
Chapter 1
The Paradigm of Self-optimization

Michael Dellnitz, Roman Dumitrescu, Kathrin Flaßkamp, Jürgen Gausemeier,
Philip Hartmann, Peter Iwanek, Sebastian Korf, Martin Krüger, Sina Ober-Blöbaum,
Mario Porrmann, Claudia Priesterjahn, Katharina Stahl, Ansgar Trächtler,
and Mareen Vaßholz

Abstract. Machines are ubiquitous. They produce, they transport. Machines
facilitate and assist with work. The increasing fusion of mechanical engineering
with information technology has brought about considerable benefits. This situa-
tion is expressed by the term mechatronics, which means the close interaction of
mechanics, electrics/electronics, control engineering and software engineering to
improve the behavior of a technical system. The integration of cognitive functions
into mechatronic systems enables systems to have inherent partial intelligence. The
behavior of these future systems is formed by the communication and cooperation
of the intelligent system elements. From an information processing point of view,
we consider these distributed systems to be multi-agent-systems. These capabilities
open up fascinating prospects regarding the design of future technical systems. The
term self-optimization characterizes this perspective: the endogenous adaptation of
the system’s objectives due to changing operational conditions. This resuls in an au-
tonomous adjustment of system parameters or system structure and consequently of
the system’s behavior. In this chapter self-optimizing systems are described in detail.
The long term aim of the Collaborative Research Centre 614 "Self-Optimizing Con-
cepts and Structures in Mechanical Engineering" is to open up the active paradigm
of self-optimization for mechanical engineering and to enable others to develop
these systems. For this, developers have to face a number of challenges, e.g. the
multidisciplinarity and the complexity of the system. This book povides a design
methodology that helps to master these challenges and to enable third parties to
develop self-optimizing systems by themselves.

J. Gausemeier et al. (eds.), Design Methodology for Intelligent Technical Systems, 1
Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-45435-6_1, c© Springer-Verlag Berlin Heidelberg 2014

2 R. Dumitrescu et al.

1.1 From Mechatronics to Intelligent Technical Systems

Roman Dumitrescu, Jürgen Gausemeier, Peter Iwanek, and Mareen Vaßholz

Machines are ubiquitous, from white goods to medical devices and transportation
systems. Their purpose is to make life easier. The increasing integration of in-
formation and communication technology in the field of conventional mechanical
engineering implies considerable potential for innovation. Most modern products
created in the field of mechanical engineering and related areas such as automo-
bile technology, already rely on the close symbiotic interaction between mechanics,
electrics/electronics, control engineering and software technology, which is aptly
expressed by the term mechatronics [29] . Mechatronics – a portmanteau of the
words mechanics and electronics [10] – represents the potential for the development
of fundamentally new solutions in the area of mechanical engineering and related
disciplines, which in turn can significantly improve the cost-benefit ratio of familiar
products and also stimulate the innovation of new products. In the following, the
way from Mechatronic Systems across Adaptive Systems towards Intelligent Tech-
nical Systems will be outlined.

Mechatronic Systems

The aim of mechatronics is to improve the behavior of a technical system by using
sensors and information from humans or other systems to obtain information on the
environment and also on the system. Thus, they can respond to changes in their envi-
ronment, detect critical operating states and control processes which are difficult to
control in real-time by humans [2, 22, 34]. Mechatronic systems are distinguished
by the functional and/or spatial integration of sensors, actuators, information pro-
cessing and a basic system. The basic structure of a mechatronic system is shown
in Fig. 1.1. In general, mechatronic systems can also be composed of subsystems
which themselves are mechatronic systems (cf. Sect. 1.3) [2].

The basic system is commonly a mechanical structure. Generally any desired
physical system is conceivable as a basic system, so that it is even possible to
hierarchically represent mechatronic systems structurally (cf. Sect. 1.3) [2]. The
relevant physical (continuous) values of the basic system or its environment are
measured using sensors. Sensors in this case can be physically present measured-
value pickups or straightforward software sensors [2] (so-called "observers", see for
example [34]). The sensors supply the input variables for information processing,
which in most cases takes place digitally, i.e. discretely in terms of value and time.
The information processing unit determines the necessary changes to the basic sys-
tem using the measurement data as well as the user specifications (human-machine
interface) and also available information from other processing units (communi-
cation system). The information processing unit is often realized as an electronic
microprocessor, which realize open-loop and closed-loop control functions. The be-
havior adaptation of the basic system will be caused by actuators. In general, an

1 The Paradigm of Self-optimization 3

sensorsactuators

basic system

humaninformation
Processing

power
suppy

communication
system

human-machine
interface

information flow
energy flow
material flow

information
processing

Digital Values

Analog Values

primarily information flow

primarily energy and material flow

environment

Fig. 1.1 Basic structure of a mechatronic system [2]

actuator converts energy into motion, for example by using a motor or a hydraulic
cylinder.

The relationships between the basic system, sensors, information processing and
actuators are represented as flows (cf. Fig. 1.1). For example there is a flow from
the sensors (e.g. informations of the environment) to the information processing
unit of the system. In principle, three types of flows can be distinguished: informa-
tion flows, energy flows and material flows [44], whereby the information flows are
frequently also referred to as signal flows.

• Material flows: Examples for materials which flow between units of mecha-
tronic systems are for example gases, fluids, solids, dust and also raw products,
objects being tested or objects being treated.

• Energy flows: Energy is understood to be any form of energy, such as for exam-
ple mechanical, thermal, electrical, optical energy, or force and electric current.

• Information flows: Information exchanged between units of mechatronic sys-
tems or components are, for example measured variables, control pulses, or data.

To serve customer needs and to create cost and energy efficient systems, mecha-
tronic systems have to fulfill increasingly advanced functions and requirements.
These requirements can vary or conflict depending on the situation. An example
is the consideration of execution speed and resource use: if the application situation
requires the fastest possible execution of a task (e.g. an important rush order), the
requirement resource efficiency is considered to be less important. In the develop-
ment of conventional mechatronic systems, the developer has to decide on a com-
promise between two competing requirements. Thus, the controller of the system is

4 R. Dumitrescu et al.

designed for acceptable behavior under specific circumstances. A first step to solve
this challenge is to use adaptive control strategies [3, 8].

Adaptive Systems

Adaptive systems use adaptive control strategies, that make it possible to adjust the
controller of the system in real time by using adaptation algorithms. These algo-
rithms help to achieve a desired level of control system performance for situations in
which the parameters of the basic system are a priori unknown and/or change in time
[39]. Therefore adaptive systems form a necessary step towards intelligent technical
systems. Adaptive controllers enable higher levels of adaptability, but still remain a
compromise for anticipated situations [3]. The improvement of communication and
information technology opens up more and more fascinating perspectives, which go
far beyond current standards of mechatronics: mechatronic systems having inherent
partial intelligence.

Intelligent Technical Systems

Future mechanical engineering systems will comprise of configurations of system
elements with inherent partial intelligence. These system elements are able to re-
alize functions such as "to share knowledge", "to coordinate behavior" or "to learn
from experience". Those functions are also typical for cognitive systems and are
known as cognitive functions [16]. Systems having these cognitive functions, are
also called intelligent technical systems. There are four central properties, which
describe intelligent technical systems [14, 15]:

• Adaptive: Adaptive systems react autonomously and flexibly on changing oper-
ation conditions. They are able to learn and optimize their behavior at runtime.

• Robust: These systems are able to behave "acceptable", even in situations which
have not been considered during the development phase of the system. Uncer-
tainties can be compensated to certain extends.

• Foresighted: Based on gained experience, these systems have the ability to rec-
ognize emerging states and situations. Thus they are able, to spot possible dan-
gers and accordingly change their behavior.

• User-friendly: The systems are able to adapt their behavior to the specific user.
They interact closely with the user and their behavior is always comprehensible.

Keywords as "Things that Think", "Cyber-Physical Systems", "Industry 4.0" or
"Self-optimization" express this perspective on intelligent technical systems. These
systems exceed the functionality of mechatronic systems and set new requirements
on design methodologies. Therefore the gap between system complexity and per-
formance of the design methodology is increasing (see Fig. 1.2). To realize intel-
ligent technical systems, such as self-optimizing systems, not only the domains
mechanical, software, control and electrical/electronic engineering have to be con-
sidered, but also experts from higher mathematics and artificial intelligence have to

1 The Paradigm of Self-optimization 5

Mechanics Mechatronics Self-optimizing
Systems

Performance discipline-specifi c development methods
Product Complexity

 t

Fig. 1.2 Complexity of self-optimizing systems versus performance of design methodologies

be involved in the development process. This book provides a design methodology
for self-optimizing systems consisting of a reference process, methods and tools
that master the shortcomings of existing design methodologies. This methodology
closes the gap between system complexity and performance of the design method-
ology, to enable developers who are not specifically trained in higher mathematics
and artificial intelligence to develop self-optimizing systems.

1.2 Introduction to Self-optimization

Roman Dumitrescu, Jürgen Gausemeier, and Peter Iwanek

The Collaborative Research Center (CRC) ’Self-Optimizing Concepts and Struc-
tures in Mechanical Engineering’ defines self-optimization as follows:

"Self-optimization describes the ability of a technical system to endogenously
adapt its objective regarding changing influences and thus adapt the system’s be-
havior in accordance to the objectives. The behavior adaptation may be performed
by changing the parameters or the structure of the system. Thus self-optimization
goes considerably beyond the familiar rule-based and adaptive control strategies;
Self-optimization facilitates systems with inherent "intelligence" that are able to take
action and react autonomously and flexibly to changing operating conditions." [3]

Figure 1.3 shows the key aspects and the mode of operation of a self-optimizing
system. Factors that influence the technical system originate in its surroundings
(environment, users, etc.) or from the system itself. They can support the system’s

6 R. Dumitrescu, J. Gausemeier, and P. Iwanek

Fig. 1.3 Aspects of self-
optimizing systems [21, 25]

System of Objectives
(Internal Objectives)

Technical System (e.g. RailCab)

O1.1 O1.2 O2.1 O2.2 O2.3

O1 O2

O

Influences on the Technical System
User

e.g. Changed
User Behavior

System
e.g. Wear and

Tear

Environment
e.g. Changes of
the Track-Profile

Behavior Mathematical
Description of
Behavior

Specialized Representation
of the System Structure

Specialized Representation
of System Parameters

x(t)= A
y(t)= C

.

.
x(t)+ B
x(t)+ D

.

.
u(t)
u(t)

RailCabs

Structure Parameters

U(s) Y(s)+ +

+..

X2

X1

Xn

C1

C2

Cn

 1

s - λ

..

1

 1

s - λ

 1

s - λ

2

n

λ1

0
.
0

0
λ2
.
0

0
0

0

...

...

...

...

0
0
.
λn

A = ,
1
1
.
1

C = c = c1 c2 ... cn D = 0T

B = b =

objectives or hinder them. Influences from the environment, for example such as
strong winds or icy conditions, are unstructured and often unpredictable. If they hin-
der the system fulfilling its pursued objectives they are called disturbance variables.
The user can influence the system, for instance by choosing preferred objectives.
It is also possible that the system itself or other technical systems will influence
the system’s objectives, for example if mechanical components are damaged, the
objective "max. safety" has to be prioritized [20].

The self-optimizing system determines its current pursued objectives (System of
Objectives) on the basis of the encountered influences on the system for example
the environment, the user or the system itself. New objectives can be added, existing
objectives can either be rejected or the priority of objectives can be modified during
system operations. Therefore, the system of objectives and its autonomous change
is the core of self-optimization [3, 15]. Objectives can be distinguished between ex-
ternal and inherent objectives. External objectives are set from the outside of the
self-optimizing system, by other systems or by the user (e.g. for a driving mod-
ule this could be "max. comfort"). Inherent objectives reflect the design purpose of
the self-optimizing system. An inherent objective of a driving module can be for
example "max. energy efficiency". Objectives build a hierarchy and each objective
can thus be refined by sub-objectives (e.g. "min. energy consumption" is a possible
sub-objective of "max. energy efficiency"). Inherent and external objectives that are
pursued by the system at a given moment during its operation are called internal
objectives [13].

Adapting the objectives, leads to a continuous adjustment of the system behavior
to the occuring situation. This is achieved by adapting parameters or reconfiguring
the structure (e.g. adapting control strategies) [15]. The self-optimization process
consists of the following three actions [23]:

1 The Paradigm of Self-optimization 7

Fig. 1.4 Behavioral adap-
tation in a self-optimizing
system by structure and/or
parameter adaptation [3]

Behavior Adaption

Paramater Adaption Structure Adaption

Compositional Adaption Reconfiguration

1. Analyzing the current situation: The current situation includes the current state
of the system as well as all observations of the environment that have been car-
ried out. Observations can also be made indirectly by communication with other
systems. Furthermore, a system’s state contains previous observations that were
saved. One basic aspect of this first step is the analysis of the fulfillment of the
objectives [3].

2. Determining the system’s objectives: The system’s objectives can be extracted
by choice, adjustment, and generation. By choice means the selection of one
alternative output of a predetermined quantity of possible objectives; the adjust-
ment of objectives means the gradual modification of existing objectives respec-
tive to their relative weighting. Generation means, if new objectives are being
created that are independent from the existing ones [3].

3. Adapting the system behavior: The changed system of objectives demands an
adaptation of the behavior of the system and its components. As mentioned be-
fore, this can be realized by adapting the parameters and, if required, by adapting
the structure of the system. The different types of behavior adaptation strate-
gies are shown in Fig. 1.4. Parameter adaptation means for example changing
a control parameter. Structure adaptations affect the arrangement of the system
elements and their relationships. Here we distinguish between reconfiguration,
which changes the relationships between a fixed set of available elements, and
compositional adaptation, in which new elements are integrated into the existing
structure or existing elements are removed from it [20]. The self-optimization
process leads, according to changing influences, to a new system state. Thus a
state transition takes place [3]. The behavior adaptation finally concludes the
self-optimization process.

The self-optimization process takes place if the three actions are performed re-
peatedly by the system. The three actions do not need to be performed in a spec-
ified sequence. For example, within the scope of planning, different situations are
considered and according to the situations, the objectives are adapted. This results
in repeated situation analysis, based on the determination of objectives. Thus, the
self-optimization process is executed, if the situation of the system is changed or a
planning for possible system scenarios is performed [3].

Thus, self-optimization can be considered as an extension of classical and ad-
vanced control engineering [8]. In order to provide an optimal conformity to the

8 M. Krüger and A. Trächtler

environment of the system at any time, self-optimizing systems utilize implemented
adaptation strategies, instead.

To control self-optimizing systems, a consistent structuring of the information
processing is needed. We distinguish between the macro structure of the mecha-
tronic system and the structure of the information processing, represented by the
Operator-Controller-Module. These structures will be explained in detail in the fol-
lowing section.

1.3 Architecture of Self-optimizing Systems

Martin Krüger and Ansgar Trächtler

Two types of structuring are presented. First, a description is given on how the entire
system can be divided into subsystems or modules according to their function within
the system. Such a decoupling naturally leads to a hierarchical ordering of the mod-
ules, with simpler modules on the lowest level and the entire system on the topmost
level [40]. Second, the Operator-Controller-Module (OCM), a multi-level architec-
ture, is introduced [32]. It includes all of the types of information processing which
are necessary to realize an intelligent system: classical quasi-continuous controllers,
discrete or event-based methods like error analysis and monitoring concepts as well
as methods for cognitive capabilities, e.g. learning or optimization algorithms, to
name but a few. Both structuring types complement one another and can be used in
combination.

1.3.1 Structure of Self-optimizing Mechatronic Systems

One main step in the design of self-optimizing systems is to develop a hierarchy
of functions based on the system requirements, see 4.1 for more details. A self-
optimizing system can be divided into subsystems using this hierarchy of functions.
The first step is to create a hierarchy of motion functions which describe the con-
trolled motion of bodies, c.f. [3, 31]. Each motion function of the hierarchy can be
realized by one of the three structuring elements:

Mechatronic Function Module (MFM): The MFMs are the basic elements of
the entire mechatronic system. Each MFM includes sensors, actuators, information
processors and the basic mechanical system. The motion of the mechanical system
is measured using sensors and can be controlled by means of actuators. The control
input is computed by the information processing. The actuators of a MFM can again
be given by another MFM.

Autonomous Mechatronic System (AMS): The AMS is on the top level of an ac-
tual mechatronic system. It is associated with the complete mechanical structure of
the physical element and thus forms the top level of the mechanical structure. Be-
sides the associated mechanical structure, the AMS includes sensors and informa-
tion processing elements. There is no need for actuators in an AMS. The actuating
elements are given by the underlying MFMs and are coordinated by the AMS.

1 The Paradigm of Self-optimization 9

Networked Mechatronic System (NMS): NMS elements make up the top level
of the hierarchy. A NMS is comprised of information processing and sensors. How-
ever, the CNS is made up of several AMS, which are linked by signals alone. The
NMSs do not necessarily have their own physical representation in terms of a data-
processing hardware. The function of the NMS might be implemented in the AMS,
so that the NMS is generated whenever several AMS are interconnected.

Figure 1.5 exemplarily shows the hierarchical structure of the RailCab System
which is described in detail in Sect. 2.1. On the topmost level a convoy consisting of
a couple of RailCabs is represented by a NMS. Each RailCab itself is described by
an AMS and includes several MFMs, e.g. the active suspension system. The infor-
mation processing units of the structuring elements can be seen as agents. An agent
in this context is an information processing unit which is used to fulfill a particu-
lar functionality pursuing the corresponding objectives. It analyzes its environment
conditions and has the ability to adjust its own behavior autonomously according to
the current situation and to the requirements of the remaining agents. In this way hi-
erarchically structured self-optimizing systems can be seen as multi-agent systems.

Information processing of each structuring element can itself be a complex unit
consisting of several software components. Hence, it also has to be structured in

Convoy

RailCab (Scale 1:2.5)

NMS: Networked Mechatronic System

AMS: Autonomous Mechatronic System

MFM

MFM
MFM

IAMS, in IAMS, out

Actuators

II, in II, out

ET out

M T, out

ET, in

M T, in

Legend:

MFM: Mechatronic Function Module

Sensors

Spring-/Tilt Module

Agent

Agent

Information
Processing (control)

Agent
Information

Processing (control)

AMSAMS AMS

MFM

Mechanical
Structure

: Information Flow (I)

: Energy Flow (E)

: Material Flow (M)

: Multi-agent
 Communication

Information
Processing (control)

Fig. 1.5 Structure of intelligent mechatronic systems [3]

10 M. Krüger and A. Trächtler

order to ensure a systematic design and a dependable functionality. The Operator-
Controller-Module described in the following section can be used to structure the
information processing of self-optimizing systems.

1.3.2 Operator-Controller-Module

The information processing unit of a self-optimizing system has to perform a multi-
tude of functions: quasi-continuous control of the plant motion, monitoring in view
of occurring malfunctions, adaptation of the control strategy to react to changing en-
vironmental conditions, communication with other systems to name a few of these
functions.

In order to ensure a clear and manageable information processing, an architec-
ture is needed which contains all these functions. Additionally, the hierarchical
structuring concept described in the last section has to be taken into account. The
Operator-Controller-Module (OCM) is an architecture with three levels that has
been proven to be an advantageous and effective structure for self-optimizing sys-
tems (see Fig. 1.6). It is based on results of cognition science, see [48], and was
first published in [32]. It is used for the information processing on each level of a
complex mechatronic system. The result is a hierarchy of OCMs that is also bene-
ficial for modeling and optimization as described in detail in Sec. 5.3.3. The three
different levels of an OCM are geared to the kind of effect on the technical system.

Controller: The controller, which is on the lowest level, realizes the desired dy-
namical behavior of the plant. It is similar to a classical control loop. Measurements
are used to compute control signals which directly affect the plant. Hence, it can
be called a “Motor Loop”. The controller operates in a quasi-continuous way under
hard real-time constraints. Several types of controllers can be implemented at the
same time with the possibility to switch between them. Different switching strate-
gies can be used, e.g. a flatness-based approach presented in [42].

Reflective Operator: The reflective operator monitors and regulates the controller.
It consists of sequential control, emergency routines as well as adaptation algorithms
for the control strategies. The reflective operator does not access the actuators of the
system directly, but modifies the controller by initiating changes of controller pa-
rameters or switching between different controllers. The reflective operator works
mostly in an event-oriented manner. It also has to operate under hard real-time con-
straints, because it is tightly linked to the controller. However, it is also the connect-
ing element to the cognitive level of the OCM and provides an interface between
those elements that are not capable to operate in real-time and the controller. It fil-
ters incoming signals and results from the cognitive level and inputs them to the
subordinated level.

Cognitive Operator: The topmost level of the OCM is represented by the cog-
nitive operator. On this level the system can gather information on itself and its
environment by applying various methods such as learning, use of knowledge-
based systems, or model-based optimization. The results can be used to improve the

1 The Paradigm of Self-optimization 11

Fig. 1.6 Structure of
Operator-Controller-
Module [3]

A
ct

io
n

Le
ve

l
Pl

an
ni

ng
 L

ev
el

Monitoring

Sequencer

Reflective Operator

Controller

Operator-Controller-Module (OCM)

...

Configuration-
Control

Emergency

So
ft

R
ea

l T
im

e
H

ar
d

R
ea

l T
im

e

Model-based Self-Optimiazation

Behavior-based Self-Optimization

Cognitive Information ProcessingCognitive Operator

Cognitive Loop

Reflective Loop

Reflective Information Processing

Motor Information Processing

Configurations

Controlled System

Motor Loop

A C
B

 C
B

A

system behavior. This optimizing information processing can roughly be divided
into model-based and behavior-oriented optimization, introduced in Sect. 1.4.1 and
Sect. 1.4.2, respectively. The former class of optimization techniques is based on a
model for the dynamical behavior of technical systems while the latter uses methods
from artificial intelligence and soft-computing. While both the controller and the re-
flective operator are subject to hard real-time constraints, the cognitive operator can
also operate asynchronously to real-time. Nevertheless, it has to respond within a
certain time limit. Otherwise, self-optimization would not find utilizable results in
view of changing environmental conditions. Hence, the cognitive operator is subject
to soft real-time. Consequently we are able to integrate cognitive functions into the
technical system that previously only biological systems were capable of.

12 M. Dellnitz et al.

1.4 Self-optimization in Intelligent Technical Systems

Michael Dellnitz, Kathrin Flaßkamp, Philip Hartmann, and Sina Ober-Blöbaum

Self-optimizing systems adapt their behavior according to current situations and
objectives. Therefore, appropriate strategies and methods have to be implemented
into the Cognitive Operator of the Operator-Controller-Module (cf. Fig. 1.6). As
introduced in Sect. 1.2 (cf. in particular Fig. 1.4), the system’s adaptation can be
realized by parameter adaption and/or by reconfiguration. Finding parameters that
optimize a current set of objectives is an optimization or an optimal control problem.
Methods to solve these kind of problems typically rely on models of the system’s
dynamic behavior. In Sect. 1.4.1, an introduction to formal problem statements and
solution approaches is given for these model-based methods for self-optimization. In
case an explicit physical model of the system or process is not available, behavior-
oriented self-optimization is used. These approaches work on a mapping of input
values to output values (cf. Sect. 1.4.2). Strutural reconfiguration affects all levels
of a self-optimizing system, from software to hardware. This kind of adaptation is
realized by exchanging system parts, e.g. software components or areas of FPGAs
(Field Programmable Gate Arrays). We will provide a closer look on reconfiguration
in Sect. 1.4.3.

1.4.1 Model-Based Self-optimization

Michael Dellnitz, Kathrin Flaßkamp, and Sina Ober-Blöbaum

The development of self-optimizing mechatronic systems requires the solution of
optimization problems from the early design phase to system operation. Model-
based design techniques, which are state of the art in particular in control engineer-
ing, allow an automatic, model-based computation of solutions that are guaranteed
to be optimal for the given problems by numerical optimization methods.

Optimization problems are classified by the type of variables, which can be dis-
crete or continuous. Discrete optimization problems typically arise in logistic or
planning problems where long term forecasts have to be computed and can be either
addressed with discrete model-based or discrete behavior-based methods. The opti-
mization of the design and the dynamical behavior of intelligent mechatronic sys-
tems gives rise to various continuous optimization problems. If time-dependent
steering maneuvers for technical systems or processes have to be optimized, we are
faced with optimal control problems. In many applications, in particular for self-
optimizing systems, there are several objectives which have to be simultaneously
optimized leading to multiobjective optimization. Regarding the process of self-
optimization, it is multiobjective optimization which enables the identification of
objectives (step 2 of the self-optimization process, cf. Sect. 1.2) during operation.

1 The Paradigm of Self-optimization 13

Fig. 1.7 Sketch of an MOP
with two objectives f1 and
f2. While the points (A) and
(B) are not optimal, (C) is a
point of the Pareto set

f2 f1

A BC
Pareto Set

Pareto Front

f1

f2

1.4.1.1 Multiobjective Optimization

Multiobjective optimization (sometimes also called multicriteria optimization) takes
several conflicting objectives into account and searches for optimal compromises, so
called Pareto points. Simple examples of trade-offs between conflicting objectives
are “minimal energy consumption versus minimal time” or “maximal quality, but
minimal time and minimal (e.g. production) costs”. A number of detailed examples
of concurring objectives in technical applications are given in Sect. 2.

While ordinary optimization problems typically have a single global optimum,
the solution of multiobjective optimization problems results in an entire set of Pareto
points, the Pareto set. Formally, the multiobjective optimization problem (MOP) is
stated as

min{F(p) : p ∈R
n}, (1.1)

with F being a vector of objectives f1, . . . , fk : Rn → R, i.e. F : Rn → R
k, F(p) =

(f1(p), . . . , fk(p)). Here, p denotes the optimization parameters. These could be de-
sign parameters for the mechanical or electrical subsystem, for instance, or control
parameters of the regulators. Minimization is meant with respect to the following
partial ordering ≤p on R

n: given u,v ∈ R
n, the vector u is smaller than the vector

v, u ≤p v, if ui ≤ vi for all i ∈ {1, . . . ,k}. The solutions of MOP can then be defined
as follows: a point p� ∈ R

n is called globally Pareto optimal for MOP (or a global
Pareto point for MOP)if there does not exist any p ∈ R

n with F(p) ≤p F(p�) and
f j(p) < f j(p�) for at least one j ∈ {1, . . . ,k}. That means, no other point p gives
a better or equal (but not entirely identical) value in all objectives. However, there
typically exists other Pareto optimal points which are, compared to p�, better in one
objective but worse in another. Figure 1.7 gives an illustration of an MOP and Pareto
optimal points. If the Pareto optimality property only holds for some neighborhood
U(p�)⊂R

n, p� is called locally Pareto optimal. The image of the Pareto set, i.e. the
corresponding function values, is called the Pareto front (cf. Fig. 1.7).

Necessary optimality conditions for Pareto optimality are given by the Karush-
Kuhn-Tucker (KKT) equations, i.e. for an optimal point x�, there exist multipliers
βi ∈ R with βi ≥ 0 and ∑k

i=1 βi = 1 such that

14 M. Dellnitz, K. Flaßkamp, and S. Ober-Blöbaum

k

∑
i=1

βi∇ fi(p�) = 0. (1.2)

The MOP (cf. Eq. (1.1)) can be extended to include equality or inequality con-
straints, which have to be considered in the KKT equations involving additional
terms with additional multipliers. Iteratively solving Eq. (1.2) to determine Pareto
points p� is the basic idea of many multiobjective optimization algorithms.

For the solution of real world multiobjective optimization problems, numerical
techniques have to be applied. There exist a number of methods for the computa-
tion of single Pareto points, for an overview we refer to [17]. However, for self-
optimizing systems, it is important to gather knowledge about the entire Pareto
set for later selections of specific design configurations, the decision making
(cf. Sect. 1.4.1.3) during operation of the system. In the last decades, a num-
ber of techniques for the computation of entire Pareto sets have been developed
(cf. e.g. [9, 11, 33, 37, 46]). In the course of the research of the CRC 614, set-
oriented methods for multiobjective optimization (cf. e.g. [12] for an early reference
or [47] for an overview) have been developed. Due to the approximation of the entire
Pareto set (or the front, respectively) by box coverings, the methods are outstand-
ing in their robustness and applicability to real world MOP problems, in particular
for self-optimizing systems. These techniques are described in detail in Sect. 5.3.1
(cf. also Sect. 5.3.2, Sect. 5.3.4, and Sect. 5.3.5 for extensions to hierarchical and
parametric multiobjective optimization problems).

In the following, we give a short introduction to optimal control problems, which
often arise in control applications for technical systems. Solution methods for prob-
lems with single and multiple objectives are presented in Sect. 5.3.6.

1.4.1.2 Optimal Control

Optimal control problems arise, when the system’s dynamical behavior has to be
optimized by determining a time-dependent steering maneuver. In other words, such
an optimal maneuver has to satisfy certain constraints and has to minimize a given
cost functional like the control effort or the maneuver time. Typical examples are
the optimal control of open chain industrial robots, the finding of optimal paths for
vehicles, or the optimal control of engines. Formally, an optimal control problem
(OCP) is defined by a cost functional (1.3a), e.g. the control effort, the time duration,
or the deviation to a reference path, that has to be minimized with respect to several
constraints:

min
x(t),u(t)

J(x,u) =
∫ T

0
C(x(t),u(t))dt (1.3a)

with respect to ẋ(t) = f(x(t),u(t)) (1.3b)

r(x(0),x(T)) = 0, and (1.3c)

h(x(t),u(t))≤ 0. (1.3d)

1 The Paradigm of Self-optimization 15

The dynamical system (1.3b) describes the system’s equations of motion in its state
x under the influence of some control u. Equations (1.3c) and (1.3d) are called
boundary and path constraints, respectively, and take into account technical restric-
tions on the states or controls.

There exists a number of different approaches for numerically solving single ob-
jective OCP, for a good overview we recommend [7] and the references therein.
The solution methods can be divided into indirect and direct methods. While in-
direct methods generate and then solve a boundary value problem according to the
necessary optimality conditions of the Pontryagin maximum principle1, direct meth-
ods start with a discretization of the problem (1.3a)-(1.3d). Thus, one obtains a non-
linear optimization problem that can be addressed by appropriate state of the art
techniques such as sequential quadratic programming (SQP, cf. e.g. [28]).

In the case of differentially flat systems, the entire dynamics of the technical sys-
tem can be described via (artificial) outputs and therefore, only the output functions
have to be approximated by a finite number of parameters (equally spread nodes or
splines as in [26]). Otherwise, the system’s continuous states have to be discretized
(by a finite number of nodes or even by some appropriately chosen short pieces of
trajectories, so called primitives, cf. Sect. 5.3.7). A method that is especially tai-
lored to the optimal control of mechanical systems (DMOC, Discrete Mechanics
and Optimal Control, cf. [41]) is presented in Sect. 5.3.6.

If several cost functionals of the form (1.3a) have to be optimized simultaneously
(e.g. the energetic effort and the duration of a steering maneuver), we are faced with
a multiobjective optimal control problem. In Sect. 5.3.6, a method is presented
that combines a multiobjective optimization algorithm with a direct optimal control
technique to address problems of this kind.

1.4.1.3 Decision Making and Self-optimization

The computation of entire Pareto sets of multiobjective optimization or optimal con-
trol problems is computationally costly but important for the design of a knowledge
base on which the self-optimization during operation time relies. The Pareto optimal
alternatives are computed offline in advance and stored in this knowledge base. Dur-
ing operation, one specific optimal configuration of the Pareto set has to be chosen
at every time: this process is called decision making.

If only a (small) finite number of Pareto points is stored in the knowledge base,
one possibility to implement the decision making process is given by the hybrid
planning method, cf. Sect. 1.4.2 below and Sect. 5.3.8. Self-optimization based on
precomputed knowledge bases of Pareto sets can be also realized by path following
methods for parameter-dependent MOPs (cf. Sect. 5.3.4 and [49] for details) or
in a model predictive control fashion for scalarized online optimization problems
(cf. [26]).

1 The Pontryagin maximum principle and a discussion of indirect optimal control methods
are e.g. given in [7].

16 P. Hartmann

1.4.2 Behavior-Oriented Self-optimization

Philip Hartmann

The term behavior-oriented optimization describes methods without an explicit
physical model of the system or process. Instead, these approaches work on map-
ping input values to output values. The actual system and the considered process are
observed as a black box and usually a discretization of the processes goes hand in
hand. The relationship between system state, behavior, and objectives are provided
by the developers of the system or learned by the system by using learning methods
and exploration strategies. Because a classification of the environmental conditions
and the system behavior are assumed when using defaults defined by experts or
learning methods, the model of the behavior-oriented self-optimization is in general
coarser than the model of the model-based self-optimization (cf. Sect. 1.4.1). Thus
it is possible to plan the system’s behavior for longer planning horizons.

Planning refers to a process that determines and examines the future behavior of
the system instead of considering only the current situation. To analyze alternative
options for execution, planning methods work on simplified models of the system
behavior. An integral part of the simplification is the mapping to a discrete state
space, so that only a snapshot of the system state at defined points in time will be
considered. In general this approach corresponds to the definition of the planning
problem in artificial intelligence, which can be used with a variety of methods. Due
to the exploration of the state space for future situations a proactive reaction to future
influences or avoidance of undesirable situations is made possible by the planning
[3].

Any task of a mechatronic system (e.g. the transportation of persons or goods
between two locations) can be expressed by a function [43]. This function describes
the relationship between input and output variables [1] of the system by converting
incoming energy, material and information flows into outgoing flows of the same
types. Subtasks (such as driving with an active suspension system) are represented
by analogous partial functions which are logically connected and make up the hi-
erarchy of the overall function. The effect of a partial function also depends on the
physical effect leading to a particular partial function solution [43]. Thus, partial
functions can be implemented using various solutions (e. g. high or low compensa-
tion of disturbances). The choice of solutions to these partial functions determines
the solution to the overall function and its effect on the mechatronic system.

Let PFlea f be the set of all partial functions at the lowest level in the overall func-
tion hierarchy. Then, the selected solutions in the overall function at time t j (cf. Fig.
1.8, black circles) can be listed as a sequence of solutions to partial functions[35]:

so f (t) = (sp f 1
, ...,sp f k

), (1.4)

with sp fi ∈ Sp fi and 1 ≤ i ≤ k = |PFlea f |.
The behavior of the overall system at time t can be described by V (t) =

(xt ,so f (t),yt) with xt as an input vector and yt as an output vector. Consequently,

1 The Paradigm of Self-optimization 17

Fig. 1.8 Planning sequence
for the behavior of a self-
optimizing system

x y

V(t , t)a b

t a t b
t j

l ()gf t j

t bt a

the behavior of one time period is: V (ta, tb) = (V (ta), ...,V (tb)) with ta < tb (cf. Fig.
1.8).

The mechatronic system reacts to each input variable by converting it to the
output variables; it does so by executing the currently implemented overall func-
tion (linked partial functions of the functional hierarchy, reactive behavior). The
information processing takes time and there is a latency involved according to the
response to input variables. Because of that, the effect of the overall function on
the output variables is delayed. Since the system execution takes place under real-
time conditions, this has to be taken into account during the development of self-
optimizing systems.

For autonomous control [1] of the behavior, the system has to independently
select solutions to the partial functions at certain times in order to achieve the de-
sired effect (active behavior). The selection is made by considering specific objec-
tives. This is the decision problem of a self-optimizing system: selecting solutions to
partial functions which achieve these objectives with a high reliability result (goal-
directed behavior).

1.4.2.1 Deterministic Planning

Mechatronic systems are able to execute a function in different ways. From the
planning perspective, these different ways are distinguished from each other by how
well they achieve the possible objectives and how they change the system state.
We refer to these different implementations of functions as operation modes. In
a mechatronic planning domain most relevant variables are numerical, hence we
restrict the state vector to real valued numerical variables. A deterministic planning
model for behavior-oriented self-optimization can be formulated as follows [36]:

• OM a finite set of available operation modes
• S a finite set of possible system states
• s ∈ S a state vector with s(i) ∈ R for the i-th component

Furthermore for each operation mode om ∈ OM exists:

18 P. Hartmann

• precom := {(xlower < s(i) < xupper)|xlower,xupper ∈ R} a set of preconditions
which have to be true for executing om

• postom a set of conditional numeric functions to define the effects on the state
variables of the subsequent state s′

A specific planning problem is finding a sequence of operation modes which de-
scribes a transition from an initial system state si ∈ S to a predetermined goal state
sg ∈ S. So a single task of a mechatronic system is given as a 2-tupel O = (si,sg). A
solution of the planning problem can be determined by applying a state space search
algorithm (cf. [27]), for example [36].

1.4.2.2 Probabilistic Planning

Because of the uncertainty of environmental influences, probabilistic planning mod-
els are formulated based on the deterministic planning models. A probabilistic
model for behavior planing for self-optimzing mechatronic system consists of prob-
abilistic states sp with

range(sp(i))→W (R)

for the value range (e.g. 0 ≤ SOCk ≤ 100 with SOCk for the state of charge of the
mechatronic system in state k) and

distribution(sp(i))

for the probabilistic distribution for state variable sp(i) (e. g. P(SOCk ≤ 50)= 0.25∧
P(SOCk > 50)= 0.75). Furthermore, there are probabilistic variants of the operation
modes om of the mechatronischen System with

• inom
s ⊆ preom for a subset of input variables and

• outom
s ⊆ postom for a subset of output variables

Then for each output variable o ∈ outom
s a bayesian network (cf. [6]) bnom

o is
created to formulate the probabilistic effect Δ on the state variable of the subsequent
state k + 1 by conditional probabilities (e. g. P(SOCΔ

k+1 = +10|windKmh ≤ 20∧
SOCk > 50) = 0.015). With the definition of a lower respectively upper bound for
critical state values (e. g. SOCk+1 ≤ 10) branching points with likely violation of
these bounds can be found and alternative plans can be genrated by using just-in-
case-planning [35, 36, 38].

1.4.2.3 Hybrid Planning

The planning methods described above consider discrete system states and tran-
sitions relying, for instance, on average values or approximations. However, the
continuous behavior can not be neglected for mechatronic systems. Therefore the
necessity arises to integrate the continuous domain also in the planning process.
Furthermore, planning for mechatronic systems has to cope with changing envi-
ronmental conditions and imprecisions of a priori defined models during system
operation which grow further with a widening planning horizon. For these reason

1 The Paradigm of Self-optimization 19

continuous planning was combined with the discrete planning techniques presented
above; the so called hybrid planning.

The hybrid planner uses the discrete planning techniques to generate an offline
plan before the system starts its operation. For the RailCab this plan would, for in-
stance, determine the course (sequence of track sections) to reach its destination
and the parameter settings, i.e. the selected Pareto points based on the results of
the multiobjective optimization. During system operation while executing the plan,
however, deviations between the actual system state and those assumed by the of-
fline plan can not necessarily be avoided due to the time that elapsed before the
system reaches a certain state of the plan during execution. Also unforeseen condi-
tions or changes of the environment may cause such deviations.

To counteract these shortcomings the hybrid planner simulates the system’s be-
havior including the continuous aspects in an online manner. This simulation antic-
ipates the future behavior of the system for a restricted time and allows to directly
adapt the current action according to the simulation results. When the remaining
part of the (discrete) offline plan is affected, the results of the just-in-case-planning
may be used. If this is not possible an online replanning is initiated [4, 5, 18].

1.4.3 Self-optimization by Reconfiguration

Stefan Groesbrink, Sebastian Korf, Mario Porrmann, Claudia Priesterjahn,
and Katharina Stahl

A self-optimizing system applies reconfiguration methods to adjust to changing
requirements. In contrast to simple parameter changes, reconfiguration modifies
the internal structure of a hardware or software system. When principles of self-
optimization refer to the topology and structure of mechatronic systems, a reconfig-
urability of the system architecture or of dedicated system components is required.
Reconfiguration decisions must be made autonomously. Therefore, parts of the clas-
sical design process have to be performed by the system at runtime: various imple-
mentation alternatives are available, from which the system selects the most appro-
priate realization (hardware or software) and the corresponding parameters.

Reconfiguration is executed on every system level: Self-optimizing Application,
System Software, and Hardware. The levels of a self-optimizing mechatronic system
are shown in Figure 1.9 and described in the following.

The self-optimizing application may be the execution of self-optimizing algo-
rithms, e.g. finding optimal strategies to perform a task, or the communication be-
tween system parts. On the application level, reconfiguration means the exchange
of software parts, e.g., switching between different software implementations to
change the system behavior. Thereby, the self-optimizing application may change
the requirements on the system software and its services. The system software in-
terconnects the self-optimizing application and hardware and is composed of a virtu-
alization layer and operating system. The virtualization layer is optional and enables
the hosting of multiple operating systems on a single hardware platform. The sys-
tem software supports the applications by reacting in a self-optimizing manner to

20 S. Groesbrink et al.

Fig. 1.9 Levels of a self-
optimizing system Self-optimizing Application

(e.g. communication between system parts)

System Software
(e.g. RTOS)

Hardware
(e.g. FPGA)

the changing operating conditions of both the applications and the self-optimizing
hardware. Self-optimization is introduced on the hardware level by means of dy-
namically reconfigurable hardware. Here, hardware reconfiguration means chang-
ing the functionality or the interconnect of hardware modules in microelectronic
systems before and even during operation. Self-optimization in hardware must be
encapsulated by the system software so that applications will execute without any
perceivable interference. The system software must guarantee service supply in ac-
cordance to the given real-time constraints to enable hardware reconfiguration at
runtime.

Self-optimizing Application

The self-optimizing application is implemented in the Cognitive and Reflective Op-
erator of the OCM (cf. Sect. 1.3.2). The Cognitive Operator gathers information
about the system and the environment. It applies methods like learning and model-
based self-optimization to optimize the system behavior. The Reflective Operator
is the interface between the Cognitive Operator and the Controller. The interaction
with the Controller requires operation in hard-real time and includes safety-critical
tasks. This, in turn, demands a safe software that is free from design faults.

We therefore apply model-based software development to guarantee that the soft-
ware satisfies all safety and real-time requirements. This means, the software is de-
signed using models, the models are verified, and program code is generated, which
preserves the verified properties.

On the level of the self-optimizing application, reconfiguration means the cre-
ation or removal of software components at runtime. This reconfiguration is speci-
fied by graph transformation rules (cf. Sect. 5.2.3.1) at design time. This allows to
prove that no unplanned, e.g. unsafe, configurations are created at runtime.

The behavior of the components which execute the reconfiguration rules is mod-
eled using state-based real-time behavior models. The reconfiguration rules are ex-
ecuted as side effects of this behavior. Therefore, the reconfiguration rules must not
only guarantee to create no unplanned configurations but they must also satisfy the

1 The Paradigm of Self-optimization 21

time constraints of the real-time behavior. To ensure this, we extended graph trans-
formation rules by timing information and developed a verification approach (cf.
Sect. 5.2.3.2) that takes into account the state-based real-time behavior, the recon-
figurations, and the execution times of the reconfigurations.

System Software

The software models also allow computing application parameters such as the
worst-case execution times [30]. In the context of mechatronic systems, the oper-
ating system has to manage the execution of the applications considering timeliness
and predictability of the system behavior. It needs this parameter for the required
real-time scheduling. Since efficiency is an important factor for operating systems
for restricted environments such as mechatronic systems, operating system design-
ers aim to deliver an application- or a domain-specific operating system with the ob-
jective to integrate required functionality only. ORCOS (Organic Reconfigurable
Operating System) [19] is an example for an fully customizable real-time operat-
ing system at design time. Beyond design time configurability, the entire informa-
tion processing process of monitoring, analyzing and reacting must be integrated
into the self-optimizing operating system. In Sect. 5.5, we will present an exten-
sion of the ORCOS architecture that builds up the basis for online reconfiguration.
However, self-optimization in the operating system is not restricted to react on re-
quirement changes only. The operating system may also implement methods that
can be applied to self-optimize the performance of the operating system (e.g. re-
source allocation strategy) as well as the overall system performance (e.g. resource
utilization).

The operating system manages the use of hardware resources. This includes
the abstraction of the underlying hardware which is usually done by implementing
drivers. Dedicated interfaces specify the access to the hardware. In our approach, dy-
namic reconfiguration is provided by a combination of dynamically reconfigurable
hardware and a reconfigurable real-time operating system (RTOS). The proposed
hardware platform offers the fundamental mechanisms that are required to execute
arbitrary software and to adapt the system to new requirements (e.g. by dynamic
reconfiguration). The operating system triggers hardware reconfiguration as a reac-
tion to varying requirements and decides whether a task is executed in software, in
hardware, or in a combination of both.

Hardware

To adapt to changing environments, dynamically reconfigurable hardware is a key
technology. Dynamically reconfigurable hardware can be classified as fine-grained
or coarse-grained. Fine-grained reconfigurable architectures are typically based
on Field Programmable Gate Arrays (FPGAs), which facilitates the System on
Programmable Chip (SoPC) designs with a complexity of several million logic
gates, several hundred kBytes of internal SRAM memory, and embedded proces-
sor cores. For the group of coarse-grained architectures we introduce reconfigurable

22 M. Vaßholz

embedded processors, which can change their internal structure to adapt to the cur-
rently needed environment.

The idea of dynamic and partial hardware reconfiguration is to reconfigure the
hardware in a way that it maximizes the use of all available resources for the quired
controller implementation. The information processing system is shared among all
tasks, and offers limited resources with respect to memory, computational power,
and energy. Any task may be composed of various sub-tasks and different real-
izations of these sub-tasks (e.g. different software implementations running on an
embedded CPU and various hardware implementations for an integrated FPGA).
Since all of these realizations have different computational requirements and differ-
ent application characteristics, a control algorithm in a self-optimizing system can
be understood as an optimal solution for the current internal and external objectives
of the system. Therefore, in each new environmental condition of the mechatronic
system, there is a controller architecture and a corresponding implementation vari-
ant that represent an optimal solution in this situation [45].

1.5 Structure of This Book

Mareen Vaßholz

In this Chapter self-optimizing systems were described briefly. It serves to show
the potential of self-optimization for technical systems. In Chap. 2 examples of self-
optimizing systems are presented that were developed in the Collaborative Research
Center 614. They show the benefits that are provided by using self-optimization,
but demonstrate its complexity as well. The resulting challenges for the develop-
ment of these systems show the need for a design methodology presented in the
following chapters. The different development tasks that have to be performed, are
presented as a reference process for the development of self-optimizing systems in
Chap. 3. This reference process is divided into the domain-spanning conceptual de-
sign and the domain-specific design and development phase. Chapter 4 depicts the
domain-spanning development methods and tools. The ones relevant to the domain-
specific design and development are presented in Chap. 5. The applications serve as
examples for the description of the methods and tools for the development of self-
optimizing systems. Chapter 6 gives a summary and an outlook over future work in
the field of self-optimization and intelligent technical systems.

This book is one result of the research of the Collaborative Research Center 614
"Self-Optimizing Concepts and Structures in Mechanical Engineering" and is com-
plemented by the book "Dependability of Self-Optimizing Mechatronic Systems".
It focuses on tools and methods to ensure the dependability of self-optimizing
systems during development and run-time. Throughout this book you will find
cross-references, like [24, D.o.S.O.M.S. Chap. 2] , for detailed information on de-
pendability specific methods and tools.

1 The Paradigm of Self-optimization 23

References

1. DIN 19 226 Teil 1: Leittechnik - Regelungstechnik und Steuerungstechnik - Allgemeine
Grundbegriffe. Deutsche Norm (1994)

2. VDI 2206 - Entwicklungsmethodik für mechatronische Systeme. Beuth Verlag, Berlin
(2004)

3. Adelt, P., Donoth, J., Gausemeier, J., Geisler, J., Henkler, S., Kahl, S., Klöpper, B.,
Krupp, A., Münch, E., Oberthür, S., Paiz, C., Porrmann, M., Radkowski, R., Romaus,
C., Schmidt, A., Schulz, B., Vöcking, H., Witkowski, U., Witting, K., Znamenshchykov,
O.: Selbstoptimierende Systeme des Maschinenbaus. In: Heinz Nixdorf Institut, Univer-
sität Paderborn, vol. 234. HNI-Verlagsschriftenreihe, Paderborn (2009)

4. Adelt, P., Esau, N., Hölscher, C., Kleinjohann, B., Kleinjohann, L., Krüger, M., Zimmer,
D.: Hybrid Planning for Self-Optimization in Railbound Mechatronic Systems. In: Naik,
G. (ed.) Intelligent Mechatronics, pp. 169–194. InTech Open Access Publisher, New
York (2011)

5. Adelt, P., Esau, N., Schmidt, A.: Hybrid Planning for an Air Gap Adjustment System
Using Fuzzy Models. Journal of Robotics and Mechatronics 21(5), 647–655 (2009)

6. Ben-Gal, I.: Bayesian Networks. In: Encyclopedia of Statistics in Quality and Reliability
(2007)

7. Binder, T., Blank, L., Bock, H., Bulirsch, R., Dahmen, W., Diehl, M., Kronseder, T.,
Marquardt, W., Schlöder, J., von Stryk, O.: Introduction to Model-based Optimization
of Chemical Processes on Moving Horizons. In: Grötschel, M., Krumke, S., Rambau,
J. (eds.) Online Optimization of Large Scale Systems - State of the Art, pp. 295–340.
Springer, Heidelberg (2001)

8. Böcker, J., Schulz, B., Knoke, T., Fröhleke, N.: Self-Optimization as a Framework for
Advanced Control Systems. In: Proceedings of the 32nd Annual Conference on IEEE
Industrial Electronics, Paris (2006)

9. Coello Coello, C.A., Lamont, G., Veldhuizen, D.V.: Evolutionary Algorithms for Solving
Multi-Objective Optimization Problems, 2nd edn. Springer, Heidelberg (2007)

10. Comford, R.: Mecha.. what? IEEE Spectrum 31(8), 46–49 (1994)
11. Das, I., Dennis, J.: A Closer Look at Drawbacks of Minimizing Weighted Sums of Ob-

jectives for Pareto Set Generation in Multicriteria Optimization Problems. Structural Op-
timization 14(1), 63–69 (1997)

12. Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto Sets by Multilevel Subdi-
vision Techniques. Journal of Optimization Theory and Application 124(1), 113–136
(2005)

13. Dorociak, R., Gaukstern, T., Gausemeier, J., Iwanek, P., Vaßholz, M.: A Methodology for
the Improvement of Dependability of Self-optimizing Systems. Production Engineering
- Research and Developement 7(1), 53–67 (2013)

14. Dumitrescu, R.: Entwicklungssystematik zur Integration kognitiver Funktionen in fort-
geschrittene mechatronische Systeme. Ph.D. thesis, Fakultät für Maschinenbau, Univer-
sität Paderborn, HNI-Verlagsschriftenreihe, Band 286, Paderborn (2011)

15. Dumitrescu, R., Anacker, H., Gausemeier, J.: Design Framework for the Integration of
Cognitive Functions into Intelligent Technical Systems. Production Engineering - Re-
search and Developement 7(1), 111–121 (2013)

16. Dumitrescu, R., Gausemeier, J., Romaus, C.: Towards the Design of Cognitive Func-
tions in Self-Optimizing Systems Exemplified by a Hybrid Energy Storage System. In:
Proceedings of the 10th International Workshop on Research and Education in Mecha-
tronics, Ostrava (2010)

24 References

17. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Heidelberg (2005)
18. Esau, N., Krüger, M., Rasche, C., Beringer, S., Kleinjohann, L., Kleinjohann, B.: Hierar-

chical Hybrid Planning for a Self-Optimizing Active Suspension System. In: Proceedings
of the 7th IEEE Conference in Industrial Electronics and Applications, Singapore (2012)

19. FG Rammig, University of Paderborn: ORCOS - Organic Reconfigurable Operating Sys-
tem, https://orcos.cs.uni-paderborn.de/doxygen/html
(accessed August 12, 2013)

20. Frank, U., Gausemeier, J.: Self-Optimizing Concepts and Structures in Mechanical En-
gineering - Specifying the Principle-Solution (2005)

21. Frank, U., Giese, H., Klein, F., Oberschelp, O., Schmidt, A., Schulz, B.H.V., Witting, K.:
Selbstoptimierende Systeme des Maschinenbaus. In: Heinz Nixdorf Institut, Universität
Paderborn, vol. 155. HNI-Verlagschriftenreihe, Paderborn (2004)

22. Gausemeier, J.: From Mechatronics to Self-optimizing Concepts and Structures in Me-
chanical Engineering: New Approaches to Design Methodology. International Journal of
Computer Integrated Manufacturing 18(7), 550–560 (2005)

23. Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification Technique for the Descrip-
tion of Self-optimizing Mechatronic Systems. Research in Engineering Design 20(4),
201–223 (2009)

24. Gausemeier, J., Rammig, F.J., Schäfer, W., Sextro, W. (eds.): Dependability of Self-
optimizing Mechatronic Systems. Springer, Heidelberg (2014)

25. Gausemeier, J., Steffen, D., Donoth, J., Kahl, S.: Conceptual Design of Modularized
Advanced Mechatronic Systems. In: Proceedings of the 17th International Conference
on Engineering Design, Stanford (2009)

26. Geisler, J., Witting, K., Trächtler, A., Dellnitz, M.: Multiobjective Optimization of Con-
trol Trajectories for the Guidance of a Rail-bound Vehicle. In: Proceedings of the 17th
IFAC World Congress, Seoul (2008)

27. Ghallab, M., Nau, D., Traverso, P.: Automated Planning - Theory and Practice. Elsevier,
Amsterdam (2004)

28. Gill, P.E., Jay, L.O., Leonard, M.W., Petzold, L.R., Sharma, V.: An SQP Method for
the Optimal Control of Large-scale Dynamical Systems. Journal of Computational and
Applied Mathematics 120, 197–213 (2000)

29. Harashima, F., Tomizuka, M., Fukuda, T.: Mechatronics - What is it?, Why and how? An
Editorial. IEEE/ASME Transactions on Mechatronics 1(1) (1996)

30. Henkler, S., Oberthür, S., Giese, H., Seibel, A.: Model-driven Runtime Resource Pre-
dictions for Advanced Mechatronic Systems with Dynamic Data Structures. Computer
Systems Science & Engineering 26(6) (2011)

31. Hestermeyer, T.: Strukturierte Entwicklung der Informationsverarbeitung für die aktive
Federung eines Schienenfahrzeugs. Ph.D. thesis, Fakultät für Maschinenbau, Universität
Paderborn, Verlag Dr. Hut, München (2006)

32. Hestermeyer, T., Oberschelp, O., Giese, H.: Structured Information Processing for Self-
Optimizing Mechatronic Systems. In: Proceedings of the 1st International Conference
on Informatics in Control, Automation and Robotics, Setubal (2004)

33. Hillermeier, C.: Nonlinear Multiobjective Optimization - A Generalized Homotopy Ap-
proach. Birkhäuser (2001)

34. Isermann, R.: Mechatronische Systeme - Grundlagen. Springer, Heidelberg (2008)
35. Klöpper, B.: Ein Beitrag zur Verhaltensplanung für interagierende intelligente mecha-

tronische Systeme in nicht-deterministischen Umgebungen. Ph.D. thesis, Fakultät
für Wirtschaftswissenschaften, Universität Paderborn, HNI-Verlagsschriftenreihe, Band
253, Paderborn (2009)

https://orcos.cs.uni-paderborn.de/doxygen/html

1 The Paradigm of Self-optimization 25

36. Klöpper, B., Aufenanger, M., Adelt, P.: Planning for Mechatronics Systems - Architech-
ture, Methods and Case Study. Engineering Applications of Artificial Intelligence 25(1),
174–188 (2012)

37. Knowles, J., Corne, D., Deb, K.: Multiobjective Problem Solving from Nature: From
Concepts to Applications. Springer, Heidelberg

38. Köpper, B., Sondermann-Wölke, C., Romaus, C.: Probabilistic Planning for Predictive
Condition Monitoring and Adaptation within the Self-Optimizing Energy Management
of an Autonomous Railway Vehicle. Journal for Robotics and Mechatronics 24, 5–15
(2012)

39. Landau, I., Lozano, R., M’Saad, M., Karimi, A.: Adaptive Control - Algorithms, Analy-
sis and Applications. Springer, Heidelberg (2011)

40. Lückel, J., Hestermeyer, T., Liu-Henke, X.: Generalization of the Cascade Principle in
View of a Structured Form of Mechatronic Systems. In: Proceedings of the IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Como (2001)

41. Ober-Blöbaum, S., Junge, O., Marsden, J.E.: Discrete Mechanics and Optimal Control:
An Analysis. Control, Optimisation and Calculus of Variations 17(2), 322–352 (2011)

42. Osmic, S., Trächtler, A.: Flatness-based Online Controller Reconfiguration. In: Proceed-
ings of the 34nd Annual Conference of the IEEE Industrial Electronics Society, Orlando
(2008)

43. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Kontruktionslehre. Grundlagen erfolgre-
icher Produktentwicklung - Methoden und Anwendung, 6th edn. Springer, Heidelberg
(2005)

44. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design - A Systematic Ap-
proach, 3rd edn. Springer, Heidelberg (2007)

45. Paiz, C., Hagemeyer, J., Pohl, C., Porrmann, M., Rückert, U., Schulz, B., Peters, W.,
Böcker, J.: FPGA-Based Realization of Self-Optimizing Drive-Controllers. In: Proceed-
ings of the 35th Annual Conference of the IEEE Industrial Electronics Society, Porto
(2009)

46. Schäffler, S., Schultz, R., Weinzierl, K.: A Stochastic Method for the Solution of Un-
constrained Vector Optimization Problems. Journal of Optimization Theory and Appli-
cations 114(1), 209–222 (2002)

47. Schütze, O., Witting, K., Ober-Blöbaum, S., Dellnitz, M.: Set Oriented Methods for the
Numerical Treatment of Multi-objective Optimization Problems. In: Tantar, E., Tantar,
A.-A., Bouvry, P., Del Moral, P., Legrand, P., Coello Coello, C.A., Schütze, O. (eds.)
EVOLVE- A bridge between Probability. SCI, vol. 447, pp. 185–218. Springer, Heidel-
berg (2013)

48. Strube, G.: Modelling Motivation and Action Control in Cognitive Systems. In: Mind
Modelling, pp. 89–108. Pabst, Berlin (1998)

49. Witting, K., Schulz, B., Dellnitz, M., Böcker, J., Fröhleke, N.: A new Approach for
Online Multiobjective Optimization of Mechatronic Systems. International Journal on
Software Tools for Technology Transfer STTT 10(3), 223–231 (2008)

	The Paradigm of Self-optimization
	1.1
From Mechatronics to Intelligent Technical Systems
	1.2
Introduction to Self-optimization
	1.3
Architecture of Self-optimizing Systems
	1.3.1
Structure of Self-optimizing Mechatronic Systems
	1.3.2
Operator-Controller-Module

	1.4
Self-optimization in Intelligent Technical Systems
	1.4.1
Model-Based Self-optimization
	1.4.2
Behavior-Oriented Self-optimization
	1.4.3
Self-optimization by Reconfiguration

	1.5
Structure of This Book
	References

