Chapter 4

Methods for the Domain-Spanning Conceptual
Design

Harald Anacker, Christian Brenner, Rafal Dorociak, Roman Dumitrescu,
Jirgen Gausemeier, Peter Iwanek, Wilhelm Schifer, and Mareen Valholz

Abstract. The development of self-optimizing systems is a highly interdisciplinary
task, as several domains are involved. Existing design methodologies do not adress
this issue, as they focus on the respective domain; a holistic domain-spanning con-
sideration of the system occurs — if at all — only rudimentally. The partial solu-
tions developed by the respective domains may be optimal from the point of view
of this domain. However, it does not automatically mean, that the sum of the opti-
mal domain-specific solutions forms the best possible overall solution: "the whole is
more than the sum of its parts". This especially holds true for the early design phase,
the conceptual design. Its result is the so-called principle solution, which is further
refined in the domain-specific design and development. Thus, a great need for meth-
ods arises which support the domain-spanning conceptual design for self-optimizing
systems in a holistic manner. In this chapter we will introduce such methods. In
particular, we will explain the specification technique for the domain-spanning de-
scription of the principle solution of a self-optimizing system. Furthermore, meth-
ods are explained which support the creation of the principle solution. This includes
a method to ensure the consistency of application scenarios, a method for the de-
sign of the system of objectives, which is crucial for a self-optimizing system, as
well as a method for the re-use of proven solutions for recurring problems (solution
patterns). Finally, some analysis methods are explained that are performed on the
specification of the principle solution. These are: the early analysis of the reliability
and the analysis of the economic efficiency.

The development of self-optimizing systems is structured into the domain-
spanning conceptual design and the domain-specific design and development as
explained in Chap. 3. During the conceptual design, experts from the domains of
mechanical, electrical/electronic, control and software engineering work together
and develop the principle solution. The involvement of the different domains in the
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development process for self-optimizing systems as well as the integration of partial
intelligence in self-optimizing systems call for new development methods as well
as new development tools. Existing design methodologies need to be fundamentally
extended. This especially concerns the conceptual design. Certainly, the basic struc-
ture of the phases of existing design methodologies (formulation of requirements,
definition of functions, etc.) [43] also applies for self-optimizing systems. Never-
theless, such aspects as domain-spanning understanding, modeling of application
scenarios, partial intelligence and system behavior have to be considered as well.
Due to the involvement of different domains, devices have to be provided which al-
low fundamental understanding of the whole system by all developers from the very
beginning of the development process. The gap between the list of requirements,
which is more or less a rough specification of the total system and, hence, leaves
much space for interpretation, and well-established specification techniques of the
domains involved needs to be closed (Fig. 4.1) [24]. Otherwise, time and cost in-
tensive iterations and failure can emerge when the engineers have to integrate their
results in the domain-specific design and development.

To overcome these challenges a holistic description of the principle solution for
the whole system is necessary. It describes the basic structure and operational mode
of the system, as well as its desired behavior. Moreover, it considers different as-
pects such as environment, requirements and application scenarios - just to name
a few. These different aspects form a coherent system as all aspects correlate with
each other. To secure the overall consistency of the principle solution is a challenge,
which can only be overcome with an adequate software support. Hence, a software
tool which supports the modeling of the principle solution is also a necessary.

A detailed analysis of the state of the art has shown that there are a number
of approaches for the specification of mechatronic systems [24]. None of these
approaches, however, fulfill the aforementioned requirements to a full extent. In
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order to address this need for action, we have developed a specification technique
CONSENS 8 for the domain-spanning description of the principle solution for self-
optimizing systems, which is introduced in the following section [24].

This chapter is structured according to the reference process for the conceptual
design (cf. Sect. 3.2). First, the specification technique CONSENS for the domain-
spanning description of the principle solution for self-optimizing systems is intro-
duced (Sect. 4.1). Sect. 4.3 - 4.5 explain methods, which support the creation of the
principle solution. Sect. 4.3 shows, how to ensure the consistency of application sce-
narios regarding the discrete behavior specified in them. In Sect. 4.4 it is explained,
how the system of objectives, the backbone for self-optimization, is modeled. In
Sect. 4.5 we will describe, how solution patterns are used during the conceptual de-
sign, i.e. how established solutions for recurring problems can be reused during the
specification of the principle solution. The method for the product structuring for
self-optimizing systems in the conceptual design is explained in Sect. 4.6. Finally,
we will explain how first analyses can be conducted on the description of the prin-
ciple solution at an early stage. These are the early analysis of the reliability (Sect.
4.7) as well as the analysis of the economic efficiency (Sect. 4.8).

4.1 Specification Technique CONSENS for the Description of
Self-optimizing Systems

Rafal Dorociak, Roman Dumitrescu, Jiirgen Gausemeier, and Peter Iwanek

In accordance to the reference process for the conceptual design (cf. Sect. 3.2) the
specification technique CONSENS is used to describe the domain-spanning prin-
ciple solution for the self-optimizing system [18, 24]. The principle solution de-
scribes the basic structure (e.g. components of the system and interactions between
them), operational mode of the self-optimizing system, and its desired behavior.
The principle solution forms the basis for the communication and cooperation of
the domains involved (e.g. mechanical and software engineering) in the course of
the further domain-specific design and development.

The description of the principle solution of self-optimizing systems consists of
eight interrelated aspects. As shown in Fig. 4.2 these aspects are requirements, en-
vironment, system of objectives, application scenarios, functions, active structure,
shape and behavior. The aspects are computer-internally represented as partial mod-
els. The aspects relate to each other and ought to form a coherent system. We will
describe each aspect in the following.

Environment: There are many interrelations between the system and its environ-
ment. Therefore, it is important to analyze the environment of the system to ensure
that the final system will work properly in it, without any restrictions caused by
not considered interactions. For this purpose the specification technique CONSENS
offers the aspect environment. This aspect describes the embedding of the system
within its environment; the system itself is treated as a "black-box". In particular,

8 CONceptual design Specification technique for the ENgineering of complex Systems.
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Fig. 4.2 Partial models for the domain-spanning description of the principle solution for self-
optimizing systems [24]

other elements of the environment (e.g. the user, other technical systems or the un-
derground) and their interrelation with the system are described. Relevant influences
of the environment on the system such as weather, temperature and humidity are de-
scribed as well. Influences which have an disturbing impact on the system operation
are marked as such. The identification of the relevant influences is supported by
respective catalogues and check lists. The interrelations between the system under
development and elements of the environment are represented as flows. In princi-
ple, three types of flows can be distinguished: information flows, energy flows, and
material flows.

Figure 4.3 shows the specification of the environment of the RailCab. In partic-
ular, it is shown that the driving behavior of the RailCab is affected by the weight
of users and cargo as well as influences from the environment, the state of the track
sections as well as the abrasion of the RailCab itself.

Application Scenarios: Application scenarios form first concretizations of the
system’s behavior. They describe the most common operation modes of the system
and the corresponding behavior in a rough manner. Every application scenario de-
scribes a specific situation (e.g. start-up, failure of the system or an interaction with
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Fig. 4.3 The partial model environment of the RailCab (excerpt) [24]

the user), and the required behavior of the system for this situation. Thus, applica-
tion scenarios characterize a problem and the possible solution for it. By modeling
the application scenarios requirements and potential operational modes for the sys-
tem can be identified. Fig. 4.4 shows the application scenario "AS12: Drive onto
next track section” for the RailCab as an example. The description of an application
scenario includes e.g. general information, like a title, an ID, the date of change, and
a textual characterization of the application scenario; to gain greater insight into the
application scenario a sketch can be added.

Requirements: Based on the general problem definition and the aspects envi-
ronment and application scenarios, the requirements for the system under develop-
ment can be defined and modeled. Requirements present an organized collection
of requirements that need to be fulfilled by the system under development (e.g.
features of the system, overall size, performance, quality). Requirements allow the
engineering team to expose what is expected from the future system. They form a
corner pillar for the validation and verification in further development phases. Re-
quirements are represented in tabular form; the requirements list. requirements can
be decomposed into sub-requirements to structure multiple requirements. For ex-
ample; "height", "length" and "width" can be sub-requirements of the "size" of an
element. Each requirement in the requirements list has an ID, is verbally described,
and, if possible, concretized by corresponding parameters (e.g. temperature, length,
velocity) and values (e.g. the RailCab should be able to reach a velocity of 100
km/h). Several checklists assist the identification of requirements; see for example
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Description of the partial development task AS12: When the RailCab is
driving on a track section, it is at some point notified that it approaches the end
of the track section. Then, the RailCab must obtain the information, whether it
may enter the next track section, from the corresponding section control. This
information must be available to the RailCab before the RailCab reaches the
point of the last safe brake. This point precedes the point of no return, beyond
which it cannot be guaranteed that braking will safely stop the RailCab before it
enters the next track section.

Principle solution for AS12: The RailCab, when reaching the end of the
track section, sends a request to enter the next track section to the
section control responsible for the next track section. Then the section

control replies, stating whether entering the track section is currently
allowed or not. The reply is sent in time for the RailCab to receive it
before it reaches the point of the last safe brake.
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Requirements list
No. Requirement description D/W
1|Geometry
1.9|Entrance should be possible from both sides. D
1.10|Optimal aerodynamics for single and convoi drive modes.| D
1.11 [Modular construction. D
2 |Kinematics D
2.1|The vehicle has a steering system. D
7 |Safety
7.9 |Provide emergency mechanisms and exits. D
7.10|Minimize sensitivity to the side wind. w

[11, 43, 47]. Requirements are separated into demands and wishes [43]. If needed,
the requirements can also be divided into functional (e.g. the doors of the RailCab
should be able to close automatically) and non-functional requirements (e.g. the
doors of the RailCab should be red). An excerpt of the requirements list for the
RailCab is shown in Fig. 4.5; demands are marked with "D", wishes with "W".
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Functions: Based on the requirements, the functions for the system under devel-
opment can be defined. The aspect functions describes the hierarchical subdivision
of the desired functionality of the system. A function is the general and required
relationship between input and output parameters, with the aim to fulfill a task. For
the specification of function hierarchies, we use a catalogue with functions which
is based on the works of Birkhofer (1980) [5] and Langlotz (2000) [35]. This cata-
logue has been extended by functions, which describe self-optimizing functionality.
Functions are realized by solution patterns and their concretizations. Starting with
the overall function (e.g. provide mobility for people or goods), a subdivision into
sub functions takes place (e.g. accelerate the system) until useful solution patterns
can be found for the functions (e.g. linear motor). The use of solution patterns is
described in a detailed manner in Sect. 4.5. Figure 4.6 shows a section of the func-
tion hierarchy of the RailCab. After the definition of the overall and sub-functions
the classification scheme by Zwicky (morphological matrix) can be used, for the
systematic combination of certain solutions [43]. In this classification scheme, the
sub-functions and the appropriate solutions are entered into the rows of the mor-
phological matrix. By systematically combining a solution fulfilling a specific sub-
function with the solution for a neighbouring sub-function, one obtains an overall
solution in the form of a possible conception. In this process, only those solution
that are compatible should be combined [43].

Active Structure: Based on the functions and the combination of the chosen
solutions the active structure for the system under development can be modeled.
Thus, in contrast to the aspect environment (Black-Box view on the system and
its context), the active structure concretize the system (White-Box view). The ac-
tive structure defines the internal structure and the operational mode of the system.
It describes system elements (e.g. chosen solutions), their attributes as well as the
relationships between system elements (material, energy and information flows as
well as logical relationships). Depending on the level of concretization, system ele-
ments may be described abstract (e.g. temperature sensor) or specific (e.g. resistance
thermometer). If necessary, it is also possible to model elements of the environment
(e.g. user) and their interaction with elements of the system (e.g. interaction of the
user with the human-machine-interface of the system).
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Fig. 4.7 The partial model active structure of the RailCab (excerpt) [24]

Figure 4.7 visualizes an excerpt of the active structure for the RailCab. The active
structure consists of system elements such as the Energy Management, the Spring
and Tilt Module or the Track-guidance Module. To show system elements of the
Track-guidance Module at the same hierarchy level as the other modules, logical
groups can be used. The track-guidance module consists of eddy-current sensors (in
Fig. 4.7 only one of them is shown), the hydraulic actuator, the axis, the wheels etc.
The hydraulic actuator can change the position of the axis and thus of the wheels.
In addition, the wheel has an mechanical contact to the rail. The eddy-current sen-
sor measures the distance between the flange and the rail. This is specified with a
measurement information flow. The information of the eddy-current sensor are sent
to the information processing unit of the Track-guidance Module. The information
processing unit calculates the needed displacement force, based on the sensor in-
formation and information from the track-section control. The needed displacement
will be sent to the hydraulic actuator, which changes the steering position then. A
closed control loop between sensor, actuator, information processing, axis, and the
wheels results.

System of Objectives: This aspect describes external, inherent and internal ob-
jectives of the system and their interrelations. An excerpt of the system of objectives
of the RailCab is shown in Fig. 4.8. External objectives are set from the outside of
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Fig. 4.8 The partial model system of objectives of the RailCab (excerpt) [24]

the self-optimizing system; they are set by other systems or by the user (e.g. "max-
imize user satisfaction"). Inherent objectives reflect the design purpose of the self-
optimizing system. Inherent objectives of the RailCab are for example the objectives
"maximize dependability" and "minimize energy consumption”. Objectives build
a hierarchy and each objective can thus be refined by sub-objectives (e.g. "maxi-
mize safety” is a possible sub-objective of the objective "maximize dependability",
"maximize comfort" and "maximize driving speed" are possible sub-objectives of
the objective "maximize user satisfaction"). Inherent and external objectives that
are pursued by the system at a given moment during its operation are called internal
objectives. The selection of internal objectives and their prioritization occurs con-
tinuously during the operation of the system. "Maximize comfort" and "maximize
safety" are examples of internal objectives. Only the internal objectives are part of
the self-optimization. During the operation of the self-optimizing system some of
its objectives may be in conflict to each other, as they can not be pursued both to
the full extend at the same time. In such cases a prioritization of the objectives has
to take place. For instance, during the adjustment of the driving speed the objec-
tives "maximize driving speed" and "minimize energy consumption" are in conflict
to each other, as energy consumption typically increases with increasing driving
speed. Such potential mutual influences between internal objectives are modeled in
an influence matrix. In particular, the influence matrix shows which objectives may
influence each other in a negative way. Such a potential negative mutual influence
may be an indication for the need for self-optimization. In Sect. 4.4 we will describe
how the system of objectives is designed.

Shape: This aspect describes the first definition of the shape of the system
within the conceptual design. In particular, the working surfaces, working places
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and frames of the system are described in a rough manner. In mechanical engineer-
ing the aspects shape and active structure form the core of the principle solution. It is
very important to model the draft of the shape during the domain-spanning concep-
tual design. For example, geometric restrictions for wires or mechanical components
can be recognized by the different domains involved and the communication and
cooperation between them is improved. Thus, expensive corrections can be avoided
(e.g. too short wires in the Airbus A380 in 2006 [7]). The computer-aided modeling
is performed using 3D CAD systems.

Behavior: A self-optimizing system is characterized by different kinds of behav-
ior (e.g. kinematic, dynamic and reactive behavior). In order to describe the behavior
of such systems, a group of behavior models is used: there are three partial models
to specify the behavior. We distinguish between the partial models behavior—states,
behavior—activities and behavior—sequence. The usage of the diagrams depends on
the underlying development task. Additional kinds of behavior, such as kinematics,
dynamics or electro-magnetic compatibility can be specified additionally.

e The partial model behavior—states describes all possible states of the system, all
possible state transitions as well as events which initiate state transitions. Events
correspond to external influences on a system or a system element as well as to
already finished activities. For example, the lighting system of the RailCab can
have two different states: lights on and lights off. The user-event "switch power
button" causes a state transitions from "lights off" to "lights on" and vice versa.

e The partial model behavior-activities describes the operation process of the
system , i.e. operations and tasks of the system that are performed during its
operation. This especially includes operation processes which are performed in
order to implement the self-optimization process (e.g. "determine the fulfillment
of current system objectives", "select adequate parameters and configuration”,
etc.). We call such operation processes adaptation processes.

e The partial model behavior-sequence describes the interaction of several sys-
tems or system elements. The messages being exchanged during the interaction
of those system elements are modeled in a chronological order. In Sect. 4.3 some
examples of behavior description with sequence diagrams are introduced in a
detailed manner.

It is necessary to alternately work on the aspects and the corresponding partial
models although there is a certain order. This order is defined by the reference pro-
cess for the conceptual design (cf. Sect. 3.2). In contrast to other system model-
ing approaches such as UML [24, 44] or SysML [20] the specification technique
CONSENS is strongly interconnected with the reference process and focuses on
self-optimizing mechatronic systems.

As stated before, the partial models form a coherent system and are strongly
interconnected. These interconnections are modeled as cross-references between
partial models. Tab. 4.1 shows some examples of such partial model spanning cross-
references. There are e.g. bidirectional cross-references between requirements and
functions, between requirements and system elements as well as between system
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Table 4.1 Interrelations between the partial models (excerpt) [24]

Construct Partial Model ind °.f Construct Partial Model
Interrelation
System Element Active Structure Realizes Function Functions
System Element Active Structure Performs Activity Behavior/Activities
System Element Active Structure Takes State Behavior/State
System Element Active Structure Persuades from Objective System of Objectives
System Element Active Structure Has (opt.) Volumes Shape
Activity Behavior/Activities Results from Function Functions
Requirement Requirements Sets Boundaries for Volumes Shape
Requirement Requirements Decides Function Functions
Function Function Results from Requirement Requirements
Influence/Event Environment Activates State Behavior/State
Influence/Event Environment Activates Activity Behavior/Activities
coe

elements and functions (e.g. a "System Element" from the "Active Structure" "Re-
alizes" a certain "Function" from the partial model "Functions"). Based on the spec-
ification of cross-references, analyses such as requirements traceability can be real-
ized [23].

4.2 Software Support for the Specification of the Principle
Solution

Rafal Dorociak and Jiirgen Gausemeier

To secure the overall consistency of the principle solution and to manage its
complexity, a software support is necessary. The software tool Mechatronic Mod-
eller supports the creation and editing of the specification of the principle solution
[23, 25]. It was developed within the research project "VireS — Virtual Synchroniza-
tion of Product Development and Production System Development" founded by the
German Federal Ministry of Education and Research (BMBF) in cooperation with
the software company itemis. The Mechatronic Modeller is a dedicated software so-
lution, which is fully aligned with the specification technique CONSENS. It offers a
separate editor for each partial model. Figure 4.9 shows the graphical user interface
of this software tool.

Within the model browser the elements of the principle solution are presented as
a tree. This tree can be used to navigate within the principle solution. The currently
processed partial model is shown on the right in the diagram view together with a
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Fig. 4.9 Screenshot of the Mechatronic Modeller showing the active structure editor [23]

tool palette. Within this diagram view the respective partial model can be modified.
Using the tool palette new elements can be added. The outline view (bottom left)
continuously shows the outline of the whole diagram. Within this view the user can
navigate through the whole diagram. This allows the user to navigate to sections of
the partial model which are currently not shown in the diagram view.

A so-called metamodel has been defined for the specification technique. It defines
[52]:

e which model elements are available during the description of the principle solu-
tion as well as how they are related to each other (abstract syntax); for instance,
states can be linked to other states using a relation, and

e criteria for well-formedness (static semantics); for instance, the names of states
must be unique in the scope of the statechart.

In particular, the metamodel describes all possible interrelations between the
different partial models.

The Mechatronic Modeller is based upon this metamodel. Thus, each principle
solution modeled with the Mechatronic Modeller is computer-internally represented
as a data model, which is an instance of this metamodel. Given that all constraints
have been formally defined in the metamodel, the conformance of such a model to
the metamodel can be easily checked, allowing immediate feedback for the devel-
oper in case of modeling errors.

In addition to the metamodel, the following aspects of the specification technique
had to be defined during the development of the tool:
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e how the models will be graphically represented (concrete syntax); for instance, a
state is represented as a rounded rectangle, and

e the meaning of the different modeling constructs in a particular principle solution
(dynamic semantics); for instance, state transitions are triggered when the event
at the transition is fired.

Using a precise definition of the dynamic semantics of a language, a model can
be simulated, analyzed, and/or formally verified [23, 25].

The Mechatronic Modeller addresses all particularities of the specification tech-
nique. The very important aspect of usability can therefore be appropriately ad-
dressed. The aim is to hide the complexity of the model from the developer. Thus,
several functions have been incorporated into the Mechatronic Modeller which sup-
port working with the specification technique and make the tool more comfortable
and enables an intuitive use. In particular, complex manipulations such as partial
model reorganization by incorporating or deleting of hierarchy levels, are provided
by the tool. Furthermore, cross-references between elements of different partial
models are stored in the data model. Thus, Mechatronic Modeller is capable of han-
dling complex dependencies between elements of different partial models within
the principle solution. For example, it is possible to check which requirements have
not yet been realized by functions or system elements (static semantics checks). In
particular, requirements traceability is possible, e.g. if a particular system element
needs to be exchanged, then the developer can examine which requirements had to
be originally met by it [23].

4.3 Consistency Analysis of Application Scenarios
Christian Brenner and Wilhelm Schifer

During the development of a self-optimizing system, the definition of the system
behavior is highly important. Application scenarios usually form the earliest de-
scription of the system behavior (cf. Sect. 4.1). In the course of the progressing
conceptual design this description is further refined; the partial models behavior—
states and behavior—activities are used for this purpose. Eventually, these partial
descriptions of the behavior are combined into one scenario-spanning model of the
overall system behavior. It is a challenge to ensure the consistency of the afore-
mentioned partial descriptions of behavior. In order to support this difficult task, a
method to ensure the consistency of application scenarios has been developed. This
method is based on a formal description of application scenarios [29]. It allows for
the early detection and correction of inconsistencies between partial descriptions of
the behavior.

Figure 4.10 shows the procedure model of the method. The starting point is
the definition of the discrete system behavior by using application scenarios. The
method consists of the following three phases:

Phase 1 - formalization of the discrete behavior: In order to automatically de-
tect inconsistencies in the modeled system behavior, the models of interest have to
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Fig. 4.10 The procedure model of the method for ensuring the consistency of application
scenarios [29]

be specified in a formal way. We will demonstrate this by using the example of
the application scenario "AS12: Drive onto next track section" shown in Fig. 4.4
(Sect. 4.1, p. 122). It defines how the RailCab and the track section control interact,
when the RailCab is about to enter a track section. In particular, it defines require-
ments regarding the system behavior using text (e.g. in the principle solution of
AS12: "[...] the RailCab, when reaching the end of the track section, sends a request
[...]") and illustrations. Also, it may contain assumptions about the system envi-
ronment (e.g. in the description of AS12: "[the RailCab] is at some point notified
that it approaches the end of the track section."). However, these requirements and
assumptions are at first specified only informally using natural language. In order
to process the application scenario automatically, we first need to formalize them.
We use Modal Sequence Diagrams (MSDs) for this purpose [30]. They have been
adapted for mechatronic systems [29] by taking into account real-time behavior and
assumptions about the system environment. We distinguish requirement MSDs and
assumption MSDs. Requirement MSDs model requirements on the system based on
the respective application scenario. Assumption MSDs specify assumptions about
the environment of the system.

Figure 4.11 shows the MSD specification formalizing the application scenario
"AS12" from Fig. 4.4. It consists of three MSDs. The topmost MSD and the one in
the middle are both requirement MSDs. The bottom MSD is an assumption MSD,
which is indicated by the label « EnvironmentAssumption».

In each MSD, the vertical dashed lines, called lifelines, represent the partici-
pants of the respective scenario. At the top of each lifeline, a label in a hexagon
defines the corresponding system element or environment element. The application
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Fig. 4.11 Modal Sequence Diagrams for the application scenario of Fig. 4.4 [29]

scenario in Fig. 4.4 explicitly mentions a RailCab and a section control of the next
track section. Consequently, both requirement MSDs contain a system element "rc"
(representing a RailCab) and a system element "next" (representing the upcoming
track section control). In addition, the environment is represented by the lifeline
"env". The horizontal arrows in the MSDs are messages that are exchanged between
system elements. Each arrow starts at the lifeline of the sender and ends at the life-
line of the receiver. The label at the arrow defines the type of message that is ex-
changed. Dashed arrows represent messages that may occur, but do not have to (e.g.
endOfTS in the topmost MSD). These are called cold messages. Solid arrows rep-
resent messages that are required to occur (e.g. requestEnter in the topmost MSD).
We refer to them as hot messages. The vertical position of the arrows in the MSD
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defines the chronological order of the corresponding messages: the topmost message
is expected to occur first, then the one below it, and so on.

As mentioned before, the MSDs in Fig. 4.11 formalize the requirements and as-
sumptions that are informally expressed in the description of the application sce-
nario in Fig. 4.4. For example, in the topmost MSD, the cold message endOfTS
models the notification by the environment mentioned in the first sentence of the
description of the development task of AS12 ("[...] the RailCab [...] is at some point
notified that it approaches the end of the track section"). The system has to realize
the requirements specified by the hot messages requestEnter and enterAllowed only
after receiving the message endOfTS. According to the MSD, both messages have to
be sent in this particular order. They model the requirements stated in the first sen-
tence in the principle solution part of the description of the AS12 in Fig. 4.4 ("[...]
the RailCab, when reaching the end of the track section, sends a request to enter
the next track section to the section control [...]", "Then the section control replies
[...]"). The second MSD formalizes the remaining requirement in a similar way: the
reply must be sent on time, i.e. as long as braking is still allowed.

When the first message of an MSD is exchanged, this MSD becomes active. For
example, the topmost MSD becomes active when the environment sends the mes-
sage endOfTS to the RailCab "rc". Then, the message requestEnter is expected to
occur next. The next expected message of an active MSD is referred to as an enabled
message. After an enabled message has been sent, the next enabled message is the
subsequent message in the order defined by the MSD. If, for example, the message
requestEnter in the topmost MSD is enabled and is actually sent, enterAllowed is
the next enabled message.

If a message occurs that is included in an active MSD, but is not currently en-
abled, then this is a violation of the MSD. Messages that are not included in an MSD
can never violate it (e.g. lastBrake can never violate the topmost MSD). A violation
of an MSD is a cold violation, if the enabled message is a cold message. It is a hot
violation, if the enabled message is hot. A cold violation of an MSD turns the MSD
inactive again. Assume, for example, that the MSD at the bottom of Fig. 4.11 is
active and the message enferNext is enabled. Then, the message lastBrake, if it is
sent, causes a cold violation and turns the MSD inactive. Note, that a cold violation
does not indicate incorrect behavior. It only means that there is an allowed deviation
from the scenario modeled by the MSD. A hot violation, on the contrary, models
forbidden behavior of the system or unexpected behavior of the environment. If, for
instance, the topmost MSD is active because endOfTS was sent, the next enabled
message is the hot message requestEnter. If requestEnter is never sent, or if enter-
Allowed or endOfTS is sent instead, a hot violation occurs. Unlike a cold violation,
a hot violation of a requirement MSD may never occur in the real system. A hot
violation of an assumption MSD means that the environment does not behave as
assumed. The system may not be used in such an environment.

After modeling the requirement MSDs and assumption MSDs for all application
scenarios, they are combined into one complete MSD specification for the whole
system. In Phase 2 this MSD specification is analyzed for inconsistencies.
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Phase 2b - interactive consistency check: The automatic consistency check is
computationally very expensive and, hence, not applicable for very complex MSD
specifications. In case of such complex specifications, the engineer can instead per-
form an interactive simulation. This simulation does a stepwise evaluation of the
specified behavior. The simulation can be influenced by the engineer by selecting
the actions of the system, if the specification allows several alternatives. The en-
gineer performing the simulation can also influence the simulated behavior of the
environment. However, the interactive simulation only allows to consider individ-
ual simulation runs. For large systems, it is usually not possible to cover all pos-
sible executions. Therefore, the interactive simulation alone can not prove that the
discrete behavior of the system described with application scenarios is completely
consistent.

Phase 3 - correction of inconsistencies: Here the inconsistencies found dur-
ing Phase 2, if any, are corrected. This happens in two ways. On the one hand,
contradicting requirements are directly corrected by modification of the respective
requirement MSDs. On the other hand, contradictions in the requirements can of-
ten be resolved by modeling additional environment assumptions using assumption
MSDs. In both cases, the engineers also adapt the textual descriptions of the appli-
cation scenarios in accordance with the changes in the MSD specification.

Tool support: For our method a software tool, called Scenario Tools, has been
developed. It allows the engineer to create and edit MSD specifications as well as
to validate the specification by using either the automatic consistency check or the
interactive simulation, as described above.

All in all, with the presented method and tool the overall consistency of the be-
havior described with application scenarios is improved. This is very important, as
potential inconsistencies in the behavior specification would otherwise be difficult
to detect in later product development phases and could lead to problems regarding
reliability, safety or availability.

4.4 Design of the System of Objectives
Rafal Dorociak and Jiirgen Gausemeier

Sections 4.4 - 4.5 introduce methods, which support the development of the princi-
ple solution. We will begin with the specification of the system of objectives. The
partial model system of objectives describes the objectives of the system which are
subject to self-optimization and are therefore of particular importance for the de-
sign of self-optimizing systems. For the specification of the system of objectives, a
method has been developed by Pook (2011) [45]. Using the method objectives of the
system, their relationships to each other and potential conflicts are identified based
on the description of the principle solution for the system. Altogether the method as-
sists developers with the design of the information processing of the system, which
then realizes self-optimization. During the development of the method some ideas
and concepts from the Fault Tree Analysis (FTA) [4, 6, 32] and Failure Mode and
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Fig. 4.12 The procedure model of the method for the design of the system of objectives

Effects Analysis (FMEA) [4, 6, 31] were adapted. Figure 4.12 shows the constituent
phases of the method and the corresponding milestones:

Phase 1 - development of the hierarchy of objectives: The starting point is
the identification of the possible objectives of the system. The objectives are con-
tained in the list of requirements. The list of requirements of a complex mechatronic
system usually contains a great number of entries, e.g. up to several thousands of
requirements. In order to extract the objectives of the system from the list of require-
ments, the cross-references between the partial models of the principle solution are
used (e.g. cross-references between functions and functional requirements and be-
tween system elements and functions). The starting points are the system elements
which realize the information processing. The hierarchical dependencies between
the identified objectives are found, analogously. The first phase is performed only
once. The result is the hierarchy of the objectives of the system. Figure 4.13 shows
a cut-out of the principle solution for the trace guidance module of the RailCab sys-
tem. System elements, which realize the information processing, are identified first,
e.g. the system element "data processing of the trace guidance module" (1). The
corresponding requirements are then traced using the respective cross-references.
One requirement corresponding to the system element "data processing of the trace
guidance module" is the requirement "2.1.1. The vehicle determines autonomously
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Fig. 4.13 Development of the hierarchy of objectives of the RailCab System (cut-out) [45]

the steering angle, where flange contacts can be avoided" (2). From this requirement
the system objective "minimize flange contacts" is derived (3).

Further requirements and objectives are found, analogously. For instance, the
requirement ("13.1. The vehicle has facilities for increasing the comfort during the
transport of people"). From this requirement the objective "maximize traveling com-
fort" is derived. In the context of the RailCab system the objective "maximize travel-
ing comfort" is subordinated to the previously identified objective "minimize flange
contacts". In the partial model system of objectives this fact is modeled using the "is
part of" relationship; a hierarchy of objective is constructed in this manner.

Phase 2 - deductive analysis of disturbing influences: Each of the objectives
of the system found in Phase 1 is further examined. The disturbing influences are
identified, which may occur during the operation of the system and have negative in-
fluence on the objective of the examined system. In order to identify these disturbing
influences a Fault Tree [4] is built for each objective of the system. The top event
of the Fault Tree is first postulated. It usually has the form: "the system is being
disturbed while pursuing the objective x". The deductive analysis follows. It can be
thought of as a "how-can" analysis [15]. The developer works in a top-down manner
to find specific combinations of events, which could have occurred for the top-event
to have taken place. We propose the following schema: The left branch of the tree
describes cases, in which the system is disturbed by provision of premises for the
pursuit of the objective under consideration; the inputs of the system element are
examined here. The right branch describes cases, in which the premises are given,
but the system is disturbed during the execution of activities for the pursuit of the
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objective; here, mainly the outputs of the system element under consideration are
examined.

Let us consider the objective "minimize flange contacts". The respective cut-out
of the active structure for the RailCab system and the corresponding Fault Tree are
shown in Fig. 4.14. From Phase 1 we know, that the objective originated from the
system element "data processing of the trace guidance module" (Fig. 4.14 (1)). The
"desired values" are sent to the system element "actuator for adjustment of the axle
bridge" (2). We construct the left branch of the tree by following the aforementioned
schema. The system element "actuator for adjustment of the axle bridge" receives
power from the "energy storage and the intermediate circuit" (3a). Thus the event
"actuator adjusts the steer angle in an undesired manner due to insufficient amount
of supplied energy" (3b) is integrated in the left branch of the Fault Tree. This event
is further refined in cooperation with the respective developers. In the course of this,
two subordinated events are incorporated into the Fault Tree (4). We now proceed
with the right branch of the tree. One of the outputs of the "actuator for adjustment
of the axle bridge" is the flow "mechanical connection" (5). It is examined and
the event "The adjusted steer angle does not lead to the desired adjustment of the
vehicle movement" is integrated into the right branch of the Fault Tree (6). The
newly incorporated event is then further refined and the procedure continues.

Phase 3 - inductive analysis of disturbing influences: Usually not all of the
disturbing influences are found in Phase 2. Therefore an inductive analysis similar
to the FMEA is performed as well. An inductive analysis can be thought of as a
"what-if" analysis [15]. The developer asks: What if this system element failed,
what are the consequences, what are the possible causes etc.? The developer starts
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with the influences from the environment of the system and investigates how they
propagate through the active structure of the system. Fault Trees from Phase 2 are
extended with regard to the newly gathered information.

Figure 4.15 shows a cut-out of the partial models environment and active struc-
ture of the RailCab. The track bed changes due to growing plants (Fig. 4.15 (1)). As
a result the position of the sleeper in the track changes (2), as well as the position of
the rails (3a and 3b). In combination with environmental influences (4) deformations
of the rail occur. These lead to movements of the vehicle body (5a and 5b) which
are transferred to the Active Suspension Module through mechanical connections
(6). In order to dampen vibrations and tilt the vehicle body during curves, more en-
ergy has to be provided to the active suspension (7). The increased energy demands
of the Active Suspension Module can eventually lead to the depletion of the stored
energy. The newly gathered information is incorporated into the Fault Trees, which
have been constructed in Phase 2.

Phase 4 - refinement of the principle solution: The Fault Trees are evaluated
and the principle solution is extended accordingly. In particular, the conflicts be-
tween objectives of the system are identified. Objectives of the system which do
not exhibit any conflicts with other objectives are marked as not relevant for the
self-optimization and removed from the partial model system of objectives. The
description of the identified conflicts is incorporated into the system of objectives.
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The result of this phase is the extended system of objectives, showing all objectives
relevant for the self-optimization and the possible conflicts between them.

A cut-out of the refined Fault Tree for the RailCab is shown in Fig. 4.16. The
event "There is a disturbing influence on the objective of the system to minimize
flange contacts" (1) was derived from the objective "minimize flange contacts" in
Phase 2. Starting with this event the Fault Tree is further examined. The event
"Disturbing influences lead to increase of the consumed power, which is needed
to minimize the acceleration of the vehicle body" (2) is found. It occurs if the objec-
tive "minimize acceleration of the vehicle body" is being pursued. According to the
Fault Tree there is a potential conflict between both objectives. The prerequisite for
the occurrence of conflict is also derived from the Fault Tree (3). Such information
is very relevant for the further realization of the self-optimization process.

Phases 2 - 4 are conducted for each objective identified in Phase 1. Possible con-
flicts as well as prerequisites for their occurrence are recorded in the partial model
system of objectives (for an example see Fig. 4.8 in Sect. 4.1). In particular, ob-
jectives, which are in conflict with the objective "maximize reliability”, and the
respective prerequisites are identified. The gathered information forms a basis for
the further improvement and extension of the principle solution. In particular, new
measuring system elements and corresponding information flows have to be incor-
porated into the active structure. Furthermore, activities for gathering information
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about disturbing influences and conflicts between objectives as well as for recog-
nizing and mitigating these are integrated into the partial model behavior—activities.
In particular, condition monitoring and performance assessment are implemented
[37, 51]. Altogether, the system under development is made more reliable. The pro-
cess of the improvement of the principle solution can be supported by solution pat-
terns, which we will explain in Sect. 4.5.

4.5 Design Framework for the Integration of Cognitive
Functions Based on Solution Patterns

Harald Anacker, Roman Dumitrescu, and Jiirgen Gausemeier

The following approach by Dumitrescu (2011) defines a design framework for the
development of cognitive functions based on solution pattern during early design
phases — conceptual design or system design. By using this framework develop-
ers can systematically integrate those functions within the principle solution of a
self-optimizing system. The result is the early specification of the information pro-
cessing within the architecture of the Operator-Controller-Module. Later on, during
the concretization, this enables the final implementation of the cognitive functions
[10]. The basis for this approach are the research fields of mechatronics, that cover
the technical demand, and cognitive science, from which many results about intel-
ligent behavior and structures have to be considered. The design framework itself
covers four basic steps, which will be introduced in the following four sections.

The core of the framework is a procedure model (4.17). It gives an overview of
the steps that have to be carried out during the conceptual design to integrate cog-
nitive functions in the principle solution and the concrete results of the correlative
steps.

Moreover, the procedure model defines what methods or tools should be used
during which step. The procedure model connects all the parts of the design sys-
tematics in a logical sequence for their application. The different phases will be
explained in the following subsections.

4.5.1 Systems Analysis

The objective of the first phase is to create a statement if the significant improvement
of system performance can be expected through the integration of cognitive func-
tions. Consequently, this phase clarifies the requirements for using cognition and its
respective methods. In order to detect the potential use of cognitive functions, the
method for objective function analysis is used. With this method, the necessity of
using active paradigms for self-optimization can be established. This is divided into
four successive steps:

1. Identification of relevant influential specifications: In the first phase, if not
already done, the objectives of the system are identified (e.g. low energy
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consumption or the level of safety of a vehicle.) In addition, a context analy-
sis has to determine the influences that in principle the objectives can influence.
It is important that potential forms of the influences are determined.

2. Illustration of the effect of the influential specifications: The next step, the in-
fluential specifications and the objectives of the system are placed in relationship
to each other. It is interesting to note how the influential specifications affect the
objective priority. The objective priority characterizes the importance of a objec-
tive under the given influence. Accordingly, an increase in the objective priority
should be accompanied by an increase in the objective weighing. Here the Ob-
jective Priority Matrix lists the influence like its specifications in rows and in
the columns the rows. The matrix can then change the priority objective due to
the influential specifications (strong decrease, decrease, no effect, increase, and
strong increase). 4.17 shows a portion of the objective priority matrix of the flex-
ible road vehicle Chameleon 2.3.

3. Educational relevant situations: In the third phase non-relevant objectives and
influential specifications are stricken from the Objective Priority Matrix of op-
eration. It is evident that a column (irrelevant objective) or a row (irrelevant in-
fluential specification) is evaluated neutrally with a "0". Afterwards situations
are formed from the leftover influential specifications. Situations are consistent
combinations of influences. Combinations of influential specifications that can-
not happen in reality should be excluded.
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4. Evaluation of the situation-dependency of the objective: In the final step, the
objective priorities are counted from the Objective Priority Matrix for each situ-
ation and a situation-dependent priority of each line determined. The outcome of
this is the degree of dependence of the objective. Thus, an objective of single pri-
ority in a given situation can stand on its own or distribute itself to one or many
other objectives. If the objectives of situations across other situations prioritize
differently, then this is the first criteria for the integration of cognitive functions.
Furthermore, the proportion of shared objectives is of importance. With a high
proportion of shared objectives this suggests that this objective is closely related
to other objectives and its weight should not be from the outset determined and
isolated by the developer.

4.5.2 Functional Description

In order to realize a self-optimization process, optimization systems have to perform
information processing functions such as to communicate, to share knowledge or to
extract information. These functions are known as cognitive functions. Even though
there is no common accepted definition of cognition, there is a common sense that
cognition intervenes between the perception and the behavior of a system in the
way, that certain stimuli does not always result in the same reaction. Therefore,
cognition can be characterized as the ability that does not only enable autonomy
and adaptability, but also a more reliable, effective ,and viable system with regard
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Table 4.2 Examples of basic information processing functions [10]
basic  func- specific functions for concretization
tions
to acquire to (call, update, ask, receive, measure)
to process to (prepare, contain, divide, compensate, choose, filter, convert, delete, save,
compare, evaluate)
to transfer to (command, deactivate, activate, provide, set, inform, send, allocate, transmit)

Table 4.3 Examples of cognitive functions [10]
complex declaration - exemplary combination of basic functions
functions
(abstract)
toanalyze A system element receives information or makes an explicit request. In addi-
tion, the information is analyzed based on existing and additionally requested
information. In conclusion, the results are transmitted to one or more system
elements. to call - to compare - to transmit
to classify A system element receives information or makes an explicit request. The ele-
ment compares the information with already existing information. Depending
on the comparison; the information gets a new evaluation and classified. This
classification is saved and transmitted to other system elements. to receive - to
compare/prepare/save - to allocate

to its purpose. Strube (1996) distinguishes the following cognitive functions on a
psychological level [54]: to observe, to recognize, to encode, to store, to remember,
to think, to solve problems, to control motor function and to use language. Thus,
cognitive functions are basically information processing functions which not only
formalize new information, but also connect new information with existing internal
information. Since cognitive functions process information — and this is the main
assumption of cognitive science — they are calculation processes and can therefore
also be implemented in technical systems.

To name the functions of technical systems different noun-verb-catalogs for me-
chanical engineering have been developed [34, 35, 43, 54]. Due to an outstanding
overall catalog of information processing functions, we have developed one as the
first step to integrate software specific aspects in the principle solution. According
to the IPO-Model (Input-Processing-Output), we have distinguished between three
basic functions: the functions of acquiring, processing and transferring information.
In respect to several other functions were identified to concretize those basic func-
tions. For example, the acquisition of information can be done in a passive (e.g. to
receive information) or an active way (e.g. to retrieve information). All in all, 24
functions have been documented Table 4.2. Furthermore, other types of functions
have occurred: functions, which were a combination of the basic functions (e.g. to
analyze or to classify). These functions are named complex cognitive functions of
information processing Table 4.3.
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Fig. 4.19 Classification of solution patterns [10]

4.5.3 Solution Selection

In this phase, the potential solutions for the functions are identified. In order to
achieve this, the sub-functions must be allocated at the lowest level of the function
hierarchy of partial solutions and successively fill the higher-level functions up until
the complete function. The prerequisite for finding solutions for the integration of
cognitive functions is an adequate representation. For this purpose, recurring solu-
tions in the form of solution patterns are prepared.

In the architecture the idea was formulated in this context that the core of a so-
lution can be described as a pattern for a specific problem that can be drawn upon
in this analogous problem situations [1]; recurring problems are not to be solved
from the ground up every time. This is valid in an analogous way in mechanical
and electrical engineering as well as in control and software engineering and also
for the conception of intelligent behavior of self-optimizing systems. In this respect,
the structuring of the solution patterns during the development processes presents
an important foundation for the development of these systems.

Generally a pattern describes a recurrent problem in a definite context and the
core for this problem, i.e. the structure and behavior of the characteristic elements
of possible solutions in a generalized form. Based on this assumption, 4.19 presents
a depicted classification of the solution patterns.

We differentiate solution patterns that contact physical effects and patterns that
serve exclusively for processing information. The construction doctrine of mechan-
ical and electrical engineering identifies the first group as working principles [43].
Working principles create the connections between the physical effect, material, and
geometric structure. An example for this is the working principles of the electric
motor that can be used as a solution of the function to convert electrical energy into
mechanical energy.

This similarly applies for the area of information processing. In the area of soft-
ware engineering, software patterns are utilized in order to save cooperating ob-
jects and classes in case these solve a general design problem. The patterns contain
information on how they can be used and implemented in new situations. The so-
lution description is made up of a structure and the partial behavior of each struc-
tural element. The domain of control engineering describes solution patterns on
how a control loop is created, influenced or how the size of a path is measured
or observed. Patterns of control engineering are primarily assigned to patterns of
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information processing. In doing so it must be observed that the patterns of con-
trol engineering can be concretized as patterns of software technique or as working
principles. Besides the mentioned specifications of solution patterns, in the context
of self-optimizing systems, working patterns for self-optimization come into play
[50]. They are used for the implementation of self-optimization processes. Working
patterns for self-optimization fulfill functions for self-optimization like autonomous
planning, cooperating, acting and learning. The spectrum of the working patterns
for self-optimization envelops the complete self-optimization process (1. Analysis
of the actual situation, 2. Designation of system objectives and 3. Adaption of the
System Behavior) [40].

As already mentioned the early design phases of self-optimizing systems require
an effective cooperation and communication between all developers involved. To
come up with such requirements we developed a uniform specification of solution
patterns that is similar for all the disciplines involved. We structured the specifi-
cation in six aspects with respect to the categories according to Alexander (1977),
which is presented in Fig. 4.20 and will be explained in the following:

Characteristics: This Aspect describes the characteristics of the pattern. Be-
cause of the significant differences between the characteristics of the basic system
and the information processing we will distinguish two subcategories of this Aspect.
Examples for relevant characteristics of the basic system are usage conditions, ge-
ometry or material. In this context it is useful to note the environmental conditions,
where the physical system elements can be used. The geometrical aspect implies the
description of the approximate dimensions of the elements. Material characteristics
in particular have to be specified for a compatible combination of solution patterns
for the basic system. This aspect refers to similarities of the system elements and
the working medium like fluid in hydraulic systems.

Similar to the patterns for the basic system, the information processing of the
OCM is linked to some kind of usage conditions. More examples are processing
speed or the type of calculation. So by generating a new SP for the information
processing, the developer has to differentiate between hard real-time and soft real-
time. The kind of calculations is based on different information methods. Generally
we distinguish between mathematic relations and software code that represent an
application’s flow of commands.

Functions: This Aspect contains all those functions that the SP can realize. Thus
this aspect expresses the problem description. The hierarchical structure facilitates
the developers to assign a suitable SP for the underlying problem.

Active Structure: The aspect active structure is the core of the solution-descrip-
tion. This Aspect specifies which system elements are necessary in order to im-
plement the SP and how those system elements are interrelated. To support the
developer to handle the complexity of a self-optimizing system we designed a gen-
eral structure according to the OCM. This structure shows the basic elements of a
self-optimizing system and has to be modified and concretized for each problem.
This general structure also clarifies the interface between all involved disciplines on
the different levels of the OCM.
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Behavior: This Aspect describes the behavior of the system elements. The aspect
behavior is split into two sub-aspects. Behavior—activity describes the activities that
are performed by the active elements during operations. So this sub-aspect has to be
developed for patterns of the information processing. However, the behavior—state
aspect models the possible sequences of states and states transitions of all system
elements of the active structure. Thus this aspect has to be modified for each pattern
to design self-optimizing systems.

Implementation: In the course of engineering, the implementation of solutions
is generally based on certain method. However, an explicit definition that focuses
the implementation of physical problems as well as information processing does not
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exist. According to the definition by Sauer (2006) [48], methods describe sequences
of physical, chemical, biological or information processing application flows that
are necessary to realize the defining functionality. So a method concretizes the ab-
stractly formulated process, which describes the transformation of the operand from
the initial state to the final state.

Therefore patterns of the basic system are generally based on physical effects.
The Controller algorithms are based on mathematic relations like elementary trans-
fer elements (e.g. P-element). However, the SPs for the RO are based on software
algorithms. These are implemented in the CO model-based and behavior-based
methods.

Context: A solution pattern is generally attached to a specific context, so this
Aspect completes the uniform specification. Examples, which clarify the successful
use of the pattern, have to be declared. The core of each pattern is the description
of the underlying problem and the related solution. Therefore the aspects functions,
active structure and behavior have to be modified for each example.

The presented specification is similar for all different problems within the do-
main-spanning conceptual design. Because of the increasing complexity of self-
optimizing systems the following question is asked: Is it possible and advantageous
to categorize solution patterns?

In order to design self-optimizing systems, we propose a categorization according
to the generic composition of mechatronic systems that adjusts to the subdivision of
information processing into several hierarchical levels, see Fig. 4.21. This division
is well-grounded in cognitive science and enables the illustration of information
processes which implement intelligence (cf. Chap. 1).

Tool Support: The structure of the above presented solution patterns allow the
externalization and documentation of reusable solution knowledge. However, an ef-
ficient use of these patterns requires an appropriate computer support. Developers
need a way to create new solution patterns, to store them in a repository, as well
as an opportunity to integrate existing solution patterns in their current develop-
ment process. A need for some kind of database, in which solution patterns and
thus the knowledge of the experts can be stored, is apparent. Therefore, we devel-
oped a knowledge base for the systematic management of solution patterns, called
"Solution Pattern Knowledge Base". The basic functionality is shown Fig. 4.22.

The solution pattern knowledge base is a central repository for all developers.
Apparently, it is necessary to extend the functional range of a standard database,
which only stores the information. In a standard database all users need detailed
knowledge about the structure of the information and possible search methods. In-
stead, the Knowledge Base has to support in such a manner, that developers from
different domains are able to recognize an appropriate solution pattern.

An information system that implements the pattern repository must support the
collaboration of the solution patterns developers, which are e.g. experts within the
field of artificial intelligence or mathematical optimization, and the engineers. Our
aim is the storage of all required information in one single repository to enable
the developers an access to domain-spanning solutions during the system design.
The Knowledge Base is composed by several parts: database, which stores solution



4 Methods for the Domain-Spanning Conceptual Design 147
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Fig. 4.21 Classification of solution patterns according to the Operator-Controller-
Module [10]

patterns and a catalog of functions; ontologies for the consideration of the semantic;
inference-rules to combine solution patterns.

4.5.4 Systems Specification

In order to support the engineers during the conceptual design of self-optimizing
systems, especially the design of the information processing, we developed a design
template for the active structure. Therefore it was necessary to identify the interre-
lationship between the cognitive functions and elements of the technical systems. In
this context, the scientific cognitive view is transferred to the technically oriented
OCM-architecture in the following. Figure 4.23 presents the transformation of the
point of view from cognitive science to the technical OCM-architecture. It shows
a general active structure that can be concretized by different flows. This general
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Knowledge Solution Pattern Knowledge
Provider Repository User
Domain B
Domain A &
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Search

|

Analyze &
Utilize

Fig. 4.22 Basic concept of a knowledge base for the domain-spanning reuse of solution pat-
terns (in accordance to [10])

structure also clarifies the interface between all involved disciplines of the different
levels of the OCM.

Basic System: The physical system elements are located in the basic system.
This can be subdivided into the following system elements: passive basic structure,
hardware for data processing and energy supply. All energy flows of the basic sys-
tem represent the attachment of single elements at the passive basic structure. The
actuating and sensor elements are the interface for data processing.

Controller: The Controller (CO) realizes the non-cognitive control. The most
important task of the Controller is to improve the system performance. This is im-
plemented by adjusting disturbance values, which influence the basic system. From
a process control point of view, the actuator elements are an integrative part of the
setting device. It fulfills functions like e.g. "to balance system deviation". The Con-
troller realizes a rigid interface between the actuating and sensor elements, whose
action flow is known as a motoric loop

Reflective Operator: In the Reflective Operator (RO) the associative regulation,
such as classical or operant conditioning, can be implemented by its corresponding
algorithms. The RO can thus be used for learning control superimposed by the CO.
The processing speed through the RO is subdivided in soft and hard real-time. The
studies of existing systems have shown that associative functions run in soft real-
time. Basically, the majority of the calculations in the RO run under hard real-time
conditions. Its primary task is to generate reference values based on sensory input
for regulation in the Controller. The data processing of the OCM has to split into
several system elements that fulfill different functions (e.g. configuration manage-
ment, monitoring or corrective element). Furthermore, a communication module is
necessary to share important data or information with external systems.
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Cognitive Operator: The cognitive regulation is realized in the Cognitive Op-
erator (CO). The calculation of the mathematical problems can run in offline or
online mode. The system elements that are involved in the implementation of cal-
culation methods are situation analysis, system of objectives and adapting system’s
behavior. The needed information to optimize are identified, received, tested and
classified by the situation analysis. The keyelement of an autonomous intelligent
system is a knowledgebase that stores the relevant information and generates inter-
nal knowledge. The system of objectives is the internal target system that plans the
expected system behavior in certain situations. The results are transmitted to the el-
ement "adapting system’s behavior". This system element does not directly access
the regulation or the basic system with the appropriate actuators. Rather it adjusts
the planned and optimized strategy in the RO. This coupling between RO and CO is
called cognitive loop.

Conceptual Design of Self-optimizing Systems with Solution Patterns Exemplified
by Probabilistic Planning

According to Fig. 4.24 the use of patterns to develop self-optimizing systems starts
on the left with the successful implementation of eligible solution patterns for spe-
cific sub-functions. In the next step the developer has to feed the aspects of the
active structure and behavior to specify the complete system. Therefore it is gener-
ally necessary to modify these aspects of the basic pattern to achieve the different
fundamental problem. The developed principle solution is the second intermedi-
ate result. At the beginning of concretization the aspects have to be transformed in
domain-specific terminologies. So the process ends in an early specification of the
information processing as a component structure and a state chart. Simultaneously
the construction structure, based on the principle solution of the basic system, is
developed.

In the following we will explain the solution pattern "Probabilistic Planning".
The topic of the patterns, which is shown in Fig. 4.25, is the forward planning of
possible situations when considering insecurity. The core of the planning is a deci-
sion tree consisting of an ideal path and several possible intersections, which lead
to the same result. A condition is defined as the amount of the critical value of one
or more state variables (conditional planning). The probabilistic planning contains
the aforementioned limited planning and the execution monitoring. Furthermore, a
new planning can be considered. The basic idea is to use the conditional planning
as a standard practice. The new planning however represents a backup level for un-
predictable and implausible events. In this case, more intersections have to be added
to the decision tree. The requirements for the planning speed become more diverse
depending on the situation, in which the new planning is necessary. Because of the
fact, that the planning quality decreases if an alternative solution is found, the use
of the backup level should be avoided as much as possible. In the following, the
different aspects of the solution pattern "Probabilistic Planning" will be explained.
The uniform specification characteristics are:
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Fig. 4.24 Design of self-optimizing systems with solution patterns [10]

Working conditions: The probabilistic planning is designed for mechatronic sys-
tems that don’t always start from the same position and constantly change their
positions, e.g. vehicle mobile robotics.

Mode of calculation: The processed values are discrete. This applies to both the
conditional monitoring as well as for the execution monitoring.

Real time capability: The requirements for the planning time are diverse. The
entry of an unexpected event has an effect on the quality of the new planning. The
creation of the decision tree including the necessary intersections happens in soft
real-time with a significant variation of the time limits.
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Modeling: A holistic physical representation of the system‘s behavior is not
necessary.

Entity: The system element‘s planner and agent work in a collective way.

Modeling language: The specification of this pattern is based on the detailed ter-
minology PDDL (Planning Domain Definition Language).

A functional description of the SP probabilistic planning divides the overall
function "evaluate probabilistic" into three sub-functions to analyze the situation, to
determine objectives and to adapt behavior. The analysis of the situation calls all
essential information of the knowledge base and preprocessed data of the Reflective
Operator. The sub function to determine objectives is to predict using probabilistic
planning and to compare situations in one step in the plan. The adaption of the
behavior allocates a configuration in the next step in the plan. For each subsystem,
one configuration exists. The configuration is then sent to the Reflective Operator.

Active Structure: The two central elements of the solution pattern "Probabilis-
tic planning" are the agent and the planner. The tasks of the agent cannot be clearly
assigned to a phase of the self-optimization process. The agent’s participation is
significant in the analysis of the situation based on the analysis of the environment
as well as the analysis of the system state. The agent is active in the objective de-
termination because the agent can evoke a new plan through his evaluation of a
corresponding step in the plan. The planner on the contrary is assigned to determine
objectives. The necessary information for the planner — which normally relates to
models — resides in the knowledge base. With the help of this information, a plan-
ner can determine the probability distribution for all the discrete system states. The
information is either generated in real-time or saved externally in the knowledge
base. Additional data that is necessary is provided by the data call system element.
It receives data from the data storage/memory of the RO and executes the system
analysis along with the agent. The pattern group is complemented through the be-
havior adjustment.

Behavior: Directly after the beginning of the process, a deterministic plan is
triggered. This occurs offline, because the system is incapable of action without an
established strategy. The necessary decision tree contains a finite number of alterna-
tive branches that are created in a repeating loop. After the completion of the loop,
it is verified if the plan is mature enough so that the system can begin the operation.
At this point three deciding criteria are differentiated. If the conditions for the ex-
ecution of an operation are not fulfilled, other branches are created. This way the
normal as well as the new planning can be executed. However, if the condition is
fulfilled, the system can begin the targeted aim. If the plan is not completed at this
point the planning is resumed parallel to the executing system.

An essential task of the agent is to compare the next possible controlling point in
the plan with the current environmental condition as well as with the system state.
An evaluation is carried out after an analysis of the actual situation with the four de-
ciding factors. If an unexpected event occurs that the existing branches do not con-
sider the agent initializes a new plan through the planner. If however an alternative
branch already exists for the event, the subsequent behavior adjustment will react
correspondingly and an alternative will be set up accordingly to the configuration. If
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Fig. 4.25 Main aspects of the solution pattern "Probabilistic Planning" [10]
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the evaluation yields that the complete behavior proceeds according to plan, a check
is performed to clarify if the targeted objective has already been reached or not. If
the objective has been reached, the system is turned off. It is however necessary to
finalize further steps in the plan to communicate to the behavior adaptation that the
configuration should stay the same. The whole process runs recurrently until the ob-
jective of the plan is reached.

4.6 Product Structuring for Self-optimizing Systems

Rafal Dorociak and Jiirgen Gausemeier

Another important method that supports the creation of the principle solution is the

product structuring. Product structuring is an important mean to handle the com-
plexity of a technical system [38]. The aim is to identify modules that form logical
and functional units, which can be developed, tested, maintained and, if necessary,
be exchanged autonomously by different teams. Thus, the product structure affects
the whole product life-cycle.

Before we introduce the method by Steffen (2006) itself, two basic concepts have
to be explained [53]. These are 1) the basic types of a development task with regard
to product structuring and 2) design rules for product structuring.

Basic types of development task: In general, the product structure can be either
modular, integral or a combination of both. Which product structure mechatronic
systems and especially self-optimizing systems have, depends on a number of fac-
tors. These factors are, in particular, requirements on the product, on the product
program and on the product development process. The analysis of several develop-
ment tasks and their respective requirements has shown, that there is a number of
criteria, according to which a development task can be described [27]. These criteria
can be divided into three groups:

e criteria with regard to the product: These are: the size of the system, installa-
tion space, weight, performance data, recyclability, quality/reliability, availabil-
ity, expandability and reconfigurability.

e criteria with regard to the product program: These are: number of market
segments, planned product generations, quality of differentiation and variance of
costs.

e criteria with regard to the product development process: These are: develop-
ment effort, depth of the development and time of delivery.

Another result of the analysis of the development tasks is that, using the consis-
tency analysis [21], they can be clustered in nine consistent combinations, which we
call profiles [27]. As a consequence there are nine basic types of development tasks.
As shown in Fig. 4.26 these are: 1) miniaturized product, 2) cost optimized mass
product, 3) performance optimized single product, 4) complex miniaturized system,
5) system with numerous variants, 6) complex system with specialized modules,
7) mechatronic function module, 8) safety-intensive system and 9) reconfigurable
system.



4 Methods for the Domain-Spanning Conceptual Design 155

1 2 3
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function intensive
system
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Fig. 4.26 Nine basic types of development tasks [27]

Figure 4.27 shows the profile of the basic type "9) reconfigurable system". An
example of a system that complies to this basic type of development task is the
RailCab. The profile is represented in a tabular form. The rows of the table are
the aforementioned criteria. The cells describe the values of the respective criteria
and whether they indicate a integral, modular or neutral type of the product struc-
ture. It is shown that reconfigurable systems are of relative high size and have high
requirements when it comes to quality/reliability and availability as well as on ex-
pendability and reconfigurability. In addition, the breadth of the product program
for such systems is high (i.e. a high number of markets has to be addressed and
several product generations have to be planned). All in all, the values of the criteria
indicate, that in most cases a modular product structure is recommended. Although,
particular subsystems (modules) can certainly have an integral product structure,
when some particular technical requirements have to be met.

Design rules for the product structuring: The basic types of a development
tasks provide only a guideline. A direct adoption of the product structure for a whole
class of systems is usually not possible (e.g. one product structure which can not be
universally applied to all types of reconfigurable systems). Therefore, a number of
design rules were defined, which support the developer by decision making in the
conceptual design with regard to product structure relevant issues. In [27] 27 design
rules were defined, which build eight categories. These are design rules for 1) prod-
uct functionality, 2) disassembly/recyclability, 3) quality/reliability, 4) expandabil-
ity, 5) standardization, 6) costs, 7) development and 8) manufacturing. The design
rules address a number of properties of the product (disassembly/recyclability, ex-
pandability) and boundary conditions of the product development (standardization,
manufacturing) into account. They are applied for the development of the partial
models active structure, shape, etc. An example of a design rule is shown in Fig.
4.28. The main goal of this particular rule is to support reusability of the modules,
which result from the product structuring.

For each basic type of development task a selection of such design rules has been
defined [27]. Figure 4.26 shows a number of design rules, which are used for sys-
tems of the basic type "9) reconfigurable system". These are function fulfillment,
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Fig. 4.27 Description of the characteristics of the basic development task "9) reconfigurable
system" [27]

Fig. 4.28 Example of a de- -
i le: "product structur- 19 FGW [IAEE 61 T

Sign rule: p Herr in terms of reusability

ing in terms of reusability

[53] standardization Sum up systems elements in a way that they

can be used several times in the same
« time between product or other series.
innovation The aim is reduction of development costs

 rate of reuse and the realization of economies of scale.
[MaI00, S. 31] example: automotive — plattform concept
[Woh98, S. 56] of the VW group

minimal data exchange, ability of testing and validation, durability, reconfigurabil-
ity, user aspects, independence during further development, and development risk
[27].
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Fig. 4.29 The procedure model of the method for the product structuring of self-optimizing
systems based on the principle solution [53]

The method for the product structuring of self-optimizing systems consists of the
following three essential phases [27] (Fig. 4.29):

Phase 1 — development task analysis and selection of design rules: First, the
underlying development task is analyzed. The goal is to define the desired product
structure for the system of interest. For this purpose, requirements on the product,
the product program and the product development process are gathered according to
the criteria described before. These are compared then with the profiles of the nine
basic types of development tasks. Based on this comparison, one particular basic
type of development task is chosen, which corresponds best to the development
task. The result of this phase is a first definition of the desired product structure
based on the profile of the chosen basic type. It serves as an orientation aid or "light
house" during the further development (it can be compared to the "ideal concept”
by Altschuller (2000) [28]). As explained in Sect. 4.6 there is a number of design
rules assigned to each basic type of development task. For the system of interest the
design rules are used, which correspond to the chosen basic type of development
task.

The described approach has been validated on the RailCab. The analysis of the
development task has shown that the development of the RailCab focuses on the
validation of the applied technologies and the newly developed information tech-
nological processes (self-optimization). Design and efficiency of the prototype are
less important. It is important that the drive and the active spring technology are ac-
cessible and modifiable during later test cases. For the validation of new processes
in the field of information technology, additional properties are important. These
are: autonomy of the included modules and system elements, learning ability, high
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control performance, and high safety requirements. In addition, the prototype has
to be updatable. With respect to a later serial production, the mechanical compo-
nents have to be reusable. Altogether the development task has the characteristics of
basic development task "9) reconfigurable system" (Fig. 4.27). The corresponding
design rules are: function fulfillment, minimal data exchange, ability of testing and
validation, durability, reconfigurability, user aspects, independence during further
development, and development risk.

Phase 2 — product structuring: The design rules selected in Phase 1 are applied
in the course of the specification of the principle solution throughout the whole
conceptual design, when design decisions with regard to product structuring are
made. The design rules are used especially at the end of the conceptual design on
the system level (before the beginning of the conceptual design on the subsystem
level), as the subsystems (modules) of interest result from product structuring. In
order to obtain modules, a number of established methods is used in combination.
This is shown in Fig. 4.30. The starting point is the analysis of the specification
of the principle solution (Fig. 4.30, (1)). Especially the partial models application
scenarios, active structure and shape are concerned.

The information about system elements and their relationships (energy, material,
information flows and spatial relationships) are extracted from the principle solution
(mainly active structure and shape) and serve as input for the Design Structure Ma-
trix (DSM) [14] (Fig. 4.30, (2)). With the resulting DSM the relationships between
system elements are analyzed. The weighting of the different relationships is deter-
mined in accordance with the desired product structure and the chosen design rules.
For product structuring, two particular views on the system are created. One focuses
on its shape-oriented structure, the other one focuses on its function-oriented struc-
ture. Both views are then superimposed. Using DSM algorithms clusters of strongly
dependent system elements are built. This happens semi-automatically. Some of the
weights (values of the matrix) have to be modified manually in accordance with the
underlying development task. The results are a product structure with regard to flow
interdependencies and a product structure with regard to spatial interdependencies.

For self-optimizing systems, one aspect has to be particularly taken into account:
self-optimizing systems have the ability to reconfigure. Hence, autonomous modules
with disjoint functions and homogeneous interfaces have to be identified. For this
purpose, the so called aggregation DSM and the Reconfiguration Structure Ma-
trix (RSM) have been developed (Fig. 4.30, (3)). Both extend the DSM concept and
use application scenarios of the system as input. For each application scenario a sep-
arate DSM is set up. Afterwards, the different DSMs are superimposed in two ways.
Firstly, the aggregation of all DSMs is generated in a way, that all interrelationships
are taken into account only once. The resulting aggregation DSM shows all possible
connections within the system and allows the formulation of an adequate product
structure. Secondly, the RSM is built. For this purpose, the frequency of the con-
nections is taken into account by summing up the interrelations over all application
scenarios. The resulting RSM allows the identification of system elements, which
are only active in few application scenarios. This is a hint for reconfiguration poten-
tial. Such system elements could be integrated into autonomous additional modules.
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Fig. 4.30 Interaction of the partial models with DSM, RSM, Aggregation-DSM and MIM
With the aggregation DSM and the RSM only flow and spatial interdependencies
between system elements were taken into account. For the definition of the product

[27]
sic modules of the system. The result of the application of the aggregation DSM and

System elements which are active in all application scenarios are integrated into ba-
RSM is a product structure with regard to reconfiguration.
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structure, other aspects such as maintenance have to be considered, as well. A fur-
ther refinement of the product structure is therefore necessary. We use the Module
Indication Matrix (MIM) by Erixon (1998) [16] and its extension by Blackenfeld
(1999) [39] for this purpose (Fig. 4.30, (4)). The MIM makes it possible to consider
different properties of the system elements (e.g. maintenance intervals of a systems
element) as well as partial model spanning cross-references (e.g. functions that a
particular system elements concretizes). Which information is taken into account
depends on the underlying development task and the selected design rules. The re-
sult of the analysis with a MIM with regard to the additional relevant aspects (e.g.
with regard to maintenance).

Finally, the previously developed product structures are combined to the final
product structure, which addresses all the aforementioned aspects (flow and spatial
interdependences, reconfiguration, maintenance etc.) (Fig. 4.30, (5)) [27]. It forms
the basis for planning of the activities in the further design and development phase.
In particular, the resulting product structure integrates the two basic and mostly con-
tradictory views of a shape- and function-oriented product structure. This is neces-
sary, as both aspects are equally relevant for the development of mechatronic and
especially self-optimizing systems.

During the conceptual design on the system level of the RailCab the design rules
identified in Phase 1 were applied in an implicit way. The result is a first prin-
ciple solution specified with the specification technique CONSENS presented in
Sect. 4.1. At this stage the active structure for the RailCab consists of about 150
system elements. An explicit application of the design rules takes place at the be-
ginning of the conceptual design on the subsystem level. For this purpose, flows
(representing functional interdependencies) and spatial interdependencies are taken
into account. Additionally the multiple usability of system elements is relevant.
Two product structures are generated by using DSM. One with regard to flow in-
terdependencies (function-oriented) and one with regard to spatial interdependen-
cies (shape-oriented). Figure 4.31 shows these two structures (the function-oriented
and the shape-oriented ones) and their relationship to the specification of the active
structure for the RailCab. It is shown, that the two driving modules (front and rear)
result from the shape-oriented product structure. They consist of one drive and one
brake module and one axle that includes a Tracking Module as well as an Spring
and Tilt Module. The Active Suspension Module, the Active Guidance Module and
the Actuation Module are derived, from the function-oriented product structure.

As already explained, the initial product structure of the RailCab was refined by
taking into account additional aspects. RSM and aggregation DSM are used to refine
the Active Suspension Module. The MIM is used to analyze the aspects reusability
and extensibility.

Phase 3 — validation of the product structure: Finally the developed product
structure is validated. The core criteria of the validation are the level of compliance
of the desired product structure to the underlying development task, technical and
economical requirements as well as, if applicable, the available product platforms.
If a need for improvement is identified, revisions of the product concept that support
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Fig. 4.31 Comparison of
initial shape- and function-
oriented product structure
[27]
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a consequent realization of the desired product structure are initiated (e.g. modifi-
cations of the interfaces). Afterwards, the parallel domain-spanning design and de-
velopment of the subsystems begins. The validated, development-oriented product
structure of the RailCab is shown in Fig. 4.32 [27].

Product structuring is an important step in the development process for mod-
ern mechatronic and self-optimizing systems. It helps reduce the complexity and
increase the quality of a system, but it also requires additional effort. A success
factor is an adequate integration in the development process, by using established
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specification techniques, methods and tools. The presented approach shows, how
this could be realized for mechanical engineering systems of tomorrow that may
possess a high amount of information technology. The additional effort for prod-
uct structuring during the conceptual design is profitable, compared to the costs
of typically sub-optimal interfaces and high synchronization efforts which lead to
time-intensive and costly iteration loops during the further design and development.

4.7 Early Probabilistic Reliability Analysis Based on the
Principle Solution

Rafal Dorociak and Jiirgen Gausemeier

Based on the domain-spanning description of the principle solution a number of
analysis methods can be conducted. In this and the following section examples of
such analysis methods will be shown. We begin with the method for the early prob-
abilistic analysis of the reliability of a self-optimizing system based on its principle
solution. It allows for first statements with regard to the reliability of the system in
the early engineering phase of conceptual design. In particular, the weak points of
the system with respect to reliability are found. For those weak points, detection
measures and countermeasures are derived and implemented directly in the princi-
ple solution of the system. Altogether, the system under consideration is made more
reliable in the early development stage.

The main input of our method is the domain-spanning specification of the prin-
ciple solution (cf. Sect. 4.1). Following the recommendation of the CENELEC EN
50129 norm [13], our method uses two complementary reliability assurance meth-
ods FMEA (Failure Mode and Effects Analysis) [6, 25, 31] and FTA (Fault Tree
Analysis) [6, 8, 32] interdependent. Some concepts known from the FHA (Func-
tional Hazard Analysis) [58] method have been adapted, as well. This is especially
relevant in, the use of a failure taxonomy for the identification of possible failures.
By using these complementary methods, the completeness of the list of possible fail-
ure modes, failure causes and failure effects as well as of the specification of failure
propagation is increased; both failure specifications are held mutually consistent.

Figure 4.33 shows the procedure model of our method; iterations are not shown.

Phase 1 - specification of the principle solution: The starting point are mod-
erated workshops, where the experts from the involved domains work together in
order to specify the system with the specification technique CONSENS as well as
to analyze and optimize the principle solution with regard to reliability. In particular,
the aspects functions, active structure, and behavior are described.

Our method has been performed for the RailCab. We will show some of the re-
sults for its Active Suspension Module. Each Active Suspension Module consists of
three servo cylinders which dampen vibrations and tilt the vehicle body in curves.
Figure 4.34 shows a cut-out of the partial model active structure for the servo cylin-
der of the Active Suspension Module. Each servo cylinder consists of a hydraulic
cylinder, a 4/4-way valve, a servo cylinder regulation and a hydraulic valve regula-
tion [46].
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Fig. 4.32 The product struc- |
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Phase 2 — early FMEA based on the principle solution: The system structure
and the corresponding functions are automatically derived from the description of
the partial models functions, active structure, and behavior which are recorded in the
FMEA table. Failure modes, failure causes and failure effects are identified then.
Checklists and failure taxonomies (e.g. one shown in Fig. 4.35) [17, 56] support
the failure identification process. In addition, combinations of failure modes are
identified, which can possibly occur together and have a negative impact on the
system (pairs of failures, trios of failures, etc.). Failure modes and relevant failure
mode combinations are recorded in the FMEA table. For each failure mode (and
failure mode combination) the possible causes and effects are analyzed. Check lists
can be used to accomplish this because they describe system elements known to be
source of problems with regard to reliability [15]. A number of failure effects can
be found by analyzing the principle solution for the system; this concerns the partial
models active structure and behavior. A risk assessment of the failure modes, failure
causes and failure effects takes place using the risk priority number (cf. the IEC
60812 norm [31]). Finally, detection measures and countermeasures are defined as
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Fig. 4.33 The procedure model of the method for the early probabilistic analysis of the reli-
ability of a self-optimizing mechatronic system

well as the corresponding responsibilities. This occurs similarly when compared to
the classical FMEA. The FMEA table is updated accordingly.

The early FMEA method has been performed for the servo cylinder of the Active
Suspension Module. A cut-out of the resulting FMEA table is shown in Fig. 4.36.
Using the failure taxonomy by [17], the failure mode hydraulic valve regulation pro-
vides no switch position for the 4/4-way valve is found. This failure mode occurs,
for instance, if the energy supply of the system element hydraulic valve regulation
is interrupted. According to the FMEA the risk priority number for this case is 252.
In order to eliminate or at least mitigate the failure mode, the energy supply of the
hydraulic valve regulation should be monitored. One possible solution is to incor-
porate an additional monitoring system element into the principle solution. Then
additional measures such as a redundant energy supply have to be implemented.
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Fig. 4.34 Active structure of the Active Suspension Module (cut-out)
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Fig. 4.35 Failure classification (according to FENELON ET AL.(1994)) [17]

Phase 3 — early FTA based on the principle solution: The specification of the
failure propagation within the principle solution is performed. The process is very
similar to the traditional FTA. For each system element, its internal failures as well
as incoming and outgoing failures are specified and related to each other.

In our application example, the specification of the principle solution is extended
by the specification of failure propagation (cf. Fig. 4.37). For each system element
the relationship between incoming, local and outgoing failures is described. For in-
stance, the output HV, exhibits an undesired system behavior, if the internal failure
"F1" or "F2" occur or one the input HV| is faulty. Based on such a description of
the failure propagation a fault tree can be generated (semi)-automatically [8].

Phase 4 — comparison of both failure specifications: The FMEA table and the
specification of the failure propagation both contain information about causal re-
lationships between failures. Following the recommendation of the CENELEC EN
50129 [13], we use both methods in combination, to ensure a completeness of the



R. Dorociak and J. Gausemeier

166

(0,p4S = udy) Joaquinu Ayioud ysu udi

asneo alinjie} ay} Jo Ajjigeqosd 9ouaInd20
asned ainjie} ay) Jo Aljigeqoud uonoslep
1080 ain|ie} ay} o Ajuanss

» T O

06

S

4

paysidwoooe

uoljeliqies Buoim g jou
fom B [11m Aem Buny)
wsalsAs Buunsesw | pg |z |¢ eM buoim e paJlisep 8y} | paulwIs}ep
ay} jo ubisap Juepunpal Ul paJim Uussq Sey 1osuses ‘anjeA Buoim u2aq sey Aem Buiy
e sey ‘epulkoy Aem Buiy Japuljho
ealq 9|qeo

Japulifoy el |c|6 Aeelq aiq —epuihd v | Japullko ayy | ey Joj enjea uonenbai
Kem Buiyi| JepuljAo =9 UONeIASP | JO} BnjeA sl s|-se ay} JapuljAo
8y} JO anjeA si-se Jojuow 9lc ¢ |8 pabewep s| Josuas jonuod | -se Buoim e aulwis}ep -OAJ8S

papaau Ji ‘ebessaw z61 lels Jauuew

Buiuiem e syelsush pabewep s 100 ojaubew uonisod juaiin pajuemun
pajdnuiiajul ay} ul sAejs ue u aAeA aAjen
Alddns ABisus Jojiuow vee | v (L s1 Aiddns ABisua aneA olnelpAy | S8sojo aAjeA ay) 8s0[o Rem-y/

padnuiayui sl

Ajddns ABisus Jojuow 26z |9 | | voneinses m\M,_nﬂ, o__mmhn\f ) SABA

. ay} Jo ns ABisus EM-p/y U}

papaau Ji ‘obessaw Wi A 104 uomisod

Buiuiem e ajessusab uso.q si "

oL €6 uone|nbai aneA olnelpAy a.owAue UoIms

£ indjino ayy | ou sapiroid
ON[EA ABM-T7 /17 BU} uonisod Japl|s aAleA uo ainssaid uolne|nbai OAleA By} uone|nbai
wEMBcho_«mo_c:EEoo 8 |L|¢C 8Q-0} apiaolid Jou seop ay) abueyo oAlBeA 10 uonisod oAlBeA
UI0BIN0 S Jojuow uonejnbal Japullfo oAlas JOU SO0p 8A|eA ol|nelpAy aje|nbau ol|neJpAy
einsesul | 4, lo p asned ainjie} J09y)3 ainjie} apou! uolouny juswiaje
uoI}29}9p J0 J9jUNod ainjiey wayshs

19puljA2-0Alas :d|npow
(v3N4) sisAjeuy s}oay3 pue apojy ainjiey

Fig. 4.36 FMEA table of the servo cylinder (cut-out)
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Fig. 4.37 Specification of the failure propagation of the servo cylinder (cut-out)

failure specification. This can be achieved by comparing the information content of
the FMEA and the failure propagation specification: e.g. failures and causal rela-
tionships between failures can potentially be found in the failure propagation speci-
fication, which have not been found during the FMEA and are thus not documented
in the FMEA table; the FMEA table is updated accordingly. This also applies for
the other comparison direction: For example, if a causal relationship between two
failures (e.g. between a failure mode and a failure effect) has been recorded in the
FMEA table, there has to be a corresponding causal relationship in the failure prop-
agation specification. If this is not the case, the causal relationship is incorporated
into the failure propagation specification. In the process, some additional failures
which have not been specified can be found. The completeness of the identified
failure modes, failure effects, failure causes as well as of the failure propagation
specification is improved.

Figure 4.38 depicts the interrelation between both failure representations for the
servo cylinder. The failure cause servo cylinder regulation does not provide to-be
valve switch position from the FMEA table (cf. Fig. 4.38, (1)) corresponds to the
port state not(ok) of the input HV1 of the system element hydraulic valve regulation.
The failure causes hydraulic valve regulation is broken (2) and energy supply of the
hydraulic valve regulation is interrupted (3) correspond to the internal failures F1
and F2 of the hydraulic valve regulation. The aforementioned failure causes (2) and
(3) may lead to the failure hydraulic valve regulation provides no switch position for
the 4/4-way valve (4); it is recorded in the FMEA table as well as in the specification
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Fig. 4.38 Interrelation between the FMEA table and the specification of the failure
propagation

of the failure propagation (port state not(ok) of the output HV2 of the hydraulic
valve regulation).

According to the FMEA table there is a causal failure relationship between the
failure hydraulic valve regulation provides no switch position for the 4/4-way valve
(4) and the failure effect valve does not change the pressure on the output anymore
(5). Although both failures were specified in the failure propagation model (input
WV1 of the 4/4-way valve as well as inputs HZ1 and HZ?2 of the hydraulic cylinder,
respectively), the causal relationship between them has not been modeled. As a con-
sequence, a thorough analysis was performed on the causal relationship. During this
course the respective failure propagation path was modeled as well as an additional
failure F6 (valve position can no longer be changed mechanically; the valve slider
stays in its current position) (cf. Fig. 4.39).

Phase 5 — refinement of the principle solution: Both failure specifications are
analyzed. For instance, the classical analyses known from the FTA field such as
minimal cut sets are used [6]. In particular, the importance analysis is performed.
For this purpose, the Bayesian network driven approach is used [9]; it enables the
computation of the Fussell-Vesely importance measure. In this manner, the most
critical system elements are identified. Detection measures and countermeasures are
defined based on the analysis results. If possible, they are directly incorporated into
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Fig. 4.39 The extended failure propagation specification of the servo cylinder

the principle solution (e.g. redundancy, condition monitoring [37], etc.). Otherwise,
they are recorded for further domain-specific design and development (e.g. test and
simulation measures, etc.).

The result of the method is an updated principle solution for the system which is
improved with regard to reliability. As a consequence, the reliability of the system
under consideration is improved during the early development stage and a great
number of time-intensive and costly iteration loops during the further development
phases is avoided. The failure specifications and analysis results from the conceptual
design are used in the further development phase of domain-specific design and
development. The reliability analyses such as FTA and FMEA are performed again
along with the concretization of the system.

In our application example, the specification of the failure propagation of the
servo cylinder from the Active Suspension Module is translated into a Bayesian net-
work. The translation algorithm proceeds as follows: for each system element its
internal failures and port states of its inputs and outputs are translated into nodes
of the Bayesian network. The relationships between them are represented as edges
in the Bayesian network. The Conditional Probability Table (CPT) of the Bayesian
network is then populated: for each value of variables associated to a node or a
node state, its conditional probabilities are described, with respect to all combina-
tion of values associated to variables of the parent nodes in the network. To sup-
port the translation, a dictionary of translation rules has been developed [9], [26,
D.o.S.0.M.S. Sect. 3.1] .
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The result is a comprehensive Bayesian network, which describes the part of
the system that is relevant for the examination of the chosen top event. Based on
the Bayesian network some further analyses are performed [36]. In particular, the
Fussell-Vesely importance measure is computed, i.e. it is determined with what
probability a particular system element (failure cause) had led to a particular fail-
ure (the so-called posterior probability). The top event that we examine is valve
does not change the pressure on the output anymore (corresponds to the port state
WV2.not(ok)). Let us consider the state of the failure specification before the ad-
ditional failure F6 and the corresponding propagation path were incorporated into
the specification. The failure rates of the failures are shown in Tab. 4.4. Let us fur-
ther assume, that the output WV2 of system element hydraulic valve regulation is
in state not(ok), as this is our top event. According to the specification of the fail-
ure propagation (cf. Fig. 4.37) failures F1, F2, F3 and F4 contribute to this. Table
4.4 reports the Fussell-Vesely importance measure of each failure, i.e. the poste-
rior probability of the contributing failures given the occurrence of the aforemen-
tioned failure. Failures F1 and F4 are especially important with importance greater
than 28 %.

Table 4.4 Failures, the failure rates and the Fussell-Vesely importance measure (before and
after the failure specification had been extended) (Top-Event is WV2.not(ok))

Failure Failure rate (per hour)  Fussel-Vesely Fussel-Vesely
importance (before) importance (after)

Fl 5.11 x 1077 0.2897 0.2416

F2 4.02 x 1077 0.2279 0.1901

F3 3.28 x 1077 0.1859 0.1551

F4 5.23 x 1077 0.2965 0.2473

F6 3.51 x 1077 N/A 0.1660

Now let us consider the extended specification of the failure propagation (includ-
ing failure F6). The failure rate of failure F6 and the respective importance measures
are shown in Tab. 4.4. The failures F1, F2, and F4 are of highest importance with
importance of approximately 25 %.

All in all, by using our method, the completeness of the failure specification has
been improved. Especially, failures and failure relationships were identified, which
could have been easily omitted otherwise. In our application example, the failure
F6 has been identified, the importance of which is quite high (approximately 17 %).
Based on the failure specification, further analyses are conducted. Detection mea-
sures and countermeasures are then derived and, if possible, implemented directly in
the principle solution. Altogether, the reliability of the system under consideration
is improved during the early development stage.
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4.8 Evaluation of the Economic Efficiency
Mareen Vallholz

The decision to design a self-optimizing system is made in the early development
phase, when the potential for the optimization of contradictory objectives is identi-
fied. In this case the developer has to determine whether these contradictions will be
resolved in the further development by compromising or by using self-optimization.
The technical feasibility and economical aspects also contribute to this decision,
since the use of self-optimization can result in changing resource requirements
for the development, production and operation when compared to a conventional
mechatronic solution.

The economic efficiency of a system is given by the ratio of its evaluated mone-
tary benefit to costs. The result is a dimensionless number. If it is exactly 1, neither
profit nor loss is made [55]. In particular, the evaluation of the benefits of a self-
optimizing system is challenging because it occurs during run-time of the system.
The high complexity and the dynamics of the system in operation make the eval-
uation in the conceptual design phase difficulty. Existing methods to evaluate the
costs and benefit do not meet this complexity [57]. The aim of the presented method
is therefore to provide proof of the economic efficiency of self-optimizing prod-
uct concepts during the early stage of the conceptual design based on the principle
solution. This includes the evaluation of the two aspects costs and benefit for the
company as well as for the customer. Furthermore it enables a comparison with
conventional mechatronic solutions in order to select the most economical one. On
this basis, the decision can be made whether the solution variant will be developed
further in the design and development and eventually brought to market.

Figure 4.40 provides an overview of the phases and milestones of the method for
the early estimation of the economic efficiency of a self-optimizing system based on
the principle solution. The starting point for the development of a technical system
are different product ideas, that can be beneficial for the customer and the company.
Before the development of one of these product ideas is initiated, it needs to be clar-
ified whether this can strategically benefit the company. In phase 1 the market for
the product ideas is analyzed. For the stakeholder the qualitative benefit is identi-
fied by experts of the company. Based on these benefits the changes of the market
performance of the company can be derived. For example through a competitive
advantage, shares of sales from the competitors can be tapped and a higher revenue
growth for the company results. In the case of promising expected revenue growth,
the conceptual design of the product is initiated in phase 2. To be able to estimate
the production costs in the subsequent phase, the production system is designed as
well. Before the solution variant is developed further in the design and develop-
ment phase, its economic efficiency needs to be proven. In order to pursue this we
need to distinguish the economic efficiency for the company and for the customer.
The quotient of the expected benefit (expected revenue growth and market price)
and the anticipated costs (development, production and investment costs) describe
the economic efficiency for the company. For the customer the solution variant is
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Fig. 4.40 Phase-milestone diagram for the early estimation of the economic efficiency of a
self-optimizing system

economically efficient, if the quotient of the accumulated benefit in system oper-
ation to the life-cycle costs (purchase price, operation, maintenance and recycling
costs) result in a value higher than one.

To be able to determine the benefit for the customer as well as the operation
costs, the dynamics of the self-optimizing and the conventional mechatronic sys-
tems needs to be analyzed in phase 3. The result is the behavior of the systems
in different operating situations. In the following phase the costs for the solution
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variants are estimated in phase 4. In phase 5 the benefit for the customer is esti-
mated based on a conjoint analysis. The result is annotated to the simulation results
of phase 3 and by accumulation, the benefit for the customer over the life-cycle of
the system results. Finally the economic efficiency of each solution variant is calcu-
lated in phase 6 and the most promising one is selected and developed further.

Phase 1 - analyze market: The first phase is carried out before the conceptual de-
sign of the system ideas. Before time and money are invested for the development of
a technical system, it needs to be clarified whether the development is advantageous
for the company. Therefore the potential for the new system on the market needs
to be analyzed and the expected revenue growth identified. This is the case, when
stakeholders derive benefit from the system and thus are willing to buy it. Based on
the approach by Freeman (1984) [19], the stakeholders are identified and analyzed.
In this case a stakeholder is a group or an individual, who can affect or is affected
by the achievement of the system to be developed. In the next step the identified
stakeholder are categorized by the three attributes power, legitimacy and urgency
due to Mitchell et al. (1997). They distinguish between eight categories: dormant,
discretionary, demanding, dominant, dangerous, dependent, definitive stakeholder
as well as nonstakeholder [41]. From this distinction preliminary indications can be
conducted on how the stakeholder will benefit from the new system. For example
dormant stakeholders could be customers of the competitors. In the case that the
new system is brought to the market, they can be a potential customer for the new
system, because their expectations are met. This leads to a growth in revenue for the
company at the expense of the competitor. The identification of the benefit for the
stakeholder by causal chains is performed in the next step. The qualitative benefit is
collected in a stakeholder-benefit-matrix. The business is structured into market seg-
ments according to the segmentation criteria by Backhaus (2003) [2]. The identified
stakeholder can be assigned to the market segments. The segments are compared to
the market performance of the system ideas in a matrix. For each combination, the
respective market volume, the company revenue, the sales growth in the previous
year and the expected revenue growth are evaluated. The expected revenue growth
can be predicted by the benefit that is resulting for the respective stakeholder. The
result of the first phase is the expected revenue growth resulting from the develop-
ment of the system for the company. On this basis, a decision is made whether the
development of the system is advantageous or disadvantageous. In the first case the
conceptual design of the idea is triggered. Otherwise the idea is rejected.

Phase 2 - domain-spanning conceptual design: A promising revenue growth
is the trigger for the development of the system. In phase 2, the principle solution
for the system is developed. To be able to estimate the production costs of the sys-
tem, the respective production system needs to be designed in the early phase as
well. For the development of the principle solution for the product the approach in
Sect. 3.2 is used. In case a self-optimizing solution is not expressively required, a
mechatronic and a self-optimizing solution is made. To develop the principle solu-
tion for the production system, part dimensions and material data are derived during
the first step of determining the manufacturing requirements. Afterwards the active
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structure and the building structure of the self-optimizing/mechatronic system are
analyzed, to identify all system elements that need to be manufactured. Based on the
structural connections, the process sequence for the manufacturing and the assem-
bly process are set up. Based on the initial assembly sequence, the system elements
are linked by assembly processes. Next, parts to be purchased and parts that need
to be manufactured are determined. The parts to be manufactured are completed by
the necessary manufacturing processes to produce them from raw materials or pre-
fabricated parts. In this context adequate manufacturing technologies are chosen
with respect to the deployed product technologies then the resources of the produc-
tion system are determined. The resources realize the specified processes and are
allocated to them, based on the chosen production technologies. The selection de-
pends on the production requirements, this way, alternative resource combinations
are obtained [22]. In the following phases the developed principle solution for the
self-optimizing and mechatronic system will be analyzed regarding the economic
efficiency, whereupon the concept of the production systems gives evidence for the
production costs.

Phase 3 - analyze system dynamics: Because the benefits and costs of self-
optimizing systems during operation results from the dynamics of the system, it
needs to be analyzed. A particular challenge for self-optimizing systems is, that
their behavior can not be predicted easily due to its interdependencies and the re-
sulting high complexity. To reduce the complexity, we use a matrix based approach
and map the dependencies of the control loop between external influences, con-
trol variables of the system and the objectives of the system in a Multiple Domain
Matrix. By matrix multiplication the continuous self-optimization process can be
simulated and the respective system state detected. This results in having the objec-
tive characteristics of the system state for each operating condition over time. For
this purpose four steps need to be performed (cf. Fig. 4.41):

Step 1 - derive system parameters: To be able to simulate the system dynam-
ics the principle solution (cf. Sect. 4.1) for the self-optimizing system and of the
conventional mechatronic system needs to be analyzed to derive the necessary pa-
rameter. These are the external influences, control variables and the objectives of
the system. External influences result from the flows in the aspect environment.
This can be for example the desired speed of the RailCab by the customer. The con-
trol variables can be identified based on the active structure of the system, e.g. the
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Fig. 4.42 Closed-loop representing the dynamic behavior of a self-optimizing system

charge rate of the capacitor of the Hybrid Energy Storage System. An example for
an objective of the RailCab is "minimize energy losses". For each parameter charac-
teristics are determined. For instance the priority of the objective "minimize energy
losses" can be qualitative low, high or very high.

Step 2 - describe causal system dynamics: The dependencies of the parameters
in the closed-loop of the self-optimizing system derived in step 1 are presented in a
causal diagram in Fig. 4.42. In the case that the external influences of the environ-
ment on the system changes a changed priority of the objectives of the system can
be provoked. The objectives of the system of objectives are also influenced by itself
and the current system state. The system state can be influenced by the environ-
ment by disturbing values. The self-optimizing system determines its objectives, if
necessary. This leads to a changed reference value for the control strategy of the sys-
tem. The deviation between reference value and measured system state can change
the control variable and therefore the behavior of the system. This circumstance is
described in the Multiple Domain Matrix in Fig. 4.43.

Step 3 - generate test cases: In this step the life-cycle of the system is repre-
sented by test cases consisting of different operating situations. For this, the sit-
uation of the aspect application scenarios is formalized. In the Design Structure
Matrix (cf. Fig. 4.43, matrix No. 1) the consistency of the characteristics of the ex-
ternal influences were analyzed [21]. Different operating situations are derived from
this matrix, consisting of a combination of characteristics of the external influences.
These are clustered by similarity and assigned to the application scenarios, which
describe one situation during the life-cycle of the system. Afterwards a sequence of
application scenarios is generated and each one is provided with a time stamp. Thus
test cases that represent the life-cycle result.

Step 4 - simulate the system behavior: For these test cases the dynamical be-
havior of the systems is simulated by matrix multiplication. For the self-optimizing
system the self-optimization process is conducted as follows:
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1. Analyzing the current situation: The self-optimization process is initiated, in
case either the situation and therefore the external influences or the system state
changes. The first case results by the sequence of the application scenarios in the
test cases. The associated state vector for the external influences can be derived
from matrix No. 1 (cf. Fig. 4.43). Furthermore it is examined whether this change
leads to a changing system state because of disturbance variables (Fig. 4.43, ma-
trix No. 3). The other case occurs for example when the capacity of the battery
of the RailCab switches from one state to another, due to energy consumption of
the system, as described in "4. Continuous system operation". The state vector
for the control variable is derived.

2. Determining the system’s objectives: The next step is to determine the objective
of the system. The priority of the objectives is dependent on external influences
(Fig. 4.43, matrix No. 2), the system state (Fig. 4.43, matrix No.6) and the cur-
rent priority of the objectives (matrix No. 4). Each characteristic in the matrices
demand a certain priority of the objectives. Out of these demands the Pareto op-
tima for every objective prioritization is chosen and results in the state vector for
the new objectives.

3. Adapting the system behavior: The alteration of the system of objectives for
the system, demands a change of the systems behavior. Figure 4.43, matrix No.
5 presents the influence of the control variables by the priority of the objectives.
The new state vector of the system can be taken and the system switches to
another operation mode.

4. Continuous system operation: Since the system behavior can change during
the operation, e.g. by energy consumption, continuous operation of the system
is simulated as well. How the system state is changing over time is described in
Fig. 4.43, matrix No. 8. The consumption, for example of the available energy
is simulated over time. When the system state changes to another mode the self-
optimization process is initiated again.

This procedure is conducted for all scenarios of the test cases. The respective
priority of the objectives as well as the system state is recorded to be able to assign
the operation costs and the situational benefit to each test case. For the conventional
mechatronic system the simulation is conducted in a similar way, except that the
changes of the objectives are limited to the defined control strategies.

Phase 4 - estimate costs: In this phase, the costs for the solution concepts are
estimated. The costs for the company consist of the development, investment and
production costs, which in turn are composed of various expenses. For the customer
the life-cycle costs of the system are of interest. The presented method provides
a guideline to estimate the relevant costs for the self-optimizing and mechatronic
system.

To determine the development costs, the costs of all initiated processes for the
development are required. For this purpose, the following questions must be an-
swered: What do we do? How do we do it? and Who does it? [12]. To this end,
the reference process (cf. Chap. 3) for the development of self-optimizing system
is tailored due to the individual development task. This is accomplished using the
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change from one objective
priority to another?"

during runtime

Rating scale: Rating scale:
0 = no effort

1 = barely effort

2 = low effort

3 = high effort

4 = very high effort

0 = no change

0 = is not prefered

-1 = negative change
-2 = strong negative change

1= system state is seeked

+2 = strong positive change
+1= positiv change

Influence of the system state
on the system of objective
"Which objective is prioritized
due to the system state?"

Change of the system state

"How does the control variable
in the row change the one in
the column during runtime?"

Fig. 4.43 Causal description of the system dynamics with a Multiple Domain Matrix
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framework for a self-optimizing process development of advanced mechatronic sys-
tems by Kahl (2013) [33] (cf. Sect. 3.4). For each process step it can be determined,
which developer performs it, how long it will take and what potential additional
expenses to the personnel costs will arise. The required personnel costs plus other
expenses form the development costs.

The investment costs for the company result from the procurement of material
resources and from training costs for the developer in self-optimization specific ex-
pertise. For self-optimizing systems, this may result in part from the provision of
new production plants, and also from the procurement of test bed and platforms.
The investment costs for the production system can be derived from the princi-
ple solution for the production system. The necessary test beds and test platforms
as well as training for the developers are associated with the solution pattern for
self-optimization. Depending on the selected solution patterns, the necessary in-
vestments for the system test can be estimated.

The core of the product-related costs are the production costs. These consist of
the basic mechanical structure by the material, manufacturing, assembly and testing
costs. The manufacturing and assembly costs can, for example, be determined by
the process costs based on the principle solution for the production system (cf. [42]).
The production costs for the electronic components result in addition to the material
and manufacturing costs from the so-called yield-loss costs as well as test costs [49].
To calculate the production costs for the software components, the staff required
for the implementation, integration, and testing in personnel-months is included. In
addition, there are charges which are incurred in the administration and sales which
can not be directly associated with the system. These are shown in the surcharge
calculation of overhead rates and added to the production costs. This results in the
cost for the company for the product [12]. Based on these the market price can be
calculated.

The life-cycle costs for the customer include the purchase price, the operating
costs of the system as well as maintenance and recycling costs. The purchase price
corresponds to the market price set by the company earlier in this phase. The op-
erating costs of the system can be derived based on the simulated behavior of the
system in phase 3. Over all operating situations, the changes of the system behav-
ior were simulated. For each modification switching costs result. For the simulation
these costs are taken as a factor. Furthermore, the consumption of the system has
been simulated as well based on these factors. By the expertise of the developer
these factors can be transform to monetary costs. The maintenance cycles can be
estimated through the product life-cycle based on the simulation. Disposal costs are
estimated based on the active structure and the expertise of the developer.

Phase S - estimate benefit: The benefit of a self-optimizing system during oper-
ation must be evaluated in terms of its situational dependency. The behavior of the
system in different operating situations has already been simulated in phase 3. In this
phase the benefit that results from certain behaviors of the system for the customer
is identified with the traditional conjoint analysis [3]. In the first step the system
properties and their characteristics to be queried are determined. For this purpose,
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Fig. 4.44 Roadlpap .for the Situation-dependent Situation-dependent
value (.)f be.neﬁt' in different Value of Benefit Value of Benefit
operatlng situations for Test Case 1 q ; 5 . P
Operating Situation 1 O
Operating Situation 5 O
Operating Situation 8 Q
Operating Situation 1 O
Operating Situation 3 J
Operating Situation 10 O
Operating Situation 4 O '
Operating Situation 11 O
Operating Situation 2 \
Operating Situation 5 O
Operating Situation 12 Q
Operating Situation 10 |Q

J Self-Optimizing System Mechatronic System

the operating situations with the highest probability, the value of the system of ob-
jectives in the situation, as well as the operating costs for the situation are chosen.
These are prioritized during a survey. Furthermore the price that the customer is
willing to pay for the system should be queried in order to determine possible prices
for the system based on the desired profit margins.

In the second step, the survey design is created. With the aid of the profile method,
the stimuli which means the combinations of property characteristics are created.
Then the number of stimuli is determined and a reduced design, which makes an
evaluation manageable, is designed. The selected stimuli and operating situations
are clearly described.

Then the stimuli are evaluated by the focus group. This group is selected by
stakeholders in regard to the relevant market segments. The respondents are asked
to prioritize the stimuli so that the resulting ranking order matches their personal
preferences. Upon completion of the survey, partial values of benefit are determined
for all property characteristics based on the empirically determined ranking-data.
From this, the total values of benefit for all stimuli and the relative importance of
each property can be derived. The aggregation of values of benefit is achieved using
cluster analysis [21].

Finally, the values of benefit are assigned to the operating conditions for each test
case and the situation-dependent benefit of each alternative solution is presented in
a benefit-roadmap (cf. Fig. 4.44). The cumulative benefit of a the solution variant is
derived from the weighted sum of the partial values of benefit. The monetary benefit
is derived from the survey, based on the computed preferred price for the system and
expenditure for a situation.
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Phase 6 - select economical solution concept: The expected benefit and costs
for the company and the customer are compared and the economic efficiency of
each solution is calculated. The comparison provides the basis for decisions on the
selection of the most economical solution variant that will be developed further in
the domain-spanning design and development (cf. Sect. 3.3).
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