviside step function.

H(x) =

⎝




0 y < 0
1

2
y = 0

1 y > 0

(17)

Euclidean metric is used for all calculations. When a lower limit exists, the correlation
dimension is then defined as

DC = lim
r ∀ 0
M ∀ ♥

ln(C(r))

ln(r)
(18)

3 Analysis of Electricity Price Series

3.1 Input Data

For our case study we decided to use EPEX Phelix spot index from 23.1.2012 to
13.4.2013. This is 10000 samples, which is a sufficient amount of data for our study.
Descriptive statistics of the spot data are shown in the Table 1. We can see that there
are extreme maximum and minimum values caused by unexpected price jumps and
high standard deviation, which prove our statement about big and frequent volatility.
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Table 1 Descriptive statistics of the spot prices

Mean Median Std dev Skewness Kurtosis Min Max 25 % qtl 75 % qtl

43,05 41,82 18,14 −2,43 41,34 −221,9 210 34,37 53,13

Fig. 1 Estimation of the time delay

3.2 Estimation of the Time Delay

The mutual information approach, which is described above, will be used in this
chapter to determine the time delay. This variable is estimated from the graph (see
Fig. 1) as the first minimum of the mutual information function. Optimal value of
the time delay equals 7, which is a similar value to that of the New England Power
Market time delay, which is 8. In general, there is a certain similarity between the
two power markets (Central European Energy Exchange and New England Power
Market [19]).

3.3 Estimation of the Embedding Dimension

The false neighbor method will be used in this chapter to determine the minimal
sufficient embedding dimension. Again, this variable is estimated from the graph (see
Fig. 2). The minimum embedding dimension capable of containing the reconstructed
attractor is that for which the percentage of false nearest neighbors drops to zero for
a given tolerance level β. The value of the embedding dimension equals 7, which
is nearly the same as the embedding dimension value of the New England Power
Market, which is 9 [19].
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Fig. 2 Estimation of the
embedding dimension

3.4 Estimation of Lypunov Exponents

The calculation of the largest Lyapunov exponent (LLE) will be made according
to the theoretical background shown above, using the Rosenstein algorithm. For
accurate estimation of the LLE, we need values of the embedding dimension and
time delay estimated above.

A positive largest Lyapunov exponent is one of the necessary conditions for chaotic
behavior. This shows that the electricity price evolution is sensitive to the initial
conditions. The value of the largest Lyapunov exponent was estimated at 0.0005 for
embedding dimension 7 and time delay 7. Notice that the largest Lyapunov exponent
is relatively small. Consequently, the rate of the electricity price evolution is rather
slow, showing that it is possible to accurately make a short-term electricity price
forecast [20].

3.5 Results of the 0–1 Test for Chaos

In this chapter we calculate the correlation coefficient as was shown above. The
value of the correlation coefficient was computed at 0.98. The correlation coefficient
is near to 0 for non-chaotic data and near 1 for chaotic data. The value 0.98 is closer
to 1. Hence we can assume chaotic behavior in the electricity price series.

3.6 Estimation of H and DC

We have computed the Hurst exponent H = 0.76 according to the algorithm in
Sect. 2.4. This value is in accordance with expectations. We know that the value of H
is between 0 and 1, whilst real time series are usually higher than 0.5. If the exponent
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Fig. 3 The dependence of the correlation integral is on the radius in log-log graph

value is close to 0 or 1, it means that the time-series has long-range dependence. The
value 0.76 is between the stochastic and deterministic process. We think, that the
0.76 value is a sufficient value for credible prediction. Now we also know the fractal
dimension 2 − 0.76 = 1.24.

The correlation dimension is calculated using the fundamental definition in
Sect. 2.7. We have put the calculated data into a graph in logarithmic coordinates,
and we have made a linear interpolation (cf. Fig. 3). On this basis, the correlation
dimension for the small value of r can be estimated. The estimate of the correla-
tion dimension is 1.3. As expected, the value of the correlation dimension is not an
integer.

4 Conclusion

We have shown in this chapter that the electricity price series is chaotic. The estimate
of the correlation dimension is 1.3 and estimate of the largest Lyapunov exponent is
0.0005. If the correlation dimension is low, the largest Lyapunov exponent is positive
and the Kolmogorov entropy has a finite positive value, chaos is probably present.
Then, we conducted the 0–1 test for chaos and chaos is present according to this test.

From these estimates it can be concluded that the electricity price series is chaotic.
Long memory was deduced conclusively from the calculation of the values of the
Hurst exponent.
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Modeling Financial Time Series: Multifractal
Cascades and Rényi Entropy

Petr Jizba and Jan Korbel

Abstract We show that a number of realistic financial time series can be well
mimicked by multiplicative multifractal cascade processes. The key observation is
that the multi-scale behavior in financial progressions fits well the multifractal cas-
cade scaling paradigm. Connections with Kolmogorov’s idea of multiplicative cas-
cade of eddies in the well developed turbulence are briefly discussed. To put some
flesh on a bare bones we compare volatility time series for S&P 500 stock index with
a simulated multiplicative multifractal cascade processes. Qualitative agreement is
surprisingly good. Salient issues, such as Codimension functions or Multifractal
Diffusion analysis and its role in scaling identification are also discussed.

Keywords Multiplicative cascades · Rényi entropy · Multifractal volatility.

1 Introduction

Modeling stochastic processes in such complex multi-scale environments as finan-
cial markets is a very demanding task, that has been intensely studied since the
early 20th century. Mighty impetus came in 1970 and 1980s with the advent of
(multi-)fractal calculus and theory of critical phenomena. Many complex systems
like strange attractors, biological and sociological systems, or financial markets are
best described by their scaling behavior phrased via scaling exponents. Scaling and
ensuing fractal properties of the system typically point to its inherent multi-scale
complex nature. In case of multiple, or time-dependent scaling, we talk about multi-
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fractal systems. The formalism of the so-called multifractal analysis enables one to
identify the presence and magnitude of various scaling exponents. The formalism of
(multi-)fractal analysis, originally described in Refs. [1–3] has already many appli-
cations, for instance, in hydrology [4], fractional dynamics [5], DNA nucleotides
structure [6], climate [7] and financial markets [8, 9]. It should be stressed that even
within the multifractal analysis, there are many distinct approaches that are actively
used for study of scaling exponents. Among these belong Multifractal Detrended
Fluctuation Analysis [10], Generalized Hurst Exponents [11] and theory of Rényi
entropy [12]. Particularly the Rényi entropy approach has been recently success-
fully applied into various financial-market contexts [13, 14]. Another very powerful
concept within the multifractal analysis is a formalism of multifractal cascades [15]
that enables to model realistic time series with presumed multiplicative scaling. This
is quite pertinent, for instance, for understanding the volatility progression. In this
chapter we focus our attention on modeling the volatility time behavior with the
concept of multifractal cascades. We compare it with the more conventional meth-
ods of Multifractal Diffusion Entropy analysis. The comparison is done on the real
time series of S&P 500 20-day volatility. The results obtained are discussed from
both, theoretical and practical points of view, with the accent on the formation of
the model series and their fit to the empirical time series. The article is organized as
follows: in Sect. 2 we revise some basic aspects of multifractal analysis. Section 3 is
dedicated to the multifractal cascades and their properties. In Sect. 4 we introduce the
Multifractal diffusion entropy analysis and in Sect. 5 we present numerical results of
volatility simulation and ensuing multifractal analysis. The final section is devoted
to conclusions.

2 Multifractal Analysis

In the chapter we deal with a few approaches that enable to qualify and quantify
the presence of multiscaling in financial time series. In this section we briefly remind
the classical approach based on multifractal spectrum studied in Refs. [2, 3, 16]. The
classical definition of multifractal spectrum of a time series is made as follows: we
assume a discrete (or discretized) time series {xi }N

i=1 with characteristic time lag s,
whose values are divided into different regions. The probability of each region p j

is defined as a ratio of points lying in the region to the total length of the series for
large N , so p j = limN∞≥

N j
N . The probability of each region scales with different

(Lipschitz-Hölder) exponent κ j , so we have p j → sκ j . It is the key assumption in the
multifractal theory that κ changes smoothly and thus the distribution can be assumed
in the form

p(κ)dκ = Pr [κ∀|κ∀ ♥ (κ,κ + dκ)] = η(κ)s− f (κ)dκ . (1)
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The function f (κ), which is the scaling exponent of the distribution, is called multi-
fractal spectrum and represents a fractal dimension of the subset with scaling expo-
nent κ. A dual description of multifractality is provided via the partition function,
which is a sum of all pq

i and its scaling exponent γ (q), the analog of free energy,
reads

Z(q, s) =
∑

j

pq
j → sγ (q) . (2)

The partition function is nothing else than the expected value of (q−1)th power of the
probability distribution P . This suggests to investigate also the generalized mean (or
power mean) of P , which is a special case of f -mean defined as f −1

(∑
i pi f (pi )

)
,

where f (x) = xq−1. The scaling exponent Dq of the generalized mean

≡P⇔q = q−1
√

≡Pq−1⇔ → s Dq , (3)

is called a generalized dimension and from (2) is equal to γ (q)
q−1 . We shall note that

there are some significant values of q, for which is the generalized dimension equal to
other frequently known dimensions (see Ref. [12]); for q = 0 we get a box-counting
dimension of the support, for q ∞ 1 is D1 equal to information dimension and D2
is equal to correlation dimension. From Eq. (3) we can express Dq as

Dq = lim
s∞0

1

q − 1

ln Z(q, s)

ln s
= lim

s∞0

Sq(s)

ln s
, (4)

where Sq is a Rényi entropy associated with the distribution P , which is one-
parametric generalization of Shannon entropy (for q ∞ 1). With different choice of
q, regions with high or low probability are accentuated.1 The relation between f (κ)

and γ (q) can be easily obtained from the fact that the partition function is equal to

Z(q, s) =
∫

dκη(κ)s− f (κ)sqκ , (5)

and from the stationary phase approximation we conclude that the relation is

γ (q) = qκ(q) − f (κ(q)) , (6)

where κ(q) is the value that extremizes qκ − f (κ). When we also consider a differ-
entiability of scaling exponents, then κ = dγ (q)

dq , so Eq. (6) represents nothing else
than the Legendre transform of f (κ).

1 We shall note that for q < 0 the definition of entropy can be problematic (e.g. can exhibit
instabilities, see e.g. Ref. [12]), and therefore shall deal only with q ∼ 0.
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3 Multiplicative Cascades

The theory of multiplicative processes was firstly formulated by A.N. Kolmogorov
in 1940’s seminal paper [17], in connection with the theory of the well developed
turbulence. The model of whirls assumes that larger eddies are composed of eddies on
smaller scale with some typical distributions. The idea behind multiplicative cascades
is that the typical quantity (i.e. the turbulence dissipation rate in hydrodynamics or
volatility in finance) measured on some scale is compound of the some quantity
measured on the smaller scale in subregions of the original region. For this end, we
define a sequence of typical scales r0 > r1 > · · · > rn and typical multipliers ln < 1,
which are the ratios of two successive scales, so rn = r0

∏n
j=1 l j . Let us denote a

characteristic quantity of the system as E , and let β(x) be a density of this quantity,
so the total value over the region Ω is equal to

EΩ =
∫

x♥Ω

β(x)dx . (7)

When the quantity is modeled by a multiplicative cascade, we define it on scales rn

(similarly as the scale itself) as a product of multipliers M j , so

Ern = Er0

n∏

j=1

M j , (8)

which for n ∞ ≥ defines the density β(x). Thus, the cascade is determined by
the multipliers l j and M j . The multipliers M j (and possibly also l j ) can be also
assumed as random variables. When the variables M j are independent of j , i.e. the
multiplier remains the same for every scale, we can observe self-similar behavior
and the cascade is fractal. We shall note that if we need to distinguish a concrete
realization of M j on the region i , we denote it as M j,i .

There are many models of multiplicative cascades, we mention only the most
popular. In the original work, Kolmogorov considered the distribution to be isotropic
[17], so the only quantity that is relevant for the model is ≡Er0⇔. The other popular
model is a log-normal model, where the multiplier has log-normal distribution, or the
α-model, where a fraction of M j · is nonzero and equal, while the rest is equal to zero.
These models usually describe complex systems insufficiently, so therefore we turn
our attention to a different class of cascades which produces non-trivial multiscaling
properties.

3.1 Multifratal Cascades

Multifractal cascades is a class of cascades with a multiple scaling exponents.
The complexity of the cascade enables to model real systems, as chaotic systems
[15], rainfalls [18] or prices on financial markets [8]. There are several models of
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multifractal cascades. The simplest model, binomal cascade, is a deterministic
version of multifractal cascade and is a springboard for further generalizations. In
every step is the original region divided into two different regions (l j = 1

2 ), and
Mn−1 is divided into two subregions, so En, 1 = pEn−1, En, 2 = (1 − p)En−1, so
M1 = p and M2 = 1 − p. When we assume a division into more than two regions
(l j = 1

n ), we become a multinomial cascade. The important property of this cas-
cade is that it is conservative, i.e.

∑
i Mn,i = 1. The microcanonical cascade is a

straightforward generalization of the binomial cascade, where allow to interchange
M1 and M2, so M1 = p with probability 1

2 or M1 = 1− p with the same probability.
Unfortunately, in this case are M1 and M2 not independent. The independency of
M1 and M2 is possible to reach by weakening the condition of conservation, i.e. by
replacing it by the statistical conservation, which means that only the expectation
value is conserved, i.e.

≡
∑

i

Mn,i ⇔ = 1 . (9)

Together with the independence of random variables we obtain ≡M j ⇔ = l j .

3.2 Codimension Function

An alternative description of multifractality can be provided via singularity spectrum
and codimension function (cf., e.g., Ref. [15]). Let us assume that the typical scale
is defined through ratio ϑ, so rn = r0

ϑn . Let us also have a multiplier M, such that the
some typical quantity E is on every scale iteratively compound of itself, measured
on smaller scales, hence

Ern = Ern−1 · M . (10)

We suppose that the moments of M scale as ≡Mq⇔ ∼ ϑK (q) and from that we have

≡Eq
rn ⇔ ∼ ΛK (q) , (11)

where Λ = ϑn . It is further natural to extend these special values of Λ to any
positive scale. On the other hand, E1/Λ can be described via its singularity spectrum.
We consider the probability distribution that M ∼ ϑλ∀

, where λ∀ > λ, in a form

Pr [λ∀ ∼ λ] ∼ η(λ)ϑ−c(λ) , (12)

where c(λ) is the singularity spectrum. The relation between K (q) and c(λ) is (sim-
ilarly for f (κ) and γ (q)) easily obtained from the expression of ≡Mq⇔, i.e.

≡Mq⇔ =
∫

dϑ ϑqλη̃(λ)ϑ−c(λ) . (13)



232 P. Jizba and J. Korbel

From the stationary phase approximation we finally obtain that

K (q) = qλ(q) − c(λ(q)) . (14)

The relation to the classical multifractal analysis is determined by the relation
between the theoretical distributionλ∀ and empirical distribution obtained from repro-
ducing copies of given cascade, so

Pr [λ∀ > λ] = lim
Nϑ∞≥

Nϑ(λ∀ > λ)

Nϑ
, (15)

where N (λ∀ > λ) is a number structures with scaling exponent larger than λ and Nϑ

is total number of regions. It is easy to show that N (λ∀ > λ) scales as ϑ f (κ(λ)) (see
again, e.g., Ref. [15]), so from that we finally obtain relations:

f (κ(λ)) = D − c(λ) , (16)

κ = D − λ , (17)

γ (q) = D(q − 1) − K (q) . (18)

The usage of codimension formalism can be advantageous, because “codimension
quantities” do not depend on the dimension, so especially in higher-dimensional
problems we observe similar spectrum irrespective of the dimension involved. We
shall also note, that in case of monofractal series we obtain the well known rela-
tion between fractal dimension and Hurst exponent, which plays here the role of
codimension function in two-dimensional x − t space.

4 Multifractal Diffusion Entropy Analysis (MFDEA)

In order to measure fractal dimension and multifractality, there have been devel-
oped many methods including, e.g., Detrended Fluctuation analysis [6, 10], Gen-
eralized Hurst exponent [11] or Multifractal Wavelet analysis [19]. Here we briefly
describe yet another method for multifractality analysis, namely Multifractal Dif-
fusion Entropy analysis (cf. also Ref. [13]). The latter is reasonable particularly in
situations, when it is reasonable to expect that system produces heavy-tailed distrib-
utions. Let us begin with a monofractal version. In this case, the method is based on
a functional ansatz for the self-similar form of the probability density function

p(x, t) = 1

tφ
F

( x

tφ

)
. (19)

The scaling exponent φ can be read off from Shannon entropy
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S(t) = −
∫

dx p(x, t) ln[p(x, t)] , (20)

as S(t) = A + φ ln t . If we generalize Shannon entropy into the one-parametric class
of Rényi entropies, we obtain the whole class of scaling exponents parametrized by
q, namely

Sq(γ ) = Bq + h(q) ln γ . (21)

The method is based on probability density estimation by Fluctuation collection,
which means that from noise-like series {ξi }N

i=1 we create fluctuation collections
xγ (t) = ∑s

i=1 ξi+t . After this all values of xγ (t) are divided into boxes of length β
and the probability distribution is estimated as a relative frequency of each box, so
pi (γ ) = Ni (s)

N−γ+1 , where Ni (s) is number of xγ (t) that fall into the i th box. Finally,
the estimated entropy has the form

Ŝq(γ ) = 1

q − 1
ln

∑

i

[pi (γ )]q . (22)

5 Numerical Simulation of Volatility as a Multifractal Cascade

An important quantifier of riskiness inherent in a given financial time series is
undoubtedly volatility. Modeling volatility is typically the key element in any risk-
rating analysis of financial-time progressions. The approach firstly described by
Mandelbrot, Calvet and Fisher (see, e.g., Refs. [8, 20]) models a volatility series
as a multifractal cascade with some given (usually discrete) distribution. Here we
simulate this multifractal cascade and compare with an empirical time series, namely
20-day volatility series of the financial index S&P 500. For the simulation we have
chosen a diadic partition and a multiplier M with three values and probabilities
drawn from the distribution Binomial(2, p). The values were normalized, so that
≡M⇔ = 1/2, yielding the so-called conservative multiplier. The simulated series and
volatility of S&P 500 is displayed on Fig. 1. Both mentioned series were normalized,
so that the scale on the picture is in multiples of the mean of the series. The standard
deviation of the renormalized S&P 500 volatility series is 0.65, whilst the standard
deviation of the simulated series is 0.72. It should, however, be born in mind, that
the mean and standard deviation can shed a very little light on the complexity of
the series, which can comprise presence of seasonality, sudden jumps and spikes
or nontrivial volatility behavior (e.g., “volatility smile”). These different “regimes”,
resulting from the nature of the system can be successfully investigated by analysing
the spectrum of ensuing scaling exponents, each representing one such mode or time
scale. We shall remark that the simulated time series can be used to create the series
of daily returns, when we consider that for daily returns holds rt = σtηt where σt is
simulated volatility and ηt is a white noise.
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Fig. 1 Simulated volatility modeled as a multifractal cascade and 20-day volatility of S&P 500
index. Both series contain approximately 16000 entries

Fig. 2 Left scaling exponent h(q) of both series. The region of q < 0 is shaded, because the entropy
has there instabilities. Right scaling exponent h(q) of 20-day volatility of S&P 500 (red) and daily
returns of S&P 500 (green)

In the second part of the presented analysis we estimate scaling exponents h(q) of
Rényi entropy. This is done with the aim to measure the multifractality and compare
it for both series. As already mentioned, the scaling exponents provide an important
signatures of the intricate multi-scale behavior in time series and thus can shed a
non-trivial light on time-scale behavior in realistic financial markets. Figure 2 shows
the exponent h(q) for both series. We observe that the multiplicative cascade has
wider spectrum of exponents, with highest values close to 0.9, whereas the maximal
exponent of S&P 500 volatility series is just around 0.7. That means that for more
precise simulation the distribution of the multiplier M should be adjusted in order
to get a spectrum that would be more similar to the real one. Nevertheless, spectra
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of different time series observed in the financial markets can be shifted up or down,
and sometimes quite remarkably (as in Ref. [13]). The other interesting thing is the
behavior of the exponent for large q’s. On graph of Fig. 2 we compare the spectrum
of volatility and daily returns of S&P 500. While for returns we observe a fast
convergence to a single value of scaling exponent, in case of volatility we observe
a rapid increase followed by a moderate decrease and slow convergence. At the
moment it is not clear whether this rapid behavior points to yet unknown complexity
in volatility time-series which goes beyond a simple multifractal paradigm or whether
it is a mere numerical artefact. If the first explanation would turn out to be the case,
it could open new vistas for mathematical modeling of multiple scale behavior and
successive deeper understanding of inherent complexity in financial time series.

6 Conclusions

Modeling complex multi-scale time series, such as volatility time series in finan-
cial markets, requires novel mathematical techniques that are able to appropriately
accentuate typical scaling characteristics observed in realistic financial markets. In
this chapter we have put forward idea that an approach based on multiplicative multi-
fractal cascades is capable of creating time series that correctly mimic scaling behav-
ior seen in a number of empirical financial time series. The choice of an appropriate
cascade multiplier is crucial for the method in question, and as we have illustrated in
this chapter, methods of multifractal analysis (as, e.g., Multifractal Detrended Fluc-
tuation analysis or Multifractal Diffusion Entropy analysis) are particularly useful in
this context. Apart from use in quantitative finance, the method proposed reinforces
also the links between the multiplicative multifractal cascades and the multi-scale
behavior in a wide class of complex dynamical systems. Further more quantitative
study supporting the usefulness of multifractal analysis in time series in finance is
left for a future publication. Finally, we hope that the article will stimulate the reader
from other fields to look more closely into this fascinating subject.
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The Global Multi Factor Model of Seismic
Activity: Priorities

Natalia P. Bulatova

Abstract It is shown that catastrophic processes of the Earth occur at simultaneous
action of several groups of factors that include external global space influences (the
Sun and the Moon) and internal geological influences, which provide the condition
in strong earthquake area. The chaotic space-time distribution of earthquakes tells
us about this. On the basis of the analysis of events occurring during 110 years it
is possible to assert that on an average quantity the number of earthquakes with
magnitude M ≥ 7 has not increased. From the other hand, time intervals when the
time distribution of earthquakes has periodic character are found. The purpose of this
work is to reveal time intervals, during of which there is predominant influence of the
separate factor. In order to do this we use statistical methods. The problem is complex
because the ensemble of factors is impacting. By assuming a simultaneous influence
of several factors (the Sun, the Moon and geological conditions) we performed the
statistical division of the time series consisting of >500 events (during 1973–2005)
into groups, in which one can see the influence of separate factors. It has been shown
that the geological factor and the cyclic character of the Moon influence play the
main role in appearance of the seismic activity.

Keywords Spatial-Temporal modeling · Earthquake · Solar cycle · Lunar cycles ·
Trends

1 Introduction

It is a long time since the interest of scientists is chained to research the nature of
occurrence of earthquakes, which as a rule take place suddenly and lead to a great
disasters: to destruction of buildings, death of people etc. [1–3]. If we could predict
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exact places and time of global natural accidents (strong earthquakes, a tsunami etc.)
we would have a possibility to be prepared for these events and to avoid victims.

After many years of failures in forecasting the reason becomes clear: seismic
processes develop as a result of joint action of two principal types of factors: endoge-
nous, in the Earth (geological) and external (space). For the successful forecast it is
necessary to consider seismic processes as multifactor and to be able to reveal the
contribution of each of them. Without the solution of a problem of a continuous mon-
itoring by a wide network of seismic stations it is impossible to give reliable forecasts
of accidents and earthquakes. Monitoring of seismic modes of extensive territories
costs too much. It is the reason why catalogues and databases are not complete and
have “admissions" in time and space. Interdisciplinary approach of studying could
help to discover spatial-temporal path of the solution of this problem.

For this purpose the author proposed a research tool [4–6], the algorithm which has
been further developed as the 3D spatio-temporal technology [7]. Its use is allowed
to combine modern astronomical and geological data to the one system. In addition
it was necessary to prioritize in considering the impact of the possible factors. Some
preliminary results of this analysis of time series of seismic events M≥7 connection
with the lunar and the solar cyclical effects were presented by the author in 2004 [4].

Scientists Shirokov and Serafimova [8–10] have reported about interrelation of the
19-year lunar tides and 22-year Hail’s solar cycles with strong earthquakes and thus
about long-term seismic forecast. For the first time in their paper they are proposed
the forecast of strong volcanic eruptions of Pacific belt for the next 20 years. The
forecast was made for the eight regions Pacific belt on the basis of the method of
phase pathways that has been developed by authors [9, 10]. A distribution of strong
eruptions in Pacific belt for data of observations in XVIII–XIX centuries has been
studied for the two-dimensional phase plane. Coordinates of this plane were both in
the phase of 19-years lunar tide and the phase of 22-years magnetic solar cycle. The
activity is presented as sub-meridian section and it is highlighted on the border of
the continental plates in the coastal zones of the Pacific Ocean. Seismic and volcanic
activity is continued in some areas and it is constantly connected mainly with passing
of geological and geochemical processes in the Earth’s interior. Therefore the method
of phase pathways uses individual algorithms to investigate such areas.

Many another authors report that astronomical effects can have an influence, but
the probability of an earthquake is built by many factors [11, 12], therefore they can
discussed the information in broad terms only. The articles about the influence of
electromagnetic fields of the Sun are interesting for discussion [12–14].

2 Multifactor Model. Global Approach to Spatial-Temporal
Study of the Seismic Activity

It is clear that the probability of an earthquake is made up of many factors, most of
them are geological, but astronomical effects can have an influence too. We cannot
express the probability of a distribution of global seismicity in the form of mathemat-
ical calculations, but we can try to test the hypothesis that geological and celestial
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bodies have an influence on it. By giving priorities to the multi-factor model we do
the structuring of data. We analyze the results of several tests by using the world-
known archives and international database [15–17]: (1) seismic data, (2) astrometric
data, (3) solar activity.

2.1 The Used Data and Parameters

All data were distributed in time series with the time step-interval that is equal to
one year.

Seismic data._Seismic events have occurred with a magnitude ranging from 7.0
to 10.0 (M ≥ 7) during the next time periods (a) 1900–2010, (b) 1973–2007 years.
We used data from the U.S. Geological Survey’s Earthquake Data Base directory that
presents the distribution of earthquake epicenters in the world [15]. In this research,
the data set that consists of more than 500 seismic events have been used

Astrometric data._Lunar astrometric data for the time periods (a) 1900–2010,
(b) 1973–2010 years have been analyzed. In this study, more than 16500 events
from 1973 to 2002, including a full 18.6 year cycle of lunar motion between 1982
and-2001 were investigated.

For the time period 1982–2006 year. the author analyzed time rows of variations
in the astronomical date δ(T) that describe declinations of the Moon [16]. Variations
δ(T) have been investigated step-by-step in order to understand the dynamics of
relative motion in the Sun–Earth–Moon system as changes in the angular distances
bode with respect to the Earth’s equatorial plane (Fig. 1a). The 12-hourly time- rows
of astronomical date, which were collected by the author over the 20-year period
(1982–2002) were visualized as plots of declination δ against time T.

Graphic presentation of the time rows of variations in the declinations δ1 of the
Sun and δ2 of the Moon over 1982–2006 year. (Fig. 1b). Direct lines correspond to
the values of δk for the singular points of the both plots corresponds to maximums,
minimums, etc. of these plots: δNA = 28, 5◦; δNT = 23, 5◦; δNB = 18, 5◦; δ0 =
0, 0◦; δSB = −18, 5◦; δST = −23, 5◦; δSA = −28, 5◦.

The cyclic variation of the lunar declination δc(t) is presented by the envelopes
LS and LN of the region of periodic variations in the astronomical parameter of the
Moon in the time plot. The envelopes NT, ST for the variations lunar α intersect
the LS, LN and divide the region of variations in the lunar declination into two
parts: part A (1982–1992 year.) and part B (1993–2002 year.). The rates β δ βT
of changes in δ these parts differ substantially. For the period under consideration
(1970–2007), which includes an 18.6 year cycle of the Moon’s relative motion to the
Earth, the author analyzed time series periodic variations ( lunar period ∼27 day ) in
the astronomical data δ(T): declinations of the Moon [18].

In order to obtain cyclic trend of the Moon (18.6 year.) cyclic movement we have
found envelops around LS and LN (Fig. 2) by carrying out of two time series sam-
plings of angular distance δ(T) fluctuation extreme (maximum and minimum) values
with respect to the Earth equator ( in the Northern and the Southern hemispheres
respectively).
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Fig. 1 a The three-dimensional dynamic model that was developed by the author [4]. The equatorial
plane is colored in a gray. The circle denotes the cross-section of the Earth’s body. C1C2 and C3
denote the motion of the Sun, the Moon and other celestial body respectively, b Graphic presentation
of the time row of variations in the declinations the δ of the Moon (field corresponds to 16500 data)
and of the Sun (black quasi-sinusoidal curve contains 8300 data) over 1982–2006 year

Fig. 2 The discrete values
obtained at sampling have
been united in curves and
two quasi-sinusoid Curves
are formed as the sum of
two harmonics: one, the main,
(with a period of ≈18.6 years),
and another-additional (with a
period of ≈0.5 years)

In order to form of the cyclic trend we used the approach is similar to those that
described in [19]. We choose an interval in length of 9.3 years (approximately one
half of the dominating harmonic period ) and carry out calculations for the curve
of the Moon cyclic movement with respect to the Earth. The additional harmonic
disappeared.

The solar activity data: yearly average distribution 11- and 22-years Wolf’s and
Haile’s cycles sunspots number between 1900 and 2010 [17] (Fig. 3).

3 Modeling. Research Method

We have estimated the parameters of a linear trend for the whole interval between
1970–2007 years and have subtracted it from the analyzed temporal row of strong
earthquakes—N (see Fig. 4), (Fig. 5), (Fig. 6).
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Fig. 3 The data about seis-
mic M>7 and solar activity
between 1900 and 2010 years

Fig. 4 The time series of
strong earthquakes M ≥ 7
(NM ≥ 7 = 524) that has been
analyzed for period 1973–
2005 years. The linear trend
Nr for the entire time interval
is shown by the direct line

The parameters of the linear trend Nr for the entire time interval were evaluated, as

y = ax + b, (1)

where a = 0.210; b = 11,159, correlation coefficient QNr = 0.9071 (Fig. 4)

N = NM ≥ 7 − Nr (2)

The comparison procedure for N was performed with lunar cyclic trend Nc, obtained
from the curve δ(T ) on the basis of the linear trend (Fig. 5):

Yc = bcx + ac (3)

where bc = 0.350; ac = 19,487.

Ns = N − Nc (4)

The residue Ns was obtained by subtraction (4). The compare it with the 11-year
cyclic changes parameter of solar activity SW (cyclical trend) showed (Fig. 6): cor-
relation coefficient is QNs = (−0.32) = −0.6013.
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Fig. 5 A comparison of the rest of the analyzed time series of strong earthquakes of M ≥ 7 after
subtraction of the linear trend Nr and a lunar cyclic trend for the period of 1973–2005 for the whole
time interval

Fig. 6 A comparison of the rest of the analyzed time series Ns of strong earthquakes M ≥ 7 after
subtracted cyclical trend Nc and Wolf’s average annual for period 1973–2005 years for the entire
time interval

As a result of this investigation the time series of strong earthquakes N was
represented:

NM ≥ 7 = Nr + Nlc + Ns, (5)

as sum of three trends temporary earthquake rows, in accordance with which the
estimates of the influence of the corresponding factor was given.
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4 Conclusion

After each catastrophic event scientists analyze their reasons. However the role of
many factors that simultaneously influence on the preparation and the start of earth-
quakes is often veiled. It is necessary to search solution in well-taken priorities of
factors in an interdisciplinary area of science. In this work the author investigated
the time rows of strong earthquakes and the following priorities have been chosen:
a geological condition of an environment, tidal action of a gravitational field of the
Moon (cyclic 18.6 years) and change of the solar activity (11 and 22 solar cycles).

By means of consecutive subtraction of linear and cyclic trends from time
series(524 earthquake in the time interval 1973–2010 year ) one can see that the
row can be represented as three temporary earthquake rows, which have different
originating sources, namely: an internal- the geological one inside the Earth (the
linear trend) and the external one—the cosmic (the cyclic). Analyzing earthquake
rows we conclude that the cyclic Moon impact can be clearly selected.

Let us note that for a power class of the earthquakes M ≥ 7 the absence of
correlation between the seismic and the solar activity has been obtained. Maximums
of the earthquake temporary rows (in years) correspond to minima of phases of the
solar activity. The similar conclusion can be also made for the earthquakes of the
power classes of M 5, 0 ÷ 5, 9 and M 6, 0 ÷ 6, 9.
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Bychkov for help and consultations.
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Modeling Spatio-Temporal Dynamics of Taiga
Boreal Forest

Andrey Lyushnin and Dmitry Bratsun

Abstract The simple three variable evolutionary model of boreal forest of Perm
region has been proposed. The model is built as a complex system, where each pop-
ulation is represented by individual trees competing for solar light. Other factors
taking into account are growth rate, seed dispersal and mortality. The parameter val-
ues used in the model were calibrated from the information available for Perm forests.
This work has a fundamental aspect because a formation of dynamical macroscopic
patterns in ecological systems attracts great interest of researchers. In addition, the
proposed model can have many applications for more effective forest management.

Keywords Forest evolution ·Cellular automata · Individual-based models · Spatio-
temporal behaviour

1 Introduction

As it is known, the spontaneous formation of spatial and temporal structures is
the general law of functioning of complex ecosystems. Study of such structures is
one of the central problems of the modern ecology [1–3]. In plant communities a
formation of spatially ordered structures which are inhomogeneous in concentration
and qualitative composition of the biomass is also observed [3–5]. It should be noted
that these structures are cooperative in its nature and arise due to the interaction
at the level of individual plants. They should be distinguished from the structures
which originate due to the morphological reason or natural landscape factors [5].
As an example of such self-organization is a “tiger bush”, which is a patterned
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vegetation community consisting of alternating bands of trees or shrubs, separated
by bare ground or low herb cover, that run roughly parallel to contour lines of equal
elevation [6]. This phenomenon can be met in the arid areas of Africa, Australia
and North America. In recent years a number of studies have shown that the regular
pattern formation is quite typical for plant communities. In particular, the similar
structures have been observed in Ural Mountains [7].

Historically, there are two approaches to the consideration of spatially distributed
systems of plants. The first approach is a phenomenological modeling. For example,
in the paper [8] it is proposed reaction-diffusion model of the dynamics of vegetative
plants, which describes the pattern formation even in homogeneous and isotropic
environments. It includes an equation for the concentration of biomass with diffusion
and specially chosen “reactive” term responsible for the plant–plant interaction. Thus,
the cause of pattern formation here is the collective interaction of plants.

Another direction in modeling of the forest evolution is an approach based on
cellular automata [9–13]. This approach has gone through several stages of develop-
ment. One of early models was the JABOWA forest model [9] developed for northern
forests of New Hampshire. The purpose of JABOWA was to model succession in
mixed-species forests and thereby to predict species composition. It was based on the
notion that the interactions that drive forest dynamics are local. This model was later
modified and extended, for example in [10], to forests ranging from boreal regions
to the tropics (FORET model). The next advance was made in [11, 12]. The authors
suggested that the range of dynamic behavior that JABOWA-FORET models are
capable of exhibiting is too large, since some critical features of the models were
simply unknown at that time. They have proposed their own model SORTIE based on
that their submodels were designed simultaneously with maximum likelihood esti-
mators necessary to estimate them from simple field measurements [11–13]. SORTIE
gave rise to a full pedigree of related models and relevant publications. Probably it
is one of the most successful forest simulation models ever developed.

Currently such models include, typically, the individual-oriented behavior. An
individual-based model is a class of computational models for simulating the actions
and interactions of autonomous individuals (agents) with a view to assessing their
effects on the system as a whole. This approach gives a number of advantages such
as transparency in relation to the objective biological mechanisms, the ability to
describe the system with a high degree of detail to extract more useful information
from the simulation results.

It should be noted that the developers of SORTIE, as biologists were intended
to describe the evolution of the forest community as accurately as possible. For
example, one of the recent variations of the model examines the dynamics of the 12
species [13]. The study of forest pattern formation as the fundamental feature of the
spatially distributed system was not in their plans. Therefore from this standpoint we
prefer the approach developed in [8]. Unfortunately the model of the forest pattern
formation proposed there is phenomenological by its nature.

The main goal of this work is to develop a simple, but still more or less realistic
individual-base model in order to study possible pattern formation. We propose a
three-component model of the evolution of the taiga boreal forest consisting of the
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main tree species of the Perm region and explore the features of its evolution and
pattern formation. Our model is based on the submodels of different versions of
SORTIE [11–14] but in a highly simplified form.

2 Three-Component Evolutionary Model of Boreal Forest

The vast majority of Russian forests are in the boreal zone. According to the forest
inventory data for the Perm region, the forest society consists of a fir (55 % of the
total biomass), a birch (26 %) and a pine (12 %). Influence of other trees is not so
significant. That is why we proposed a basic model, which is formulated only for
these edificators of the ecological system.

In deriving the model, we take into account the following factors:

• Sizes of plants. The tallest tree is a pine—up to 40 meters in height. Birch grows
to 20–25 m. Fir may grow up to 15–20 m.

• The fight for the light. Higher trees such as pine, have a competitive advantage.
Obscuring his crown young trees, they hamper their growth. However, the need
for sunlight in different species of trees is different. It levels the playing field
somewhat. A birch is the most sensitive to light, and a fir on the contrary likes to
grow in the shade. Thus, a fir easy grows in the shade of the birch, but when it
grows, it blocks the growth opportunities for the former. Pine is difficult to rise in
the shade, but if it has risen, because of its height it apart from the competition.

• The lifetime. Birch is the most short-lived—60–80 years. Fir and pine lives up to
250 and 400 years respectively.

• Distribution of seeds. Pine has the largest radius of the distribution, but the survival
rate of seeds is lowest.

The model consists of three populations of trees and landscape. For simplicity, we
consider the area of a square measuring 500 by 500 m. To compute the luminous flux
falling on a certain point the landscape, we introduce a uniform grid N × N , where
N in the most of the numerical experiments was 100. Populations consist of the sets
of individual plants, each of which lives its own life. Wood in the model consists of
two cylinders, one of which simulates the crown, and the other – the barrel. Each tree
has a number of important current values of its states, first of all this is the height of
the whole plant H and the thickness of its trunk D. These variables are tightly related
as follows:

H = H1

(

1 − exp

(

− H2

H1
D

))

, (1)

where H1,2 are parameters depending on the type of population. The width and height
of the crown is also related to each other

R = C1da, (2)
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where C1 and a are the parameters of the populations. Thus, each tree is characterized
by a single independent variable. Further, it is assumed that the plant evolves through
three stages: (i) seed, (ii) young tree and (iii) mature tree. Seed does not react on light
and cannot grow. However, it can take root at a certain place of landscape and become
a young tree. The difference between young and mature plants consists in the values
of the parameters that determine the rate of growth and the ability to insemination.
Each plant involved in evolution at each time step grows in accordance with its status,
makes insemination terrain, and may die suddenly.

The model assumes that the main resource for which competing trees, is sunlight.
That light is the reason for the growth of plants. The light beam irradiating on each
element of the landscape can meet the crown of the tree. The penetration rate λ is
the characteristic parameter for each population. If we now integrate over the whole
set of plants, one can get the amount of light per unit area of the landscape. After
finding the distribution of area illumination for each tree one can calculate its rate
of growth for this year. The relative increase in the size of the tree growing on the
element of landscape and receiving the light is determined by the Michaelis-Menton
law [12]:

G = g1g2 Fi j

2(g1 + g2 Fi j )
d, (3)

where g1,2 are parameters of populations. Then we can calculate the size of the tree
in the next year:

Dt+1 = Dt + G, (4)

The next step is the calculation of the death probability of the tree. The probability
depends on how fast this tree grows: for good growing trees it is less:

M = m1 exp(−m2G), (5)

where m1 is the mortality rate at zero growth, m2 is the mortality due to light. If
the tree dies, it is permanently deleted from the population [14]. If the tree dies, it is
permanently deleted from the population.

The second important process in the model is the production of seeds by mature
trees and seeds distribution across the landscape. The insemination is a long-range
interaction. Namely this process distributed in space forms a non-linear relationship
between the members of the population and contributes to the emergence of non-
local structures. For the probabilistic description of the distribution of seeds, we have
used the Weibull distribution [11]:

Vi = γ

g∑

k=1

(
Dk

30

)2

exp
(
−r1 M3

ik

)
. (6)

Here Dk is the diameter of the trunk of parent trees, r1 is the population parameter,
and Mik is the distance from i to the k-th parent tree. In our model, we neglect
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Fig. 1 Evolution of three-component forest from non-uniform initial conditions

the anisotropy of the distribution of seeds (for example, due to the wind) and other
possible complicating factors.

The values of parameters calibrated on the basis of available forest inventory data
are given in the Table 1. The Java version of on-line forest simulator based on three-
component model described above can be found on our website (http://urales.trajan.
ru/).

As an example, let us consider the spatio-temporal dynamics of forest simulated
within the model let us consider the evolution of the system from an initial state
in which the center of empty landscape there are several trees of different species.
Figure 1 shows the consistent frames of forest evolution after every 70 iterations
(70 years). Complete evolution of the system is equal to 1120 years. Each circle
represents a single tree, the width of the circle is proportional to the width of the
crown.

http://urales.trajan.ru/
http://urales.trajan.ru/
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Table 1 Parameter values for the three-component model

Type of tree λ g1 g2 m1 m2 r1

Birch 0.4 0.4 0.05 0.5 2.0 3 × 10−4

Fir 0.064 0.15 0.15 0.077 6.0 6.9 × 10−4

Pine 0.4 0.18 0.019 0.268 4.0 1.03 × 10−5

It is clearly seen that the overgrown of the wasteland occurs due to the birch trees
(indicated by red) and pines (green). Firs spread slowly and is only after other species
of trees. However, finally the firs displace other trees. Analysis of the distribution of
the landscape illumination shows that in the central region occupied by the firs, the
light to the earth’s surface does not get. This leads to the fact that the seeds cannot
take root in this area and fir is slowly but surely expanding their habitat areolas. The
very young fir loves twilight, and her living conditions are comfortable.

3 Conclusions

The simple portable individual-based model representing a community of the three
populations of forest (fir-birch-pine) has been proposed. Modeling of forest growth,
based on the dynamics of individual trees that come into competition with each other
for solar energy has shown that the interaction at the micro level lead to the emergence
of spatially distributed macroscopic structures.

The work was supported by the Department of Science and Education of Perm
region (project C26/244) and Perm State Pedagogical University (project 031-F).
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Systemic Networking



The Network of the International Criminal
Court Decisions as a Complex System

Fabien Tarissan and Raphaëlle Nollez-Goldbach

Abstract Many real-world networks lend themselves to the use of graphs for
analysing and modeling their structure. This approach has proved to be very useful for
a wide variety of networks stemming from very different fields. Yet, only few papers
focused their attention on legal networks. This paper intends precisely to remedy this
situation by analysing a major legal network by means of complex system methods.
The network under investigation is the network composed by decisions taken by
the International Criminal Court since its creation. We first model the network by a
simple directed graph in which nodes are the decisions and links represent citations
between decisions. Our analysis shows that standard properties shared by common
real networks are also present in this network. Then we turn to studying the network
by means of bipartite graphs that involve both decisions and articles of law. We show
that this two-level structure presents several non trivial properties and we show evi-
dences of the relevance of the bipartite representation to explain properties observed
in the graph of citations.

Keywords Complex networks · Bipartite graphs · Legal studies

1 Introduction

Many real-world networks lend themselves to the use of graphs for analysing and
modeling their structure. We can cite among others actor networks [1, 2] which relate
actors performing in the same movies or authoring networks [2, 3] which relate
authors publishing together. Since the seminal paper of Watts and Strogatz [1], it has
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been shown that different kind of networks yet share similar non trivial properties,
such as an heterogeneous distribution of their degrees, a high local density, short
distances, etc.

Since then this approach has been widely used in many different fields, ranging
from computer science (the Internet, peer-to-peer networks, the web), to biology
(protein-protein interaction networks, gene regulation networks), social science
(friendship networks, collaboration networks), linguistics, economy, etc.Thus, the
complex system theme has opened a new interdisciplinary interplay between fields
that were usually separated. Recently, law and computer science followed this
promising approach, using methods related to complex systems to model and analyse
legal networks [4, 5]. It is this rich and promising field of research this paper intends
to commit itself to by studying the networks composed of the decisions taken by the
International Criminal Court since its creation.

Following the traditional approaches, we use standard directed graphs to represent
the networks. Here the nodes stand for the decisions and the links for citations
between decisions. Although useful, such a simple representation is not particularly
close to the real structure of the networks and does not account for the inherent
complexity and hierarchy commonly observed in real data. In the context of legal
networks in particular, interactions between decisions take place at various levels.
Indeed, to motivate their decisions, judges usually rely on former decisions—first
level exhibiting direct interactions—but also refer to articles of the ICC Statute and
norms and regulations of the Court—second level pointing out indirect interactions.
This induces a two-level structure in which direct and indirect relations interplay in
the ruling process.

The existence of two-level structures in real networks led the community to use
also bipartite graphs, i.e. graphs in which nodes can be divided into two disjoint
sets, ∞ (e.g. articles) and ≥ (e.g. decisions), such that every link connects a node
in ∞ to one in ≥. Bipartite graphs are fundamental objects which have proven to
be very efficient for both the analysis [6–8] and the modeling [9, 10] of complex
networks as they are able to reveal patterns that could not have been detected on
simple graphs. The present study follows this approach and relies at the same time
on simple direct graphs and bipartite graphs in order to extract all relevant properties
from the network.

The remaining of the paper is organised as follow: Sect. 2 will review the tech-
nical background necessary for going throughout the paper; Sect. 3 will present the
main results obtained and finally Sect. 4 will conclude the paper and open on new
perspectives.

2 Background

In this section, we introduce the required background for the remainder of the paper.
First, we focus on the dataset (Sect. 2.1) extracted from the ICC database. Then, we
discuss the several frameworks we used in order analyse its structure (Sect. 2.2).
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2.1 Legal Networks

The International Criminal Court (referred to further as ICC) is the first permanent
international criminal jurisdiction, established to judge international crimes (geno-
cides, crimes against humanity and war crimes). The creation of the Court is very
recent (2002) and only 18 cases are currently opened.

The main production of the Court are decisions, which are legal statement ruling
on juridical issues. In order to motivate their decisions, judge may either rely on
former decisions of the Court, or rely on articles of the ICC Statute, and/or norms
and regulations of the Court. Here below is an example of such a motivation found
on a footnote of decision ICC- 01/04- 01/06- 2126- Anx:

Appeals Chamber, Judgement on the appeals of The Prosecutor and The

Defence against Trial Chamber I’s Decision on Victims’ Participation of

18 January 2008, 11 July 2008, ICC-01/04-01/06-1432 , para. 95. See also

Trial Chamber II, Decision on the Modalities of Victim Participation at

Trial, 22 January 2010, ICC-01/04-1/07-1788, para. 30. See also Defence for

Germain Katanga’s Additional Observations on Victims’ Participation and

scope thereof", 10 November 2009, ICC-01/04-01/07-1618: "It has been held

that article 69(3) gives the Court a general ...

In this example, one can notice the two types of arguments used by the judges. The
text clearly refers to former decisions (highlighted in red) but also refers to article of
the ICC Statute (in blue).

In the rest of the paper, we only focus on the Lubanga case (DRC situation) to
concentrate on the most advance case. It involves approximately 7,000 decisions and
1,500 articles.

2.2 Graph Frameworks

Directed graphs. As depicted in the introduction, it is quite natural to represent the
network as a directed graph G = (V, E), with n = |V | and m = |E |, in which the
nodes stand for the decisions – identified by their ICC number – and a link between
nodes u and v exists if the decision u cites the decision v. Note that technically, the
graph is a Directed Acyclic Graph (DAG) since, for obvious reasons, the decisions
can only refer to existing ones. Thus there is no cycle in the network.

This defines the graph of citations among decisions, which will be referred to
simply as the graph of citations. By doing so, we can compute standard metrics
and compare the results to what is obtained on usual complex networks. According
to standard studies, one usually observe for instance that graphs are sparse, i.e. the
density δ = 2.m

n.(n−1)
is very small, and their degree distribution is heterogeneous

(often close to a power-law).
Another key property concerns the local density which is meant to study how

dense a neighbourhood of a node is in the graph. This concept is generally captured
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Fig. 1 Example of bipartite graph and its {∞,≥}-projections

by the clustering coefficientcc(G) or the transitivity ratiotr(G) [1, 11, 12], defined
formally by:

cc(G) =
∑

v
Δ(v)
→(v)

n
tr(G) = Δ(G)

→(G)

where, for each v ∀ V , Δ(v) denotes the number of directed triangles (sets of
three nodes u, v, w, such that (u, v), (u, w), (v,w) ∀ E) which originate at v;
→(v) = d(v).(d(v)−1)

2 denotes the number of pairs of neighbours of v which computes
the number of possible directed triangle; Δ(G) = ∑

v Δ(v); and →(G) = ∑
v →(v).

Note that the clustering coefficient of a node can be defined for the in-degree and
the out-degree, that is when the node is at the origin of the directed triangles (case of
u in the example above) and when it is at the end (case of w). Both variants makes
sense and will be investigated in Sect. 3.

A classical observation in complex network studies is that all these quantities are
high, at least compared to the density δ of the graph. Note however that the meaning
of the existence of such a pattern depends on the context of the network. It has been
shown that it could be related to robustness properties of the network, or properties
related to dynamical aspects of the networks (see for instance [13, 14] for biological
cases).

Bipartite graphs. As stated in the introduction, the previous formalism does not
account for higher level of relations between the decisions. In particular, one does not
exploit the references made to the articles which relate the decisions to the articles
(and regulations and norms) they refer to. This two-level structure calls for a specific
framework that is perfectly matched by the concept of bipartite graphs.

A bipartite graph is a triplet Gb = (∞,≥, Eb), where ∞ is the set of top nodes
(here the articles/norms/regulations), ≥ the set of bottom nodes (here the decisions),
and Eb ♥ ∞ × ≥ the set of links that relate the decisions to the articles. We denote
by n∞ (resp. n≥) the number of top nodes (resp. bottom nodes).

Compared to standard graphs, nodes in a bipartite graph are in two disjoint sets,
and the links are always between a node in one set and a node in the other set. An
example of bipartite graph is given in Fig. 1a, where ∞ nodes are depicted by squares
and ≥ nodes by circles.

The ≥-projection of Gb is the graph G≥ = (≥, E≥) where two nodes (of ≥) are
linked together if they have at least one neighbour in common (in ∞) in Gv: E≥ =
{(u, v), ≡x ∀ ∞ : (u, x) ∀ Eb and (v, x) ∀ Eb}. The ∞-projection is defined dually.
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Both projections are illustrated in Fig. 1b and c. Thus, in our case, the ≥-projection
corresponds to a graph of decisions, such as G, but a link between two decisions
exists if and only if there is at least one common article to which they both refer.

Note that by projecting a bipartite graph into a simple graph, we can then reuse
all the metrics defined above for standard graph. But we can also compute specific
metrics for bipartite graphs, such as k∞ (resp. k≥) the average degree of top nodes
(resp. bottom nodes) and δb = mb

n∞.n≥ the density of the bipartite graph.

3 Results

The purpose of this section is to position the ICC decisions network as regard the
properties observed in common complex networks. To do so, we start investigating
global statistics (Sect. 3.1) before focusing on more specific properties such as the
degree distribution, the local density and some correlations in the bipartite structure
(Sect. 3.2).

3.1 A Global Perspective

The first statistics we focus on concern some basic properties observed in most real-
world networks, formally presented in the previous section. Table 1 presents the
results both for the graph of citations (left) and the bipartite graph (right).

As expected, all usual observations made on real-world networks stand also for
the legal network under investigation. More precisely, one can see that the graph is
sparse (δ = 7 × 10−4) and that the local density (both the transitive ratio and the
clustering coefficient) are several orders of magnitude higher.

Beside one can notice that the highest degree d+ is also way higher than the
average degree k. This indicates some heterogeneity in the degree distribution that
will be investigated further.

As regard the statistics on the bipartite graphs, it also matches the expectations
since the graph is also sparse and both top and bottom highest degrees (d+

∞ and d+
≥ )

are two orders of magnitude higher than their respective average degree (k∞ and k≥).
Those results on the global structures of the two graphs are now refine in the

following section.

3.2 A Deeper Analysis

Degree distribution. In order to refine the general statistics presented above, Fig. 2
presents the degree distribution observed in the graph of citations (left) and the
bipartite graph (right). In the two figures, the horizontal axis, in log-scale, stands for
the degree of the nodes, while the vertical axis, also in log-scale, presents the inverse
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Table 1 Global statistics for
the graph of citations (left)
and decision/article bipartite
graph (right)

Directed graph
Complete Connected Component

n 6 894 1 575
m 17 625 3 319
δ 0.00 0.00
k 2.5 2.1
d+ 214 / 433 158 / 433
tr 0.03 / 0.10 0.03 / 0.08
cc 0.14 / 0.19 0.12 / 0.22

Bipartite graph

n∞ 1 415
n≥ 6 894
mb 11 371
n≥(conn.) 1 683
k∞ 1.7
k≥ 8.0
δb 0.00
d+
∞ 802

d+
≥ 116

(a) (b)

Fig. 2 Inverse cumulative degree distributions for the graph of citations (left) and the bipartite
graph (right)

cumulative proportion (according to the total number of nodes). The shape of the
plots, close to a straight line in the log-log scale over several orders of magnitude,
thus confirms that we are dealing with heterogeneous distributions.

One can notice that for the out degree (the number of citations a decisions makes)
in the graph of citations, the proportion is higher than the in-degrees (the number of
references made to a decision). This is in particular true for the high degrees, which
is well explained by the existence of annexes in the corpus. Indeed, those usually list
all the decisions that a case has referred to.
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(a) (b)

Fig. 3 Clustering coefficient and correlations in the graph of citations

Note also that, although the high out-degrees are not particularly meaningful
since it corresponds to annexes, it is however particularly relevant for the in-degrees.
Indeed, a manual investigation showed that the top-3 of cited decisions corresponds
for major ruling in the case. The first one deals with the conviction of the accused, the
second with its sentence and the last with the remedy and reparations of the victims,
which are all three important issues in the international Court.

As regard the bipartite structure, one can also notice the same kind of comparison
between the degrees of the articles and the ones of the decisions. This indicates
that, from a global point of view, each article tends to be more referred to that each
single decisions. This can be explained by the status of the articles of the ICC Statute
towards decision. This remark is also corroborated by the highest degrees of articles
and decisions (see Table 1 right).

Clustering coefficient. Figure 3 presents several properties related to the cluster-
ing coefficient, as defined in Sect. 2. The left part displays the inverse cumulative
distribution (in lin-log scale) of the coefficients in the graph of citations defined for
the nodes that originates the directed triangles (out-degree, in green) and the ones
that are at the end of the directed triangles (in-degree, in blue). Note that the plots
are normalised over the number of nodes with degree ⇔ 2 in order to avoid side
effects from the nodes of degree 1, for which the notion of clustering coefficient is
inadequate.

Interestingly, one can notice that the proportions of nodes that are at the origin of
triangles is particularly high compared to the one that are at the end. This indicates
that when a decision refers to two other decisions, one of them tends to cite the last
one very often. Manual investigations performed on the triangles that involve highly
cited decisions showed that the over-representation of this pattern is meaningful as
regard legal networks. It turned out that most of those triangles involve a decision
w that is contested by the accused, thus leading to a decision v that cite w. Then a
final decision u rules between the issue, thus citing both v and w. This leads to the
directed triangle originated by u with w as end-point.

The right part of Fig. 3 presents a non trivial correlation between the clustering
coefficient of a node and its degree in the graph of citations. More precisely, a dot
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Fig. 4 Correlations

(x, y) in this plot corresponds to the fact that nodes with degree x have, in average,
a clustering coefficient of y. The figure shows that the higher the degree, the lower
the clustering coefficient in average. This is true both for in-degree and out-degree
except for very low degrees. Indeed, the case of degree-2 nodes is very different
depending on whether we consider the origin of the triangles or the end. For the end,
the coefficient is very low (close to 0), which shows that when two decisions cite
a third one, they usually do not rely on each other (blue dots). On the other end,
if one decision cite two different decisions, those two decisions tends to be related
(green dots). The latter case is easily explained by the remark made in the previous
paragraph since in the former example, the decision u has precisely degree 2 and
its clustering coefficient is 1 thus increasing the average clustering coefficient of
degree-2 nodes.

Bipartite/Projection correlations. Finally, Fig. 4 presents a correlation between
the degree of a decision in the bipartite graph and its degree in the projection. More
precisely, a dot (x, y) in the plot stands for the fact that decisions that refer to x
articles in the bipartite network are related (in the projection) to y different decisions
in average.

The figure presents a strong correlation between those two quantities. The regular
increase (in log-log scale) is natural since the more a decision refers to different
articles, the more decisions it will be related to. What is less intuitive though, is why
the slope of the progression is not higher. Indeed, the reader might have noticed that
according to the plot, multiplying by 100 the number of references to articles only
multiplies the degree in the projection by 10. This fact clearly indicates a strong
overlapping between the articles. This observation makes sense since decisions that
concerns a similar content (that is, deals with similar legal issues) tend to refer to the
same articles to motivate their content.
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4 Conclusion

In this paper, we studied a legal network composed of decisions taken by the Inter-
national Criminal Court since its creation. The analysis made on the most advance
case of the Court shows that it completely matches standards properties shared by
real-world networks, thus confirming the relevance of the complex system approach
towards legal networks.

Besides, we investigated more in depth some of the properties related to the
local density and provided a first interpretation of the over-representation of directed
triangles in such networks. By using different formal frameworks, we also exhibited
new properties such as the overlapping of articles in the bipartite representation of
the decision/article network.

However, the different analyses performed in this study have been made indepen-
dently. Yet, the strong patterns identified here call for the definition of a unique frame-
work able to integrate both direct relations between decisions (such as the citation
process) and indirect relations (such as the decision-article relations). This would
entitle to consider correlations between those two levels of interaction that might
shed light on important properties of the network. We let this promising approach
for further studies.

Another appealing aspect which has not been investigated for the moment
concerns the time. As stated in Sect. 2, the graph is actually a DAG since tem-
poral aspects prevent from the existence of cycles in the network. This remark lead
to consider the temporal evolution of the network instead of considering the whole
decision network since the creation of the Court. We also let this aspect for future
studies.
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Inference of Optimized Control Strategies for
Genetic Networks

Natalja Strelkowa

Abstract In this chapter we present the application of control theoretical concepts
to stochastic dynamical systems which are based on the current knowledge of genetic
networks. We showcase the application of reinforcement learning algorithm inferring
an optimized control strategy for a genetic switch reversal. The approach does not
require precise knowledge of gene network mathematical equations and is therefore
also applicable to experimentally obtained time traces.

Keywords Feedback control · Genetic switch

1 Introduction

Even though natural biological systems such as gene regulatory networks might
appear to be very different from classical engineering examples as for instance flight
control or nuclear reactor shutdown, the system regulation is believed to be very sim-
ilar [1]. In both cases robust functionality under changing environments is achieved
via feedback control loops and can be explained with the concepts of control theory
(see Fig. 1).

We consider the application of feedback control to gene regulatory networks.
Perturbations or intervention signals for genetic networks can be implemented bio-
chemically via conditional gene knock outs [2, 3], heat shocks [4], light pulses
[5, 6], etc. Application of control theoretical concepts would provide intervention
protocols for these biochemical perturbations, which would direct genetic networks
to desired states in an optimized way by accumulation and integration of information
from previous experiments.
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controller

system
readout

system
input

system

Fig. 1 Classical idea of feedback control. The current state of the system or readout is measured
and used as input into the controller. Based on the readout, the controller will infer appropriate
interference action and an input signal will be feed back into the system

The optimization criteria can be defined in a system tailored manner. It can for
example be time, i.e. use the control signals to reach the desired state as quickly
as possible, or cell burden, i.e. use the control signals to reach the desired state
minimizing the expression of heterologous proteins, or a weighted sum of both
factors.

Reinforcement-learning can be used for deduction of optimized control strate-
gies [7]. This algorithm uses time traces to induce a multi-dimensional func-
tion Q(n,u), which is the score of a control action u ∈ U for a system state
n ∈ N

s . The optimized intervention strategy for direction of the network to a desired
state is obtained by taking the maximum of this score function at each state n:
maxu∈U Q(n,u). The algorithm induces optimized control strategies based on time
series obtained from the dynamical system, the definition of the desired state and the
cost function. It is not dependent on a specific form of the model, i.e. largely model
independent.

We demonstrate the application of the algorithm on a genetic network: toggling
a noisy genetic switch.

1.1 Controlled Reversal of a Genetic Switch

Switches are typical and important constructs for the forward designed [8] as well as
for the naturally occurring circuits. One example, where cascades of switches occur
and are believed to dominate the dynamics are antagonistic switches in developmental
biology [9, 10]. The cell fate is believed to be determined by successive switch
reversals of the phenotype dominating genes. For the stem cells tissue engineering
intervention protocols are desired, which would direct the cells into a particular fate
both fast and without protein over-expression, which reduces the fitness of the cells.
An optimized strategy for switch reversals avoiding over-expression can be sought
using the reinforcement learning algorithm.
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We use a simple design for a switch to demonstrate the formulation of this bio-
logical problem in control theoretical terms. A classical topology for a biological
switch are two genes mutually repressing each other (figure above). If the repression
is strong enough then this system will show bi-stability [11, 12], which means in the
steady state either the first gene is highly expressed and the second gene is suppressed
(p1 ↑, p2 ↓) or vice versa (p2 ↑, p1 ↓).

Stochastic dynamics of the genetic switch can be formulated as a Master equation
based on the basic mass-action kinetics and using time scale separation between the
slow protein and fast mRNA dynamics (see for instance [13] for Master equation
derivation) P(p1 = n, p2 = m; t) ≡ P(n,m; t):

dt P(n,m; t) = (g(m) + qsu)P(n − 1,m; t) − (g(m) + qsu)P(n,m; t)

+ g(n)P(n,m − 1; t) − g(n)P(n,m; t)

− d1n P(n,m; t) + d1(n − 1)P(n − 1,m; t)

− d2m P(n,m; t) + d2(m − 1)P(n,m − 1; t)

(1)

where g(x) = e
1+x2 is the Monod-type repression term. The order of magnitude

for the constants is based on [14, 15] and to illustrate the procedure we assume a
symmetric switch e = 400; d1 = d2 = 1. The number of proteins per unit time
produced as the result of the light control signal is denoted by qs and u as usually
denotes the control actions u ∈ {0, 1}.

Control problem formulation for a genetic switch reversal. We assume that for both
genes the protein concentrations are given as readouts for instance via fluorescent
markers. The initial condition is the vicinity of the fixed point (p1 ↓, p2 ↑), where
gene 1 is silent and gene 2 is expressed. The goal of the control strategy is to direct
the switch to the second fixed point (p1 ↑, p2 ↓) by applying control signals to the
first gene. The control signals increase the concentration of the first gene in small
increments, which biochemically corresponds to light flashes activating a photo-
sensitive promoter. Biochemically the response occurs on fast time scales (order of
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seconds [5]) compared to the gene expression time scales occurring on the order
of minutes or even hours and therefore we can approximate the action of the light
inducer as a discrete set light on and light off U = {0, 1}. In classical control theory
this type of control is often referred to as “bang bang”.

To create the training set we start from random initial conditions and the “light on”
signals u(t) = 1 are applied with the probability 3 % covering the interval of interest
[0, 400] × [0, 400]. The instantaneous reward function is defined in the following
way: Two boundary conditions are used to specify the minimal and the maximal
boundary for the instantaneous reward function. The first absorbing boundary con-
dition is given by the minimal reward −1, which is assigned to the neighborhood of
fixed point B(p1 ↓, p2 ↑), which is the initial state we aim to reverse. By absorbing
in this context we mean that if the system reaches that state after a series of ran-
dom signal applications, we assign the according instantaneous reward to the last
point and reset the simulation from random initial conditions. The second absorbing
boundary with the maximal reward 1 is assigned to the neighborhood of the fixed
point (p1 ↑, p2 ↓), which we are trying to achieve. Each application of the control
signal is associated with a cost for the cell to express the foreign protein and therefore
the instantanious reward is diminished if the concentration of the first protein is too
high, i.e. � exp(-p1). In summary the reward function is:

r(p, u, t) =

⎧
⎪⎨

⎪⎩

−1 if p ∈ B(p1 ↓, p2 ↑)
1 if p ∈ B(p1 ↑, p2 ↓)
exp(-p1/e) else

(2)

Algorithmic outcomes and interpretation. The intuitive outcome for a single switch
is a threshold rule: if the concentration of the up gene is low then apply induction
signal. However, the main disadvantage of this technique is that it does not take
into account the system dynamics and the threshold value is not clear a priori. In
the pioneering synthetic biology implementation by Gardner et al. [14] the chemical
inducer IPTG has been applied during the whole switching time of 6 hours to the
bacterial population. This technique can not be applied if not just one but several
switches need to be reversed.

Illustrating our approach we have induced an optimized control strategy for the
switch reversal, which should avoid over-expression of the first protein (see Fig. 2).
Indeed if starting from initial conditions where the first gene is down and the second
is up as shown in the picture only few kicks are required in order to reverse the
switch. From the input-output relationships contained in the training time series the
reinforcement learning technique deduced a control strategy, which takes advantage
of the internal system dynamics.

Implications of noise. One of the challenges in controlling gene expression is
that molecular dynamics of the involved biochemical reactions are very noisy [13,
16]. The stochasticity due to low copy number involved in the genetic transcription
process is inherent and requires that the proposed control strategy is robust to noisy
algorithmic input.
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Fig. 2 Optimized reversal of a genetic switch a Induced state dependent control policy. The dark
gray area indicates the set {Q(·, 1) > Q(·, 0)}, which means genetic network states, where the
value for the action “apply control” u = 1 is larger than for “do not apply control” for u =
0. The complementary set within the boundary conditions is shown in light gray b Simulated
trajectories for p1(t) (black) and p2(t) (gray) starting from B(p1 ↓, p2 ↑) is controlled. Using the
algorithmically estimated policy shown in a towards the target state (p1 ↑, p2 ↓). System states for
which the control action has been applied (u = 1), are marked by black stars in both sub-figures.
Note: Conducting the switch to the desired state with this algorithmic induced policy avoids over-
expression. In comparison to the induced policy, naive or blind application of the control action on
the first protein and waiting till the second protein will reach smaller concentration would result in
1000-fold over-expression and therefore lead to unnecessary cell burden

The reinforcement learning algorithm achieves the robustness with respect to
noise in gene network dynamics via an embedded regressor EXTremely RAndom-
ized Trees (Extra-Trees) [17].

Our input time traces of the genetic switch dynamics have been simulated using
Gillespie algorithm and explicitly taking the inherent stochasticity due to low copy
number into account. Several independent algorithmic runs have confirmed that
indeed the reinforcement learning algorithm is robust with respect to noisy algo-
rithmic inputs.

2 Discussion

Previously discussed feedback control strategies based on the input-output relation-
ships can now also be applied to genetic networks due to the recent progress in
technology for observing and influencing gene regulatory networks. Quantitative in
vivo estimates of biological system states can for example be obtained via fluorescent
markers [18, 19] and spatially targeted transcription induction can be performed in
living cells using monochromatic light [5, 6]. With these tools classical engineering
concepts of optimal feedback control, where a quantitative system state estimate
(read-out) and targeted intervention (control action) are required, is likely to become
in vivo realizable also for genetic circuits.
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Network Topologies for Cellular Automata
Computation

Camelia Chira and Anca Andreica

Abstract The density classification problem aims to find automata able to correctly
classify the density of the initial configuration. This problem is highly challenging
as the desired computation requires global coordination while Cellular Automata
(CAs) rules rely on the local interaction of simple components. Instead of using
the standard CA topology of regular lattice, the current chapter focuses on network
topologies that can be used in connection with a simple fixed rule in CA computation.
The state of a cell evolves according to the majority of its neighbors in the network.
In this chapter, we propose a hill-climbing approach to find good network topologies
for the density classification problem starting from initial small-world networks.
The network solution space is searched in a random hill-climbing manner based
on a simple mutation operator changing the network each iteration. Experiments
emphasize the identification of network topologies with a good performance for
CA computation. The best identified networks are further studied under a dynamic
framework to test their robustness against failures and changes that might occur in
the network. Results confirm a good sustained performance of networks identified
using hill-climbing search.

Keywords Cellular automata · Density classification task · Complex networks ·
Hill-climbing search
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1 Introduction

Cellular Automata (CAs) represent important tools in the study of complex systems
and interactions. CAs are decentralized structures of simple and locally interacting
cells that evolve following a set of rules [21]. The one-dimensional binary-state
CA capable of performing computational tasks has been extensively studied in the
literature [7, 11, 13, 16]. The problem of finding CA rules able to generate a desired
global behavior is highly challenging because only local information influences the
cell evolution. The density classification task (DCT) is one such problem. DCT
aims to find a binary one-dimensional CA able to classify the density of 1s in the
initial configuration. The CA lattice starts with a given binary string called the initial
configuration and, after a maximum number of iterations, the CA will reach a certain
configuration. If this is formed of homogeneous states of all 1s or 0s, it means
that the initial configuration has been classified as density class 1, respectively 0.
Otherwise, the CA makes by definition a mis-classification [15]. The performance
of a rule measures the classification accuracy of a CA based on the fraction of correct
classifications over 104 initial configurations selected from an unbiased distribution.
It has been shown that there is no rule that can correctly classify all possible initial
configurations [8].

The standard CA topology used is a regular lattice and the state of a cell evolves
depending on the neighboring cells. Most existing studies focus on developing
algorithms able to find high performant rules for one-dimensional CAs with lat-
tice topology. Evolutionary algorithms [6, 9, 11, 13, 14], genetic programming [1],
coevolutionary learning [7] and gene expression programming [5] have been shown
to be well-suited to detect valuable CA rules. The performance of the best rules
detected by genetic algorithms is around 0.76 [6, 9, 15] while coevolutionary learn-
ing [7] and multiobjective evolutionary model [12] obtained rules with a performance
above 0.8.

In [19], CAs computation on small-world networks is first studied. In this
approach, the topological structure of CAs refers to general graphs and cells change
states according to neighboring cells in the network. The rule is the same for all cells
and the objective of the problem shifts from finding the best CA rule to finding the
best CA network topology. In [3, 4, 17], small-world type network topologies are
evolved starting from an initial population of regular and random structures. The per-
formance in the case of DCT is above 0.8 for the small-world networks constructed
by Watts [19] as well as for the networks evolved by Tomassini et al. [17]. Moreover,
a recent study investigating the influence of the CA topology on the evolved dynam-
ics indicates the existence of topology-induced phase transitions and topological
bifurcation points [2].

In this chapter, we use a hill-climbing approach to generate the network topology
and test its performance for DCT in one-dimensional CAs. Each iteration, the con-
figuration is changed by using a simple mutation operator and the new configuration
is accepted to replace the existing one based on a fitness function. Experiments show
that this simple approach is effective in constantly finding CA topologies which lead
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to a performance above 0.8 for the DCT. The robustness of the obtained small-world
networks is evaluated under a dynamic framework as the topology is perturbed by
edge removals and/or additions. Results emphasize that perturbations on the network
topology do not cause the failure of the system and the performance is not affected
by network dynamics.

The rest of the chapter is structured as follows: Sect. 2 describes DCT and briefly
presents related work in the area of network based CA computation, Sect. 3 presents
the hill-climbing approach to generate network topologies and the main results
obtained, Sect. 4 presents the analysis of network dynamics based on several compu-
tational experiments, and Sect. 5 contains the conclusions and directions for future
research.

2 Cellular Automata Computation on Small-World Networks

Networks represent a central model for the description of complex phenomena and
they have been studied in fields such as mathematics, neuroscience, biology, epi-
demiology, sociology, social psychology and economy. Real-world networks have
structural properties that set them appart from regular lattices and random graphs
[19]. For instance, small-world networks are characterized by the presence of short
paths and a large clustering coefficient. Watts [19] described the “small world effect”
property of networks, i.e. the average distance between vertices in a network is short,
usually scaling logarithmically with the number of vertices in the network. The
clustering coefficient refers to the probability that two vertices that are both neigh-
bors to the same third vertex are also neighbors of each other (also called network
transitivity).

Watts and Strogatz [18, 19] studied the computational properties of small-world
networks by examining CAs computation on this type of networks. In this approach
to DCT, the rule is fixed and the performance of different small-world networks for
DCT is evaluated. A small-world graph is constructed starting from a regular ring
of nodes in which each node has k neighbors. A random rewiring procedure is then
applied as follows [18, 19]: a vertex and the edge connecting it to a neighbor is
chosen, and the edge is reconnected with probability p to a vertex uniformly chosen
at random from the entire ring. This process is repeated by moving clockwise around
the ring until each vertex is considered once (in connection with nearest neighbors,
second-nearest neighbors, etc. - depending on the value of k). This way, a number
of shortcuts (i.e. edges that link nodes which would be more than two edges apart
if they were not directly connected) are produced. Watts and Strogatz [18] observe
that for intermediate values of p the graph constructed in this way is a small-world
network (with small characteristic path length and high clustering coefficient).

A simple majority rule is used for small-world network DCT defined as follows:
at each time step, each node takes the state of the majority of its neighbor nodes in
the graph (if the number of state 1s equals the number of state 0s in the neighbors
list then the node is randomly assigned a state with equal probability between 0 and
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1). Small-world networks have a performance around 0.8 for the DCT with the fixed
majority rule for CAs of size 149.

Tomassini et al. [3, 4, 17] investigated network based CAs for the density and
synchronization problems. Spatially structured evolutionary algorithms are engaged
to find the best performant network topology for DCT when the rule is fixed to the
majority rule. An individual represents a network structure and the fitness is com-
puted based on the fraction of initial configurations (out of 100 initial configurations
generated anew for each individual) correctly classified by the majority rule based
on the neighborhood given by the network. The initial population is generated in
two ways: starting from regular rings with node degree k = 4 (slightly perturbed
by adding a link for each node with a low probability) and random graphs. The best
evolved network starting from initial regular rings has a performance of 0.823 (for
149 cells) while the result for random graphs as initial population is similar (per-
formance of 0.821 of the best network). The robustness of the evolved topologies is
tested in two scenarios as follows: (i) probabilistic faults [17] which allow the rule
of each cell to yield an incorrect output state with a certain probability (the structure
of the network is not affected in any way in this situation), and (ii) permanent link
failures [3] defined as the definitive disappearance of an edge between two nodes
of the graph. Results obtained indicate that irregular networked automata show an
outstanding robustness and are more tolerant to faults compared to lattice CAs for
the density and synchronization tasks [4].

3 Hill-Climbing Search for Network Structures

This chapter presents the development of a standard hill-climbing search method
used to generate network topologies for the DCT in connection with the majority
rule. A hill-climbing (HC) algorithm [10] is used with the following main steps:

• Generate an initial network structure (denoted by C)
• While the maximum number of iterations has not been reached:

(i) Apply mutation to C and obtain a new structure N
(ii) If N has a better fitness than C for DCT, then replace C with N

• Return C as the final network structure solution.

It should be noted that this model does not exactly follow a random mutation HC
(RMHC) approach because the mutation at step (i) is applied with a certain probability
for each node in the network and not for only one randomly selected node (position)
as in RMHC. Also, the HC model developed in this chapter differs from a steepest-
ascent HC (SAHC) algorithm where mutation is systematically applied to each node
and the best evaluated individual is selected each iteration.

The developed HC method uses a single individual which is a network encoded
as an array of integers representing nodes and a list of links for each node. The
initialization process starts from regular rings normally used to construct small-
world networks [17, 19]. In the proposed approach, the initial network C is obtained
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Fig. 1 Example of initial network used as a start point in the HC method. The network is drawn
by Pajek software [22] using a circular layout as well as a representation by separate components

in the same way described in [17]. Each node is connected to its 4 closest neighbors
in the ring and an edge is added with a probability of 0.1 for each node.

The fitness function for a network structure takes into account 100 initial configu-
rations with uniformly distributed densities. The CA of size N = 149 is iterated using
the majority rule (described in the previous section) based on the current network
structure which gives the neighborhood of each cell. The maximum number of time
steps is set to M = 2N . The fitness measures the fraction of initial configurations for
which the majority rule in connection with the network topology leads to a correct
classification. This fitness function is computationally less expensive compared to
the performance of a rule which is measured over 104 initial configurations selected
from an unbiased distribution. It should be noted that all these parameters (e.g. size
of CA, time steps, number of initial configurations) are set to the same values used
in most DCT studies [11, 13, 17].

Mutation is applied for each node of the network with a probability of 0.5 as
explained in [17]. An edge from the selected target node to another randomly selected
destination node is either added or removed with probability 0.5.

For the experiments presented in the current chapter, the maximum number of
iterations is set to 100. This means that a network C is generated by the HC method
using 100 successively applied mutations to the current best evaluated individual.
The number of HC runs considered is 10. The best performance obtained is 0.8153
and the lowest performance is 0.7768. In three runs, the best performance was around
0.79 while in all other runs the value of the performance was above 0.8.

Figure 1 presents one of the initial networks generated in the first step of the
HC algorithm, while Fig. 2 shows the structure of the best network generated after
100 HC iterations. Both networks have been drawn using the freely available Pajek
software [22]. The performance of the initial network (Fig. 1) is 0.3281 and the
performance of the final network (Fig. 2) is 0.8153.

An interesting behavior observed in the HC runs is that the algorithm usually
starts with an initial configuration with a relatively high fitness of around 0.8 and
low performance below 0.5. This fitness is improved on average during the first
10–15 iterations to the maximum value of 1 with a corresponding performance nor-
mally above 0.75. This behavior suggests the need for a better sustained search
process potentially through the use of several individuals evolved in parallel and a
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Fig. 2 Best network generated using the HC method. The performance for DCT is 0.8153. The
network is drawn by Pajek software [22] using a circular layout and a representation by separate
components

diversification procedure. It is expected that the use of a more complex search process
can produce even more performant network based CAs. Nevertheless, the aim of this
study is to emphasize the quality of networks generated by a simple HC algorithm
for the DCT. The performance of the best networks obtained is further investigated
in the next section under a dynamic framework.

4 Analysis of Network Dynamics

In order to evaluate the robustness of the obtained network topologies, we investigate
their performance for DCT under dynamic changes understood as random removal
or addition of network links. It should be noticed that we also consider the possibility
of adding an edge between two nodes as opposed to permanent link failures tested
in [3] where only edge removals are considered.

The number of steps with some changes performed in the network equals the
number of edges in the network. In the current dynamics analysis, we tested the
robustness of the best network generated by the HC method in 10 runs (see Fig. 2).
This network has 354 edges and a performance of 0.8153 for DCT. Each network
dynamics test starts with this network and each step performs a change in the network
and evaluates the performance of the modified network for DCT. This process leads
to the construction of 354 networks with their performances which will be analysed
in this section.

The following three types of changes are considered at each step:

• Case 1: Each step, a randomly selected link is removed with the fixed probability
p_r . If a link removal does not take place, a new random link is added with
probability p_a = 1 − p_r . This means that at each step, either a link removal or
an addition takes place. The considered values for p_r range from 0.1 to 0.9.

• Case 2: Each step, a randomly selected link is removed with the fixed probability
p_r and a link is added with probability p_a = 1 − p_r . This means that at each
step, a link removal, a link addition or both will take place. The considered values
for p_r range from 0.1 to 0.9.
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Fig. 3 Boxplot representation of results for case 1

Fig. 4 Boxplot representation of results for case 2

• Case 3: This is the most general dynamic test in which the probabilities of removing
and adding an edge are independent. Each step, a randomly selected link is removed
with probability p_r and a new link is added with probability p_a. The considered
values for these probabilities are 0.2, 0.4, 0.6 and 0.8, which leads to 16 (p_r, p_a)
probability pairs analysed.

Figures 3 and 4 present the boxplot results for the first two cases considered.
A more stable performance is obtained when p_r is centered around 0.5 whereas

the presence of outliers and more fluctuations on performance are observed when
p_r and p_a are towards the extreme values allowed. Nevertheless, the performance
of perturbed networks for the density task remains certain with most values above
0.8. This result is further emphasized in Figs. 5 and 6 which depict the maximum and
minimum performance obtained for all considered probability values. The horizontal
axis in these figures represents the value of p_a in descending order and the vertical
axis is the CA performance. The value of p_r can be automatically deducted as it
is always 1 − p_a and not independent from it (as in dynamics test case 3). For
case 1 (see Fig. 5), the maximum performance is above 0.85 and is obtained when
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Fig. 5 Maximum and minimum CA performance obtained for networks perturbed according to
dynamics test case 1. The x axis gives the p_a value and the corresponding p_r is 1 − p_a

Fig. 6 Maximum and minimum CA performance obtained for networks perturbed according to
dynamics test case 2. The x axis gives the p_a value and the corresponding p_r is 1 − p_a

p_a = 0.9. The minimum performance stays around 0.8 for p_a value above 0.4
and then drops with the p_a. For case 2, the performance obtained has maximum
values above 0.8 and minimum values around or slightly below 0.8 for p_a values
of 0.3 or above. The robustness of the network is even more stable compared to the
case 1 as now both edge additions and removals are possible at each step.

Figure 7 depicts the average performance of networks perturbed according to
dynamics test case 3. In this case, the p_a and p_r values are independent so the x
axis in Fig. 7 represents the p_a value while each line is for a different p_r value. The
vertical axis represents the average performance obtained. The worst performance
of around 0.78 is obtained when p_a = 0.4 and p_r = 0.8. Nevertheless, even this
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Fig. 7 Average performance obtained for independent p_a and p_r values in dynamics test case 3

lowest obtained performance is able to trigger a good classification result and it can
not be considered as affecting the robustness of the network. As a trend, when the
probability of removing an edge is high and the probability of adding one is low, the
influence on performance is higher. Moreover, when the performance of adding an
edge is high and the probability of removing one is low, we obtain networks with
high average performances above 0.83, which is a better value even compared to the
initial network. In fact, the maximum performance value obtained was 0.86 when
p_a = 0.8 and p_r = 0.2.

The network dynamics analysis clearly supports a good robustness of the obtained
networks as CA topologies in the DCT. Moreover, the results suggest the potential to
obtain more performant networks by further search as the performance was improved
from 0.8153 for the initial network to values as high as 0.86 for some perturbed
versions of the starting point network.

5 Conclusions

A hill-climbing approach to generate network topologies for CAs in connection with
DCT has been presented and analysed. It has been shown that a straightforward
HC search algorithm is able to trigger good performances for network based CAs.
Furthermore, dynamics of the obtained networks have been analysed and experiments
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confirm the robustness of the networks which are able to maintain and even improve
the performance of CA for DCT.

Future work focuses on using and extending as necessary the HC method to be
used in connection with other search methods in order to facilitate the exploration of
the search space. Mixed CA rules and topologies will also be investigated for density
classification as well as other computational CA tasks.
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Autocorrelated Random Walks and Entropy

Rudolf Hanel and Stefan Thurner

Abstract We show with two simple examples, one—an autocorrelated random
walk, the other—an accelerated random walk, that two processes that are funda-
mentally different on a microscopical level, so different in fact that the two processes
implement different types of entropic concepts, still can be indistinguishable from a
probabilistic point of view, i.e. all finite moments of the two processes may coincide.
The immediate consequence of this observation is that entropy primarily is a property
associated with the structure of phase-space rather than a consequence of specific
observable distribution functions.

Keywords Non-Markovian · Non-ergodic · Path-dependent processes ·
(c,d)-entropies

1 Introduction

In the statistical theory of thermodynamic systems the concept of Entropy plays a
fundamental role. In the work of Boltzmann the entropy measures the number of
states, W , a system can be found in on a logarithmic scale, i.e.

S ∞ log(W ) . (1)
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For a wide class of N -particle systems the entropy S(N ) ≥ N S(1), i.e. W essen-
tially grows exponentially with the system size in terms of particles, which is to say
the entropy is extensive. This exponential behavior is ubiquitous for a wide class of
systems and basically follows from the multinomial structure of sampling a system
of N identical processes, i.e. from the total symmetry of the N -particle distribution
function (exchanging two identical particles does not change the distribution func-
tion), i.e. the invariance under the permutation group. If φ are some intensive system
variables and W (N ) ≥ (

∑
φ w(φ))N for some function w(φ) → 0, then it becomes

clear that in the limit N ∀ ♥ the function W (N ) essentially behaves like w(φ̂),
where w is maximal for the argument φ̂. In a binomial process, e.g. a spin system, this
means that if the system is constrained in such a way that the probability of finding
a spin to be up is p, then the number of states with pN spins up, using Stirling’s
approximation is essentially given by

( N
N p

) ≥ 1/(p(1− p))N and S = log
( N

N p

) ∞ N .
This is the key to deriving the functional form of the entropy for the associated

maximum entropy principle (MEP) [1–3], which for the probabilities pi to observe
state i = 1, . . . , W in an extensive systems takes the mathematical form

S[p] = −kB

W∑

i=1

pi log(pi ) (2)

where kB (which we will set equal to one) is the Boltzmann constant. In this functional
form we will refer to the entropy as Shannon’s entropy. While Boltzmann’s entropy is
the same for non-extensive systems, i.e. log(W ), only that it is no longer proportional
to N , the form of the maximum entropy functional S[p] is only of Shannon’s form
for extensive systems. In non-extensive systems and some asymptotically extensive
systems this situation changes [4–8]. Boltzmann’s entropy relies on an universal idea -
the properties of a large systems (N ≡ 1) are dominated by the properties of the most
abundant type of states the system can be found in and therefore Boltzmann’s entropy
is always the same expression, whether a system is extensive or not: S ∞ log(W ) -
In the non-extensive case the proportionality factor can become some function f (N )

that differs from N . In the simplest cases this can be a power f (N ) = Nα. We will
study such a system below.

From this observation distinct notions of generalized entropies can be derived,
which are related but not necessarily equivalent. One possibility is to find an entropy
functional Sα[p], that generalizes Boltzmann’s approach to Sα ∞ α(W ), for α

being some other monotonically increasing function, called the generalized loga-
rithm, in such a way that α(W ) ∞ N , i.e. the new entropy notion is again extensive.
This possibility has already been pointed out by Tsallis (e.g. [9, 10]). In [4] it has
been shown that in fact W (N ) determines the form of the functional Sα[p]. More-
over, it has been shown how entropic functionals Sα can be classified in terms of
their asymptotic behavior [5]. This work uses the fact that Shannon’s entropy is
uniquely determined by 4 axioms (Shannon-Khinchin axioms SK1-SK4, [11, 12])
and that non-extensive systems violate one axiom often referred to as the composi-
tion axiom. The extensive generalized entropy functional Sα[p] however, usually is
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not the appropriate MEP functional associated with the system and the authors are
currently investigating the question how generalized MEP can be derived for various
classes of non-extensive, aging systems.

While these general results will be published elsewhere, we will focus on a
particular simple example of a non-extensive process that exemplifies two things: (i)
strong long-range correlations, breaking the total symmetry of the sampling process,
can cause phase-space to grow non-exponentially and therefore generalized entropies
become necessary and (ii) the probabilistic description of such a system may be equiv-
alent to the probabilistic description of another system, which is in fact extensive
(i.e. the distribution function does not tell us whether a system is extensive or not).

In the following we will look at a class of autocorrelated random walks which
require generalized entropies. We show that these random walks can be used to
construct autocorrelated versions of the Wiener measure. In the continuum limit these
autocorrelated measures are probabilistically equivalent to Fokker-Planck diffusion
processes with time dependent diffusion constant.

2 A Class of Autocorrelated Random Walks and its Continuum
Limit

Let us begin with defining a discrete process

βWβt (nβt) = ωnβx , (3)

where ωn ⇔ {−1,+1} and the expectation value of ∼ωn〉 = 0 for all n. The con-
struction closely follows the construction of the Wiener process. However, instead
of having ∼ωnωm〉 = δnm , where δmn is Kronecker’s delta function, ωn are correlated
in the following way

∼ωnωm〉 = 1 if ∃k: k < nα, mα < k + 1 (4)

and ∼ωnωm〉 = 0 otherwise. Clearly one requires 0 < α ≤ 1. This means that with
passing time the process will keep walking persistently in one direction for increasing
numbers of time steps. The process can not freely decide whether to go left or right
at any time step.

One process for instance that asymptotically has α = 1/2 can decide in the
beginning whether to go left or right. After making this decision it goes one step, say
to the right. Then it faces another decision. Now having made this decision, say left,
the walker goes in this direction, but not one but two steps. With any new decision
the walker has to go first three steps in the same direction, then four, fife, and so on.
For an uncorrelated random walk, the number of different paths a walker can take is
given by log W (t)/ log 2 = N (t), where N (t) = [t/βt]. The function [x] denotes
the next closest integer smaller than x . In contrast, for the correlated random walk
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the number of possible configurations after time t is given by log W (t)/ log 2 =
[(t/βt)α] ≥ N (t)α. So clearly the correlated random walk is non-extensive and
requires a generalized extensive entropy [4].

In the next step we can construct the continuum limit of the autocorrelated random
walk to obtain the autocorrelated analogon for the Wiener process in a Riemann-
Stieltjes sense. For this we look at the second moment ∼Wβt (t)〉 and, with χ being
the characteristic function, obtain

∼Wβt (t)
2〉 =

∑[t/βt]
m=1

∑[t/βt]
n=1

∼ωmωn〉βx2

=
∑♥

k=0

(∑[t/βt]
m=1

∑[t/βt]
n=1

χ(k ≤ mα, nα < k + 1)

)

βx2

=
∑♥

k=0

(∑[t/βt]
n=1

χ(k ≤ nα < k + 1)

)2

βx2

=
∑♥

k=0
θ
([

(t/βt)α
] − k

) (
k1/α

(
(1 + 1/k)1/α − 1

))2
βx2

≥
∑[(t/βt)α]

k=0

1

α2 k2/α−2βx2

≥ 1

α(2 − α)
βx2 k2/α−1

∣
∣
∣
(t/βt)α

0

≥ 1

α(2 − α)
βx2

(
t

βt

)2−α

!= tβ , (5)

where in the last line we impose that that tβ is the result. This allows us to define the
continuum process Wβ(t) = limβt∀0 Wβt (t) as the Riemann-Stieltjes limit of the
above process by identifying β = 2 − α (this means 1 ≤ β < 2) and by defining
βx = βxβ(βt) as

βxβ(βt) = √
β(2 − β)βt

β
2 , (6)

which then implies ∼Wβ(t)2〉 = tβ . Clearly β = 1, i.e. W1(t), corresponds to the
usual Wiener-process with the well known relation βx2 ≥ βt . Autocorrelations, as
we have just shown, can fundamentally change this scaling relation.

In the next step we can look at all finite moments ∼W n(t)〉 and find an astonishing
equivalence. The autocorrelated process is probabilistically equivalent to a diffusion
process d X (t) = B(t)dW1(t), with time dependent diffusion constant D = B2.

3 Finite Moments and Equivalence

It is clear from ∼ωn〉 = 0 that all odd moments of the process Wβ(t) are vanishing,
∼Wβ(t)n〉 = 0 for n = 1, 3, 5, . . .. For even moments these moments can be computed
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and one finds

∼Wβt (t)
2n〉 = ∼

∫ t

0
dWβ(t1)

∫ t

0
dWβ(t2) · · ·

∫ t

0
dWβ(t2n)〉

=
∑[t/βt]

m1,m2,...,m2n=0
∼ωm1ωm1 · · ·ωm2n 〉βx2n

= (2n)!
n!2n

∼Wβ(t)2〉n

= (2n)!
n!2n

tβn (7)

Let us compare these results with the ones obtained for an accelerated process

d X (t) = tγdW1(t) (8)

and get for the second moment:

∼X (t)2〉 = ∼
∫ t

0
dW1(t1)

∫ t

0
dW1(t2)t

γ
1 t2γ〉

=
∫ t

0
dt1t2γ

1

= t2γ+1

2γ + 1
(9)

This means that 2γ + 1 = β, i.e. γ = (β − 1)/2 and, identifying the accelerated
process to be

dW̄β(t) ≡ √
βt

β−1
2

︸ ︷︷ ︸
≡B(t)

dW1(t) , (10)

one sees that W̄β(t) possesses exactly the same finite moments as Wβ(t), even though
both processes are fundamentally different in terms of their microscopic structure.

4 Discussion

Evidently both the autocorrelated and the accelerated process are identical in a weak
probabilistic sense; i.e. all moments of the two processes are identical. Yet, the two
processes differ completely in their microscopic behavior. The number of possible
configurations, W , grows exponentially for the accelerated process, which therefore
this is extensive, and subject to Shannon’s entropy. In case of the autocorrelated
process W grows sub-exponentially. The process is non-extensive and requires gen-
eralized notions of entropy.
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The most striking differences of the two processes are maybe the following: (i)
while in the autocorrelated case the random walker always walks at constant speed
vβ which scales like

vβ = βx

βt
= √

β(2 − β)βt
β
2 −1 , (11)

the velocity of the accelerating walker v̄β increases with time t and scales with βt
in the following way

vβ(t) = βx

βt
=

√
β

βt
t

β−1
2 . (12)

The second striking feature is that, (ii) while the accelerated process chooses a
new direction with equal probability at every time step, the autocorrelated process
becomes more and more persistent with time, i.e. the probability of the autocorrelated
process to change direction in fact converges to zero in the continuum limit.

In other words, if we consider the random variables of the two processes not to
be the choices ωn = ±1 to either go left or right, but the choices ηn , whether the
walker changes direction after the n’th step or not, then we can write ωn+1 = ηnωn .
If ηn = 1 the walker continues in the direction it is heading at the moment. If
η = −1 the walker reverses its direction. We can now examine the probability
p(k) = P(

∑N
n=1 χ(ηn = −1) = k) for the two processes and since in the accelerated

case all ωn are independent and ∼ωn〉 = 0 it follows that also ∼ηn〉 = 0 and therefor

paccelerated(k) =
(

N

k

)

pk(1 − p)N−k , (13)

is binomially distributed and the probability of direction-reversal is p = 1/2 for all
N . In the autocorrelated case however, p(k) ceases to be binomially distributed and
the probability of direction-reversal p ∀ 0 as N ∀ ♥. This on the other hand
implies that the probability of sequences of N decisions on changing direction that
contain k decisions to change direction and N − k not to, are not invariant under
permutation of the occurrences of those events. The hallmark of systems that require
generalized entropies is exactly this broken invariance. In fact this is the starting-
point of an analysis that allows to identify classes of systems where this invariance
can be considered as deformed rather than completely broken. Such systems are
characterized by the fact that every new realization of the process will break symmetry
and become more and more persistent, similarly to the autocorrelated random walk.

5 Conclusions

We have shown with the simple examples of autocorrelated and an accelerated
random walks that although both processes are fundamentally different on a micro-
scopical level, so different in fact that the two processes have to be described with
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different types of entropies, that they are indistinguishable with respect to all their
finite moments. The main conclusion that we have to draw from this is the following.
The weak equivalence of different processes implied by the identity of all moments
does not allow to infer that two processes have to be identical with respect to the
entropy of the two systems! The entropy concept is therefore related to the micro-
structure of a process and the internal constraints that break the total symmetry of
the joint probability distribution function describing the system.
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Complex Network Construction Based
on SOMA: Vertices In-Degree Reliance
on Fitness Value Evolution

Lenka Skanderova, Ivan Zelinka and Petr Saloun

Abstract This paper deals with complex network constructing with using
evolutionary algorithm SOMA AllToOne version. The main goal is to visualize
complex networks developing and analyse their properties, especially in-degrees
and their realiances on fitness value evolution. Thank this analysis we can make an
analysis of the populations evolutions during the evolutionary algorithm.

Keywords Complex networks · Evolutionary algorithm · SOMA · AllToOne ·
Vertex in-degree

1 Introduction

Evolutionary algorithms are based on three basic principles—natural selection, cross-
ing and mutation. The population of individuals plays the main role in these algo-
rithms. Each individual has its own parameters and fitness value. Each parameter has
its lower and upper bound. It is not possible to cross these bounds. Fitness value says
how this individual is good in the population. Evolution algorithms are used for opti-
mization, so the global minimum or maximum of the cost function (fitness function)
is ussually searched. New population is generated randomly at the beginning of the
algorithm. Word “randomly” means the individuals parameters are generated ran-
domly in their lower and upper bounds. The fitness of each individual is computed.
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Then the evolution process can begin. The individuals are crossed and mutated. Best
survive while worse die [1]. In this paper, SOMA AllToOne version has been chosen
from the family of the evolutionary algorithms. In connection with complex networks
evolutionary algorithms are mentioned for example in [2–5].

SOMA differs from typical evolutionary algorithms principle, for example from
differential evolution (DE), by the main idea of the algorithm. In DE new offspring
is created during the evolution. In SOMA the individuals migrate in the space of
possible solutions. There is no offspring, individuals just change their positions. In
this paper SOMA AllToOne has been used, because all individuals migrate to one
individual—we call it Leader—and it is easy to observe the evolution of relationships
between individuals and Leaders during complex network’s construction. We can
observe the “winners”, individuals, which have been chosen as Leaders most often.

A network is a set of items, we call them vertices, whith connections between them,
theese connections are called edges. We can mention for example World Wide Web,
social networks, metabolic networks, food webs etc. It is known that the matematical
graph theory is one of the fundamental pillars of discrete mathematic. Networks
have also been studied in the social sciences, where typical social network studies
address issue centrality and connectivity [6]. The vertices and edges can have many
properties, which can be researched. There can be more types of vertices as well as
edges in the network. Vertices can represent states, people or organizations. Edges
relationships—e.g. friendship etc. Edges can have their weights and they can be
directed or not directed. Graphs composed of directed edges are called digraphs.
Graphs can contain hyperedges—edges, which join more than two vertices together
[6]. In connection with genetic algorithm [7] has been written in 2013 [8] describes a
bibliometric study of service innovation research based on complex network analysis.
In [9] authors write about the study of emergence in small-group social networks
[10] occupies by directed complex networks and in [11] new global synchronization
analysis for complex networks is described.

2 Motivation

The main motivation of this paper is to observe reliance of the individuals in-degree
values on fitness value evolution during the evolution process. The special attention
has been devoted to the areas, where fitness value is stagnating.

3 Experiment Design

For experiments HP Pavilion dv7-6050 with processor Intel Core i7 with frequency
2 GHz, 4 GB RAM and graphic card AMD Radeon HD 6770M and Microsoft Visual
Studio 2010 have been used. The experiments have beed processed by Mathematica 8,
Gephi 0.8.2 and Gnuplot 4.6. As it was mentioned above, SOMA AllToOne has been
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Table 1 SOMA AllToOne
setting

Parameter Value

N P 100
D 50
Migrations 300
P RT 0.1
PathLength 3
Step 0.11

used as the evolutionary algorithm. The global minimum of the function has been
searched. And Schwefel’s function has been chosen as a testing function. Schwfel’s
global minimum is f (x) = 418.9829 × D, where D denotes dimension. For this
function the set of complex networks has been constructed. Each migration of the
algorithm meant one step in the complex network developing. Each step has been
registered and analyzed. 300 graphs have been constructed. Exact setting of the
algorithm is reffered in Table 1. In Table 1 N P means number of individuals in the
population, D—dimension, Migrations number of migration cycles, P RT means
perturbation, perturbation vector is created according to this parameter, PathLength
says how far the actual individual will stop from the Leader and Step means “grain”
of individual’s path. The construction of the graph for SOMA AllToOne has been
implemented like this:

• One vertex in the graph meant one individual in evolutionary algorithm.
• In each generation the best individual has been found. Best individual means the

individual with the best (minimal) fitness.
• The best individual has been supported by each other individual. So from the view

of the graph it had the connection with each other vertex. In this paper oriented
graph has been used for visualizations. If the individual is supported by others in the
evolutionary algorithm, number of edges leading to the vertex, which visializes
this individual will increase and the in-degree of this vertex will increase too.
Thanks this mechanism we can observe the complex network evolution, which
individual has become Leader the most often, if there is the phenomenon “rich
become to be richer” etc.

4 Results

From the view of results we have been interrested in phenomenon “rich become to
be richer” and especially a connection of vertex in-degree stagnation with evolution
process stagnation in SOMA. In other words if in-degree of vertex will stagnate when
Leader does not change.

We can observe the phenomenon “rich become to be richer” by the individual
number 5. Individual number 5 has the highest in-degree. Its value is 5148. Next
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Fig. 1 Schwefel’s function,
Leaders visualization during
the evolution process. It cen
be observed that individuals
number 2, 5 and 56 are the
richest

Fig. 2 Schwefel’s function
fitness evolution during evo-
lution process

rich individuals are individual number 2 with in-degree 1683 and 56 with in-degree
1782. Individual number 2 is the last Leader in the evolution process. In Fig. 2 the
fitness value evolution is depicted. The fitness stagnates from the migration number
100 with the value −20830.7. From the Fig. 1 it is clear that Leaders have changed
many times during the evolution after 100th migration. From the migration number
212 Leaders change much slower than before.
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Fig. 3 Schwefel’s function,
individual number 5 in-degree
visualization. We can observe
in which migration cycle it has
become Leader at first and its
in-degree evolution

Fig. 4 Schwefel’s function,
individual number 2 in-degree
visualization. We can observe
in which migration cycle it has
become Leader at first and its
in-degree evolution

Fig. 5 Schwefel’s function,
individual number 56
in-degree visualization.
We can observe in which
migration cycle it has become
Leader at first and its in-degree
evolution
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5 Conclusion

From the Sect. 4 we can make some conclustions:

• For Schwefel’s function 300 migrations have sufficed to observe the phenomenon
“rich become to be richer”, in this case individual number 5 has become winner.
On the other hand 300 migrations have not sufficed to reach the global minimum
of the Schwefel’s function which is mentioned in Sect. 3. This is probably caused
by high dimension. However this count of migrations sufficed to observe vertices
in-degree evolution connection with evolution stagnation in SOMA.

• The phenomenon “rich become to be richer” appeared by the individuals number
2 and 56 but their in-degree were much lower than in-degree of individual number
5.

• The Schwefel’s function fitness stagnates from the migration number 100, its value
is −20830.7. When we round the fitness value to integer, the fitness will stagnate
from the migration number 92 with the value −20831, see Fig. 2. If we look at
Fig. 1 we will see that from the migration number 100 till 208 the phenomenom
“rich become to be richer” can not be observed and Leaders change very quickly
too. From the migration number 212 Leaders change much slower than before.

• In Figs. 3, 4 and 5 in-degree evolutions of the individuals numbers 5, 2 and 56 are
depicted. Their in-degrees have been increasing very slowly till the last third of the
evolution process. Then their in-degrees increased much faster. From these three
individuals, individual number 5 has been chosen as the Leader first. In Fig. 3
we can see long in-degree stagnation around the migration cycle number 100, this
situation lasts 198 migration cycles. The second richest individual is individual
number 2. We can see in Fig. 4 there are three long in-degree stagnations during
the evolution process.

• Individual number 56 is the third richest individual, it has become Leader 17 times.
There is a big differences between individuals number 2 and 56, and individual
number 5. Individual number 2 has become Leader 18 times, individual number
5617 times while individual number 552 times.

• Leaders change very quickly till the last third of the migration cycles. The indi-
vidual number 2 has been chosen as the last Leader. As it is mentioned above
the algorithm has not reached the global minimum of the Schwefel’s function. It
is probable that in-degrees will still increase and Leaders will change, but this
process will be very slow.

In the future we would like to make next experiments with greater collections
of individuals, other optimization functions and other evolutionary algorithms, e.g.
DE, to investigate the complex network structure creation during the evolutionary
algorithms.
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Sentiment Analysis in Complex
Adaptive Systems

Petr Šaloun, Ivan Zelinka and Martin Hruzik

Abstract The aim of this work is to present a new algorithm for the evaluation
of sentiment in Czech language texts. The algorithm is based on a new dictionary
and uses n-gram searching. For the creation of the dictionary, it was important to
use language specific phrases and exceptions, which can completely change the
final evaluation of a sentiment. The solution also includes automatic search for a
new subjects (aspects) of evaluation and also searching for new words determining
sentiment. A similar algorithm can also be applied to other languages. The work
emphasizes the transformation of the acquired data into valuable information. Our
experiment is realized in the experimental adaptive web system in e-learning content
domain and in eShop domain. The success and benefits of the algorithm are also
discussed in this text.

Keywords Sentiment analysis · Opinion mining · Lemmatization · Aspects
mining · Wordnet

1 Introduction

The Internet is constantly replenished with new users who generate more and more
content. The content conceals information of high value, and many companies,
scientists, prefessionals and experts are trying to figure out how to obtain and use
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this valuable information. Subjective texts, which are important for their sentiment,
are a part of this.

Sentiment analysis (opinion mining) is currently one of the most discussed topics.
In the past, there have been several startups and a number of methods created with
the same goal—get the sentiment from text. These methods are used for example in
financial markets, where sentiment analysis helps with stock trading.

The most common application of sentiment analysis is in the area of consumer
reviews of products and services. Opinion mining helps producers to find out what
the customers think about their products and determine what they like and what
they complain about. This information can help manufacturers to further develop a
product, and subsequently, increase sales. Customers on the other hand, can see what
other people refer to as an advantage or disadvantage and then decide whether to buy
the product or not. There are numerous news items, articles, blogs, tweets etc. which
are analyzed [1].

It is possible to find many different ways for doing sentiment analysis of Eng-
lish texts. Some of these methods have been already implemented for Chinese and
Spanish texts. The other languages usually use the common solution—first, the text
is converted into English, and then the analysis of sentiment is done. Each language
has its own peculiarities, so the method that involves a translation is not always
successful.

This text is focused on the procedure of sentiment analysis in adaptive systems
based on Slavic languages and Czech language primarily. We have used my expe-
rience from e-shops and native knowledge of the Czech language to design the
algorithm. In addition to analyzing data about specific products, the algorithm was
also succesfully applied in the domain of e-learning, where we gathered students’
feedback. Adaptive web systems in education domain are described in [2]. We were
able to improve content, user interface and usability of the system based on the result
of the sentiment analysis.

2 Related Work

The impulse for application sentiment analysis was the change of web standards—
WEB 2.0. Since 2004, the world of the internet is not just about static websites, but
users are already actively involved in the creation of content, and websites are full
of interactive elements. The internet is full of subjective texts that can be further
processed and analyzed for sentiment to gain valuable information [3].

Sentiment analysis gathers emotions of the author of the text. In its simplest form,
the sentiment distinguishes positive and negative emotions, but there are also algo-
rithms that are able to recognize fear, anger and other human emotions. Subjective
texts, with identifiable emotions, are analyzed more frequently. There is also senti-
ment analysis of objective text based on the facts—for example monitoring of the
financial market.

In general, sentiment analysis has been investigated mainly at three levels [4]:



Sentiment Analysis in Complex 301

Document Level: Result is the identification of positive, negative or neutral
sentimnetu for the entire document. It is assumed, that each document contains text
related to only one entity.

Sentence level: At this level, the task is to determine whether each sentence
expresses positive, negative, or neutral opinion.

Entity and Aspect level: The document level and the sentence level analyzes
do not exactly determine what people liked and disliked. Sentiment analysis at the
aspect level is based on the rule that each opinion consists of sentiment (positive,
negative) and objects (target of opinion).

One of the main conditions for determining the correct sentiment by the algorithm
based on key words is quality of the lexicon. Lexicon contains sentiment words, also
called opinion words, and multiplication words (almost, so, really etc.).

It is important to mention, that the sentiment analysis is a Natural Language
Processing (NLP) problem. Success of the analysis also depends on quality of NLP
for the chosen language, which is Czech in this case. There are many NLP methods
and quality dictionaries for English. However, finding the right NLP techniques and
vocabulary for other languages is much more complicated [5, 6].

Sentiment analysis in the Czech text is still a relatively unexplored area. When we
were looking for the existing solutions, we found a work from 2011, where instead
of dictionary, machine learning is used [7]. One of the most popular methods of
machine learning is Support Vector Machine (SVM) [8]. The success of this method
depends directly on the quality of the training set, which may be specific for different
areas of entity [9].

There is also a hybrid method that combines the benefits of dictionary and machine
learning approaches [10]. This article focuses on sentiment analysis of aspects based
on the use of the new lexicon.

3 Sentiment Analysis

There are many emotions, but we only distinguish between positive, neutral and
negative emotions for the resulting sentiment. We also divide the power of emotion
into two groups—normal and strong. Special group are sentences which contain
vulgar phrases and a negative sentiment is used. Table 1 shows all the defined classes
of sentiment and also an example.

In the first step, the text is converted to the lower case format, and the system
detects whether diacritics is used. If the diacritics is used, the system will use the
original comparison in the next steps. Then the text is split to sentences using special
characters and stopwords. In this context, sentence means a unit of sentiment analysis.

Each unit (sentence) is going through lemmatization - the words and expressions
are converted to the basic word form by using the rules for inflection or the special
dictionary. This problem is language specific, so the author’s sense for the Czech
language was used, and also the methods from [11]. Once we have a sentence in
basic form, we can define n-grams (unigrams, bigrams, trigrams) [12]. With n-grams,
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Table 1 Emotion classes

Emotion class Description Example

Vulgar Vulgar and negative emot “Buying this shit was a huge mistake!”
Negative2 Strong negative emotions “I hate this camera,

I am so angry about that”
Negative Normal negative emotions “This camera is not good”
Neutral Neutral emotions “I found some issues but it is

not a bad camera”
Positive Normal positive emotions “I can recommend this camera”
Positive2 Strong positive emotions “I love this camera I am so happy!”

Table 2 Formula transformation

Input Output

“This camera has really amazing zoom” {3} {M1.8} {POS2} {A123}
Explanation: {3}—three unrecognized words in row,
“really”—{M1.8}(multiple word with cofficient), “amazing”—{POS2}(StrongPositive),
“zoom”—{A123} aspect with ID 123

accuracy of the algorithm is improved, because a comparison is done with words and
their dependencies, not just each one separate word.

The main phase of the Sentiment Analysis is Formula Transformation. In this step,
the application transforming text into stream of symbols. All n-grams are processed
with the exception of dictionary, keywords dictionary, aspect list and emoticon list.
The output is a formula, which is used for the final classification of the emotion class
and relation with aspect. Table 2 describes the sentence-to-formula transformation.

The last part of the sentiment analysis is sentiment classification. In this step,
evaluation and determination of the final sentiment of the text or aspect is done.
For the example above is the result: Aspect—zoom, Sentiment—strong positive,
Points +4.

3.1 Lexicon Based Acquisition

A good lexicon is the base of all methods of the lexicon sentiment analysis. The
dictionary contains several types of phrases that have the main significance in the
sentiment analysis [13], see Table 3.

For the creation of the dictionary, several automatic and manual methods can be
used. One of the interesting automatic methods is based on the Wordnet lexicon [14],
which contains the relations between words and is described in [15]. Since Czech is
a very varied language, a semi-automatic method was used for generating the dic-
tionary. This provides control over the phrases. At the beginning, we defined several



Sentiment Analysis in Complex 303

Table 3 Keywords types

Type Description

Sentiment phrases Phrases which identify positive or negative sentiment
Multiple phrases Phrases which identify multiplication of the sentiment
Aspects Attributes/properties of the subject
Exceptions Phrases with special meaning

different phrases. The application automaticly gathers synonyms and semantically
similar phrases in freely available dictionaries of synonyms of the Czech language.
These dictionaries are based on Thesaurus. 1 Similar phrases were automatically
proposed with the level of the sentiment related to the phrase or the same level [16].

Because lexicon is a very significant for our method , the new phrases were checked
and others were added manually. With a sense for the Czech dictionary, it was possible
to extend the exceptional phrases, which include the more complicated phrases. There
are also special phrases which can significantly affect the final sentiment.

3.2 Aspect Based Analysis

Aspect-based sentiment analysis is a research problem that focuses on the recognition
of all sentiment expressions within a given document and the aspects to which they
refer [1]. Aspect-based sentiment analysis helps gather the right information from
the text. It is good to know whether the customer feels positively or negatively about
a product, but by using aspects, we are able to determine what exactly is good or bad
about a particular product. This information is obviously valuable.

For a definition of aspects in the e-learning domain, we used two methods. One of
them is that the aspect is a key word from the ontology of the learning content text.
The second is that aspects are defined manually for the entire system, for example:
font, code, navigation panel. There is also a possibility to use implicit phrases, which
are stored as aspect synonyms. Example of implicit aspect phrase is “This camera
is too heavy”, where we can recognize, that the author speak negatively about the
camera weight. The word “heavy” is saved in the database of exception phrases and
has a relation with aspect and also negative sentiment.

Aspect list can be extended also by using the automatic method. When the senti-
ment is recognized, the algorithm attempts to find a subject of the sentiment’s words.
The subject is stored in a special database. If the subjects repeat in the text often, it
becomes a candidate for a new aspect. For example, this way we extended aspects
list of the e-learning system by adding the aspect “table” [17].

We can store a part of the analyzed text into the same database where the results
of sentiment analysis are stored. When we also save a relation to the aspect and to

1 http://thesaurus.com/

http://thesaurus.com/
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Fig. 1 The proposed system for sentiment analysis

Fig. 2 Aspects of cell phone

the sentiment class we have a quality information. With this database is easy to find
all comments or part of analyzed text for the specific sentiment and aspect.

For example we can get a list of sentences with strongly negative sentiment about
the camera zoom. In these sentences can be found what exactly is wrong with the
camera zoom. Result of the next analysis is what needs to be done for the customers
satisfaction. But this analysis is based on small details in the text so manual human
sentiment analysis is the best next step.

4 Experiment Results

As our experimenting environment we used elearning system XAPOS2[18]. Almost
200 of students add to the system 1473 comments. We defined more than 20 aspects
and other was set by ontology. After the sentiment analysis algorithm was applied,

2 http://arg.vsb.cz/XAPOS/, authors: Zdenek Velart, Petr Šaloun.

http://arg.vsb.cz/XAPOS/
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Table 4 Part of the output of XAPOS analysis

Aspect Sentiment analysis

Example 4 negative2, 6 negative, 1 positive2
Table 11 negative, 4 neutral, 6 positive
Text 2 negative2, 4 negative, 5 neutral, 31 positive, 2 positive2

Table 5 Success of the
algorithm—F Score

Type Success(%)

Vulgar 100
Negative2 82
Negative 72
Neutral 82
Positive 74
Positive2 81

we got interesting picture about the system. In table below you can see a part of the
output form the sentiment analysis of the student comments.

From the table above we know, that we should work on navigation and change
the tables. On the other hand students like text of the learning objects in the system.
We also successfully applied the algorithm in eshop domain.

We compared the results of the sentiment analysis of random comments from the
users in e-learning and eshop domain with our manual sentiment analysis of these
comments. The succcess of the algorithm was high. F score is a performance measure
that combines precision and recall and ranges between 0 (worst performance) and 100
(best performance) [19]. It is mportant to say, that there is no absolute percentage
of success, because sentiment analysis is subjective for each person opinion. See
Table 5. for exact numbers.:

5 Conclusion and Future Work

Our contribution is sentiment analysis system for Czech language in real working
system based on the lexicon method. We have demonstrated the usability of the algo-
rithm in the domain of e-shops, and also in domain of e-learning. Data obtained from
sentiment combined with the aspect relation were transferred to valuable information,
which can help improve the product or system in the educational domain.

Value of the F-score 82 %, which explain the success of the algorithm, showed
us, that the lexicon and whole method are not perfect and we need to work on the
enhancement. For future work it is worth to consider using Wordnet or expand the
lexicon by adding more n-grams and exceptions. Another option is the addition of
AutoCorrection. There are also some challenges for the future work, such as irony and
use of diacritics with only certain words. We believe that with these enhancements
we can reach a big improvement of the algorithm for sentiment analysis of texts in
the Czech language.
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How is the Process Network Organized
and When Does it Show Emergent Properties
in a Forest Ecosystem?

Juyeol Yun, Minseok Kang, Sehee Kim, Jung Hwa Chun, Chun-Ho Cho
and Joon Kim

Abstract Ecosystems are open, self-organizing systems and energy of different
quantity and quality provides the stimulus for organization, enabling different
processes to progress at different rates. Here, information acts internally within the
system to constrain its behavior, which can also flow into the system from outside,
thereby prompting the self-organizing processes. The interplay of environmental
conditions, energy, matter, and information defines the context and constraints for
the set of processes and structures that may emerge during self-organization. Using
the KoFlux tower-based measurements of energy, water and CO 2 flux time series
in 2008 in a temperate forest in Korea, we have evaluated statistical measures of
characterizing the organization of the information flow in ecohydrological process
networks in a forest ecosystem. Here, process network is a network of feedback
loops and direction of flow of matter, energy and information between the differ-
ent variables. The goal of this study is to understand how ecosystem organization
changes in time, and identify and characterize network-scale emergent properties by
quantifying the varying ecosystem states. Ecosystem integrity is preserved when its
self-organizing processes are preserved. The inherent challenges associated with the

J. Yun · J. Kim (B)

Complex Systems Science Laboratory, Department of Landscape Architecture and Rural Systems
Engineering, Seoul National University, Seoul 151-921, Korea
e-mail: joon@snu.ac.kr

M. Kang
National Center for Agro Meterology, Seoul National University, Seoul 151-744, Korea

S. Kim · J. Kim
Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University,
Seoul 151-744, Korea

J. H. Chun
Division of Forest Conservation, Korea Forest Research Institute, Seoul 130-712, Korea

C. -H. Cho
National Institute of Meteorological Research, Korea Meteorological Administration,
Seoul 156-720, Korea

A. Sanayei et al. (eds.), ISCS 2013: Interdisciplinary Symposium on Complex Systems, 307
Emergence, Complexity and Computation 8, DOI: 10.1007/978-3-642-45438-7_31,
© Springer-Verlag Berlin Heidelberg 2014



308 J. Yun et al.

time series data and the potential use of this conceptual approach and statistical tools
are discussed for sustainable ecosystem management.

Keywords Self-organization · Flux monitoring · Process network · Information
flow · Network statistics · Sustainable management · Forest ecosystem

1 Introduction

Complex systems are systems in which large networks of components with no central
control and simple rules of operation give rise to complex collective behavior, sophis-
ticated information processing, and adaptation via learning or evolution [3]. Thus,
the science underlying complex systems should focus not only on the concepts of
energy and matters, but also on those of feedbacks, information, communication, and
purpose. Ecosystems are complex, open, self-organizing systems and energy of dif-
ferent quantity and quality provides the stimulus for organization, enabling different
processes to progress at different rates. The interplay of environmental conditions,
energy, matter, and information defines the context and constraints for the set of
processes and structures that may emerge during self-organization.

Ecohydrological and biogeochemical processes associated with energy, water and
carbon cycles in complex forest ecosystems can be viewed as a network of processes
of a wide range of scales involving various feedback loops. Understanding such
networks of feedback loops for key ecosystems in monsoon Asia is of great value
and concern for resilient ecological-societal systems. Following Ruddell and Kumar
[4, 5], we examined the dependence between a series of biophysical and meteorolog-
ical variables measured at the flux tower in KoFlux by quantifying the information
flow between the different variables along with the associated time lag. We tested the
applicability of information theory to ecohydrological and biogeochemical systems
with the datasets obtained at a temperate forest site in monsoon East Asia. The goal of
this study is to understand how organization changes in time, and identify and char-
acterize network-scale emergent properties by quantifying the varying system state.

2 Methods and Materials

2.1 Mutual Information and Transfer Entropy

We used Shannon’s information entropy (H) as our methodology [7] and calculated
the mutual information (I) and also the transfer entropy (T) to measure the reduction
in the entropy of the current state of a measured variable Yt due to the knowledge of
prior state in another variable Xt , which is in addition to the information provided
by the immediate prior history of Xt [1, 4]:
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H(Xt ) = −
∑

p(xt ) log p(xt ); 0 ≤ H(Xt ) ≤ log(m) (1)

I (Xt , Yt ) =
∑

xt ,yt

p(xt , yt ) log
p(xt , yt )

p(xt )p(yt )
(2)

T (Xt > Yt , α ) =
∑

yt ,yt−βt ,xt−αβt

p(yt , yt−βt , xt−αβt ) · log
p(yt |(yt−βt , xt−αβt ) )

p(yt |yt−βt )

(3)
This transfer entropy is computed from the component Shannon entropies following
Ruddell and Kumar [4],

T (Xt > Yt , α ) = H(Xt−αβt , Yt−βt ) + H(Yt , Yt−βt ) − H(Yt−βt ) − H(Xt−αβt , Yt , Yt−βt )

(4)
We normalized T using m (set at 11) discrete bins to estimate the probability distri-
bution function. The information flow process network consists of the asymmetric
pair wise T between the ith and jth variable from the set of nv observed variables and
is represented as an adjacency matrix.

The synchronization ratio, Tz, was calculated as the ratio of transfer entropy to
the zero-lag mutual information, where

T z(Xt > Yt , α ) = T (Xt > Yt , α )

I (Xt , Yt )
(5)

This ratio is used to characterize the nature of coupling between the dynamics iden-
tified through the time series. The term ‘synchronization’ is used as an intuitive
approximation for the concept of mutual information, and the term ‘forcing’ to
approximate that of transfer entropy. These couplings occur in pairs between each
pair of variables, such that the coupling in one direction takes one type and time scale,
and that in the other direction takes an independent type and time scale. Four types
of couplings can be identified: (1) synchronization dominated (significant shared
information but no significant information flow), (2) feedback dominated (significant
information flow greater than significant shared information), (3) forcing dominated
(significant shared information greater than significant information flow), and (4)
uncoupled (no significant information flow or shared information) [4].

2.2 Study Site and Data Description

We used the time series data obtained in 2008 from the KoFlux forest tower site
(i.e., GDK site) located in central Korea. The 30 min averages of eddy fluxes of
energy, water and CO2 were measured at 40 m above an oak-dominated old decid-
uous forest along with other micrometeorological variables. The description of
the site and the data can be found in Kwon et al. [2] and AsiaFlux homepage
(http://www.asiaflux.net). In this analysis, we selected 10 variables associated with

http://www.asiaflux.net
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Table 1 Network matrix for mutual information for July (top) and August (bottom)

AI NEE GPP H LE Rg Precip Re Pa T VPD

NEE 63.1 41 7.3 5.5 9.4 1.2 7.1 3 3.3 3.7
GPP 41 60.9 8.1 8 12.6 1.2 4.5 2.4 2.8 4.5
H 7.3 8.1 61.3 8.3 17.6 x 5.7 5.6 4.1 5.7
LE 5.5 8 8.3 62 17.6 x 8.3 4.3 5.7 9.3
Rg 9.4 12.6 17.6 17.6 58.3 1.2 10.5 5.6 7 11.7
Precip 1.2 1.2 x x 1.2 22.4 1.7 1.6 1.7 1.4
Re 7.1 4.5 5.7 8.3 10.5 1.7 92 11.4 29.2 22.7
Pa 3 2.4 5.6 4.3 5.6 1.6 11.4 93.8 10.5 7.5
T 3.3 2.8 4.1 5.7 7 1.7 29.2 10.5 90.9 24.2
VPD 3.7 4.5 5.7 9.3 11.7 1.4 22.7 7.5 24.2 80.9

AI NEE GPP H LE Rg Precip Re Pa T VPD

NEE 56.8 43.8 6.2 8.2 10.3 x 2.5 3.6 2.6 2.4
GPP 43.8 56 6.5 8.3 10.4 x 2.7 3.5 2.8 3
H 6.2 6.5 64 6.7 17.2 1.1 5.1 4.3 3.6 4.6
LE 8.2 8.3 6.7 61.5 13.7 x 4.2 4.6 2.9 5.9
Rg 10.3 10.4 17.2 13.7 56.2 0.9 5.9 6 4.7 8.1
Precip x x 1.1 x 0.9 19.8 2.7 2.1 3.1 2.1
Re 2.5 2.7 5.1 4.2 5.9 2.7 83.7 15 26.6 20.1
Pa 3.6 3.5 4.3 4.6 6 2.1 15 80.2 7.2 8.6
T 2.6 2.8 3.6 2.9 4.7 3.1 26.6 7.2 81.7 17.4
VPD 2.4 3 4.6 5.9 8.1 2.1 20.1 8.6 17.4 76.9

ecohydrological and biogeochemical processes in forests, which are atmospheric
pressure (Pa), net ecosystem CO2 exchange (NEE), gross primary productivity
(GPP), ecosystem respiration (RE), latent heat flux (LE), precipitation (Precip),
solar radiation (Rg), air temperature (Ta), vapor pressure deficit (VPD), and sen-
sible heat flux (H). We computed process networks for each of thirty-six sub-daily
time lags between 30 min and 18 h. Our spectral analysis shows that this subdaily
time scale explained more than 30 % of the variances of the above variables associ-
ated with carbon and water cycles, reflecting that this range is an important scale of
land-atmosphere interactions.

3 Results and Discussion

The monthly adjacency matrix for the 10 variables results in potential pairwise cou-
plings, about 20–30 % out of which were found to be statistically significant at one
or more time lags. The exemplary results on network matrix are presented for July
and August of 2008 in Tables 1, 2, 3, 4.

Table 1 shows the matrix for the mutual information between pairs of variables
at zero time lag. Source variable X index i is in rows; sink variable Y index j is
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Table 2 Network matrix for uncertainty percentage for July (top) and August (bottom)

AIr NEE GPP H LE Rg Precip Re Pa T VPD

NEE 100 67.4 11.9 8.9 16.2 5.4 7.7 3.2 3.6 4.5
GPP 65 100 13.2 12.9 21.7 5.2 4.8 2.5 3.1 5.6
H 11.6 13.3 100 13.5 30.1 x 6.2 6 4.5 7
LE 8.7 13.2 13.6 100 30.2 x 9 4.6 6.3 11.5
Rg 14.9 20.8 28.6 28.4 100 5.5 11.4 6 7.8 14.5
Precip 1.9 1.9 x x 2.1 100 1.9 1.7 1.9 1.7
Re 11.3 7.3 9.4 13.3 18.1 7.8 100 12.2 32.1 28.1
Pa 4.8 3.9 9.1 7 9.6 7 12.4 100 11.6 9.3
T 5.2 4.6 6.6 9.2 12.1 7.7 31.7 11.2 100 29.9
VPD 5.8 7.4 9.3 15.1 20.1 6.2 24.7 8 26.6 100

AIr NEE GPP H LE Rg Precip Re Pa T VPD

NEE 100 78.2 9.7 13.3 18.3 x 3 4.5 3.2 3.2
GPP 77.2 100 10.1 13.6 18.5 x 3.2 4.3 3.4 3.8
H 10.9 11.5 100 10.8 30.6 5.6 6.1 5.3 4.4 6
LE 14.4 14.9 10.4 100 24.3 x 5 5.7 3.5 7.7
Rg 18.1 18.5 26.9 22.2 100 4.7 7 7.5 5.7 10.6
Precip x x 1.7 x 1.7 100 3.2 2.7 3.8 2.7
Re 4.4 4.7 7.9 6.8 10.5 13.5 100 18.6 32.5 26.1
Pa 6.4 6.2 6.7 7.5 10.8 10.8 17.9 100 8.8 11.2
T 4.6 5 5.6 4.7 8.3 15.8 31.8 9 100 22.7
VPD 4.3 5.3 7.2 9.6 14.4 10.5 24 10.7 21.3 100

in columns. Matrix is symmetric. Italics indicate matrix diagonal. All values are
in percent. Table 2 shows the matrix for the percentage of uncertainty of each Y
explained by X.

Table 3 shows the matrix for the ratio of the maximum lag to mutual information
for all significant couplings. Table 4 shows time lags of significant information flow
on the interval, including the first significant lag, last significant lag, number of
significant lags, and peak time lag. Significant lag times are [first-last (number),
max].

The important goal of our study is to define the state of the forest ecosystem
as a hierarchical pattern of coupling and feedback between subsystems. Subsys-
tems are defined as a group of variables which are structurally equivalent such that
they share a common role in the larger system structure. They are aggregations of
individual nodes that share similar patterns of coupling type and time scale but hierar-
chy is allowed. Nodes in the same subsystem should share type (1) synchronization-
dominated or type (2) feedback-dominated couplings. Type (3) forcing-dominated
or type (4) uncoupled couplings mean that coupled nodes do not belong to the same
subsystem [4].

The careful examination of Tables 1, 2, 3, 4 indicates that all the variables fall
into three different subgroups. The first subgroup is the “synoptic” subgroup of
Ta , VPD, Pa , and RE which are known to be strongly linked to the synoptic-scale
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Table 3 Network matrix for the synchronization ratio of the maximum lag to mutual information
for July (top) and August (bottom)

Tz(=T/I) NEE GPP H LE Rg Precip Re Pa T VPD

NEE 0.13 0.17 x 1.25 x 1.46 x x x x
GPP 0.22 0.14 0.65 1.01 x 1.5 x x x x
H 0.95 0.91 0.08 0.85 x 1.87 x x x x
LE 1.47 1.04 0.66 0.11 x 2.07 x x x x
Rg 1.05 0.74 0.34 0.51 x 1.64 x x x x
Precip x x x x x 0.08 x x x x
Re 1.33 1.99 x x x 1.37 x x x x
Pa 2.99 3.66 x x x 1.68 x x x x
T 2.52 2.9 x x x 1.36 x x x x
VPD 2.14 1.79 x 0.79 x 1.52 x x x x

Tz(=T/I) NEE GPP H LE Rg Precip Re Pa T VPD

NEE 0.17 0.2 1.12 1.12 0.69 2.5 x x x x
GPP 0.22 0.16 1.07 1.09 0.68 2.7 x x x x
H 1.35 1.26 0.11 1.3 0.37 1.62 x x x x
LE 1.1 1.07 0.99 0.14 0.52 3.06 x x x x
Rg 1.09 1.06 0.4 0.69 0.12 2.02 x x x x
Precip 5.46 5.15 2.35 4.33 2.68 0.07 x x x x
Re 3.14 2.72 x x x 0.65 x x x x
Pa 2.05 2.08 x 1.63 x 0.88 x x x x
T 2.67 2.38 x x x 0.57 x x x x
VPD 3.02 2.4 1.54 1.3 x 0.81 x x x x

weather patterns. In this subgroup, ecosystem respiration, RE, is also included likely
because it is a strong function of air and soil temperature. The second major subgroup
is the “turbulent” subgroup associated with biophysical (e.g., energy balance) and
biochemical (e.g., photosynthesis) processes on the land surface at plant canopy
turbulent time scales. It includes H, LE, NEE, and GPP, which are variables whose
information transport was found to peak typically at 0.5 to 1.5 h time scales. The third
obvious subgroup is the “atmospheric boundary layer” (ABL) subgroup of Rg, and
Precip, which are associated with ABL formation processes and convective activity.

By using the canonical couplings and the information in Tables 3 and 4, an arrange-
ment of subsystems, information flow, feedback, and time scales can define the states
of temperate forest ecosystem. Figure 1 shows the process network in two contrasting
environmental conditions: (a) July (which is characterized by intensive, prolonged
rainy season, i.e., Jangma) and (b) August (which is post-rainy season with high
radiation and ample soil moisture). Typically, August and September are when the
forest shows the second peak of net CO2 uptake after Jangma associated with the
Asian summer monsoon (e.g., Kwon et al. [2]).

In July, a synoptic subsystem was formed from Ta , VPD, Pa , and RE which shares
synchronization-dominated coupling at very short time scales. However, ABL sub-
system was less obvious and loosely organized with Rg and Precip, which shows
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Fig. 1 The process networks in (a) July (‘Jangma’ - intensive rainy season) and (b) August (post-
rainy season) in 2008 in Gwangneung temperate deciduous forest ecosystem in central Korea. Type
(1), (2), (3), and (4) couplings result in the interpretation of this forest ecosystem as three subsystems
linked at time scales ranging from 0.5 to 18 h. Solid (dotted) arrow represents forcing-dominated
(feedback- dominated) couplings. Solid (dotted) circle denotes subsystem (aggregated subsystem).
(The figure frame was adapted from Ruddell et al. [6])
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Fig. 2 The process network in September 2008 in Gwangneung temperate deciduous forest ecosys-
tem in central Korea. (The data retrieval rate in September was very low due to power failure and
instrument malfunction, resulting in 74 % gap-filling of the missing data.)

forcing-dominated connection at longer sub-daily time scale of 13 h. Turbulent
subsystem was partially formed among the biochemical feedback loop (between
NEE and GPP which share feedback-dominated couplings at the 1 h time scale), H
and LE (which share both feedback- and forcing-dominated couplings at 1–2 h time
scale). There was no indication of hierarchical aggregation for self-organization.
The synoptic subsystem exported information to the other two subsystems whereas
information also flew bottom up from the forest photosynthesis and energy fluxes.
In July, precipitation was information sink.

In August, a fully self-organizing turbulent subsystem was formed between the
biophysical feedback loop (between H and LE) and biochemical feedback loop
(between NEE and GPP), which share forcing-dominated couplings at the 1–2 h
time scale. The synoptic subsystem was information source for the other two, and
served as a large-scale forcing on the turbulent subsystem and as a feedback to ABL
subsystem. The turbulent and ABL subsystems were coupled via feedback loops, and
form a regional self-organizing subsystem that is a hierarchical aggregate of those
two subsystems. This regional-scale feedback subsystem forms the basis for forest
ecosystem to self-organize at the regional scale through collective dynamics during
the second peak of healthy growing season. In this state, information flew both top-
down from synoptic weather systems and bottom-up from the forest photosynthetic
activity and energy partitioning (e.g., Ruddell and Kumar [4, 5]).
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Such an aggregate of regional subsystem was also observed during the peak growth
stage in May when the forest’s net carbon uptake showed the first peak. The aggregate
of regional subsystem broke apart in June with the onset of summer monsoon (not
shown). We expected to observe the process network in September to be similar
to that observed in August. However, not only the aggregate of regional subsystem
was absent from the process network (Fig. 2). Different characteristics of time lags,
coupling types, and the absence of the regional subsystem are attributed to an artificial
gap-filling of the missing field data in September due to power failure and instrument
malfunction. These results demonstrate a potential risk of the use of gap-filled data
which may inadvertently modify the system’s inherent process network, resulting in
inappropriate understanding of the processes.

4 Concluding Remarks

The central role of information in directing self-organizing processes and struc-
tures has only recently been put forward. One of the recent progresses in develop-
ing methodologies to describe such role is the information flow process network
approach [4, 5]. A process network is defined as a network of feedback loops and
the associated time series that depicts the magnitude and direction of flow of energy,
matter and information between different variables. Our results support that a process
network approach can be used to formally resolve feedback, time scales, and sub-
systems that define the complex ecosystem’s organization by considering mutual
information and transfer entropy simultaneously. We have shown that the turbu-
lent and ABL subsystems are coupled through feedback loops, and form a regional
self-organizing subsystem that is a hierarchical aggregate of those two subsystems
in August when the forest is in healthy environment. Also noted is the disappearance
of the self-organizing subsystem in the process network when the time series data
were artificially gap-filled for missing data, which is a common practice in post-data
processing of field observation data. Sustainable management is about maintaining
the integrity of the combined ecological-societal systems. Integrity is preserved when
the system’s self-organizing processes are preserved, something that happens natu-
rally if we maintain the context for self-organization in ecological systems, which, in
turn, will maintain the context for the continued well-being of the societal systems.
Further studies are in progress on the application of network statistics to measure the
statistical feedback, entropy, and net and gross information production of subsystems
on the ecosystem network to characterize network-scale emergent properties.
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Active Control Metrology for Preventing
Induced Thermal Damage During Atmospheric
Pressure Plasma Processing of Thermal Sensitive
Materials

Victor J. Law and Denis P. Dowling

Abstract The successful surface activation and joint promotion of lightweight
aircraft grade carbon composites using atmospheric pressure plasma jets has the
potential to improve the economics of the aircraft industry. To achieve these
economic savings the technological challenge of plasma processing of thermally
sensitive composites must be met in an industrial manufacturing environment. This
chapter describes an acoustic plasma control strategy that is based upon the complex
acoustic dynamics of the plasma-composite interaction.

Keywords Plasma · Thermal damage · Composite · Acoustic · Process control

1 Introduction

Atmospheric pressure plasma jets (APPJs) in the form of needles, pens and pencils
have the unique ability to produce cold plasma that contain a range of ions and
activated molecular species that can be used in the treatment of skin with appli-
cations ranging from wound healing to anti-wrinkle treatments. Their use is also
recognised in the repair of carbon composites and electrical wiring loops. The fact
that these plasma devices can be hand-held and manually directed has led to safe
and easy to handle designs that have fixed, or limited variability, power units and
gas supply systems. It has been shown for static dwell times of a second and gap
distances of a few 10 s of mm, composite surfaces undergoes varying degrees of mod-
ification ranging from surface activation to plasma induced damage. The latter may
be categorised into three broad and overlaying morphological types: (a) surface char-
ring, (b) resin reflow and, (c) resin ablation leaving the carbon fibres mechanically
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intact [1]. Engineering trials are on-going with the knowledge that there is a need to
fully understand the plasma device and how plasma alters both thermally sensitive
living tissue and composites material.

To prevent the ‘hot’ visible plasma region coming in to direct contact with ther-
mally sensitive materials hollow spacers (cages) are supplied to keep the ‘hot’ region
at a safe working distance thus tacitly recognising the possibility of induced plasma
thermal damage. Passive safety control features that are built in to the plasma device,
such as nozzle cages, are but one solution, but as in many complex systems an active
monitoring system that provides feedback control and early warning is desirable and
necessary when the plasma process moves outside normal operational conditions.

This chapter presents an active control strategy that can be independently de-
ployed to monitor the heterogeneous plasma-surface reaction zone without the need
to access the plasma device electrical power source, or access the chemical infor-
mation within the plasma-surface process. The measurement metrology comprises a
single omnidirectional condenser microphone that is positioned perpendicular (90◦)
to the plasma for sensing the plasma nozzle-to-surface distance and hence induced
surface temperature.

Including this introductory section, the chapter is dived into five sections. Section 2
details Tepla Plasma-PenTM APPJ and Sect. 3 the deployment of the single micro-
phone to measure its compound nozzle far field acoustic emission pattern, and the
analysis of the nozzles mode of operation. Section 4 describes real-time deconvolu-
tion of the plasma sound radiation in the frequency-domain as the plasma engages
with a composite surface: the deconvolution components (A1 = selected peak ampli-
tude, A2 = selected span amplitude and A3 = total averaged amplitude) [2]. These
three components are then reconstruction in 3-dimensional state-space to represent
the dynamics of the time evolving plasma-surface process. Similar plasma state-
space reconstruction processes based on electrical data have been reported and can
be found in references [3–6]. This state-space representation is then compared to the
composite surface temperature and induced water contact angle. Section 5 provides
the conclusion to this work.

2 Plasma-Pen

The PVA Tepla Plasma-PenTM is a miniature blown arc plasma source which uses
dry compressed air as the working gas and to some degree can be viewed as miniature
version of the PlasmaTreat OpenairTM system [2, 7]. In terms of polymer activation,
the Pen produces a thermal power transfer of 100 s mWatts to the surface as compared
to 1–5 W for the PlasmaTreat system. The size and weight of the Pen allows it
to be used as a hand-held device or mounted on a CNC XYZ gantry for precise
plasma treatment of materials. The Pen is driven by a 100 Hz, 1.5 kV Peak positive
dc pulse repetitive chain sequence derived from a mains frequency of 50 Hz with full
rectification without capacitance filtering or regulation. The nozzle head is located
at the end of 3.0 m screened cable and is built from nickel plated copper with an
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Fig. 1 Schematic and Photograph of Plasma-Pen and its Nozzle Head

on-axis 2 mm internal diameter nozzle with internal length of 23 mm from where the
orifice diameter expands in to the cathode chamber. Typically 4.7 l/m compressed
air is forced through the nozzle at a Marc number of 0.072 M. For cooling purposes
the head is a compound design where a proportion (15 l/m) of air is extracted from
the cathode region by six radially spaced 1 mm diameter ports which redirects the
sampled air along the outer surface of the head to six radial equally spaced slots.
The function of these slots is to provide a counter surface to increase conductive
heat lost and redirect the air flow away from the nozzle exit port: similar to the
action of a muzzle brake [8]. It is these design features which gives the Pen its
perceived modulated audible emission. Visually the expelled plasma gas appears as
a decaying luminous needle with a distal length of 1.5 cm. Infrared thermography
temperature measurements of the plasma-composite reaction, indicates a composite
surface temperature of approximately 140 ◦C at a nozzle-to-surface distance of 2 mm
and which exponentially falls to 35 ◦C at a distance of 30 mm. The standard Plasma-
Pen design does not provide accessible voltage and current probes for monitoring
the electrical power supply, nor can the dried compressed air flow be varied. Given
these limitations and the loudness of acoustic noise [SPL ∼60 dB], this APPJ is a
suitable candidate for acoustic surface metrology. A schematic and two photographs
detailing the APPJ head and manual application to a composite surface are shown in
Fig. 1.
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3 Plasma-Pen Far Field Acoustic Measurements

This section describes the use of a omnidirectional microphone to capture the APPJ
far field acoustic emission pattern. This method of acoustic measurement is in contrast
to normal practice within the aircraft industry where jet engine noise patterns are
measured both in near field using microphones and in far field using a linear array
of microphones and where the measurements are performed within an anechoic
chamber [9, 10]. In ordered to capture the far field acoustic pattern, the microphone
position is scaled to a distance of 40x the jet diameter (80 mm) and the directivity
of the emission measured between 60 to 300◦, where 90 and 270◦ are perpendicular
to the nozzle and a 180◦ position that faces the gas flow emanating from the on-axis
nozzle aperture.

The microphone signal was passed to a laptop computer soundcard and sampled
at a rate of 44.1 kHz. The sampled signal was then processed with National Instru-
ment LabVIEW using a Fast Fourier Transformation to display the sampled data
in the frequency-domain from 0 to 22 kHz. Figure 2 shows the emission measure-
ments angles: 90, 130 and 180◦. The 90◦ measurement which is perpendicular to
the jet nozzle reveals three discrete acoustic peaks in the range 3–8 kHz: with the
asymmetric peak at 3.3 kHz having the greater amplitude and width as compared
to the neighbouring peaks at 5.2 and 7.4 kHz. As the microphone is repositioned
further along the jet and angled at 130◦ to the nozzle exit the acoustic peak emissions
changes in amplitude and morphology with the peak at 3.3 kHz exhibit a falling in
intensity (from −33 to −35 dB). At the 180◦ position the acoustic emission noise
floor increases and approaches an inversely proportional to frequency dependency
with a rate of −1.7 dB.kHz−1. Under these conditions the fall in amplitude of the
three discrete peaks allows them to be partly obscured by the noise floor.

For a constant air flow through the nozzle, the acoustic sound emission under
plasma and non-plasma conditions has been made under free space conditions (noz-
zle 10 cm away from a surface) and the 0 and 12 kHz results are shown in Fig. 3.
The comparative measurements reveal that air flow only generates a lower acoustic
intensity, as compared to plasma, across the measurement frequency spectrum. In
addition the discrete peaks have shifted up in frequency by approximately 0.5 to
1 kHz. The amplitude of the three peaks is also some 15 dB lower than the in plasma
condition. A further feature of note is above 7 kHz the air acoustic intensity falls
more rapidly with frequency.

Putting to one side the multiple peak signature for a moment, the enhanced
amplitude in the plasma acoustic signal may be understood by considering the jet’s
Strouhal number (St) which is a dimension-less measure of how the drive frequency
( fd = 100 Hz) is synchronised to the air velocity (v = 25 m/s) through the nozzle
orifice. The scale length of the nozzle is D = 0.002 m. These quantities are defined
in Eq. (1). In this equation when St ∼1, the drive frequency is synchronized with the
air velocity with in the nozzle. For low St value, the quasi steady state of the gas
dominates the oscillation. And at high values of St the viscosity of the gas dominates
fluid flow (“fluid plug”). In our case the non-plasma air flow produces a low St value
(0.008).
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Fig. 2 Far field frequency dependant acoustic emission for three measurement angles (90, 130 and
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St = fd D

v
= 0.008 (1)

It is well established that the use of dielectric barrier discharge (DBD) actuators in
aircraft jet engines [9–12] can alter the engine acoustic noise spectrum by varying
DBD drive frequency. For example a low DBD drive frequency excitation that pro-
ducing a St ∼ 0.5 leads to a broadband increase in jet sound emission, while the
high frequency excitation of a jet (St > 2) leads to broadband reduction of noise pro-
vided that the action is sufficiently intense above the air noise level. This frequency
transformation in the acoustic energy spectrum is put to good use in engine noise
mitigation [9–12] and the altering the air flow dynamic on aerodynamic surfaces
[13] plasma fairing of undercarriage [14] and weapons bay on high speed platforms
[15]. This mechanism has also been proposed as the source of acoustic amplification
within plasma speakers [16] and the kINPen MED APPJ [17].

The production of electronic winds by the DBD may be put forward as one
possible mechanism for this acoustic amplification, where the unsteady longitudinal
electronic winds are composed of charged ions and move under the influence of
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the positive and negative going edges of the voltage pulse as applied by the power
supply. Due to the high collisionality of charged particles and neutrals at atmospheric
pressure, the charge particles quickly transfer all momentum energy to the neutrals so
enabling a phased locked or quasi-synchronised conditions to be generated when St<
1. Electrons are not considered here due to their low mass. Under these condition the
electronic winds drive/enhance the velocity of the neutral gas molecules traveling
through the nozzle, to the vibrational antinode (nozzle exit) where air is free to
undergo increasing alternating compression and rarefication which is perceived as
an increased loudness in the radiated sound energy without affecting the position of
the nozzle‘s fundamental resonant frequency.

From an aerodynamic point-of-view a jet sound source is fairly easy to model
as sound energy being directly radiated into the environment from some opening.
Using the measured sonic values and the known nozzle geometry a phenomenological
mathematically model of the longitudinal acoustic emission mode is considered in
this section. The first model to be considered is the closed air-column model, or
clarinet model, in Eq. (2) [17, 18].

fn ≈ nc

4 (L + 0.6r)
(2)

Where the modulo character (n) enables the overtone frequencies to be identified,
otherwise L is the physical length of the nozzle (L = 23 mm), 0.6r is the end correction
[19] where r is the internal radius of the nozzle (0.001 m), and c is the sound velocity in
air (346 m.s−1 at 25 ◦C). The denominator value 4 describes the quarter-wavelength
longitudinal mode. For the quarter-wave model the nozzle exit aperture defines the
maximum pressure vibration (or acoustic antinode), whereas and the internal nozzle
aperture is the acoustic node due to flow gas is being compressed with respect the
nozzle exit. To confirm the nozzle temperature, infrared thermography of the head
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Fig. 4 Thermographic image of Plasma-Pen nozzle after 20 seconds of operation

after 20 s of operation has been performed, see Fig. 4. The measurement reveals that
the nozzle temperature is generally 25 ◦C and the slots have a measured temperature
of 54 ◦C. Now consider the plasma and air acoustic peaks in Fig. 3 with regard to
the nozzle geometry and Eq. (2). Consider first the three discrete plasma acoustic
peaks at f◦ ∼ 3.3, 5.2 and 7 kHz, and the known physical geometry of the nozzle
(L=23 mm), when evaluating Eq. (2) for L+0.6r with a sound velocity of 346 m.s−1.
The evaluations yields a value of L+0.6r=26 mm for 33 kHz and 16.6 and 12.3 mm
for the remaining two higher frequencies. This simple computation suggests that
the nozzle is performing as described by the quarter-wave equation with the lower
discrete frequency being the nozzle natural resonance. Infrared thermography of the
slots (not shown in abstract) reveal that the nozzle temperature is generally 10 ◦C
hotter than the slots and both are considerably hotter than the surrounding metal.

For the same air flow rate, but with the plasma turned-off condition and a laboratory
air temperature measured to be of the order 20 ◦C the nozzle resonance frequency
would be expected to be slightly higher. Indeed, for c = 343 m.s−1, the first discrete
frequency is 3.7 kHz.

The far field radial acoustic component aligned to the cooling slots and mid points
between the cooling slots reveal two contrasting acoustic signatures. The cooling
slots produce a strong peak at 3 kHz, as in Fig. 2, and broadband acoustic radiation
between 3 and 6 kHz. Infrared imaging also reveals that there is a local variation in
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the heat pattern, with heat maxima at the cooling slots, being some 10 ◦C hotter than
the mid points.

4 Plasma-Surface Process 3-Dimensional Mapping

With the fundamental plasma acoustic peak identified (∼3 kHz) principle component
analysis (PCA) can be performed on the acoustic peak to locate and register the
treatment surface [2]. The successful outcome of which, in this work, is coupled with
the knowledge of the plasma induce temperature of the composite, water contact
angle and type of induced damage. The PCA is performed using three acoustic
performance parameters or descriptors from the frequency-domain signature to build
a 3-dimensional state-space representation of the plasma process as a function plasma
engagement with the composite surface. The performance parameters of the acoustic
signal are as:

1. A1: The specific acoustic level at the fundamental acoustic frequency (3 kHz)
2. A2: Averaged specific acoustic emission over a 500 Hz span at a 3 kHz
3. A3: The mean electro-acoustic emission measured over the total 0–12 kHz span

These three parameters are mapped separately to one the three axis (A1 to X, A2 to
Y, and A3 to Z) of a 3-dimensional graph were the vectors are updated continuously
to produce a time evolving image of the dynamic heterogeneous plasma-composite
reaction. The result of a typical mapping process is shown in Fig. 5. Here it can be
seen that three dataset clusters are generated. The first cluster maps a 33–22 mm
gap distance where composite surface temperature ranges between 30–40 ◦C. As the
plasma engages closer to the composite surface (11 mm), the three parameters change
in amplitude and form a new and separate cluster. At this point the composite surface
temperature has increased to 55–65 ◦C. Finally with the gap distance set to 1 mm,
an new cluster of greater average acoustic amplitude (A3) which is accompanied by
an even higher composite surface temperature of 140 ◦C. Note the geometric centre
of each cluster are shown in the insert to Fig. 5.

Water contact angle measurements reveal a strong correlation with the composite
surface temperature within the dynamic state-space representation. Table 1 tabulates
this correlation. Here it can be seen that at extended engagement distances 25–30 mm
(composite temperatures of 30–50 ◦C) the water contact angle is little altered by the
plasma process. At 10–11 mm distance (composite temperatures of 55–65 ◦C) the
composite surface becomes activated with a water contact angle of ∼10◦. Plasma
engagement with the surface at 2 mm increases the surface temperature further to
140 ◦C with a water contact angle of 10–15◦. However between 4 and 8 mm dis-
tance the water contact angle increases to 40–50◦ with a surface temperature of
80–90 ◦C. These last two regions are associated with plasma induced thermal dam-
age of composite: charring, resin reflow, and resin ablation.
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Table 1 Composite plasma induced thermal damage parameters

Distance 33–22 mm 11 mm 1 mm
Temperature (◦C) 30–40 55–65 140
WCA (degrees) 70–75 10 40–10
Damage No apparent reaction Activation Carring / reflow/ ablation

5 Conclusion

This work has presented an active control strategy for the prevention of plasma
induced damage when aircraft grade composite materials are treated with an APPJ.
The APPJ used for this study is the air operated PVA Tepla Plasma-Pen, where
the control strategy is based upon far field acoustic response of the APPJ and its
interaction with a composite surface. The thermodynamic data is obtained using
infrared thermography imaging of the plasma-composite process. The APPJ acoustic
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response is modelled using a quarter-wavelength closed end air column model (Eq. 2)
and the outcome of which is used to identify, and separate from the APPJ, the plasma-
composite interaction.

Using this spatial-temporal thermodynamic knowledge, the Plasma-Pen acoustic
signature, as it engages with the composite can be mapped in real-time using
3-dimensional state-space to representation of the plasma-surface interaction. The
resultant spatial-temporal 3D state-space can be used to map the composite surface
temperature and the type of plasma induced damage. The mapping thus enables pre-
ventative measures to be taken before the composite undergoes irreversible plasma
damage. Although this type of state-space representation has been used for plasma-
electrical datasets it is thought that acoustic information coupled with surface tem-
perature and water contact angle is novel and not been reported before, in particular
for thermal sensitive composite materials.
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Altruism and Identity

Burton Voorhees

Abstract This paper reviews some of the major approaches to the evolution of
altruism and cooperation, addressing the question of how fitness reducing behaviors
could evolve and become fixed in a population. An often overlooked important point
is that human psychology must be taken into account, in particular the way that
personal identity is tied to adherence to social and cultural norms and approved
behaviors resulting in an identification of personal biological survival with a social
group and the markers of that group.

Keywords Evolution of altruism ·Cooperation ·Group selection ·Personal identity

1 Introduction

Altruism and morality have been issues of intense interest and contention at least
since early Greek philosophers debated the question of virtue. What duty do we owe
to our fellow human beings? Is there a universal morality, or are all moral and ethical
codes culturally specific? How and where did moral sentiments originate, and how
do they conform social behavior?

In modern evolutionary theory such questions are problematic. If genes are selfish
and behavior is directed solely toward reproduction of genetic traits, how is it that
altruism could have evolved? And without altruism, how could morality and coop-
eration arise, other than as forms of mutual self-interest? Yet altruism is sometimes
observed in nature (e.g., [1–3]) and, cynicism to the contrary, humans seem to be
altruistic in the extreme. We are, as indicated in the titles of recent books, “super
cooperators” [4], “a cooperative species” [5]. How such behavior could evolve, in
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spite of the loss of fitness implied by acting for the benefit of others at a cost to
oneself, is a major subject of research.

Evolutionary studies of altruism and cooperation have an economic focus, offering
explanation in terms of transmitting closely related genes (kin selection), selection
enhancing behaviors related to expectations of reciprocity in one form or another
(reciprocal altruism, mutualism), or behaviors sustaining group cohesion (group, or
multi-level selection). Altruism may be individually costly, but it arises and becomes
fixed in a population because, overall, it provides benefits to the social group out-
weighing individual costs. Individuals “pay” for the benefits of group membership
with a reduction of inclusive fitness. But human altruism and cooperation seems to
go beyond actions that provide biological or economic reward. Humans gain psy-
chological benefits from extending help to others, and feelings of satisfaction at
“doing a good deed” may provide sufficiently rewarding. “People cooperate not only
for self-interested reasons but also because they are genuinely concerned about the
well-being of others, try to uphold social norms, and value behaving ethically for its
own sake. … Contributing to the success of a joint project for the benefit of one’s
group, even at a personal cost, evokes feelings of satisfaction, pride, even elation.
Failing to do so is often a source of shame or guilt” [5, p. 1]. Nevertheless, the
question remains: how could a costly, fitness reducing behavior evolve, much less
flourished?

This chapter reviews some of the approaches taken to answer the question of altru-
ism and links these answers to psychological theorizing about the nature of human
self-consciousness. Briefly, there is a question of identity involved that has been
noted (e.g., [5]) but not sufficiently emphasized in previous evolutionary literature.
Humans congregate in marked groups (e.g., [6]) and will make personal sacrifices
for the benefit of the group, even if it is not composed of close genetic kin and even
if no personal benefit, either direct or indirect, accrues. This is explained, in part,
by the human capacity for (and vulnerability to) identification with ideas, beliefs,
symbolic cues, and other group markings. These group markings become a part of
personal identity and, as such, evoke biologically based survival related behaviors.

2 Varieties of Altruism

The term altruism is used in different ways, only one of which refers to pure altruism;
that is, costly behavior that bringing no compensatory return. Whether pure altruism
exists or not is a matter of dispute (e.g., [7]). Other behaviors labeled altruistic
are mutually beneficial cooperation (mutualism), kinship altruism, and reciprocal
altruism. In each of these cases there is an assumed quid pro quo, compensation for the
loss of inclusive fitness: acting altruistically towards close kin provides an enhanced
possibility of genetic continuation; cooperation implies an expectation of benefits
arising from a cooperative venture; and reciprocal altruism implies an expectation
of favors returned for favors given. To this we can add a uniquely human form,
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sentimental altruism, in which the payment for altruistic behavior is the experience
of desired emotions and feelings that boost self-esteem [8].

A major attempt to explaining the evolution of cooperative and altruistic behavior
is presented by Bowles and Gintis [5], who posit the following overall scenario.

1. Altruistic impulses are grounded in human social preferences (both other and
self-regarding) and these preferences are supported and reinforced by associated
social emotions, in particular guilt and shame.

2. Because group living is an essential condition for human survival, the biological
source of social preferences and social emotions is natural selection acting on
individuals living in groups.

3. Human groups differ in evolutionary success and this difference correlates with
the degree of cooperation and altruistic behavior within the group.

They suggest, “The fact that more cooperative groups tended to survive and expand
explains two key facts. The first is that altruistic individuals among our ancestors
enjoyed enhanced reproductive success, resulting in the spread of altruism as a dis-
tinctive human trait. The second is that our altruistic dispositions motivate us to care
about and help not only close family but even those related to us only distantly or
not at all, as long as we share common group membership” [5, p. 51].

In order to support these claims, simulation and agent based models are used to
test various game theoretic assumptions for the emergence of evolutionarily stable
equilibriums supporting cooperative and altruistic behavior. They propose that such
equilibriums are stabilized by the correlating mechanism of a system of social norms;
and that an essential aspect of the social emotions supporting altruistic behavior is
the desire to punish norm violators, and even to punish those who do not punish.

Since social norms vary between different groups, competition for resources
between hunter-gatherer groups in a Paleolithic environment acts as a selective
process at the group level. Groups in which social norms support within group
cooperative behavior will tend to win such competitions. Within group adherence to
cooperative norms, along with punishment of violators, produces a selective pressure
on individual group members, leading to an increase in the frequency of altruistic
individuals. Thus, a social niche is constructed favoring the evolution of altruis-
tic and cooperative behavior. The success of any such process, however, relies on
inter-generational transmission of social norms, which requires cooperative action.

An extended discussion of cultural transmission (cultural learning) is given by
Sterelny [9], who argues that “hominins developed a new form of ecological interac-
tion with their environment, cooperative foraging, and this ecological revolution led
to positive feedback between ecological cooperation, cultural learning, and environ-
mental change” [pp. 3–4]. Most research on the evolution of cooperation assumes
the “Machiavellian hypothesis”: that the major issue with cooperative action is to
avoid free riders. For Sterelny, however, the major issue is coordination: while most
models of and experiments on cooperation “explore the consequences of different
patterns of interaction, the effects of punishment, or error, of group structure, of the
effects of manipulation of rewards and costs. They do not explore the mechanisms
that generate the rewards of cooperation. …[The] Machiavellian hypotheses thus
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focus on this cognitive challenge of managing cooperation in an environment in
which defection is a threat rather than the problem of coordinating, of organizing
collective action so that it generates a cooperative profit” [p. 7].

The Machiavellian view is that a major evolutionary pressure driving human
cognitive development was detection of cheaters. Sterelny points out that in a hunter-
gatherer society, people will generally be aware of who the defectors are and the real
issue will be coordinating cooperative efforts. Once cooperation is instantiated as a
stable group behavior, the need to resolve problems surrounding coordination, rather
than detecting cheaters, provide the primary selective pressure for further cognitive
evolution: controlling (rather than detecting) cheaters is a problem of coordination.

Cooperative hunting is an example. Killing large animals with sharp sticks isn’t
easy—it requires substantial cognitive capacity: the ability to react as a group to con-
tingent events, skills in hunting and tracking, the knowledge to manufacture weapons,
as well as a good foundation of knowledge about animal behaviors and environmental
conditions. Successful collective foraging requires far more knowledge than could
be learned anew in each generation. In other words, social learning is a prerequisite
if cooperative efforts are to provide benefits.

3 Social Learning and Cultural Transmission

Social learning is part of a positive feedback interaction: the cost of social learning
is an expensive, extended childhood and adolescence in which cultural and survival
related information is acquired. The benefit is that the information acquired allows
adults to forage successfully, producing the surplus resources necessary to support
the extended childhood learning period.

Sterelny proposes an apprentice model for social learning that could have arisen in
early human evolution. Children associate with adults while they are carrying out their
activities, and learn by imitation and trial-and-error, with occasional explicit instruc-
tion. He posits that this method of social transmission continued for an extended
period until, about 50,000 years ago, it stabilized sufficiently that not only could
information be transmitted from generation to generation, but this information could
be modified and improved, and these improvements could also be transmitted. Thus
in Sterelny’s view, the symbolic revolution that began about 50,000 years ago is an
indication of crossing a threshold. While many of the elements of this revolution
can be identified earlier in human evolution [10], he attributes the onset of the sym-
bolic revolution to establishment of not only the ability to reliably transmit cultural
information, but also the onset of the reliable transmission of cultural innovation.

Lewis-Williams [10, pp. 95–96], on the other hand, associates this transition
to the appearance of social distinctions between different individuals: “It was not
cooperation but social competition and tension that triggered an ever widening spiral
of social, political, and technological change.” But ethnographic data shows that
hunter-gatherer groups are egalitarian, with most competition arising between groups
rather than within a group (e.g., [5]). Indeed, if cooperation is to arise and stabilize
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in a population, within-group competition needs to be minimized and this social
leveling is part of the function of the norms transmitted through social learning.

Read [11] refers to the Symbolic Revolution as an “organizational rubicon” in
which new structures of social organization arose drawing on linguistic and cul-
tural forms made possible through previously evolved cognitive capacities. Read
associates this with the rise of cultural kinship systems. Modern ethnographic data
on hunter-gatherer societies indicates that they are composed of relatively small
residence groups within which social norms, encoded in culturally constructed
kinship systems, maintain an egalitarian ethic. On available data, this is the sort
of social organization that existed in the Paleolithic, providing a social niche for the
evolution of cooperative and altruistic behavior.

Ethnographic evidence also indicates that modern hunter-gatherer societies have
worked out effective means to control cheats, free-riders, and bullies. Methods of
control include gossip, ridicule, ostracism, physical punishment, and, on occasion,
murder. Lee [12, p. 246] quotes a !Kung san informant “When a young man kills
much meat, he comes to think of himself as a chief or a big man, and he thinks of
the rest of us as his servants or inferiors. We can’t accept this. We refuse one who
boasts for someday his pride will make him kill somebody. So we always speak of
his meat as worthless. In this way we cool his heart and make him gentle.”

Willingness to punish defectors, however, faces a commitment problem. An agent
at a given time commits to punish a defector at a future time, even though actually
acting on this commitment will be costly in terms of inclusive fitness. But if the threat
of punishment is to be credible, there must be a credible guarantee that defection
will be punished. Likewise, cooperation in joint endeavors requires commitment to
keep agreements and not defect should the temptation arise to do so.

Commitment can be reinforced externally by being made public. One way of
doing this is through body markings such as scarification, tattoos, or similar group
markings. These indicate commitment to the group and, if they are permanent marks,
greatly increase the danger associated with ostracism. Another external commitment
mechanism is boasting. If an agent reneges after publically committing to an action,
they expose themselves to ridicule and loss of reputation.

Internal psychological commitment mechanisms are found in the social emotions,
in particular the powerful emotions triggered by violations of trust or fairness. Expe-
riencing these emotions sets internal controls on commitment. Further, since people
tend to be good at recognizing capacity, poor at recognizing dispositions, reliable
signal of trustworthiness are important. Because the external displays of emotions
related to trust and fairness are hard to counterfeit, these can provide signals of trust-
worthiness, of willingness to cooperate in group enterprises, and to punish defectors.

Another powerful commitment building mechanism, Sterelny suggests, is hunting.
Hunting, in a Paleolithic environment, is high risk and high arousal. Participation in
hunting, which is essentially universal among males in hunter-gatherer bands, builds
bonds of trust among participants. In this case, however, it is a gradual thing: “The
mutual experience of hunting and sharing does not signal a preexisting bond of loyalty
and attachment that makes trust and trustworthiness likely. Rather, it incrementally
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creates those psychological bonds. Trust and trustworthiness are both the products
of costly, high-arousal activity” [p. 116].

High cost of an activity increases arousal, which increases the psychological effect
of the activity on participants. Hunting, group song and dance, and initiation rites not
only signal commitment, they have lasting cognitive and affective effects. Trust is
built incrementally and, over time, the bonds of commitment become economically
powerful. Alliances are built that can be counted on because the participants have
made substantial investments. This changes the payoff matrix when faced with a
temptation to defect. Defection may bring temporary advantage, but the cost is loss of
the trust network. Given the role of reputation in a linguistic species that gossips, this
is a powerful constraint on defection. Trust is constructed through social interactions
in cooperative ventures through which others come to see an agent as trustworthy.
The effort involved in building a good reputation provides a disincentive to defect
since this investment pays off only so long as the person maintains their trustworthy
reputation. A good reputation is not something to throw lightly away.

A major change in human evolution occurred with the emergence of culturally self-
identified groups. Individuals moved from simply living within a group to identifying
themselves as members of that group and adopting group markings signifying this
membership. This required new cognitive and social skills, providing the basis for
cultural kinship, and [11, p. 14] “Cultural kinship became the innovative framework
through which new systems of social organization are defined and expressed.”

Cultural kinship relations carry expectations of behavior, they impose pre-
established commitments, characterized by Fortes by an axiom of amity: “kin are
expected to be mutually supportive even if only by virtue of being recognized as kin
through a conceptual system of kin relations, independent of biological kin distance”
(from [11], p. 15). A kinship relation provides an expectation of trust—a defector
who violates kinship obligations faces strong social sanctions.

Kinship also provides a template for coordinated activities “Like the species
boundary that relates to the maintenance of coordination among genetically based
behaviors, the cultural boundary relates to the maintenance of coordination among
individuals for culturally based behaviors. Individuals enculturated within the same
cultural milieu understand the meaning of the behaviors of others in a similar way,
and others respond to an individual’s behavior in a similar manner through shared,
cultural meaning of actions” [11, p. 68]. In other words, coordination of activities
within the cultural group is simplified, behaviors can be anticipated, and if anticipa-
tions are not met, the offender can be sanctioned.

One aspect of kinship expectations and obligations relates to the sharing of food.
Food sharing, especially by successful hunters, is an activity that reduces within group
selection and there are set cultural rules and norms for sharing of food and other col-
lective resources. “The sharing of hunted animals is not based on an individual deci-
sion by the hunter whether he should share, but takes place in a culturally specified
manner. This takes decisions about sharing out of the hands, as it were, of the hunter(s)
and thereby transforms what otherwise may be behavior that is unpredictable and/or
subject to substantial variation, depending on individual interests in, or procliv-
ity towards sharing, into predictable outcomes when hunting has been successful”
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[11, p. 86]. Hunting is a high-risk endeavor. The cultural rules for sharing the results
of a successful hunt effectively average the risk over all hunters, regardless of their
individual skill or luck. It also reduces the potential for intra-group conflict since
everybody knows before hand what share of the meat they are justified in receiving.
Meat sharing also promotes an egalitarian social structure. Successful hunters cannot
monopolize meat in order to gain hierarchical status.

Read uses the Netsilik Inuit as an example of how cultural systems such as kin-
ship and, in the Netsilik case, the institution of “sealing partners” for hunting seals,
constrain behaviors through prescribed forms of meat sharing: “A Netsilik hunter
does not decide whether it is in his interest to share a seal he has killed, but shares
it in the prescribed manner since to do otherwise contradicts his understanding of
what it means to be a sealing partner. …To act otherwise is equivalent to him saying
that he (and his family) are opting out of the system of sealing partners” [11, p. 90].
This appears to be a form of reciprocal altruism since a hunter who has killed a seal
and shares the meat as required can expect the same sharing when another of his
sealing partners makes a kill. But there is a difference—a hunter who defects from
the sealing partner system will face social consequences for violation of cultural
rules and the response will not be tit-for-tat (i.e., other hunters refusing to share meat
with him) since that would constitute a further violation of cultural norms. Rather
there will be a collective punishment that, if it extends to ostracism, could be lethal.

The essential point is that defection is a violation of a system of cultural norms
that is an embodied aspect of each individual’s social identity. A defector is not only
acting selfishly, he is contradicting his identity as a member of the group.

Culture, from Read’s perspective, is the existence of a set of understood concepts
that frame behavior. Culture transmits norms, but these are not behavioral maxims,
they are specifications of who to cooperate with and what sort of expectations can
be had of others. These norms are not simply acquired through imitation; they are
imposed by a process of enculturation, which occurs simply in virtue of being born
into and coming to adulthood within a given culture.

Social interactions based on culturally defined roles, kinship or otherwise, depend
on all individuals sharing the same cultural background, hence sharing the same
concepts about proper behavior. In at least some hunter-gatherer groups there is little
evidence that altruistic behavior extends beyond the cultural group. Referring to the
!Kung san, Weissner [13] notes that “There is little evidence… that it is a part of
human psychology [for them] to be willing to engage in altruism… in a social and
cultural vacuum. When the faces and forces of culturally defined institutions are
reintroduced, sharing and giving resume.” In other words, altruistic behavior is, in
many cases, carried out simply because it is an expected behavior according to some
system of cultural ideals relating to how one behaves towards other group members,
and these ideals have been introjected as an aspect of personal identity.

Because of this, once cooperative and/or altruistic behavior becomes fixed in a
cultural kinship system, there is no longer a need to explain it in terms of biologi-
cal selection acting on individuals. Rather, it is only necessary to examine the way
in which other cultural ideas regarding cooperative behavior are related to the pri-
mary kinship system. Failure of members of a cultural group to follow prescribed
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cooperative or altruistic behaviors is no longer simply a game theoretic calculation
of individual interest; it is a social and psychological opting out of the cultural matrix
itself, a matrix that is intrinsic to the individual’s identity.

This means that it is necessary to make a clear distinction between intrinsically
group-level properties, and group-level properties that emerge from individual behav-
ior. The latter are still subject to individual level biological selection, even though
the emergent group property alters the environment within which this selection takes
place. Group-level cultural idea systems, on the other hand, are intrinsic group level
properties that are subject to group-level selection, leading to evolution at the group
level. These group-level traits don’t arise from individual traits, rather they provide
fitness benefits for individuals only in virtue of individual collective conformity to
the practices and norms instantiated within the system. It is not that genetic selec-
tion favors cooperation giving rise to cooperative group norms, rather cooperative
group norms are embodied by individual group members as an aspect of their identity
as members of the group, and this identity is directly connected to their continued
survival as an individual.

While group-level traits are subject to group level selection, they also form part
of the environment that an individual group member experiences, resulting in top
down selective pressures on individual fitness. This selection favors conformity to
group norms, possibly instantiated through evolutionary refinement of the social
emotions. This dual level process explains why, if selection is for in-group coop-
eration, traits favoring altruistic cooperation have not gone to fixation resulting in
a eusocial species such as the naked mole-rats [14]. Top down constraints are only
partially effective, and the environment provided by group-level traits also selects for
successful cheaters, and in response, for detection of cheaters [15]. But the cheater
is at a disadvantage in this sort of arms race because successful deception requires
greater cognitive resources than does honest cooperation.

4 How Are Social Emotions and Cultural Systems Introjected?

Bowles and Gintis [5] suggest that social emotions such as shame and guilt reduce
the necessity of costly punishment, through their connection to contempt. To feel
contempt from others is a direct threat to self-image, and a public expression of
contempt tarnishes reputation. Defectors not only exclude themselves from their peer
group, they are engaging in actions that, to the extent they identify as a member of
the group, go against their self-image, and this evokes negative emotional responses.

In this regard, Bowles and Gintis raise two basic questions: (1) since social emo-
tions are often altruistic, they would be expected to disappear in “any dynamic in
which the higher payoff trait tends to increase in frequency,” and (2) “How could
it ever be evolutionarily advantageous to bypass one’s cognitive decision mak-
ing capacities and let behavior be influenced by the visceral reactions associated
with one’s emotions?” [5, p. 191]. In regard to the second question, they suggest
that immediate, emotion-driven responses save cognitive effort under conditions of
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limited information and limited decision time. As for the evolution of social
emotions, they suggest that emotions such as guilt and shame—because they reduce
the cognitive load in decision making by providing an immediate corrective for behav-
ior now that would have negative consequences in the future—provide an adaptive
advantage even though they also promote the fitness reducing aspect of altruistic
behavior.

One question remains. What is the vehicle across which the social emotions man-
ifest and how do they gain the intense motivational power they wield? For pur-
poses of discussion, I will draw substantially from Damasio’s [16] hypothesis on the
emergence of the self. In this framework the self is a process rather than a thing, and
there is a distinction between the self-as-object (“the dynamic object constituted by
certain workings of minds, certain traits of behavior, and a certain life history”) and
the self-as-knower (“the process that gives a focus to our experiences and eventually
lets us reflect on those experiences”). The self-as-object, quoting William James, is
thought of as “the sum total of all that a man could call his—‘not only his body and his
psychic powers, but his clothes and his wife and children, his ancestors and friends,
his reputation and works, his lands and horses, and yacht and bank account”’. Going
beyond this, “what allows the mind to know that such dominions exist and belong
to their mental owners—body, mind, past and present, and all the rest—is that the
perception of any of these items generates emotions and feelings, and, in turn the
feelings accomplish the separation between the contents that belong to the self and
those that do not” [p. 9].

The basic issue Damasio attempts to deal with is how a self-process arises in
human brains. He proposes a framework based on a series of assumptions:

1. The conscious mind is intrinsically based in the body and the body image in the
mind forms a protoself.

2. The structures and processes of the protoself are the result of information com-
municated to the brain from the body, and the return impulses sent from the brain
to the body.

3. The first, most elementary aspects of the protoself are primordial feelings, which
arise continuously and spontaneously. These provide the direct experience of a
living body. They reflect feelings such as pain and pleasure and are the basis of
all feelings and emotions. The primordial feelings are the first manifestations of
sentience.

4. The self is built up in a series of steps grounded in the protoself. When any
relation appears between the organism and an object, this modifies the protoself,
including the primordial feelings, and the unfolding sequence of images in the
mind describing this relation and its effect is an element, or pulse, of the core self.

5. Following on this, there is biographical knowledge which gives rise to the auto-
biographical self, generated from “complexes of images that generate pulses of
core self.”

6. The fundamental underlying principle is homeostasis: maintaining and sus-
taining life within viable limits. This homeostatic imperative exfoliates into
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individual life, society, and culture, giving rise to regulatory devices oriented to the
sustainment and preservation of “biological value.”

The main function of the brain, for Damasio, is map-making, an essential tool of
life management. Maps are made through interactions with the environment, through
cycles of feedback and feed forward between perceptual and action. The mind itself
is a result of this map-making process. The sequences of images flowing through
the mind gain salience according to their value for the individual. That value comes
from the set of dispositions that orient homeostatic regulation, and from valuations
that have been acquired through life experiences, encoded in mental maps.

The essential map, from the perspective of an emergent self-process, is the body
image, which is altered by events that influence the body, and which acts back on the
body psychosomatically. Through this image the brain is able to know body states and
responsively control bodily reactions in order to maintain essential physiological and
other parameters within their desirable homeostatic range. The fundamental vehicles
for this process are the primordial feelings.

The brain is also able to simulate body states, both our own and those of others,
providing a basis for empathy. There are feedback/feed forward loops connecting
body states, actual movements, somatosensory representations of movements, visual
representations of movements, and memory. “The living body is the central locus.
Life regulation is the need and the motivation. Brain mapping is the enabler, the
engine that transforms plain life regulation into minded regulation and, eventually,
into consciously minded regulation” [p. 107].

Feelings and emotions, however, are distinct. “Emotions are complex, largely
automatic programs of actions concocted by evolution. These are complemented by
a cognitive program that includes certain ideas and modes of cognition, but the world
of emotion is largely one of actions carried out in our bodies, from facial expressions
and postures to changes in the viscera and internal milieu. Feelings of emotion, on
the other hand, are composite perceptions of what happens in our body and mind
when we are emoting” [p. 109]. Feelings are the mental images of viscera-autonomic,
kinesthetic, and other bodily responses that have an evolutionary basis. “Feelings of
emotion are composite perceptions of (1) a particular state of the body, during actual
or simulated emotion, and (2) a state of altered cognitive resources and a deployment
of certain mental scripts. In our minds, these perceptions are connected to the object
that caused them” [p. 116]. All feelings of emotions are variations on the primordial
feelings, augmented by culturally overlaid cognitive beliefs and scripts.

This yields a system in which the bottom up sense of self-as-body, arising from
the primordial feelings, gains identity through unique experience (personal identity)
and top down cultural constraints (social identity). Because the resulting self is the
result of a process grounded in the primordial feelings; feelings that are genetically
evolved to promote survival, the integrity of this self-identity will be protected with
an intensity rooted in basic survival instincts. This self is constructed, in part, from
cultural inputs, and these inputs set perceptual and cognitive cues for evocation of
social emotions. Thus, social emotions gain their motivating power from the survival
related feelings that their evocation arouses. The perception that a group member
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is violating group norms, for example, yields a cognitive script that cues emotional
responses, expressed in the body (and thence, back in the mind) as feelings motivating
reactions of indignation, condemnation, and punishment.
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Synchronization of Circadian Rhythms at Scale
of Gene, Cell and Whole Organism

Andrey Zakharov and Dmitry Bratsun

Abstract Three characteristic scales of a biological system are distinguished in
the chapter: microscopic (gene’s size), mesoscopic (cell’s size) and macroscopic
(organism’s size). For each case the approach to modeling of the circadian rhythms is
discussed on the base of a time-delay model. The stochastic description has been used
at the gene’s scale. The deterministic description within the spatially extended model
has been suggested on the mesoscopic scale. Macroscopic effects have been analyzed
within the discrete model describing the collective behaviour of large amount of cells.
The effect of collective rhythms synchronization for each case has been studied. The
problem of cross-linking of the results obtained at different scales is discussed.

Keywords Synchronization · Circadian rhythms · Time-delay · Intrinsic noise ·
Individual based models · Reaction-diffusion systems

1 Introduction

Biological rhythms are periodically repeated changes of biological processes, which
are quite characteristic for living matter on every level of its hierarchy starting from
molecular and subcellular up to biosphere on the whole. Rhythms development in a
living organism is closely connected with its adaptation processes to the environment
during the evolution. Now it becomes clear that these rhythms are embedded in
the genetic structure. So if the external effects are eliminated, the periods of these
rhythms differ from the periods of the corresponding rhythms of the environment [1].
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Fig. 1 Characteristic spatial
scales of a biological system

Although rhythms classifications vary, in this article we concentrate on the rhythms,
which synchronize with the daily changes of the environment and are called circadian.

At the time, when the genetic nature of the circadian rhythms was unclear, these
rhythms were assigned to a particular scale of organism’s organisation. For example,
a monograph [2] assigns the ultradian rhythms to cells and tissues. Circadian rhythms
are developed at the scale of the whole organism. According to this hypothesis, these
circadian rhythms are drivers-rhythms: they are labile to external factors influence,
can synchronize with them and affect the subordinate driven rhythms. However, the
identification of the genetic mechanism of circadian oscillations [3] made scientists
realise that understanding was wrong. Circadian rhythms mechanism works even
at the scale of one or several genes by revealing itself in RNA and protein fluctua-
tions in transcription/translation processes. Finally, as soon as transport protein gets
through the cell membranes and starts its cellular interaction, circadian oscillations
can inevitably be developed at the intercellular scale. At the organs’ scale the signals
from separate cells should be synchronized, thus developing unified rhythms for the
whole organism. Notice that the issue of spatial synchronization of a large amount
of collaborating oscillators is quite popular among the physicists [4], but one could
hardly meet the discussion of this issue among the biologists. Major part of literature
on circadian rhythms is concentrated on the temporal organisation of rhythms.

In this chapter we discuss the approaches to circadian rhythms modeling at dif-
ferent spatial scales of a living organism, and study the forms of rhythms synchro-
nization, which are developed at different scales of system functioning.

2 Characteristic Scales of a Biological System

Let us point out three main biological system description scales, which are based
on the characteristic scales of structural units of the whole organism (Fig. 1). Aside
from the big cores of the reproductive cells with their gigantic sizes (up till 500µm)
cell core, which stores genetic information, is known to be of 1 till 10µm in size
at eukaryote. The transcription process, which presupposes data reading from the
particular cells by RNA polymerase and synthesis of mRNA, occurs in a core. Then
the molecules of mRNA leave the core and get into ribosome, where the proteins
are synthesized. Ribosome is twice as small as a core—about 0.03µm. The proteins
may return to the core and influence the transcription process by interacting with
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genes promoters. Therefore, here the characteristic scale of the spatial processes is
determined by the core’s sizes. However, the number of molecules interacting during
the genetic processes of transcription/translation is far from being big—for example,
the speed of RNA polymerase’s machinery is only 50 nucleotides per second. So
even minor fluctuations in mRNA and protein concentrations could have significant
influence on the general dynamics of the system [5, 6]. Thus, system description at
the scale of one or several genes should principally be stochastic. At the same time
here one could not take into account the spatially extended dynamics of the molecular
cloud, since only a small number of elements (tens or hundreds of molecules) are
concerned. This description scale shall be termed microscopic (Fig. 1).

At the next scale of biological system, which shall be termed mesoscopic, a cell or
several cells, which exchange the signals, are identified. A typical size of a eukaryote’s
cell is about 10–100 µm (Fig. 1). How many molecules of particular protein are there
in a cell? For example, yeast has been carefully analysed in [7]. On average 4-digit
or 5-digit numbers have been obtained for different types of protein. For example,
the number of a gene frq (internal classification YDR373W), which is responsible
for maintaining the circadian rhythms in yeast and in some other fungi, has been
found to be 7160 per one cell [7]. It means that as far as the role of fluctuations
is minor here, one may neglect the stochastic properties of the system. However,
keeping in mind that the size of one protein molecule is about 0.001–0.01µm we
may introduce spatially extended model to describe the protein cloud dynamics.
The diffusion coefficient for different protein monomers at their low concentration
in water solution is known to be about 10−7 cm2/s. This value is a bit lower than
the standard value as the protein monomers are large heavy molecules consisting
of hundreds and thousands of amino-acid residues. The protein diffusion in a cell
cytoplasm is limited by the intracellular space structure. Now it is clear that the
cytoskeleton of a cell consisting of actinic filaments is a complex viscoelastic medium
with fluidization at certain conditions [8]. The diffusion coefficient value of protein
in this intercellular frame is not known at the moment, but it is sure to be lower that
the above mentioned value for water. Thus, we believe that at the mesoscopic scale
the spatially extended deterministic reaction-diffusion model is the most appropriate
to describe the system.

Finally, macroscopic scale presupposes the description of the ensemble of a large
number of interacting cells (Fig. 1). This is the scale of an organ or even a whole
organism. And here the system becomes discrete again since a cell is an elemen-
tary unit of organism structure, which can independently exist, grow and be repro-
duced. The characteristic value of chemical signals diffusion, which occurs between
the cells, is quite small due to the influence of cellular membranes. It means that the
exchange between the cells is rather slow and it is quite possible to apply the dis-
crete model. This approach enables us to stand away from the mesoscopic dynamics
inside the cells and to count only the intercellular differences.
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Fig. 2 Scheme of protein
interaction in circadian oscil-
lations

3 Stochastic Simulations at the Microscopic Scale

We shall use the dynamic model of circadian rhythms proposed in our previous
chapter [9]. The model is rather general by nature, although it was originally sug-
gested to describe the circadian rhythms of the organism Neurospora crassa [10]. For
example, a model of the similar type has been developed for the circadian oscillations
of a fly Drosophila [11]. The time-delay effect of protein synthesis reactions in the
transcription and translation processes of genes is the key element of oscillations
mechanism (Fig. 2). These processes are both very slow and consist of multistage
biochemical reactions involving the sequential assembly of long molecules. Thus,
these processes are long in time and particularly time-delayed. It is evident that
the delay prevents the system from achieving equilibrium, and results instead in
the familiar limit cycle oscillations. The deterministic and stochastic properties of
gene regulation taking into account the non-Markovian character of gene processes
were studied in [12].

The simplified graphical depiction of a genetic mechanism of circadian rhythms
is presented in Fig. 2. This pair of the principal genes responsible rhythms has been
identified for some organisms. For example, for Neurospora these genes are frq
and wcc, for Drosophila—per and dclock [11]. Generally, the circadian rhythms are
characterized by a number of properties (autonomy, temperature compensation, etc.)
determined by tens of other genes. However, the specified pairs are the principal ones
for rhythms maintenance. Table 1 gives a complete list of biochemical reactions. The
model has been described in more detail in [10].

As it was mentioned earlier, at the microscopic scale (1–10µm, Fig. 1) we may
ignore the spatial effects and consider only stochastic properties of the system. As it is
known, in stochastic researches of gene processes two types of noise are pointed out:
extrinsic noise, which is generated outside a cell and connected with the intercellular
differences, and intrinsic noise, connected with stochastic nature of the ongoing
chemical reactions, temperatures fluctuations, etc. It is clear that at the scale of a
gene we should take into account the effect of the intrinsic noise.
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Table 1 A list of genes transcription reactions. Here k, k1, k−1, k2, k−2, BF , BW are the speeds of
the corresponding reactions

1 Dimerisation F + F
k F

1−→ F2 , W + W
kW

1−→ W2

2 Dedimerisation F2
k F−1−→ F + F , W2

kW−1−→ W + W

3 Promoter binding DF
0 + W2

k F
2−→ DF

1 , DW
0 + F2

kW
2−→ DW

1

4 Promoter unbinding DF
1

k F−2−→ DF
0 + W2, DW

1

kW−2−→ DW
0 + F2

5 mRNA synthesis DF
1 (t)

kF−→ DF
1 + Ft+α , DW

1 (t)
kW−→ DW

1 + W t+α

6 Protein degradation F
BF−→ ∅, W

BW−→ ∅

7 Non-linear degradation F + W
k−→ ∅

Table 2 Model parameters

α k kF kW K F
1 K F

2 K W
1 K W

2 BF BW

6 h 30 nM−1h−1 8 nM/h 4 nM/h 5 nM−1 5 nM−1 5 nM−1 5 nM−1 0.3 h−1 0.4 h−1

Gillespie’s algorithm [13], which is a variety of Monte-Carlo’s methods, is a
convenient tool for stochastic genetic research. This method is especially actively
applied, where a relatively small amount of molecules is involved. The numerical
solution received by Gillespie’s method is known to statistically reproduce the exact
solution of the master-equation. It should be noted here that the traditional version
of Gillespie’s algorithm was developed only for Markovian systems. The algorithm
was modified for the time-delayed systems in [12].

Let us present the results of stochastic calculations based on modified Gillespie’s
algorithm and parameter values listed in the Table 2. Figure 3a shows time-based
diagrams for the total number of monomers of both types, which have been obtained
at numerical calculations of a deterministic dynamic system (see below). Figure 3b
illustrates the results of the stochastic simulations for the same parameters values
as it is in a deterministic case. It is clearly seen that the basic mechanism of the
oscillations works very well, although there are a small number of the molecules
involved in the dynamics and significant fluctuations. The mechanism is based on
the synchronization between variations of protein F and W being oscillated in anti-
phase. Since productions of proteins are closely connected via positive feedback (see
Fig. 2) it looks natural. System stochasticity is clearly seen in fluctuations, which
achieve 20–40 % from the fluctuation magnitude in the deterministic case. Fourier
spectra of signals are given in the Insets. It is seen that the stochastic signal has
a stable maximum, which corresponds to the period of approximately 23 h. This
proves the basic mechanism of circadian oscillations is robust with respect to even
large fluctuations excited by intrinsic noise.
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Fig. 3 a Time dependence of the total number of F monomers (solid line) and of W monomers
(dotted line) deduced at the numerical integration of the deterministic model (1–2). b Time evolution
of the corresponding stochastic system derived with the help of Gillespie’s algorithm, which has
been modified for non-Markovian processes. Fourier spectra of signals are given in Insets. The
system parameters values are the same in both cases (Table 2)

4 Spatially Extended Model for Mesoscopic Scale

As it was mentioned above, modeling of biorhythms synchronization at the scale of
one or several cells (10–100µm, Fig. 1) presupposes the development of a spatially
extended model. We show in [9, 10] that the set of biochemical reactions listed in
the Table 1 can be reduced to the following two-variable reaction-diffusion system:

β F

βt
= 1

1 + 4K F
1 F

(

kF
K W

1 K F
2 W 2(t − α)

1 + K W
1 K F

2 W 2(t − α)
− BF F − k FW

)

+ D

(
β2 F

βx2 + β2 F

βy2

)

, (1)

βW

βt
= 1

1 + 4K W
1 W

(

kW
K F

1 K W
2 F2(t − α)

1 + K F
1 K W

2 F2(t − α)
− BW W − k FW

)

+ D

(
β2W

βx2 + β2W

βy2

)

,

(2)

where D is the coefficient of protein diffusion inside the cell. It should be noted
that the model (1–2) is not equal mathematically to a set of reactions given in the
Table 1, since it has been based on the assumptions that some reactions are quick
and some are slow [9]. Thus, the reagents involved into the quick reactions achieve
the state of local statistic equilibrium very quickly against slowly changing values.
So, one should use either the original system of kinetic chemical reactions (Table 1),
or simplified deterministic model (1–2) depending on the system scale and a set of
assumptions.

The initial-boundary value problem (1, 2) has been solved in the domain ∂:
(0 < x < 200, 0 < y < 200) by a finite difference method described in detail in
[14]. The equations have been approximated on a rectangular uniform mesh 400×400
using a second order approximation for the spatial coordinates.

Since the proteins F and W are always in anti-phase, we can choose only
one of them to illustrate the system dynamics. Figure 4 presents the typical wave
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Fig. 4 Typical image of the
wave structures developed
within the intracellular space
due to random initial condi-
tions. D = 0.01

pattern formed by the concentration of F protein. The nonlinear dynamics of spa-
tially extended system consists of two distinct oscillatory modes. One is the quasi-
standing wave pattern visible in upper left corner of Fig. 4. The second oscillatory
mode is a spiral traveling-wave pattern. These waves arise from selected initial dis-
turbances and travel outward in all directions from its source. It continues until the
spiral wave pattern occupies the entire domain ∂. Note that if the front of wave looks
more or less orderly, by entering deeply inside the secondary instability area there
have appeared numerous secondary centers of the excitation of the spiral waves. The
nonlinear interaction between them leads to the formation of chaotic pattern (Fig. 4).

Many biological processes are carried out by signal transmission through cell
membrane, which connect a cell with the environment. The membranes play the
key role in metabolism by segregating non-organic ions and organic molecules. The
changes in the levels of these flows are known to be one of the mechanisms of
influence on the chemical composition and chemical structure inside a cell. This
process has been modeled in the following way: in the domain ∂ particular areas,
which are conditionally called “cells” with the running reactions (1–2), are pointed
out. The modeled cells are square and have a fixed size, because at the moment
we are not interested in the mechanics of the cells themselves. The cells’ border is
not homogeneous: most of its part is impenetrable for a reagent, the other part has
diffusion permeability through “membranes”. For the sake of simplicity we have not
introduced a separate type of protein responsible for the transportation of the circadian
signal outside. In the suggested model the transportation function is performed by
the same protein F. Its partner, protein W, may move only inside the cell space.

Now let us move to the results of the modeling. Figure 5 shows the situation, when
only one cell generates the circadian rhythms (upper row). In other three cells the
transcription mechanism does not work. As it was stated above (see Fig. 4), in this
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Fig. 5 Evolution of the concentration of the F protein. The frames from left to right and from up
to down correspond to times t = 200, 5000, 10000, 20000 respectively. There are four “cells” in the
domain of integration, but only one of them is switched on (upper row); The spatial synchronization
of oscillations due to intercellular communications (bottom row)

case the system is in the state of the phase turbulence, which lasts as long as the
external signal does not occur. The cell continues its functioning in its usual mode
of chaotic spatial waves, although the protein F flows through the membranes of the
working cell into the intercellular space. When all four cells (Fig. 5, bottom row) start
functioning at the same conditions, then the system starts to change qualitatively.
Spontaneous spatial synchronization has been proved to occur, when the protein
concentration in intercellular space achieves a definite level of concentration F =
0.8, which equals to about an average value, with the concentration field in cells
oscillating around it. It makes the intercellular diffusive space common for all cells.

5 Individual Based Model for Macroscopic Scale

The analysis of the biorhythms synchronization at the scale of an organ or even the
whole organism presupposes the description of functioning and interaction of a large
amount of cells. We have applied the chemo-mechanical model of epithelial spreading
suggested in a recent chapter [15]. Epithelial tissue is a layer of cells covering the
surface of an organ or body. Thus, one may use only quasi-two-dimensional system
in modeling the epithelium behaviour, that makes the calculations easier.

The model described in the chapter [15] includes the calculation of separate cells
dynamics, which are presented in the form of polygons (the system has been dimen-
sioned in such a way, as hexagonal cell is the most probable form of a cell, although
other forms of polygons are also possible). The cells are closely located to each other
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forming solid two-dimensional epithelial surface. The model has a set of properties,
which are suitable to simulate the behaviour of real epithelium:

• Possibility to change the cell’s size in the process of tissue evolution (for example,
wound healing) and to change the local mechanical properties of environment;

• Possibility for the total number of cells to spread in the system by their division
in particular evolution conditions;

• Possibility for the cells to move by the mechanism of intercalation;
• The calculation of the dynamics of substances concentration, which participate in

the regulation of tissues activities, for every cell of a community;
• Exchange of chemical signals done between the neighbouring epithelial cells

through common border;
• Effect of cells polarisation, which occurs spontaneously or under the influence of

the external conditions.

Thus, every cell in the model is under the effect of several chemo-mechanical
influences, which make it develop together with the whole system. Fine structure of
the spatially extended effects connected with the heterogeneity of the fields inside
cells is not identified in the model, as all the fields inside every cell depend on time
only. However, the model can reflect the pattern formation at the larger scales in
comparison with a cell’s size. This model can be classified as an individual based
model demonstrating collective effects with individual behaviour of separate system
elements. We have improved it with the calculation of the circadian rhythms in every
cell of a community using the following equations:

d Fi

dt
= 1

(1 + 4K F
1 Fi )

(

kF
K W

1 K F
2 W 2(t − α)

1 + K W
1 K F

2 W 2(t − α)
− BF Fi − k Fi Wi

)

+ ρ
∑

j

Li j (Fj − Fi ), (3)

dWi

dt
= 1

(1 + 4K W
1 Wi )

(

kW
K F

1 K W
2 F2(t − α)

1 + K F
1 K W

2 F2(t − α)
− BW Wi − k Fi Wi

)

, (4)

with ρ = 0.1 being a coefficient of the protein F transfer through cellular membrane.
Term responsible for the protein transfer from a cell to a cell in the Eq. (3) is

written in the form of a simple differential proportion with Li j having the value of
border length between i and j cells. Only cells neighboring i cell are summed up
in the formula (3). If the level of protein F concentration in the given cell is higher
than the one of its surroundings, then the flow of protein molecules goes outside.
Otherwise the protein inflow goes from outside. After the division of any one cell
into two parts new cells inherit the phase of the circadian rhythm of the parent cell.

Now let us move to discussing the results of modeling. Figure 6 shows several
frames of evolution of epithelium consisting of 1600 cells originally. At the very
beginning the phase of circadian rhythm has been set randomly in cells, while the
external effects on the system have been excluded. Such an approach enables us
to identify probable unique forms of the collective cells behaviour to synchronize
the fluctuations. The numerical results show that in the case of a large amount of
cells a complete synchronization, meaning total alignment of the oscillation phases



354 A. Zakharov and D. Bratsun

Fig. 6 Clustering of circadian rhythms: oscillations of the F protein in epithelial tissue consisting
of more than 1600 cells. The random distribution of initial phases in cells has been applied as the
initial condition. Time moment t = 0, 25, 50, 75, 100, 125 are presented consistently

in all cells cannot be achieved. Instead here the macroscopic effect of clustering is
revealed—the cells develop two approximately equal communities, which collec-
tively oscillate in anti-phase (Fig. 6). These two groups are separated by a thin layer
of cells oscillating with the intermediate values of phase.

Clustering in the system with a large amount of elements exchanging chemical
signals has become at the center of attention of many scientists recently. For example,
a group of interacting with each other synthetic genetic oscillators has carefully been
examined in a work [16]. Tissue clustering has been found to be divided into two types
of oscillating cells in time. The authors of the work believe that this phenomenon is
connected with two possible stable equilibria of the system. It is pointed out that the
clustering is likely to be the most important characteristic of most communities and
could be the reason of further cells differentiation in organs.

6 Conclusions

The research of the circadian rhythms synchronization at different scales of biolog-
ical system description has been carried out on the basis of the suggested model
of the circadian rhythms with time delay. The analysis of interaction at the scale of
several genes has been done by stochastic modeling. Spatiotemporal dynamics
of the protein concentration field at the scale of one or several cells has been studied
within the deterministic model with diffusion. Finally, macroscopic effects arising
at the community of a great amount of cells have been considered at the basis of the
individual based chemo-mechanical model of the spreading epithelium, which cells
could exchange chemical signals. The forms of the circadian rhythms synchroniza-
tion at every scale of the system description have been identified.

We are grateful to L. M. Pismen and M. Salm agreed to hand over the software
package to us to do the research in the area of complex living systems. The work
was supported by the Department of Science and Education of Perm region (project
C26/244), the Ministry of Science and Education of Russia (project 1.3103.2011)
and Perm State Pedagogical University (project 031-F).
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Investigation on the Dynamics of PSO Algorithm
Enhanced with Chaotic Lozi Map

Michal Pluhacek, Roman Senkerik, Ivan Zelinka and Donald Davendra

Abstract In this chapter, previously proposed utilization of discrete Lozi map based
chaos pseudo-random number generator to enhance the performance of PSO algo-
rithm is investigated with the detailed focus on the chaotic system dynamics. The
elaborated tuning of chaotic system accessible parameters based experiment is pre-
sented here together with the investigation on the impact to the performance of PSO
algorithm.

Keywords Particle swarm optimization · Swarm intelligence · Optimization ·
Chaos · Lozi map

1 Introduction

The particle swarm optimization algorithm (PSO) [1] is one of the best known and
reputable swarm intelligence optimization algorithms which are a subset of evolu-
tionary computation techniques (ECTs) [1–6]. These non-deterministic techniques
are currently frequently combined with another nature inspired phenomenon – deter-
ministic chaos [7]. Utilization of discrete chaotic systems as a chaotic pseudo-random
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number generator (CPRNG) for the stochastic processes within the ECTs seems to
have very positive effect on the performance of these techniques [8–18].

The performance of chaos driven ECTs such as Differential evolution [15, 16],
PSO [9–14] and others [17, 18] was frequently investigated in recent studies. In
this chapter, the PSO algorithm driven by chaotic Lozi map is investigated more
in details with the focus on the influence of particular chaotic system setting and
resulting chaotic dynamics.

Firstly, used PSO algorithm with inertia weight is explained. The next sections
are aimed on the description of used chaotic system and experiments setup. Results
and conclusion follow afterwards.

2 Particle Swarm Optimization Algorithm

The PSO algorithm is inspired by the natural swarm behavior of birds and fish. It was
introduced by Eberhart and Kennedy in 1995 [1, 3] as an alternative to other ECTs,
such as Ant Colony Optimization [2], Genetic Algorithms (GA) [4] or Differential
Evolution (DE) [5]. Each particle in the population represents a possible solution of
the optimization problem which is defined by its cost function. In each iteration, a
new location (combination of cost function parameters) of the particle is calculated
based on its previous location and velocity vector (velocity vector contains particle
velocity for each dimension of the problem).

One of the disadvantages of the original PSO algorithm was poor local search
ability. For this reason, several modifications of the PSO were introduced. The main
principles of the PSO algorithm and its modifications are detailed in [1, 19, 20].
Within this research, the chaos driven PSO strategy with linear decreasing inertia
weight was utilized [19, 20]. This strategy was first introduced in 1998 [19] in order
to improve the local search capability of PSO. The selection of inertia weight strategy
of PSO was based on numerous previous experiments [9, 10, 13, 14]. Default values
of all PSO parameters were chosen according to the recommendations given in
[1, 3, 19, 20].

Inertia weight is designed to influence the velocity of each particle differently
over time [15, 16]. In the beginning of the optimization process, the influence of
inertia weight factor w is minimal. As the optimization continues, the value of w
is decreasing, thus the velocity of each particle is decreasing, since w is always the
number less than one and it multiplies the previous velocity of particle in the process
of new velocity value calculation. Inertia weight modification PSO strategy has two
control parameters wstart and wend . A new w for each iteration is given by (1), where
i stand for current iteration number and n stands for the total number of iterations.

w = wstart − ((wstart − wend) · i)

n
(1)
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A chaos driven pseudo-random number generator is used in the main PSO formula
(2) that determines new “velocity” and thus the position of each particle in the next
iterations (or migration cycle).

v(i + 1) = w · v(i) + c1 · Rand · (pBest − x(i)) + c2 · Rand · (gBest − x(i)) (2)

where:

v(i + 1) New velocity of a particle.
v(i) Current velocity of a particle.
c1, c2 Priority factors.
pBest Best solution found by a particle.
gBest Best solution found in a population.
x(i) Current position of a particle.
Rand Random number, interval (0, 1). Chaos number generator is applied only here.

The new position of a particle is then given by (3), where x(i +1) represents the
new position:

x(i + 1) = x(i) + ν(i + 1) (3)

3 Chaotic Lozi Map

The Lozi map is a simple discrete two-dimensional chaotic map. The Lozi map is
depicted in Fig. 1. The map equations are given in (4). Typical parameters given in
literature [7, 21, 22] are a = 1.7 and b = 0.5.

Xn+1 = 1 − a |Xn| + bYn

Yn+1 = Xn (4)

4 Experiment Setup

In Sect. 2 the chaos driven PSO algorithm with inertia weight was described. In
Sect. 3 the Lozi map with typical control parameters was introduced. In this study
the parameter a of the Lozi map was tuned and the influence of the changed chaotic
system on the chaos driven PSO algorithm was analyzed. The first experiment was
set as follows:

Population size = 30; Iterations = 200;Dimension = 10;Lozi map parameter
a = 1.5−1.7 (step 0.1, 0.01, 0.001). For each setting the experiment was repeated
300 times and the mean result was recorded.
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Fig. 1 x, y plot of Lozi map
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4.1 Test Functions

Four different static test functions were used in this research: 1st De Jong’s function
(5), 2nd De Jong’s function (6), Rastrigin’s function (7) and Schwefel’s function (8).

The 1st De Jong’s function (Sphere function).

f (x) =
dim∑

i=1

x2
i (5)

Function minimum: Position for En: (x1, x2 . . . xn) = (0, 0, . . ., 0). Value for
En: y = 0.

The 2nd De Jong’s function (Rosenbrock’s valley).

f (x) =
dim∑

i=1

x2
i (6)

Function minimum: Position for En: (x1, x2. . .xn) = (1, 1, . . ., 1). Value for En: y =
0.

Rastrigin’s function

f (x) = 10 dim +
dim∑

i=1

x2
i − 10 cos(2πxi) (7)
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Fig. 2 Results of the tuning experiment—The 1st De Jong’s function
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Fig. 3 Results of the tuning experiment—The 2nd De Jong’s function

Function minimum: Position for En : (x1, x2 . . . xn) = (0, 0, . . ., 0). Value for En :
y = 0.

Schwefel’s function

f (x) =
dim∑

i=1

−xi sin(
√|x|) (8)

Function minimum: Position for En : (x1, x2 . . . xn) = (420.969, 420.969, . . .,

420.969). Value for En: y = −418.983 · D
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Fig. 5 Results of the tuning experiment—Schwefel’s function

5 Results

The results obtained during the first experiment are depicted in Figs. 2, 3, 4 and 5.
According to the obtained data the performance of chaos driven PSO algorithm on
the 1st and 2nd De Jong’s function seemed to be significantly better with Lozi map
settings a = 1.55. (Figs. 2 and 3) in comparison with typically used value a = 1.7.
Similar but less significant trend could be observed in Fig. 4 that depicts the results
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Fig. 7 Lozi map CPRNG distribution for a = 1.7

for Rastrigin’s function. Surprisingly the totally opposite trend has arisen from the
results of the first experiment with the Schwefel’s function. For better understanding
of this phenomenon, Fig. 6 depicts the bifurcation diagram for chaotic Lozi map for
fixed b = 0.5 and a = 1.5–1.7. Furthermore the distributions of CPRNGs based on
Lozi map with different a settings are presented on Figs. 7 and 8.

After the first experiment focused on the detailed investigation on the influence
of Lozi map accessible parameter tuning subsequently the performance testings and
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Fig. 8 Lozi map CPRNG distribution for a = 1.55

Table 1 Mean results of the second experiment—The 1st De Jong’s function

DIM 20 40 60 80 100

PSO Weight 0.31126 3.26528 7.74353 12.6881 18.3695
PSO Lozi 0.48832 4.66315 10.7448 18.3021 26.2179
PSO Lozi 2 0.15302 1.97864 4.75604 8.32826 11.8904

Table 2 Mean results of the second experiment—The 2nd De Jong’s function

DIM 20 40 60 80 100

PSO Weight 89.1357 585.711 1488.26 2686.2 4093.41
PSO Lozi 112.415 761.655 1993.22 3595.95 5483.92
PSO Lozi 2 60.0585 330.803 774.254 1380.46 2051.72

Table 3 Mean results of the second experiment—Rastrigin’s function

DIM 20 40 60 80 100

PSO Weight 34.6047 133.86 258.134 393.647 543.166
PSO Lozi 38.1713 145.831 272.309 418.132 569.274
PSO Lozi 2 32.4471 124.82 239.015 367.258 510.703

comparisons for the chaos driven PSO algorithm were carried out. Following Tables 1,
2, 3 and 4 contain mean results of this experiment. The notation is: PSO Weight—PSO
with non-chaotic PRNG, PSO LOZI – PSO with Lozi map based CPRNG (a = 1.7)
and PSO Lozi 2 – PSO with Lozi map based CPRNG (a = 1.55). The experiment
was repeated 100 times for different benchmark functions dimension setting. The
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Table 4 Mean results of the second experiment—Schwefel’s function

DIM 20 40 60 80 100

PSO Weight −3846.19 −6075.94 −8060.01 −9829.3 −11339.1
PSO Lozi −4282.11 −6657 −8450.79 −10075.8 −11321.5
PSO Lozi 2 −3867.85 −6296.24 −8140.84 −9748.96 −11159.8

PSO algorithm was set as follows: Population size: 30; Iterations: 20 · dim. The bold
values within the Tables 1, 2, 3 and 4 depict the best obtained solutions.

6 Conclusion

In this chapter, the enhanced PSO algorithm performance with Lozi map CPRNG
was investigated in details. The accessible parameters of chaotic system were tuned
and resulting impact of different setting of the system on the performance of chaos
driven PSO algorithm was recorded and analyzed. Four different test functions were
used for all experiments within this research. These test functions were utilized for
the performance comparisons of the PSO algorithm with CPRNG with setting based
on the fine tuning of Lozi map against the both canonical PSO with inertia weight
and PSO algorithm that utilized CPRNG typical setting from literature and previous
successful experiments with the concept of embedding the chaotic dynamics into the
evolutionary techniques.

Obtained results lend weight to the importance of previous research focused on
the embedding of CPRNG into the evolutionary techniques and at the same time
these results represents the next step in this research, which is the fine tuning of
chaotic maps parameters used as CPRNG.

The presented data seem to indicate that the proper setting of chaotic system that
is used as a CPRNG for PSO algorithm could lead to significant improvement of the
performance of such algorithm even for different test functions and dimension value
settings.

Since this is an initial study, the deeper statistical analyses based on paired
t-tests or parametric tests will be performed soon within the future research. The
C language “Mersenne Twister” with default automatic setting pseudo-random num-
ber generator was applied to represent traditional pseudo-random number generators
in comparisons.
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On the Development of Complex Cost Function
for the Evolutionary Chaos Control: A Brief
Study

Roman Senkerik, Ivan Zelinka, Michal Pluhacek,
Zuzana Kominkova Oplatkova and Roman Jasek

Abstract This work represents the brief introduction into the issue of development
of complex cost function for evolutionary optimization of control of discrete chaotic
systems. This work introduces briefly the evolutionary approach representing tuning
of parameters for an existing control method. The main part of this work is focused
on the process of development of the proper cost function design used within the
evolutionary process. As an example of discrete chaotic system, two-dimensional
Hénon map was used.

Keywords Chaos control · Optimization · Evolutionary algorithms

1 Introduction

During the recent years, usage of new soft-computing techniques in engineering,
technology, modeling, computing and simulations has attracted the attention of
researchers worldwide. Presently, evolutionary algorithms are known as a power-
ful set of tools for almost any difficult and complex optimization problem.

The interest about the interconnection between evolutionary techniques and con-
trol of chaotic systems is spread daily. The first steps were done in [1–3], where
the control law was based on the Pyragas method, which is Extended delay feed-
back control (ETDAS) [4–6] for the purpose of stabilization of a chaotic systems
on desired Unstable Periodic Orbits (UPO). This method is very advantageous for
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evolutionary computation, due to the amount of accessible control parameters, which
can be easily tuned by means of evolutionary algorithms (EA).

The main core of the optimization problem is the proper definition of the cost
function (also called fitness function). It represents the quality of solution based on
the combination of input parameters and given constraints within the n-dimensional
space.

This work is a cumulation of previous research [7–9] and expansion of experi-
ences from the initial studies [10, 11]. Furthermore, this work briefly introduces the
background of the research, mainly the development of the cost function and show
general characteristics of obtained results.

2 Problem Design

The brief description of used chaotic system, original feedback chaos control method
ETDAS is given here. The process of development of complex cost functions follows
in the next chapter.

2.1 Selected Chaotic System

The chosen example of a chaotic system used for generating of illustrative cost
function surfaces and simulation outputs was the two dimensional Hénon map in
form (1):

xn+1 = a − x2
n + byn

yn+1 = xn
(1)

The Hénon map is a discrete-time dynamical system. The map depends on two
parameters, a and b, which for the canonical Hénon map have values of a = 1.4 and
b = 0.3. For these canonical values the Hénon map is chaotic [12].

2.2 ETDAS Control Method

This work is focused on the explanation of cost function design for tuning of para-
meters for ETDAS method control law to stabilize desired Unstable Periodic Orbits
(UPO). In the described research, desired UPOs were p-1 (stable state) and p-2 (two-
periodic orbit, which represents oscillation between two values). The original control
method—ETDAS in the discrete form suitable for Hénon map has the form (2).
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Fig. 1 Dependence of CF value on parameters K and Fmax (left), and on parameter K (right);
Simple cost function, p-1 orbit

xn+1 = rxn (1 − xn) + Fn

Fn = K
[
(1 − R) Sn−m − xn

]
(2)

Sn = xn + RSn−m

where: K and R are adjustable constants, which has to be evolutionary tuned. F
is the perturbation; S is given by a delay equation utilizing previous states of the
system, m is the period of m-periodic orbit to be stabilized. The perturbation Fn in
Eqs. (2) may have arbitrarily large value, which can cause diverging of the system
outside the output interval of Logistic equation {0, 1}. Therefore, Fn should have a
value between < −Fmax, Fmax >. The suitable Fmax value was also obtained from
evolutionary optimization process.

3 Cost Functions Development

The proposal of the basic cost function (CF) is in general based on the simplest CF,
which could be used problem-free only for the stabilization of p-1 orbit. The idea
was to minimize the area created by the difference between the required state and
the real system output on the whole simulation interval—τi. This CF design is very
convenient for the evolutionary searching process due to the relatively favorable CF
surface. (See Fig. 1.) Nevertheless this simple approach has one big disadvantage,
which is the including of initial chaotic transient behavior of not stabilized system
into the cost function value. As a result of this, the very tiny change of control
method setting for extremely sensitive chaotic system causing very small change
of CF value, can be suppressed by the above-mentioned including of initial chaotic
transient behavior

Another cost function had to be used for stabilizing of the higher periodic orbit,
due to simple and serious reason, which is the degrading of the possible best solution
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Fig. 2 The example of possible phase shift of periodic orbit during evolutionary process: No UPO
shift—good solution (left), Full phase shift—Even though perfectly stabilized, for EA it is “bad”
solution (right); Light blue area represents the difference between output of the system (blue line)
and the required behavior (red line), p-2 orbit

Fig. 3 Dependence of CF value on parameters K and Fmax (left), and on parameter K (right);
Simple cost function with selection rule, p-2 orbit. The global optimum (K = −1.48) represents
solution with very fast but not precise (or only temporary) stabilization, whereas the solution given
by local optimum (K = 0.34) secures slow but very precise stabilization

by a phase shift of periodic orbit. The example of possible phase shift is depicted in
Fig. 2.

Such a cost function is based on the minimization of the area created by the differ-
ence between the all possible required states and the real system output on the whole
simulation interval. In case of the p-2 orbit, during the CF evaluation, the difference
between system output and the two possible required behaviors (i.e. oscillations
A-B-A-B… or B-A-B-A) is computed and thereafter selected the minimal one as
a CF output (3). An interesting phenomenon has occurred in this case. The global
optimum represents solution with very fast but not precise (or only temporary) stabi-
lization, whereas the solution given by local optimum secures slow but very precise
stabilization on desired higher periodic orbit. This problem is caused by including of
initial chaotic part into CF value before stabilization together with the increasing of
the nonlinear and chaotic character of CF surface due to the selection rule within the
CF evaluation. The 2D plot of dependence of CF values on one selected optimized
parameter and 3D CF surface is depicted in Fig. 3.
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Fig. 4 Dependence of CF value on parameters K and Fmax (left), and on parameter K (right);
Simple cost function with selection rule and penalization, p-2 orbit

CFSELECT = Min


⎧⎧⎧⎧⎪

⎧⎧⎧⎧⎨

τ i⎩

t=0
|TS1t − ASt |

τ i⎩

t=0
|TS2t − ASt |

⎜
⎧⎧⎧⎧⎝

⎧⎧⎧⎧

(3)

where:

AS actual state
TS1 target state 1 (i.e. oscillations A-B-A-B. . .)
TS2 target state 2 (i.e. oscillations B-A-B-A. . .)
τi simulation interval

The issue of unsuitable CF surface with global optimum representing solution with
very fast but not precise (or only temporary) stabilization, and with local optimum
solutions securing slow but very precise stabilization, can be easily suppressed by
simple penalization within CF evaluation. The difference between system output
and the two possible required behaviors (i.e. oscillations A-B-A-B… or B-A-B-A)
evaluated on the whole simulation interval, as suggested in (3), is multiplied by the
similar difference, but evaluated only from the last 20 iterations. In the case of the
temporary or not precise stabilization, such a difference will be represented by a
number mostly higher than 1. This means, that the solution will be penalized. In the
opposite case of very precise stabilization, the difference will be very close to zero, so
that the final solution will be more favorable in case of the minimizing evolutionary
optimization. Such a CF design is given in (4) and the 3D CF surface is depicted in
Fig. 4.

CFSELECT_P = Min


⎧⎧⎧⎧⎧⎪

⎧⎧⎧⎧⎧⎨

τ i⎩

t=0
|TS1t − ASt | ·

τ i⎩

t=τi−20
|TS1t − ASt |

τ i⎩

t=0
|TS2t − ASt | ·

τ i⎩

t=τi−20
|TS2t − ASt |

⎜
⎧⎧⎧⎧⎧⎝

⎧⎧⎧⎧⎧

(4)
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Fig. 5 “Floating window” for minimization

where:

AS actual state
TS1 target state 1 (i.e. oscillations A-B-A-B. . .)
TS2 target state 2 (i.e. oscillations B-A-B-A. . .)
τi simulation interval

The penalization, which is given by multiplication of two differences between
target state and actual output state of chaotic system, causes increase of nonlinearity
and chaotic nature of CF surface. Although the issue of problems with global/local
solutions was suppressed by this CF design (4), another issue makes this CF design
less convenient (or comfortable to use) for numerous experiments with different
chaotic systems and different desired UPOs. This CF design requires preparing (pro-
gramming) of unique functions for different UPOs and systems. Thus the different
universal CF (5) served as a core for advanced CF used within advanced evolutionary
approach for chaos control optimization.

Different type of universal cost functions without any selection rules are purely
based on searching for the desired stabilized periodic orbit and thereafter calculation
of the difference between desired and found actual periodic orbit on the short time
interval—τs (20 iterations—p-1 orbit and 40 iterations—p-2 orbit) from the point,
where the first minimal value of difference between desired and actual system output
is found (i.e. floating window for minimization—see Fig. 5.).

Such a design of universal CF should secure the successful stabilization of
either p-1 orbit (stable state) or any else higher periodic orbit anywise phase
shifted.Furthermore, due to CF values converging towards zero, this CF also allows
the using of decision rules, avoiding very time demanding simulations. This rule
stops EA immediately, when the first individual with good parameter structure is
reached, thus the value of CF is lower then the acceptable (CFacc) one. Based on
the numerous experiments, typically CFacc= 0.001 at time interval τs = 20 iterations,
thusthe difference between desired and actual output has the value of 0.0005 per
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iteration—i.e. successful stabilization for the used control technique. The CFUNI has
the form (5).

CFUNI = pen1 +
τ2∑

t=τ1

|TSt − ASt | (5)

where:

TS target state, AS—actual state
τ1 the first min value of difference between TS and AS
τ2 the end of optimization interval (τ1 + τs),
pen1 = 0 if τi −τ2 ≥ τs , pen1 = 10∗(τi −τ2) if τi −τ2 < τs (i.e. late stabilization).

For the development of advanced CF securing the very fast stabilization, it was nec-
essary to modify the definition of universal CFUNI in order to decrease the average
number of iteration required for the successful stabilization and avoidance of any
associated problem. The easiest but the most problematic way is that the whole
CF value is multiplied by the number of iterations (NI) of the first found mini-
mal value of difference between desired and actual system output (i.e. the begin-
ning of fully stabilized UPO). To avoid errors associated with CF returning value
0 and other problems, the small constant (SC) is added to CF value before penal-
ization (multiplying by NI). The SC value (7) is computed with the aid of power of
non-penalized basic part of CF (6), thus it is always secured that the penalization is
at similar level as the non-penalized CF value.

ExpCF = log10

(
τ2∑

t=τ1

|TSt − ASt | + 10−15

⎞

(6)

SC = 10ExpCF (7)

In general, there exists two possible ways for applying the multiplication by the
number of iterations required for stabilization (NI). The first version of the final
design of targeting CF (CFTARG1) has the form (8). Here the sum of basic part of CF
and automatically computed SC is multiplied by NI. Consequently, the EA should
find the solutions securing the fast targeting into desired behavior of the system.

CFTARG1 = NI

(

SC + p1 +
τ2∑

t=τ1

|TSt − ASt |
⎞

(8)

In the second version of targeting CF (CFTARG2), there is only a slight change in
the comparison with the previous proposal. The number of steps for the stabilization
(NI) multiplies only with the small constant (SC), which is counted in the same way
as in the previous case (12). This version of targeting CF (CFTARG2) has the form (9).
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Fig. 6 Dependence of CF value on parameters K and Fmax (left), and on parameter K (right);
Advanced cost function, for simple evolutionary process, p-1 orbit

Table 1 Simulation results characteristics

Cost function Advantages Disadvantages

CFSIMPLE Wide global extreme area, simple
and fast evolutionary process

Suitable only for p-1 orbit
optimization case, no
constraints or penalizations
could be added

CFSELECT Suitable for any UPO, quite
favorable CF surface for
evolutionary process

Problems with global/local
extremes, for different UPO
order, the CF has to be
re-designed, no constraints or
penalizations could be added

CFSELECT_P Suitable for any UPO, guarantee of
precise UPO stabilization, best
solution is very close to the CF
value zero.

Increased nonlinearity and chaotic
nature of CF surface, for
different UPO order, the CF has
to be
re-designed

CFUNI Universal CF suitable for any
UPO, arbitrary constraints or
penalizations could be simply
added

High nonlinearity and chaotic
nature of CF

CFTARG1/CFTARG2 Universal CF suitable for any UPO
with inbuilt optimization of
time required for full
stabilization

Extremely high nonlinearity and
chaotic (discrete) nature of CF

CFTARG2 = (NI · SC) + p1 +
τ2∑

t=τ1

|TSt − ASt | (9)

The issue of pure searching for periodic orbits causes very chaotic, erratic and discrete
type CF surfaces (see Fig. 6.)
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4 Results Overview

This section contains the brief overview of the simulation results characteristics
given as the advantages/disadvantages for each single cost function design depicted
in Table 1.

5 Conclusion

This work introduces the possible approach for the optimization of stabilization of
Hénon map, which was selected as an example of discrete chaotic system. The main
part of this work is focused on the issue of developing the proper cost function for
evolutionary searching process.

The question of energy costs and more precise stabilization will be included into
future research together with the development of better cost functions, and perform-
ing of numerous simulations to obtain more results and produce better statistics, thus
to confirm the robustness of this approach.
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4-D Seismic Tomography for the Complex
System of Strong Earthquakes: Formulation
of a Problem

Tatyana A. Smaglichenko and Ingi Th. Bjarnason

Abstract Geodynamic processes are acting in the Earth’s interior and they cause
earthquakes of various intensity. Earthquakes occur randomly and they are
often in clusters. Sometimes it happens that before strong earthquakes there is a
seismic quiescence that is characterized by the absence of significant seismic events.
This may indicate that Earth’s geological system prepares itself for a catastrophe.
Complexity theory describes regularities of the behavior of dynamical systems before
the occurrence of a disaster. The main part of this chapter is formulating a problem to
investigate the behavior of a geophysical parameter, namely seismic velocity before
the occurrence of the strong earthquake. Considering that velocity is a random vari-
able, we apply the distribution function to estimate the dynamic state of the strong
earthquakes complex system.

Keywords Seismic tomography · Velocity model · Statistics · Geodynamics

1 Introduction

The Earth is a dissipative system of heterogeneous geological structures. The state
of structures can be changed under the influence of various physical and chemical
factors. This leads e.g. to the unpredictable occurrences of strong earthquakes. In
his work Nicolis and Prigogine [8] examined various states of stability of dissipa-
tive systems. The states can be described via the Lyapunov function [6]. However
this is not always possible. For example, it is difficult to describe the un-insulated
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systems via an ideal function. According to Nicolis and Prigogine [8] there are sev-
eral important control parameters. Critical values of these parameters are responsible
for the instability of the system. Once parameters pass their critical values the system
enhances fluctuations and the system can cause a catastrophic state.

Nowadays various seismic parameters and measurements are used in order to
investigate a behavior of the complex system of strong earthquakes with the aim to
predict strong earthquakes. Forecast models are constructed using catalog informa-
tion, which contain magnitudes of earthquakes prior and after the main shock. In
this approach the time window, within which a forecast is made, is often selected
by taking into account information on historical and pre-historical earthquakes that
occurred in the region of study [7, 16]. Other factors to determine of the forecast time
window are based on the seismic activity that is instrumentally recorded in a region.
Then forecasts are given for 1 day up to couple of years depending on the detailed
information in the seismic catalog data [4, 15]. The probability and magnitude of a
catastrophic event can be estimated by studying complex earthquake networks and
constructing the so called chain graphs [1].

The other line of approach in studying the earthquake forecast problem is based
on determining the physical parameters and the wider geodynamical effects of the
earthquake source. The response of an elastic medium to the seismic wave propaga-
tion is analyzed. One of the main observations for this analysis is the polarity of the
first arriving P-wave as a function of azimuth. From the P-wave polarity distribution
it is possible to estimate the earthquake mechanism. The stress/strain fields in the
Earth’s crust are estimated by inverting the earthquake mechanisms. For example
it was shown that after the 2011 Tohoku earthquake (M = 9.1) in Japan, the main
axis of the stress field was rotated 30–35◦ with respect to Pacific plate boundary
[3]. In order to map in detail the stress field, Rebetskii [9, 10] has developed the
method of cataclastic analysis of discontinuous displacement. It has been shown that
the fault rupture in the 2004 Sumatra–Andaman earthquake (M = 9.1), the 2003
Tokachi–Ochi earthquake (M = 8.3), the 2006 Simushir earthquake (M = 8.3), and
the 2010 Chile Earthquake (M = 8.3) was started on the border of areas of high and
low pressure levels, i.e. in areas with high pressure gradient [10]. These results have
an important implication in understanding the likely geographical location of large
earthquakes.

The second main parameter to consider is a time. It is already established that
accumulation of stresses in the crust is characterized by time cycles. Cycles can be
estimated by measuring movements of the crust with GPS data (both the sudden
movement in earthquakes and the gradual drift of the crust) and by account of his-
torical seismicity and paleoseismical data that can be determined with methods of
field-geology. In a region a “normal” cycle may e.g. be defined for earthquakes with
magnitudes 7 and less and a “mega” cycle for earthquakes with magnitudes greater
than 8. In other regions “mega” cycle may be defined to consist of earthquakes of mag-
nitude ∼9. Careful evaluation of the geological field data suggests that the 2011 To-
hoku earthquake may have been part of a 500-year-long cycle of “mega” earthquakes
in this region of Japan. The previous earthquake in this 500-year cycle was the 1611
Keicho earthquake, which also caused a devastating tsunami in Northeast Japan [5].
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We propose to bring in a new type of seismic observation to aid the forecasting
of earthquakes, namely by using travel times of seismic waves, which were recorded
by seismic stations from local earthquakes in areas of large earthquakes. From travel
times the inherent seismic velocity and other elastic properties of the Earth between
the earthquake source and the recording station can be determined. In a number of
studies information on velocity is applied for monitoring of stress field in areas of
strong earthquakes (see e.g [11]). However the time dependence of the velocity para-
meter behavior before disaster is not much explored. In this chapter we formulate the
research problem to study the behavior of this parameter, which can be reconstructed
by using the travel times of P-waves and by applying tomography methods. Thus
additional observations can be involved to solve the earthquake forecasting problem.
It is assumed that 3-D velocity images can be analyzed during a long time period
before the appearance of large event. The time window can be selected on the base of
particularities of seismic activity in a region. Such 4-D imaging will allow us study
the complex system of strong earthquakes.

2 A Method to Construct the 3-D Velocity Model for Each
Time Window

The Differentiated Approach (DA) is a flexible recently developed method to resolve
a complex velocity structure [14]. It is based on an algorithm called the Modification
of Gaussian Elimination (MGE) which is a new numerical scheme [13]. The advan-
tage of DA is its stability, in spite of data errors, that characterize all measurements
(in the seismic case they include observation and modeling errors that lead to errors
in hypocenter determination). Additional advantage is the ability of the MGE method
to effectively solve large sparse linear systems with the possibility to illuminate struc-
tures in details almost down to their inherent physical measuring resolution, which
is e.g. governed by the frequency range of the observed data (Fresnel zone radius).
In other words, there is no numerical limitation in DA. With conventional methods
the smaller the block-size of a modeled structure, the larger is a size of the initial
system of equations, which is computationally intensive to solve.

With the MGE any small size of model block (cell) can be chosen, because MGE
divides the initial system into a set of subsystems and thus estimates the resolution
of smaller subsystems. An estimation of the resolving power of the least squares
method for a large initial set of equations is a highly challenging problem, even for
the best of modern computers.

In selecting a robust solution the DA method applies statistical evaluation of the
solution. The method, however, requires relatively good coverage of the study area
by seismic rays. The greater the number of seismic rays that intersect a target block
from different directions, the higher the probability of a reliable estimate.

Let us consider an example of the DA method. Figure 1 shows the P-wave ve-
locity image of the Tjörnes Fracture Zone (TFZ) in Northeast Iceland that has been
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Fig. 1 P-wave velocity struc-
ture derived by DA for TFZ
along the Grímsey linea-
ment in Iceland. Low (high)
velocity zones are colored in
white (black). Hypocenters of
local earthquakes are denoted
by open circles. The black
arrow shows neighboring low
and high velocities that corre-
spond to the greatest jump in
the distribution function (see
Sect. 3)

constructed with travel times from local earthquakes recorded between 1986 and
1988 [12]. Thus the length of the time-window was 3 years. In Sect. 3 we will
analyze the given velocity model in detail.

3 4-D Velocity Tomography via Distribution Function

The construction of tomographic images in various regions of the world shows that
3-D velocity images of the same area are different for different time windows. It
could be due to random character of seismic events. For a given time window, the
3-D image is determined by set of velocity values that were found in blocks of
the geophysical model. These values are real numbers v1, v2, . . . , vk , which can be
considered as the result of a random experiment. The vector v = (v1, v2, . . . , vk) has
a dimension of k, which is defined by the number of blocks of the medium and it is
a random variable.

The probability of distribution of the random variable is characterized by the
distribution function F(x), which plays a fundamental role in mathematical statistics.
According to the definition,

F(x) = P(v ≤ x)
0 ≤ F(x) ≤ 1

,
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Fig. 2 The horizontal axis is
the velocity random value. The
vertical axis is the distribution
function value. The black
arrow shows the greatest jump
of the distribution function

where P denotes a probability or the repetition frequency of an event {v ≤ x}.
P = k1/k, where k1 is a number of the repetitions of an event in a given random
experiment.

We will apply this function in order to estimate the velocity field that determines
a structure of the geophysical medium for a given time window. Jumps in the dis-
tribution function correspond to discontinuities in velocity values or contrasts in the
velocity distribution. Figure 2 shows the distribution function that was constructed
using velocity values, which correspond to the image in Fig. 1. The distribution func-
tion can be decomposed into a discontinuous (stepped) part and a continuous part
that can be obtained by approximating discrete values via a curve. The greatest jump
of the function is denoted by the arrow in Fig. 2.

Location of the largest velocity jump is indicated in Fig. 1. This jump corresponds
to a low velocity zone (colored in white) that is sandwiched between two high veloc-
ity anomalies (colored in black). In total, the distribution function has 5 discontinuity
points: x = 6.4; 6.5; 6.7; 7.0; 7.4. The dotted line shows the position of each point.
From the point of view of statistics the probability mass is concentrated at discontinu-
ity points [2]. This means that the listed velocity values characterize P-wave velocity
with a high probability for the given time window along Grímsey lineament in TFZ,
Northeast Iceland.

We have analyzed a behavior of the distribution function for a single sample,
which corresponds to a fixed time window. The time behavior of this function can
be determined, if it is inspected in multiple time windows, which together make
up a longer period of time. The problem can be reduced to the construction of the
sequence of distribution functions. We assume that a series of random experiments
will allow us to get a stable result, which determines a behavior of the geophysical
parameter (velocity of seismic waves) before the onset of strong earthquakes.
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4 Conclusion

The seismic wave velocity of the crust is directly related to the state of the stress
field [11] and it is an important parameter for the complex system of strong earth-
quakes. We assume that a change in the stress field before the occurrence of large
earthquakes will influence this parameter, and that it may be possible to determine its
critical values. Hence it is necessary to establish its critical values. In this chapter we
propose to analyze a seismic velocity as a random variable and to study it via a dis-
tribution function. We will formulate the forecasting of strong earthquakes by means
of constructing of series of 3-D velocity structures and distribution functions respec-
tively in order to understand complex dynamics of a geophysical medium before
the earthquake. Statistical analysis of distribution functions will reveal the stable
characteristics of tomographic models, which may include time dependent features.

Acknowledgments We thank the DAAD foundation (Germany) for support, due of which tomog-
raphy image that we used in this chapter has been constructed. Our thanks go to Prof. Wolfgang
Jacoby (Mainz University, Germany) for fruitful discussion of tomography results.
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Tomography Application to Complex Seismic
Data of the Tjornes Fracture Zone (Iceland)

Maria K. Sayankina, Tatyana A. Smaglichenko and Wolfgang R. Jacoby

Abstract The Tjörnes Fracture Zone (TFZ) is an active seismic zone in Northeast
Iceland. It plays a key role to understand the geodynamic movement and location
of tectonic plates. However the seismic experiment can not be performed close to
earthquake sources, because sources are mainly located in the Greenland Sea. The
unusual geological structure of TFZ and the limited conditions of an experiment lead
to significant deviations between real observations and the values that are calculated
in accordance with theoretical models. Consequently, there is a loss of adequacy and
stability of tomography systems. Outcomes of the method, which takes into account
this problem, are analyzed in the present chapter. Values and locations of P-wave
velocity anomalies are comparing with those, which previously obtained from studies
in geochemistry field and with GPS data.

Keywords Seismic data offshore · Tomography · Stability of linearized systems

1 Introduction

In North Atlantic the line of earthquakes is distributed along the Rekyanes Ridge.
It cuts the central part of Iceland, and then continues their development along the
Kolbesey Ridge. Seismic activity defines the geometry of the North American and
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Eurasian plates, the first of which is moving to the east and the other goes to the west
with offset of 1–3 cm/year [8]. The plates move along the Tjornes Fault Zone (TFZ)
[2], which is mainly located in the Greenland Sea between the Northeast Iceland
and the Kolbeinsey Ridge. TFZ includes two major lineaments, the Husavik Fault
Flatey (HFF), which is partly exposed on land and the Grimsey Lineament (GL) that
is defined by offshore earthquakes.

Seismic tomography is often based on an assumption about the theoretical model
that describes the change of a seismic velocity with a depth. Because of an offshore
location the TFZ models (of about 10) are based on submarine profiles data (e.g.
[4, 10]). These data show the TFZ structure complexity. The difference in velocity
values obtained on the same depth is not a small. It becomes too difficult to find
the appropriate 1-D model that can be used as the initial one in order to construct
3-D tomographic images. There is a wide range of differences between observed and
calculated travel times and we can get a set of inversion solutions of the linearized
system, some of which are nonrealistic values.

In this paper we consider the result of the tomographic approach, according to
which seismic data are selected to construct the solution that is maximally free of data
errors influence. The base of the approach is a numerical scheme that is called the
Modification of Gaussian Elimination (MGE) [12]. In Sect. 3 the method is briefly
described. Then we investigate how the result obtained with this method is consistent
with outcomes of geophysical and petrologic studies.

2 Distribution of Stations and Sources and Wide Range
of Observation Data

Our data set consisted of 574 earthquakes having small magnitudes. Events were
recorded by 18 portable seismic stations of Mainz University, Germany during 1986–
1989. Figure 1 shows that quakes were basically distributed as clusters along GL in
the Greenland Sea while stations were mainly located in the coastline along the
Tjornes peninsula.

Assumptions about the 1-D initial velocity model were made on the basis of
submarine observations conducted in the work [14]. Namely 18 ocean bottom seis-
mometers were installed along profiles and 35 explosions were carried out in the
Greenland Sea. Authors have processed records by applying seismic methods. Val-
ues of seismic velocities were obtained in local points of TFZ. The theoretical 1-D
model was constructed by using these values. Travel times were calculated using the
found model. Statistical characteristics of a vector of differences between calculated
and observed values were the next. Mean value (m) and standard deviation (std) were
equal to −0.18 and 0.23, respectively. The number of negative values was much big-
ger than the number of positive ones. This tells us about asymmetry of observation
data and low probability of closeness between theoretical and real values. By using
parameters of the initial model and applying a search algorithm to construct the
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Fig. 1 The Tjornes Fracture
Zone. HFF and GL are the
Husavik Fault Flatey and the
Grimsey Lineament Open
triangles and dots indicate
seismic stations and earth-
quakes, respectively. The TFZ
location is shown by square
on Iceland map in the right
corner

Fig. 2 The XOY projection of seismic rays in the Cartesian coordinate system that was turned so
that the horizontal axis was parallel to the HFF location

minimal 1-D model [11] we got symmetrical distribution of observation data with
m = 0.028 and std = 0.23. Figure 2 shows the XOY projection of seismic rays,
lengths of which were calculated in accordance with the minimal model.
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3 A Search for the Stable Solution of the Linearized System

Tomographic problem is reduced to the solution system of linear equations:

Au = δt + ε (1)

where A is the matrix of lengths of seismic rays in blocks (cells of a medium), u is
the unknown vector of velocity perturbations in blocks, δt is the known vector of a
difference between observed and calculated travel times, ε is the vector of errors that
involve modeling, measurement errors and errors in location of sources. The system
is over-determined, because in seismic experiment the number of seismic rays is
always greater than the number of blocks.

Large variations of values in the right-hand side of a system generate unrealistic
values of solution. Seismic rays passing through the same blocks and having different
observation values cause the system instability. To find stable values of a solution the
MGE method has been used. The system of (1) was divided into small sub-systems so
that components of an unknown vector were the same in few sub-systems. For each
sub-system the basic matrix was found in accordance with criteria that are described
in the work [13]. Basic solutions for the same unknown component were compared.
The stable value of solution was selected for each component.

4 A Comparison of Tomographic Results with Other Studies
of TFZ

Let us consider the P-wave velocity image that was obtained with the MGE method
in the upper part of the crust in the depth range 0–5 km. In Iceland active volcanic
areas are connected with hydrothermal activity. Hydrothermal systems can be both
terrestrial and submarine. Hydrothermal fields are located in sediment layers. The
area we study in this chapter includes one of the hydrothermal fields. This field is
located in the northern part of TFZ and it is called by the Grimsey hydrothermal
field.

A careful analysis of geochemical samples of rocks collected in the central and
northern parts of the Grimsey field at a depth of about 400 m was carried out in
laboratories of Freiberg University [7]. Hydrothermal mounds are mainly composed
of hard anhydrite, gypsum, hydrothermal clay. It was also found that the width of
mounds reaches 1 km. Figure 3 shows a location of the Grimsey field on the map
of velocity anomalies that were determined with MGE. The seismic velocity that
was found for the block that includes the field is equal to 4.89 km/s. This value is
higher than the initial velocity, which we assumed for the depth range of 0–5 km. In
the north end of GL one can see different patterns in the velocity distribution. The
low-velocity anomaly (colored in a white) and the high-velocity anomaly (colored
in a black) are neighbors. This jump in seismic velocities characterizes the sharp
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Fig. 3 P-wave velocity structure that found due to MGE at the depth range 0–5 km. Open circles
denote hypocenters of earthquakes. HFF, GL and GHF are Husavik Fault Flatey, Grimsey Lin-
eament and Grimsey Hydrothermal Field. On the HFF line the white rectangle corresponds to a
location of the Husavik village. The epicenter projection of the 1976 Kópasker earthquake is denoted
with the white star

change in the density of rocks. We suggest that the density change corresponds to
the presence of the hydrothermal field within the high velocity zone. The found
numerical value of velocity in the Grimsey field is in a good agreement with the
value of P-wave velocity, which was defined in the fault zone that is suited in the
Coso geothermal field, California [9]. Authors estimated P-wave velocity of 4.8 km/s
in this zone by comparing the observed waveform with the synthetic calculated ones.

Note that the hypothesis about hydrocarbon deposits in hydrothermal areas of the
Mid-Atlantic Ridge was explained and suggested in the work [3]. This hypothesis
was confirmed by first observations in the Grimsey hydrothermal field [5]. It was
found that the predominant gases are hydrocarbons [1].

As told above the seismic activity of Iceland divides land into parts. It is linked to
the intensity of volcanic activity, including the Krafla caldera. This causes a displace-
ment of the crust. The models of displacement fields were built by authors of the work
[6]. By comparison of simulation results and GPS observations the location of fields
has been determined with a small error. We compared the location of a displacement
field that is connected with the Krafla volcano with velocity structure, we have found
in the depth range of 5–10 km. Figure 4 shows that this field extends beyond the
coast line at the north of Iceland, and corresponds to the low velocity anomaly that
we found near projection of hypocenter of the damaging 1976 Kopasker earthquake
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Fig. 4 P-wave velocity struc-
ture that found due to MGE
at the depth range 0–5 km. On
the HFF line the white rectan-
gle corresponds to a location
of the Husavik village. The
epicenter projection of the
1976 Kópasker earthquake
is denoted by the white star.
The dotted line corresponds
to boundaries of the displace-
ment field that is connected
with the Krafla caldera

(indicated by a white star). According to the study [6] the displacement field locked
at a depth of 10 km.

We assume that low velocities are in an agreement with the location of displace-
ment field that is a zone of high seismic risk.

5 Conclusion

We have considered the application of the most recent developed method to the TFZ
seismic data, the complexity of which is caused by uncomfortable natural conditions
to run an experiment. Moreover the data set is a small: about 4,000 seismic rays. The
number of rays should be much more if we use the conventional tomography method
[10]. In spite of these facts the outcome of the MGE method fairly realistic, because
it is consistent with the results of other observations including chemical analysis and
GPS data. Notice that the cost we “paid” for the result is a half of initial data set. The
method selects the rays that give consistent results and reject others. On this basis
we can conclude that to get a reliable solution we need to do as much as possible
seismic observations and measurements.

Acknowledgments We are very grateful to the DAAD foundation for support of research of the
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A Complexity of the Displacement Along
Segments of the Akhtyirskiy Fault

Alexander V. Smaglichenko, Lidia A. Sim and Andrey V. Gorbatikov

Abstract A distinctive features of the Ahtyirskiy fault (Krasnodar, Russia) are its
long length and the unusual geological structure. The fault demarcates the boundary
between highlands and flat landform. To study the fault displacement we have applied
two methods. The first structural–geo-morphological method reconstructs orientation
of the compression/expansion axis in a horizontal plane and thus determines the
direction of a horizontal displacement along the fault. In this study the method has
been modified by analyzing of individual segments of the Ahtyirskiy fault. Another
method is the microseismic sounding that determines a distribution of surface wave
characteristics in a vertical plane. We conclude that the displacement along the fault
has average direction, which we call the upthrust right-shift. However there are
segments that are deformed in a special manner and displacements along them can
not be explained via theoretical models. Mainly the fault plane falls to the south
direction while its individual parts fall to the north.

Keywords The fault displacement · Structural geology · Seismic methods

1 Introduction

The Ahtyirskiy fault line runs between different geological structures. The fold
structure is located at the southern end while the Predkubanskiy bending is set-
tled at the north. The fault zone is situated in the Black Sea–Caucasus region, which
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Fig. 1 The Gzovsky’ model of the right-shift displacement (from left to right): a a normal right
shift on 45◦ b a right shift at a sharp angle c a right shift with the further extension d a presence of
an additional compression

is characterized by a weak seismic activity. The particular feature of the Ahtyirskiy
fault is that it has a lot of branches that are visible at the surface.

There are several points of view regarding the origin of fault branches. And the
question about the horizontal component of a fault displacement is the hot topic for
discussion. For example, there is an opinion [3] that this component has the right-
shift character. In this work we investigate the fault by considering it as the segments
system and by analyzing a displacement of each segment.

To get extended knowledge about the fault and its segments we apply the
structural–geo-morphological method [4, 5] by using the satellite photographic
images that were obtained via Google Earth Pro. To understand the process of ver-
tical movements of particular segments we analyze the seismic model, which was
constructed by the micro-seismic sounding method on the base of a seismic recording
of surface waves [2].

2 The Character of Displacements Along the Akhtyirskiy Fault

Satellite images detect various features of the geological structure on the Earth’s
surface. Relief lines on images are the result of a dynamic motion of the Earth’s crust,
which is always under influence of stress fields especially in fault zones. Movements
occur in different planes and directions depending on the orientation of tectonic
stresses, which form the geometry of the fault and its activity.

Displacements along the fault are accompanied by the formation of joints [6].
In photographic images the joints correspond to small rectilinear elements of a
relief. We will call these elements by mega-joints. According to the structural-
geo-morphological method the orientation of mega-joints with respect to the fault
line indicates the direction of a horizontal displacement and characterizes the stress
field. The mutual orientation of the fault line and gaps in the distribution of joints
were modeled by Gzovsky [1]. By analyzing of the distribution of mega-joints that
are visible on images we study the correlation between them and theoretical models,
which were developed by Gzovsky. In the case of the Akhtyrsky fault we determined
that the most distributed mega-joints are in agreement with the model of right-shift
displacements (Fig. 1).
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Fig. 2 The reconstructed
field of displacements along
the segment with number
2 Profiles are indicated by
symbols I and II. The variant
of the Gzovsky’ model (on the
corner) is in good agreement
with the distribution of mega-
joints

At the same time the satellite image showed that not all mega joints had orienta-
tions in accordance with the theoretical model. Therefore the fault area was divided
into five segments. Individual segments having the best conformity of the theoretical
model were selected. Figure 2 shows an example of such segment.

Nevertheless we have found that there are segments, which can be simultaneously
explained via two variants of the model. This tells us about the complexity of the
fault. Figure 3 demonstrates this example.

We assume that such situation can be explained by the further expansion of the fault
in its north-western end. This can be related to the formation of cavities in the Black
and Azov Seas. However we also may suggest that such character of displacements
can be connected with inhomogeneous structure beneath the fault plane.
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Fig. 3 The reconstructed
field of displacements along
the segment with number 3.
Two variants of the Gzovsky’
model (on the corner) cor-
respond to the mega joints
distribution

3 Vertical Components of Displacements Along the Akhtyirskiy
Fault

The method of micro-seismic sounding uses observation data of a seismic noise.
There are many causes of a noise. It can be created due to the nature and also owing
to human activity. For example, if seismic measurements are performed near a big
plant, then the seismic records of surface waves will detect vibrations, which are
basically created by the work of this plant. The method of micro-seismic sounding
uses natural micro-seismics of the Earth. The technology is based on the inversion
of micro-seismic field parameters [2].

Two images have been constructed applying this method. They show the change
of an intensity of a surface wave with depth. Seismic experiments were conducted
along two profiles (see Fig. 2). The vertical section along the profile I (Fig. 4) shows
complicated structure of the fault zone. The boundary of the intensity anomaly (col-
ored in a black) falls up to the depth of 10 km in the upper crust to the south direction.
On the whole the intensity distribution is in an agreement with hypothesis about the
up-thrust component of the fault displacement.

The second profile (denoted by II in Fig. 2) is much shorter than the first one.
The results obtained for this profile show the presence of the vertically distributed
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Fig. 4 Surface wave intensity
distribution along the first pro-
file (I). The anomaly that has
maximal value of the intensity
of surface wave is colored
in a black

Fig. 5 Surface wave intensity
distribution along the second
profile (II). The surface wave
intensity anomaly is colored
in a light gray

anomaly till the depth of 1 km (Fig. 5). By analyzing the relief around the place,
where the experiment was conducted one can assume that the anomaly is connected
with some branch of the fault, which is moving to a surface.

Thus the method of micro-seismic sounding reveals the presence of vertical
displacents while the structural–geo-morphological method defines the horizontal
displacement. Hence combination of two methods extends our knowledge about the
fault movement.
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4 Conclusion

Based on this study, we conclude that the application of methods that correspond to
two different disciplines of geology and seismology leads to the better understanding
of the character of displacements along the Akhtyrskaya fault. The complexity of the
fault movement can be determined by analyzing the fault as a chain of its individual
segments. Owing to such approach we detected the presence not only horizontal but
also vertical displacements in the fault zone.

Acknowledgments We thank Yuri Rebetskiy, Anastasia Mikhaylova and other colleagues of the
Gzovsky’s laboratory of Shmidt’s Institute of Physics of the Earth for fruitful discussion of results
that are presented in this chapter.
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