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Abstract. After the domain-spanning conceptual design, engineers from different
domains work in parallel and apply their domain-specific methods and modeling
languages to design the system. Vital for the successful design, are system opti-
mization methods and the design of the reconfiguration behavior. The former meth-
ods enable the parametric adaption of the system’s behavior, e.g. an adaption of
controller parameters, according to a current selection of the system’s objectives.
The latter realizes structural adaption of the system’s behavior, e.g. the exchange
of software or hardware parts. Altogether, this leads to a complex system behavior
that is hard to overview. In addition, self-optimizing systems are used in safety-
critical environments. Consequently, the system’s safety-critical behavior has to un-
dergo a rigorous verification and testing process. Existing design methods do not
address all of these challenges together. Indeed, a combination of established de-
sign methods for traditional technical systems with novel methods that focus on
these challenges is necessary. In this chapter, we will focus on such new methods.
We will introduce new system optimization and design methods to develop recon-
figurations of the software and the microelectronics. In order to ensure the correct-
ness of safety-critical functionality, we propose new testing methods and formal
methods to ensure safety-properties of the software. We show how to apply virtual
prototyping to deal with the complexity of self-optimizing systems and perform an
early analysis of the overall system. As each domain applies its own modeling lan-
guages, the result of these methods are several overlapping models. In order to keep
these domain-specific models consistent among all domains, we will introduce a
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new semi-automatic model synchronization technique. Each of these design meth-
ods are integrated with the reference process for the development of self-optimizing
systems.

The principle solution forms the basis of the design and development. Engineers
of the involved domains derive their domain-specific models from the it. This is,
however, an error-prone and tedious task. Therefore, we will introduce a semi-
automatic model transformation techniques (cf. Sect. 5.1) that enables engineers
to, e.g. derive an initial controller hierarchy or an initial software architecture. Af-
terwards, each domain details these models. This may involve changes that have an
impact on the other domains. In order to keep the models of all domains consistent,
we will propose a model synchronization technique (cf. Sect. 5.1.3).

The system must consider several concurrent objectives in different Application
Scenarios.

This requires methods for optimizing the system with respect to these objectives
and appropriate adaption methods. System optimization methods origin from the
research areas of applied mathematics and artificial intelligence. The methods de-
termine the optimal system behavior or a set of optimal compromises for several
concurrent objectives. Practically, this is a formalism to compute optimal controller
parameters or optimal configurations of the system structure (cf. Sect. 5.3). Then,
it is the task of engineers from the domains mechanical, electrical/electronic, con-
trol, and software engineering to specify the corresponding change of the system’s
behavior, i.e. the reconfiguration of the system.

The system can perform reconfigurations on every system level (cf. Sect. 1.4.3).
In particular, this requires new design methods for the application software, the
system software, and the hardware modules to specify reconfiguration. Furthermore,
reconfiguration is often safety-critical and must fulfill hard real-time constraints.
Consider the RailCab’s reconfiguration behavior to build a convoy as an example (cf.
Sect. 2.1.7): The RailCab must reconfigure the controller behavior to consider the
distance to the preceding RailCab if the RailCab joins a convoy as a member. In
fact, if this function is not free from design faults or the system cannot execute the
reconfiguration within a certain time, a crash may happen. Therefore testing and
formal verification methods are crucial to ensure the safety of the system’s complex
behavior and its real-time properties.

On the level of the application software, software engineers specify the com-
munication behavior and the switching between alternative behavior implementa-
tions. We apply a component-based design method called MECHATRONICUML
that considers hard-real time constraints for the communication behavior, the re-
configuration of controllers, and the reconfiguration of software components. In
MECHATRONICUML, formal verification techniques are applied to ensure safety
constraints and the real-time properties of the system.

As a consequence of reconfigurations of the application software, the software’s
resource and performance demands changes. Usually, the system must reconfig-
ure hardware modules to meet the changed requirements of the application software
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again. For instance, a change of the communication behavior may require a change
of the physical communication topology or the implementation of a communication
protocol on the hardware to meet the performance requirements. Different hardware
techniques such as FPGAs or multi-processor platforms are capable to realize these
reconfigurations. We will present design methods, architectures, and modeling ap-
proaches to design dynamically reconfigurable hardware for different techniques
and enable flexible and robust implementation of dynamically reconfigurable hard-
ware (Sect 5.4). In particular, a layered architecture such as PALMERA (Paderborn
Layer Model for Embedded Reconfigurable Architectures) can be applied to ab-
stract from the different hardware techniques. Based on PALMERA the design-flow
INDRA guides engineers through the different steps towards the realization of in-
formation processing systems based on dynamically reconfigurable hardware.

The system software forms the interface between the application software and
the dynamic reconfigurable hardware. Hence, the system software must define a
common interface to trigger changes of the hardware. Furthermore, it must adapt to
changing available resources and changing resource demands while operating un-
der hard real-time constraints. This requires new concepts and design methods for
the system software. ORCOS (Organic Reconfigurable Operating System) is a real-
time operating system that provides operating system services and an architecture
to master these challenges (cf. Sect. 5.5). For instance, the FRM (flexible resource
management) allows an overallocation of resources to optimize the resource avail-
ability under changing resource demands (cf. Sect. 5.5.2).

The result of the design and development is a complex composed behavior devel-
oped by different engineers. This leads to a specification, that is hard to overview.
In addition, engineers must ensure the correctness of safety-critical functionality as
early as possible during the design. One solution to cope with the complexity is to
build and test a virtual prototype. Virtual prototyping enables engineers to perform
experiments during early development phases. It requires models of the system that
are often created by several tools. We will introduce a concept of a virtual environ-
ment and methods to extend the environment and integrate models of the domains
involved.

This chapter is structured as follows: First, we will describe the model transfor-
mation techniques to derive the domain-specific models from the principle solu-
tion and the model synchronization technique to keep the domain-specific models
consistent (cf. Sect. 5.1). In Sect. 5.2, we will introduce the design of the commu-
nication software and reconfiguration behavior with MECHATRONICUML. Novel
system optimization approaches that origin from mathematics and artificial intelli-
gence follow in Sect. 5.3. We will describe technologies and design methods for
dynamic reconfigurable hardware in Sect. 5.4. In Sect 5.5, we will focus on the
system software and introduce the self-optimizing real-time operating system OR-
COS. Finally, we will introduce virtual prototyping and advanced testing methods
in Sect. 5.6.
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5.1 Automatic Model Transformation and Synchronization

Jan Rieke

In the domain-spanning conceptual design, experts from all domains have elabo-
rated the principle solution. This principle solution covers all domain-spanning rel-
evant information, i.e. all interfaces and overlaps between different domains are
described in this model. Thus, the principle solution can serve as a starting point for
the domain-specific design and development.

In this section, we will show how model transformation techniques can be ap-
plied to automatically derive initial domain-specific models that are consistent with
the principle solution and all other domain-specific models. Basically, these initial
models contain skeletons that are filled by the domain engineers in the design and
development phase. We will explain a model transformation that generates software
engineering models from a principle solution in Sect. 5.1.2.1. In Sect. 5.1.2.2, we
will also show how initial control engineering models can be generated.

Ideally, the principle solution covers all domain-spanning aspects. Thus, there
should be no need for further domain-spanning coordination. However, in practice,
the principle solution rarely captures every domain-spanning concern. Additionally,
changes to the overall system design may become necessary later on, e.g. due to
changing requirements. Therefore, cross-domain changes may become necessary
during the domain-specific design and development. Sect. 5.1.3 explains in detail
how model synchronization techniques can be applied in such a scenario.

Before describing the model transformation and synchronization technique in
detail, let us have a closer look at an example.

5.1.1 Example Scenario

As a running example, let us consider the RailCab system (cf. Sect. 2.1). When
driving in a convoy, all RailCabs (except for the convoy leader) control their velocity
based on the distance to the RailCab traveling in front of them. To measure the
distance, a distance sensor is mounted in the front of each RailCab. Figure 5.1 shows
how the different models evolve in the exemplary scenario described below.

To illustrate transformations and synchronizations that may become necessary
throughout the development, assume the following exemplary process. After the
system engineers design the principle solution, we apply model transformations to
the different domain-specific models (step 1). The control engineers then start im-
plementing the controllers (step 2). In particular, they elaborate on the velocity con-
trol strategies for driving in a convoy as a follower based upon the distance measured
by the distance sensor. This is a domain-specific refinement that has no influence on
the models of other disciplines.

Modern mechatronic systems incorporate self-healing to repair the system in case
of failure. As described in Sect. 5.2.7, the software engineers perform an analysis of
the self-healing operations in order to determine whether they reduce the probability
of hazards successfully. In our example, the distance sensor could fail or send bad
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data. It may turn out that even with self-healing the hazard probability can not be
reduced to an acceptable level: The hazard of two RailCabs colliding during convoy
mode due to a failing distance sensor exceeds the acceptable hazard probability of
the system. Thus, software engineers should propose adding redundancy by adding
a second distance sensor. They add a new sensor measurement component to their
software model (step 3). This is a domain-spanning relevant change, i.e. it affects
the domain-spanning system model as well as several domain-specific models. In
particular, the velocity control strategy must be modified.

Thus, we use model synchronization techniques to propagate the change to
the system model (step 4). In contrast to model transformation, which translates
complete models, the idea of model synchronization is to modify only the model el-
ements that have been changed after the initial model transformation. Thus, model
synchronization is also called an incremental update. Version 1.1 of the system
model now contains a second distance sensor. To allow all engineers to react to
change, it is propagated further to all affected domain-specific models. For instance,
the control engineering model is updated, again using model synchronization tech-
niques (step 5).

The control engineers can now modify their control strategy to use both sensor
data as input. In step 5, it is crucial that the domain-specific model is updated in a



188 J. Rieke

way, so that all refinements and implementations that have been added to it in the
meantime (see step 2) are retained.

Next, we will describe in detail a) how to derive initial domain-specific models,
and b) how to propagate changes to the system model and further on to domain-
specific ones.

5.1.2 Deriving Initial Domain-Specific Models from the System
Model

In this section, we will present two example transformations from the system model
to domain-specific models. We will use the principle solution as the input to these
transformations to create models for the domain-specific design and development.
However, these transformations can also already be used during the conceptual de-
sign to generate domain-specific models, for instance, for early simulation and ver-
ification.

First, we will describe how the active structure can be used to derive initial soft-
ware component models in MECHATRONICUML9, and how the Behavior–States
model is transformed to an initial software statechart. Next, we will show how con-
trol engineering models (MATLAB/Simulink and Stateflow) can be derived.

5.1.2.1 Transformation from CONSENS to Software Engineering Models

Figure 5.2 shows the basic principles of the transformation from CONSENS to
MECHATRONICUML software models. In the active structure, you can see small
colored annotations above the system elements. These so-called relevance annota-
tions define which element is relevant to which domain-specific model. For instance,
“SE” and “CE” denotes software and control engineering, respectively.

The central idea of mapping is that every system element that has a software
engineering relevance annotation (i.e. it fulfills software functions) should be rep-
resented by a software component in the MECHATRONICUML model. The in-
formation flows between system elements are mapped to ports and connectors in
MECHATRONICUML.

Generally, we distinguish between continuous and discrete components. Con-
tinuous components are typically controllers that continuously process input data
from sensors to compute outputs for actuators Typically, control engineers imple-
ment them. However, MECHATRONICUML allows integrating them as continuous
components. Continuous components are black-box components, i.e. no actual be-
havior is attached to continuous components in MECHATRONICUML. In this way,
they define the interface to control engineering in a MECHATRONICUML software
model.

In contrast, the behavior of discrete components is implemented using MECHA-
TRONICUML (cf. Sect. 5.2). Discrete components communicate with each other
via discrete ports using asynchronous, message-based communication defined in

9 See Sect. 5.2 for a detailed explanation of MECHATRONICUML.
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Fig. 5.2 Initial transforma-
tion from the active structure
to a software component di-
agram (adapted from [70])
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real-time statecharts. Discrete components can also send or receive signals to or
from continuous components using hybrid ports. In Fig. 5.2, the components Drive
Control and Velocity Control have both discrete and continuous ports.

The transformation creates discrete components in MECHATRONICUML for ev-
ery system element that is relevant for software engineering. We use a technique
called Triple Graph Grammars (TGG) for defining the model transformations to the
different domain-specific models. TGGs are a graph-based, declarative technique to
define mappings between two models, invented by Schürr (1994) [188].

Figure 5.3 shows a TGG rule that is part of the TGG rule set that implements this
mapping.

A TGG rule describes which model elements in one or more source models relate
to which model elements in one or more target models. In Fig. 5.3, the two source
models are the two left columns, AS Annotation and active structure.10 The target
models are located in the right columns, Component Diagram and UML Annota-
tion. In the middle column, the so-called correspondence model is described, which
is a kind of trace model, storing relations between the models. It is used to identify
corresponding model parts when incrementally updating models. The green parts of
the rule, additionally marked with “++”s, is the actual mapping, stating that a Sys-
temElementInstance that has a Relevance annotation must be mapped to Property,
also with a Relevance annotation. The b/w part of the rule is the context, defining in
which situations the mapping must be valid.

We use our TGG Interpreter Tool Suite [203] to define and automatically ex-
ecute these TGG rules. Given a domain-spanning system model and a TGG rule
set, the TGG Interpreter can automatically create the corresponding domain-specific
models. We refer to Greenyer and Kindler (2010) [78] for further details on TGGs.
Gausemeier et al. (2009) [70] describe the principles of the transformation from the
active structure to software models in detail.

5.1.2.2 Transformation from CONSENS to Control Engineering Models

Figure 5.4 shows the basic principles of the transformation from CONSENS to
MATLAB/Simulink control engineering models.

Generally, every system element that is relevant to software or control engineer-
ing is mapped to a Simulink block. The system elements relevant only to software
engineering, however, are just placeholders. When the software engineers finish the
actual implementation, this implementation is inserted. This is because we use a
MATLAB/Simulink model at the end of the development process as a combined
software/control engineering model from which code is generated. Thus, all arti-
facts of the software engineering domain are integrated into this MATLAB/Simulink
model.

To allow the integration of discrete software components that use asynchronous,
message-based communication and reconfiguration, we use a message bus

10 Due to technical reasons (e.g. to allow easy extensibility), annotations are stored in two
separate models. Thus, they are located in the separate columns AS Annotation and UML
Annotation in Fig. 5.2.
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Fig. 5.3 TGG rule for
mapping system elements
to software components
(adapted from [70])
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Fig. 5.4 Initial transforma-
tion from the active structure
to a MATLAB/Simulink
control engineering model
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Fig. 5.5 Initial transforma-
tion from Behavior–States
to a MATLAB/Stateflow
model
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approach. The communication between two discrete components is implemented
using a Communication Switch. This switch connects every component and is re-
sponsible for forwarding sent messages to the correct recipient. This is necessary
to allow changing communication structures as required when reconfiguring a sys-
tem. Signal-based information flow, like the I∗ value signal from Velocity Control
to Operating Point Controller, is mapped to connected outputs and inputs of the
respective blocks.

Furthermore, we use behavioral models of the principle solution to generate
MATLAB/Stateflow control engineering models. Figure 5.5 shows such a transfor-
mation of behavioral models.

Rieke et al. (2012) [180] describe the principles of the transformation of state-
based models. Heinzemann et al. (2012) [93] give technical details on the generation
of MATLAB/Stateflow and Simulink models.

5.1.3 Synchronizing Models during the Domain-Specific
Refinement Phase

Although most domain-spanning relevant information should already be present at
the end of the conceptual design, changes to the system in development may be-
come necessary during the domain-specific design and development. For instance,
requirements may still change during later phases, or it may turn out that some
aspect of the system must be implemented in another way. This easily leads to
changes that affect both the domain-spanning system model and several domain-
specific models. Furthermore, engineers may have already generated early domain-
specific models during conceptual design, to allow early checks and simulations of
different concepts and ideas. It is reasonable to keep these early models and to reuse
and refine them during the design and development.
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This requires keeping the development models consistent during all phases of the
development. Manually checking and restoring the consistency of all models is a
time-consuming and error-prone task. Therefore, we apply similar methods as with
the derivation of initial models (described in the previous section) to synchronize
models during the development.

First, we will describe how the system model is updated when changes in a
domain-specific model occur. Next, we will show how domain-specific models can
be updated with respect to these system model changes.

5.1.3.1 Updating the System Model

As described in Sect. 5.1.1, an extra distance measurement component is added to
the software model (step 3 in Fig. 5.1). Our model transformation approach forwards
this change to the system model (step 4 in Fig. 5.1). Figure 5.6 shows the result of
this step.

We again use TGGs to perform such model synchronization operations. TGG
rules can be applied bidirectionally, i.e. transformation and synchronization opera-
tions can be performed both from the system model to the software model and vice
versa. Here, we apply the TGG rules reverse, propagating the change from the soft-
ware model to the system model. The added Distance Measurement system element
is shown on the left side of Fig. 5.6.

We do not want to simply run the transformation again in backwards direction,
as this would completely re-create one model. Thus, the core idea is to only update
modified model parts and leave everything else untouched. For every model element,
we check whether mapping of this element is still valid. To do so, our approach uses
the existing trace information that is stored inside the correspondence graph. Using
this correspondence graph, it can identify corresponding model elements in the two
models and then check the consistency of these model elements by testing whether
the TGG rule that was applied there still holds. The approach only modifies a model
element if a rule does not hold any more relevance. Such an approach is called
incremental model transformation or model synchronization.

We have developed a new, improved model synchronization algorithm that is tai-
lored for the use in mechatronic system design. More specifically, it prevents the
loss of information in models during the synchronization process. This is especially
required when synchronizing development models of mechatronic system, as these
models have different abstraction levels and/or different views: The system model
is usually more abstract than the domain-specific models that contain concrete im-
plementation details. Thus, the domain-specific models may contain information
that is not part of the system model. For instance, the Stateflow model shown in
the lower part of Fig. 5.5 is later refined such that it contains details of controller
reconfigurations that happen when switching convoy states. Thus, the Stateflow
model now contains information that is not present in the abstract system model.
When the system model is changed, this change may affect parts of the Stateflow
model that has been refined. Our synchronization algorithm avoids affecting these
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Fig. 5.6 Updating the active
structure using the altered
software component dia-
gram (from [70])
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refinements when updating this domain-specific model. Rieke et al. (2012) describe
such a change scenario in detail [180]. For details on the improved model synchro-
nization algorithm, see Greenyer et al. (2011) [79].
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Fig. 5.7 Updating the MAT-
LAB/Simulink control en-
gineering model using the
updated active structure dia-
gram
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5.1.3.2 Updating Control Engineering Models

After updating the system model, these changes must be propagated to other af-
fected domain-specific models (step 5 in Fig. 5.1). Figure 5.7 shows how the added
Distance Measurement system element can also be added to the control engineering
model.

This is again achieved by rerunning the transformation incrementally, leaving the
unaffected parts untouched and only adding a new block with its respective inputs,
outputs and lines.



5 Methods for the Design and Development 197

When changes to a model occur, we are able to update other affected models
automatically in most cases, using these improved model transformation and syn-
chronization techniques. However, there might be cases where user decisions are
indispensable, for instance when there are different possibilities to propagate a spe-
cific change. Thus, it is reasonable to combine this technique with means for user
interaction [79].

5.2 Software Design

Christian Heinzemann, Claudia Priesterjahn, Dominik Steenken, and Steffen Ziegert

Self-optimizing mechatronic systems execute a great amount of software to coordi-
nate the operations of the system. In the following, we will refer to that software as
the discrete software of the system as opposed to the controller software. The Rail-
Cab demonstrator for example (cf. Sect. 2.1) needs discrete software to manage the
necessary communication for getting admission to drive onto a track section and,
especially, for driving in convoy mode. In convoy mode, RailCabs need to execute
complex coordination behavior for maintaining the convoy when the convoy con-
sists of more than two RailCabs. Since RailCabs can join or leave a convoy during
a journey, a flexible structure for the specification of the coordination is needed.
The required small distances between RailCabs in a convoy imply real-time coor-
dination between the speed control units of the RailCabs. This is safety-critical and
requires the software engineer to address a number of constraints when designing
the RailCabs’ control software.

In the design and development, the software engineers apply the MECHA-
TRONICUML method [53, 75] for designing the discrete software of mechatronic
systems, especially of self-optimizing mechatronic systems (cf. Sect. 3.3.3).
MECHATRONICUML enables a component-based specification of the discrete
software with a special focus on specifying the communication and reconfiguration
behavior of a self-optimizing mechatronic system. The development process for de-
veloping with MECHATRONICUML in the course of the design and development
is shown in Fig. 3.11 on Page 84. We illustrate the development with MECHA-
TRONICUML by providing an overview of the general concepts of MECHATRON-
ICUML [1, 43, 75] and recent extensions [53, 54, 91, 196] in the course of this
section. The complete, technical language specification of MECHATRONICUML
can be found in [18].

The software engineers start the development with MECHATRONICUML by de-
riving a component model for the discrete software as discussed in Sect. 5.2.1. In
the next step, the communication requirements need to be decomposed based on
the components of the component model as described in Sect. 5.2.2. The commu-
nication protocols that define the message-based communication of the components
are specified formally by using real-time coordination patterns and verified with our
design-time verification procedure as explained in Sect. 5.2.3. Afterwards, the com-
ponent’s discrete communication behavior is specified as described in Sect. 5.2.4.
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In Sect. 5.2.5 we will outline how the complete hybrid system is simulated. When
the simulation is successful, the deployment of software components to hardware
is specified as explained in Sect. 5.2.6. Finally, we will outline an analysis of self-
healing operations in Sect. 5.2.7 and the code generation in Sect. 5.2.8.

5.2.1 Component Model

The software development with MECHATRONICUML starts by deriving an ini-
tial component model for the system, because MECHATRONICUML follows the
component-based approach [198] for developing software. Each component encap-
sulates part of the system functionality and the components only interact via well-
defined interfaces, called ports. An initial component model is derived from the
Active Structure by using the transformation presented in Sect. 5.1.2.1. Since the
Active Structure only contains components that affect more than one discipline, it
might be necessary to refine the component model by splitting the behavior of a
component into several subcomponents. That reduces the complexity of the single
components which, in turn, enables the reuse of existing components and makes
their verification more efficient.

Fig. 5.8 shows the DriveControl component of the RailCab that has been derived
from the system element DriveControl as shown in Fig. 5.2. The DriveControl com-
ponent encapsulates the software controlling the driving operations of the RailCab.
In our example, a RailCab will either be a coordinator or a member of a convoy, but
not both at the same time. Therefore, the developer may decide to split the behavior
of the RailCab component into subcomponents. The two components ConvoyCoor-
dination and MemberControl encapsulate the behavior of being coordinator and of
being member respectively. In addition to these components, each RailCab requires
a component SpeedControl which defines the speed for the RailCab which serves
as the reference speed for the controller. If the RailCab is a convoy member, the
reference speed and an additional reference distance to the preceding RailCab in
the convoy are received by the MemberControl and propagated by SpeedControl to
the controller.

In self-optimizing mechatronic systems, the components interact by means of
message passing via their ports. In MECHATRONICUML, the behavior that de-
fines an interaction between two components is specified by so-called real-time
coordination patterns (cf. Sect. 5.2.3). In Fig. 5.8, the DriveControl interacts with
other components using the ports coordinator, member, hazardReceiver, convoyS-
tate, refSpeed, and refDist. The former four ports are discrete ports that execute a
state-based communication protocol specified by a real-time coordination pattern
(cf. Sect. 5.2.3). The refSpeed and refDist ports are so-called hybrid ports which
are used for providing a value, in this example the reference speed and reference
distance for the RailCab, to a controller.

The behavior of components and ports is defined using a state-based
approach called real-time statecharts (RTSC). RTSCs are a combination of UML



5 Methods for the Design and Development 199

DriveControl

hazardReceive r convoyState

coordinator membercoordinator member

convoySpeed convoySpeed

convoySpeed

refSpeed

refDist

refSpeed

refDist

hazardReceive r convoyState

sp_ctrl : SpeedControl [1]

convoy : 
ConvoyCoordination [0..1]

member : 
MemberControl [0..1]

Fig. 5.8 DriveControl component of the RailCab

statemachines and timed automata [8]. We will provide more information on RTSCs
using an example in Sect. 5.2.3.

The MECHATRONICUML component model distinguishes between components
and component instances. A component instance is the occurrence of a component
in a system. Component instances are connected via their ports for specifying a
concrete system architecture, called component instance configuration.

Fig. 5.9 shows a component instance configuration that consists of three instances
of the component RailCab (cf. Fig. 5.2). The RailCabs drive in a convoy because
they execute the real-time coordination pattern ConvoyCoordination which we will
introduce in detail in Sect. 5.2.3.

5.2.2 Decompose Communication Requirements

In a self-optimizing mechatronic system, the single components often interact and
exchange different kinds of data. In the example in Fig. 5.9, RailCabs interact with
each other for two reasons. First, they communicate to coordinate the convoy drive
and, second, a RailCab needs to transmit its current position to adjacent RailCabs
in the convoy for controlling the distance. The communication protocols defining
the necessary message exchange are specified by real-time coordination patterns
of MECHATRONICUML. A developer should specify one real-time coordination
pattern for each reason for interaction to achieve separation of concerns. This in
return will reduce the complexity of the single real-time coordination patterns, allow
a more efficient verification, and enable their reuse in different systems.

The requirements for the real-time coordination patterns are specified by means
of Modal Sequence Diagrams (MSDs) as described in Sect. 4.3. The MSD specifi-
cation, however, does not distinguish the different communication protocols. There-
fore, the developer needs to decompose the MSDs according to the communication
protocols that are needed in the system. For the example in Fig. 5.9, we obtain
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:coordinator :member

r1 : RailCab r2 : RailCab r3 : RailCab

:DistanceControl :DistanceControl
:front :rear :front :rear

:member

: ConvoyCoordination
AG (coordinator.sendUpdate =>
AF  coordinator.idle)<=50

Fig. 5.9 Component instance configuration of a convoy with three RailCabs

one set of MSDs for the ConvoyCoordination and one set of MSDs for the Dis-
tanceControl. Then, the developer needs to define a real-time coordination pattern
as described in Sect. 5.2.3 for each of the communication protocols. These real-
time coordination patterns are then associated with the ports and connectors of the
component model as shown in Fig. 5.9.

In addition, the developer may split components into several subcomponents as
illustrated in the DriveControl component in Fig. 5.8. In this case, the interactions
need to be associated with subcomponents that will implement the interaction. This
step might require a further derivation of MSDs that define the requirements for the
communication within a component. In the DriveControl component, the developer
needs to specify MSDs for the interaction of SpeedControl with ConvoyCoordina-
tion and MemberControl.

5.2.3 Real-Time Coordination Patterns

The communication behavior of the components is specified formally by using real-
time coordination patterns. The developer needs to specify a real-time coordina-
tion pattern for each connector between components in the component model. In
MECHATRONICUML, real-time coordination patterns are specified independent of
a concrete component to allow reusing them in different systems. Thus, the de-
veloper either needs to specify a new real-time coordination pattern based on the
communication requirements as described in Sect. 5.2.3.1 or he may reuse an ex-
isting real-time coordination pattern. The real-time coordination pattern is refined
to the specific components as part of process step "Specify Discrete Behavior"
(cf. Sect. 5.2.4).

The communication behavior is safety-critical. In our example, errors in the com-
munication between convoy coordinator and convoy members may lead to an ac-
cident. If a RailCab still operates in convoy mode while the convoy coordinator
assumes that it has left the convoy, a crash may occur if the convoy brakes because
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Fig. 5.10 Instance of a real-
time coordination pattern
with a multirole

......
Adaptation RTSC

Sub-Role
RTSC

1 Sub-Role
RTSC

k Sub-Role
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n

Single-Role
Instance

Single-Role
Instance

Single-Role
Instance

Multi-role 
Instance

role RTSC role RTSC role RTSC

the RailCab will not be notified. We can prove the correctness of the communication
behavior by using our design-time verification procedure outlined in Sect. 5.2.3.2.

5.2.3.1 Specification of Real-Time Coordination Patterns

A real-time coordination pattern defines the required communication between two
communications partners independent of a concrete component implementation. We
call the communication partners roles. In this section, we focus on 1:n communica-
tion where one role communicates with n other roles all executing the same behav-
ior [53]. In a RailCab convoy (cf. Fig. 5.9), one RailCab serves as a coordinator and
needs to communicate with the n other members of the convoy. The coordinator is
required, e.g. for defining a reference speed for the whole convoy and to coordinate
acceleration and braking maneuvers.

RailCab r1 is the coordinator of the convoy, while r2 and r3 are members. There-
fore, r1 executes an instance of the coordinator role of the ConvoyCoordination
real-time coordination pattern. RailCabs r2 and r3 execute an instance of the mem-
ber role. The instances of the DistanceControl real-time coordination pattern are
used for controlling the distance between two successive RailCabs in a convoy.

Since the coordinator role instance communicates with n member role instances,
we call it a multirole. The member role instance, which communicate with only one
coordinator role instance is called a singlerole. Fig. 5.10 shows the general structure
of an instance of a real-time coordination pattern with a multirole instance.

The multirole instance consists of an adaptation real-time statechart and n sub-
role real-time statecharts. Each of the subrole instances manages the communication
with exactly one singlerole instance. The adaptation real-time statechart is responsi-
ble for creating and deleting subrole instances, e.g. if RailCabs join or leave a con-
voy. In addition, the adaptation real-time statechart is used to coordinate the subrole
real-time statecharts, e.g. to trigger that they send data to the member RailCabs in a
defined order.

Fig. 5.11 shows the real-time statechart that defines the behavior of the singlerole
member. The real-time statechart starts its execution in the initial state waitUpdate.
It waits for 500 time units for an update message to arrive. Messages are sent asyn-
chronously between different roles, i.e. the receiver stores the message in a buffer
and may process it at a later point in time. If the message arrives in time, the real-
time statechart switches to sendAck thereby resetting the clock c to 0. If the message
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Fig. 5.11 Real-time state-
chart of a convoy member

Member clock: c;

sendAck
c ≤ 1 

update(..) /
{reset: c}

/ publishStatorFailure()

[1;1]

networkFailure

/ ack(..)
waitUpdate

c ≤ 500
[1;1]

statorFailure

[c > 500]

does not arrive in time, it switches to state networkFailure. The state sendAck is left
after 1 time unit by sending a message ack and switching to waitUpdate.

Fig. 5.12 shows the real-time statechart that defines the behavior of the multirole
coordinator. The real-time statechart of a multirole always consists of one state that
contains two parallel regions, which is Coordinator_Main in the example. One re-
gion contains the adaptation real-time statechart while the other contains the subrole
real-time statechart that is executed by all subrole instances. At run-time, we obtain
one real-time statechart instance of the subrole real-time statechart for each subrole
instance.

The coordinator subrole real-time statechart in the lower region of Coordina-
tor_Main is the pendant to the member real-time statechart of Fig. 5.11. It is initially
in state idle. The transition from idle to sendUpdate is triggered by a synchronous
internal event next which is parameterized by an integer. Synchronous events cause

Coordinator

Coordinator_Main

adaptation

coordinator sub-role

2

1

convoy

next[size+1]?

coordinate? /
{createSubRoleInstance(1)}

addMember

sendUpdates
c2 ≤ 499

[c2 ≤ 489]
newFollower? /

{createSubRoleInstance(size+1)}NoConvoy

[10;10] [1;1]

[c2 = 500]
next[1]! /
{rest: c2}

awaitAck

publishStatorFailure() /

sendUpdate
c1 ≤ 10 

/ update(..)

next[id] ? /
{reset: c1}

idle

[30;30]

[2;2]

statorFailure

ack(..)
next[id+1]! /

ch: next[size];

var: int size;

clock: c2;

c2 ≤ 500

c2 ≤ 499
[10;10]

c1 ≤ 48

clock: c1; var: int id;

Fig. 5.12 Real-time statechart of the convoy coordinator
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ConvoyCoordination::createSubRoleInstance(int k)

create sub-role instance

co[k-1]:coordinator

co[k]:coordinator

«next»
member«create» «create»

«create»

this

:coordinator :member

co[k]:coordinator
member«create» «create»

«create»

this

:coordinator :member

[k == 1] k ≥ [1]

create sub-role instance

Fig. 5.13 Component story diagram modeling the creation of a subrole instance

the sender transition (event suffixed by !) and the receiver transition (event suffixed
by ?) to fire simultaneously. Additionally, sender and receiver must provide and ex-
pect the same integer parameter. In the state sendUpdate, the real-time statechart
may spend up to 10 time units before it sends the update message and switches to
the state awaitAck. Executing this transition takes a minimum and a maximum of 30
time units which is indicated by the deadline in square brackets. The transition from
awaitAck to idle is triggered by the receipt of the ack message from the member
role. It triggers the next subrole using the synchronous event next, incrementing the
expected integer by 1.

The adaptation real-time statechart in the upper region of Coordinator_Main
starts in state noConvoy. If the RailCab is chosen to coordinate the convoy, it is
triggered by the synchronous event coordinate and switches to addMember. The
side effect createSubRoleInstance at the transition triggers the component story di-
agram of Fig. 5.13 that creates a new subrole instance in the coordinator multirole
instance. Then, the real-time statechart switches to the state convoy. In the state con-
voy, the real-time statechart triggers the first subrole instance every 500 time units
using the synchronous event next. The transition from sendUpdate back to convoy
synchronizes with the last subrole instance after it has successfully received the ack
from the member role. Back in the state convoy, the real-time statechart can only be
triggered by the synchronous event newFollower and switch to addMember. Again,
the side effect createSubRoleInstance of the transition executes the component story
diagram of Fig. 5.13 for creating a new subrole instance.

Component story diagrams [200] are a special kind of graph transformation
rules [184] that use the concrete syntax of MECHATRONICUML. We use compo-
nent story diagrams for specifying run-time reconfiguration operations, i.e. the cre-
ation and deletion of component instances and connections. The component story
diagram of Fig. 5.13 instantiates a new connection to a new member that wants
to join the convoy at position k. In the component story diagram, we distinguish
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between creating the first connection and creating further connections. In the activ-
ity node on the left, we create the first connection between coordinator and a mem-
ber in the real-time coordination pattern. The this-variable represents the instance of
the ConvoyCoordination real-time coordination pattern which called the component
story diagram from the adaptation real-time statechart of its multirole instance. In
addition, the multirole instance, modeled by the dashed rectangle, is bound. Then,
the parts of the rule annotated with «create» are created and the connection is
established. In the activity node on the right, the subrole instance with index k− 1
is bound additionally and the new subrole instances is created as a successor to this
subrole instance.

5.2.3.2 Design-Time Verification of Real-Time Coordination Patterns

The correctness of software for self-optimizing mechatronic systems is often safety-
critical, especially if the software influences the physical movement of the system.
That requires the software to meet high quality standards to ensure its safe opera-
tion. Traditional testing-based development approaches are not able to guarantee
functional correctness. Design-time verification, however, is a method to give a
mathematical proof that a software is functionally correct with respect to a formal
specification [13]. In this section, we will illustrate how design-time verification
can be used to ensure that the communication within a self-optimizing mechatronic
system modeled by real-time coordination patterns is safe.

The real-time coordination patterns used in self-optimizing mechatronic systems
are often subject to run-time reconfiguration. An example is given by the Convoy-
Coordination real-time coordination pattern introduced in Sect. 5.2.3. In such real-
time coordination patterns, the behavior is defined by a syntactical combination of
real-time statecharts and component story diagrams. Consequently, a verification
procedure needs to take both into account.

Existing approaches and corresponding tools for design-time verification do
not provide sufficient support for self-optimizing mechatronic systems that adhere
to real-time constraints and use run-time reconfiguration. Graph-based tools like
GROOVE are very effective for verifying untimed graph transformation systems
(GTS) [113], but are still limited, especially with respect to verification of timing
properties. Timed model checkers such as Kronos [31] or UPPAAL [21], which
support the verification of real-time statecharts, provide no means for specifying
dynamic object creation and deletion.

Our method for design-time verification combines the strengths of both
approaches for verifying real-time coordination patterns with run-time reconfigu-
ration. It is executed at design-time by the software engineer while creating the real-
time coordination patterns as opposed to run-time verification which is performed
while the mechatronic system is running [69, D.o.S.O.M.S. Sect. 3.2.14] .

Fig. 5.14 provides an overview of the single steps of our verification procedure.
It requires two inputs: a real-time coordination pattern and a set of requirements that
need to be verified. The textual requirements informally state the properties that the
behavior modeled in MECHATRONICUML needs to fulfill. Then, we perform two
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Real-Time Coordination Pattern Component Textual
Requirements

Automatic Model Transformation Manual Translation

(Timed) Graph Transformation System Formal Requirements (FO-TCTL)

Verification
Procedure

OK Counterexample

...

...

Algorithm

Artifact

Fig. 5.14 Overview of the design-time verification procedure

transformation steps that transform the inputs such that they can be processed by the
verification procedures. The transformation of the real-time coordination pattern to
a (timed) graph transformation is completely automatized. The transformation of
textual requirements to formal requirements is a manual task. After explaining them
in the following subsections, we will describe our verification procedure.

The result of applying this method to a MECHATRONICUML model is either that
the model fulfills the formalized requirements or a counterexample. A counterex-
ample is an execution of the system that leads to a state that violates the specified
requirement. The counterexample is intended to support an engineer in locating and
correcting the cause of an error in the model. After correcting the error, this method
needs to be applied again until no more errors are found in the model. Then, the
model is correct with respect to the formal requirements that have been verified.
The verified model is the input for a code generator that generates the source code
for the system.

From Real-Time Statecharts to Graph Transformation Systems

Design-time verification of MECHATRONICUML models needs to capture the be-
havior of the real-time statecharts as well as their run-time reconfiguration opera-
tions in terms of component story diagrams. This is because both strongly influence
each other. As an example, consider the real-time coordination pattern ConvoyCo-
ordination shown in Fig. 5.9. The coordinator needs one subrole instance for each
convoy member. Therefore, the multirole real-time statechart calls a reconfiguration
operation as a side effect (cf. Fig. 5.12). The reconfiguration operation, in turn, cre-
ates a new subrole instance including an instance of the subrole real-time statechart.
The execution of the new real-time statechart instance contributes to the behavior
of the real-time coordination pattern instance and, thus, needs to be analyzed by
the verification procedure. To cope with this strong interconnection between timed
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state-based behavior and reconfiguration, we use timed graph transformation sys-
tems (timed GTS), as shown in [53].

At this point, graph transformations [184] play a double role in our approach [53].
While they are used to model reconfiguration operations formally in terms of com-
ponent story diagrams, they are also used as a meta-language to define the semantics
of MECHATRONICUML. Such formally defined semantics is the basis for an auto-
mated verification procedure. A key extension necessary for self-optimizing mecha-
tronic systems is the annotation of time, which is needed to capture the semantics of
real-time statecharts. Therefore, we use timed GTS as the basis for our verification
procedure. The use of timed GTS at this level, however, is hidden from the mod-
eler who gives a MECHATRONICUML specification to the model checker which
performs the translation automatically.

A timed GTS [53] consists of a start graph, a type graph, and a three different
types of rules, namely timed graph transformation rules (timed GT rules), clock
instance rules, and invariant rules. The start graph defines the starting point for the
execution of the timed GTS and the type graph defines the types of nodes and edges
for all graph generated by the timed GTS. Timed GT rules change a timed graph, but
may neither add nor remove clock instances. Clock instance rules are used to add
all clock instances that are possibly required for the application of a timed GT rule.
Invariant rules forbid the existence of a subgraph of a timed graph after a certain time
bound. For a formal definition of timed GTS, we refer to our technical report [196].

The translation of a MECHATRONICUML model into a timed GTS needs to en-
code the behavior of the real-time statecharts by timed graph transformation rules.
We use objects representing the instances of the real-time statecharts including their
states. Transitions cause a change of the active state of a real-time statechart. Con-
sequently, we create a timed GT rule for each transition of a real-time statechart.
State invariants forbid that a state is active beyond a specified point in time. They
are translated to invariant rules. The clocks that are used by the real-time statecharts
are created using clock instance rules. We refer to [53] and our technical report [92]
for more information on the translation.

From Textual Requirements to Formal Requirements

As shown in Fig. 5.14, a second translation is required for translating the textual
requirements into formal requirements. Informal requirements in natural language
are not suitable for being processed by an automatic verification procedure. An au-
tomatic verification procedure requires a formal specification of the requirements.
Such translation needs to be carried out manually by an engineer. For timed au-
tomata, TCTL [6] has been introduced as a formal language for expressing such
requirements.

In our ConvoyCoordination example, operating in convoy mode requires one
RailCab to operate as a coordinator and periodically send reference data updates
to all other convoy members. There, we need to ensure, e.g. that after the coordina-
tor sends an update to a member, the coordinator must receive an acknowledgement
within 50 ms. This constraint is formalized by the TCTL property
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AG(coordinator.sendUpdate⇒ AF<=50coordinator.idle)

shown in Fig. 5.9. This property obviously needs to be valid for all subrole instances
of the coordinator and, in particular, must be valid throughout the reconfiguration.

In our verification procedure, we use FO-TCTL which is an extension of TCTL
[6] by constructs of first-order logic. It enables specification of properties on graph
structures in a much more user-friendly way compared to plain TCTL. In particular,
it supports specifying a property that needs to be valid for all subrole instances of
a real-time coordination pattern. To achieve this, we introduce variables that range
over the nodes of a graph, constants that represent particular nodes that are known at
design-time, predicates representing types of nodes and edges, and quantifiers. Vari-
ables allow the formulation of properties concerning nodes without knowing which
particular nodes exist during run-time. Expressing the same property using the nor-
mal TCTL requires knowledge of all nodes that may exist during the execution of
the system.

Verification Procedures

We defined two verification procedures for verifying properties specified in FO-
TCTL based on a timed GTS that we will introduce in the following subsections.
The first verification procedure, called FO-TCTL model checking, uses a state-
exploration technique that enumerates the run-time states of the timed GTS, thereby
considering the timing conditions of the timed GTS. Consequently, it supports timed
GTS with a finite number of run-time states. Our second verification procedure ap-
plies a shape analysis technique. It supports timed GTS with an infinite number of
run-time states, but it does not consider the timing conditions.

Verification Procedure 1 – FO-TCTL Model Checking: Our FO-TCTL model
checking procedure consists of three steps that are visualized in Fig. 5.15. The key
idea of our approach is a reduction of the model checking problem for a timed GTS
and a FO-TCTL specification to the well-studied TCTL model checking problem for
timed automata [6, 7, 21]. Then, a standard timed model checking tool answers the
question whether the MECHATRONICUML model fulfills its formal requirements.

In the first step, a so-called Gt-automaton is computed for the timed GTS. The
Gt-automaton is a timed automaton where each of its states corresponds to a timed
graph which can be derived from the initial graph of the timed GTS. Transitions
result from derivations using the timed GT rules and are labeled with the guard
and reset of the timed GT rule that was used for the derivation. We label each state
with the clock constraints of the invariant rules that can be matched to the state.
Each node in a state is labeled with a unique identifier that is preserved by the
derivation. The set of clocks of the Gt-automaton corresponds to the union of the
clock instances that have been created by the clock instance rules.

In the second step, we use the Gt-automaton to reduce the FO-TCTL formula to
a standard TCTL formula. In particular, we exploit the identifiers of the nodes for
replacing quantifiers and variables by boolean expressions with constants, only. An
∃ quantifier is replaced by a disjunction replacing the occurrences of the quantified
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Fig. 5.15 Overview of FO-TCTL model checking

variable by all possible node identifiers occurring in the Gt-automaton. A ∀ quanti-
fier is replaced analogously by a conjunction. Finally, we encode the identifiers by
atomic propositions that can be processed by the timed model checker.

In the third step, we use the Gt-automaton and the TCTL formula as inputs to a
standard timed model checking tool. We propose using Kronos [31] because Kronos
provides a full TCTL model checking. UPPAAL [40], on the contrary, only supports
a simple subset of TCTL. UPPAAL can be used with our method as well, if the
supported TCTL subset is sufficient for the verification task.

Verification Procedure 2 – Shape Analysis: Commonly, models contain behav-
ior that allows the runtime structure specified by the model to grow. An example
of this is convoy coordination in the RailCab system, where new RailCabs can join
existing convoys. Usually, and in this example as well, there is no natural limit to
this growth.

There are two ways out of this. One is to use bounded model checking, which
is what the method detailed above amounts to. Instead of checking the entire sys-
tem, a finite subsystem is identified by bounds, such as maximum convoy size, and
then checked. In order to construct the Gt-automaton, the entire state space of the
system must be constructed, and thus all possibilities of infinite growth pruned at
some arbitrary bound, like, e.g. 10 RailCabs. Any behavior within that subsystem is
safe, yet nothing is known of the remainder. That means that any correctness result
obtained using this method is only valid as long as there is no convoy longer that
10 RailCabs. As soon as there is, all verification results obtained with this bound in
place are lost.

In this particular case, there might be some merit to limiting the number of Rail-
Cabs that can take part in a convoy a priori to a constant number. This is because
the communication range of RailCabs is limited, as is the maximum deceleration
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Member

Fig. 5.16 An abstracted convoy

a RailCab is capable of, which limits the length of a potential convoy. However,
such limitations usually only apply to hardware structures, such as convoys. Also,
as the system evolves, physical parameters change. Better transmitters might extend
a RailCabs WiFi range, improved brakes might improve maximum deceleration.
Most successful distributed systems eventually outgrow any bound on size.

The second way to deal with infinite growth is called overapproximation, and
that is what shape analysis essentially does. Instead of looking at a subset of the
behavior of a system, in shape analysis one looks at a superset of it which has the
property of being compactly (finitely) representable. This is done in such a way that
safety properties that can be shown for the overapproximation, are also guaranteed
to be valid for the original system.

Shape Analysis was initially a formalism used to abstractly describe heap struc-
tures in imperative programs [185]. In our work we have utilized the concepts devel-
oped for that formalism to create a verification algorithm that applies them to GTS
[193, 194, 211]. This algorithm is generic and applies to all GTS. It is an instance
of a class of algorithms performing abstract graph transformations. Other instances
include [25, 137, 176].

At its core, the algorithm works by identifying groups of nodes in a given graph
that have similar properties and grouping them together into one summary node. The
resulting graph then is a representative for the set of all graphs where the summary
node is replaced by a particular number of nodes. Thus a single abstract graph, called
shape, can represent an infinite number of actual, concrete graphs. As an example,
consider Fig. 5.16. Here, the rectangle represents an arbitrary number of follower
RailCabs. The entire shape therefore represents a convoy of arbitrary size.

Such shapes can now be subjected to dynamic behavior, just as the original graphs
were. If the abstraction was chosen well, we obtain a finite representation of the en-
tire state space and can check then whether the given safety properties are valid or
not. If they are, we have just proven the safety of the original system in its uncon-
strained form, e.g. the safety of convoy coordination regardless of the number of
participants. If they are not, we get a counterexample. This counterexample can ei-
ther be genuine, or it can be an artifact of the abstraction. This can be decided by
retracing the counterexample obtained on the shape level on concrete graphs. If the
counterexample is genuine, we need to fix the system, if it is not, we must refine the
abstraction to remove the artifact that produced the counterexample.
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The ability to verify infinite systems does of course not come without a price.
The two main drawbacks of this method are increased complexity and undecidabil-
ity. Abstraction introduces a lot of complex definitions and properties that make it
hard to enrich with additional properties. This is the reason Shape Analysis is cur-
rently unable to take time into account in any form (unlike the method described
above). Undecidability means that in its finished form, the algorithm will run fully
automatically, but in the absence of human intervention there is the possibility that
the algorithm will run forever. It is however possible to reduce the probability of
this by allowing the algorithm access to as much domain specific information as
possible to help it guide its abstraction refinement process.

5.2.4 Discrete Behavior

After proving the correctness, the real-time coordination patterns are integrated into
the component implementation and refined if necessary. We provide an algorithm
for checking the correctness of the refinement in Sect. 5.2.4.1. Additionally, we
may integrate existing legacy components into a MECHATRONICUML model such
that they meet the system’s safety and liveness requirements; this is presented in
Sect. 5.2.4.2. In Sect. 5.2.4.3, we will provide an automatic synthesis of component
behavior to resolve dependencies that might exist between different real-time coor-
dination patterns when they are combined in a component. Sect. 5.2.4.4 describes
the specification of reconfiguration behavior of components. Finally, we will outline
a planning technique that selects which runtime reconfigurations to apply to reach
the system’s objectives at runtime in Sect. 5.2.4.5.

5.2.4.1 Refinement of Real-Time Coordination Patterns

Real-time coordination patterns as introduced in Sect. 5.2.3 aim at reusing the mod-
eled interaction in different applications. Therefore, real-time coordination patterns
are specified independent of a concrete component implementation. A concrete im-
plementation often has to refine this behavior, e.g. add internal computations or
access internal variables, thereby introducing new internal states and/or transitions.
Such modifications of the behavior may invalidate the formal requirements that have
been proven for the real-time coordination pattern using the design-time verification
procedure (cf. Sect. 5.2.3.2).

As described in Sect. 5.2.3.1, real-time coordination patterns may specify 1:n
communication with runtime reconfiguration. Then, the reconfiguration operations
need to be considered when checking for a correct refinement [91]. This problem
is more difficult than the 1:1 communication case as additionally the creation and
deletion of the protocols and the dependencies between the instances has to be con-
sidered. Since the abstract real-time coordination patterns are verified formally be-
forehand, the refinement must preserve these verified properties.

The overall refinement approach is shown in Fig. 5.17. First, a real-time coordina-
tion pattern is modeled as described in Sect. 5.2.3.1. Afterwards, we verify this real-
time coordination pattern using the verification approach outlined in Sect. 5.2.3.2
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Fig. 5.18 Excerpt of the refined real-time statechart of the convoy coordinator

for proving that the specified properties ϕ are valid. Then, both roles are refined to
a port as part of a component implementation. Finally, we check the conformance
of the component implementation to the roles of the real-time coordination pattern
by checking for a correct refinement.

As an example, consider the excerpt of a coordinator real-time statechart shown
in Fig. 5.18. The real-time statechart has been refined with respect to the real-time
statechart shown in Fig. 5.12 by inserting a new state compData. The transition
from compData to sendUpdate specifies a side effect that computes new data to be
sent via the update message which causes the transition to consume 30 time units of
computation time. Since the timing values have been changed and a new state has
been added, it is not clear whether the refined coordinator multirole still fulfills all
verified properties.

In the literature, two basic types of refinements are defined: simulation and bisim-
ulation that exist for untimed systems as well as for real-time systems [37, 202].
These standard refinement definitions are based on automata and disregard run-time
reconfiguration that is used in our approach. Additionally, simulation is a very weak
condition as it does not require the refined system to specify all communications
being specified in the abstract real-time coordination pattern. Obviously, this is not
sufficient for safe protocol reuse. In contrast, bisimulation is a very strong condition
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as it requires the refined system to perform exactly the same in exactly the same time
as the abstract real-time coordination pattern. This does not allow applying changes
to the protocol, thereby limiting the set of component implementations complying
to the abstract real-time coordination pattern.

Therefore, we introduce a refinement definition called relaxed weak timed bisim-
ulation [91] that relaxes the strict conditions of a bisimulation by using information
of our component model. We assume that each port has an unbounded input buffer
for received messages that can accept messages at any time. If a statechart receives
a message, the message is taken out of the input buffer. Using such an input buffer,
the point in time, at which a message is consumed by a real-time statechart, does
not matter for a communication partner. Therefore, we allow that the refined role
processes messages later than the abstract role. Delaying a sent message is not al-
lowed as we only consider one role in the refinement and we cannot assume that
the receiver of the message can still receive it after the time interval specified by the
abstract real-time coordination pattern has elapsed.

We consider the run-time reconfiguration of real-time coordination patterns by
a so-called structural refinement as defined in [90]. It ensures that the refined real-
time coordination pattern executes its reconfiguration operations in the right time
intervals by relating the subrole and singlerole instances including their connections
in both the abstract and refined real-time coordination pattern instance.

Checking for a correct refinement requires checking the refined role implemented
in a port of a component against the abstract role of the real-time coordination pat-
tern. This requires exploring the state-spaces of both and to compare the intervals
in which messages are sent or received. The refinement check algorithm is based on
the same implementation as the verification procedure introduced in Sect. 5.2.3.2.
In [91], we showed for the RailCab example that this is more efficient than verifying
all properties for the refined real-time coordination pattern again. The reason is that
we do not need to consider the connector, but only one role at a time.

5.2.4.2 Integration of Legacy Components

The software of self-optimzing mechatronic systems is usually a network of com-
ponents. By MECHATRONICUML we provide a sound method that guarantees a
high quality of this software. However, in domains like the automotive industry the
development of new functions is an exception rather than the norm. In many cases,
components exist and have to be reused where no model or only incomplete mod-
els exist. On the one hand, reuse accelerates the development of the system. On the
other hand, one can rely on the quality the component has proven in the past. Both
saves development costs.

These so-called legacy components must be integrated into the newly built system
such that they meet the system’s safety and liveness requirements. Therefore, we
reconstructed a real-time statechart that specifies the communication behavior of
the legacy component. The reconstructed real-time statechart is used to verify the
correct integration of the legacy component into a MECHATRONICUML model [96,
97].
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Fig. 5.19 Architecture with legacy RailCab

Fig. 5.19 shows a scenario where an old RailCab LegacyRailCab communi-
cates with a RailCab developed with MechtronicUML. Here we assume that the
developer does not have a MechtronicUML model of the communication software
of the LegacyRailCab. Both RailCabs shall communicate using the DistanceCo-
ordination Pattern. The communication behavior of the rear role must satisfy the
liveness constraint that no deadlock occurs (A[] no deadlock) and the safety
contraint that both RailCabs drive in convoy mode (front.convoy implies
rear.convoy) when applying the DistanceCoordination pattern.

The role behavior with which the legacy component has to interact is called con-
text. In Fig. 5.19 the context is the front role of the component RailCab. An inte-
gration is successful, if the communication between the legacy component and the
context is error-free. This is specified by safety properties and liveness properties.
Moreover we need to guarantee that, depending on the communication behavior,
the correct control behavior is executed. The continuous behavior is identified by
system identification.

In order to integrate a legacy component into a MECHATRONICUML model, the
following requirements must be met. The legacy component must provide an inter-
face that is accessible by the developer. This interface must define all incoming and
outgoing messages used for communication, all signals used by embedded feedback
controllers, and all information which is relevant for executing the component (e.g.
execution periods). This, however, does not require additional effort in the domain
of safety-critical systems, as this is typically part of the system specification.

Moreover, we assume that initially the component is in its starting state or in a
quiescent state (cf. [127, 213]). We further assume that the developer is able to put
the component in such a state.

The information provided by the interface of the legacy component may differ
substantially. We distinguish three cases. First, (1) the interface provides function-
ality to query its current state. If this is not the case, we distinguish the cases where
(2) the source code of the interface is provided and (3) no source code is provided.

Depending on the provided information, we apply different methods to integrate
the legacy component. For case (1) we apply grey-box-checking, for case (2) white-
box-checking, and for case (3) black-box-checking. We will shortly explain these
methods below. We will introduce the basic approach of iterative learning by grey-
box-checking. Thereafter we will point out how the other methods differ from grey-
box-checking.
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Grey-Box-Checking

We start grey-box-checking with a chaotic closure. This chaotic closure is an over-
approximation of the actual communication behavior. The chaotic closure is a be-
havior model that enables all possible communication behaviors and also a deadlock
of the legacy component at any time. However, not all of this behavior may be im-
plemented in the legacy component. Therefore, the behavior is defined step-by-step
by limiting the behavior of the chaotic closure until it conforms to the behavior of
the legacy component.

First, we verify the safety and liveness properties on the combination of the
chaotic closure and the context. If the verification yields a counterexample, the coun-
terexample is used to generate a test case for the legacy component. The test case
is generated by extracting all inputs and outputs including their time or appearance.
The legacy component is executed with the extracted inputs. The test has passed, if
the extracted outputs are observed from the legacy component at identical points of
time as in the counterexample. Otherwise, the test has failed.

If the test case passed, we have found a valid counterexample. This means, one
of the required safety and liveness properties are not satisfied. At this point, reverse
engineering either stops or the requirements on the system need to be relaxed. If the
test case failed, the observed behavior is used to refine the chaotic closure. There-
fore, the current state is requested from the legacy component. If a new state is
found, a new state is created for the chaotic closure. Edges are built according to the
observed transitions. This process continues until a valid counterexample is found
or all traces of the context have been taken into account.

Black-Box-Checking

Black-box-checking also uses a counterexample guided refinement. But here the
legacy component does not provide the functionality to request its current state. Our
solution is to construct a candidate for the behavior of the legacy component. The
candidate is constructed by an extension of the learning algorithm of Angluin (1987)
[9], an efficient approach for learning a deterministic finite automaton of a black-
box. We extended the algorithm of Angluin (1987) to take into account incoming
and outgoing messages and time.

The candidate and the context are verified by model checking with respect to the
safety and bounded liveness properties of the legacy component. If the verification is
successful, it is proven that the candidate is equivalent to the behavior of the legacy
component. Otherwise, the counterexample is used to improve the candidate.

White-Box-Checking

For White-box-checking, we assume that we know the source code of the legacy
component. To safely integrate the legacy component into the system, we generate
source code from the context model. The source code of the context and the legacy
component are embedded into a framework. The framework simulates scheduling,
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message exchange and timed behavior. The resulting system is verified by a source
code model checker with respect to the safety and bounded liveness properties.

5.2.4.3 Synthesis of Component Behavior

As described in Sect. 5.2.4.1, the roles of a real-time coordination pattern are refined
to ports of a component. Often, a component needs to engage in more than one
interaction in order to fulfill its function, i.e. it refines roles of several real-time
coordination patterns.

In the RailCab example, a RailCab interacts with other RailCabs for building
convoys, but it also needs to register at the track section it is currently driving on.
The registration at track sections is required to ensure that each track section is only
accessed by RailCabs driving in the same direction. Up to this point, all interactions
defined by real-time coordination patterns are operating independent of each other.
For a safe convoy operation, however, we need to fulfill the requirement that "in
convoy operation mode, each participating RailCab has to be registered to a track
section" [54]. Thus, there may exist dependencies between real-time coordination
patterns when they are combined in a component.

In our previous works, we used a so-called synchronization real-time state-
chart in a component for resolving such dependencies [75]. The specification of
such a synchronization real-time statechart was subject to the developer. Specifying
a synchronization real-time statechart, however, is a difficult and error-prone task.
This is because, on the one hand, it needs to resolve the dependency and, on the other
hand, it must not remove communications specified by one of the roles. If commu-
nications specified by one of the roles was removed, the results of the design-time
verification will not necessarily be valid anymore.

As a solution, we provide an automatic synthesis of a component behavior that
automatically resolves the dependencies and ensures the role conformance of the
resulting behavior [54]. The dependencies are either specified by state-composition
rules referring to the states of the roles or by event-composition automata refer-
ring to the sent and received messages of the roles. To perform the synthesis, first,
a product automaton including the behavior of all ports is constructed and the
dependencies are resolved automatically by applying the state-composition and
event-composition rules. Then, the role conformance check ensures that all com-
munications originally specified by both roles are still available in the synthesized
behavior. That, in turn, ensures that all verified properties are still valid in the
synthesized behavior.

We illustrate our approach by a simplified example using UPPAAL timed au-
tomata [21]. Fig. 5.20a) shows a simplified convoy behavior consisting of the two
states noConvoy and convoy. Fig. 5.20b) shows a timed automaton for registering at
a track section.

In the following, we will first introduce state-composition rules. Thereafter, we
will explain event-composition automata before outlining the synthesis algorithm.
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Fig. 5.20 Simplified behavior models for a) convoy coordination and b) registration

State-Composition Rules

State-composition rules define restrictions for the component behavior based on the
states of the role automata. In particular, they specify forbidden state combinations
of the input automata. The state information encoded in state-composition rules in-
cludes timing information that forbids certain state combinations only for a specific
time interval. The state-composition rules need to be specified by a developer when
creating the component.

An example of a state-composition rule for the automata in Fig. 5.20 is given by:

r1 = ¬((unregistered, true)∧ (convoy, true)).

The state-composition rule r1 formalizes the requirement that a RailCab may
only drive in convoy mode while it is registered at a track section. Consequently,
r1 forbids the component behavior to be in states unregistered and convoy at the
same time. A reference to a state, e.g. (unregistered, true), is a tuple where the first
entry refers to the name of the state and the second entry defines a clock restriction.
In this case, the clock restriction is true for both states which means that the state
combination is not allowed for all possible clock values of all used clocks.

Event-Composition Automata

Event-composition automata define restrictions for the component behavior based
on sequences of messages that the role automata may send or receive. They monitor
the messages that are sent or received by the role automata. Consequently, only
messages used in one of the role automata may be used in an event-composition
automaton.

In our example, we assume another requirement for the RailCab component
which states that a RailCab needs to be registered at a track section for at least
2500 time units before it can start at convoy. This requirement refers to a message
of the automaton and, thus, can not be specified by state-composition rules. The
event-composition automaton for the requirement is shown in Fig. 5.21.

The automaton starts in state ec_initial. If it monitors that the RailCabs sends
register, it switches to ec_registered thereby setting the clock ec_c1 back to 0. The
message startConvoy may be monitored, at the earliest, 2500 time units later which
is specified by the time guard of the corresponding transition. The automaton stays
in ec_registeredConvoy until the RailCab sends an unregister message.
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Synthesis Algorithm

The synthesis algorithm takes three inputs. These are the automata of the roles that
should be synthesized to a component behavior as well as the state-composition
rules and the event-composition automata that define the restrictions for the synthe-
sis. Based on these inputs, the resulting automaton for the component is synthesized
in four steps. We briefly outline these steps in the following. For a complete descrip-
tion, we refer to Eckardt and Henkler (2010) [54].

Step 1 – Computing the parallel composition: In the first step, we compute the
parallel composition of the role automata. The parallel composition is derived from
the parallel composition operator of CCS (Calculus of Communicating Systems,
[144]) which is also used in UPPAAL [21]. The parallel composition contains the
complete behavior of the role automata.

Step 2 – Applying state-composition rules: In the second step, the state-
composition rules are applied to the parallel composition resulting from step 1. Itera-
tively, each state-composition rule is applied to each state of the parallel composition
automaton. If the state fulfills the state conditions imposes by the state-composition
rule, the time condition is added to the invariant of the state. If the resulting invariant
of the state is false, the state is removed from the parallel composition along with
all its incident transitions.

The state (convoy,unregistered) of the product automaton fulfills the state con-
ditions of r1. Consequently, the time conditions ¬((true)∧ (true)) is added to the
invariant which makes it f alse and causes the state to be removed.

Step 3 – Applying event-composition automata: In the step 3, all event-
composition automata are applied iteratively to the automaton resulting from step 2.
Since the event-composition automaton is a timed automaton, the application is
similar to the parallel composition of step 1. The difference is that the event-
composition automaton only monitors the messages that are sent and received by
the role automata.

After the parallel composition, each state refers both, to the states of the initial
parallel composition and the state of the event-composition automaton. All states re-
sulting from the parallel composition that are not reachable from the initial location
are removed from the automaton.
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Step 4 – Checking Behavior Conformance: In step 4, we check for behavior
conformance of the synthesized automaton resulting from steps 1-3. In step 2 and
step 3, every behavior not allowed by the state-composition and event-composition
rules have been removed from the parallel composition of the role automata. Due
to the removal of behavior, it is not ensured that the communications specified by
the roles of the real-time coordination pattern are still contained in the synthesized
automaton. As a consequence, it is not guaranteed that the synthesized behavior still
fulfills all properties that have been verified for the real-time coordination pattern.

By checking the synthesized automaton for behavior conformance to the roles
of the real-time coordination pattern, we ensure that the verified properties still be
valid. "In order to preserve the relevant role behavior, we need to ensure that in
the refined component behavior, every timed safety properties and every untimed
liveness properties are preserved. This would imply that no deadlines of the original
role automata are violated while all events of the original automata are (in the
correct order) still visible within the original time interval. If both of these properties
are preserved, we say that the refined component behavior is role conform." [54]

If the synthesized automaton resulting from steps 1-3 is not behavior conform,
the synthesis reports an error. In this case, it is not possible to synthesize an automa-
ton that fulfills the state-composition and event-composition rules while specifying
the behavior of the roles of the real-time coordination pattern. In this case, the engi-
neer needs to specify the synchronization real-time statechart manually and ensure
correctness by repeating the verification steps introduced above.

We refer to our technical report [55] for a detailed proof of the correctness of the
synthesis.

5.2.4.4 Modeling Component Reconfiguration

In Sect. 5.2.3 we showed how reconfiguration is specified for real-time coordination
patterns. Additionally, we can specify reconfiguration behavior for the components
of our component model [43]. For the specification of reconfiguration behavior, we
use component story diagrams [200] again. We specify component story diagrams
for each component of the component model that needs to perform reconfiguration.

Figure 5.22 shows an example of a component story diagram that specifies the be-
havior for becoming a convoy member for the DriveControl component in Fig. 5.8.
Becoming a convoy member requires to instantiate the subcomponent MemberCon-
trol and to connect it to the SpeedControl such that it can provide the reference speed
for the speed controller.

Since we model the component reconfiguration by component story diagrams, we
can use our design-time verification procedure introduced in Sect. 5.2.3.2 for veri-
fying the reconfiguration behavior. We refer to [94] for more technical information
on executing reconfiguration in a hierarchical component model.
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Fig. 5.22 Reconfiguration
rule of DriveControl to
become a convoy member

Create MemberControl incl. Connections
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«create»
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5.2.4.5 Safe Planning

In each configuration of a self-optimizing mechatronic system, a large set of
runtime reconfigurations can be applied to adapt the system to changes in its en-
vironment at runtime. Selecting which runtime reconfigurations to apply can be a
complex task. Self-optimizing systems often have superordinated objectives that
should be reached during execution, like optimizing the energy consumption or
achieving user-specified objectives. These objectives have to be respected when se-
lecting which runtime reconfigurations to apply. However, selecting runtime recon-
figurations that are likely to help to achieve the objective is no trivial task. Since the
selection of runtime reconfigurations is supposed to happen autonomously (a hu-
man intervention would not meet the response time requirements of self-optimizing
mechatronic systems), it has to be planned by a software system.

To prevent unsafe configurations, e.g. an inadequate safety distance between two
RailCabs, from occurring in a plan, the planning system should further take safety
requirements into account. The safety requirements restrict the set of valid configu-
rations, i.e. they specify which configurations are not allowed to occur in a resulting
plan. In contrast to the verification of runtime reconfigurations (cf. Sect. 5.2.3.2),
where the absence of unsafe states is guaranteed categorically, this technique allows
unsafe states to exist in the reachability graph, but plans the reconfigurations in
such a way that no unsafe state is passed through. The latter approach is chosen for
specific safety requirements that can not be verified by the design-time verification
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or impose to many restrictions to the specification of the runtime reconfigurations.
In [69, D.o.S.O.M.S. Sect. 3.2.9] , we present a technique that considers these safety
requirements when planning runtime reconfigurations.

Our approach uses GTS as an underlying formalism. The transition system of
the GTS can be constructed by successively applying the graph transformations to
the initial configuration and its successor configurations. The planning task is to
find a path in this transition system so that a target configuration is reached. A safe
planning task is basically the same, but includes the requirement that no potentially
unsafe configuration is passed through. In our case, the initial configuration corre-
sponds to a UML object diagram and each transition is the result of applying a graph
transformation rule to the configuration.

To solve these planning tasks, different algorithms and techniques exist. One of
the approaches is to translate the planning problem into an available off-the-shelf
planning system. These traditional planning systems, however, employ models dif-
ferent from GTS. They employ models with first-order literals that are usually com-
piled into a propositional representation by grounding predicates and actions. While
a translation is basically possible, there are some restrictions because typical plan-
ning languages, like the Planning Domain Definition Language (PDDL), which is
the current de facto standard in academia, has a different expressive power than
GTS. By planning directly in the transition system defined by the GTS, we avoid
these problems.

Given a goal specification, our model can be fed into a planning system, e.g. [57],
that directly plans on the transition system that results from the model. Therefore, no
translation to a dedicated planning language and thus no restriction to the expressive
power of GTS is necessary. Unsafe configurations are recognized by the planning
system and not allowed in a valid plan. The resulting plan specifies a sequence of
runtime reconfigurations that safely turn the system from its initial configuration
into a target configuration.

5.2.5 Simulation of Hybrid Behavior

The software of a self-optimizing mechatronic system consists of discrete software
developed with MECHATRONICUML and continuous controllers developed with a
tool like MATLAB/Simulink. That results in a so-called hybrid behavior specifica-
tion [98]. The design-time verification procedures described in Sect. 5.2.3.2 can only
be applied to the discrete software. Corresponding hybrid verification techniques [5]
do not scale sufficiently for complex mechatronic systems.

Therefore, we use simulation for testing the complete hybrid system and, in par-
ticular, the correct integration of discrete software and controllers. We provide an
automatic model transformation for transforming the MECHATRONICUML model
into an input of a simulation tool, namely MATLAB/Simulink [93, 95].
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Fig. 5.23 Deployment diagram

5.2.6 Specification of Deployment

The software components that have been created with MECHATRONICUML need
to be deployed on a hardware. This hardware comprises sensors that provide in-
put signals, controllers that control actuators and computing hardware that executes
the software components. In MECHATRONICUML the deployment of software to
hardware is specified by deployment diagrams. Hardware entities are represented
by hardware nodes which communicate unidirectionally via hardware ports.

Figure 5.23 shows an example of a deployment diagram which specifies the
deployment of an instance of the component type DriveControl (cf. Fig. 5.8) to
an ECU. In deployment diagrams hardware nodes are drawn as boxes. Hardware
ports are drawn as squares that contain either an “i” for incoming signals or an
“o” for outgoing signals. The embedded component instances member:Member and
sp_ctrl:SpeedControl of dc:DriveControl are both connected to the hardware node
e1:ECU which represents the ECU that executes these component instances.

5.2.7 Integration of Self-healing Behavior

The self-optimization capabilities of self-optimizing mechatronic systems can be
used to repair systems in case of failures at runtime. This so-called self-healing
can be used to reduce occurrence probabilities of hazards in systems which are
applied in safety-critical environments. Self-healing systems react to failures by a
reconfiguration of the system architecture during runtime.

Take for example the speed control of the RailCab. The electric current to be set
on the linear drive depends on the speed of each wheel which is measured by speed
sensors. If a failure occurs in at least one of the speed sensors, a wrong value is
passed to the current controller. This causes the RailCab to drive at a wrong speed
which can result in a collision. To prevent such a situation, a self-healing operation
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can be specified in form of a reconfiguration which replaces the faulty sensor by a
spare which is still working.

This reaction is subject to hard real-time constraints because reacting too late
does not yield the intended self-healing effects. Consequently, it is necessary to an-
alyze the propagation times of failures and the effect of a reconfiguration on the
propagation of failures [166]. In [69, D.o.S.O.M.S. Sect. 3.2.13] , we present an ap-
proach for the analysis of self-healing operations which specifically considers these
properties.

Not all parameters which are needed to analyze self-healing operations, e.g. the
concrete system architecture, are known at design time. When, for example, Rail-
Cabs have become ready for the market, they will be produced by more than one
manufacturer. Then it will be possible that two vehicles that come from different
manufacturers meet on the track. In order to build a convoy they need to establish
a connection. This connection leads to a system architecture that was unknown at
design time, because the system architecture of the unknown vehicle was, of course,
unknown to the developers of the RailCab.

Consequently, the effect of self-healing operations needs to be analyzed during
runtime. We developed an approach to analyze self-healing operations at runtime. It
prevents the construction of system architectures at runtime where self-healing op-
erations can not reduce the occurrence probabilities of hazard so that they become
acceptable.

Based on the system’s current architecture, we compute each reachable system
architecture for a fixed number of subsequent reconfigurations at runtime. We then
analyze the self-healing operations. If the hazard occurrence probability of a reach-
able system architecture exceeds the system’s acceptable hazard occurrence proba-
bility event after the application of a self-healing operation, the reconfiguration rule
that constructs this system architecture is locked.

5.2.8 Code Generation

We use the models that have been created using MECHATRONICUML for an au-
tomatic generation of the source code of the self-optimizing mechatronic system.
An approach for code generation has been introduced in [1]. Alternatively, we can
use the MATLAB/Simulink code generation facilities to generate code out of the
MATLAB/Simulink model that we created for simulation (cf. Sect. 5.2.5).

5.3 System Optimization

Harald Anacker, Michael Dellnitz, Kathrin Flaßkamp, Philip Hartmann, Chris-
tian Horenkamp, Bernd Kleinjohann, Lisa Kleinjohann, Martin Krüger, Sina Ober-
Blöbaum, Christoph Rasche, Maik Ringkamp, Robert Timmermann, Ansgar
Trächtler, and Katrin Witting

In order to develop self-optimizing systems, optimization plays a crucial role. In the
following section, a couple of methods are presented which allow a systematical and
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formal optimization of the system behavior. In contrast to successive improvement,
which often has to be done manually, these methods aim at automatically seeking
the optima, i.e. points of no further improvement. During the conceptual design, the
relevant objectives are identified and a general control structure is designed, that
is capable to alter the fulfillment of the objectives, cf. Sect. 3.2. At the beginning
of the system’s design and the development, concrete mathematical models of the
system behavior are created in the respective domains as well. These are the inputs
for the methods of model-based self-optimization described in the first seven sec-
tions. The following sections deal with behavior-oriented self-optimization which
describes methods without an explicit physical model of the system or process. In-
stead, these approaches work on mapping input values to output values. The actual
system and the considered process are observed as a black box.

In the first section, we get back to multiobjective optimization which has al-
ready been introduced in Sect. 1.4.1.1 and present some more details about novel
set-oriented algorithms for solving multiobjective optimization problems (MOP) in
Sect. 5.3.1. The algorithms can be used to compute optimal system configurations
that considers several conflicting objectives in one single MOP.

Self-optimizing systems are often complex systems consisting of several subsys-
tems which are hierarchically structured (see Sect. 1.3 for an introduction into the
structuring concept). If each system comes with its own objectives, one also gets a
hierarchy of MOPs that has to be solved. Section 5.3.2 describes an approach on
how to handle such optimization problems. The following section, Sect. 5.3.3, is
closely related to hierarchical optimization. A so-called hierarchical model is intro-
duced that can be used to significantly reduce the model complexity of hierarchical
systems by means of parametric model-order reduction.

The following two Sections 5.3.4 and 5.3.5, deal with MOPs which also depend
on continuous external parameters. Two numerical methods are presented that are
used to solve such problems efficiently and to identify so-called robust Pareto points.

Optimal Control, a different aspect of system optimization, is addressed in
Sections 5.3.6 and 5.3.7. In optimal control problems the goal is to compute time-
dependent steering maneuvers as introduced in Sect. 1.4.1.2. In Sect. 5.3.6, the
optimal control technique DMOC is presented which is especially tailored for
the optimal control of mechanical systems. In order to improve the solvability of
optimal control problems by creating efficient initial guesses, a motion planning
technique based on motion primitives is described in Sect. 5.3.7. Within this ap-
proach, several short pieces of simply controlled trajectories are sequenced to longer
trajectories.

In Sect. 5.3.8 one approach for decision making (cf. Sect. 1.4.1.3) is presented
that is called hierarchical hybrid planning. The hierarchical model is used to sim-
ulate the prospective system behavior and a discrete planning problem is defined
based on the simulation results as well as on a pre-computed Pareto set.

All these different methods of system optimization need a physically motivated
mathematical model of the self-optimizing system. If such a detailed model is not
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available for a specific task, methods of the behavior-oriented self-optimization
can be used (see Sect. 1.4.2 for an introduction). Statistical Planning, described
in Sect. 5.3.9, is one of these methods. It uses statistical data to compute plans
for mechatronic systems based on an environmental model given by a discrete fi-
nite nondeterministic Markov decision process. A different approach is presented
in Sect. 5.3.10. A discrete planning problem is defined that can be used to find a
sequence of operation modes which describe a transition from an initial state to
a predetermind goal state. Section 5.3.11 presents an approach to realize a multi-
agent system by behavior planing, to open up the advantage given by the possibility
for intelligent communication of individual subsystems. Finally we will present the
application of solution pattern presented in Sect. 4.5 to make the method hybrid
planning available to the developers.

5.3.1 Set-Oriented Multiobjective Optimization

Michael Dellnitz, Kathrin Flaßkamp, and Christian Horenkamp

The demand for multiobjective optimization in the context of self-optimizing sys-
tems was already shown in Sect. 1.4.1. Here, we review algorithms developed and
applied within the CRC 614 for the computation of the entire Pareto set of multiob-
jective optimization problems. The basic idea of these methods is to use set-oriented
algorithms for dynamical systems (cf. [46]).

We reconsider the multiobjective optimization problem (MOP Eq. (1.1)) intro-
duced in Sect. 1.4.1

min
p∈S⊂Rn

F(p), (5.1)

where F : Rn → R
k, F(p) = ( f1(p), ..., fk(p))T is the vector of k ∈ N objective

functions, p the optimization variable or design variable of dimension n ∈ N,
and S denotes the feasible set. The necessary conditions for Pareto optimality are
given by the Karush-Kuhn-Tucker (KKT) equations (cf. Sect. 1.4.1). Here, we
consider the left hand side of the KKT equations as a map H : Rk+n → R

n, with
H(β ,p) = ∑k

i=1 βi∇ fi(p) and β = (β1, ...,βk) with βi ≥ 0 for all i ∈ {1, ...,k} and
∑k

i=1 βi = 1 (cf. Eq. (1.2) in Sect. 1.4.1). By finding zeros of the map H, we identify
points that satisfy the necessary optimality conditions. Therefore, the use of zero
finding strategies as well as the minimization of the function H are essential steps
in many techniques for solving multiobjective optimization problems.

5.3.1.1 Set-Oriented Solution Techniques for Multiobjective Optimization

The set-oriented solution techniques for multiobjective optimization are imple-
mented in the software package GAIO11. They can be divided into two approaches:
subdivision methods and recovering methods, which we shortly introduce in the
following (cf. [190] for a detailed overview).

11 Global Analysis of Invariant Objects, see www.math.upb.de/~agdellnitz

www.math.upb.de/~agdellnitz
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Fig. 5.24 Illustration of the subdivision algorithm: it alternates between subdivision and se-
lection steps to approximate the Pareto set by a box covering

The subdivision procedure (cf. Fig. 5.24 for a sketch) starts with a box that cov-
ers the admissible set of optimization parameters and approximates the Pareto set by
a successive refinement and selection of boxes. After every subdivision step, a gra-
dient method is applied to chosen test points in all boxes. This iterates the test points
forward, possibly into other boxes. The selection step deletes all boxes that do not
contain iterated test points and only keep the other boxes for further subdivision.
This scheme generates a box covering of the Pareto set with desired refinement.
A sampling algorithm (cf. [190]) that does not require gradient information can be
used instead of the gradient step.

Recovering techniques are applied to fill gaps in the covering of the Pareto set.
Under certain conditions, the Pareto set (locally) forms a manifold [100], i.e. in
the neighborhood of already known Pareto points further points can be found. The
recovering algorithm is similar to a predictor corrector method, which is typically
used for numerical integration. Based on an initial partial box covering, new test
points are generated nearby (prediction step) and then iterated until they fulfill the
KKT conditions (correction step). In this way, connected components of the Pareto
set can be found if at least one Pareto point of this component is already known
(cf. Fig. 5.25).

In the following two sections, we present two basic strategies to use the recover-
ing technique. Firstly, the recovering techniques are applied in the preimage space
(space of optimization parameters). This approach reaches its limitations when the
number of design variables is high. In such a case one can pursue a second strategy,
for which the recovering techniques are applied in the image space (space of objec-
tive functions). This is more suitable if the number of design variables is high but
the number of objectives is small as discussed in Sect. 5.3.1.3.

5.3.1.2 Set-Oriented Recovering Methods in the Preimage Space Applied to
the Multiobjective Optimization of the Test Vehicle Chameleon

In this subsection we review a recovering technique for the approximation of the
Pareto set based on a predictor corrector method working in the preimage space.
This method is a very efficient tool for the approximation of a finite representation
of the entire Pareto set and has been successfully applied for the multiobjective
optimization of the test vehicle Chameleon within the CRC 614.

In principle, starting with a point p∗ of the Pareto set, the following steps are
performed:
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Fig. 5.25 Illustration of
the recovering algorithm:
starting with an initial partial
covering of the Pareto set, a
full covering is computed by
a generation and mapping
of test points near existing
boxes

Fig. 5.26 Illustration of the
predictor-corrector method:
(a) Predict points r1 and r2

in the neighborhood of p∗.
(b) Correct points such that
they lie on the Pareto set.

p* p*
r1

r2a) b)

1. Predict points r1, ...,rm in the neighborhood of p∗.
2. Correct the points r1, ...,rm such that they lie on the Pareto set by minimizing

the norm of the KKT equations and adding the boxes containing the corrected
points.

An illustration of this technique can be found in Fig. 5.26. The number of pre-
dicted points m ∈ N has to be sufficiently large in order to cover the Pareto set after
the correction step well. Therefore, the bottleneck of this method is the prediction
step where new test points are generated near an initial solution p∗. A common way
for the generation of new test points is to linearize the Pareto set around the initial
solution p∗ by an approximation of the tangent space of the Pareto set in p∗ (grey
line in Fig. 5.26). In general, one can use the Hessians of all objectives, but this
approach reaches its limitation when high-dimensional models, where n is large, are
considered. In the course of the research of the CRC 614, a novel method has been
developed for the treatment of high-dimensional MOPs by successive approxima-
tion of the tangent space [181]. In detail, a new algorithm has been stated, where the
tangent space is approximated by secants. This algorithm leads to an efficient ap-
proximation of the Pareto set of high-dimensional MOPs. Table 5.1 shows the CPU
time for a scalable multiobjective optimization problem with three objectives which
are taken from [189] for the recovering algorithm using the tangent space approxi-
mation (RC) and the new algorithm (RS) developed in [181]. For the test problem a
significant speedup can be obtained for large n.

Within the corrector step in which the predicted points are corrected such that
they lie on the Pareto set, many efficient minimizers make use of derivatives of the
objective function F. In many applications only program code for the objective F
is provided and the corresponding derivatives, if existent, can not be determined
analytically, thus other techniques are required. For example, finite differences can
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Table 5.1 Comparison between the
classical recovering algorithms RC
and a method using a successive ap-
proximation of the tangent space RS

dimension
of MOP

RC RS

100 CPU time 2.9 2.9
200 CPU time 14 11.9
500 CPU time 134 91
1000 CPU time 965 500

be used, however, this approach leads to inaccurate derivatives which slows down
the correction step. Alternatively, algorithmic differentiation (also called automatic
differentiation) can be used (cf. [81]). These techniques automatically compute for-
mulas for the derivatives based on the program code of the optimization problem for
example.

In [182] the recovering technique of [181] has been combined with algorithmic
differentiation. In more detail, the feasible set S of a MOP has been described as a
zero set and the recovering procedure is adapted as follows: Let p∗ be a solution of
the MOP (1.1), then for the prediction step select neighboring points of p∗ along
the feasible set S and correct them to points on S. After the correction step a non-
dominance test is performed to ensure that only the Pareto set is approximated as
a subset of the feasible set S. For all non-dominated points, the predictor-corrector
step is repeated until a covering of the Pareto set is reached. For the correction
of the predicted points, the derivatives involved are calculated by an algorithmic
differentiation method.

This method was successfully applied for the multiobjective optimization of the
distribution of the tire forces for a braking maneuver of the test vehicle, Chameleon,
which is described in more detail in Sect. 2.3. The tire forces of the Chameleon can
be influenced individually within the physical and technical restrictions [175], hence
there are a multitude of possibilities to realize a braking maneuver with the same
braking force. In [182] the slip λi and the slip angle αi for each wheel i = 1, ...,4 are
the optimization parameters. The objectives are to avoid tire wear by minimizing the
squared sum of the slip angles ( f1) and for each tire the minimization of the distance
between the tire force and the adhesion limit for safety reasons ( f2, ..., f5). Fig. 5.27
shows projections of the resulting Pareto set and Pareto front.

Another extension of both the recovering and subdivision algorithms is the use
of parallelization techniques. This is motivated by time-consuming function eval-
uations of a sufficiently high amount of test points involved in the algorithms. In
[26], for instance, a multiobjective optimization problem is solved for the resource
efficient design of integrated circuits. In more detail, the dimensions of transis-
tors in simple logic cells are optimized with respect to noise margin, propagation
delay and dynamic energy consumption. A function evaluation in this setup is a
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Fig. 5.27 Projection of the resulting Pareto set and Pareto front of a multiobjective optimiza-
tion problem of the distribution of the tire forces for a braking maneuver of the test vehicle
Chameleon. The Pareto set and Pareto front were computed with the algorithmic differentia-
tion approach: (a), (d) A set of boxes covering smooth connected parts of the Pareto set. (b),
(e) Corresponding Pareto points. (c), (f) Corresponding Pareto front. Figure from [182].

one to three seconds simulation of an integrated circuit. Using a parallelization in-
frastructure, it is possible to obtain good approximations of the Pareto set within
adequate computational time.

5.3.1.3 Set-Oriented Recovering Methods in the Image Space Applied to the
Multiobjective Optimization of the Active Guidance System of the
RailCab

The previously described recovering method reaches its limitations if the number
of design variables is high. In such a case, the approximation of the tangent space
in the predictor step is computationally costly, therefore the recovering method will
be applied in the image space Image space (cf. [41]). The principal procedure is the
same as shown in Fig. 5.26. This approach is a good alternative for the case when
the dimension of the parameter set is high and only a few objectives are considered.

This method was applied to find trajectories of the RailCab vehicle (cf. Sect. 2.1)
in the rails [72, 206]. The control of the RailCab vehicle is done by the active guid-
ance system that controls the displacement of the vehicle in the rails. It controls
the position of the front and rear axles. The computed trajectories should maximize
safety ( f1) and passenger comfort ( f2) and minimize the average energy consump-
tion ( f3) of the hydraulic actuators. Naturally, this problem is an optimal control
problem but due to the fact that the problem underlies a certain structure it can be
transformed into a multiobjective optimization problem with a high number of pa-
rameters (cf. Sect. 1.4.1.2 and 5.3.6). In [72] the trajectories of the front and rear
axles of a fixed rail track with respect to f1, f2 and f3 have been optimized. Due to
the high amount of parameters, a recovering method in the image space Image space
is necessary. In Fig. 5.28 the computed Pareto front is shown. Two optimal compro-
mise solutions were selected (marked by a circle and a rectangle). In Fig. 5.29 the
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Fig. 5.28 Pareto front for
the three objectives safety,
comfort and energy. The
trajectories corresponding
to the Pareto points marked
with a rectangle and a circle
are shown in Fig. 5.29.
Figure from [72].
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corresponding trajectories of the position of the front axle are shown. The recov-
ering techniques in the image space are also suitable to find well-distributed Pareto
points in the image space. In [183] such a method was applied to design an operating
strategy for the Energy Management of a Hybrid Energy Storage System combining
batteries and double layer capacitors.

To sum up, various applications have shown the great suitability of the set-
oriented mutliobjective optimization methods in the design of self-optimizing tech-
nical systems.

5.3.2 Hierarchical Multiobjective Optimization

Michael Dellnitz and Maik Ringkamp

Modeling of self-optimizing systems often leads to hierarchical multiobjective op-
timization problems. These kinds of problems consist of several MOPs instead of
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just one MOP. All MOPs are related to each other by a hierarchy. The solutions of
a lower level MOP restrict the preimage space of the next higher level MOP in the
sense that the feasible set of the higher level MOP is a subset of the lower level
Pareto set. Each level of the hierarchy consists of one MOP.

Consequently, in the case of two MOPs two levels of hierarchy exist. Such a
problem is also called bilevel MOP and is defined as follows:

min
(p,p1)∈Rn×R

n1
F(p,p1) (5.2)

s.t. (p,p1) ∈ S

p1 ∈Pf1(p)

Here, the p-dependent Pareto set Pf1(p) is defined as the solution of the MOP of
the lower level:

Pf1(p) := arg min
p1∈Rn1

f1(p,p1) (5.3)

s.t. (p,p1) ∈ S1 (5.4)

with feasible sets S,S1 ∈ R
n ×R

n1 , objective functions F : Rn ×R
n1 → R

k, and
f1 : Rn ×R

n1 → R
k1 .

Under given regularity conditions, bilevel MOPs can be solved using the Karush-
Kuhn-Tucker equations (Eqs. (1.2)) of the lower level MOP as additional equality
constraints for the upper level MOP as described in detail in [42].

The hierarchical structure of the optimization problems derived from the OCM
structure allows to consider a special case of the general bilevel MOP (5.2). Instead
of computing one general MOP on the lower level, we consider problems where the
lower level MOP can be separated into several independent MOPs, i.e. each MOP
has a different set of optimization parameters.

5.3.2.1 Hierarchical Multiobjective Optimization by Parametrization of the
Lower Levels

More specifically, the kind of problems we consider are given as

min
(p,p1,...,pl )∈S

F(p,p1, . . . ,pl) (5.5)

s.t. p j ∈Pf j , j ∈ {1, . . . , l},

where l ≥ 1 is the number of independent lower level MOPs and S ⊆ R
n ×R

n1 ×
. . .×R

nl the feasible set as in Eq. (5.2) with independent Pareto sets Pf j , j ∈
{1, . . . , l}, as solutions of the l lower level MOPs

Pf j := arg min
p j∈Rn j

f j(p j) (5.6)
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with objective functions F : Rn ×R
n1 × . . .×R

nl → R
k and f j : Rn j → R

2,∀ j ∈
{1, . . . , l}.

Under certain regularity conditions, the resulting Pareto sets Pf j of the lower
level MOPs are 1-dimensional submanifolds of Rn j for each j ∈ {1, . . . , l}. Thus,
these sets can be parametrized by variables α j ∈ [0,αmax] and a map ϕ j : [0,αmax]→
Pf j . The parametrization reduces the complexity of the upper level MOP, it can be
described with the help of an auxiliary objective F̃ : R× [0,αmax]× . . .× [0,αmax]→
R

k, F̃(p,α1, . . . ,α l) := F(p,ϕ1(α1), . . . ,ϕ l(α l)) as

min
(p,α1,...,α l)∈Rn×[0,αmax]×...×[0,αmax]

F̃(p,α1, . . . ,α l) (5.7)

s.t. (p,α1, . . . ,α l) ∈ S.

For problem (5.5) we propose the following solution strategy:

1. Compute the Pareto sets of all independent lower level MOPs (5.6) by using the
methods explained in Sect. 5.3.1.

2. Parametrize the resulting Pareto sets by the map ϕ .
3. Use the parametrization variables as parameters for the MOP on the next higher

level and solve the auxiliary problem (5.7).

This method was successfully applied for example in [131] or [102] to solve
bilevel MOPs derived by the OCM structure. In the latter work, the considered ap-
plication examples are an active suspension system and a linear drive with an active
air gap adjustment which both represent a module of the rail-bound vehicle RailCab.
Hierarchical optimization is used to combine the module-related optimal operating
strategies. In Fig. 5.30 the computed Pareto front of the upper level MOP is shown.

Fig. 5.30 Active suspension
system and linear drive:
Computed Pareto front for
the hierarchical model of the
combination of the active
suspension system and the
linear drive with an active
air gap adjustment (original
figure from [102]).
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5.3.3 Hierarchical Modeling of Mechatronic Systems

Martin Krüger and Ansgar Trächtler

The hierarchical modeling is based on the hierarchical OCM structure presented
in Sec. 1.3. Mathematical models of the dynamical behavior are needed for sev-
eral methods in the design process of self-optimizing systems. Such methods are
for example, the design of feed-forward or feedback controllers, identification and
observation of system parameters respective states or model-based optimization.
Complexity of the models rapidly increases at higher levels of the system hierarchy.
The modeling approach described in the following sections yields a so-called hierar-
chical model which uses the hierarchical structure to reduce the model complexity
in a systematic way. Particularly, in combination with hierarchical multiobjective
optimization (cf. 5.3.2) a novel approach for parametric model-order reduction can
be used.

5.3.3.1 Hierarchical Model

Each element of the system hierarchy is equipped with its own information process-
ing described by an OCM. In general, this reduces the complexity of the information
processing, as several tasks can be encapsulated. However, the dynamical behavior
of a subsystem depends on the underlying elements (subsystems) in the hierarchy.
Hence, the behavior of the underlying subsystems has to be taken into account in
the modeling process.

The idea of the hierarchical model is to include the dynamics of the underlying
systems in a simplified form, rather than considering all details. This reduces the
complexity of the resulting model while ensuring that models have an appropriate
amount of detail that can be used by model-based methods. Figure 5.31 illustrates
the general idea.

Additionally, if each element of the hierarchy is seen as a self-optimizing system
with its own objectives, a Pareto set, i.e. a set of optimal compromises, can be com-
puted by applying multiobjective optimization. This Pareto set can then be used as
additional information for the simplification of the system before it is transferred
to the superordinated element. The parametric model-order reduction approach de-
scribed below has been developed especially for this task. The result is a simplified
respective reduced model which can, for example, be simulated much faster than
the original model while maintaining a certain variability in view of the objectives.

5.3.3.2 Parametric Model-Order Reduction

In the following we will give a short overview about a particular parametric model-
order reduction approach which yields parametric reduced models for the Pareto-
optimal systems that was first published in [129]. The Pareto-optimal systems are
those that correspond to the Pareto-optimal parameters p� ∈PF . The general goal
is to construct an approximation of these Pareto-optimal systems in terms of the
parameterization variable α , limited to the case of two objective functions. This
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Fig. 5.31 Hierarchical mod-
eling principle for self-
optimizing systems. First,
the optimal configurations
of the lower level module
are computed. The resulting
Pareto set is parameterized
and the system model cor-
responding to the optimal
configurations is reduced
by parametric model-order
reduction. On the upper
level the reduced models are
integrated in the hierarchical
model which can then be
used for following tasks as
e.g. (hierarchical) optimiza-
tion (Sect. 5.3.2) hybrid
planning (Sect. 5.3.8) or the
design of an objective-based
controller (Sect. 2.1.4).
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kind of model-order reduction can also be beneficial for analyzing the objective-
based controller described in Sect. 2.1.4 where α is the control variable.

Interpolation of Pareto-Optimal Systems

The parameterization of the Pareto set described in Sect. 5.3.2 also defines a param-
eterization of the Pareto-optimal systems. Assuming a linear closed-loop system

ẋ = A(ϕ(α))x+Bu, (5.8a)

y = Cx, (5.8b)

with u being the vector of external inputs and y being the output vector for cal-
culating the objectives, the dynamics depend on the parameterization function ϕ .
Since a higher number of parameters complicates the reduction process for almost
all parametric model-order reduction algorithms we do not directly use this kind of
parameterization. Instead, we create an interpolation, of the Pareto-optimal systems
and not of the Pareto set, that depends directly on α .

The first step is to define a sequence of knots 0 = α1 < α2 < .. . < αk = αmax.
Then, a component-wise linear spline interpolation can be applied to the Pareto-
optimal systems that yields
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Fig. 5.32 Pareto set of the
active suspension system
and results of the knot
placement. Optimization
parameters are given by
three variables, which define
the sky-hook damping of the
system. A number of ten
equidistantly placed knots
has been used as input for
the algorithm leading to a
knot sequence of 24 knots
placed along the Pareto set
to reach the given error
bound.
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A(α) := A(ϕ(αi))︸ ︷︷ ︸
Ai

+
α −αi

αi+1 −αi
[A(ϕ(αi+1))−A(ϕ(αi))] (5.9)

for α ∈ [αi,αi+1).
The number of knots αi as well as their positions can be chosen automatically

by an algorithm that is described in more detail in [129]. It consists of two parts.
One part improves the knot positions of an existing sequence by means of the clas-
sical FORTRAN algorithm newnot [30] that has been extended to the matrix case.
The second part compares the linear matrix-valued spline with a cubic one to esti-
mate the approximation quality and inserts additional knots if necessary. Both parts
are executed alternately until a given error bound is reached. Figure 5.32 shows the
results of the knot placement for a Pareto set of the active suspension system, in-
troduced in Sect. 2.1.4 using the same objectives energy consumption and level of
comfort.

Parametric Model-Order Reduction

The result of the aforementioned interpolation is a piecewise matrix polynomial
A(α) and a corresponding parametric system

ẋ = A(α)x+Bu, (5.10a)

y = Cx, (5.10b)

with the states x ∈ R
nx and system matrices A(α),B and C of appropriate dimen-

sions that can be reduced by parametric model-order reduction. The first step of the
reduction procedure comprises of a non-parametric reduction of the systems cor-
responding to the knots αi. Any projection-based reduction method that yields two
projection matrices Vi,Wi ∈R

nx×q, can be used for this task, e.g. the IRKA (Iterative
Rational Krylov Algorithm) to get an H2-optimal interpolation [10]. This leads to
the reduced systems of order q
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Fig. 5.33 Relative error of the reduced system compared to the original system (5.10).

W T
i Vi︸ ︷︷ ︸
Ẽr,i

ẋr = W T
i AiVi︸ ︷︷ ︸
Ãr,i

xr +WT
i B︸ ︷︷ ︸

B̃r,i

u, (5.11a)

y = CVi︸︷︷︸
C̃r,i

xr (1 ≤ i ≤ k). (5.11b)

Secondly, we apply a method called matrix interpolation to compute a parametric
reduced system, see [160] for more details. Using Matrix Interpolation, the reduced
matrices are compatible to one another by means of a reprojection to a common
subspace, given by the columns of an orthonormal matrix R ∈R

nx×q. This matrix is
computed by means of a singular value decomposition of the concatenation of the
projection matrices [V1, . . . ,Vk]. Each reduced system is then transformed by means
of two quadratic matrices

Mi = (W T
i R)−1 and Ti = RTVi. (5.12)

The parametric reduced system consists of an interpolation of the transformed re-
duced matrices

Er,i = MiẼr,iTi, Ar,i = MiÃr,iTi, Br,i = MiB̃r,i, Cr,i = C̃r,iTi (5.13)

In our case we use a simple weighted sum depending on α , i.e.

Ar(α) =

(
1− α −αi

αi+1 −αi

)
Ar,i +

α −αi

αi+1 −αi
Ar,i+1 (5.14)
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for the system matrix to give one example. The results of the parametric model-order
reduction of the active suspension system are shown in Fig. 5.33.

5.3.4 Parametric Multiobjective Optimization

Michael Dellnitz, Christian Horenkamp, and Katrin Witting

Many mechatronic systems are subject to external forces or time-varying param-
eters. In many cases, such dependencies cannot be directly modeled in the op-
timization problem (5.1) in Sect. 5.3.1. Therefore, in this section, we extend the
optimization problem (5.1) in such a way that it additionally depends on an external
parameter λ ∈ [λstart ,λend ]:

min
p∈S

F(p,λ ), (5.15)

where F : Rn × [λstart ,λend ] → R
k, F(p,λ ) = ( f1(p,λ ), ..., fk(p,λ ))T is the vector

of objective functions. The parameter λ can model the dependence on time or any
other external parameter of the objectives. In such situations, instead of choosing a
single Pareto point, the decision maker has to choose a whole curve p(λ ) describing
for each λ a Pareto optimal solution for the MOP. Similar as in Sect. 5.3.1, for each
fixed λ ∈ [λstart ,λend ] the necessary optimality conditions are given by the Karush-
Kuhn-Tucker equations, and the underlying optimization problem can be solved
separately for each parameter value.

Consider the following parameter dependent MOP with λ ∈ [0,1] and the two
objective functions f1, f2 : R2 × [0,1]→ R defined as

f1(p,λ ) = λ
(
(p1 − 2)2 +(p2 − 2)2)+(1−λ )

(
(p1 + 2)4 +(p2 − 2)8) and

f2(p,λ ) = (p1 + 2λ )2 +(p2 + 2λ )2.

Fig. 5.34 (a) shows the Pareto sets for different values of λ and Fig. 5.34 (b)
shows the entire λ -dependent Pareto set.

Calculating for each parameter value the entire Pareto set is numerically very
costly and therefore, this approach is not suitable for applications, for which the
solution has to be computed online. Thus, we propose a solution method which
alternates between Pareto set computations and numerical path following of single
Pareto points and therefore prevent the computation of the entire Pareto set. The
proposed algorithm is designed for online use and works as follows:

1. Compute the entire Pareto set for a fixed parameter value λ1 and select a point
p(λ1) on the Pareto set.

2. Compute the solution curve p : [λ1,λ2]→ S up to a fixed parameter value λ2.
3. Compute the entire Pareto set for the parameter value λ2 and select a point x(λ2)

on the Pareto set. Proceed with step 2.

For the computation of the solution curve, in step 2 a predictor corrector method
along the curve direction is involved.
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Fig. 5.34 (a) Pareto sets for some specified values of λ . (b) entire λ dependent Pareto set.
Figure from [206].

The parameter dependent approximation of the Pareto optimal solutions was de-
veloped in [206]. In [208] and [187], it has been successfully applied to the opti-
mization of the operating point assignment of the linear-motor of the driven railway
system RailCab (cf. 2.1). It was also successfully applied to the active suspension
system of the RailCab. In this application the crosswind has an influence and it was
modeled as a parameter (see also Sec. 5.3.5.1).

5.3.5 Computation of Robust Pareto Points

Michael Dellnitz, Robert Timmermann, and Katrin Witting

One important question in the context of multiobjective optimization problems (cf.
Sect. 1.4.1.1) is the choice of the actual optimal configuration for one specific ap-
plication, the so-called decision making. In this section we address this problem by
defining the robust Pareto points and give a brief overview of two methods for the
computation of such points. For a more detailed explanation, the reader is referred to
[206]. We consider a Pareto point to be robust, if it varies as little as possible under
variation of the external parameters of the parametric multiobjective optimization
problem Eq. (5.15). Here, we additionally have the choice to regard the variation in
parameter space or objective space.

Computation is based on two approaches: The first approach to the computa-
tion of robust Pareto points is based on numerical path following methods (cf.
Sect. 5.3.4). First, a λ -dependent Pareto set for λ = λstart is computed. Secondly, λ
is varied from λstart to λend for a subset of points of the Pareto set and the lengths of
the resulting paths, which then run from the λstart -Pareto set to the λend-Pareto set,
are calculated. Finally, these path lengths can be taken into account when choosing
one of the Pareto optimal operating points, since robust Pareto points are those with
minimal path length. This enables the decision maker to choose points, which vary
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as little as possible under the influence of λ . If λ , for example, describes the influ-
ence of a change of temperature, one can chose an operating point, such that varying
temperature has little effect on the system.

The second approach is based on the calculus of variations. The problem of find-
ing the shortest path from a point on the Pareto set for λstart onto the Pareto set for
λend can be formulated as the variational problem

min
(p(λ ),α(λ ))

∫ λend

λstart

‖p′(λ )‖2
2 dλ (5.16)

s.t. HKT (p(λ ),α(λ ),λ ) = 0

where the constraint HKT = 0 represents the necessary Kuhn-Tucker equations for
optimality (cf. Eq. (1.2)) in Sect. 1.4.1.1 and Sect. 5.3.1). The integral means, that
the energy of the λ -dependent curve of Kuhn-Tucker points is minimized. If points
exist in which all Pareto sets intersect, both approaches lead to the same robust
Pareto points. Otherwise those points may differ. The main advantage of the second
concept over the first one is that the starting point on the Pareto set needs not to be
fixed in advance but is implicitly calculated during the minimization. Unfortunately,
this concept is computationally more expensive, so if the underlying models are very
complex or if execution time is critical (e.g. if the robust points are calculated in real
time), the first concept is more suitable.

A much more detailed explanation of the path following approach can be found
in [47], and two applications are presented in [26] (transistor sizing of CMOS logic
standard cells) and [201] (robust Pareto points for the Active Suspension Module).
For further reading about the variational method we refer to [207]. Both methods
are also presented in [69, D.o.S.O.M.S. Sect. 3.1.8] .

5.3.5.1 Application

The second concept has been successfully used to compute robust Pareto points for
the Active Suspension Module (ASM, cf. Sect. 2.1.4) in [130].

In this work, an external parameter λ is used to model varying crosswind con-
ditions which affect the ASM’s behavior. A parametric multiobjective optimization
problem was formulated using a simple ASM model with three degrees of freedom
p1, p2, p3 and with the two objectives comfort and energy consumption.

Figure 5.35 shows three Pareto sets for three different crosswind values and two
robust Pareto points which were computed using the variational method. The robust
point at (0,0,0) corresponds to the energy optimal solution and could be expected
in advance, the second point is nontrivial though and was not expected before the
calculations. It can be used when designing the system such that it exhibits similar
behavior in a variety of crosswind situations.
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Fig. 5.35 Application of
the second concept (based
on the calculus of varia-
tions) to compute robust
Pareto points for the Active
Suspension Module. This
figure shows Pareto sets for
three specific crosswind val-
ues and two robust Pareto
points. Figure from [130].
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5.3.6 Optimal Control of Mechanical and Mechatronic Systems

Kathrin Flaßkamp and Sina Ober-Blöbaum

As introduced in Sect. 1.4.1, an optimal control problem seeks a control trajectory
which steers the dynamical system in an optimal way with respect to a given cost
functional. This is a challenging task for complicated nonlinear dynamical systems
and thus has to be addressed by numerical techniques. In this section, we present
an optimal control technique which is especially developed for the optimal control
of mechanical systems (including mechatronic systems with additional electronic
subsystems). For this class of systems, the equations of motion in the optimal con-
trol problem (OCP), cf. Eq. (1.3b), can be specified to the forced Euler-Lagrange
equations, i.e.

min
x(t),u(t)

J(x,u) =
∫ T

0
C(x(t),u(t))dt (5.17a)

with respect to
∂L
∂q

(q, q̇)− d
dt

∂L
∂ q̇

(q, q̇)+ f(q, q̇,u) = 0 (5.17b)

r(x(0),x(T )) = 0, and (5.17c)

h(x(t),u(t))≤ 0 with x = (q, q̇). (5.17d)

Here, the system’s state x=(q, q̇) consists of configurations q and corresponding
velocities q̇, L(q, q̇) is the Lagrangian of the system (closely related to the system’s
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energy) and f a control dependent forcing12. All possible configurations of a system
form the configuration manifold13 Q such that the system’s state space is given by
the tangent bundle T Q.

To numerically solve an OCP, direct optimal control methods directly discretize
the differential equations (5.17b). This can be done by integration schemes, i.e. the
continuous state x(t) is replaced by a sequence of discrete states {xd} in the same
manner as discretized trajectories are generated by numerical integration (simula-
tion) of dynamical systems. An optimal solution has to fulfill the discretized dif-
ferential equations (and additional constraints) and it is optimal with respect to the
discretized cost functional, i.e. it is a solution to a nonlinear optimization problem
and approximates the solution of the original OCP.

5.3.6.1 The Direct Optimal Control Technique DMOC

DMOC (Discrete Mechanics and Optimal Control, [151]) is a direct optimal control
method tailored to the special structure of mechanical systems . The forced Euler-
Lagrange equations (5.17b) are derived from a variational principle: the Lagrange-
d’Alembert principle ([140]). DMOC is based on a direct discretization of the
Lagrange-d’Alembert principle of the mechanical system. The goal of this discrete
variational mechanics approach is to derive discrete approximations of the solu-
tions of the forced Euler-Lagrange equations that inherit the same qualitative be-
havior as the continuous solution. For the discretization, the state space TQ is re-
placed by Q×Q and the discretization grid for the time interval [0,T ] is defined by
Δ t = {tk = kh |k = 0, . . . ,N}, Nh = T , where N is a positive integer and h is the
step size. The path q : [0,T ]→ Q is replaced by a discrete path qd : {tk}N

k=0 → Q,
where qk = qd(kh) is an approximation of q(kh) [141, 151]. Similarly, the control
path u : [0,T ]→U is replaced by a discrete one. The discrete Lagrange-d’Alembert
principle then leads to the discrete forced Euler-Lagrange equations

D1Ld(qk,qk+1)+D2Ld(qk−1,qk)+ f−k + f+k−1 = 0 (5.18)

for each k = 1, . . . ,N − 1, where Di denotes the derivative w.r.t. the i-th argument.
That means, solution curves of the differential equation (5.17b) can be approximated
by discrete solution trajectories of the set of algebraic equations. In other words, for
given control values uk, equation (5.18) provides a time stepping scheme for the sim-
ulation of the mechanical system which is called a variational integrator (cf. [141]).
Since these integrators, derived in a variational way, are structure-preserving, impor-
tant properties of the continuous system are preserved (or change consistently with
the applied forces), such as symplecticity or momentum maps induced by symme-
tries (e.g. the linear or angular momentum of a mechanical system). In addition,

12 Confere e.g. [140] for a general introduction into the theory of mechanical systems, in
particular regarding Lagrangian mechanics.

13 Simply speaking, a manifold is a generalization of the vector space R
n including e.g. tori,

but readers non-familiar with differential geometry can replace Q by R
n and T Q by R

2n

in the following.
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Fig. 5.36 Space mission
design: Pareto optimal tra-
jectories for minimal control
effort and time-minimal
transfer between period or-
bits near sun and earth. Red:
high mission times, low
control effort. Green: small
mission times, high control
effort. Blue and magenta:
solution between the first
two (Figure from [152]).
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their long-time energy behavior is excellent. Therefore, variational integrators can
be used with relatively large step sizes. However, rather than solving initial value
problems, an optimal control problem has to be solved, which involves the mini-
mization of a cost functional J(x,u) =

∫ t f
0 C(x(t),u(t))dt. Thus, in the same man-

ner, an approximation of the cost functional generates the discrete cost functions Cd

and Jd , respectively. The resulting nonlinear restricted optimization problem reads

min
qd ,ud

Jd(qd ,ud) = min
qd ,ud

N−1

∑
k=0

Cd(qk,qk+1,uk) (5.19)

subject to the discrete forced Euler-Lagrange equations (5.18) together with dis-
cretized boundary and (in-)equality constraints for states and/or controls. Thus, the
discrete forced Euler-Lagrange equations serve as equality constraints for the opti-
mization problem which can be solved by standard optimization methods like SQP
(cf. e.g. [76]). In [151], a detailed analysis of DMOC resulting from this discrete
variational approach is given. The optimization scheme is symplectic-momentum
consistent, i.e. the symplectic structure and the momentum maps corresponding to
symmetry groups are consistent with the control forces for the discrete solution
independent of the step size h. Thus, the use of DMOC leads to a reasonable ap-
proximation of the continuous solution, also for large step sizes, i.e. a small number
of discretization points. Furthermore, constraints of mechanical systems can be in-
cluded in DMOC such that it is applicable to constrained systems, which often occur
in multi-body dynamics ([134]).

5.3.6.2 Extensions and Applications

Typically, in particular for self-optimizing systems, there is more than one single
objective that has to be optimized, hence we are faced with multiobjective optimal
control . Problems of this kind, i.e. with a vector J(x,u) = (J1(x,u), . . . ,Jm(x,u))
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Fig. 5.37 Switched reluctance drive: Optimal profile for current and voltage computed by
DMOC. Note that the constraint of a fixed motor torque is fulfilled for every discretization
point. The profile is combined with a feedback controller. It can be followed at the real test
bench very well as shown in the right plot (original Figure from [63])

of cost functionals can be solved by a combination of multiobjective optimization
methods and optimal control techniques. Since the discretization of the differential
equations, e.g. by DMOC as described above, leads to a high-dimensional multiob-
jective optimization problem (i.e. a high number of optimization parameters qd ,ud),
image space oriented methods should be applied. In [152], this method has been ap-
plied to an optimal control problem in space mission design, cf. Fig. 5.36. Here,
the concurring objectives are the control effort and the transfer time, which should
both be simultaneously minimized. Thus, the solution of the multiobjective optimal
control problem results in a number of very different Pareto optimal trajectories. A
mission designer would now choose one of the correspondent control trajectories
dependent on current aims and restrictions on the mission for a thorough analysis
and further optimization with more detailed models.

As proposed above, the DMOC method is not restricted to purely mechanical
systems since many electrical (sub)systems can be modeled by Lagrangian functions
as well . In the course of the CRC 614, the optimization of the Hybrid Energy
Storage System (cf. Sect. 5.3.1 and Sect. 2.1.5) has been repeated with additional
(final) constraints on the optimal control problem. Furthermore, DMOC has been
successfully used for the optimal control of a switched reluctance drive (cf. [63]
and Sect. 2.1.1 above for a description of the test bed). The optimal current profiles
have to fulfill two aims: maximizing the efficiency of the engine and guaranteeing
a constant torque of the drive. In this application, the torque restriction is modeled
as an equality constraint and the resulting single objective optimization problem is
solved by DMOC. The resulting feedforward control is combined with a feedback
controller. In Fig. 5.37, results are shown from the successful application to the real
test bed.
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Fig. 5.38 Hybrid single mass oscillator: in the two layer optimization approach, a multiob-
jective optimization problem arises since both the control effort and the time of the maneuver
(into the equilibrium position) have to be optimized. The resulting Pareto front is shown with
an example solution for the resulting hybrid position trajectory (Subimages from [61])

Hybrid mechanical systems are described by continuous-time dynamics in com-
bination with discrete events to model e.g. impacts, varying topologies of interact-
ing robots, or a changing environment. From the perspective of optimal control, the
switching times at which the discrete events occur, become new design variables.
The optimal control of hybrid systems is an active field of research. Promising
results can be achieved by approaches that split the problem up into several layers
(cf. Fig. 5.38 and [61] for a detailed discussion). It is then possible to solve ordinary
optimal control problems on a lower layer with well established methods while on
the upper layer, the switching time optimization can be performed with other appro-
priate techniques. Figure 5.38 shows an example with a multiobjective optimization
of a hybrid single mass oscillator, which has to be steered into its equilibrium posi-
tion. Switching time optimization as a specific, isolated optimal control problem for
hybrid systems has been studied in [60].

The optimal control method DMOC has been extended in several directions to
improve performance and applicability even further. For the computation of gra-
dients that are used for the optimization, e.g. by the SQP algorithm, DMOC can
be combined with ADOL-C [153], a tool for algorithmic differentiation. In appli-
cations where subsystems with different time scales are interacting, the variational
integrator can be extended to a multirate integration scheme [132, 133] that allows
for an accurate integration with acceptable computational effort for combined fast
and slow dynamical systems. The accuracy of numerical integration and thus of op-
timal solutions as well depend on the order of the approximation scheme. Therefore,
higher order schemes can be used for the discrete Lagrangian [34].
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Direct optimal control methods are based on local optimizers for the nonlinear
optimization problem and therefore, they strongly rely on good initial guesses. Since
minimal control effort is often a desired aim, it is a fruitful approach to use inherent
dynamical properties of the uncontrolled system to generate such initial guesses. In
space mission design, it has become state of the art to use trajectories on the system’s
invariant manifolds to design energy efficient control maneuvers (cf. e.g. [45, 146,
199] for applications using DMOC as the optimal control method). This approach
can be used for technical systems as well, in [64] it is shown that, compared to
black box optimizations with simple initial guesses, better (local) optima can be
found with the help of initial guesses on the stable manifold of the final equilibrium
position for a planar double pendulum. In more detail, this idea is explained in the
broader context of motion planning with motion primitives in the following section.

5.3.7 Motion Planning with Motion Primitives

Kathrin Flaßkamp and Sina Ober-Blöbaum

Solving optimal control problems which arise in real applications is a challenging
task for current numerical techniques. Since many optimal control techniques are
based on local optimization methods, they strongly depend on good initial guesses
to provide (local) optimal solutions which are also globally efficient. Motion plan-
ning with motion primitives – going back to [66] – tackles these difficulties with
a two phase approach. In the first step, several short pieces of simply controlled
trajectories are collected in a motion planning library, typically represented as a
graph. These motion primitives can be sequenced to longer trajectories in various
combinations. In the second phase, for a given optimal control problem, the optimal
sequence of motion primitives is determined from the motion planning library. Such
motion primitives originate from inherent symmetries, i.e. the dynamical system is
equivariant with respect to certain transformations and certain system properties turn
out to be invariant with respect to these symmetries14. Typically, mechanical sys-
tems naturally exhibit symmetries as translational or rotational invariance. By con-
sequence, controlled maneuvers, that have been computed for a specific situation,
are suitable in many different (equivalent) situations as well. Recently (cf. [62]), this
motion planning technique has been extended by a new kind of primitives, namely
trajectories on (un)stable manifolds of the natural system dynamics. In space mis-
sion design, such trajectories on invariant manifolds have already been successfully
used (cf. e.g. [146]). This approach is especially tailored to the computation of en-
ergy efficient (minimal control effort) solutions, which is often a major objective for
technical systems.

We formally introduce symmetry and motion primitives for Lagrangian sys-
tems (cf. 5.3.6), although the basic approach holds for general dynamical systems
(cf. [66]). Assume that a Lie group G is acting on the configuration manifold Q by

14 Again, we recommend [140] for an introduction to the role of symmetries in mechanical
systems.
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a so called left-action Φ : G×Q → Q (Φ(g, ·) =: Φg is a diffeomorphism for each
g ∈ G). It can be lifted to the tangent space: ΦT Q : G×TQ → T Q for (q,v) ∈ T Q
given by ΦT Q

g (q,v) = T (Φg) · (q,v). Then, symmetry corresponds to the invari-

ance of the Lagrangian under the group action, i.e. L ◦ ΦT Q
g = L for all g ∈ G.

In other words, two trajectories π1 : t ∈ [ti,1, t f ,1] �→ (q1, q̇1,u1)(t) and π2 : t ∈
[ti,2, t f ,2] �→ (q2, q̇2,u2)(t) are equivalent, if it holds that (1) t f ,1 − ti,1 = t f ,2 − ti,2,
both have the same time duration and (2) there exists g ∈ G,T ∈ R, such that
(q1, q̇1)(t) = ΦT Q

g ((q2, q̇2)(t −T )) and u1(t) = u2(t −T )∀t ∈ [ti,1, t f ,1]. All equiva-
lent trajectories can be summed up in an equivalence class, the motion primitive. The
number of candidates for the motion planning library can be immensely reduced by
exploiting the system’s invariance, i.e. only a single representative is stored that can
be used at many different points when transformed by the lifted symmetry action.
Induced by the symmetry, trim primitives are a special class of motion primitives.
They are constantly controlled solutions which are generated solely by the symme-
try action, i.e. (q, q̇)(t)=ΦT Q(exp(ξ t),(q0, q̇0)),u(t)= u0 = const.∀t ∈ [0,T ] with
ξ ∈ g, the corresponding Lie algebra and exp : g→G,ξ �→ exp(ξ )∈ G (cf. [140] for
an introduction to mechanical systems and symmetry from a differential geometric
perspective). Trim primitives can be found analytically or numerically based on the
symmetry action. For mechanical systems, they are identical to relative equilibria
and can be computed by symmetry reduction procedures (cf. [62]).

The second type of primitives, trajectories on (un)stable manifolds are computed
for fixed points (or equilibria) x̄ = (q̄,0) of the uncontrolled system. The local sta-
ble manifold for a neighborhood U of x̄ is defined as W s

loc(x̄) = {x ∈U |FL(x, t)→
x̄ as t → ∞ and FL(x, t) ∈ U ∀t ≥ 0}. Then, the global stable manifold can be ob-
tained by the union of the (pre)images of the Lagrangian flow FL. A stable manifold
consists of all points in state space flowing towards the equilibrium. The correspond-
ing trajectories are promising candidates for energy efficient steering maneuvers to
operation points which are often the fixed points. The unstable manifold consists of
all points that show the same behavior in backward time. Their existence is guaran-
teed by the stable manifold theorem [84]. In general, the (un)stable manifolds have
to be computed numerically, e.g. by set-oriented methods [44].

As a third class of primitives, short controlled maneuvers between trims and ma-
nifold trajectories are required such that the primitives can be sequenced. They can
be computed by DMOC (cf. Section 5.3.6) for example. The computed primitives
are stored in a library. Then, for a specific control problem, i.e. with initial and
final points on trims, e.g. operation modes of mechanical systems, in the library it
is searched for the optimal sequence of primitives. This can be done based on the
graph representation, the so called maneuver automaton (cf. [62, 66]). In principle,
this second step could be even performed in real time, when using appropriate graph
search methods.

We illustrate the approach for a spherical pendulum. Its Lagrangian is given by
L(ϕ , θ̇ , ϕ̇) = 1

2 mr2(ϕ̇2 + θ̇ 2 sin2(ϕ))−mgr(cos(ϕ)+ 1) and we assume forcing in
both directions. The system is symmetric with respect to rotations about the vertical
axis. Trims are horizontal rotations with constant velocity. Contrarily, the (un)stable
manifolds of the upper equilibrium are purely vertical motions. For an example
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Fig. 5.39 Sphercial pendulum: in the motion planning with motion primitives approach, trim
primitives are horizontal rotations while orbits on manifolds are purely vertical motions. An
optimal sequence has been computed by DMOC and used for a post optimization (“DMOC
solution”, original subimages from [62])

control problem, the resulting optimal sequence is shown in Fig. 5.39 that consists
of five motion primitives: the initial and final trim, two connecting maneuvers, and
a trajectory on the stable manifold in between. The sequence has been used for a
post-optimization by DMOC.

5.3.8 Hierarchical Hybrid Planning

Bernd Kleinjohann, Lisa Kleinjohann, and Christoph Rasche

Hybrid Planning [3] is based on hierarchical modeling presented in Sect. 5.3.3 and
Pareto points calculated by a multiobjective optimization presented in Sect. 5.3.5.
Taking the RailCab system (cf. Sect. 2.1) into account, several constraints have to be
considered when moving a single RailCab from an initial position to a given goal po-
sition. One constraint is that the RailCab has only limited energy resources. To take
such constraints concerning discrete as well as continuous system parameters into
account, an overall plan for the movement of the RailCab must be computed. The
term hybrid planning [2] denotes the integration of discrete and continuous domains
in the planning approach. Initially a plan is created offline. It is updated continuously
during the movement of the RailCab to ensure that, e. g. environmental influences,
like wind do not lead to a violation of the given constraints. Hierarchical hybrid
planning [56] denotes a planning approach, which does not only combine discrete
and continuous planning but also considers the system’s hierarchical decomposition
into its single parts (cf. Sect. 5.3.3) during planning.
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5.3.8.1 Principle

A plan is computed in order to ensure that a RailCab moves from its initial position
to its destination while the requirements are taken into account by the planner. Dif-
ferent parts of a traveling route have diverse properties, like, e. g. slopes which have
to be modeled. Thus, to actually create such a plan the complete route between the
initial and the end position of the RailCab is subdivided into single track segments.
In the first step an initial plan is computed consisting of different parameter settings
for the single parts of the system for each track segment. These parameter settings
build a discrete dimension of choice for the planner. In the case of the RailCab sys-
tem considered here several objectives regarding for instance values like passenger
comfort and energy consumption, which are in conflict have to be taken into ac-
count. For handling such conflictive objectives a multiobjective Pareto optimization
is used. The Pareto optimization calculates a Pareto front determining optimal trade
offs between parameter settings for each track section of the selected traveling route.
Then, the offline planner selects a single Pareto point from the Pareto front for each
section. Due to the actual system or environment conditions like wind, abrasion, etc.
the forecasted results which selected parameter settings of the plan should lead to,
might not be reached. Such deviations between the plan and the actual conditions
are detected by continuously monitoring several values that determine the system
state, allowing to initiate replanning by the online planner. Fig. 5.40 shows the com-
ponents used to implement this approach.

As described in detail in [56] the planner is equipped with overall external objec-
tives that need to be fulfilled at any time. In order to forecast the future development
of continuous values determining the system state, the planner initiates a simulation
with the actually measured system and environment state for the considered actions.
The result of the simulation is a number of continuous value traces that are evalu-
ated according to the constraints and objectives. The constraints are used to rule out
an action, e.g. if the maximum peak power is too high or the comfort value used by
the system is too poor during the simulation. Otherwise the action is considered as
possible alternative by the planner. To finally decide for a possible alternative it is
further evaluated with respect to the external objectives, for instance regarding the
mean comfort or energy consumption of the overall section.
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5.3.8.2 Methodology

One important issue of a hierarchical hybrid planner is the computation of a multi-
level hierarchical configuration of system parameters during system operation. This
configuration is used to improve the offline plan to take additional constraints or
external objectives into account when different environment conditions or track seg-
ment properties must be considered.

The planner takes its input from the hierarchical optimization (cf. Sect. 5.3.2)
and the hierarchical modeling (cf. Sect. 5.3.3). The results of these components are
abstract models of the system parts and a set of Pareto-optimal parameter settings.
As these components are designed in a hierarchical fashion, the outputs are precal-
culated on different hierarchical levels.

As an example for illustrating the methodology the Active Suspension Module
of the RailCab (cf. Sect. 2.1.4) may serve. The active suspension system of the
RailCab can be partitioned and structured hierarchically according to the function
of each module. The hierarchy consists of two levels. On the upper level, the entire
system which is in charge of the active suspension is considered. Beneath, on the
lower level, there are two actuator groups realizing the active suspension by ensuring
correct deflections of the fiberglass reinforced polymer springs (cf. Sect. 2.1.4).

The planner computes a multilevel configuration of the parameters of the active
suspension system for each track segment based on the inputs described before. If
the constraints could not be met, the planner adjusts only the lower level settings to
reach the current goals, without affecting the upper level settings. Different objec-
tives can be handled by different hierarchical levels.

During the movement of a RailCab, which executes a given plan, a monitoring of
the current system behavior by measuring values like energy consumption and given
comfort takes place. The measured data is compared to the data, which were taken
into account to compute the initial plan. If the difference between this data is too
high, a replanning is necessary. Hence, during system movement alternative Pareto-
optimal parameter configurations have to be selected, which take into account these
deviations. For this purpose the simulation component is used to predict the system
behavior resulting from alternative parameter settings for the next track sections.
These settings build a discrete dimension of choice for the planner and can be used
for a predictive planning of the next track sections.

5.3.8.3 Application and Evaluation

The approach was evaluated using the Active Suspension Module (cf. Sect. 2.1.4),
which is a part of the RailCab. The values for energy and comfort are abstract values
without units of measurement. The test track consists of seven track sections. An
overall energy consumption with the value 10600 and a comfort constraint for each
track section of 49 was given. The two constraints, energy consumption and comfort,
are in conflict because a higher comfort leads to a higher energy consumption. Two
different types of planning were compared. They also considered the influence of
changing environmental conditions, in this case represented by varying crosswind
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Fig. 5.41 Results of a test
run. As higher the energy
consumption is as higher is
the value. A higher comfort
is represented by a lower
value.
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settings. First, a hybrid planning was performed, which led to a resulting plan P1.
Thereafter, the hierarchical hybrid planning approach was executed using the same
constraints on the same test track. While the non-hierarchical approach was not
always able to reach the constraints, the hierarchical approach computed a plan P2

in which each constraint was always reached with only small increases in energy
consumption. A more detailed evaluation of the results is represented in [56].

The results in Fig. 5.41 show the energy values and comfort values as well as the
crosswind settings on each track segment.

The results show that only the hierarchical approach was able to consistently
meet the comfort constraints by finding a feasible plan. The non hierarchical plan-
ner violated the constraints at the track segments 2− 4 and 6− 7. The reason is,
that the non-hierarchical planner did not have enough options to consider these con-
straints. The hierarchical planner can change the Pareto points influencing the lower
level parts, i.e. the two actor groups realizing the active suspension as mentioned
above. In contrast, the non-hierarchical planner can only change to another Pareto
point for the overall system in order to satisfy the given constraints. This leads to
different and sometimes inadmissible configurations. The concrete values selected
by the planners P1 and P2 are shown in Table 5.2.

Table 5.2 shows that changes on the upper level have a much higher effect on
the resulting values than changes on the lower level. Changes on the lower level
also have an effect when both planners choose the same Pareto points for each track
segment on the upper level. Only the hierarchical approach was able to meet the
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constraints due to its ability to change the Pareto points influencing the lower level
parts.

The results show that the hierarchical planning can use a more precise config-
uration to match the given constraints. Nevertheless, improvements regarding one
parameter always imply impairments regarding other conflictive parameters, due to
the Pareto-nature of the available planning alternatives.

Table 5.2 Energy and comfort values.
Maximum of Total Energy 28.300. Comfort
Constraint 39

Energy Comfort
P1 P2 P1 P2

section1 4812.4 4940.23 35.14 34.87
section2 2930.19 3634.37 40.15 38.09
section3 2920.29 3625.22 40.07 38.02
section4 3001.84 3714.25 40.7 38.62
section5 4823.7 4952.7 35.23 34.97
section6 3001.84 3714.25 40.7 38.62
section7 2920.83 3625.69 40.08 38.02

amount 24411.09 28206.71 272.07 261.21

5.3.9 Statistical Planning

Bernd Kleinjohann, Lisa Kleinjohann, and Christoph Rasche

Taking statistical data into account to compute plans for mechatronical systems re-
sults in a self-optimizing behavior. This is due to the fact that observations of previ-
ous system behavior are used to improve the so called policy describing the action
selection strategy of the system. This principle of learning from observations is used
to construct an intelligent self-optimizing system that is able to fulfill several prede-
fined tasks in dynamically changing environments.

5.3.9.1 Principle

The statistical planning approach for mechatronic systems described in this sec-
tion relies mainly on a statistical data base and rewards; it applies the principles of
Reinforcement Learning. The environment is modeled as a discrete finite non deter-
ministic Markov decision process as described by Sutton and Barto (1998) [197].
The mechatronic system measures its current state, selects an action according to a
given policy and performs this action. This leads to a transition into a new state and
generates a reward signal. Finally, the mechatronic system observes the new state
and the reward and compares it with the previous state and the action performed.
Based on this comparison the policy is adapted. The objective is to maximize the
reward.
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5.3.9.2 Methodology

One requirement is that the statistical planning, i. e. the creation of statistical data
and the planning, must be done online. This requirement arises since it is hard to
create a statistical data base for a real world system where model values appropri-
ately reflect the properties of the environment in which the system works. Hence,
the algorithms used for statistical planning must take into account the limited com-
putational power of the mechatronic system.

One algorithm recently investigated by several researchers, which is able to fulfill
the requirements is Q-Learning [205]. It is an off-policy temporal difference learn-
ing algorithm and uses an action-value-function whose update can be expressed
recursively. This allows the online execution of the algorithm. The action-value-
function Q(s,a) is used to compute the benefit, if a given action in a given state is
executed while a fixed policy follows. This action-value-function is similar to the
cost functionals presented in Sect. 1.4.1.

Qt+1(s,a) = Qt(s,a)+α
[

rt+1(s,a)+ γ max
a′

Qt+1(s
′,a′)−Qt(s,a)

]
(5.20)

Equation 5.20 is a so called sample backup update of the action value function
where r(s,a) specifies the reward for taking action a in state s, α denotes a step
size parameter and γ a discounting factor used to handle continuous tasks. The step
size parameter controls the learning rate while the discounting factor determines the
importance of future rewards. Q(s,a) is the quality of a state-action combination.
One drawback when using this approach for statistical planning is that it needs a
large number of episodes before it converges making it very time consuming. An
episode is a single run from the initial configuration until s′ is a final state.

To overcome this problem, the Prioritized Sweeping algorithm [147] can be
used. The main idea is that a model of the environment is maintained. In this context
the term model means everything the mechatronic system can use to predict the
reaction of the environment when a certain action is performed while the system
is in a certain state. In the described case it means that after the performance of
an action and updating the action value function, several steps are simulated using
the stored model of the environment to predict the outcome. This can speed up the
approach by a factor of several magnitudes compared to the classical Q-Learning
approach. Additionally, convergence to the optimal policy can be guaranteed, as
shown by Li and Littmann (2008) [136].

5.3.9.3 Platforms and Applications

The approach was implemented on the miniature robot platform BeBot [99] (cf.
Sect. 2.2) in order to improve the behavior for the application presented in Sect.
2.2.4. The main sensor used to measure the current state is the camera of the Be-
Bot. Moreover, in order to use classical learning algorithms like Q-Learning, a few
assumptions concerning the state space of the environment were made. The state
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space is assumed to be discrete and of finite size. In addition, a restriction of the
set of possible actions took place and the mapping of abstract actions to the actual
motor commands was fixed. The used state space and action set is based on Asada
et al. (1995) [11].

Image processing is done directly on the BeBot using a color based image seg-
mentation and feature classification approach [111]. The data extracted from the
images are then used to determine the current state of the BeBot, for instance, its
(discretized) distance to objects in its environment, which could either be goals it
has to reach or obstacles it has to avoid. This state information is further used as
input of the behavior module, i. e. as input of the statistical planning algorithm.

Practical evaluations of this approach revealed, that noisy images and high sen-
sitivity of the color based feature extraction to illumination changes often lead to
the detection of abrupt state changes of the system, e.g. since the detected objects
or their positions vary between subsequent images. Another problem is that using
the camera a BeBot is not able to perfectly determine its current state. Often several
states can be possible due to the limited information the BeBot receives through the
use of its camera. The problems were solved by considering a so called hidden state
in the model. These models are called partially observable Markov decision process
(POMDP) [143]. In POMDPs it is assumed that the actual state (hidden state) of the
underlying Markov decision process is not directly observed but the given observa-
tions appear with a certain probability in each state. Rather than always having a
fully observable state, a belief state probability distribution over all the states has to
be maintained. The probability for each state s to be the belief state can be computed
recursively, i. e. based on the last belief state, the last action a, the current observa-
tion o, and the transition and emission probability parameters of the model as shown
in Eq. (5.21).

bt+1 (s j) = Pr
(
s j|o,a,bt)= Pr(o|s j)∑si∈S Pr(s j|si,a)bt (si)

∑sk∈S Pr(o|sk)∑si∈S Pr(s j|si,a)bt (si)
(5.21)

The parameters of the model can be computed offline using a modified version
of the Baum-Welch algorithm [143].

This leads to a belief state which is no longer discrete. That makes it impossible
to find an optimal policy using the described algorithms. Solving POMDPs directly
needs a high computational effort. So, only the most likely state and output are
considered to be the actual hidden state. The BeBot then takes the selected state as
its current state and uses it as the basis to determine its next action. Based on this
method only the underlying MDP must be solved using Q-Learning or Prioritized
Sweeping as described above.
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5.3.10 Behavior Planning in Nondeterministic Environment

Philip Hartmann

In order to increase the dependability of self-optimizing mechatronic systems, cog-
nitive planning components with enhanced information processing are also inte-
grated into the system. These components allow mechatronic systems to plan their
behavior in order and fulfill individual tasks independently and proactively. A single
task represents a sequence of actions executed by the mechatronic system within a
limited time frame in order to reach a given goal state. Along with bare fulfill-
ment of that task, i.e. finding an arbitrary sequence of actions to reach the desired
goal-state, planning tries to minimize or maximize objectives, such as minimizing
energy consumption. For this reason, actions are only selected if their expected re-
sults fit the desired objectives. With respect to dependability, it is possible to create
alternative plans for critical situations before they arise, i.e. for particular environ-
mental or low energy situations. However, this may decrease the availability of the
mechatronic system and the reliability of subsequent task fulfillment. Furthermore,
behavior planning considers the continuous and nondeterministic environment of
the system (cf. [118]).

When modeling a planning domain for behavior planning of intelligent mecha-
tronic systems (cf. [118, 119, 125]), the main challenge is to map the partial function
solutions onto actions within the framework of PDDL (Planning Domain Definition
Language, cf. [65]). Depending on the amount of detail desired when modeling
these functions, this approach results in a higher or lower abstraction of actions. In
case the of behavior planning, the executed partial function solutions are called oper-
ation modes. Thus, a planning problem for mechatronic systems can be formulated
as follows (adapted from [119]):

• OM is a finite set of available operation modes,
• S is a finite set of possible system states, and
• s ∈ S is a state vector with s(i) ∈ R for the i-th component.

Furthermore, for each operation mode om ∈ OM:

• precom := {(xlower < s(i)< xupper)|xlower,xupper ∈R} is the set of preconditions
which must be true for the execution of operation mode om and

• postom is a set of conditional numerical functions describing the change of in-
fluenced state variables. A condition is a logical expression (conjunctions and
disjunctions) of comparison operations; if a condition is true, the result of the
corresponding numerical function is assigned to state variable in the next state s′
of the plan [119].

A specific planning problem is the finding of a sequence of operation modes
which describes a transition from an initial system state si ∈ S to a predetermined
goal state sg ∈ S. Thus, a single task of a mechatronic system is given as a 2-tuple
O = (si,sg). A solution to the planning problem can be determined by applying a
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state space search algorithm (cf. [74]), for example. The optimal solution (e.g. mini-
mum of energy consumption) can be found by computing the specific solutions with
respect to the given System of Objectives. For this purpose, Ω is a set of objectives
and f : S×Ω → [0,1] is a function that indicates how well the execution of an op-
eration mode in a given state satisfies the objective. Using the weighted sum of the
objectives, the optimal sequence of operation modes can be determined (cf. [119]).

During runtime in a non-deterministic environment with continuous processes,
behavior planning has to include methods for handling resulting problems. For ex-
ample, Klöpper (2009) (cf. [118]) uses a modeling approach to integrate continuous
processes based on optimal control and continuous multiobjective optimization (also
cf. [73]), as well as estimation obtained by fuzzy approximation. To manage plan-
ning under uncertain conditions, different techniques can be combined in a hybrid
planning architecture (cf. [119]).

Fig. 5.42 Hybrid planning architecture (source: [119])

Figure 5.42 shows the hybrid planning architecture with the corresponding com-
ponents for planning, execution and monitoring of plans. The total planning is di-
vided into three separate sections: offline, just-in-case and online planning. The of-
fline planning represents a planning process where, initially, a deterministic and
optimal plan in view of the objectives is fully created before execution. The result-
ing plan is used in the just-in-case planning to do a probabilistic analysis for plan
deviations. The present and deterministic plan is examined for estimated variances
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in order to proactively generate conditional branches, with alternative plans for crit-
ical system conditions. A threshold specifies the maximum probability of state de-
viations which would result in a generation of conditional branches (see [125], in
particular also [125] and [118].)

For this purpose, an additional stochastic planning model is formulated based on
the deterministic planning model. This consists of stochastic states sp with |sp|= |s|,
where range(sp(i)) → P(R) is the values range and distribution(sp(i)) the proba-
bility distribution of the state variable sp(i) and a stochastic variant of the operation
modes. Let inom

s ⊆ preom be a subset of input variables and outom
s ⊆ postom a subset

of output variables. For each output variable o∈ outom
s , a Bayesian network (cf. [20])

bnom
o is created to formulate the stochastic relation (cf. [118, 119]; for a concrete ex-

ample of creating a stochastic model cf. [125]). As a result, it is now possible to use
the just-in-case-planning to generate alternative plans for situations that could occur
with high probability during operation.

The online planning (cf. Fig. 5.42) serves as a fallback mechanism; it selects the
optimal operation mode for the next execution step. Thus, operation in previously
unplanned situations is guaranteed. A simulation of the continuous system behavior
will check whether the current action of the active plan is executable under the given
environmental conditions. If this is not possible, online planning is necessary, e.g.
for a situation with extreme environmental influences such as heavy rain. While
completing the execution of previously planned operation modes, a comparison of
planned and actually reached system states is carried out.

A process for plan updating will check whether a pre-determined plan is avail-
able or whether a plan modification by the online planning is necessary. This will
guarantee the immediate availability of the next operation mode (cf. Fig. 5.42).

The just-in-case and online planning are implemented as anytime algorithms (for
the usage of anytime algorithms in intelligent systems cf. [214]). The planning pro-
cess can be interrupted at any time to obtain a result, but with increasing time for
calculations it provides a higher quality of result, as it is possible to generate more
branches and to reach a higher depth of planning.

The dependability our type of system can be influenced by various factors. A
major factor is the availability of energy, as this is crucial for the operation of the
system. To ensure the dependability of the mechatronic system, it is essential to
use the energy storage in a valid range and in particular to continuously observe
the state of charge. Energy Management can use behavior planning to proactively
schedule future energy demands according to the fulfillment of the current task,
which increase the dependability of the mechatronic system (cf. [125]). Table 5.3
shows the values for operation modes derived from the multiobjective optimization
from the Active Suspension Module of the RailCab system.

The experiments described here were intended to allow to evaluate three hypothe-
ses (cf. [119]). One of these hypotheses in connection with the dependability was
that a lower threshold probability and a higher number of alternative plans increases
the reliability of the just-in-case planning ( [125]). The simulated experiments in-
cluded four scenarios (source [119]):
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Table 5.3 Values for f1 (weighted average body acceleration in m/s2) and f2 (energy con-
sumption in ws) of operation modes derived from the multiobjective optimization of the Ac-
tive Suspension Module. (source: [119])

OM Objective Track type
function I II III IV V VI VII VIII IX X

a f1 0.117 0.233 0.350 0.466 0.583 0.699 0.816 0.932 1.049 1.166
f2 196 393 589 786 982 1179 1375 1572 1768 1965

b f1 0.152 0.304 0.457 0.609 0.761 0.913 1.066 1.218 1.370 1.522
f2 165 329 494 659 823 988 1153 1317 1482 1647

c f1 0.192 0.385 0.577 0.770 0.962 1.155 1.347 1.540 1.732 1.925
f2 142 283 425 567 709 850 992 1134 1275 1417

d f1 0.224 0.449 0.673 0.897 1.122 1.346 1.570 1.794 2.019 2.243
f2 122 245 367 489 612 734 856 979 1101 1224

e f1 0.262 0.523 0.785 1.047 1.308 1.570 1.832 2.093 2.355 2.617
f2 104 208 313 417 521 625 730 834 938 1042

f f1 0.298 0.595 0.893 1.191 1.488 1.786 2.084 2.381 2.679 2.977
f2 87 173 260 346 433 520 606 693 779 866

g f1 0.331 0.662 0.994 1.325 1.656 1.987 2.318 2.649 2.981 3.312
f2 69 138 206 275 344 413 482 550 619 688

h f1 0.375 0.749 1.124 1.499 1.873 2.248 2.623 2.997 3.372 3.747
f2 50 99 149 199 248 298 348 398 447 497

i f1 0.435 0.870 1.305 1.739 2.174 2.609 3.044 3.479 3.914 4.349
f2 27 55 82 110 137 164 192 219 247 274

1. (±0%): The energy consumptions drawn from track networks were not changed
during simulation.

2. (±15%): The energy consumptions drawn from track networks were either de-
creased or increased by a random value up to 15%.

3. (+15%): The energy consumptions drawn from track networks were always de-
creased by a random value up to 15%.

4. (−15%): The energy consumptions drawn from track networks were always in-
creased by a random value up to 15%.

The results are shown in Fig. 5.43 (for a detailed description of the simulation
parameters and the executed scenarios cf. [119]) When regarding the percentage of
failed plan execution during the simulation runs for different scenarios, adjusting
the two parameters threshold values and number of alternative plans reduces the
number of failed plans significantly.

A detailed explanation of behavior planning for mechatronic systems can be
found in [119, 125]. In particular, [125] gives a deeper understanding of the prob-
abilistic plan structure used in the analysis of the just-in-case planning. The ba-
sic methods were originally published in the dissertation by Klöpper (2009) [118],
which may also be a good starting point for further information.
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Fig. 5.43 Percentage of failed execution depending on threshold probability and number of
available alternative plans; (a) Return to Standardplan (±0%); (b) No Return to Standardplan
(±0%); (c) Return to Standardplan (±15%); (d) Return to Standardplan (+15%) (source:
[119])

5.3.11 FIPA Conform Cross-Domain Communication

Philip Hartmann

Another advantage of self-optimizing systems is given by the possibility for intelli-
gent communication of individual subsystems. The FIPA specifications (cf. [106])
provide a suitable way to implement cross-domain communication for autonomous
mechatronic systems. To enable a more sophisticated approach the further consid-
erations will include a requirement scenario for the RailCab system. A production
facility is pursuing a just-in-time procurement strategy (JIT). To achieve this strat-
egy, the transportation of goods is done by the RailCab system. For this purpose the
production facility has access to a data base of RailCabs, which are able to deliver
goods in the given time. Because of the RailCab’s ability to work in a team, there
is the possibility to take a closer look at complex voting scenarios to determine
a suitable RailCab for specific orders. Both the production facility and the Rail-
Cab system are modeled as multi-agent systems with two different domains repre-
sented by ontologies (cf. [101]). The main goal of this section is to show a principal
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feasibility for the implementation of a FIPA based communication across the given
domain boundary. First, an exemplary overview of the ontologies, that are available
to the production facility (domain 1) and the RailCab system (domain 2) is pro-
vided. In this approach an interface ontology forms the basis of the cross-domain
communication. In addition the communication procedure of the agent interaction,
as described by the FIPA standard, is outlined in an FIPA conform auction between
the production facility and RailCabs within the JIT radius. The JIT radius forms a
set of suppliers. They have in common, that they are able to deliver the required
goods within the given time. Therefore, the goal of the auction is to identify the
lowest priced RailCab. During the auction RailCabs may occur as a team. Negotia-
tion and voting procedures enables each RailCab to submit an optimal offer for the
team.

5.3.11.1 T-Box Design

The following two ontologies are designed to demonstrate in which way the T-Box
design of underlying ontologies can be done. It is important to point out, that there
is a so called Open World Assumption given. This implies the need to explicitly rule
out unwanted facts within the ontology design. Another aspect of central importance
for the successful deployment of ontologies is their integration. Unfortunately, this
is not trivial in general. Figures 5.44 and 5.45 show the conceptual approach to
be proportionate to the problem, based on [19] and [12]. Figure 5.44 shows that a
distinction is done within the facility (domain 1) between the following levels:

• The Foundational Ontology includes the abstract concepts of time, space, object,
event, etc. As well as the concepts of major priority for this context, as there
are transporter, product and package. It is desired that only one Foundational
Ontology exists within this design, which serves as a starting point for mod-
elling the production-side and the RailCab-Interface-Ontology. In this manner,
the other ontologies can be seen as specializations and by thus allow integration.
The Foundational Ontology forms a key specification that allows more special-
ized ontologies to model redundant concepts.

• The RailCab-Interface-Ontology provides the communication interface to the
RailCab agents.

• The domain1-ontology represents the entire ontology structure, that is available
for domain 1.

Figure 5.45 provides an overview of the integration approach for the mentioned
ontologies in more detail, with respect to RailCab agent system. It should be noted
that both, the already known Foundational Ontology and the RailCab Interfaceon-
tology can be integrated into the domain2-Ontology in the same way. The ontol-
ogy of the RailCab is similar to the one of the production side in a way, that both
share the concept of the Foundational-Ontology as well as the terms of the RailCab
interface-ontology.
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Fig. 5.44 Three levels of
ontology generalization
regarding the production
facility (domain 1)

foundational-ontology

RailCab interface
ontology

production side
ontology

domain1-ontology

Fig. 5.45 Three levels of
the ontology generalization
regarding the RailCab sys-
tem (domain 2)

foundational-ontology

RailCab interface
ontology

RailCab
ontology

domain2-ontology

5.3.11.2 Communication Flow

In this section, a communication protocol is presented that allows the communica-
tion between the production site (domain 1) and the RailCab system (domain 2).
The shown communication process meets the specifications by FIPA standard. In
this, the production side will request RailCabs to make an offer regarding to the
transportation of a specified delivery. The contacted RailCabs may be associated
with a supplier’s fleet, with teams trying to optimize their company’s profit. This
is realized by distributing received auctions towards their team members as part of
a negotiation. In order to vote for the RailCab which offers the best conditions for
the group to take over the job. The figure 5.46 illustrates the underlying connection
graph of a single RailCab team. Highlighted are the agents RailCab A and C, and
productionside because they are particularly interesting for the further consideration
of the communication sequence.
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It is necessary to find an efficient voting algorithm which allows the RailCabs to
optimize their teams benefit within the given time. The problem is equivalent to the
principle Leader Election problem where agents are differentiated on the basis of a
utility function. Since this may not be clear, however, ambiguity of the function is
not relevant for maximizing the supplier’s earnings.

Fig. 5.46 Arbitrary connec-
tion graph of Railcab units
and the production site

RailCab C

RailCab A

production side

It must also be assumed that not every member of the team can exactly name all
other team members that are relevant for the problem. Since individual data might
not be actual, or communication might not be successful within the given deadline
by the production side (cf. Fig. 5.46). The voting problem in principle is a Leader
Election in a spanning tree with asynchronous communication. It is therefore useful
to take advantage of the FloodMax approach here. Unfortunately, the algorithm is
generally in arbitrary graphs with asynchronous communication is very difficult to
use (cf. [139]). Therefore the algorithm will be used in an optimized form regarding
to the problem.

The voting procedure can be divided into several sub-routines. Figure 5.47 illus-
trates the reaction of the RailCab receiving a call-for-proposal message. It
sends an inform message to all known team members containing the following:

• The original cfp message, that was send from the production site, this contains
all the terms of the offer and a deadline until proposals in the form of proposal
messages have to be done.

• The value that was determined by the utility function, with respect to the auction.
This should be the benefit of the team as the transmitter can achieve if it would
accept the job.

Each receiver of such an inform message has to check weather the utility func-
tion may result in an higher value, with respect to his individual parameters. In case
of a higher value the receiver knows that a better result for it’s team can be achieved
by taking the job, rather than the team member, that has send the inform message.
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production side RailCab A RailCab C

each RailCab will
make a proposal if
deadline is due and 
no better neighbor 
has been found. This
may result in multiple
proposals. But 
results will optimize 
with a looser 
deadline. 

1: cfp

{auction} {voting}

2: inform

3: inform

4: propose

5: accent proposal

Fig. 5.47 Sequence diagram communication flow

If the deadline, given by the production side within the initial cfp message, is
about to expire, each RailCab is in a difficult situation. The potential team bene-
fit can only be optimal if and only if the production side gets proposals from team
members, which can grant a maximal profit. Because the production side itself does
not differ between the optimal and suboptimal team members, because there is no
data nor interest about it, it may choose randomly among the best bids. In order
to maximize the potential team profit, it would be best for those suboptimal team
members to ignore the auction, by this they higher the probabilities of each optimal
team member to gain the job. Figure 5.47 shows an example for the flow of com-
munication, the presentation is limited for reasons of clarity to only three RailCabs
of the same team. It can be seen how the auction is initiated and in which way the
negotiation of RailCab voting takes place.

5.3.12 Preparing Solution Pattern "Hybrid Planning"

Roman Dumitrescu and Harald Anacker

To enable self-optimization in mechatronic systems, planning methods are of high
importance. However, classic planning methods consider state transitions as a black
box, so only the state before and after the transition will be accounted for the self-
optimization process. In mechatronic systems the continuous run of the processes
taking place within the system should not be neglected in order to avoid deviations
during the execution of a plan. As a consequence, mechatronic processes have to be
described in a continuous way, but also needs to be planned. The solution pattern
"Hybrid Planning" is based on the detailed method for the behavior planning in
non-deterministic environment which was explained before. Core of the solution
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applicable methods: applicable methods: applicable methods:
• fuzzy-approximation
• numeric simulation

• no specific methods necessary• partial-order-planning
• forward state-space search
• backward state-space search
• graphbased planning
• real-time heuristic search
• online-planning

to adapt 
behavior
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objectives

to analyze 
the situation

Fig. 5.48 Possible methods fort he implementation of the solution pattern "Hybrid Planning"
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Fig. 5.49 Partial model behavior–activity of the solution pattern "Hybrid Planning"

pattern is the combination of classical planning algorithms with methods for the
approximation of continuous behavior. Regularly the approximation is realized by
a simulation model and an update of the existing plan. The solution pattern could
be realized by different combination of methods that are illustrated in Fig. 5.48.
The different methods are allocated to the different phases of the self-optimization
process.

The main planner is subdivided in two different planners. A discreet planner gen-
erates the offline plan before the system starts running. Depending on the different
usage conditions additional planners are necessary, for example to cooperate with
additional (sub)systems. Figure 5.49 shows the partial model functions of the solu-
tion pattern "Hybrid Planning". A discrete planning method "determines the objec-
tives" to generate plans or partial plans, whereas the continuous parts of the planning
focuses on "to update the situation" for the evaluation of the planning steps. Merging
the results of the continuous planning into the discrete planning results in "adapt-
ing the behavior" whether by "providing the plan" or by "adjusting the physical
process".
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Fig. 5.50 Partial model ac-
tive structure of the solution
pattern "Hybrid Planning"
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Fig. 5.51 Partial model
functions of the solution
pattern "Hybrid Planning"
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The procedure of the hybrid planning takes place in several steps (cf. Fig. 5.50).
As opposed to the three actions of the self-optimizing process, the hybrid planning
has at the beginning four main activities, which can be classified into the three steps
of self-optimization anyhow. Even before the "Analysis of the situation" takes place,
there is an initial offline planning which determines the initial objectives (red ele-
ment in Fig. 5.50). Then, the plan actions are analyzed in simulation by comparing
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the plan with the current situation and the current plan gets modified or rescheduled,
not only by calculating alternative plans, but also potentially by using the data from
the simulation steps. Eventually the currently active plan gets executed.

For the implementation of the functions of the solution pattern "Hybrid Planning"
the following essential system elements and arrangement of them were identified
(cf. Fig. 5.50).

The system elements "offline planning" and "predictive planning" are realizing
the function "to retrieve alternative discrete plan", which is illustrated in Fig. 5.51.
The "online planning" holds the function "to retrieve result matched plan". The sys-
tem element "approximation of continuous behaviors" carries out the functions "to
run simulation", "to retrieve the model" and "to run simulation".

5.4 Dynamic Reconfiguration

Sebastian Korf and Mario Porrmann

When principles of self-optimization refer to the topology and structure of micro-
electronic systems, a reconfiguration of the system architecture or of the dedicated
system components is required. In this context, reconfigurability means the possibil-
ity to change the functionality or interconnection of hardware modules in microelec-
tronic systems before and during operation. We distinguish between fine-grained
(FPGA-based) and coarse-grained (processor-based) reconfigurable architectures.
These architectures assign two different hardware technologies for the process step
"Selection of Hardware Technology" in the design and development of electronic
engineering in Sect. 3.3.4 on page 88. In Sect. 5.4.1, fine-grained FPGA-based dy-
namically reconfigurable systems are introduced which facilitate System on Pro-
grammable Chip (SoPC) designs with a complexity of several million logic gates,
several hundred kBytes of internal SRAM memory, and embedded processor cores.
Section 5.4.2 will detail our work on embedded processor cores that can adapt their
internal structure at run-time. In Sect. 5.4.3, two modeling approaches for recon-
figurable architectures are described, which are used to determine the appropriate
model for the process step "Modeling of Information Processing Dynamic Recon-
figurable Hardware" in the design and development of electronic engineering. The
modeling approaches are used in Sect. 5.4.4 for the design of a dynamically recon-
figurable system. The design methods are used within the process steps "Modeling
of Information Processing Dynamically Reconfigurable Hardware" to "Synthesis
of Dynamically Reconfigurable Hardware". Section 5.4.5 concludes with concrete
applications for fine-grained and coarse-grained architectures.

5.4.1 Fine-Grained Reconfigurable Architectures

FPGA-based reconfigurable systems try to fill the gap between flexible, pro-
grammable microprocessors and application-specific hardware with respect to cost,
energy-efficiency, and performance. Partially and dynamically reconfigurable
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Fig. 5.52 Architecture of a
dynamically reconfigurable
system

Static System Components

Configuration
Manager

Processor Memory

Hierarchial Communication Infrastructure
(Application Data, Config. Data, I/O Data)  

On-Chip Communication Infrastructure 

PR
Module

PR
Module

PR
Module...

Partially Reconfigurable Region

Dynamic System Components

systems add an additional level of flexibility since the functions and interconnec-
tivity of their hardware resources can be changed during run-time. In this way, the
architecture can be flexibly adapted to changing environmental conditions. The tra-
ditionally static partitioning into hardware and software can be replaced by a dy-
namic partitioning at run-time. Therefore, dynamically reconfigurable hardware is a
promising technology for information processing in self-optimizing systems. Nev-
ertheless, these methods are rarely used in real-world applications due to a lack of
sophisticated design tools that support partial reconfiguration. Therefore, new de-
sign methods and new hardware platforms have been developed, which enable an
efficient utilization of dynamically reconfigurable systems.

Figure 5.52 shows the system architecture that is used for the implementation
of FPGA-based dynamically reconfigurable hardware. The FPGA resources are di-
vided into a static and a partially reconfigurable region (PR region), connected by
a hierarchical communication infrastructure. The static region typically comprises
of one or more processors, embedded memory, and a configuration manager that
manages the available resources, configuration files, and the reconfiguration pro-
cess. The dynamic system components are represented by partial reconfiguration
modules (PR modules) and the placement of a PR module is done by configuring a
predefined area in a PR region of the FPGA with the corresponding configuration
data. PR modules can be loaded into or erased from the system during run-time.
Communication between PR modules as well as with the static components is real-
ized by a flexible on-chip communication infrastructure. Using state-of-the-art FP-
GAs enables the realization of complete systems on one chip, since these devices
provide all the logic resources that are required.
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Fig. 5.53 Multiprocessor
with processing elements in
different conditions
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5.4.2 Coarse-Grained Reconfigurable Architectures

The high flexibility of fine-grained reconfigurable systems, like FPGAs, comes at
the cost of high overhead in terms of chip area, timing delays, and power. An al-
ternative to dynamically reconfigurable FPGA-based systems are Multi Processor
System on Chip (MPSoC) architectures, which are also able to cope with today’s
requirements on short time-to-market due to manageable design complexity, high
energy efficiency in spite of high performance, and high reliability [210]. Here, we
target on-chip multiprocessors composed of hundreds of simple embedded proces-
sors, connected by a network on-chip (NoC) [107]. In these architectures, the inher-
ent redundancy can be utilized to increase reliability and system lifetime [165].

As illustrated in Fig. 5.53, it is expected that future on-chip multiprocessors will
comprise a growing number of processing elements. Some of them will probably
be malfunctioning or provide only reduced performance, e.g. due to semiconductor
parameter variations. Unfortunately, more and more of these system faults occur dy-
namically during operation. The goal of our approach for future self-optimizing MP-
SoCs is to provide the user with the maximum performance of energy efficiency that
can be achieved in the actual system state by utilizing as many hardware building
blocks of the architecture as possible. Therefore, we integrate methods for dynamic
reconfiguration into the architecture, which enable reconfiguration of the intercon-
nection between the building blocks of the processors at run-time. Details about
these methods are described in Sect. 5.4.5.3.

5.4.3 Modelling

The realization of dynamically reconfigurable systems requires a complex design
flow that cannot be established based on commercially available tools. Therefore,
two modelling approaches will be introduced. In Sect. 5.4.3.1 the PALMERA model
abstracts the design on different layers. The DMC model described in Sect. 5.4.3.2
further introduces analysis methods and concepts.
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Fig. 5.54 PALMERA –
Paderborn Layer Model for
Embedded Reconfigurable
Architectures
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5.4.3.1 PALMERA (Paderborn Layer Model for Embedded Reconfigurable
Architectures)

In order to realize dynamically reconfigurable systems, we propose a layer-based
approach to dynamic reconfiguration in [116]. This model systematically abstracts
the underlying reconfigurable hardware to the application level by means of six
specified layers and well defined interfaces between these layers, as depicted in
Fig. 5.54. The main objective is to reduce the error-proneness of the system design
while increasing the reusability of existing system components. Additionally, it can
be used for the comparison and consolidation of various approaches to dynamic
reconfiguration that have been proposed in literature. Each layer offers services to
the next higher layer and makes requests of the next lower layer. As for other known
layer models in computer science and engineering, the interfaces between layers
are standardized to enable an easy and separate exchange of single layers without
modifying the whole system.

The first layer in PALMERA is the Hardware Layer, representing the underly-
ing reconfigurable hardware. As such it is defined after choosing an FPGA archi-
tecture for the system. The interface to its adjacent layer is the configuration port
of the chosen FPGA. This makes the interface between the Hardware Layer and the
Configuration Layer the only non-specified interface in our model. It is the task of
the Configuration Layer to adapt to this interface.

The purpose of the Configuration Layer is to abstract from the underlying hard-
ware and its configuration port and to give a standardized interface to the Position-
ing Layer. For Xilinx FPGAs, the configuration ports are typically either the internal
configuration access port (ICAP) or an external configuration port such as the Se-
lectMAP interface. It should support write and read-back of partial bitstreams as
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well as a complete configuration with a complete bitstream. Due to the streaming-
based configuration interfaces of common FPGAs, the Configuration Layer can ef-
ficiently be realized in hardware. To shorten configuration time and to avoid storing
the bitstreams in the Configuration Layer before configuring, the interface to the Po-
sitioning Layer should offer a streaming-based data input for incoming bitstreams
as well as a data output for storing the information, which was read back from the
FPGA.

The Positioning Layer adapts the position information of a given bitstream to
a desired location on the FPGA. This can significantly reduce the number of bit-
streams that have to be stored for each module since all equivalent (homogenous)
areas on the FPGA can be configured with the same bitstream in this case. This
also applies to existing heterogeneous architectures if the placement is chosen ap-
propriately. The Positioning Layer thus performs a bitstream manipulation that can
be done in software (e.g. with PARBIT [103]), or in hardware (e.g. with REPLICA
[112]). However, a hardware implementation of the Positioning Layer is preferred,
since it can be realized using only a few resources, without increasing the configura-
tion time significantly. The Positioning Layer has a separate interface to the memory
holding the partial bitstreams. It is the uppermost layer that deals with bitstreams as
physical representations of the modules. The three upper layers treat the modules as
abstract units. Hence, the interface to the Allocation Layer consists only of control
flow signals. The services offered to the Allocation Layer are loading and reading
configuration data to/from a given area of the FPGA. In addition, combined read-
ing and writing should be offered, in order to shift active modules as needed for a
defragmentation of the FPGA.

The Allocation Layer manages all available reconfigurable hardware resources
on the FPGA and assigns appropriate positions to incoming modules. Therefore, the
Allocation Layer holds an abstract image of the resources which can be allocated
and deallocated during run-time. In addition, a list of all currently loaded modules is
stored in this layer. It holds information about the modules’ names, positions, status
(active, inactive, etc.), module type and a unique ID. This ID is used to identify
a module within the upper two layers. The mapping of a module to an area on
the FPGA is done according to a given placement strategy, such as first fit, best
fit, or even more sophisticated strategies for heterogeneous FPGAs, as proposed,
e.g. in [121]. When needed, the possibility to defragment the FPGA area can also
be implemented in the Allocation Layer. A defragmentation can be accomplished
automatically (e.g. when a certain degree of fragmentation is reached) or it can
be done on-demand. The Allocation Layer offers the service to place a module of
a given type on the FPGA or to delete a module with a given ID. The latter is
realized by loading an empty bitstream to the FPGA (as required for some fine-
grained placement approaches) or by simply deallocating the used resources.

The Module Management Layer completely abstracts from the reconfigurable
hardware. Its main service offered to the Application Layer is to provide access to a
module of a requested type. For this reason it holds a list of all currently loaded mod-
ules. With this list a set of different strategies can be implemented, e.g. a caching of
unused modules. For this strategy, modules are set to inactive after being released
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from an application. In case an application needs a module of which an inactive in-
stance exists, a time consuming configuration can be avoided by just reactivating the
concerned module. Inactive modules get deleted from the FPGA as soon as the Allo-
cation Layer runs out of free resources. In this case the Module Management Layer
chooses a module to be deleted. This can be done according to different strategies
such as longest-unused-module-first or module priorities.

The Application Layer represents any task using the dynamically reconfigurable
hardware. This could be either software running on a (embedded) processor, such as
an operating system, or other static hardware modules. In the last-mentioned case it
is possible that multiple applications use the dynamically reconfigurable hardware
modules simultaneously.

Depending on the architecture of the system, all layers can be implemented either
in hardware or in software. On the Application Layer e.g. a small reflex operator can
be realized as a pure hardware solution or as a complex software solution running on
a CPU with an RTOS such as ORCOS. PALMERA has been included in an extension
of the OS Monta-Vista-Linux, where the bottom layers (up to the Positioning Layer)
are implemented in hardware and the upper layers are software implementations
running on a PowerPC processor on a Xilinx FPGA [174].

5.4.3.2 DMC Model for Dynamically Reconfigurable Systems

The DMC (Design, Module, and Component) model [124] is used as a basis for
the analysis of the methods and concepts for dynamic reconfiguration. The model
divides the placement of a hardware module into three levels of abstraction: De-
sign, Module, and Component. It defines the relations between these levels and is
restricted to the fundamental measures that are required for the realization of dy-
namic reconfiguration. Therefore, methods for placement and scheduling in dynam-
ically reconfigurable systems can be formally described using the DMC model. In
the DMC model, reconfigurable architectures are modeled as reconfigurable cells,
which are arranged in a matrix structure and interconnected by a communication
infrastructure. Fine-grained architectures like FPGAs can be modeled as well as
coarse grained and heterogeneous architectures. A design in the DMC model rep-
resents an abstract specification of the hardware design, e.g. based on a hardware
description language or a schematic. The term module refers to a specific imple-
mentation of a design, e.g. generated by a hardware synthesis. Finally, the com-
ponent represents an instance of a module. Several instances of the same module
may be placed in parallel at different positions on the reconfigurable hardware. For
the analysis of architectures and methods based on the DMC model, we have de-
veloped the simulation framework SARA (Simulation Framework for Analyzing
Reconfigurable Architectures). SARA is specifically designed for FPGA-based ar-
chitectures. The simulation flow of SARA is split into three phases. In phase one,
a Virtual Synthesis tool creates the modules to be downloaded to the FPGA from a
given set of module descriptions. These descriptions include information about the
required FPGA resources as well as minimum module dimensions. According to
one or more given synthesis strategies, module implementations with various aspect



5 Methods for the Design and Development 271

ratios are generated for each module description. In phase two, an RTR-manager
(run-time reconfiguration manager) executes the given benchmark and places the
required modules in a predefined order onto a virtual FPGA. The simulation anal-
ysis is done in phase three by a dedicated analysis tool integrated in SARA. In the
context of self-optimizing systems, SARA is specifically used for the analysis of
new placement and defragmentation strategies [120, 122, 123].

5.4.4 Design Methods for Dynamic Reconfigurable Systems

Based on the abstract modelling of PALMERA and the DMC model, the Integrated
Design Flow for Reconfigurable Architectures (INDRA) has been developed that
guides the designer through the different implementation steps to create a con-
crete dynamic reconfigurable system architecture. This design flow is described in
Sect. 5.4.4.1. Section 5.4.4.2 introduces algorithms for the flexible placement of
dynamically reconfigurable (hardware) modules. A design method for a Hardware-
in-the-Loop (HiL) implementation is shown in Sect. 5.4.4.3.

5.4.4.1 INDRA (Integrated Design Flow for Reconfigurable Architectures)

The design-flow of a partially reconfigurable system is different from the standard
design-flow of reconfigurable systems, which only allows the reconfiguration of
the whole FPGA. To efficiently handle these deviations from the standard flow, the
Integrated Design Flow for Reconfigurable Architectures (INDRA) has been devel-
oped (cf. Fig. 5.55). INDRA integrates all tools that are required to design dynami-
cally reconfigurable systems based on Xilinx FPGAs [88]. It combines commercial
state-of-the-art tools and tools that have been adapted or especially designed for this
framework. INDRA supports a flexible one-dimensional or two-dimensional mod-
ule placement.

First, the given application is partitioned into static and dynamic system com-
ponents. The area that is used for the static components is also referred to as the
base region. The partitioning depends on the properties of the selected device, such
as the reconfiguration granularity (length of a so-called configuration frame), and
on the selected placement approach. The architecture of Xilinx Virtex-4 to Virtex-7
devices allows a two-dimensional placement of partial reconfiguration modules at
a granularity of a configuration frame. The description of the static and dynamic
system components as well as their interconnections between each other on the top
level are specified in a hardware description language (HDL). The synthesis of the
base region and of the PR Modules is performed based on the system partitioning.
Depending on the size of the modules, which is obtained from synthesis estimation,
and on the inherent heterogeneity of the FPGA, INDRA determines the steps re-
quired for the synthesis of the PR Modules. The floorplanning of the system (the
mapping of each component to a position on the FPGA) is done by SARA, which
implements the DMC model for the dynamically reconfigurable system.

In addition to the partitioning and floorplaning of the FPGA, the concept
of partial reconfiguration requires a suitable communication infrastructure for
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Fig. 5.55 INDRA – Integrated Design Flow for Reconfigurable Architectures
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Fig. 5.56 Example of a homogeneous hard macro for a communication infrastructure with 9
regions and 4 different types of regions

interconnecting the PR modules and the base region. The communication infras-
tructure should not introduce any further heterogeneity in the system to maintain
the flexibility of placement by preserving the number of feasible positions of the PR
modules. Homogeneity implies that the individually reconfigurable tiles (a tile is the
atomic partially reconfigurable unit, cf. 5.4.4.2) are connected by the same routing
resources. Thus, modules cannot only be placed at one dedicated position, but at any
position with sufficient free contiguous resources [87]. Current commercially avail-
able FPGA place and route tools lack an option for generating this type of homoge-
neous designs. The Design Flow for Homogeneous Hard Macros (DHHarMa) [126]
targets the automatic generation of homogeneous and regular designs starting from a
high-level description, such as VHDL or Verilog. Using DHHarMA, complex com-
munication infrastructures for dynamically reconfigurable systems can be generated
based on an abstract high-level description. In [126], examples are presented, using
32 Bit data, 32 Bit addresses, 4 Byte-enable signals, and 4 Bit auxiliary lines. Ad-
ditionally, dedicated signals are connected to each region for strobe, master request,
master grant, region enable, and region reset. The communication infrastructure also
supports bursts (transmission of multiple data packets at a time) using an embedded
8 Bit burst counter (cf. Fig. 5.56).

Figure 5.57 shows an example partitioning of a Virtex-4 FX100 FPGA. In the
Virtex-4 architecture, the area of a PR region should be multiples of a configuration
frame. In the example implementation, we vertically divided the FPGA, so that the
resources located left of the center column are dedicated to static system compo-
nents, and the resources located right of the center column are considered for the
tiled PR region.
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Fig. 5.57 Example for the
partitioning of a Xilinx
Virtex-4 FX100 FPGA
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5.4.4.2 Placement Algorithms for Flexible Dynamically Reconfigurable
Systems

Nowadays, most realizations of dynamically reconfigurable systems use simple ap-
proaches that are based on fixed module slots. The placement flexibility of these
implementations is different from the flexibility assumed and analyzed in the theo-
retical research work. In [123] we present ways to help close this gap by showing
how today’s heterogeneous FPGAs can be used for dynamic reconfiguration with
free module placement, varying module sizes, and multiple instances of modules.

In a tiled partially reconfigurable system as described in [87] the partially re-
configurable region is subdivided into reconfigurable tiles. Tiled partitioning allows
for the placement of multiple PR modules with various sizes in a PR region. A re-
configurable tile can be considered as an atomic unit of partial reconfiguration. A
PR region may contain several different types of tiles offering different amounts of
available resources. The tile sizes may vary according to the different resource types
within each tile.
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Figure 5.58 shows an example with a base region and a PR region, which is
partitioned into an area of 4× 4 reconfigurable tiles. The PR region in the example
is heterogeneous, since two different types of tiles are used. At run-time, an instance
of a PR module is mapped to one or several contiguously aligned tiles. This is done
by partially reconfiguring the selected tiles using the equivalent configuration data
(partial bitstream) of the PR module. A PR module can occupy any size from a
single tile to all tiles of the PR region. Figure 5.59 shows the PR region of Fig. 5.58
and an example of a set of PR modules with the corresponding feasible positions.
The values in each tile indicate the type of the tile.

With respect to run-time placement, the PR modules vary according to their re-
source requirements, their shape, and their feasible positions. Each feasible position
of a PR module can have a different degree of overlap with the feasible positions
of the other PR modules in the system. The degree of overlap has an impact on the
placeability of the PR module. Those feasible positions that overlap with many other
feasible positions are likely to be blocked by a previously placed instance of another
PR module. Thus a reasonable online placement policy is to always select the free
position with the least degree of overlap as discussed in [121]. Besides maintain-
ing a large number of free positions at run-time, it is also possible to optimize the
placeability of PR modules at design-time. This is done by minimizing the degree
of overlap of the feasible positions of the given PR modules. At design-time, the set
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of feasible positions of a PR module is defined by the shape and position of the syn-
thesis region. The optimization of the placeability is done by selecting the synthesis
regions of the PR modules that allow the best possible placement at run-time.

In order to optimize the placeability of the PR modules, a metric is required,
which quantifies the degree of overlap of the feasible positions. The overlap graph
G = (V,E) is an undirected graph, where V are the nodes and E the edges between
the nodes, that enables visualizing these resource dependencies. It shows which of
the feasible positions of the PR modules overlap with each other. The graph can be
used with arbitrarily shaped PR modules. For simplicity we will focus on rectangular
PR modules. A vertex v=(m,x,y)∈V represents a feasible position (x,y)∈Xpos(m)
of the PR module m ∈ M. The set of all vertices is defined as

V =
⋃

m∈M

{(m,x,y) | (x,y) ∈ Xpos(m)}. (5.22)

Hence, the number of vertices is the same as the sum of feasible positions of all PR
modules. For a vertex v1 = (m1,x1,y1) ∈ V and a vertex v2 = (m2,x2,y2) ∈ V an
edge (v1,v2) is created, if v1 �= v2 and the area of PR module m1 at position (x1,y1)
overlaps with the area of PR module m2 at position (x2,y2). Figure 5.60 shows the
overlap graph for the PR modules of the example in Fig. 5.59.

With the overlap graph, we can evaluate the degree of overlap for each feasible
position of the PR modules. For this purpose we introduce the position weight. Using
the overlap graph, the computation of the position weights is done in two steps. First,
the probability weights

wp(v) = palloc(m)/|Xpos(m)| (5.23)

are computed for each vertex v = (m,x,y) ∈ V , where palloc(m) denotes the proba-
bility of an allocation of the PR module m. The probability weight wp(v) indicates
the probability of a feasible position to be chosen, if all tiles in the PR region are
available and a random placement is applied.
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Secondly, the position weight wpos(v) of a feasible position is computed by sum-
ming the probability weights of the adjacent vertices. The set of adjacent vertices
Vad j is defined as

Vad j(v) = {vad j | (v,vad j) ∈ E}, (5.24)

and the resulting position weight is calculated by

wpos(v) = wp(v)+ ∑
vad j∈Vad j(v)

wp(vad j). (5.25)

The position weights reflect the degree of overlap. For example, the placement of
an instance of m2 at position (1,4) only blocks the position (3,3) of m3, while the
placement of an instance of m2 at position (1,1) blocks the positions (1,1) of m1 and
(3,1) of m3. Therefore, the position weight 5/18 of position (1,4) of m2 is lower
than the one from position (1,1).

Apart from the design-time aspects, the position weight can also be used for
the placement of PR modules at run-time. The placement is done by selecting the
available position with the least position weight. This ensures maintaining a large
number of available positions for future placements.

A metric to evaluate the degree of overlap of all feasible positions is to generate
a weighted sum of the position weights of all feasible positions. As the probability
weight wp(v) reflects the probability of a feasible position to be selected when ran-
domly placing a module, the overlap weight of all PR modules is defined as follows:

wovr(V ) =
1
|V | ∑

v∈V
wpos(v) ·wp(v) (5.26)

The weighted mean of the position weights is divided by the total number of
feasible positions |V | to balance the degree of overlap and the number of feasible
positions. The synthesis regions of the given PR modules can be selected in such a
way as to minimize wovr(V ). A small wovr(V ) indicates that the overlaps of feasi-
ble positions of the PR modules are small. Minimizing the overlap weight aims at
maximizing the number of available positions after placement of a PR module at
run-time. Thus the overlap weight is a metric for the placeability of all PR modules.

5.4.4.3 Hardware-in-the-Loop

Hardware-in-the-Loop (HiL) simulations are applied in many areas of embedded
systems design, but originate from control design, this is still the main area of in-
terest. In [162], three concepts and tools are presented which allow to interface a
simulation of the controller’s environment (plant) to an actual implementation of the
controller on an FPGA. While this usually requires a model of the plant which can
be calculated in real-time, we slow the implemented controller down by exploiting
special features of digital hardware. In fact, the simulation environment running the
plant model gets in charge of the clock of the hardware design. With this technique
we can integrate nearly any FPGA based DUT (Design Under Test) into a simula-
tion environment like MATLAB (Simulink), CamelView [148], or ModelSim. This
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Fig. 5.61 Non-real-time
hardware interface for
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offline HiL tool flow, called HiLDE (Hardware-in-the-Loop Design Environment)
allows for a functional verification of the implemented controller in real hardware,
while former test benches from pure software simulations can be reused. Addition-
ally, HiLDE can speed up simulations by several orders of magnitude, depending on
the number of in- and outputs and the complexity of the user design. As soon as the
DUT is embedded in its target environment, HiLDE cannot be used for testing any-
more, as real-time processing is required then. For this, we developed HiLDEGART,
(HiLDE for Generic Active Real Time Testing), a tool to visualize and parameter-
ize an active controller in its real environment. Both branches of our tool flow use
vMAGIC, an API for the generation and manipulation of VHDL code, to gener-
ate the required hardware interfaces as well as configuration data. In the following
paragraph, the developed tools HiLDE, HiLDEGART, and vMAGIC are discussed
in more detail.

HiLDE: The basic idea of our framework is the automatic integration of a DUT
into a standardized hardware interface (cf. Fig. 5.61), which enables communica-
tion between a simulator and the DUT. This interface consists of a clock controller
(Synchronizer) and a set of registers at the inputs and outputs of the DUT. The Syn-
chronizer allows clock cycle accurate control over the DUTs clock by a software
environment like Simulink. The input and output registers are used to transfer data
between the DUT and the simulation. During a simulation, the three steps 1) write
inputs, 2) do n-clock cycles, and 3) read outputs are repeated in a loop controlled
by the simulator. The data transfer from the simulation to DUT is done with the
Rapid Prototyping Platfrom RAPTOR (e.g. the R2K, cf. Sect. 5.4.5.1). In general,
the clock speed in HiLDE simulations will be much slower than the desired clock
Speed of the DUT (non-real-time) because the computation of a simulation step of
the test-bench or plant-model in the simulator typically takes a lot of time. However,
the overall simulation can become faster by several orders of magnitude, if a DUT
is moved from the simulation towards hardware.

HiLDEGART: After a design has been successfully tested in the HiLDE environ-
ment, it can be integrated into its target environment, where it works in real-time.
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Still, it is desirable to monitor the controller’s IOs as well as its internal states for
further testing under real-life conditions. To meet these requirements, HiLDEGART
generates hardware interfaces capable of recording signals in real-time without ad-
ditional external hardware such as logic analyzers. The idea is basically the same
as for HiLDE: a hardware wrapper is generated which adds memories to the signals
in question and connects those to a bus interface. This enables a GUI to access and
display the recorded values. As the output data rates can be much higher than the
available communication bandwidth between hardware and software, resampling
units and FIFOs are used instead of registers. In addition to that, registers are con-
nected to inputs which parameterize the DUT (such as constants of a controller), so
that users can change those values from within the HiLDEGART GUI. Furthermore,
the GUI offers advanced features like a triggering unit, which casts events based on
boolean operations on the IO signals. This facilitates for example, to increase the
resampling rate once a signal reaches a critical level.
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Fig. 5.62 Design Flow for HiLDE and HiLDEGART using vMAGIC

vMAGIC: The interfaces described in the previous sections are DUT specific
and have to be adapted to each new design, which is a tedious and error prone task.
As the basic structure stays the same between all implementations, an API was de-
veloped, which enables users to write scripts that automatically generate interfaces
like these, or automate any other recurring task based on VHDL code as depicted in
Fig. 5.62. In [163], the implementation details of vMAGIC are presented.

5.4.5 Platforms and Applications

Two main platforms that support dynamic reconfiguration are used in this Section:
RAPTOR and BeBot. In the process of developing microelectronic systems, a fast
and reliable methodology for the realization of new architectural concepts is of vi-
tal importance. Prototypical implementations help to convert new ideas into prod-
ucts quickly and efficiently. Furthermore, they allow for the parallel development
of hardware and software for a given application, thus shortening time to market.
FPGA-based hardware emulation can be used for functional verification of new
MPSoC architectures as well as for HW/SW co-verification and for design-space
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exploration. The rapid prototyping systems of the RAPTOR family [164] provide
the user with a complete hardware and software infrastructure for ASIC and MP-
SoC prototyping (cf. Sect. 5.4.5.3). A distinct feature of the RAPTOR systems is
that the platform can be easily scaled from the emulation of small embedded sys-
tems to the emulation of large MPSoCs with hundreds of processors. Along with
rapid prototyping, the system can be used to accelerate computationally intensive
applications and to perform partial dynamic reconfiguration of Xilinx FPGAs, as
presented in Sect. 5.4.5.1.

The BeBot miniature robot, which will be discussed in detail in Sect. 2.2, in-
tegrates an embedded processor and a dynamically reconfigurable FPGA (Xilinx
Spartan-3). An example for a vision processing application utilizing this architec-
ture will be discussed in Sect. 5.4.5.2.

5.4.5.1 Dynamic Reconfiguration of FPGAs on the Rapid Prototyping
Platfrom RAPTOR

The RAPTOR systems follow a modular approach, consisting of a base system
and up to six daughterboards. The base system comprises the communication and
management infrastructure, used by the daughterboards, which realize the required
application-specific functionalities. Because of the modular design, the user can eas-
ily integrate new FPGA technologies or communication facilities by means of addi-
tional daughterboards. The RAPTOR base system can be integrated into a host PC
or run as a stand-alone system. The optional host system can be used to ease moni-
toring and debugging. For communication with the host system, the RAPTOR-X64
base system integrates a PCI-X and a USB-2.0 interface. The board can be op-
erated outside the normal PCI environment by utilizing the USB-2.0 interface. It
is also possible to integrate a PCI-Express-based host-connection by replacing the
RAPTOR-X64 by the RAPTOR-XPress baseboard.

The Local Bus and the Broadcast Bus, which are provided with the RAPTOR
base system, offer powerful communication infrastructures and guarantee a high-
speed communication with the host system and between individual modules. Ad-
ditionally, direct links between neighboring modules can be used to exchange data
with high bandwidth and low latency. Furthermore, all FPGA modules provide ad-
ditional high-speed serial links for communication between the modules. Reconfig-
uration (including dynamic reconfiguration) is performed with the maximum pos-
sible bandwidth that the FPGAs support. The RAPTOR systems provide a direct
migration path from FPGA-based prototypes to ASIC realizations by simply replac-
ing the FPGA based daughterboards with daughterboards that integrate the devel-
oped ASICs. Daughterboards integrating different MPSoCs (discussed in detail in
Sect. 5.4.5.3) have been realized and can be integrated together with additional dy-
namically reconfigurable FPGA modules. In this way, information processing sys-
tems can be realized that combine the advantages of dynamically reconfigurable
FPGAs and MPSoCs.

Figure 5.63 gives an overview of an architecture that has been developed for
the realization of self-optimizing drive controllers for a permanent magnet servo
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Fig. 5.63 System architecture for the implementation of a self-optimizing drive controller
based on the RAPTOR prototyping system

motor [159]. The implementation is based on the methods for dynamic reconfigura-
tion that have been previously described and is realized on a Xilinx Virtex-4 FX100
FPGA. The architecture is composed of an embedded PowerPC processor connected
to dynamically reconfigurable resources (PR Module). A processor local bus (PLB)
enables communication to the local bus of the RAPTOR system, and from there to
the host PC. The dynamically reconfigurable PR modules are used to implement
controllers or signal conditioning blocks, since these elements are exchanged ac-
cording to the current state of the plant and the current objective of the system. The
reconfiguration is performed by the Virtex Configuration Manager (VCM) [88].

A program running on the PowerPC initiates the reconfiguration based on a con-
tinuous evaluation of the control quality and realization effort, indicating the mem-
ory space from the external SDRAM where the partial bitstream ought to be copied.
The partial bitstream contains only the needed configuration for one PR module.
When a reconfiguration is requested, the VCM initiates DMA transfers from the
SDRAM controller, loads the requested partial bitstream to the target PR module
by accessing the Internal Configuration Access Port (ICAP), and sends an interrupt
to the PowerPC when done. The reconfiguration process lasts about 4.38ms, which
represents several control cycles. To overcome this, an initialization routing is used
to calculate the initial states of the new-loaded controller. A supervising program,
running in the PowerPC, is in charge of monitoring system activity and trigger-
ing the dynamic reconfiguration. For the verification of the implemented control
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algorithms and for testing the correct behavior of the system during dynamic re-
configuration between different controller implementations, we have used the HiL
environments HiLDE and HiLDEGART as described in Sect. 5.4.4.3.

5.4.5.2 Dynamic Reconfiguration of FPGAs on the Miniature Robot BeBot

The hybrid processing architecture of the BeBot miniature robot consists of a main
processor complemented by an FPGA device that offers on-demand parallel pro-
cessing with the major advantage that the FPGA can be dynamically reconfigured
during runtime to optimally utilize the hardware resources and the energy budget.
In contrast to other reported approaches on dynamic hardware reconfiguration, for
example [23, 38, 145], we focus on a concept that automatically and dynamically al-
locates hardware resources depending on the current status of the robot, the required
tasks, and the context of operation [149]. Processes can be executed in software on
the processor or as modules on the FPGA using partial dynamic reconfiguration.
The reconfiguration process is managed by the robot’s operating system. The access
to the hardware is, from the application point of view, transparent.

Utilizing dynamically reconfigurable hardware for image processing instead of a
pure software solution enables real-time image processing and significantly reduces
the required computing power of the CPU. Instead, the CPU can be used, e.g. for
sensor fusion tasks, behavior generation, and communication within the wireless
network. Depending on the current context, hardware configurations can be auto-
matically loaded into the FPGA device, that is, one or more hardware modules are
able to process images in parallel. If a specific processing task has been finished,
a new hardware configuration can be loaded to optimize the resource utilization
on-the-fly.

An initial configuration of the FPGA is loaded after booting the robot. Typically,
the local flash memory of the robot is used to store the configuration data. But it
is also possible to load the configuration via one of the available wireless commu-
nication links. This feature is very useful in multi-robot applications in order to
share available processing resources of the robot team by wirelessly transmitting
FPGA configuration data to robots that are able to offer computing resources to
other robots. This type of resource sharing between wirelessly connected robots, re-
quires additional operating system services, as discussed, e.g. in [80]. In the context
of image processing, this can significantly reduce computation time and increase
the throughput of images. Reconfiguration of the complete FPGA, requires loading
a bitstream file of 728 kByte. On the BeBot, a complete FPGA reconfiguration is
performed in 25 ms, corresponding to a reconfiguration rate of 30 MByte/s. If slow
communication interfaces are used to transfer the reconfiguration data to the robot,
the configuration files can be cached in the internal SDRAM.

Utilizing the INDRA design flow (cf. Sect. 5.4.4.1), partial dynamic reconfigu-
ration of the FPGA can be used to reduce the reconfiguration time. Furthermore,
with this concept, it is possible to keep parts of the application and the application
data inside the FPGA, essentially reducing communication time. Here, the FPGA is
divided into two parts: a static region utilizing 20% of the FPGA resources (slices)
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Fig. 5.64 Dynamic reconfiguration on a frame-by-frame basis

and a dynamically reconfigurable region, comprising 80% of the available FPGA
slices. During dynamic reconfiguration, the base region remains unchanged while
the partially reconfigurable region is completely reconfigured. Here, partial recon-
figuration can be performed in 20 ms if the bitstream is available locally on the
BeBot.

Depending on the trigger for dynamic reconfiguration, a differentiation can
be made between time-driven reconfiguration and event-driven reconfiguration. In
time-driven reconfiguration, the time and order in which PR modules are loaded
is known at design-time and do not change at run-time. The reconfiguration con-
troller can be a simple state machine that triggers the reconfiguration at the prede-
fined time intervals. On the one hand, the time between two reconfigurations can be
orders of magnitude higher than the reconfiguration time, if complex applications
are executed in turn. An example would be changing between two video process-
ing algorithms every 10 seconds. On the other hand, fast partial reconfiguration
enables hardware changes at high frequency: in video processing, time-driven re-
configuration can be triggered on a frame-by-frame basis. Figure 5.64 gives an ex-
ample, where two applications (A1 and A2) are processing consecutive data frames
( f1, f2, ...). It has to be assured that the sum of reconfiguration time and applica-
tion execution times are lower than 33 ms for the 30 frame per second on BeBot,
i.e. 13 ms are available for application execution for the used partitioning, which
requires 20 ms for reconfiguration. In the example, the applications are decoupled
from the data transmission from the camera since all executions are performed at
the previous frame. If this is not possible, a more complex scheduling is required,
and application execution typically starts in parallel to data transmission to increase
performance.

In the event-driven scheme, the reconfiguration time and the order of the PR mod-
ules are not known at design-time. A trigger for dynamic reconfiguration can occur
at any time. Changes of the ambient light could, e.g. be used to reconfigure between
different video processing algorithms. While the tool flow and the hardware infras-
tructure are identical for event-driven and time-driven reconfiguration, the imple-
mentation of the reconfiguration controller varies. For time-driven reconfiguration,
the reconfiguration controller can be realized by a simple timer. In event-driven re-
configuration various internal and external parameters may have to be taken into
account to decide when and which PR module to load. On the BeBot the trigger
for reconfiguration is set by a software implementation on the internal processor. In
both schemes, time-driven and event-driven reconfiguration, the calculation times
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of this software part of the reconfiguration controller are negligible compared to the
FPGA reconfiguration time.

Two different hardware modules have been developed in the context of vision
processing. The first provides optical flow motion detection and the second sup-
ports color recognition [4, 35, 52]. The optical flow calculation is used to detect
walls or obstacles in the operational area and to dynamically construct a map of the
environment. The color detection algorithm enhances options to identify objects like
marked landmarks or other robots, in order to improve navigation and to map build-
ings. With the dynamic approach, both algorithms can be processed on the robot
platform under real-time constraints achieving a good utilization of the processing
devices.

To evaluate the performance of the hardware implementation of these two al-
grotihms, the BeBot miniature robot prototype has been evaluated in a test room
with artificial lighting and a convenient environment. A frame size of 160x120 was
chosen, requiring 38,400 Bytes to be transferred from the camera to the SDRAM.
The frame rate is fixed to 30 frames per second by the camera used. Therefore, the
bandwidth required to transfer the image data into memory is less than 1.2 Mbyte/s.
Since the SDRAM can be accessed with more than 80 MByte/s and the FPGA im-
plementation achieves about 46 MByte/s, sufficient bandwidth is available in the
system to transfer data between the system components. Performance is mainly lim-
ited by the processing time on the FPGA. Wherever possible, communication and
calculation are performed in parallel, i.e. calculation starts directly after receiving
the first data from the camera, or one frame is processed while the next frame is
loaded.

The optical flow does not need any particular parameter updates when the en-
vironment is changing, except for the number of columns and the speed threshold.
These parameters do not affect the performance nor the area usage of the FPGA-
based implementation. A single module implementation of the optical flow requires
1338 slices (18% of the resources available for the partially reconfigurable module)
and one frame is processed in 0.9 ms. Processing time includes the time for reading
the image data from the SDRAM and for writing the results to the processor.

In contrast, the required FPGA resources and the computation time for the color
recognition module can vary significantly depending on the number of maximum
recognizable blocks and on the number of colors. In the following paragraph, an
analysis of the different configurations on BeBot will be presented, focusing on
area consumption and computation time. For the evaluation of the block recognition
module, various configurations have been tested. Table 5.4 shows the configurations
chosen for a laboratory test. The resource requirements of the PR modules are given
in the column Used slices. The Utilization represents the percentage of slices in
the PR modules that are utilized by the implementation. Configurations that could
not be realized on the Spartan-3 FPGA because of the resource limitations of the
PR-modules are marked with an X .

In Table 5.4 the execution time and the amount of frames per second are calcu-
lated starting from the write command for the first pixel of the frame to the final
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Table 5.4 Configuration test parameters for color recognition on BeBot

N colors N blocks Used slices Utilization Execution time [μs] Frame/sec
1 1 1250 11% 783.83 1275
1 2 1363 12% 784.13 1275
1 4 1898 16% 785.20 1273
1 8 2547 22% 810.60 1233
1 16 3867 33% 5281.64 189
1 32 6794 58% 20450.22 48

2 1 2351 20% 783.83 1275
2 2 2912 25% 784.13 1275
2 4 3672 31% 785.20 1273
2 8 5061 43% 810.60 1233
2 16 7816 67% 5281.64 189
2 32 X X X X

4 1 5174 44% 783.83 1275
4 2 6165 53% 784.13 1275
4 4 7434 64% 785.20 1273
4 8 9846 84% 810.60 1233
4 16 X X X X
4 32 X X X X

interrupt provided by the module. At that time the results of the computation are
already stored in the output FIFOs.

Reconfiguring between optical flow and color recognition requires 20 ms. The
camera sends data with 30 frames per second, which results in 33 ms for calcula-
tion. Since the optical flow is calculated in 0.9 ms, 12.1 ms are available for color
recognition if dynamic reconfiguration on a frame-by-frame basis is performed (cf.
Fig. 5.64). Hence, optical flow and color recognition for up to 16 blocks can be
performed virtually in parallel without frame-loss by dynamically reconfiguring be-
tween two frames.

The proposed hardware implementations of the vision algorithms on the BeBot
miniature robot platform show that real-time image processing is possible even on
platforms with limited processing capabilities. The use of FPGA-based hardware
releases the processor from these very computational intensive tasks. Additionally,
dynamic reconfiguration can be used to switch between different applications or to
modify the elaboration parameters at run-time.

5.4.5.3 Dynamic Reconfiguration of Multi Processor System on Chip

In addition to fine-grained FPGA-based architectures, coarse-grained architectures
are evaluated. In this context, we focus on on-chip multiprocessors that integrate
mechanisms for dynamic reconfiguration with minimum area overhead. In gen-
eral, our MPSoC system comprises of a generic and hierarchical architecture, so
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that the system can be configured for different application scenarios at design-time.
Figure 5.65 depicts the MPSoC architecture proposed in [150], consisting of the
SoC level, the cluster level, and the processor level. At the SoC level, a variable
number of cluster components is connected via a network-on-chip communication
infrastructure. Due to the homogeneous structure, the MPSoC system can be scaled
to meet the performance requirements of various application domains. While the
NoC provides the communication backbone for propagating data, at cluster level,
this data is processed by a reconfigurable multiprocessor system. Via an on-chip
Wishbone bus, the processor elements of each cluster can communicate locally and
can access shared memory. A single processor element represents the lowest level
of hierarchy of our MPSoC architecture.

GigaNoC is our hierarchical and scalable NoC communication infrastructure,
which is especially suitable for multiprocessor SoCs [109, 170]. The GigaNoC ar-
chitecture is depicted in Fig. 5.65. The switch boxes (SB) represent the core com-
ponents of the NoC and act like high-performance routing nodes that propagate the
data through the on-chip network. GigaNoC comprises of packet-switching [107]
and each packet is divided into smaller fragments, called flits. In order to support
arbitrary network topologies with different connectivity, the number of communica-
tion ports for each switch box can be configured during design-time. For the mesh
topology, depicted in Fig. 5.65, every switch box has four external and one internal
communication port, which connects the processor cluster to the NoC.
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While the number of communication channels per switch box is chosen at design-
time, the NoC topology and the routing strategies inside the switch boxes can be
adapted at run-time. Several possible routing schemes are integrated into the hard-
ware description of the switch box IP-core. A pre-selection can be made at design-
time; at run-time the user or the operating system can easily switch between the
integrated routing schemes by using special command flits. These command flits
are also used to disable single malfunctioning embedded processors or complete
processor clusters. In this case, the routing is automatically adapted to changes in
the architecture.

QuadroCore Multiprocessor Cluster

Due to the generic implementation of the internal communication port, arbitrary pro-
cessor cores and processor clusters can be attached to the NoC. Figure 5.65 depicts
an example configuration, where clusters of four N-Core processors are attached to
each switch box. N-Core is a 32-bit RISC microprocessor, which was developed in
our group as a softmacro that can be easily adapted to the needs of specific areas of
application [150]. N-Core has a common load/store architecture with a three-stage
pipeline, which delivers reasonable performance for embedded systems.

The cluster organization based on the N-Core processor elements represents a
typical MIMD multiprocessor cluster. In order to optimize flexibility and fault toler-
ance, a fast reconfiguration mechanism with low overhead has been added to the
processor cluster, resulting in the run-time reconfigurable multiprocessor cluster
QuadroCore. Without altering the instruction set architecture of the processors, run-
time reconfigurability has been introduced by adding intra-processor interconnects
to adapt the architecture in terms of synchronization, communication, and the de-
gree of parallelism [105]. Figure 5.66 depicts the base architecture of QuadroCore
and two typical configurations. Each of the four processors has its own local regis-
ter file and instruction and data memory. Exchange of register contents between the
four processors is achieved via a shared register file. Large amount of data sharing
is possible via external shared memory, accessible by a shared bus.

The decision of altering the existing structure is driven by a special reconfigura-
tion instruction, that has been added to the instruction set of the N-Core processors.
This mechanism enables a quick, single-cycle run-time reconfiguration, i.e. very
low overhead in terms of time required to reconfigure the resource connectivity.
The reconfiguration instructions can be embedded into the normal program code by
the programmer or by an optimizing compiler; no additional memory is required to
store the configuration data, like in FPGAs.

In the proposed implementation, reconfiguration requires an alteration in the in-
terconnection of the various building blocks inside and between the processors.
Currently, capabilities for reconfiguration have been added between the decode &
execute stages, between the execute & register read/write stages, and between the
processors and the shared memory. In QuadroCore, the reconfigurable interconnect
is realized by means of additional multiplexers that have been integrated into the
architecture. The reconfiguration instruction provides the configuration information
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to determine the functionality of the reconfigurable interconnects between the in-
termediate stages of the instruction pipeline, i.e. the control signals of the added
multiplexers.

As mentioned, the QuadroCore cluster can be dynamically reconfigured with
respect to three main features: synchronization, communication, and parallelism,
which are briefly described in the following paragraphs.

Synchronization: Depending on the amount and frequency of inter-processor data
exchange, the processors in the cluster can operate synchronously at instruction level
or asynchronously. The cluster can be adapted according to the application char-
acteristics during run-time, since both a fine-grained synchronization scheme (for
instruction-level parallelism) and a coarse-grained independent operation (for task-
level parallelism) are supported. The run-time change in synchronization is achieved
by introducing a synchronization instruction between parts of the application where
a change in application characteristics is determined during compilation. The syn-
chronous mode ensures a lock-step operation while the asynchronous mode initiates
a barrier synchronization for every inter-processor data exchange.

Communication: The communication between the processing elements is mainly
categorized in terms of frequency of data exchange and amount of data exchange.
To suit applications where exchange of data such as register contents is frequent,
a shared register file provides a quick data-exchange mechanism. For large amount
of data, the shared memory is accessible via arbitration over a common bus. The
shared register file has a round-trip time (write and read) of 4 clock cycles, whereas
the shared memory has a variable access time between 5 to 12 clock cycles for each
access. Furthermore, register sharing among processors is possible on account of the
reconfigurable interconnect introduced between the ALUs and the register files as
depicted in the right configuration in Fig. 5.66. For applications with high register
pressure, registers from the neighboring processors can be utilized (supported by
the compiler).

Parallelism: The choice of data-parallel or task-parallel behaviour steers architec-
tural characteristics. The Multiple Instruction, Multiple Data (MIMD) mode, allows
asynchronous operations on independent data and instruction streams. The Single
Instruction, Multiple Data (SIMD) mode, as illustrated in the middle configuration
in Fig. 5.66, co-ordinates all the four data-paths with a single instruction stream,
thus saving energy via reduced memory interactions.

As mentioned above, the reconfiguration can be easily controlled by the user by
adding simple reconfiguration instructions into the C code. A smarter way of in-
troducing reconfiguration is to integrate the decision process into the compiler. As
detailed in [105, 168], the choice of the best mode of execution can be made using
standard program analysis techniques. For every basic block, our compiler, called
COBRA (Compiler-Driven Dynamic reconfiguration of Architectural Variants), de-
termines the best possible mode during compilation and a reconfiguration is inserted
between the modes. The reconfiguration overhead is kept as low as possible since
the reconfiguration between modes requires only a single clock cycle [167, 169].
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CoreVA VLIW Processor

As an alternative to the QuadroCore architecture, we have developed a VLIW (Very
Long Instruction Word) processor, especially suited for signal processing applica-
tions, called CoreVA [110]. Resource efficiency together with high flexibility were
the main design goals for the processor implementation. The CoreVA architecture
is a modular soft-core design, which can be configured at design-time with respect
to the number of functional units (e.g. ALUs, Multiply-Acummulate (MAC) units,
division step units), the width of the data paths, and the structure of forwarding
circuits. In the default configuration, the CoreVA architecture represents a 4-issue
VLIW architecture, implemented as a Harvard Architecture with separated instruc-
tion and data memory and six pipeline stages.

The operations follow a two- and three-address format and are all executed in
one clock cycle. Most instructions have a latency of one clock cycle, except branch,
MAC and load operations, which have a latency of two clock cycles. In SIMD mode,
two 16-bit words can be processed in each functional unit, which leads to an eight-
fold parallelism. As a first prototype, the CoreVA architecture has been fabricated
in a 65nm STMicroelectronics technology. The CoreVA system (including level-1
cache and several dedicated hardware extensions) operates at a clock frequency of
up to 285 MHz with a power consumption of about 100mW. The chip area is about
2.7sqmm including 32 kByte level-1 cache for instruction and data.

With respect to adaptability of the architecture, two mechanisms have been inte-
grated to enhance the efficiency of the architecture: dynamic bypass reconfiguration
and dynamic voltage and frequency scaling using a specially designed subthreshold
standard cell library. The bypass reconfiguration exploits the fact that many paths of
the integrated bypass are rarely used for certain applications. Therefore, the user can
change between application-specific bypass configurations at run-time. Depending
on the actual implementation, this leads to a reduction of the critical path by 26%,
which can be used to dynamically increase the clock frequency or to decrease power
consumption.

The next generation of CoreVA processor has been realized utilizing a specially
developed ultra-low power standard cell library. The new processor, CoreVA ULP,
is capable of dynamically adapting its operating parameters according to applica-
tion requirements and environmental conditions at run-time [138]. During times of
low processor load, power dissipation is substantially reduced by operating the pro-
cessor in subthreshold mode. A chip containing two CoreVA ULP processors was
fabricated in an STMicroelectronics 65 nm CMOS technology and has been suc-
cessfully tested. At 1.2V, the average energy dissipation of a single-slot processor
core is 110.22pJ (at a clock frequency of 100 MHz). The minimum energy point
of 9.94pJ occurs at 325mV, i.e. energy savings of 11.1 % can be achieved during
subthreshold operation. The average clock frequency at this point is 133kHz.
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Fig. 5.66 QuadroCore en-
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5.5 System Software

Stefan Groesbrink, Simon Oberthür, and Katharina Stahl

System software encompasses all software approaches that interconnect the applica-
tion software layer and the hardware layer. This includes operating systems as well
as other middleware approaches, e.g. virtualization.

In the context of self-optimizing mechatronic systems, the system software pro-
vides an execution platform for self-optimizing applications that run on online-
reconfigurable hardware. The ability to cope with the dynamically changing re-
quirements from either the software or the hardware and the capability to adapt
to these changes at run-time is a prerequisite for system software being applied on
self-optimizing mechatronic systems. Hence, the system software must implement
self-optimizing methods by itself. Self-optimization in system software is thereby
not restricted to reacting to dynamical changes. The system software may also im-
plement methods that can be applied to self-optimize the performance of the execu-
tion platform concerning e.g. resource utilization.

The functionality the system software offers is strongly coupled to the require-
ments related to it. Referring to the overall design and development of the self-
optimizing mechatronic system, the general requirements on the self-optimizing
system software are defined by the principle solution (cf. Sect. 3.3.3). One example
for a general requirement is the optimization of resource allocation by exploiting
unused (however reserved) resources. This requirement is solved by means of the
flexible resource management which is presented in Sect. 5.5.2. Another example
for a general requirement on the system software is to support run-time depend-
ability. The problem of run-time dependability is addressed by two different op-
erating system service approaches, one is testing the application state by using an
online model checking while the other one is inspired by artificial immune sys-
tems that tries to identify system behavior anomalies. However, dependability of
self-optimizing mechatronic systems is it’s own subject. These operating system
services have been introduced in detail in [69, D.o.S.O.M.S. Sect. 3.2] .

General requirements express general properties of the system software, that is
implemented in the form of an OS kernel module, an OS service, or a separate
middleware layer.

However, being the interconnecting execution platform, there is a strong interde-
pendency between the system software and the application software layer as well
as between the system software and the reconfigurable hardware. Specific require-
ments arise from this interconnection in terms of provided interfaces or services
that are required by the applications or on the other hand in providing abstractions
of hardware implementation in order to encapsulate a change in the hardware con-
figuration. Both, the general requirements on the system coming from the princi-
ple solution and the specific requirements arising from the software and hardware
have to be satisfied by the system software so that an adequate platform for self-
optimizing mechatronic systems can be ensured. We assume the self-optimizing
system software to be composed of reusable components (cf. Sect. 3.3.3) that are
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Fig. 5.67 Self-optimizing
system software layers
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activated with respect to the present system requirements. Each system component
addresses a specific system function or system property.

We separate the self-optimizing system software into two different layers: one
containing the self-optimizing real-time operating system ORCOS and the lower
level layer containing the virtualization platform including the hypervisor named
Proteus. This section presents the self-optimizing real-time operating system OR-
COS and the self-optimizing virtualization platform. Fig. 5.67 shows an overview
of the system software architecture. In addition, figure Fig. 5.67 also illustrates how
the operating system ORCOS integrates the methods for Online Model Checking
and for Self-Monitoring which addresses the system’s dependability.

Considering the real-time operating system (RTOS) of a self-optimizing mecha-
tronic system, it has to be able to cope with dynamically changing system behavior
and hence dynamical changes on the requirements of the platform. We distinguish
between external and internal requirement changes. External requirement changes
are those originating from outside the system software. That means changes in the
requirements either from the software or the hardware layer. For example, due to a
software reconfiguration, an OS service will be required that has not been provided
by the operating system before. Another scenario might be that the implementation
strategy of an OS service must be exchanged based on the new software configu-
ration. The biggest challenge to cope within such a system is that not all system
parameters are determined during design-time and therefore have to be identified
during run-time. Resulting from this, the OS has to provide an interface that al-
lows to signify the changes in requirements. Furthermore, to be able to satisfy these
changes, the operating system must also provide alternatives in implementation.
And last but not least, the operating system needs structures to enable the run-time
activation or online exchange of components.

Internal requirements come from the operating system itself. As being a self-
optimizing operating system, it is equipped with desired objectives and optimiza-
tion criteria. Usually, the operating system’s objective is to optimally manage the
application’s task and the resources, e.g. in terms of resource consumption, mem-
ory management, scheduling strategies, etc. To achieve those requirements, the
operating system requires internal structures to monitor and analyze the perfor-
mance and to verify whether the optimization objectives are fulfilled. Obviously, all
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self-optimization efforts of the operating system must be performed under consid-
erations of real-time constraints.

The real-time operating system ORCOS [59] was first designed to be fully cus-
tomizable during design-time. However, for the purpose of online self-optimization,
we needed an operating system that is flexible and can be extended during run-time.
Therefore, we adjusted the architecture of ORCOS to enable information processing
required to enable self-optimization. We will describe the resulting OS architecture
in Sect. 5.5.1. As a basis for run-time reconfiguration, we use the concept of our Pro-
file Framework, described in Sect. 5.5.1.1, that allows alternative implementations
for applications task as well as OS components.

Modern self-optimizing mechatronic systems have highly dynamic resource con-
sumption. One of the main objectives of a real-time operating system is to optimize
resource management. Common real-time systems and middleware software are
fixed and not optimal for such scenarios. A problem with dynamic real-time applica-
tions using common real-time system software is that applications allocate resources
up to their maximum requirements. On the one hand, this allocation behavior guar-
antees that the applications have all resources being required during execution. On
the other hand, the maximum resources are often required only in the worst case and
are mostly unused. An approach for optimizing the dynamic resource consumption
is presented by applying flexible resource management. We developed a Flexible
Resource Manager (FRM) (cf. Sect. 5.5.2) that allows to optimize resource con-
sumption autonomously. It uses the Profile Framework as the basis for alternative
resource requirements of applications. The FRM optimizes resource consumption
in such a way that it allows temporal usage of resources that are reserved by other
applications for worst-case. However, this overallocation of resources is conducted
in a safe manner as the FRM guarantees a reconfiguration of the system without
violating worst-case deadlines.

An additional implementation technique for self-optimization – especially in
terms of resource utilization – is our virtualization platform. Like any kind of vir-
tualization our approach provides strict separation of hardware resources by means
of a hypervisor. A two-level scheduling (hypervisor and RTOS) has been designed
in such a way that real-time aspects are strictly taken into consideration. The FRM
approach has been extended in such a way that now a two-level FRM (integrated
in hypervisor and RTOS) is implemented and dynamic reconfiguration may even
happen across virtual machines (cf. Sect. 5.5.4). Some further interesting aspects
concerning enhancing the system dependability by virtualization are illustrated in
more details in [69, D.o.S.O.M.S. Sect. 3.2] .

5.5.1 Architecture for Self-optimizing Operating Systems

As the first step, we developed a real-time operating system named ORCOS (Or-
ganic Re-Configurable Operating System, see [59]) that allows a fine-grained
configuration of the basic (functional) OS components according to the given re-
quirements. According to the definition of self-optimization (cf. Sect. 1.2), the
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Fig. 5.68 Architecture for
a self-optimizing operating
system
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workflow of a self-optimizing system includes the following steps: Analysis of the
current situation, determination of objectives and adaptation of the system behavior.
Hence, the self-optimizing real-time operating system must provide mechanisms
and structures to enable the implementation of a self-optimization workflow.

The architecture of the RTOS is required to be extended in order to support self-
optimization and adaptation to the changing requirements of the self-optimizing
software and hardware. We adjusted the OS architecture based upon the Observer-
Controller Architecture that was first instantiated by the Organic Computing Initia-
tive [179]. An Observer and a Controller component extend the OS and build up
the basis of self-optimization and enable monitoring, self-reflection and reconfigu-
ration in the real-time operating system. The resulting architecture of the operating
system ORCOS is presented in Fig. 5.68. These new components are integrated into
ORCOS as configurable kernel components but separated from the functional OS
kernel modules. The Observer is responsible for monitoring and data collection,
and analyzing and evaluating system behavior based on the defined system policies
and objectives. Self-optimization in the operating system is triggered by a reconfig-
uration that is initiated by the Controller as a reaction on the evaluation procedure
results. The ORCOS Profile Framework builds up the basis for reconfiguration in
the operating system, as it offers alternative implementations defined within a pro-
file from which the Controller can select.

5.5.1.1 Reconfiguration Framework

The central component for the run-time reconfiguration of the operating system is
build up by the Controller. It is responsible for initializing a reconfiguration on the
basis of the Profile Framework [156] provided by ORCOS.

Originally, it has been developed in the context of the Flexible Resource Manager
(FRM) [154] to self-optimize resource consumption in resource restricted real-time
systems as it allows for alternative implementations of an application task in terms
of resource requirements.

The Profile Framework follows the following principle: at each point of time ex-
actly one profile of a task is active (cf. Fig. 5.69). A configuration c of the system
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Fig. 5.69 Profile Frame-
work: Example for a system
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is defined as configuration c = (p1, p2, . . . , pn), with n being the number of running
tasks τ and p1 ∈ P1, p2 ∈ P2, . . . , pn ∈ Pn and Pi being the profile set of task τi. Each
task must define at least one profile to be executed. For any task there may be avail-
able multiple profiles, i.e. versions with different parameters concerning nonfunc-
tional properties. Selecting a specific profile is completed due to dynamic decisions
at run-time.

We enlarge the concept of a profile to be applied to any reconfigurable OS com-
ponent. This encompasses all system entities:

• application tasks
• OS kernel components and services
• components of the self-optimizing framework (e.g. Observer consisting of a re-

configurable Monitor and Analyzer described before)

Profiles may differ concerning their resource demands, which resources are ap-
plied (e.g. a specific communication resource), the implemented algorithm (e.g. in
terms of accuracy of the algorithm or the strategy), execution times, deadlines etc.
A prerequisite for identifying a component to be a reconfigurable component is the
existence of alternatives, which in fact means the definition of at least two different
profiles. Applying profiles to all OS components and the applications running on the
system, all system parts become (re)-configurable online. In this case we can really
speak about fully realizing a self-optimization operating system.

For reconfiguration the Controller contains policies, restrictions and thresholds
for decision making. Of course, a decision for reconfiguration must be checked
against the system characteristics and the real-time requirements of the application
tasks. A reconfiguration must not harm the system service delivery and guarantee
the compliance with the task’s real-time deadline. If all the conditions are met, the
Controller performs a reconfiguration of the system at run-time by simply switching
between the profiles.

Observer

The Observer component is responsible for (1) identifying and selecting the appro-
priate information and (2) analyzing them in order to make conclusions on future
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Fig. 5.70 ORCOS Architecture integrating Monitor, Analyzer and Controller.

system states. For our purpose, we subdivide the observer into two separate entities:
a Monitor and an Analyzer (cf. Fig. 5.70). Although, these two entities are strongly
coupled (the monitor only collects the data that is required by the analyzing method)
they exhibit self-contained tasks which can be executed in a timely decoupled man-
ner. Due to the ability of online reconfiguration we introduce an additional intercon-
nection between the components: The strategy of the analyzer is reconfigurable at
run-time and can be exchanged by the controller. The data collected by the monitor
depends on the applied analyzing algorithm so that an exchange of the analyzing
strategy in turn has effect on the data aggregation of the monitor.

The monitor collects the behavioral data and aggregates the data for the analyzer
while the analyzer evaluates the data and passes its evaluation results to the Con-
troller. In order to collect data about the application behavior, we can monitor the
SyscallManager interface as it is the only interface through which a task can interact
with the kernel. Integrated into the SyscallManager, the Monitor is able to intercept
and record all the system calls from the tasks.

The idea is to enable the use of a broad range of analysis algorithms with the
same monitor. Hence, the monitor is designed to be independent of any analysis
algorithm that evaluates behavior profiles. However, different analysis algorithms
use different parameters to evaluate task behavior. Some of them use system calls
and system call arguments, while others use the return address stack or the program
counter [58].

The monitor defines different monitor modes to make it reconfigurable at run-
time in order to modify which parameters are monitored in accordance to the ana-
lyzing algorithm and control monitor memory usage. The monitor is designed to se-
lectively monitor specific parameters like the system call id, system call arguments,
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return address stack, task resources etc. These parameters can be reconfigured at
run-time by changing the monitor’s mode. By using this filtering mechanism, the
monitor minimizes the overhead associated with monitoring data since it only ag-
gregates the data that is required to build up the behavior knowledge base for the
associated anomaly detection algorithm. To set up the monitor modes, the monitor
offers an interface through a monitor API.

The monitor extracts the system call information parameters along with further
OS state information whenever a system call happens. As the monitor intercepts the
system call execution in order to record the data, it introduces additional run-time
overhead into the system call handling.

Furthermore, real-time systems have limited memory and, hence, real-time appli-
cations have severe restrictions on the amount of memory they can use. The moni-
tor has similar restrictions. System call information is collected at thread basis. The
amount of memory used is also governed by the frequency of system calls invoca-
tions and the amount of monitored parameters. This mechanism enables the con-
troller to re-configure the monitor at run-time in order to prevent memory overflows
and safeguard overall memory usage.

Analyzer

The ORCOS Analyzer provides a framework for anomaly detection algorithms that,
based on the run-time reconfigurability of the system, may be exchanged at run
time. Algorithms implemented to analyze system behavior must comply with the
API provided by the monitor and be applicable for analyzing self-x behavior.

The workflow of each analyzing algorithm is:

1. generate a behavior representation according to the requirements of the algorithm
from the behavioral data base provided by the monitor,

2. evaluate and match the actual behavior against the normal behavior profile pro-
vided knowledge base,

3. inform the controller in case of deviations and detected anomalies.

Strictly separated from the monitor which in turn is directly attached to the sys-
tem call handler, the analyzer is scheduled individually. The monitor must record
the data whenever a system call is invoked while the analyzer is triggered when a
sufficient amount of behavioral data is available (determined by the anomaly detec-
tion strategy). An anomaly detection method that can be integrated into the analyzer
is introduced in [69, D.o.S.O.M.S. Sect. 3.2] .

5.5.2 Self-optimized Flexible Resource Management

The Flexible Resource Manager (FRM) [155] permits an over-allocation of re-
sources under hard real-time constraints. The technique allows to minimize the in-
ternal waste of resources by putting temporarily unused resources, which are only
reserved for the worst-case, at other applications’ disposal. Additionally, an adaptive
self-optimizing system or middleware software can be built using this technique.
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To use the Flexible Resource Manager, applications have to stick to a specific re-
source allocation paradigm and can specify multiple modes of operation – so called
profiles – to allocate additional resources if other applications temporarily do not
need them. The resource allocation paradigm comprises:

1. The application has to specify a priori the minimum and maximum limits per re-
source usage. The application can not acquire less or more resources than spec-
ified in the current active profile, which the FRM activates. If the application
wants to do so, then it has to specify a new profile with appropriate limits. The
activation of the new profile underlies an acceptance test of the FRM.

2. The FRM is in charge of the assignment of applications into their profiles. If
a reconfiguration between profiles is enforced by the FRM, application-specific
transition functions are activated. This allows for an application-specific change
between different operation modes with different resource requirements.

3. The FRM also registers the actual resource consumption of the active profile of
an application, which must be within the specified limits. The FRM guarantees to
the applications that they can allocate the resources up to the specified limit in the
active profiles. In case of a resource conflict – when the system is over-allocated –
the FRM solves the conflict by forcing applications into other profiles so that ev-
ery resource request can be fulfilled. The FRM ensures that no deadlines of hard
real-time tasks are violated. This is done by only allowing an over-allocation of
a resource if a plan for solving every possible conflict exists and this plan can be
scheduled under hard real-time constrains. Figure 5.71 illustrates this approach.

4. Resources are distinguished which can be reassigned within an negligible real-
location time and resources which have to be configured in the background by
the system software. Resources which are reconfigurable in background need
more time to be reassigned between different applications. All resource demands
of background reconfigurable resources – also within the specified limits of the
actual profile – require an announcement to the operating system. Between the
announcement and the assignment a delay is assumed. The profile specifies a
maximum delay per background reconfigurable resource. Note that this delay is
a worst-case value.

The ability to schedule and the deadlock-freeness of the FRM approach have
been formally proven.

To enable engineers to easily use the FRM and the profile model, the approach
is integrated into the high-level design process for self-optimizing mechatronic sys-
tems. A semi-automatic code generation was presented [33], which allows for a gen-
eration of profiles out of hybrid real-time state charts. Hybrid state charts combine
continuous models and discrete real-time state charts (e.g. for the reconfiguration
model). The application programmer only has to specify a minimum of additional
information to generate profiles. For simulation purposes the FRM was not only
implemented on top of the operating system DREAMS [51] , but also integrated
into MATLAB/SIMULINK. This enabled a simulation of an application using the
FRM in which the continuous part, including the controller and the plant, of the
application is encapsulated [157].
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5.5.3 Self-optimization in the Operating System

If self-optimizing applications change their behavior and their resource requests dy-
namically during run-time, even the underlying real-time operating system (RTOS)
should reconfigure its QoS by means of the currently provided services. For exam-
ple, a specific protocol stack should only be present in the RTOS, when applications
request this protocol for their communication. I.e., a reconfigurable/customizable
RTOS includes only those services that are currently required by its applications.
Hence, services of the RTOS must be loaded or removed on demand. Thus, the
RTOS also releases valuable resources that can be used by applications.

As self-optimizing applications are – in the context of this book – embedded
mechatronic systems, they run under hard or soft real-time constraints. Thus, the
reconfiguration of RTOS components is critical. The RTOS always has to assure
a timely and functional correct behavior and has to support the required services.
Hence, the reconfiguration underlies the same deadlines as the normal operation
of the applications. To handle exactly this problem, the FRM can be applied to
the RTOS as well. The FRM model executes the reconfiguration under real-time
constraints. The acceptance test inside the FRM assures that the reconfiguration
does not violate real-time constraints.

The main idea is to release resources of system services by deactivating/activating
basic versions or activating development alternatives (e.g. an implementation on the
FPGA instead on the CPU) of these services. These different states of the services
are modeled as different profiles for each service. Then, these RTOS components
will be handled by the FRM as normal application profiles. Thus, no change of the
FRM model is required.

5.5.3.1 Reconfiguration Model

To build an online configurable RTOS, components which can be re-configured
(activated, deactivated, etc.) have to be identified during run-time. For this pur-
pose the offline configurator TEReCS is reused (Tools for Embedded Real-Time
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Fig. 5.72 TEReCS’s design space description from system primitives via services down to
hardware devices (from [29]).

Communication Systems) [28, 29]. In the TEReCS approach the complete and valid
design space of the customizable operating system is specified in a knowledge base
by a so-called AND/OR service dependency graph [36]. This domain knowledge
contains options, costs, and constraints and defines an over-specification by con-
taining alternative options.

The complete valid design space of the configurable operating system is specified
by an AND/OR graph:

• Nodes represent services of the operating system and are the smallest atomic
items, which are subject of the configuration,

• Mandatory dependencies between services are specified by the AND edges,
• Optional or alternative dependencies between services are specified by the OR

edges,
• Services and their dependencies have costs and can be prioritized,
• Constraints (preferences, prohibitions, enforcements under specific conditions)

for the alternatives can be specified,
• Root nodes of the graph are interpreted as system primitives/system calls of the

operating system.

The algorithm works, e. g. for communication primitives, as follows: A path can
be found through the complete graph from the sending primitive down to the sending
device, considering the routing and then up to the receiving primitive. The services
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that are visited on this path have to be installed on the appropriate nodes of the
service platform (see more color saturated nodes in Fig. 5.72). Thereby, the path
should create minimal costs by the use of the services.

Such paths will be searched for all primitives that are used in the requirement
specification. Because only a subset of all primitives is normally used, especially
the particular selection is responsible for the instantiated services and its parameter-
ization. The primitives can be considered as the strings of a puppet. Depending on
which strings are pulled, the “configuration” of the puppet will change accordingly.
The service dependencies can be compared to the joints of the puppet. Therefore,
the algorithm is named “Puppet Configuration”.

The online configuration makes use of pre-defined solutions that have been con-
figured offline. Thus, it is up to the online configuration phase to identify the use
cases, for which the solutions have been created and to activate them. The identi-
fication is simple, because it depends on the system primitives, which are used by
applications and other clusters. Those pre-defined solutions have to be instantiated
so that all required primitives are implemented for the concrete situation during run-
time. If primitives are unused an alternative cluster can be activated during run-time,
which does not implement the unused primitives.

The same system primitives that have been used to create a pre-defined solution
are leading to the selection of that solution component in the coarse-grained design
space level. This condition must be assured during the specification of the abstract
design space for the pre-defined solutions. This problem must also be solved by
the system expert offline. This procedure is allowed, as TEReCS’ main philosophy
obliges the encapsulation of all expert knowledge in the design space descriptions.

Example

Figures 5.73 and 5.74 sketch an example for two pre-defined cluster options (B+C).
The primitives Scheduling and Communication in Fig. 5.73 are used by the equally
named clusters from Fig. 5.74. The option B is generated from A if the primitive
Scheduling is not used. The option C is generated alternatively. In Fig. 5.74, the
pre-generated solutions B+C are included as the OS Hierarchy Option I and II.

Except the cluster Scheduling all other clusters can use both options alternately.
Only the cluster Scheduling requires explicitly the solution of the OS Hierarchy II,
which supports multiple threads. If the primitive CreateThread will be used, then
the cluster Scheduling is requested. Thus, the request of the primitive CreateThread
from an application requests the cluster Scheduling to be instantiated. Moreover,
as the cluster Scheduling requires the internal primitive Scheduling, the cluster OS
Hierarchy II also has to be instantiated instead of the cluster OS Hierarchy I.

The alternatives of the operating system services are modeled as different pro-
files. Using the previous example, OS Hierarchy I and OS Hierarchy II are mapped
into two profiles of the system service OS Hierarchy, which is from the point of
view of the FRM handled as a normal application.
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Fig. 5.73 Zoom to the fine-grained level of to the OS cluster with its optional components
(A) and two pre-defined configuration examples (B+C).
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Fig. 5.74 OS design space at 2nd level with integrated options for pre-defined solutions of
clusters.

5.5.3.2 Online Reconfiguration

For each primitive a new resource is introduced. When an application or other RTOS
service wants to use a system primitive, it requests the corresponding resource. Ini-
tially, each service holds each corresponding resource of the primitive it provides.
When an application or other system service arrives or wants to use a primitive, it
has to request the corresponding resource, which must be in the range of the spec-
ified resource boundary of its actual profile. As a reaction, the FRM activates a
corresponding profile of the service, where the service does not block the primitive
by occupying the corresponding resource but implements the primitive by activating
an alternative pre-defined solution. The service implements in the enter and leave
functions of the profiles the switch between the pre-defined clusters. These reconfig-
uration functions represent the Online-TEReCS module as a whole entity. In a pro-
file the meaning for the system services of holding a primitive provides the reverse
meaning of an application: a service holding a primitive means that the primitive
is not required and does not need to be implemented. On the other hand, when an
application holds a primitive, the service has to provide the primitive’s code.

Clusters representing the system services are reconfigured during run-time em-
ploying the FRM approach to mediate the reconfiguration. The alternatives are mod-
eled as different profiles. Using the previous example again, OS Hierarchy I and
OS Hierarchy II are mapped into two profiles of the system service OS Hierarchy,
which is from the point of view of the FRM handled as a normal application.

As sketched in Fig. 5.75 and before, the reconfiguration of the RTOS cluster com-
ponents is completely managed by the Online-TEReCS module in the enter/leave
functions of the corresponding profiles. The reconfiguration options are modeled
as optional profiles being offered by Online-TEReCS, which are activated and de-
activated by the FRM. Each profile defines which primitives are used by a system
service profile and which are not used – as the primitives are modeled as resources.
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Thus, the FRM does not need to distinguish between RTOS components and normal
applications. The FRM mediates the system primitives (resources) between all the
applications and the RTOS. Thus, it handles the competition between the applica-
tions and the reconfiguration options of the RTOS. The system primitives represent
the dependencies between the services. The services which are locked do not pro-
vide system primitives in corresponding profiles by allocating the system primitive
itself. Thus, the FRM manages and assures that all dependencies are considered dur-
ing run-time, otherwise the concrete allocation of a system primitive corresponding
recourse would by surmount the maximum available number and lead to unfeasible
system configuration. Real-time constraints are respected by modeling the recon-
figuration time of the RTOS in the switching conditions respective to the minimum
dwell time of the profiles and the acceptance test in the FRM.

Applications must define all real-time constraints regarding their future resource
allocations. Additionally, an application can only allocate resources in the range of
the profile, which is currently active. With this information the FRM guarantees by
means of the acceptance test, that all resource allocations can be timely performed.
Deactivating a system service, by activating a profile in which this service is not
configured into the system, and an application, which is currently not using the
service but specifying a possible future use through the defined profile parameters,
creates an over-allocation state. If the application wants to use the service this leads
into a reconfiguration. The acceptance test assures that a system service is only
deactivated if the reconfiguration to reactivate the service can be executed “in time”
to provide the resources when needed.

The creation of pre-defined solutions for clusters is done automatically. For
each combination of possible requests or dismissals of system primitives and in-
ternal primitives a configuration is generated. For the optimization and reduction
of the design space of the operating system, a system expert might restrict the
combinations of parallelly instantiated system primitives to only those ones that
make sense which cover other solutions and – with high probability – are not used
simultaneously.

A repository stores all pre-defined solutions of the clusters. A cache will tem-
porarily store the code and the description of optional configurations for clusters, in
order to speed up the loading of required cluster implementations. The cache can
retrieve other configuration’s implementations from background storage (hard disk)
or from the network (cf. Fig. 5.75).

The FRM tries to optimize the system according to the current resource require-
ments of the components (system services and applications) and the quality informa-
tion of the profiles. To do this, the FRM requests the application and system services
to change their current profiles. This results in a reconfiguration of the RTOS and
an optimization of the resource usage between the applications and the operating
system.

The FRM approach includes the definition of quality values per profile. Thus,
the FRM can not only reason about the optimality of application profiles, but it can
additionally reason about the optimality of the RTOS configuration.
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By the integration of TEReCS and the FRM into a RTOS a self-optimizing real-
time operating system (SO-RTOS) is derived. Such an OS adapts itself with the
help of the FRM to the needs of the current applications executed on top of it.
Using this technique services can be deactivated and freed resource can be put at the
applications’ disposal. The real-time capability of the FRM ensures that only such
services are deactivated, which can be reactivated under hard-real time constraints,
if required by application tasks.
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Fig. 5.75 Integration of TEReCS and the FRM framework into the RTOS

5.5.4 Hierarchical Flexible Resource Manager

The Flexible Resource Manager concept was adapted to system virtualization [195].
Integrated systems with multiple software systems executed on a single hardware
unit provide often a more resource-efficient implementation compared to multiple
separated hardware systems. System virtualization realizes this integration of mul-
tiple systems with maintained separation, and therefore is well suited for safety-
critical mechatronic systems. The hypervisor allows the sharing of the underly-
ing hardware among multiple operating systems, each executed in an isolated vir-
tual machine. We developed a real-time capable hypervisor for embedded systems,
which is characterized by multicore support and possibility to host both paravirtual-
ized and fully virtualized guests [14, 77].

The Hierarchical Flexible Resource Manager consists of FRM components on
two levels, Guest-FRMs and Hypervisor-FRM, as depicted in Fig. 5.76. In a parti-
tioned manner, the FRMs on both levels take resource management decisions. The
Guest-FRM is part of the operating system and switches between task profiles in
order to assign resources to tasks, as previously described in detail. The Hypervisor-
FRM is part of the hypervisor and switches between virtual machine profiles in order
to assign resources to virtual machines. Communication takes place in both direc-
tions. The Guest-FRMs inform the Hypervisor-FRM about the dynamic resource
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requirements and current resource utilization. The Hypervisor-FRM’s resource al-
location among the virtual machines is based on this information. The Hypervisor-
FRM informs the Guest-FRMs about the assigned resources in order to allow the
Guest-FRM to manage its resource share. The cooperation of the hypervisor’s vir-
tual machine scheduler and Guest-FRM guarantees that each guest system becomes
(1) active in time, (2) for a sufficient duration and (3) equipped with the necessary
resources, in order to allow the guest to execute its applications in compliance with
their timing requirements.

The implementation of the Hierarchical Flexible Resource Manager requires par-
avirtualization, since the Guest-FRMs as part of the guest operating systems have
to pass information to the Hypervisor-FRM as part of the hypervisor. According to
paravirtualization [16], the guest operating systems are aware of being executed in
a virtualized manner on top of a hypervisor and not on top of the bare hardware.
The guest operating systems are modified and explicitly ported to the interface of
the hypervisor. By consequence, they are able to communicate with the hypervisor.
The requirement to modify the guest operating system is outweighed by the advan-
tages gained in terms of flexibility of an explicit communication and cooperation of
hypervisor and operating systems.

In contrast to static virtualization techniques where the resource shares are as-
signed a priori to the virtual machines, our approach allows for a dynamic resource
allocation even across virtual machine borders. The cooperation of Hypervisor-FRM
and Guest-FRMs is based on a hierarchical mode change protocol. We refer to pro-
files and transitions between them. A non-empty set of task profiles is assigned to
each task, as introduced before. The Guest-FRM is in charge of switching between
these profiles at run-time. The task profile Pr j of task τ j is defined as:

• resource allocation minimums and maximums:
∀ resources Rk with limit R̂k : 0 ≤ φmin

j,k ≤ φmax
j,k ≤ R̂k

• profile quality Q(τ j) ∈ [0,1]
• subset of the set of task profiles to which the Guest-FRM can switch from Pr j
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In addition to task profiles, there are VM profiles, which specify the minimal and
maximal resource limits for a virtual machine. VM profiles unite the active profiles
of the tasks of a virtual machine. In case of a task profile transition, the VM profile
is updated and communicated to the Hypervisor-FRM and used for the resource
assignment among the virtual machines.

A VM profile PVMi is defined as follows:

• resource allocation minimums and maximums:
∀ resources Rk : ∀ tasks j o f VMi : Φmin

i,k = ∑ j φmin
j,k , Φmax

i,k = ∑ j φmax
j,k

• profile quality Q(VMi) ∈ N : Q(V Mi) = ∑ j Q(τ j)
• subset of the set of VM profiles to which the Hypervisor-FRM can switch from

PVMi

The set of active profiles is called configuration. The possibility to switch be-
tween profiles on both the task level and on virtual machine level enables a dynamic
resource assignment across virtual machine borders. A Guest-FRM can shift re-
sources by task profile switches from one task to another; and similarly, due to the
cooperation of the FRMs on the two levels, resources can be reallocated from task
τi of VM1 to task τk of VM2. The Hypervisor-FRM activates a VM profile with a
lower resource allocation maximum for VM1 and according to this, the Guest-FRM
of VM1 activates a task profile with a lower resource allocation for τi. This allows the
Hypervisor-FRM to activate a VM profile with a higher resource allocation maxi-
mum for V M2 and the Guest-level FRM of VM2 to activate a task profile with a
higher resource allocation for τk.

The hierarchical FRM assigns fractions of resources at run-time to other tasks
whenever a task does not use the complete amount of resources as needed in the
worst case. If at a later point in time, the resource lending task needs more resources
than remaining, a resource conflict occurs and has to be solved under real-time con-
straints. There are two kinds of resource conflicts, caused by two kinds of dynamic
resource reallocation. The Guest-FRMs can reallocate resources among their tasks
and the Hypervisor-FRM can reallocate resources among virtual machines. In both
cases, an acceptance test precedes and a resource reallocation is accepted if and only
if:

• ∀ Resources Rk , ∀ tasks 1..n :
n
∑

i=1
φmax

i,k ≤ R̂k

• the FRM identifies a feasible reconfiguration

A reconfiguration is a sequence of profile switches that activate a configuration,
which fulfills the worst-case requirements of all tasks. If such a reconfiguration plan
includes VM profile switches, it is called global reconfiguration. The Hypervisor-
FRM and at least two Guest-FRMs have to perform configuration switches. In con-
trast, a local reconfiguration only includes task profile switches and is accomplished
by a single Guest-FRM. A reconfiguration plan can only be accepted, if the schedu-
lability analysis attested that the time required to execute the reconfiguration does
not lead to a deadline miss. The reconfiguration plans for conflict resolution are
stored in conflict resolution tables. An entry is created after a reconfiguration was
accepted and lists the required profile switches to reach a state that guarantees all
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Fig. 5.77 Conflict Resolution: Global Reconfiguration Sequence [195]

deadlines. If a conflict is always solved by reconfiguration to the initial state, there
is at most one entry per task profile. A larger table with the possibility to reconfigure
to multiple optimization levels is more promising, but requires additional memory.

In the following, an example depicts the conflict resolution process. It is assumed
that task A, executed in virtual machine V M1, has a specific worst-case requirement
of a resource and consequently, this resource share was assigned. Since the actual re-
source usage of task A was significantly below the reserved amount, the Guest-FRM
switched to another profile and made a fraction of the assigned resources available
to task B of the same VM. In case of a resource conflict, i.e. task A requires a larger
resource share than remaining, the Guest-FRM resolves the conflict by switching to
task profiles with a resource distribution that fulfills the timing requirements of task
A. The sequence of profile switches that have to be performed to obtain this state
was stored in VM1’s local conflict resolution table when the acceptance test for the
resource reallocation was passed.

It is possible that the Guest-FRM can not resolve the resource conflict, since
a global reconfiguration is required to achieve this. This is the case, if it was
caused by a resource reallocation to another guest system. A share of the resource
reserved for virtual machine VM1 could have been assigned to virtual machine
VM2 by the Hypervisor-FRM, and further assigned by VM2’s Guest-FRM to task
C. The Hypervisor-FRM informed VM1’s Guest-FRM about this resource reallo-
cation and the Guest-FRM noted this in the local conflict resolution table. The
conflict resolution is depicted in the UML sequence diagram of Fig. 5.77. In case
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of a resource conflict of task A, the Guest-FRM of VM1 informs the Hypervisor-
FRM, which prompts the Guest-FRM of VM2 to release the supplemental resources.
The Guest-FRM of V M2 switches the profile of task C to one of lower resource uti-
lization. The Hypervisor-FRM can accordingly switch the profile of both VM1 and
VM2 and inform the Guest-FRM of VM1 to ultimately activate the conflict resolving
profile switch for task A.

In order to guarantee real-time requirements, hypervisors for embedded systems
typically assign virtual machines statically to processors. This static approach is in-
appropriate for the varying resource requirements of self-optimizing mechatronic
systems. Virtualization’s architectural abstraction and the encapsulation of virtual
machines support migration, i.e. the relocation of a virtual machine from one pro-
cessing element and connected memory to another one at run-time. Prerequisite is a
multiprocessor architecture with an instance of the hypervisor running on each pro-
cessor. Multiple processing elements operate on their own dedicated memory, but
are connected by input/output devices.

By the application of emulation, virtual machine migration is even possible
for heterogeneous multiprocessor platforms, which are characterized by processors
with differing instruction set architectures. Emulation executes program binaries
that were compiled for a different architecture. This translation between instruction
set architectures realizes cross-platform software portability. We developed a real-
time capable emulation approach [115] and a real-time migration for heterogeneous
multiprocessor architectures, which analyzes at run-time whether a virtual machine
with real-time constraints can be performed without risking a deadline miss [82]. It
selects an appropriate target for the migration and controls the migration process.
This migration manager was integrated into our hypervisor Proteus [83].

For the migration of virtual machines, a coarse-grained dynamic reassignment of
resources can be realized in comparison to the mode switches of the Hierarchical
Flexible Resource Manager. In particular it is useful for open systems, in which the
addition of applications or subsystems at run-time is possible. System virtualiza-
tion isolates arriving potentially faulty or malicious software from existing critical
applications. The acceptance of an application or even an entire subsystem typi-
cally changes the load balancing significantly and it might actually be necessary to
perform migration to be able to accept an arriving subsystem.

System virtualization and its ability to reuse subsystems is a powerful tech-
nique to meet the functionality and reliability requirements (see [69, D.o.S.O.M.S.
Sect. 3.2.8] ) of increasingly complex systems and has potential to support the mi-
gration to multiprocessor platforms. Targeting this architecture, the Hierarchical
Flexible Resource Manager provides a resource management for the dynamically
varying resource requirements of integrated adaptive systems. The two-level solu-
tion beyond virtual machine borders has the potential to increase the resource uti-
lization significantly compared to static approaches.
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5.6 Virtual Prototyping

Jörg Stöcklein, Wolfgang Müller, Tao Xie, and Rafael Radkowski

Virtual prototyping is a technique, which applies Virtual Reality-based product de-
velopment for the engineering of mechanical and mechatronic systems. Virtual pro-
totyping is based on the modeling, design, and analysis of Virtual Prototypes (VPs),
i. e. computer-internal models, which are executed and analyzed in a Virtual Envi-
ronment (VE). VPs are typically developed prior to physical prototypes (or mock-
ups), which are mainly profitable for relatively small subsystems, e. g. the Hybrid
Energy Storage System (HES) (cf. Sect. 2.1.5) or Active Guidance Module (cf. Sect.
2.1.3). Compared to physical prototypes, the development of VPs is less expensive
and time-consuming, and VPs provide a significantly higher flexibility for change
requests and variant management. Moreover, due to the virtualization of the pro-
totype and the environment, Virtual Prototypes faciliate the early evaluation of the
final product. All experiments can be conducted under controlled conditions of a
well structured Virtual Test Bench (VTB) and for instance can easily be repeated
for regression testing.

Today, with the outcome of sufficiently fast and affordable computing plat-
forms and devices, Virtual Reality (VR) based Virtual Prototyping is widely ac-
cepted in several engineering disciplines. Examples are the design review of vehi-
cles [114, 192] and plant engineering [212]. Meanwhile, Augmented Reality (AR)
based technologies also are frequently considered for engineering related applica-
tions such as evaluation of automotive prototypes and the preparation of experi-
ments [117, 209].

We apply Virtual Prototyping for the development of complex self-optimizing
mechatronic systems with inherent intelligence, which react autonomously and are
flexible to changing environmental conditions. This applies at each level of the hi-
erarchical structure that makes up a complex mechatronic system: e.g. Mechatronic
Function Modules (MFM) such as an intelligent suspension strut, Autonomous
Mechatronic Systems (AMS) such as a vehicle, and Networked Mechatronic Sys-
tems (NMS) such as a vehicle convoy. Due to their complex structure and highly
dynamically evolving behavior, self-optimizing mechanical systems impose huge
challenges during their entire product development process, starting from the initial
specification to composition, analysis, testing, and final operation [68].

As such, for the development of self-optimizing mechatronic systems, the ade-
quate combination of VTBs, VEs, and simulation-based VPs can be beneficial over
classical development platforms as they are highly flexible and customizable for
the individual, dynamic needs and requirements of such systems and support differ-
ent views and seamless integration of multiple integrated models. Nevertheless, the
manual configuration of virtual platforms for mechatronic systems is cumbersome
and error-prone as it is conducted on an individual base and requires the integration
of different domains like electrical and mechanical engineering.

We introduce a novel Virtual Prototyping platform dedicated to the develop-
ment of self-optimizing mechatronic systems. The platform seamlessly combines
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VR- and AR-based user interaction and control with model-based execution of the
different integrated VPs, which are controlled by domain-specific simulators or in-
tegrated Hardware-in-the-Loop components [17, 172]. For true design automation,
we investigated automatic linking of the different models to VEs and advanced VTB
technologies for the controlled and repeatable execution of experiments.

The remainder of this section is organized as follows. In the next subsection we
will introduce the principles of VPs and VEs 5.6.1. Next we will describe our ap-
proach to automatic VE configuration. Section 5.6.2 presents the agent-based auto-
matic model linking. Section 5.6.3 gives an agent-based solution to link the mod-
els to different visualizations. Finally, Sect. 5.6.4 outlines the basic concepts of our
self-optimizing VTB, which is based on the principles of mutation analysis. All sub-
sections present application examples based on the reconfigurable miniature robot
BeBot [99], which serves as one of our main development platforms.

5.6.1 Virtual Prototypes and Virtual Environments

Rafael Radkowski

A Virtual Prototype (VP) is defined as a computer-internal representation of a real
prototype of a product [128]. Figure 5.78 outlines the basic concept of a VP, which
is based on the notion of a digital mock-up (DMU) with the definition of the product
shape and structure. A DMU is typically based on two models: 3D CAD models and
the logical product structure. A VP extends a DMU by further domain-specific as-
pects like the kinematics, dynamics, force or information processing. Each of these
aspects is defined by a different domain-specific view. As such, VPs help engineers
to exercise, analyze, and evaluate the interaction of the system and its subcompo-
nents. That way, VPs facilitate an easy comprehension of the product behavior long
before a first physical mock-up is built.

VPs are executed and analyzed in a Virtual Environment (VE). A VE is a
VR/AR-based synthetic environment, which provides a visual, haptic, auditive, and
interactive experimentation environment for the VP [86].

In our approach, we developed a methodology and technologies for simulation-
based VEs for the advanced interactive analysis of self-optimizing mechatronic sys-
tems. Our VE also comprises a Virtual Test Bench (VTB) for the structured and
controlled execution of experiments and tests, respectively. As such, we have ad-
vanced the idea of the classical VE [86] towards a simulation-based VE like in the
Extensible Modeling and Simulation Framework (XMSF) [32] or in the High Level
Architecture (HLA) [39]. That means, our approach is not limited to visualize VP
models, rather than also integrates behavioral simulation models and physical hard-
ware (Hardware-in-the-Loop) for real-time user interaction with VPs for realistic
product development, analysis, and testing. For this, we have already introduced
a common VE infrastructure for semi-automatic multi-domain integration of the
VP [17, 172].
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Figure 5.79 presents an overview of the principle components of our VE and their
interaction by the example of our BeBot robot [99]. The VE on top is composed
of interacting Virtual Prototypes (VPs) and a Virtual Test Bench (VTB). The latter
covers the objects of the test environment including the behavior for interacting with
the VPs, i.e. stimuli, as well as a test strategy given by a verification plan for the
controlled execution of experiments and tests, respectively. We can see that each VP
has different aspects: shape, structure, and behavior such as kinematics, dynamics
behavior, which can be given by an executable component, such as Hardware-in-the-
Loop, or a domain-specific simulation model, such as a MATLAB/Simulink model,
as illustrated at the bottom of Fig. 5.79.

Typically, a VE is created manually like the maritime combat simulation in [85]
or the virtual factory in [186]. That means, either interactions between the different
VPs and the VE are implemented manually or by means of predefined data structure
with a fixed set of variables for each VP. As of today, with the increasing intelligence
of mechatronic systems, the number of considered system components and their
interaction significantly increases. The increasing complexity of data structures and
their interaction both make the manual integration of VPs to a simulation-based
real-time VE infrastructure highly time-consuming and error-prone. Therefore, we
have developed an agent-based approach where software agents [108] identify the
physical and non-physical interaction between single VPs automatically and link
them to a VE. An agent compares two function structures given as standard models
of the product development process and identifies similarities for automatic model
linking.

Before we will introduce our approach for VTB automation, the next two sections
outline our concepts for automatic model linking and their linking to the visual
representation.
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Fig. 5.79 Schematic overview of the composition of a virtual environment

5.6.2 Automatic Model Linking

Rafael Radkowski

Our automatic model linking is based on Semantic Web technologies. The Semantic
Web (SW) facilitates machines to capture the content of web pages and other similar
documents [22]. Thus, machines can automatically link information from different
sources. The Resource Description Framework (RDF) plays a decisive role for
the SW. RDF is a description language, which is used to annotate the content of a
web page; it is the syntax for meta-data of a web page. The underlying model is
based on a directed graph. The nodes of the graph denote resources, while the edges
denote properties. The idea of RDF is to describe complex facts by a network of
simple RDF statements. A RDF statement consists of a subject, a predicate, and an
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object. The predicate is the most important part of the semantic. It is defined as a
W3C (World Wide Web Consortium)-standardized predicate for the description of
business cards. The SW can only function successfully if all participants have the
same understanding of these predicates and interprets them in the same manner.

A reasoning system is necessary to identify relations between two RDF-annotated
web pages. RDF represents the database only. For that purpose, query languages are
used to query the necessary information. Queries need to be transformed to a form
where reasoning is possible by processing production rules.

Some researchers have already used RDF and the related reasoning mechanism
for the engineering of technical systems. For instance, Bludau and Welp (2012) [27]
have developed a framework, which supports engineers during the development
of mechatronic systems. Their framework searches for active principles and solu-
tion elements, which meet a given specification. Restrepo (2007) [177] uses SW
techniques to search for design solutions for a given problem. He has developed a
database, which contains different design solutions; Simulink RDF annotates every
solution. A reasoning mechanism searches for solutions for the given design prob-
lem. Ding et al. (2009) use XML-based annotations to annotate CAD models with
design constrains, goals, relationships, and bounds [50]. They mainly annotate geo-
metric, topological, and kinematic properties of a given design. Their approach can
be utilized to find an optimal design solution during the product development pro-
cess. The authors use XML as a notation basis, but their notation is similar to a RDF
notation. Ding et al. (2009) developed an XML-based product representation that
also allows an annotation of geometrical properties [49]. For further information,
Li et al. (2009) present a classification of different annotation approaches [135].
They all demonstrate the importance of software agents and annotation techniques
in engineering design, on which our approach is based.

The main principle of our approach for agent-based automatic model linking is
outlined in Fig. 5.80. On the bottom left of the figure, we can see the example of
two Virtual Prototypes (VP), which are linked to a Virtual Environment (VE). A
software agent represents each VP.

In this example, each VP includes two models: a 3D model and a behavioral
model. Both models are shown at the top of the figure with the 3D model on
the left and the behavioral model on the right. The latter is illustrated by a MAT-
LAB/Simulink screenshot. The application contains and processes a model that sim-
ulates the behavior. Both models are annotated. Therefore, an RDF-notation is uti-
lized; the annotations describe the purpose of the models. Normally, more than two
aspect models (3D model and behavior) and one VP are used.

The main task of the software agent is to combine both aspect models (3D model
and behavior) to one VP and to integrate them into the VP-template, which is pro-
vided by the VE. As shown in Fig. 5.80, this requires five steps.

The first step is an initialization by a user (1). Normally, the user specifies one
model (3D model or behavior model) as the origin. The objective of the agent is to
identify the other models and to integrate them into the template of the VP. There-
fore, the agent searches for every available model. A service directory of the agent
platform references them. The annotation of every available model is read (2). The
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Fig. 5.80 Automatic model linking overview

agent compares the RDF model of the 3D model with the RDF model of the behav-
ior model (3). A set of production rules is used for this task. If two models pass the
production rules, the agent assumes them to be similar.

Next, the 3D model is integrated into the VE by loading the model and including
it into an internal data model (4). However, the behavioral model cannot be included
by simply importing it. Since the processing of the behavioral model is very resource
consuming, it is executed on a separate computer system. As only simulation results
are required for an analysis of the VP, only the results are transmitted by means of a
communication server (CS) to the main host. The CS manages the communication
between the simulation software and the VP/VE. The agent configures the CS and
establishes the communication between the behavior model and the 3D model (5).

5.6.2.1 Semantic Annotations with the Resource Description Framework

After automatic linking, the VP models are enhanced by semantic annotations by
means of the RDF (Resource Description Framework) language [22]. RDF provides
a syntax for web page meta data, where the underlying model is based on a directed
graph. The nodes of the graph refer to resources, the edges to properties. The idea
of RDF is to describe complex facts by a network of simple RDF statements. We
apply RDF as an annotation language to describe the context of each VP model.
The challenge of the annotation is to identify the relevant elements of a specific
model, which are required to conduct the automatic integration of the model. At this
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Fig. 5.81 Example of the semantic annotation of a 3D model

step, we presume the availability of VP models of the following aspects: shape (3D
model), behavior, functions, and activations.

For semantic annotation, we will outline the main concepts by the example of a
shock absorber as given in Fig. 5.81. Four items of a 3D model are annotated: the
entire part, the active surfaces, the subparts, and the active directions:

Entire part (1): The resource is linked to the variable, which represents the
model, normally a file. In this example, the name of the model is Model_Shock_
Absorber. The variable is annotated by the predicate element. To describe the
element, a literal is used. In this example it is ‘Shock Absorber in Left Front ‘.

Active surface (2): The active surfaces of a component are the surfaces, which
fulfill the functions of this component [158]. The resource is linked to the variable
in the data structure of the 3D model, which represents the active surface. In the
example, the name of the variable is Element_Surface_cly. active_surface_2D is
the predicate, which defines the item as an active surface.

Active part (3): This type of part moves to cause an effect of the entire model.
The resource refers the variable, which describes the main part in the data struc-
ture of a 3D model; in this case it is the entire piston. The word has_moving_part
is used as RDF predicate to annotate to the subpart, which describes the part in
the structure of the entire 3D model; the variable’s name is Part_Piston. Further-
more, to describe this active part, the predicate is_active_part is used. It facili-
tates the annotation with a literal. In this case the literal is: ‘Moving Part of the
Shock Absorber‘.

Active direction (4): The fourth annotation type is the active direction. Accord-
ing to Pahl and Beitz (2007) [158], the active direction describes the direction,
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into which a function of a component effects. In Fig. 5.81, the piston of the shock
absorber is the active part, which active direction should be described. The vari-
able Global_Coord_System_z describes the coordinate system; it describes the
direction of moving. It is attached to the resource part_piston by the predicate
has_active_direction. In addition, the resource Global_Coord_System_z needs
to be annotated with a human understandable literal. In the example, the literal
is ‘Moving direction of the Piston’. It is attached to the resource by the predicate
translation.

However, though we outlined our concepts by just one example it should be suf-
ficient to give an impression to show how the semantic annotation with RDF is
applied, and which elements of a 3D model are necessary in order to describe the
purpose and functionality of a 3D model in a natural way (literals). In total, we have
defined 36 RDF keywords to describe active surfaces and directions as well as the
parts and subparts of an assembly. Further details can be found in [171].

5.6.2.2 Software Agent Reasoning

Recall here that the software agent has two major tasks. First, it has to identify
similar aspect models and, second, it has to establish the communication and the
exchange of data between different software tools. The following paragraphs will
outline the reasoning mechanism for establishing the communication infrastructure
as sketched by the example in Fig. 5.82.

Figure 5.82 shows a 3D model of our miniature robot BeBot on the left side and
a behavioral (MATLAB/Simulink) model of the robot on the right. We presume that
both models are already annotated by RDF, where the example just shows a small
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portion of it, the variable speed. As a BeBot can fulfill different tasks in a team, the
variables of the behavior model need to be linked with the related variables of the 3D
model and with other VPs. For that, a reasoning mechanism identifies variables that
are related to each other. In general the software agent compares the RDF models,
two at the same time, and converts the results of the comparison into a numerical
value. This numerical value expresses the similarity of two models, respectively
their variables. The comparison is based on production rules. Each production rule
has the form:

IF(ConditionC1 &Condition B1 & . . . &ConditionCn &Condition Bm)

THEN A1; . . . ; A0

Conditions of type C are predicates of the 3D model, conditions of type B are
predicates of the behavior model. By applying these production rules a set of cor-
responding predicates is identified. As corresponding predicates each pair of predi-
cates is defined, which describes the same meaning of an item. For instance, condi-
tion C states translation & cal (calculated) and condition B states output & velocity
are defined as corresponding predicates; they result in an output A = 1. Otherwise
they result in an output A = 0. The result of this calculation is weighted by a weight
value g:

A0 = Ag + E

The value g indicates the importance of a production rule. The term E is an offset.
It is calculated by comparing the literals of each pair of corresponding predicates.
This is done by a statistical phrase analysis (see also [171]). A vector describes the
results of every production rule:

Rsimilar = A1,A2, . . . ,A0

That vector is a rating scale for the quality of the similarity of a certain task.
After the vector is determined, the agent ranges all results Rsimilar,i, where the index
i refers to a certain production rule of two compared models. A statistical method
is used for this comparison, the so-called squared ranking. This method calculates a
likelihood value p(i) for each corresponding pair of predicates:

p( j) =
1

size
·
(

Emax − (Emax −Emin) · (Rsimilar, j − 1)2

size− 1

)

with two rating values Emax and Emin. These values express the estimated amount
of minimal and maximal corresponding predicates, respectively the number of pos-
sible relations. The equation assigns a numerical value to each production rule and
expresses the fulfilled rules by a numerical value. A high value indicates the simi-
larity of the compared variables. The agent links all data, which value p( j) exceed
a threshold:
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p(i)> pthreshold

The value p(i) needs to cross a threshold pthreshold . At this time the threshold
is determine empirically. After this decision, the agent establishes the communica-
tion between the behavior model and the 3D model. Further information about the
communication infrastructure and the behavior of the agent inside the VE has been
presented in [173].

5.6.2.3 Application Example

To proof our concepts of automatic model linking, a software prototype was devel-
oped and validated by the BeBot robot application example [99]. Figure 5.83 shows
a screenshot with an overview of the VE on the left. In the environment, the Flag is
located in the middle of the environment and spheres are placed as obstacles for the
BeBots around it. The BeBot with the diamond on top tries to capture the flag. On
the right, it shows the corresponding infrastructure of the VPs.

Each BeBot is represented by a 3D model and a behavioral model. Both models
are annotated by RDF [171]. The annotation of the 3D model describes the input
variables to set the position and direction of a robot as well as a state diagram to
visualize its current state. The behavioral model provides the position and direction
of each BeBot. Both applications (VE and behavior) need to be linked by the agent,
the agent has to identify the variables and link them respectively.

In summary, the agent is able to realize the communication between both mod-
els/applications utilizing the RDF-based annotations of both models. The desired
application can be realized, without any need for a user to describe the communica-
tion manually.
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5.6.3 Visualization Agents

Rafael Radkowski

In engineering, software agents are utilized in many different application fields.
Agents are mainly used to support the design process by making decisions, which
are based on a large amount of data. Mendez et al. (2005) describe an agent-based
software architecture for agents in virtual environments [142]. They introduce the
concept of expert agents. Expert agents are software agents with an expert knowl-
edge in a specific technical domain. Based on this knowledge, the expert agent is
capable of finding a solution to solve a specific problem. The paper introduces a sim-
ilar idea. However, their desired tasks are training tasks. Galea et al. (2009) present
a framework for an intelligent design tool that assists a designer, while working on
micro-scale components [67]. They do not label their framework as software agent,
but they use a similar artificial intelligence technique to model the knowledge and
the reasoning system. Multi-agent systems have also been used to support engineers
in time-critical tasks [161]. An agent aggregates relevant information from other
agents that represent different members of an engineering team. Thus, an engineer
gets the right information at the right time. Baolu et al. (2009) propose the so-called
Multi-Agent Cooperative Model (MACM) [15]. It is a product design system that
facilitates easy access to similar data of different products. The system facilitates
the product design and manages product data. With its aid the product design cycle
will be shortened. Geiger et al. (1998) introduce the agent modeling language SAM
(Solid Agents in Motion), a language to describe 3D models in virtual environments
and their behavior [71]. In contrast to our work, SAM covers the complete visual-
ization of animated processing of SAM-specific rules rather than links to arbitrary
behavioral models.

In the following, we will describe the concept of visualization agents for link-
ing visual representations to VP models. For this, we presume two different agents:
one agent for the VP (VP-agent) and a second one for the visualization (Vis-agent).
We also presume an agent platform, which is formed by a set of interacting agents,
which finally form the VE. Each agent contains an internal data model. This data
model describes the represented object like meta-data. Along the lines of the previ-
ously introduced linking of models, we apply RDF in combination with a reasoning
mechanism to identify similarities of annotations between visualization and model
agents. As a result, if models are identified as similar, we assume that the visualiza-
tion is suitable to explain the data of a VP. In the following, an overview of the entire
concept is presented. Then the necessary agent models are described and finally, the
reasoning mechanism is introduced.

5.6.3.1 Concept

Figure 5.84 shows a schematic overview of the basic principles. On the left side, a
box represents the VP of a mobile BeBot robot. The box on the right side indicates
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a VE with visualizations. Software agents are associated to the VP (VP-agent) and
the visualization (Vis-agent).

The objective of both agents is to identify an appropriate visualization by commu-
nication and cooperation. This visualization should help a user accomplish a certain
task. In the following, detailed steps are explained, which are necessary to identify
a suitable Vis-agent for the visualization of a specific VP-agent along the six steps
of Fig. 5.84.

In step (1), a user needs to initialize the VP, the simulation, and the VE. At the
beginning, the agent platform is initialized and the agents start to operate simulta-
neously. The user needs to specify the task, which he or she wants to carry out, e. g.
to analyze the kinetic movement or to inspect the parts of the VP.

In step (2), the VP starts to search for an appropriate visualization for the VP and
its data. For this, the VP-agent contacts a service directory provided by the VE and
queries for reachable Vis-agents. It contains a list of all reachable agents, sorted by
a category of tasks. The VP-agents submit a desired category, which meets the kind
of visualization the VP-agent searches for. Normally, more than one visualization
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facilitates the visualization of the data of the VP. Thus, in step (3), the VP-agent
receives a list of potential Vis-agent candidates.

In step (4), the VP-agent contacts each Vis-agent with the reference from the ser-
vice directory. Thereby, it submits data about the functions of the VP and data about
the task the user desired to apply to every Vis-agent. Each Vis-agent compares this
data with two internal data models. These data models characterize the capabilities
of a Vis-agent. A similarity-vector Evis is calculated. This vector and its numer-
ical values represent the capability of the agent to visualize the queried task and
data. This vector is returned as a result to the VP-agent. At the end of this step, the
VP-agent has a set of similarity-vectors, one for each Vis-agent.

Next, the VP-agent compares the different similarity-vectors and by this, it com-
pares the different Vis-agents. Therefore, a reasoning mechanism is used. After the
VP-agent has decided for one Vis-agent (4), they start to cooperate.

In step (5), the visualization is realized. Therefore, the data of the VP needs to
be submitted to the Vis-agent and its represented visualization. Figure 5.84 shows a
simple example: the VP has a ‘velocity’ that needs to be visualized. The Vis-agent
on the right side can visualize this by a bar chart. For that, the ‘velocity’ values
need to be transmitted to the Vis-agent. To realize this data exchange, a communi-
cation server is used [173]. This communication server manages the data exchange
between different connected programs. In the example, this is a program that simu-
lates the VP and its behavior and a VE that hosts the visualization (6). The task of
both agents is to configure this communication server and by this, configure the data
exchange. The VP-server informs the communication server about the attributes it
wants to allocate. The Vis-agent informs the server, what data it requires. If the re-
quested data is available, the data exchange starts until an agent stops its operation.

5.6.3.2 Data Models

Agents maintain three different RDF-based data models to represent their knowl-
edge: a task model and a function model for the VP-agent, and a visualization model
for the Vis-agent.

Task Model

A task is defined as ‘the application of methods, techniques, and tools to add value to
a set of inputs – such as material and information – to produce a work product that
meets fitness for use standards established by formal or informal agreement’ [204].
A common technique to specify a task is a block diagram where each block rep-
resents a certain activity and the entire diagram represents the task (cf. Fig. 5.85).
A string inside the block denotes the activity, e. g. ‘Check the impulse response’.
Incoming arrows represent input data (objects or information), which are processed
during the activity. Information can be the velocity of a mobile robot, for instance, or
an object of the computer-internal representation of the shape of the VP. In addition,
an activity may also refer to a method and a tool. To concretize the task, boundary
conditions can be specified. For instance, this can be the required amount of data.
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To describe this task model as computer-internal representation, an RDF-based
notation has been developed, which covers the definition of a set of resources and
properties describing a task. Figure 5.85 shows an extract of the resulting RDF-
based notation for one action. The following resources and properties are used in
that figure:

• Activity (1): The activity itself is the main element. It is specified by a resource,
which keeps a string of the action itself.

• Input information (2): The activity has a property input_information to specify
the incoming information. The property refers to a resource, movement in the
shown example. This resource keeps a link to the computer-internal data of this
information.

• Input object (3): The activity uses a property input_object to refer to the incom-
ing objects. The property points to an additional resource, which contains a link
to the computer-internal representation of this object.

The properties output_information and output_object (4) are used to refer to the
outgoing information and objects. The properties refer to resources, too. Every ac-
tivity can use multiple input and output objects and information.

• Fitness value (5): Every input and output object and information uses a property
fitness_value to express a numerical value or a set of numerical values that quan-
tifies the objects and information. It is an optional property. It refers to a literal
that contains the numerical value.
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• Tool (6): The vocab tool labels a property of the activity to describe an additional
software tool. This software tool is utilized to carry out the named activity. The
property refers to a resource containing a link to this certain tool. This property
is optional.

• Method (7): Every activity needs one method, which is utilized to process the
activity. The vocab method is used to express this property. It refers to an addi-
tional resource. At this time, only the resource keeps a name of the method. The
methods are provided in a database. The user can only select a method.

• Conditions (8): Every method can be concretized by additional conditions. Two
conditions are used. The first one is a requirement value. It denotes a minimum
amount of data that is necessary to process this method. This property is ex-
pressed by the keyword req_min_value. It refers to a literal containing a numeri-
cal value. The value quantifies the requirement. The second condition expresses
whether a user input is necessary during this activity or not. For this, the keyword
user_input is used. It labels a property, which refers to a resource. This resource
contains a statement that expresses the type of user input. For instance a Boolean
decision (yes/no). The conditions are optional properties.

Function Model

Figure 5.86 shows a schematic overview of the function model. It is defined to
specify the functionality of a VP in respective to the product under development.
Therefore, a function structure according to Pahl/Beitz (2007) is used [158]. For
the graphical presentation of the function structure a block diagram is a common
technique. Each block represents a function. A function is defined as ‘Operation,
activity, process, or action performed by a system element to achieve a specific
objective within a prescribed set of performance limits’. According to Pahl/Beitz
(2007) it is expressed by a substantive and a verb [158]. The substantive names the
object that is processed by the function. The verb names the process or the activity
the technical system carries out. To build up a function structure, the functions of
a technical system are connected by the flow of material, energy, and information.
The arrows in Fig. 5.86 show these flows. The entire function structure represents a
model of the functionality of the technical system.

To use the function structure as a knowledge model for an agent, a formal com-
puter internal representation has been developed. Therefore, we have developed a
RDF notation, too. Figure 5.86 shows an extract of the developed RDF scheme in
order to introduce the resources and properties and to demonstrate its application.
The example explains how a function model can be built up and which properties
are necessary to describe the functionality of a VP by RDF. The following notation
is used:

• Function (1): The function itself is expressed by a resource. The resource keeps
a character string of the function. It is the main resource of every function and it
is required.

• Function term (2): To facilitate an automatic processing of the function term,
the function uses a property function_term. This refers to an empty resource that
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points to the substantive and the verb of the function. The property substantive
refers to a literal of the substantive. The property verb refers to the function verb
literal.

• Flow of energy, information, and material: To model these three types of flow,
the function uses the properties link_x_material (3), link_x_information (4), and
link_x_energy (5), where x is a wild-card for in or out. The property refers to an
empty resource.

• Attributes: The flow of energy, information, and material need to be specified
by three additional properties. These properties are the label, the unit of the tech-
nical dimension, and the dimension of the value. The property label (6) refers to
a literal, it contains a character string that names the flow. The property unit (7)
points to a resource. This resource keeps a value of a technical dimension; in the
example the unit ‘V’ for voltage is shown. The last property depicts the dimen-
sion of the flow. A scalar, a vector, or an array can model the flow. For this, the
property dimension (8) is used. It refers to a literal to characterize the dimension.

• Source and drain (9): Every flow has a source and a drain. To specify them, the
properties source and drain are applied. Both properties refer to a resource that
contains a link to the related function.

Visualization Model

A visualization is defined as a technique to create images, diagrams, 3D models, and
animations to communicate and to explain abstract data. For instance, it can be a bar
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chart as a visual representation of a scalar value (cf. Fig. 5.87). In the context of the
visualization agent, visualizations are diagrams and 3D models. Both of them are a
part of the VE. A visualization is annotated by an RDF-notation, too. Figure 5.87
shows an overview of the used resources and properties and how they are applied.
As an example, a bar chart is used. To define the RDF-notation, it was necessary to
identify elements and attributes that specify a visualization and its capabilities. The
following resources and properties are used:

• Visualization (1): The visualization itself is modeled as a resource. The entry
of this resource refers to the internal data model of the visualization. This key
element is required.

• Visualization type (2): To specify the type of visualization the related resource
has a property type. This property refers to a resource that denotes the visual-
ization by a keyword. In the example, the keyword BAR_CHART specifies a
bar chart. Other keywords are SYMBOL, ICONS, NET, TREE, and some more.
Each of them represents a certain type of visualization.

• Dimensions (3): Every visualization has a set of visual variables. These visual
variables are modified to express abstract data by a graphical representation. The
property visualization_dimensions specifies the number of visual variables each
visualization provides. It refers to a resource that contains the number of modifi-
able visual variables.

• Visual variable (4): This property is used to specify the visual variables itself. To
describe them, visual variables according to Bertin (1983) [24] are used. These
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variables define the size of a visualization, the position, the orientation, the grey
scale value, the color, the texture, and the shape. They are transferred to proper-
ties like size_1D, size_2D, size_3D, position, orientation, color, etc. For instance
size_1D specify a visualization, which size can be modified in one dimension.
In the example of the bar chart, it is the length of the bar. The property refers to
a resource. This resource keeps a link to a variable of the visual variable, which
represents its length inside the computer-internal data model. In the example
shown, it refers to the double my_length.

• Parameters (5): To concretize the visualization, the visual variable can be lim-
ited by a set of parameters. At this time, two parameters respectively properties
are used: range and threshold. The property range specifies the boundaries of a
dimension. For instance, the bar of the bar chart is limited by a minimum and a
maximum value. In the example, it ranges from 0 to 10. The property threshold
names a threshold, which is shown by the visual variable.

• Alignment (6): The property alignment specifies the spatial alignment of the
visualization. It refers to a resource that contains a keyword. Used alignments
are HUD (head-up display), TO_SCREEN, TO_MODEL, and some more. For
instance, TO_SCREEN means that the visualization is rotated into the viewing
direction of the user automatically. Thus, the user sees the right face of the visu-
alization every time.

• Spatial Dimension (7): A visualization can be distinguished by its spatial dimen-
sion. This feature is specified by the term spatial_dimension. The property refers
to an additional resource, it contains the dimension: 0D (Points), 1D (Lines), 2D
(Surfaces), 3D (Volumes).

• Interaction (8): The property interaction needs to be specified if input data from
the user is necessary or possible, e.g. when a visualization should be moved
on screen or the range of a bar needs to be adapted interactively. The prop-
erty refers to a resource that contains the keyword INTERACTION_x, where
x is a wild card for RANGE, POSITION, and some more. For instance, INTER-
ACTION_RANGE means that the user can modify the boundaries of a visual
attribute.

This data is sufficient to specify a visualization with a set of annotations. Its
computer-internal representation has been integrated into an agent model to specify
the visualization.

Reasoning Mechanism

The reasoning mechanism identifies the Vis-agent, which associated visualization is
adequate to visualize the data of the VP or the VP itself. In general, the reasoning
mechanism compares the models and converts the results to a numerical value. This
numerical value expresses the capability of a Vis-agent to visualize the data of a VP.

We apply three steps to identify a proper visualization. The first step is processed
by the Vis-agent. The second and the third step are processed by the VP-agent. At
the beginning, we presume that the VP-agent has submitted its models to the Vis-
agent.
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In the first step, production rules are used to determine the similarity between
different models. A Vis-agent keeps a set of production rules to evaluate the request.
Each production has the form

IF(ConditionC1 &Condition B1 & . . . &ConditionCn &Condition Bm)

THEN A1; . . . ; A0

Conditions of type Cn are related to the function model and the task model of
the VP-agent. Conditions of type Bm are related to the visualization model and task
model of the Vis-agent. Each visualization agent contains a set of production rules.
These rules compare the referred models and determine, whether the Vis-agent ful-
fills the requirements of the VP-agent. If the capabilities meet the requirements,
action A0 is processed. Each action is an equation of the form

A0 = Ag + E

with the term a = 1 if the production rule is passed and a = 0 if the production rule
fails. The value g is a weight that indicates how important the production rule is.
The term E is an offset; it represents the experience of the agent and describes, how
useful this action was during previous uses. The value A0 represents the result. The
results of every production rule are combined in one vector:

EVis = A1,A2, . . . ,A0

This vector is a rating scale for the quality of the visualization in a certain task.
Every Vis-agent calculates this vector and returns it to the VP-agent.

In the second step the VP-agent compares all results EVis,i, where the index i
refers to a certain Vis-agent. A statistical method is used for this comparison, the
so-called linear ranking. This method calculates a likelihood value p(i) for each
visualization:

p(i) =
m

∑
j=0

Emax − (Emax −Emin) · (EVis, j − 1)2

size− 1

with rating values Emax and Emin, which determine the estimated amount of mini-
mal and maximal fulfilled production rules. During the development of a VP-agent,
it needs to be estimated how many production rules need to be fulfilled in order to
identify a suitable visualization. This estimation needs to be evaluated by the devel-
oper of a individual visualization. The equation assigns a numerical value to each
production rule and expresses the fulfilled rules by a numerical value. A high value
indicates that the Vis-agent is adequate to visualize the VP and the generated data
of the VP.
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In the third step, the VP-agent decides, which visualization agent is applied: the
VP-agent takes the Vis-agent with the highest value p(i). One constraint is the equa-
tion:

p(i)> pthreshold

The value p(i) needs to cross a threshold pthreshold . At this time, the threshold is
determined empirically.

The concepts of visualization agent have been implemented and proven by the
following application example.

5.6.3.3 Application Example

To test the concept of visualization agents and the developed models, a software
prototype has been developed and a BeBot robot [99] application example has been
implemented.

The software prototype has four components. The first component, a VE, is based
on OpenSceneGraph15, an open source scene graph library for the development of
3D graphic applications. The second component is a simulation for mobile robots
based on Open Steer [178], an open source software library, which covers a robot
model and a set of functions like seek, evade, path following, and leader follow-
ing. The third component is JADE (Java Agent DEvelopment Framework). JADE
is a software framework that facilitates the implementation of multi-agent systems
by means of a middleware that complies with the FIPA (Foundation for Intelligent
Physical Agents) specifications, a standard specification for software agents. Fur-
thermore, it provides a set of tools that supports the debugging and deployment
phases of agents. The described agent behavior has been implemented using the
JADE framework. The fourth component is a communication server. It realizes the
exchange of data between the three components, mentioned before. The entire sys-
tem works in real time. The technical details of the server are described in [173].

In addition to the four components, the software SchemaAgent from Altova16 is
used to annotate the models. It provides a graphical user interfaces to model the
resources, properties, and the entire RDF graph. The RDF model is stored in an
XML notation. Finally, the software library Jena is used to implement the RDF
vocabulary for the annotation, the RDF queries, and the reasoning system.17 Jena
is a framework for building Semantic Web applications. It provides a programmatic
environment for RDF and RDF-Schemas including a rule-based inference engine.
The inference engine has been extended to realize the method, which is described
in Sect. 5.6.3.2.

Based on that platform, we will outline the basic principles of visualization by
means of the Capture the Flag (CtF) application example.

15 www.openscengraph.org
16 http://www.altova.com
17 http://jena.sourceforge.net/

www.openscengraph.org
http://www.altova.com
http://jena.sourceforge.net/
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arrival
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Fig. 5.88 Overview of the virtual environment (left), detail view of the test (right)

CtF is an example, which is originally based on a game where a hunter has to
capture a flag, the other players chasing the hunter and try to prevent him from
capturing the flag. In our case the players are the BeBots with one hunter and n
chasers. The BeBots operate autonomously without any interactions from a user.
Figure 5.88 shows two screenshots from the application. The left part shows an
overview of the VE.

The flag stands in the middle of the environment with spheres as additional ob-
stacles for the BeBots. The right part shows a detailed view to the scene. The BeBot
with the diamond on top identifies the hunter. A state machine with six states models
the behavior of a BeBot. Each state represents a type of behavior: seek, flee, obstacle
avoidance, robot avoidance, pursuit, and arrival. The BeBots decide autonomously
which state is active; the decision is based on a rule system.

To test the visualization agents, the BeBots and one visualization (state diagram)
have been implemented and represented by software agents. The task, the behavior,
and the visualizations have been specified by the introduced RDF notation. The CtF
task has been specified by a task model, the behavior by a function model, and the
visualizations by a visualization model.

The task of the Vis-agents is to visualize the different states by a state diagram.
Therefore, the VP-agent needs to identify the correct Vis-agent. Finally, the appli-
cation has proven the correctness of our models and it was possible to identify a
visualization.

5.6.4 Virtual Test Bench

Wolfgang Müller and Tao Xie

The complexity of self-optimizing systems requires a systematic and thorough ver-
ification methodology in order to guarantee their adaptive run-time behavior. In the
context of the VE, our test bench is based on the principles of mutation analysis,
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which we have extended towards a self-optimizing Virtual Test Bench (VTB) for
the simulation-based analysis of self-optimizing systems.

Mutation analysis defines a unique coverage metric that assesses the quality of
test cases of a test bench with respect to coding errors. It was originally introduced
for software testing in the 90’s [48]. Since 2007, mutation analysis was adopted for
Register-Transfer Level (RTL) hardware design verification [191]. At that time, the
professional mutation analysis tool Certitude(TM)d was introduced by CERTESS
(now Synopsys) with the support of VHDL, Verilog, and C [89].

The remainder of this subsection first outlines the basic principles of mutation
analysis before our self-optimizing test bench with a brief BeBot robot [99] appli-
cation example is introduced.

5.6.4.1 Mutation Analysis and Simulation

Mutation testing is a fault-based simulation metric. It highlights an intrinsic require-
ment on simulation test data that they should be capable of stimulating potential de-
sign coding errors and propagating the erroneous behavior to check points. Mutation
testing measures and enhances a simulation process as shown by Fig. 5.89.

Mutation Testing

Simulated Based
Functional Verification of Electronic Design

(Automated) Selection of more Test Data

Simulate

Mutation Operator

Simulate

Correct Design

Verification
ClosureTests Monitor/

Checker

Electronic Component
Design under Verification

(e.g. an Embedded
Microprocessor)

Measure
Tests Quality by
killed Mutants

Adequate?

Bug?

Mutant
N

M1

Fig. 5.89 Principle of mutation testing for the functional verification of electronic component
designs

A so-called mutation is a single fault injection into a copy of the design under
verification, such as this HDL statement modification:

a <= b and c;
mutation−−−−−→ a <= b or c;
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The fault-injected copy is denoted as a mutant of the design. For each test case,
the mutant is simulated after the simulation of the original design and both simula-
tion results are compared. If any simulation difference appears at the design output,
this test is said to be able to kill the mutant. Each type of fault injection is called
a mutation operator and dozens of such operators can be defined based on the de-
sign language under consideration. By applying these pre-defined mutation opera-
tors at different locations of a design, we can obtain a huge database of mutants. The
number of killed mutants becomes the mutation coverage metric and measures the
overall quality and thoroughness of a simulation process.

We consider employing random simulation as a long recognized useful lightwei-
ght method to support mutation testing. However, the lightweight nature of ran-
dom simulation will conflict with the inherent computation expensiveness of muta-
tion testing. Basically, each time a random test is generated, it should be simulated
against not only the original design under verification but also all the mutants that
are created as the coverage points, which can be numerous. Since the test is ran-
domly selected and relatively aimless, this amplifies the mutation testing problem.
We have addressed that problem by developing an approach for a self-optimizing
test bench, which is outlined in the next paragraphs.

5.6.4.2 Self-optimizing Virtual Test Bench

Our self-optimizing Virtual Test Bench is based on the combination of mutation
analysis with constrained random test pattern generation. Constrained random test
pattern generation is a technique, which has been introduced in conjunction with the
principles of functional verification and is an offline method to generate random test
patterns for intervals, which are defined by constraints.

We apply constrained Markov chains to enable effective adjustment to the prob-
ability model of random simulation. An efficiency-improving heuristic is proposed
to make this adjustment by utilizing two-phase mutation testing results. Such a test
bench is shown in Fig. 5.90. The self-optimizing Virtual Test Bench integrates an in-
loop heuristics that dynamically adapts the test probability model to a more efficient
distribution for mutation coverage. As such, we finally arrived at a self-optimizing
simulation-based test bench integrated into our VE that achieves higher mutation
coverage for VPs under test within less simulation time.

As a prerequisite for the dynamic adjustment, we need a probability model on
test sequences that provides the possibility of parameter steering. We consider that
an electronic component design has a precisely defined instruction interface, such
as the ISA of a microprocessor, or the communication protocol of a bus controller.
For this, test inputs in a random test generator are modeled in two layers as shown
in Fig. 5.90. First, a Markov chain is used to represent sequences of tests. Each node
models one type of test instruction. The selection probability on edges enables us to
establish the correlation between mutation analysis efficiency and a short pattern of
test sequence. Second, weighted constraints are defined on the fields of an instruc-
tion. This provides the possibility for steering test patterns towards more effective
areas like corner cases.
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Fig. 5.90 A mutation testing directed adaptive simulation framework for the functional veri-
fication of electronic component designs

Each time a test is generated, we record the pair of Markov edge and constraint
that is selected for the generation. The basic idea is to estimate the efficiency of this
test on mutation analysis and use the estimation to adjust the probability of the corre-
sponding Markov edge and constraint. This efficiency estimation should follow the
unique simulation cost of mutation analysis. As the right half of Fig. 5.90 shows, we
introduce at first an extra weak mutation analysis phase [104]. It uses one simulation
cycle to identify the locally activated mutants. Only those are fed into a traditional,
strong mutation analysis phase and fully simulated, to see, whether they are killed
under the criterion that a different value appears at design output ports. Consider
that ϕ is the test probability distribution from a Markov-chain/constraint model,
which further implies PMi_activated and PMi_kill for each mutant Mi as its probabilities
of being activated and killed under the current test model. On a set of NMutant design
mutants, this leads to an expected simulation effort for the mutation analysis flow in
Fig. 5.90 as

max
1≤i≤Nmutant

(1/PMi_kill)+ ∑
1≤i≤Nmutant

(PMi_activate/PMi_kill)

Based on this expected simulation effort, we use the number of mutants activated
by the test Nactivated and the number of its mutants killed Nkilled to estimate the
efficiency of this test as

E f f iciency =
Nkilled

Nactivated
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A low ratio means that too many mutants are merely activated and a lot of
simulations are wasted in the second phase without killing the mutants. We also
record this efficiency value for the last 10 tests generated and use the average
E f f iciencyaverage_last_ten to derive a relative value that lies between 0 and 1.

E f f iciencyrel =
E f f iciency

E f f iciencyaverage_last_ten +E f f iciency

By this, at the early stage of a random simulation, test patterns with high mutation
kill/activation rates are encouraged. However, we observed in our experiment that in
the last stage, it may well happen that no single mutant is killed in ten consecutive
iterations. In such a case, the heuristic approach changes to another mode that en-
courages more activation of mutants, by first calculating efficiency as an adjustment
value and then increasing the probability/weight of the corresponding Markov chain
edge/constraint with the following value:

E f f iciencyrelactivationmode =
Nactivated

Nactivated_average_last_ten +Nactivated

Here, it is safe for us to assume that there will always be some mutants acti-
vated. Initially, all Markov chain edges have the same probability to be selected
and instruction constraints have the same weight. At the end of each iteration for
test generation, the probability of the used edge, as well as the weight of the used
constraint is adjusted by

{
PEdge_new = min{PEdgeold ∗ (1+E f f iciencyrel),PMAX}

PConstr_new = min{WConstrold ∗ (1+E f f iciencyrel),WMAX}
PMAX and WMAX are efforts to prevent the starvation of other edges/constraints,

by setting an upper bound of probability to one edge/constraint. In the following
example, with a model of 58 Markov edges, we set these two numbers to 0.9.

For each Edgei that flows out from the same instruction node and each Constri

on this node, we adjust their probability/weight proportionally to their old values

⎧⎪⎪⎨
⎪⎪⎩

PEdgei_new = (1−PEdge_new)∗ PEdgei_old

1−PEdgei_old

PConstri_new = (1−PConstr_new)∗ PConstri_old

1−PConstri_old

5.6.4.3 Application Example

We applied our self-optimizing Virtual Test Bench to the BeBot robots [99] in order
to indicate the strength and also the current limits of the approach in the context of
a Virtual Prototyping Environment. As such, we consider a path finding algorithm
implemented in C as a design under test, which navigates the BeBot by means of 12
infrared sensors inside the VE of a randomly generated labyrinth. For test automa-
tion, we used an automatically generated configuration file to parameterize each
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simulation run, such as the terrain of the environment, starting point and target of
the BeBot. A configuration generator tries to dynamically improve the test bench
by utilizing results from the mutation analysis. After each run, the test bench moni-
tored, whether the BeBot successfully finished the predefined route. The code of the
path finding algorithm was mutated by the tool Certitude(TM). After applying our
self-optimization heuristics, the configuration generator improves the test bench by
utilizing results from the mutation analysis.

For our application example, with our original BeBot C source file as input, CER-
TITUDE(TM) initially generated 184 mutants by injecting various faults. All these
mutants were compiled together with the VE, in the same way as the original code.
Then, each of the generated184 mutants and the original BeBot code were simulated
before new configurations were generated.

Figure 5.91 (top) shows results of the BeBot test experiments, as a summary from
the Certitude(TM) report, as well as examples of mutants for the first configuration
of the test environment. It shows that, at the end, the test was able to detect 68 BeBot
mutants, among the total 184 mutants generated.

The remaining mutants could not be detected in this test configuration and re-
vealed the weakness of the test patterns. These included 28 non-activated, 28 non-
propagated, and 60 non-detected mutants. The status of a mutant and its injected
fault is measured by Certitude(TM) as follows:

• Non-Activated: The fault-injected mutation statement was not executed in the
simulation.

• Non-Propagated: The mutation statement was executed, but the execution had
the same result as that from the original statement in the original design simula-
tion.

• Non-Detected: The mutation statement was executed and introduced a wrong-
valued behavior into the mutant simulation. However, the test bench was not able
to distinguish this mutant as an incorrect design.

• Detected: The Test bench was able to tell that we had an error in the mutant
simulation.

There were two reasons for the applied test bench not being able to detect a mu-
tant. The first reason was that the mutant is created at a location of the code, which
inherently does not induce any wrong behavior in the BeBot, like, for example,
some debugging statements. The second reason was that the undetected mutant in-
deed reveals the weakness of our test bench. It can either be that the exercise from
the test bench with the current labyrinth was not sufficient to stimulate the faulty
behavior, or that the stimulated erroneous behavior did not have significant impact
to be observed by the test bench.

Figure 5.91 shows at the bottom an example of such undetected mutant. The
mutant with ID 46 was created by a fault injection of changing an && (logical AND)
operator to || (logical OR). The Virtual Test Bench could not detect this artificial
bug in the BeBot code, which indicates that an improvement of the test bench is
necessary.
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Fig. 5.91 Snapshot from CERTITUDE(TM) report for BeBot virtual test. TOP: Overall re-
sults BOTTOM: A mutant detail

Certitude(TM) is widely and successfully applied for the mutation analysis of
hardware models at register-transfer level (RTL), e. g. in VHDL and Verilog, and
we also successfully demonstrated our self-optimizing approach for the test bench of
the MicroBlaze processor at electronic system level (ESL). In summary, our BeBot
evaluations indicate that the application of Certitude(TM) also makes sense for the
mutation analysis of abstract self-optimizing behavior. However, though promising,
our evaluations also demonstrate there is a considerable gap between RTL and our
system level applications so that further studies are still required to draw a wider
conclusion.

We developed a VR- and AR-based platform for the Virtual Prototyping of self-
optimized mechatronic systems with real-time user interaction. The previous section
focused on the automatic configuration of VEs and on Virtual Test Bench automa-
tion. The general concepts of that framework for the integrated simulation of multi-
domain VPs can be found in [17, 172]. Here, we have demonstrated the feasibility
of our approach for automatic configuration VEs by means of the BeBot robot ap-
plication. However, as the degree of automation is partly based on the analysis of
domain-specific models, it still requires further investigation of the semantic analy-
sis for cross-domain application and model linking.
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